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ABSTRACT 

In site-specific agriculture, mapping fine-scale spatial changes in soil characteristics are 

critical. Traditional soil analysis methods for mapping soil properties on a large scale are 

expensive, time-taking and not feasible. The current research looks at how remote sensing 

(RS) and geographic information system (GIS) approaches can be used to investigate the 

spatial variability of surface soil properties. An average of 51 samples were taken from 

tehsil Talagang of district Chakwal, Punjab, Pakistan. Lab analysis were carried out to 

determine soil texture and soil chemical properties. The objectives were to generate the 

predictive multiple linear regression modeling for soil physicochemical properties using 

Sentinel-2 and ASD Field Spec 4 data. The MLR has shown a significant (p<0.05) 

relationship of band-2, band-7, band-8 and band-8A with sand (%) (R2 = 0.19), OM (%) 

showed a significant (p<0.05) relationship with band-2, band-4, band-5 and band-11 with 

an R2 value of 0.23 and phosphorus obtained an R2 value of 0.22 while other properties 

did not show significant results. In the same way, OLS had obtained R2 value 0.11 for 

sand, K with R2 value of 0.19 and P had obtained R2 value of 0.10. Hence, both the 

techniques have not obtained significant results. Random Forest Regression has 

performed better than these for all soil properties. ASD data was modeled using SMLR 

and PLSR with sand properties. SMLR has sand (%) R2 value of 0.85, silt (%) of 0.71 and 

clay (%) 0.51 while with PLSR sand (%) has R2 value of 0.90, silt (%) 0.89 and clay (%) 

0.83. Hence, PLSR performed better than SMLR in the case of hyperspectral data. 

Interpolation techniques were also used to predict soil properties, among which IDW has 

performed best. In conclusion, the DRS can be successfully used in the detection of soil 

properties as compared to multispectral data. Further, hyperspectral imagery can be used 

for most accurate results. Soil spectral libraries can be created using large amount of 

samples from the study area. 
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CHAPTER 1  

INTRODUCTION 

Global food security challenge (Gebbers & Adamchuk, 2010), due to increasing growth 

of urban areas (Su et al., 2011), degradation of soil (Lerch et al., 2005), and the agro-

ecological balance is out of whack (E. Birch et al., 2011) has led to significant importance 

of precision agriculture in 21st century. An effective solution to combat this global 

challenge is the integration of Global Positioning System (GPS), Remote Sensing (RS) 

(Khanal et al., 2017), hyper spectral RS, field sensors, unmanned aerial vehicles (UAV) 

(Tokekar et al., 2016), automated machinery, and Internet of Things (Khanna & Kaur, 

2019) through PA (Precision Agriculture). The scientists have reduced the cost and 

increased (Schimmelpfennig & Ebel, 2016) production through the ideal use of fertilizers 

using Variable Rate Technology (VRT) (Fabiani et al., 2020). The concept of precision 

agriculture is based on the knowledge of soil physical and mechanical properties 

including their spatial variability (Hanquet et al., 2004). Precision agriculture's (PA) 

performance is relies heavily on an efficient and precise method for determining soil 

properties in the field. Farmers need this information to calculate the right amount of 

inputs for the highest crop production and the least amount of environmental impact (Ge 

et al., 2011). A complex interaction of seed, soil, water, and agrochemicals results in the 

agricultural production system (including fertilizer). The moment has come to use all 

technological instruments at our disposal by combining information technology and 

agricultural science for more efficient and environmentally sustainable crop production. 

Precision agriculture (PA) integrates new information-age technologies with a mature 

agricultural industry. It was first introduced in the 1980s in the United States in response 

to calls to address agricultural and environmental issues such as fertilizer and pesticide 

pollution. It adjusts inputs and management procedures based on variables like 
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soil/landscape features, pest presence, and microclimate. It takes a more holistic approach 

to agriculture by combining data from numerous sources to influence agricultural 

production, logistics, marketing, finance, and personnel decisions. PA is a data-driven 

approach to farming made possible by several quickly evolving technology. Although 

these technologies have been widely used, it is still unclear how to fully utilize their 

potential in precision agriculture. Additional precision farming research should be driven 

by need. We can begin by identifying these critical requirements. To fulfill these 

demands, appropriate research projects be proposed (Afroj et al., 2016). Agriculture is 

responsible for roughly 13.5 percent of total worldwide anthropogenic Greenhouse Gas 

(GHG) emissions, making it a major contributor to climate change (Montzka et al., 2011). 

Precision agriculture (PA) methods, which employ a huge reservoir of Precision 

Agriculture Technologies (PATs) in agricultural field operations, could help to reduce 

GHG emissions in the following ways: (a) the improvement of soils' ability to function as 

carbon stock reserves through reduced tillage (Angers & Eriksen-Hamel, 2008) and 

nitrogen fertilization (Khan et al., 2007; Waldrop et al., 2004), (b)  the reduction of fuel 

consumption through fewer tractor in-field operations (direct GHG reduction); and (c) the 

reduction of inputs for agricultural field operations (indirect GHG reduction) (Plant et al., 

2000). PATs can help achieve agricultural sustainability by improving the efficiency of 

most agricultural activities by lowering or redistributing inputs to meet the crop's actual 

needs. The new Common Agricultural Policy (CAP) is expected to support more PATs as 

a way to boost or sustain production while lowering environmental consequences and, in 

particular, GHG emissions (Balafoutis et al., 2017). Crop yield variability is affected by 

soil physicochemical properties (Lee et al., 2012) and nutrients availability (Krishna, 

2003). 
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1.1    Modelling Soil Physicochemical Properties using Remote Sensing 

                The collection of precise information about an object from a distance without 

coming into contact with it is referred to as remote sensing. Although RS has been used 

for a decade, its application in agriculture for the management of spatial variability is 

new. To monitor temporally dynamic plant and soil conditions, RS measures visible and 

invisible features of a field or set of fields and translates point measurements into spatial 

information (Afroj et al., 2016). Remote sensing (RS) is a new technology for acquiring 

PA data that has the benefits of cheap cost, speed, and relatively high resolution spatially. 

In-field soil property determination using RS has made significant progress (Ge et al., 

2011). 

               Laboratory methods to model soil physicochemical properties are time 

consuming (Angelopoulou et al., 2020), successful inclusion of remote sensing data with 

laboratory measurements (Preissler & Loercher, 1995) while effective modeling of 

different attributes can be achieved by applying quantitative procedures (Al-Quraishi et 

al., 2019). Using a variety of remote sensing data and different approaches, scientists 

have utilized this methodology to model and map different attributes (Farifteh et al., 

2006; Grunwald et al., 2015; King et al., 2005; Peng et al., 2019; Potopová et al., 2020; 

Sadeghi et al., 2015; B. Wang et al., 2018). The widely used remote sensing sensors for 

this purpose are ASTER (Advanced Spaceborne Thermal Emission and Reflection 

Radiometer) (Nawar et al., 2015), MODIS (Vågen et al., 2014), Sentinel (Vaudour et al., 

2019), Landsat (Al-Quraishi et al., 2019; Zhang et al., 2019). Different spatial, spectral, 

and radiometric resolutions of sensors have an impact on the accuracy of modeling. A 

185 km x 180 km Landsat-8 picture with a spatial resolution in the range of (30,100 

meters), equipped with Operational Land Imager (OLI) and Thermal Infrared Sensor 

(TIRS) has been used in a number of studies (Gorji et al., 2020; Srisomkiew et al., 2021; 
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Zhang et al., 2019). Researchers have also utilized Sentinel-2 to predict soil parameters as 

it has a 290 km swath width and has a wavelength range of (442.2, 2185.7 nm) with a 

spatial resolution of (10-60meters) (Lin et al., 2020; Vaudour et al., 2019; J. Wang et al., 

2019; Zhou et al., 2020). Innovative researchers are comparing the effectiveness of 

several sensors for predicting soil qualities using a variety of methodologies and 

algorithms (Davis et al., 2019; Gorji et al., 2020; Silvero et al., 2021). Regression can be 

used to model information from RS data (Bhunia et al., 2019). In order to model spatial 

data, classical statistics have been employed extensively (Simmonds et al., 2014). 

However, as knowledge of GIS and RS has grown, spatial statistics have evolved over 

time to account for the shortcomings of classical statistics. Soil properties are widely 

modelled now a days using Artificial Neural Network (ANN) and Machine Learning 

(ML) techniques (Ahmad et al., 2010; Behrens et al., 2005; Pellegrini et al., 2021). Also 

they have been modelled by using spatial interpolation techniques such as Inverse 

Distance Weighting (IDW) (Sheng et al., 2021) and kriging (Mueller et al., 2004; Panday 

et al., 2018; Qiao et al., 2018; Robinson & Metternicht, 2006). 

1.2  Efficient Land usage through Precision Agriculture 

 It helps in efficient use of land through 

1. GPS aids in the selection of suitable land for specific crops. 

2. GIS aids in data analysis. 

3. VART aids in the application of the proper amount of pesticide to the crops, 

keeping the soil fruitful. 

1.3  Spatial Variability of Soil  

                         One of the spatial variable is soil variation. Topography, along with 

water-holding capacity or organic matter variation, creates an even more intriguing field 
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view when the inputs are inserted or either the soil is disturbed by a producer. 

Wollenhaupt and colleagues (1997) gave a comprehensive overview of soil sampling and 

interpolation methods that may be used to assess soil variation. Judgmental sampling, 

simple random sampling, stratified sampling, cluster sampling, nested or multistage 

sampling, systematic sampling, stratified systematic unaligned sampling, and search 

sampling were the approaches they defined (Hatfield, 2000). Farmers have been using in-

field soil data to make crop management decisions for generations. Traditionally, grid 

sampling was done to estimate soil properties, but it has a disadvantage due to the cost it 

takes while sampling a large scale area so the difficulties of grid sampling have become 

more evident with the introduction of PA, which might demand high spatial resolution of 

in-field soil properties, therefore agricultural scientists and engineers have turned to RS 

for in-field soil property characterization (Ge et al., 2011). Many soil surveys, mapping, 

and quantitative soil-property characterization investigations have made use of both bare-

soil pictures acquired through remote sensing and spectroscopic reflectance of soil 

samples (Agbu et al., 1990; Ben-Dor & Banin, 1994, 1995; Dalal & Henry, 1986). For 

several applications, the cheapest, fastest and most accurate approach is remote sensing 

than traditional ones (e.g., the soil textures determination through pipette method and soil 

organic carbon concentration by dry combustion method) (Ge et al., 2011). In general, 

bare-soil satellite and aerial photos provide coverage on large extent and with reasonably 

detailed spatial information of study regions but with limited spectrum information. In the 

recent year’s soil property characterization in the field through remote sensing has 

increased dramatically in PA (Precision Agriculture). Soil property determination in PA is 

carried out by the established methods of RS images and spectroscopy (Ge et al., 2011). 

In the 1930s, the first attempt was made to employ RS for soil research, when the base 

maps were created by black and white aerial images for soil surveys in the United States 
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(Baumgardner et al., 1985). In the late 1060s, the soil scientists began to investigate the 

use of multispectral sensor (MSS) data to identify variations in surface soils in the late 

1960s and early 1970s (Kristof, 1971). 

1.4  Soil Spectroscopy 

                            The science of spectroscopy is concerned with the interaction of matter 

with its electromagnetic radiation (Skoog, D. A., Holler, F. J., & Crouch, 2007). Spectral 

reflectance of some of the materials is shown in the figure 1.1. The history of 

spectroscopy dates back to Isaac Newton's discoveries of the light nature and color 

fundamentals in the seventeenth century. The underlying premise of Vis-NIR is based on 

molecular distinctions, with different material’s spectral signatures being classified based 

on their reflectance and absorbance spectra (Mohamed et al., 2018). Development of 

instrumentation and its advancement in industrial applications in the second part of the 

twentieth century is shown in figure 1.2. 

The use of laboratory spectrometers for hyperspectral soil data gathering is a recent 

development. It is expected that soil parameters can be quantitatively measured through 

adequate data manipulation due to the highly precise spectrum information (Ge et al., 

2011). Visible near-infrared spectroscopy (vis-NIR) has grown in popularity as a cost-

effective alternative to traditional laboratory analyses because it is quick, non-destructive 

and does not require hazardous chemicals. It also allows multiple soil properties to be 

estimated simultaneously from a single spectrum (Vohland et al., 2011). Soil chemical 

and physical properties, including SOM, texture and clay mineralogy has been predicted 

by using visible-near-infrared spectrum (Stenberg et al., 2010). Curcio et al.2013 used 

VNIR-SWIR band reflectance spectroscopy to predict soil texture (sand, clay, and silt) 

(Curcio et al., 2013). Hyperspectral soil data captured by spectrometers is frequently 
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noisy and challenging to analyze, even in carefully controlled laboratory settings. Due to 

this, data preparation processes are used to "clean" them. Smoothing is most generally 

used method for noise reduction which includes Savitzky-Golay smoothing, running 

average, mean, and median filtering. Other extraneous elements that can alter 

hyperspectral soil data are usually reduced through derivative analysis. The first 

derivative, for example, is effective at accounting for sun angles and viewing geometry (e 

et al., 2011). 

                       The most commonly used statistical models for predicting different soil 

characteristics using spectral reflections are stepwise multiple linear regression (SMLR), 

partial least squares regression (PLSR), multivariate adaptive regression splines (MARS), 

principal component regression (PCR), and artificial neural networks (ANN) (Mohamed 

et al., 2018). 

1.5  Objectives 

                        The objectives of the study are as follows: 

1) Investigation and generation of a predictive multilinear regression model for sand, silt, 

clay, OM, phosphorus and potassium content using multispectral Sentinel-2A satellite 

data and hyperspectral ASD Field Spec 4 spectroradiometer data. 

2) Statistically comparison of the ASD and the Sentinel-2A predictive models.  

3) Generation of regional soil texture maps using spatial interpolation techniques. 
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          Figure 1.1. Spectral reflectance of materials (Short, 1982). 

 

 

Figure 1.2. Near-infrared spectroscopy development (W. Siesler, Y. Ozaki, 2002). 
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CHAPTER 2  

LITERATURE REVIEW 

Land use planning and other agricultural management and environmental protection 

operations require a thorough understanding of the spatial distribution and variability of 

soil texture. Using a small number of soil samples collected from a site in Pingdu, 

Shandong Province of China, the study evaluated Landsat Enhanced Thematic Mapper 

(ETM) remote sensing data as auxiliary variables for spatial estimate of surface soil 

texture. Estimation was done through three methods firstly using multiple stepwise 

regression (MSR) based on the link between surface soil sand, silt, and clay 

concentrations and remote sensing data, secondly preparation of kriging maps of surface 

soil sand, silt, and clay content and thirdly cokriging using remote sensing data. Results 

showed that the surface soil sand, silt, and clay concentrations were strongly correlated 

with Landsat ETM digital number (DN) of six bands (Bands 1–5 and Band 7) and the 

majority of the variability in soil sand, silt, and clay contents explained by the DN of 

Band 7. Compared to MSR and kriging, cokriging using remote sensing data improves 

estimations of surface soil texture significantly (Liao et al., 2013).  

                 For site-specific agriculture, mapping fine-scale spatial changes in soil 

characteristics is critical. The current research looks into the possibilities of using remote 

sensing (RS) and geographic information system (GIS) approaches to investigate the 

spatial variability of surface soil properties. A total of 170 surface (0-30 cm) soil samples 

were collected from Shorkot Tehsil, Punjab, Pakistan, and examined for surface soil 

texture and organic matter (OM). To correlate surface soil factors with spectral data from 

the Landsat TM5 satellite, a multivariate linear regression (MLR) analysis technique was 

used. The MLR equations were then utilized to model these properties spatially 

throughout the full study area. The USDA textural triangle restrictions for clay percent 
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and silt percent were used to construct a code in Visual Basic Language in an ArcGIS 

environment to produce a surface soil texture map. The most abundant textural class in 

the area was ‘sandy clay loam,' followed by ‘sandy loam,' and 'clay loam,' according to 

the findings. Furthermore, OM status in the entire study area soils was very poor (less 

than 1%). The findings suggest that RS and GIS approaches could be utilized to map fine-

scale soil texture and OM across a greater area (Ahmed & Iqbal, 2014). 

                    Soil reflectance data can be acquired quickly and cheaply through remote 

sensing. Knowing which soil factors impact bare soil imaging most would help farmers 

employ remote sensing more effectively for precision crop management. The study was 

conducted with the purpose to (a) identifying the most significant impact of measured soil 

qualities on the remotely sensed bare soil reflectance and (ii) discovering the spectral 

band or combination of spectral bands that appropriately define specific soil attributes. 

Three study sites in northeastern Colorado were used for this research. Irrigated 

continuous corn (Zea mays L.) cropping systems were used at all sites. Prior to planting, 

aircraft gathered remote sensing imagery. Bulk density, soil color (wet and dry), organic 

matter, organic carbon, soil texture, and cone index were all measured in soil samples. 

The image’s green, red, and near-infrared (NIR) bands were subjected to principal 

component analysis (PCA). The link between remote sensing and soil data was 

investigated using least-squares regression analysis. The first main components of the 

green, red, and NIR bands were statistically significant associations with organic carbon 

and the sand, silt, and clay fractions across all research locations. In this study soil spatial 

variability is assessed by the use of remote sensing (Mzuku et al., 2015). 

                     The samples were collected and analyzed in the laboratory to determine or 

study the chemical properties of the selected sites, which were seven sites in Kirkuk city 

of Iraq and the other one to predict soil maps using GIS techniques. Geotechnical maps 
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were produced using Inverse Distance Weighting (IDW) interpolation technique 

(Sulyman et al., 2020)  

                        Geostatistics offers useful methods for describing the spatial distribution 

of soil properties. Kriging techniques rely on the spatial dependence between 

observations to forecast attribute values at un-sampled places. Similar study was 

conducted at Mansoura University's experimental farm in Kalapshow, Bilqas District, 

Dakahlia Governorate, Egypt, these techniques were utilized to investigate the 

geographical distribution of specific soil physicochemical parameters. Surface 

interpolation of soil clay, available water, EC, bulk density, soil organic matter (SOM), 

soluble K, exchangeable K, and available K was done using Ordinary Kriging (OK) (El-

Sirafy et al., 2011). 

                  Soil property mapping is crucial because it contributes to our understanding of 

soil qualities and how they can be used sustainably. The research was conducted in a local 

government area in Oyo state to map out some soil features and examine their variability 

throughout the area. The cluster sampling technique was used to collect soil samples at 

three places around the local government region. The soil samples were air-dried, 

crushed, and sieved before their chemical analysis is carried out in the laboratory. 

Classical statistics were utilized to describe soil properties and the spatial variability is 

highlighted using kriging interpolation techniques in a GIS setting (Denton et al., 2017).  

                  As the soil’s total nitrogen (TN), organic carbon (OC), and moisture content 

(MC) has a direct spectral response in the near-infrared (NIR) region shows the potential 

of visible and near infrared (VIS-NIR) spectroscopy to estimate them. The study aimed of 

examining the predictive performance of two linear multivariates and two machine 

learning approaches. Principal component regression (PCR) and partial least squares 
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regression (PLSR) were the two multivariate approaches explored, while least squares 

support vector machines (LS-SVM) and Cubist were the machine learning methods. Soil 

spectra (350 - 2200 nm) in diffuse reflectance mode were recorded from 140 wet soil 

samples collected from one field in Germany using a mobile, fibre-type VIS-NIR 

spectrophotometer. The findings show that machine learning algorithms can solve non-

linear problems in the dataset. For the prediction of all three soil parameters investigated, 

LS-SVMs and the Cubist technique outperformed linear multivariate methods (Morellos 

et al., 2016). 

                    For sustainable land management; there is a need to develop fast, accurate 

and inexpensive methods for determining soil physicochemical properties. Vis-NIR 

spectroscopy has become an exciting and alternative method for the determination of 

these properties from the last two to three decades. Multivariate calibration approaches 

such as Partial Least Squares Regression (PLSR) are often used to correlate spectra with 

chemical, physical, and mineralogical aspects of soils to produce reliable predictions of 

soil properties.  This study aimed to see how well Vis-NIR spectroscopy combined with 

PLSR could be used to evaluate soil chemical and physical parameters such organic 

carbon (SOC), sand, silt, clay, and calcium carbonate (CaCO3) in a sample location in 

southern Italy. Based on chemical and physical parameters, spectral curves revealed that 

the soils may be spectrally separated. PLSR calibration models were developed and 

validated for each soil parameter using an independent data set. Leave-one-out-cross-

validation was used to find the optimal number of components to keep in the calibration 

models. The coefficient of determination (R2) and the root mean squared error were used 

to assess the accuracy of the calibration and validation models for the various soil 

parameters (RMSE). As a result, a combination of Vis-NIR spectroscopy and multivariate 
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statistical approaches can be utilized to characterize the soils of southern Italy in a quick, 

low-cost, and quantitative manner (Massimo Conforti & Gabriele Buttafuoco, 2014).  

                   Standard laboratory procedures for estimating soil texture are difficult, 

expensive, and time-consuming and require significant work. Reflectance spectroscopy is 

a low-cost, quick, and repeatable analytical approach for predicting various soil physical 

parameters. The study was conducted with a goal to see if visible (VIS: 350-700 nm) and 

near-infrared and short-wave-infrared (NIRS: 701-2500 nm) spectroscopy could be used 

to forecast and map the clay, silt, and sand fractions in the soils of the Triffa plain 

(northeast Morocco). A total of 100 soil samples (0-20 cm) were collected and texture 

evaluated using VIS-NIRS spectroscopy and the traditional laboratory approach. The 

capacity of spectral data to predict soil texture was evaluated using the partial least 

squares regression (PLSR) technique. The results of the prediction models revealed 

outstanding performance for the VIS-NIRS spectroscopy in predicting the sand fraction 

(R2 = 0.93 and RMSE = 3.72), good prediction for the silt fraction (R2 = 0.87; RMSE = 

4.55), and acceptable prediction for the clay fraction (R2 = 0.53; RMSE = 3.72). 

Furthermore, the spectral range between 2150 and 2450 nm is most important for 

forecasting the sand and silt fractions, while the region between 2200 and 2440 nm is best 

for estimating the clay percentage (Lazaar et al., 2021).  

         The research was done to show how to effectively analyze critical features of 

Mediterranean soils from southern Italy using visible–near infrared (vis–NIR) reflectance 

spectroscopy and partial least squares regression (PLSR). Understanding soil qualities is a 

necessary precondition for long-term land management. Vis–NIR reflectance 

spectroscopy and chemometrics have received a lot of attention in recent years. The 

potential of vis–NIR spectroscopy and PLSR for predicting chemical and physical 

properties [sand, silt, and clay, organic carbon (OC), total nitrogen (N), cation exchange 
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capacity (CEC), and calcium carbonate (CaCO3)] of soils representative of three 

Mediterranean agro-ecosystems from the Campania region in southern Italy was 

investigated in this study. PLSR is one of the most widely used chemometrics modeling 

approaches, and it is frequently used for quantitative spectroscopic analysis. PLSR 

models were created and was then tested using a separate set of data not utilized in the 

modeling. The root mean squared error (RMSE) and the relative percent deviation (RPD) 

were used to measure the correctness of the calibrations and validations for the various 

soil parameters (P. Leone et al., 2012).  

                  In soil research, detecting precise and accurate soil physicochemical attributes 

(SPAs) is a difficult task. With the variety of nature, the SPA can be altered spatially and 

temporally. SPA detection has previously been accomplished using standard soil 

chemical and physical laboratory testing. These laboratory procedures, however, do not 

meet the time constraints. As a result, non-destructive method to identify and describe 

soil properties is diffuse reflectance spectroscopy (DRS). 74 soil samples were 

agglomerated by farming sectors in Phulambri Tehsil in the Aurangabad region of 

Maharashtra, India, using spectral curves in the visible (350–700 nm) and near-infrared 

(700–2500 nm) (VNIR) regions. The VNIR spectrum was quantitatively analyzed. The 

Analytical Spectral Device (ASD) Field spec 4 spectroradiometer was used to collect the 

spectra of agglomerated farmed soils. The calibration models were built using the PLS 

regression methodology, which were independently tested for predicting SPA from the 

soil spectrum. A correlation study was performed between measured SPA and spectral 

reflectance in order to create a model. Soil organic carbon, nitrogen, soil organic matter, 

pH levels, electrical conductivity, phosphorus, potassium, iron, sand, silt, and clay were 

detected. The findings of this study have been found to be useful for precision farming 

and decision-making (Vibhute et al., 2018).  
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                     Along with appropriate farming techniques and soil quality, soil organic 

matter (SOM) plays a significant role in plant growth. Due to its significant geographical 

variability and chemical treatments, assessment of SOM is a time-consuming task. Vis-

NIR reflectance spectroscopy has traditionally been used to measure the organic content 

of soil without the use of hazardous chemicals. As a result, VNIR spectrum reflectance is 

expected to be in high demand for precision farming. The reflectance spectra of 30 soil 

samples were collected from agricultural areas in the Phulambri Tehsil in the Aurangabad 

region of Maharashtra, India, using the Analytical Spectral Device (ASD) Field spec 4 

spectroradiometer. The fringe channels were removed, and the absorption channels of the 

400-2450nm wavebands were detected using a continuum-removed approach. The first-

derivative transformation was used to smooth the spectra using the Savitzky-Golay (SG) 

method (FDT). Correlation study between spectral reflectance and SOM contents was 

used to forecast the SOM using the partial least squares regression (PLSR) model.  

Wavelengths of 441, 517, 527, 648, and 1000 nm are found to be sensitive to SOM 

channels. The research will help farmers and decision-makers for more efficient and cost-

effective farming and decision making (Vibhute et al., 2018). 

                 The study was aimed to forecast organic carbon content of soil in the hilly 

terrain of eastern Lesotho, southern Africa, which is home to abundant indigenous 

biodiversity and is heavily utilized for small-scale agriculture. Measurements of soil 

reflectance spectra with an Analytical Spectral Device (ASD) Field Spec® 4 optical 

sensor was carried out in an integrated field and laboratory to assess field spectroscopy-

based model’s accuracy, soil spectra were obtained on the land surface under field 

conditions and then on soil in the laboratory. Prediction effectiveness of two alternative 

models such as random forest and PLS regression were tested. The results reveal that 

utilizing field spectroscopic data, random forest regression can most accurately estimate 
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the soil organic carbon levels on an independent dataset. The partial least square 

regression model, on the other hand, over fits the calibration dataset. The visible range 

(400–700 nm) contained important wavelengths for predicting soil organic content. This 

work shows that using derivative field spectroscopic observations and random forest 

regression, soil organic carbon may be reliably estimated (Bangelesa et al., 2020). 

                         For soil quality assessment and precision soil management, a quick and 

convenient soil analysis technique is required. The research was carried out to see how 

well visible (Vis) and near-infrared (NIR) spectroscopy could predict paddy soil 

parameters in a typical Malaysian rice field by sampling 118 soil samples. Laboratory 

analysis and optical measurements in the Vis-NIR region using an analytical spectral 

device (ASD) FieldSpec spectroradiometer (350–2500 nm) was done to assess the utility 

of spectroscopy for predicting soil physical characteristics (bulk density, moisture 

content, clay, silt, and sand). Savitzky–Golay method and stepwise multiple linear 

regression (SMLR) were used to preprocess, model, and predict the properties based on 

their spectral reflectance in the Vis-NIR range. The study found that for all of the 

measured soil physical characteristics, Vis and NIR spectroscopy calibration models 

provided a good fit (R2 > 0.78); thus, Vis and NIR (specifically NIR reflectance) can be 

considered a reliable tool for assessing soil physical properties in Malaysian paddy fields. 

The findings of this study could be very useful in designing site-specific management 

(Gholizadeh et al., 2014). 

                     Two different methods were compared for the estimation of soil texture 

using VNIR-SWIR reflectance measurements. First one, the Continuum Removal (CR) 

technique, which was used to correlate specific spectral absorption features with clay, silt, 

and sand content, and secondly, the Partial Least-Squares Regression (PLSR) method, 

which is a classic statistical multivariate technique that uses full-spectrum data. The 
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surface reflectance of 100 soil samples was taken in the lab that were collected from 

various locations across Sicily encompassing a wide range of textures using an ASD Field 

Spec Pro spectroradiometer to achieve this goal (350-2500 nm). The PLSR strategy 

outperformed the CR approach, according to our findings. The use of root mean squared 

error (RMSE) and coefficient of determination (R2) was done to analyze soil texture 

accuracy and it revealed that the CR technique only allowed for a reasonable prediction 

for the clay texture component (Curcio et al., 2013). 
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CHAPTER 3  

MATERIALS AND METHODS 

3.1  Study Area  

                 The study area selected was tehsil Talagang of district Chakwal, is in the 

Pothohar plateau of Punjab, Pakistan. It covers an area of approximately 2,022 km2 

(figure 3.1). Chakwal is an agricultural area where the production of wheat, barley, 

sugarcane and many other fruits especially the international standard oranges and 

vegetables are the cause of its popularity. It’s called a ‘Barani’ area and has no proper 

canal system. Talagang lies at the latitude of 32.91°, longitude of 72.40° E and at an 

altitude of 460m. Talagang Tehsil is one of the largest tehsils in South Asia as it 

contains 102 villages, consisting of 23 union councils. Major crops grown here wheat, 

barley, mongphali (peanuts), Jowar, Bajra. Annual temperature ranges from 2.77°C to 38. 

8°C. It has a semi-arid climate. 

3.2  Soil Sampling 

      A random soil sampling was carried out excluding the uncultivated areas such as that 

are sloppy, urbanized and with dense vegetation etc. The accurate location of sampling 

points was located using Garmin global positioning system (Vasileios C. Drosos & 

Chrisvaladis Malesios, 2012). Total of 51 samples were collected from the study area 

considering the soil depth of 0-20 cm (Vibhute et al., 2018). Samples were collected 

using trowel. Before collecting the soil from the area, the plant residue or debris was 

removed including any stones if present. Sampling was done during the month of Jan-

Feb, 2021 and under clear sky conditions. The samples were immediately packed in 

plastic bags and were labelled with sample number and coordinate points. Lab analysis 

were carried out in the soil physical lab of PMAS Arid Agriculture university.  
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Figure 3.1: Study area map. 
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3.3    Soil Analysis  

         Soil samples were sun and air-dried after being transported into the laboratory. Then 

were crushed and sieved (Beuselinck et al., 1998) using 2mm sieve to remove all the 

debris or plant residues if remained. Hydrometer method (Bouyoucos, 1927) was used for 

the determination of soil texture following the ICARDA manual.  Figure 3.2 and 3.3 

shows the methodology adopted for the determination of the texture of soil through 

hydrometer method. Each sample's chemical characteristics (OM, EC, P, K and pH) were 

calculated. In the laboratory, soil OM was estimated using the Walkley-Black chromic 

acid wet oxidation method (EPA, 2002). Soil P with Olsen's Method (Sims, 2000), soil K 

with a Flamephotometer and other equipment, and soil pH with a spatula and pH meter 

(Bremmer y Mulvaney, 1982). At 25°C and 1 atmospheric pressure, the E.C. of soil was 

determined using a conductivity meter and associated equipment (Smith & Doran, 2015). 

3.4  Collection of Soil Spectral Signatures  

                            The spectral signatures of 51 soil samples were taken under clear 

weather condition on the sunny day in the month of August, 2021. Signatures of soil 

samples were taken by ASD Field Spec 4 Spectroradiometer (Analytical Spectral Devices 

Inc., Boulder, Colorado, USA) as shown in figure 3.4. It’s a compact, field portable, and 

precision instrument with a spectral range of 350–2500 nm and has a rapid data collection 

time of 0.2 second per spectrum. Prior spectral analysis, the optimization and calibration 

of the instrument was done using white reference spectralon panel to make sure no 

impurities or noise is recorded and absolute reflectance is obtained. It was also made sure 

that the soil samples were fully dried so that they don’t contain any moisture otherwise 

accurate spectral signatures would not be obtained. To ensure that 100% of light is 

reflected back, the 100 percent white reference was manufactured from lime material. The 

soil was placed on white paper and was smoothed before taking signature to ensure 
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uniformity. An average of 5 spectra was obtained for each soil sample. The instrument 

was calibrated with white reference panel after 5 to 10 minutes to avoid any noise being 

recorded. The inbuilt RS3 software was used to record spectral signatures. Signatures 

were recorded in ASD binary file format. Spectral library created from these spectral 

signatures of soil samples is shown in figure 3.5. 

3.5  ASD Field Spec 4 Data 

3.5.1 Pre-processing of Spectra 

                                 For the preprocessing of spectra firstly there is need to convert the 

.asd files into readable format such as in text form. Hence, to achieve this objective the 

ASD binary files were converted to text using the View Spec Pro (version 6.2.0) software 

(Analytical Spectral Devices, Inc., Boulder, CO, 80301). The five consecutive scans were 

then averaged for each soil sample and spectral signature was obtained to create a spectral 

library. The fringe spectra consisting of wavelength from 350-399 nm and 2350-2500 nm 

were removed before statistical modelling as shown in figure 3.6. And also the 

wavelength ranges from 1350-1460 nm and 1790-1960 nm were also eliminated because 

they show scattering due to atmospheric water absorption as they would affect the 

modeling. 

3.6 Statistical Analysis 

3.6.1 Stepwise Multiple Linear Regression (SMLR) 

The spectra were brought into the SAS software after all the pre and post processing to 

develop a linear regression model.  As the spectral data has the great amount of multi-

collinearity so there is need to consider those wavebands in the model that show 

significance with the soil physicochemical properties. In order to find those wavebands 
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Figure 3.2. Methodology of hydrometer analysis. 

 

Figure 3.3. Shows the steps to determine sand, silt and clay. 
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Figure 3.4. Collection of soil spectral signatures. 
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Figure 3.5. Soil spectral library. 
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stepwise regression was applied. The models developed are explained in the section 4.5. 

3.6.2 Partial Least Squares Regression (PLSR) 

After removing noisy and unnecessary bands, the spectra were imported into Unscrambler 

X (version 10.4) software CAMO, Norway for statistical analysis. Prior to building a 

model, the spectra were transformed by applying Savitzky-Golay smoothing with 1st 

derivative and 7 smoothing points, as shown in figure 3.7. The necessary transformation 

is the smoothing of spectra and to remove particle size effects and noise produced due to 

illumination variations as stated by (Volkan Bilgili et al., 2010) and (Tsai & Philpot, 

1998). 

3.7   Satellite Sentinel-2A Data 

             Remote sensing data, including multispectral images like Sentinel 2A were used 

for the analysis. The images were downloaded from Copernicus Open Access Hub. Bare 

soil images were downloaded and were kept cloud-free. Starting with the In-Orbit 

Commissioning Review (IOCR), the Copernicus Open Access Hub (formerly known as 

Sentinels Scientific Data Hub) gives complete, free, and open access to Sentinel-1, 

Sentinel-2, Sentinel-3, and Sentinel-5P user products. Image preprocessing was done 

using SCP (Semi-Automated Classification Plug-in in QGIS (version 3.4.6). The 

processed images were mosaicked and the study area was extracted in ArcMap (version 

10.8.1). Sentinel-2 MSI (Multi-Spectral Instrument) has a total of 13 spectral bands; four 

bands at 10 m, six bands at 20 m and three bands at 60 m resolution. Before analysis the 

band-1, band-9 and band-10 were removed as they are sensitive to aerosol scattering, 

water vapour correction and clouds at high altitudes respectively. Indices including such 

as Normalized Difference Vegetation Index (NDVI), Modified Soil Adjusted Vegetation 

Index (MSAVI), Bare soil Index (BSI), Soil Adjusted Vegetation Index (SAVI) were also 
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calculated in ArcMap (version 10.8.1). Field survey data points with all physicochemical 

properties, Sentinel-2 bands, Digital Elevation Model (DEM), SAVI, MSAVI, BSI and 

NDVI values were compiled into an integrated Esri File Geodatabase. Esri File 

Geodatabase was created by using a tool called ‘Extract multi-values to points’ in 

ArcMap (version 10.8.1). Table 3.1 explains the datasets used in the research. Table 3.2 

shows the software used in this research for analysis purposes. Figure 3.8 depicts a 

general overview of methodology used, which is explained in detail in later sections. 

3.8 Statistical Exploration and Multivariate Regression 

                     The descriptive statistics of soil physical and chemical properties using 

classical statistics minimum, maximum, average, standard deviation and skewness were 

calculated as listed in Table 4.1. Data was examined for anomalies and outliers 

(Esfandiarpoor Borujeni et al., 2010). A correlation matrix was calculated for the soil 

properties. It was also calculated among soil properties and band reflectance data. 

Multiple linear regression (MLR) was applied on each of the soil property considering 

them as y (dependent variable) and x  as (independent variable) (Forkuor et al., 2017) 

defined as  = a +  1 +  2 +  3 + ……. +  n + Σ e, where Σ e, is residual. To measure 

the prediction accuracy, the coefficient of determination R2 and the Root Mean Square 

Error (RMSE) were considered. The results are presented in depth at section 4.31. 

3.9    Geostatistics & Ordinary Least Squares Regression 

                   As we know the classical statistics does not account for the spatial variability, 

so it has some limitations while using spatial data. So spatial data mapping cannot be 

done using correlation and linear regression. This is where Geospatial statistics comes 

(López-Granados et al., 2005). “Geostatistics is a branch of statistics that studies and 

forecasts the values of spatial and spatiotemporal events”. Dependent variables are not a  
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Figure 3.6. Spectral data with removed noisy regions such as from 350-399nm, 

2350-2500nm,1350-1460nm and 1790-1960 nm. 

 

 

 

 

Figure 3.7. First derivative Savitzky-Golay transformation. 
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Table 3.1. Datasets used in this research. 

 

 

 

Table 3.2. Softwares used in this research. 

Software Description Source 

ArcGIS 10.8.1 Geospatial analysis ESRI 

Microsoft 

Excel 
Data Analysis Microsoft 

R Studio and R 

Program 

For Correlation matrix and 

Random Forest Regression 

https://www.rstudio.com/ 

https://www.r-project.org/ 

(open source) 

SAS On Demand for Academics 
https://www.sas.com/en_us/software/on-

demand-for-academics.html 

 

 

 

 

Dataset Description Source 

Soil 

physicochemical 

properties 

a. Texture 

determination 

through Hydrometer 

Analysis 

b. Lab Analysis of soil 

chemical properties 

Samples collected from the study area 

while doing field survey 

Satellite Imagery 
Sentinel-2A 

(13 spectral bands) 

Copernicus Open Access Hub 

https://scihub.copernicus.eu/dhus/#/home 

(Atmospherically corrected images) 

DEM 

(Digital 

Elevation Model) 

ALOS PALSAR 

(12.5m resolution) 

Alaska Satellite Facility 

https://asf.alaska.edu/data-sets/sar-data-

sets/alos-palsar/ 

 

GPS Co-

ordinates 

Georeferencing of soil 

samples 

The location of soil sampling was 

determined using a Garmin GPS. 

https://www.rstudio.com/
https://www.r-project.org/
https://www.sas.com/en_us/software/on-demand-for-academics.html
https://www.sas.com/en_us/software/on-demand-for-academics.html
https://scihub.copernicus.eu/dhus/#/home
https://asf.alaska.edu/data-sets/sar-data-sets/alos-palsar/
https://asf.alaska.edu/data-sets/sar-data-sets/alos-palsar/
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Figure 3.8. Methodological flow chart. 
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problem when using OLS, but explanatory variables are; thus the first step is to figure out 

which explanatory variable will best explain the models. Hence, to find out best 

explanatory variables, exploratory regression was performed. “Exploratory regression 

would help us to know the strength of the relationship”. The OLS (Ordinary Least 

Square Regression) was then applied to the filtered parameters (Godinho Silva et al., 

2016). Ordinary minimum square regression (Mirchooli et al., 2020) is a sort of spatial 

modeling that investigates the relationship between spatial variables. The general form of 

OLS equation is described as   

                                                  Equation– 2.5 

 

The terms RMSE, R2, Adjusted R2, and Histogram of standard residuals were used to 

evaluate the results of geospatial modeling, which were then studied and compared to 

classical modeling. The comparison of results is discussed in detail in section 4.3.2. 

3.10  Artificial Neural Network for Soil Mapping    

The Artificial Neural Network (ANN) (Khaledian & Miller, 2020) was used to explore 

data in the last phase of the research. ANN is built on the human brain intricate and 

interconnected conceptual structure (Hassoun et al., 1996). Random forest regression was 

used to explore the different soil properties. Random forest regression is a supervised 

learning approach for regression that use the ensemble learning method. The ensemble 

learning method combines predictions from several machine learning algorithms to 

produce a more accurate forecast than a single model. During training, a random forest 

constructs many decision trees and outputs the classes’ mean as the prediction of all the 

trees. Random forest (RF) is a classifier or regression model that consists of a large 

number of decision or regression trees, each of which is reliant on the values of a random 
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vector generated separately and with the same distribution for all trees in the data (Liaw 

& Wiener, 2002). Breiman (2001) created the Random Forest (RF) technique for data 

mining. It can be used to eliminate redundancy in hyperspectral datasets with several 

dimensions. The findings of (Abdel-Rahman et al., 2013) reveal that RF regression 

applied to hyperspectral data may accurately forecast sugarcane leaf N content, enabling 

in making wise decisions about site-specific N fertilizer application. Figure 3.9 shows the 

structure of random forest. Results are shown in section 4.7. 

The 501 sample points were generated for applying random forest regression on soil data 

to model soil properties with the help of a soil sampling tool that used a plug in ArcMap 

10.8.1. The IDW interpolated maps of sand, silt, clay, OM, P and K were used to extract 

values at generated points. The R program was used for random forest regression 

modeling.  

3.11  Geospatial Interpolation for Soil Mapping  

            In addition to the above modeling approaches, geospatial interpolation was 

used on soil data. In contrast to traditional modeling approaches, spatial prediction 

techniques, also known as spatial interpolation techniques, incorporate information on the 

physical location of the sample data points (Ver Hoef & Cressie, 1993). Spatial 

predictions can be used to describe a wide range of responses at various spatial sizes 

(Schloeder et al., 2001). Geostatistical kriging-based tools for spatial analysis, such as 

Simple and Ordinary Kriging, Universal Kriging, and Simple Cokriging (Ver Hoef & 

Cressie, 1993; Ziegel et al., 1998) have been widely employed. 

3.11.1   Inverse Distance Weighted Interpolation 

                      Inverse Distance Weighted interpolation and its variations (Franke, 1982) are 

the most commonly used deterministic approaches. The IDW interpolation uses a linearly 
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weighted combination of sample points to determine cell values. The inverse distance 

between the points determines the weight. This method presupposes that the influence of 

the variable being mapped out decreases as the distance from the sampled place increases 

(Oshunsanya et al., 2017). (Ajaj et al., 2018) states that to predict values at unknown 

positions, inverse distance weighted (IDW) interpolation uses a weighted average of 

values at known sample locations. Mathematically, the IDW equation is represented 

below where m is the number of closest points, and p is the parameter usually 2 (Watson, 

1992).  

     

             

3.11.2 Kriging 

                    Kriging is a form of interpolation technique that predicts unknown 

positions using distance and degree of variation of known samples. The general types of 

kriging are Universal Kriging and Ordinary Kriging.  

Mathematically kriging is defined as                      

                                                                  

Z(si) = the measured value at the ith location; λi = an unknown weight for the measured 

value at the ith location; s0 = the prediction location; N = the number of measured 

values.  

Various types of kriging methods are there. Among them the widely used method is 

Ordinary Kriging, which is defined as  µ+ ε(s) µ: constant. 
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3.11.3 Spline Interpolation 

                               In this interpolation method, the cell values are approximated using a 

mathematical function that minimizes total surface curvature, resulting in a smooth 

surface that passes through the input point locations exactly.  

This study explored IDW, OK and spline Interpolation for soil chemical and physical 

properties. IDW, OK and spline were compared based on RMSE (Setianto & Triandini, 

2015). Their results have been discussed in the section 4.5. The RMSE of each point 

between observed and anticipated data was calculated and used to evaluate geospatial 

modeling performance. 
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Figure 3.9. The structure of a random forest. 
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CHAPTER 4  

RESULTS AND DISCUSSION 

4.1   Descriptive Statistical Analysis 

Table 4.1 show results of soil properties using basic classical statistics where minimum, 

maximum, mean, standard deviation, skewness and kurtosis were used to examine 51 

samples. It was observed that sand ranges from 47.5% to 87.5 % with a mean value of 

72.6 %. Silt ranges from 1.5% to 46.5% with a mean value of 18.4%. Clay ranges from 

5% to 13.5% with a mean value of 8.85%. EC values ranges from 0.76 dSm-1 to 1.52 

dSm-1 with a mean value of 0.90 dSm-1. The soil pH values ranges from 7.61 to 8.15 with 

a mean value of 7.77, this shows the soil of the study area is good for farming practices. 

OM ranges from 0.41% to 0.92% with a mean value of 0.65%, these values shows that 

the soil is having less amount of organic matter that might not be sufficient for growth of 

crops. K (potassium) ranges from 6 mgkg-1 to 145 mgkg-1 with a mean value of 75.3 

mgkg-1. P (phosphorus) ranges from 3 mgkg-1 to 8 mgkg-1 with a mean value of 4.96 

mgkg-1. Figure 4.1 shows the correlation matrix of soil properties. Its shows significance  

at 0.05 significance level. It is seen that highest positive correlation exists between OM 

and P while slight positive correlation exists between OM and EC, P and EC and K and 

silt. Negative correlation exists pH between and EC, EC and clay, silt and Clay. 

4.2  Analysis of Remote Sensing Data  

                         Table 4.2 shows only significant remote sensing wavelength ranges with 

soil physicochemical properties for sentinel-2A images. Soil sand particle was found to 

be statistically significant with sentinel band-2 (0.490 µm), band-7 (0.783 µm), band-8 

(0.842 µm) and band-8A (0.865 µm). Clay was found to be significant with sentinel 

band-2 (0.490 µm), band-5 (0.705 µm), band-8A (0.865 µm) and band-11 (1.610 µm). 
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Silt was found to be significant with sentinel band-7 (0.783 µm), band-8 (0.842 µm), 

band-8A (0.865 µm) and band-11 (1.610 µm). OM was found to be significant with 

sentinel band-2 (0.490 µm), band-4 (0.665 µm), band-5 (0.705 µm) and band-11 (1.610 

µm). P was found to be statistically significant with band-3 (0.560 µm), band-4 (0.665 

µm), band-5 (0.705 µm) and band-11 (1.610 µm). K was found to be statistically 

significant with band-4 (0.665 µm), band-5 (0.705 µm), band-8 (0.842 µm) and band-11 

(1.610 µm). 

4.3 Non-Spatial and Spatial Modelling  

4.3.1 Prediction of soil properties using Multiple Linear Regression (MLR)   

                                     Francis Galton was the first to utilize MLR (Multiple Linear 

Regression). In soil prediction, MLR (Multiple Linear Regression) modelling is 

commonly employed (Abrougui et al., 2019). Multiple regression is another name for 

multiple linear regression (MLR). It is a statistical strategy that predicts the outcome of a 

responsible variable by combining numerous explanatory variables. MLR is a single-

explanatory-variable extension of linear ordinary least squares regression. MLR is a 

method for calculating the relationship between two or more independent and dependent 

variables. y = a + x 1 + x 2 + x 3 +.... + x n + Σ e, is general form of equation for MLR, 

where y is the dependent variable, ‘a’ is the intercept, x1, x2, x n is the collection of 

explanatory or independent variables, and Σ e is the residual (Azadi & Karimi-Jashni, 

2016). MLR was used to model soil physicochemical properties (sand, silt clay, OM, P, 

K) using a set of explanatory factors (soil properties, Sentinel-2A data). Models 

developed are shown in table 4.3. All model accuracy is explained in section 4.9.1. 
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Table 4.1. Descriptive statistics of soil properties. 

 

 

 

 

Figure 4.1. Correlation matrix. 

 

 

Soil 

Attributes 
Sand Silt Clay OM EC pH K P 

 (%) (dS m-1)   (mgkg-1) 

Min 47.5 1.5 5 0.76 7.61 0.41 6 3 

Max 87.5 46.5 13.5 1.52 8.15 0.92 145 8 

Mean 72.6 18.4 8.85 0.90 7.77 0.65 75.3 4.96 

Standard 

Deviation 
9.18 9.81 2.41 0.20 0.11 0.12 26.4 1.18 

Skewness -0.81 0.66 0.59 1.83 1.13 -0.11 -0.26 0.30 

Kurtosis 0.77 0.52 -0.52 2.59 3.09 -0.33 2.27 -0.54 
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Table 4.2. Band specification of Sentinel-2A. 

 

 

 

 

 

 

 

Explanatory 

variables (Bands) 

Central 

Wavelength (µm) 

Spatial 

Resolution (m) 

Significance with 

variable 

Band-2 (Blue) 0.490 10 Sand, Clay, OM 

Band-3 (Green) 0.560 10 P 

Band-4 (Red) 0.665 10 OM, P, K 

Band-5 

(Vegetation Red 

Edge) 

0.705 20 Clay, OM, P, K 

Band-7 

(Vegetation Red 

Edge) 

0.783 20 Sand, Silt 

Band-8 (NIR) 0.842 10 Sand, Silt, K 

Band-8A 

(Vegetation Red 

Edge) 

0.865 20 Sand, Silt, Clay, 

Band-11 (SWIR) 1.610 20 Silt, Clay, OM, P, K 
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4.3.2 Prediction of Soil Properties using Exploratory Regression & Ordinary Least 

Squares Regression (OLS)  

                               Exploratory regression is a data mining tool that tries all conceivable 

combinations of explanatory variables to see which models pass all of the OLS 

diagnostics. We may considerably improve our chances of finding the optimum model to 

solve our problem or answer our question by examining all potential combinations of the 

candidate explanatory variables. Exploratory regression looks for models that satisfy all 

of the OLS model's requirements and assumptions. Exploratory regression analysis 

(Kalota, 2017) identifies possible variable combinations for geographical data modeling 

(ESRI). For regression approaches, OLS is the most well-known. It’s also where all 

spatial regression analysis begins. It gives us a big picture of the variable or process we 

seek to figure out or forecast. It represents the process using a single regression equation. 

Table 4.4 shows the results of exploratory regression for soil sand, silt, clay, OM, P and K 

using Sentinel-2A bands. Adjusted R2, AIC (Akaike Information Criteria), JB (Jarque-

Bera), VIF (Variance Inflation Factor), and SA (Spatial Autocorrelation (the Global 

Moran's I p-value)) are used to evaluate the model. A decent model has a high Adjusted 

R2, a low AIC, (JB-nonsignificant), VIF 10 OR 7, and SA (NO pattern should exist). The 

validity and correctness are discussed in length in Section 4.9.2. Soil physicochemical 

properties were predicted using OLS (Ordinary Least-Squares Regression) after being 

explored through exploratory regression is shown in table 4.5. 

4.3.3 Prediction of Soil Properties using Hyperspectral Data 

        Multivariate calibrations are required to investigate of soil diffuse reflectance spectra 

(Martens & Naes, 1989). Stepwise multiple linear regression (SMLR) (Ben-Dor & Banin, 

1995), principal component regression (PCR), and partial least squares regression are the 

most used calibration methods for soil applications (PLSR). The fundamental rationale 
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for employing SMLR is that the traditional regression techniques like multiple linear 

regression (MLR) are insufficient and the soil scientists are unaware of full-spectrum data 

compression techniques like PCR and PLSR (Stenberg et al., 2010). Although PLS is 

effective for modeling spectral data, Bajwa et al., (2010) argue that it is too complicated 

for producers and crop consultants to adopt, as opposed to SMLR, which is considerably 

simpler and more flexible. 

4.4 Correlation of Soil Spectra 

 After the pre-processing of spectra, the wavebands were correlated. The correlation 

analysis was carried out between sand, silt, clay and reflectance values obtained at each 

waveband in order to find significant wavelength ranges for sand, silt and clay. The bands 

ranges from 1001-1121, 1128-1344, 1494-1766, 1769-1773, 1984-1987, 1989-1993, 

2030-2037, 2045-2047, 2126-2133, 2136-2150 and 2158-2349 nm were positively 

correlated to silt except for the band range 400-423 nm are negatively correlated at 0.05 

% significance level. And all these bands showed opposite behavior with sand as 400-433 

nm showed a positive correlation while 1001-1121,1129-1344, 1493-1766, 1769-1774, 

1982-1995, 2030-2039, 2044-2048, 2118-2153 and 2157-2349 nm band ranges have 

shown a negative correlation. Correlation analysis was performed between spectral 

reflectance and SOM in different soil types where significant correlations exist between 

550-850 nm at 0.05 or 0.01 levels and the most sensitive bands are found at 650 -750 nm 

because of significant statistical correlation exists at 0.01 level (Lu et al., 2015). 

4.5 Stepwise Multiple Linear Regression (SMLR) 

                         Spectral reflectance data was modelled by using SMLR in SAS software 

(SAS OnDemand for Academics), considering soil properties as dependent variables 

while reflectance values as independent variables or explanatory variables. 
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Table 4.3.  MLR models developed using Sentinel-2A band reflectance values. 

 

 

Table 4.4. Results of exploratory regression 

* Band-2, 

** Band-8A, 

*** Band-7, 

**** Band-11, 

***** Band-3 

Soil 

Attribute 
Multiple Linear Regression Model R2 R2 (Adj) 

Sand (%)  0.19 0.05 

Silt (%)  0.17 0.10 

Clay (%)  0.12 0.05 

OM (%)  0.23 0.17 

P  

(mgkg-1) 
 0.22 0.15 

K  

(mgkg-1) 
 0.22 0.15 

Soil 

Attribute 
Sand  

(%) 

Silt  

(%) 

Clay  

(%) 

OM 

(%) 

P  

(mgkg-1) 

K  

(mgkg-1) 

Explan-

atory 

Variable 

Blue*, 
Vegetation  

Red 

Edge**  

Vegetation 

Red 

Edge**  

Blue*, 
Vegetation 

Red 

Edge***  

Short-

wave 

Infrared

****  

Green***

*,  
Short-

wave 

Infrared*

***  

Vegetation 

Red 

Edge***,  
Short-wave 

Infrared***

*  

Adj. R2 0.67 0.29 0.32 0.51 0.25 0.18 

AIC 372.68 382.40 237.60 -66.05 163.87 475.79 

JB 0.00 0.06 0.14 0.88 0.83 0.27 

VIF 1.84 1.00 2.09 1.00 3.50 3.04 

SA 0.12 0.38 0.49 0.05 0.00 0.08 
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Table 4.5. Spatial regression equations. 

Soil 

Attribute 
Ordinary Least Squares Regression R2 R2 

(Adj) AIC 

Sand (%)  0.11 0.07 372.6 

Silt (%)  0.01 0.009 425 

Clay (%)  0.08 0.05 237.5 

OM (%)  0.05 0.03 -66.0 

P (mgkg-1)  0.10 0.07 163.8 

K (mgkg-1)  0.19 0.15 475.7 
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as explanatory variables. SMLR is a statistical method for regressing many variables 

while deleting those that aren't important. It’s an automatic technique that is used to select 

predictive variables (Draper et al., 1966; Efroymson, 1960; Hocking, 1976). Each step of 

SMLR considers a variable whether to add to or delete it from the set of explanatory 

variables in the form of a series of F-tests or t-tests. The developed models are shown in 

table 4.6. 

4.6 Partial Least Squares Regression (PLSR) 

                               PLSR is a most accepted chemometrics modeling strategy or method 

commonly used to interpret quantitative reflectance spectroscopic data. The PLSR is a 

linear multiple regression method that combines and generalizes the characteristics of 

multiple regression and principal component regression. PLSR is a transformer and a 

regressor that works similarly to PCR in that it reduces the dimensionality of the samples 

before applying a linear regressor to the transformed data. The PLS transformation differs 

from PCR in that it is supervised. PLSR was carried out in Unscrambler X (version 10.4) 

software CAMO, Norway after being spectra imported. The spectra were transformed by 

applying Savitzky-Golay smoothing with 1st derivative and 7 smoothing points. Table 4.7 

shows the descriptive statistics from PLSR modelling along with calibration (R2 values 

and RMSE) and validation (R2 values, RMSEP, SD, and RPD). 

4.7   Random Forest Regression  

                        It’s a machine learning technique for solving classification and regression 

problems. It uses ensemble learning approach for solving complicated problems that 

integrate multiple classifiers. Many decision trees make up a random forest algorithm. 

The random forest regression models were evaluated based on their values of R2 (R-  
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Table 4.6. SMLR modelling using hyperspectral data. 

Soil 

Attributes 
Stepwise Multiple Linear Regression R2 R2 

(Adj) 

Sand 

(%)  0.85 0.79 

Silt 

 (%)  0.71 0.68 

Clay 

(%) 
 0.51 0.42 

OM 

(%)  0.38 0.29 

P  

(mgkg-1)  0.28 0.19 

K  

(mgkg-1)  0.20 0.13 
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square),  RMSE (Root Mean Square Error), MAE (Mean Absolute Error). Table 4.8 

shows the statistical results obtained while RF regression is applied. Variable importance 

for soil properties is shown in section 4.11. 

4.8 Geospatial Interpolation for Soil Mapping  

                 Interpolation techniques such as IDW (Inverse Distance Weighted), kriging 

and spline are well-known. The general kriging equation was described in section 3.11.2. 

Soil physicochemical characteristics were first investigated using IDW, kriging and 

spline, and accuracy was assessed using RMSE (Root Mean Square Error) with known 

values for each sampled point based on the anticipated raster. The RMSE obtained for 

IDW was the lowest among all the three kriging approaches. Hence, IDW was found to 

be more accurate than others. The RMSE values of each character are explained in Table 

4.9. IDW maps of each soil variable is shown in figure 4.2 and 4.3. 

4.9      Validation of Soil Modeling  

4.9.1   Soil Physicochemical Properties using MLR 

            Evaluation of the models was done based on Highest R2 and lowest RMSE. Table 

4.10 shows the R2, Adjusted R2. According to the results, the highest R2 value is obtained 

for organic matter with R2 value of 0.23 and the adjusted R2 value of 0.17. Potassium and 

phosphorus both had R2 value of 0.22 with adjusted R2 value of 0.15. Among soil particle, 

the sand had R2 value of 0.19 with adjusted R2 value of 0.05. Silt had R2 value of 0.17 and 

clay with the lowest R2 value of 0.12. Hence, all of the soil properties didn’t showed 

significant results with MLR using Sentinel 2 data. 
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4.9.2 Soil Physicochemical Properties using Exploratory Regression and OLS 

            Adjusted R2, AIC (Akaike Information Criteria), JB (Jarque-Bera), VIF (Variance 

Inflation Factor), and SA (Spatial Autocorrelation (the Global Moran's I p-value)) are 

used to evaluate the model while running exploratory regression. A decent model has a 

high Adjusted R2, a low AIC, (JB-nonsignificant), VIF 10 OR 7, and SA (NO pattern 

should exist). Results obtained through exploratory regression is shown in table 4.4 in 

section 4.3.2. Spatial regression models (equations) are shown in table 4.5 while model 

evaluation is discussed in the section 4.9.2. Results have shown that the K (potassium) 

had R2 value of 0.19 with adjusted R2 value of 0.15, P (phosphorus) had R2 value of 0.10 

with adjusted R2 value of 0.07 and sand and R2 value of 0.11 with adjusted R2 value of 

0.07. Among other parameters these three have somehow highest R2 value and adjusted 

R2 value. 

4.9.3 Validation of SMLR using ASD Field Spec 4 Dataset 

            The SMLR procedure was carried out on hyperspectral data as discussed in 

section 4.5. The model’s accuracy was validated based on R2 and adjusted R2. Table 4.12 

shows the descriptive statistics obtained through SMLR being applied on the ASD Field 

Spec 4 dataset. According to the statistics, it can be seen that sand with the R2 of 0.85 and 

adjusted R2 of 0.79, silt with R2 of 0.71 and adjusted R2 of 0.68 and clay with R2 of 0.51 

and adjusted R2 of 0.42 show significant results while OM (%) shows R2 of 0.38 and 

adjusted R2 of 0.29, P (mgkg-1) R2 of 0.28 and adjusted R2 of 0.19 and K (mgkg-1) R2 of 

0.20 and adjusted R2 of 0.13 does not found to be significant.   

4.10 Validation of PLSR using ASD Field Spec 4 Dataset 

                     The PLSR model validation be done through RPD values obtained for each 

soil property. The residual prediction deviation (RPD) value helps predict soil properties 
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Table 4.7. Descriptive statistics from PLSR modeling. 

 

 

Table 4.8. Statistical results using random forest regression. 

 

 

Soil 

Attribute 

Calibration Dataset Validation Dataset 

R2 RMSEc R2 RMSEp SD RPD 

Sand (%) 0.90 1.92 0.88 5.58 9.18 1.64 

Silt (%) 0.89 2.38 0.79 4.70 9.81 2.08 

Clay (%) 0.83 2.93 0.64 5.60 2.41 0.43 

OM (%) 0.56 0.11 0.43 5.20 0.12 0.02 

P  

(mgkg-1) 
0.68 1.02 0.78 3.22 1.18 0.3 

K  

(mgkg-1) 
0.72 18.9 0.52 10.2 26.4 2.58 

Soil Property R2 RMSE MAE 

Sand (%) 0.76 0.01 0.008 

Silt (%) 0.71 0.06 0.03 

Clay (%) 0.73 0.02 0.015 

OM (%) 0.76 0.026 0.019 

P (mgkg-1) 0.79 0.03 0.02 

K (mgkg-1) 
0.71 0.04 0.03 
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using Vis-NIR spectra. RPD values were grouped into three categories such as category A 

or excellent where RPD value will be greater than 2; category B or good with RPD values 

ranging from 1.4 to 2, and category C or unreliable with RPD less than 0.5. It is 

calculated by dividing standard deviation (SD) of the reference dataset to the root mean 

square error of prediction (RMSEP) as shown in equation 

 

Hence, results show that sand, silt and potassium predictions are good (category B) while 

clay, OM and phosphorus predicted are unreliable as they lie in category C. 

4.11 Variable Importance of Soil Physicochemical Properties using Random Forest 

Regression 

                                        Variable importance of each soil property is shown in figure 4.4 

and 4.5 as obtained through random forest regression analysis. The Variable Importance 

chart shows each explanatory variable’s importance in the regression model. As for clay 

Band-12 has the most significance, for sand has band-5, for silt has blue band, for 

potassium green band, band-12 is for organic matter, and band-7 for phosphorus is the 

most significant band. 
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Table 4.9. Evaluation of soil physicochemical characteristics using spatial interpolation. 

 

 

Table 4.10. Descriptive statistics of MLR. 

 

 

 

 

 

 

 

 

 

 

 

Soil Attributes 

RMSE 

IDW(Inverse 

Distance Weighted 

Interpolation) 

Kriging Spline 

Sand (%) 0.03 8.16 0.34 

Silt (%) 0.03 8.61 0.33 

Clay (%) 0.00 2.38 0.00 

OM (%) 0.00 0.01 0.00 

P (mgkg-1) 0.00 0.83 0.03 

K (mgkg-1) 
0.07 20.62 0.83 

Soil Property R2 Adjusted R2 

Sand (%) 0.19 0.05 

Clay (%) 0.12 0.05 

Silt (%) 0.17 0.10 

OM (%) 0.23 0.17 

P (mgkg-1) 0.22 0.15 

K (mgkg-1) 0.22 0.15 
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Figure 4.2. Inverse distance interpolation maps of sand, silt and clay. 
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Figure 4.3. Inverse distance interpolation maps of OM, P and K. 
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Table 4.11. Statistics of OLS modelling. 

 

 

Table 4.12. Descriptive statistics of SMLR on ASD Field Spec 4. 

 

 

 

Soil Attribute R2 Adjusted R2 AIC Histogram 

Sand (%) 0.11 0.07 372.6 
Normally 

distributed 

Silt (%) 0.01 0.009 425 
Normally 

distributed 

Clay (%) 0.08 0.05 237.5 
Normally 

distributed 

OM (%) 0.05 0.03 -66.0 
Normally 

distributed 

P (mgkg-1) 0.10 0.07 163.8 
Normally 

distributed 

K (mgkg-1) 0.19 0.15 475.7 
Normally 

distributed 

Soil Attribute R2 Adjusted R2 

Sand (%) 0.85 0.79 

Silt (%) 0.71 0.68 

Clay (%) 0.51 0.42 

OM (%) 0.38 0.29 

P (mgkg-1) 0.28 0.19 

K (mgkg-1) 0.20 0.13 
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Figure 4.4. Variable importance of sand, silt and clay. 



 

54 
 

 

 

 

 

 

 

 

 

Figure 4.5. Variable importance of soil chemical properties. 
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CHAPTER 5  

CONCLUSION AND RECOMMENDATIONS 

Soil physical properties were predicted through classical statistics, geospatial statistics, 

machine learning techniques such as ‘Random Forest’ while hyperspectral dataset is also 

used for prediction to know which performs the best. The classical statistics didn’t meet 

the demand because it does not account for spatial variability as the spatial data has 

spatial dependency. Hence geospatial regression modelling is used to encounter this issue, 

such as exploratory regression and ordinary least squares regression and they performed 

better compared to the classical statistics. 

The texture of study area is majorly composed of sandy loam, loamy sand and loamy 

soils. Soil physico-chemical properties revealed that soil pH, electrical conductivity (EC), 

organic matter (OM) and potassium (K) (6-145 mgkg-1) had a normal range while soil 

phosphorus (3-8 mgkg-1) was found deficient (<10 mgkg-1) in soils of the study area. A 

significant relationship was found between OM and P which indicate that OM 

mineralization is releasing P in soil. So, we need to improve the OM content to reduce the 

P addition as an inorganic fertilizer. Sentinel 2A dataset didn’t showed satisfactory 

predictions for almost all of the soil parameters using both MLR (multiple linear 

regression) and OLS (ordinary least squares regression). As the sand had R2 value of 0.19 

and adjusted R2 value of 0.05, silt had R2 value of 0.17 and adjusted R2 value of 0.10, clay 

had R2 value of 0.12 and adjusted R2 value of 0.05, OM (organic matter) with R2 value of 

0.23 and adjusted R2 value of 0.17, P and K both obtained R2 value of 0.22 and adjusted 

R2 value of 0.15. Similarly, non-significant results are also obtained with OLS regression 

as well. On the Sentinel-2A data, the somehow better and significant results are obtained 

using random forest regression technique. Sand with the R2 value of 0.76, OM (%) with 

R2 value of 0.76 and phosphorus with R2 value of 0.79. ASD Field Spec 4 data had also 
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been modelled with soil parameters using SMLR and PLSR. SMLR has shown better 

predictions with soil properties but the accuracy was improved using PLSR. Sand using 

SMLR obtained R2 value of 0.85 and it increased upto 0.88 (R2 value of prediction) using 

PLSR, similarly, highest R2 values were obtained for the silt, phosphorus and clay as 

well. Interpolation methods such as IDW, kriging and spline were used to predict 

different soil properties in which the IDW performed the best. It is concluded that among 

datasets, better results are obtained using hyperspectral datasets. 

5.1   Recommendations  

1. Traditional soil analysis methods are expensive, time-consuming so there 

is a need of inexpensive and accurate methods for soil mapping, this is 

where the remote sensing methods come in handy for site-specific 

management and soil variability mapping. 

2. Diffuse Reflectance Spectroscopy can be effectively used for modelling 

soil properties. 

3. Geospatial statistics and Artificial Neural Network models should be used 

for soil  

modelling. 

4. High spectral and spatial resolution satellite images such as hyperspectral 

images be used to improve the accuracy. 

5. Soil sampling size must be increased to develop a more precise and 

accurate soil spectral library using ASD Field Spec 4. 

6. For a sustainable environment, precision agriculture is needed for which 

national soil national database should be created.  

7. Soil texture maps should be created as their information is essential for 

supporting the agronomic decisions on farm management. 
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Appendix-1: Soil Physical Properties 

S-

No. 
Texture Name Latitude Longitude Sand(%) Silt(%) Clay(%) 

1 
Sandy 

Loam 

Dhoke 

Patwala 
32.78 72.32 81 5.5 13.5 

2 
Sandy 

Loam 

Shah 

Muhammadi 
33.05 71.95 65 28 7 

3 
Sandy 

Loam 

Dhoke 

Sherjangal 
32.75 72.30 70 21.5 8.5 

4 
Loamy 

Sand 
Dhoke Tali 33.06 71.97 87.5 4 8.5 

5 
Loamy 

Sand 
Pichnand 32.88 72.00 85 1.5 13.5 

6 
Loamy 

Sand 
Multan khurd 33.05 72.01 87.5 3 9.5 

7 
Sandy 

Loam 
Khuiiaan 33.04 72.03 72.5 17 10.5 

8 
Sandy 

Loam 
Tamman 33.02 72.09 79 11.5 9.5 

9 
Loamy 

Sand 
Bhudiyaal 33.00 72.21 80 13 7 

10 
Sandy 

Loam 
Kot Shams 32.87 72.21 71.5 20 8.5 

11 
Sandy 

Loam 
Sukka 32.88 72.04 69 22.5 8.5 

12 
Sandy 

Loam 

Dhoke 

Chokera 
32.96 72.37 70 19.5 10.5 

13 
Sandy 

Loam 

Dhakli 

Jasiyaal 
32.98 72.38 75 14.5 10.5 

14 
Sandy 

Loam 
Leti 32.92 72.07 71.5 20 8.5 

15 
Sandy 

Loam 
Kot Sarang 33.02 72.41 65 29 6 

16 
Loamy 

Sand 
Dhrada 32.84 72.06 76.5 17.5 6 

17 
Loamy 

Sand 
Mustafa Abad 32.99 72.42 81 9.5 9.5 
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S-

No. 
Texture Name Latitude Longitude Sand(%) Silt(%) 

Clay(%) 

18 
Sandy 

Loam 
Balwaal 32.83 72.09 67.5 26.5 6 

19 
Sandy 

Loam 
Naka Kahut 32.94 72.46 75 16.5 8.5 

20 
Sandy 

Loam 

Dhoke 

Mangiyaal 
32.92 72.46 71 19.5 9.5 

21 
Sandy 

Loam 
Dhurnaal 32.82 72.11 71.5 20 8.5 

22 
Sandy 

Loam 
Malakwaal 32.91 72.40 71.5 19 9.5 

23 
Sandy 

Loam 
Pira Fatiyaal 32.89 72.37 65 30 5 

24 
Loamy 

Sand 

Dhoke 

Fatehkhel 
32.80 72.13 80 14 6 

25 
Sandy 

Loam 
Jhatla 32.86 72.39 79 11.5 9.5 

26 
Sandy 

Loam 
Dhoke Jamaal 32.80 72.15 79 7.5 13.5 

27 
Sandy 

Loam 
Thoyaa 32.81 72.37 65 25.5 9.5 

28 
Sandy 

Loam 

Dhoke 

Hawapur 
32.79 72.19 70 16.5 13.5 

29 
Loamy 

Sand 
Dhoke Agraal 32.84 72.11 49 42.5 8.5 

30 
Sandy 

Loam 
Khichiaan 32.78 72.37 76.5 16.5 7 

31 
Sandy 

Loam 
Dhoke Miaal 32.86 72.11 75 11.5 13.5 

32 
Sandy 

Loam 
Chingii 32.73 72.36 75 15.5 9.5 

33 
Sandy 

Loam 
Kutehraa 32.71 72.38 72.5 18 9.5 

34 
Sandy 

Loam 
Bhulumaar 32.72 72.43 65 25.5 9.5 

35 
Loamy 

Sand 
Qadarpur 32.74 72.45 80 11.5 8.5 

Cont. 



 

70 
 

S-

No. 
Texture Name Latitude Longitude Sand(%) Silt(%) Clay(%) 

36 
Loamy 

Sand 

Muhammad 

Abad 
32.93 72.40 82.5 10.5 7 

37 
Loamy 

Sand 

Dhoke 

Sherdastal 
32.87 72.15 77.5 16.5 6 

38 Loam Tae 32.95 72.42 51.5 37 11.5 

39 
Sandy 

Loam 
Dhraabi 32.96 72.51 47.5 46.5 6 

40 
Loamy 

Sand 

Dhoke 

Musahib 
32.89 72.14 86.5 5 8.5 

41 
Loamy 

Sand 
Gojwaal 32.87 72.18 80 11.5 8.5 

42 
Sandy 

Loam 
Dhulii 32.85 72.20 66.5 25 8.5 

43 
Sandy 

Loam 
Wanharr 32.89 72.19 74 20 6 

44 
Sandy 

Loam 

Dhoke 

Fakeeran 
32.89 72.22 64 30 6 

45 
Sandy 

Loam 
Darrot 32.91 72.19 65 29 6 

46 
Sandy 

Loam 
Dhermond 32.94 71.18 80 6.5 13.5 

47 
Sandy 

Loam 
Moglay 33.01 72.31 62.5 31.5 6 

48 
Sandy 

Loam 
Misriyaal 33.04 72.22 56 30.5 13.5 

49 
Sandy 

Loam 
Patwaal 33.06 72.18 74 17.5 8.5 

50 
Loamy 

Sand 
Sanghwala 32.99 72.22 82.5 11.5 6 

51 
Loamy 

Sand 
Saghar 32.96 72.27 81.5 9 9.5 

 

 

 

 

Cont. 
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Appendix-2: Soil Chemical Properties 

S-No. Name pH EC OM (%) P (mg/Kg) K(mg/Kg) 

1 Dhoke Patwala 7.74 0.76 0.41 3 63 

2 Shah Muhammadi 7.75 0.84 0.60 4 63 

3 Dhoke Sherjangal 7.86 0.76 0.64 4 91 

4 Dhoke Tali 7.84 0.84 0.63 4 91 

5 Pichnand 7.87 0.76 0.64 4 91 

6 Multan khurd 7.85 0.76 0.64 5 87 

7 Khuiiaan 7.77 0.76 0.68 5 91 

8 Tamman 7.72 0.76 0.55 4 63 

9 Bhudiyaal 7.74 0.76 0.54 4 63 

10 Kot Shams 7.81 0.76 0.76 6 63 

11 Sukka 7.83 0.76 0.73 5 67 

12 Dhoke Chokera 7.79 1.01 0.87 7 91 

13 Dhakli Jasiyaal 7.77 0.93 0.87 7 91 

14 Leti 7.79 0.93 0.86 6 87 

15 Kot Sarang 7.78 1.10 0.85 7 95 

16 Dhrada 7.92 0.76 0.57 4 63 

17 Mustafa Abad 7.74 0.76 0.60 4 63 

18 Balwaal 7.76 0.76 0.58 4 63 

19 Naka Kahut 7.73 0.84 0.61 4 63 

20 Dhoke Mangiyaal 7.74 0.76 0.59 4 67 

21 Dhurnaal 7.75 0.76 0.60 4 59 

22 Malakwaal 7.73 0.84 0.58 4 63 

23 Pira Fatiyaal 7.75 0.76 0.60 4 63 

24 Dhoke Fatehkhel 7.79 0.84 0.64 5 35 

25 Jhatla 7.63 0.76 0.44 3 63 

26 Dhoke Jamaal 7.65 0.76 0.43 3 67 

27 Thoyaa 7.64 0.76 0.43 3 61 

28 Dhoke Hawapur 7.64 0.76 0.44 4 61 
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S-No. Name pH EC OM (%) P (mg/Kg) K(mg/Kg) 

29 Dhoke Agraal 7.81 0.84 0.72 5 89 

30 Khichiaan 8.15 0.93 0.53 4 61 

31 Dhoke Miaal 8.13 0.93 0.51 5 7 

32 Chingii 7.63 0.93 0.78 6 6 

33 Kutehraa 7.61 1.44 0.73 6 9 

34 Bhulumaar 7.63 1.44 0.74 5 85 

35 Qadarpur 7.62 1.52 0.72 5 93 

36 Muhammad Abad 7.62 1.35 0.73 5 89 

37 Dhoke Sherdastal 7.73 1.44 0.71 5 85 

38 Tae 7.72 0.84 0.67 4 145 

39 Dhraabi 7.70 0.93 0.46 4 145 

40 Dhoke Musahib 7.81 1.10 0.69 6 89 

41 Gojwaal 7.83 0.84 0.78 6 89 

42 Dhulii 7.69 1.18 0.92 8 117 

43 Wanharr 7.85 0.84 0.55 6 89 

44 Dhoke Fakeeran 7.84 0.93 0.71 6 89 

45 Darrot 7.84 0.93 0.73 6 89 

46 Dhermond 7.85 0.93 0.71 6 89 

47 Moglay 7.85 0.76 0.73 6 85 

48 Misriyaal 7.83 0.84 0.71 6 93 

49 Patwaal 7.86 0.93 0.73 6 89 

50 Sanghwala 7.83 0.84 0.71 6 61 

51 Saghar 7.83 0.93 0.72 6 61 

 

 Cont. 


