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ABSTRACT 
 

 

Three dimensional finite element modeling of two flexible plates connected by a shear bolted 

lap joint is done in order to determine the dynamic characteristics of the model. Energy 

dissipation occurs due to friction and micro slip between the contacting surfaces of the plates 

when they are subjected to vibrations. Hysteresis curves are drawn to calculate this dissipated 

energy under different harmonic loadings.  

This work involves use of ANSYS to analyze the three dimensional model. A FE analysis 

will be performed on the contacting surfaces to observe the variation in different dynamic 

parameters of the joint. And by using Proper Orthogonal Decomposition (POD) concept, the 

POM modes will be determined for the system to show how they can be helpful in the 

reduction of the model.
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1.1. Introduction 

 

In the designing of structure, the study of dynamic characteristics of structures plays an 

important role. There are certain interesting aspects of the dynamics of nonlinear systems that 

are different from those of their linear counterparts. Two of the most commonly encountered 

nonlinearities in the dynamics of structures are the cubic nonlinearities in displacements in 

the context of the duffing oscillator and the dynamic characteristics of shear lap joints. 

Dynamics of nonlinear systems is different from linear systems in certain aspects such as the 

presence of internal resonance, the loss of validity of the superposition principle and the 

single frequency excitation of higher harmonics. This present study is to examine the 

dynamic characteristics of joints under harmonic excitations. A generic model for the 

dynamics of joints is developed while keeping in mind the fact that joints play an important 

role in the dissipation of energy in vibrating built-up structures, so this simplified model can 

be used in replacement of any complex joint within the system. Therefore, this work is done 

to create a generic 3D model for joints for a wide variety of excitation conditions. 

1.1.1. Categories of Joint Dynamics 

Metherell and Diller (1968) analyzed shear lap joint without including the inertial 

effects of the comprising plates which leads to the study of the dynamic 

characteristics of lap joints. Two main categories of the joint dynamic studies are; the 

application of constitutive methods to investigate joint behavior and the 

phenomenological treatment of joints.  

The phenomenological approach; the first category is about the macro-behavior of the 

joint dynamics and is studied as observed computationally or experimentally. 

Reproducing the hysteresis behavior of joints with only a few degrees of freedom 

(DOFs) is emphasized. As changing the amplitude or frequency of the excitation can 

significantly change the shape of the hysteresis curve so, these methods are limited in 

their scope. This results in necessary retuning of the parameters to fit the new 

hysteresis curve. 
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In the second approach, the joint is either treated analytically or is modeled by the 

finite element (FE) method. Normally the number of elements required in the FE 

model is quite large and nonlinear component of force arising from friction is 

associated with each of the DOFs. Though only one DOF is enough for the 

characterization of joint dynamics, the inertia of the system is usually ignored in the 

pseudo-static analytical approaches developed till now. This leads to ambiguous 

results at higher frequencies of excitation. This approach is only valid for the case of 

single frequency harmonic excitations. 

1.1.2.  Friction between Contacting Surfaces  

The dissipation of energy through friction between contacting rough surfaces forms 

the basis of the phenomenon of joint dynamics. A complete analysis of the problem 

has not yet performed, although various attempts have been made to analyze the 

rough contact. The analysis becomes more difficult when, under the action of normal 

clamping force, one rough surface is moved against the other. So, up till now the 

problem was analyzed by making certain simplifying assumptions. These include the 

bristle concept of surface asperities, the statistical treatment of the contact based on 

the contact behavior of a single isolated asperity, or approximating the contact 

between two deformable rough surfaces with one between a rigid rough and a 

deformable flat surface. This study is now extended by making a 3D contact between 

two deformable surfaces to get a more accurate analysis done.  

To have a clear understanding of dynamic parameters, it is natural to carry out first a 

detailed FE analysis of the contact problem since these parameters play an important 

role in the dynamics of joints. 

1.1.3. Proper Orthogonal Decomposition 

The energy dissipation in joints subjected to micro-slip is a highly nonlinear 

phenomenon. Nonlinear forces act at each DOF as this is a main problem in 

developing a simplified model of the joint dynamics. It is important here to mention 

that the length of a joint that encounters micro-slip is a complex function of the 

excitation amplitude and frequency. Active length is the term normally used for the 
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length of the joint that experiences micro-slip, while grey length is the term used for 

the length that does not experience micro-slip. This means that if the same mesh is 

used the number of DOFs varies according to the amplitude and frequency of the 

excitation. It should also be pointed out that structures found in practice usually 

contain a number of joints. These facts suggest that before the model is integrated 

with the model of the remaining structure the reduction of nonlinear DOFs in a joint 

model is highly desirable. 

Proper orthogonal decomposition, also known as the singular value decomposition, 

principal mode synthesis, Karhunen-Loève decomposition, is usually applied in the 

context of model reduction of both linear and nonlinear systems. This approach has 

the advantage that system dynamics can be reproduced with a small number of 

orthogonal functions known as the proper orthogonal modes (POMs). There is a 

proper value (singular value) attached to every POM that is an indicator of its 

importance in the dynamics of the system.  

The POD can be applied if the system response is deterministic in the sense that the 

system response remains constant for the same set of inputs (Azeez and Vakakis 

(2001)). Therefore, this method can be a strong candidate which is always excited 

from the point at which they are integrated with the rest of the system for the 

decomposition of the dynamics of joints. 

1.2. Motivation 

After overcoming the computational time problem, much work on nonlinear 

phenomenon has started being encountered during design phase of structures. 

Dissipation of vibration energy through joints within built up structures is one of 

them. Energy is dissipated mainly by friction and the micro-slip experienced by the 

relative motion of contacting points. Friction is a highly nonlinear phenomenon and 

its simulation is very difficult and time consuming. So a simplified and generic model 

of joint is highly required which can be incorporated instead of every complex joint 

within structures. 
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1.3.  Objective 

The main objective of this thesis is to utilize a general purpose finite element code, 

e.g. ANSYS 14.1, for modeling a shear lap bolted joint between two flexible plates 

using 3D elements unlike that used by Khattak (2006). This model will serve as a 

basis for incorporated joint model developed by Khattak (2006) in an FE model. 

Energy dissipation behavior of the joint in terms of hysteresis curve will be 

determined from the time history of the nodal displacements. POD technique will be 

used to find the modes for this model which will be able to span the space of nodal 

displacements.  

`1.4.  Methodology 

The sequence or methodology followed for the completion of work is summarized in 

the form of block diagram which is shown below-  

 

 
 

Figure 1. Methodology block diagram 
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2.1. Introduction 

 As the computational capabilities are getting better day by day, so many nonlinear 

phenomena have started being modeled during the design of structures and dynamics of 

joints connecting the structures is one of them; of which lap joints are more under study.   

Mathematically joint dynamics is expressed as- 

 

K x + C (dx/dt) + M (d2x/dt2) = F - fN  ........................(2.1) 
 

where K represents the stiffness matrix, C damping matrix and M mass matrix. x is the nodal 

displacement vector, F is excitation force and fN represents the frictional forces. 

Here C is directly proportional to K and is given as- 

C =ε* K                           ........................(2.2) 

where ε = 10-5 to get a better convergence and avoid high resonances which are both major 

interests of the mechanical systems. 

 

This friction fN  involved plays a vital role in dissipating energy from the system. Within 

fabricated structures, joints account for almost 90% of total dissipated energy.  

 

2.2. FEM Joint Modeling 

Many researchers have done modeling and analysis of the joint interface to study it's 

dynamic characteristics till now, where most of them have used the phenomenological 

approach for this job i.e. frictional force to be  calculated by the relative displacement. 

Research work of some of them which was related to this study is presented here- 

  

Ingrid A. Rashquinha and Daniel P. Hess (1997) developed  a dynamic model of a fastened 

assembly. He modeled dynamics of the individual components of the structural assemblies 

with lumped parameter models. A nonlinear lumped parameter fastener model is then used to 

couple the structural component models. The result is a set of nonlinear differential equations 

that model the dynamics of the assembly. To illustrate this approach, he modeled and 

analyzed an assembly consisting of a cantilevered beam with a component fastened to the 

beam with a threaded fastener. This work was initiated on the general premise that dynamic 

models of fastened assemblies could be used to optimize fastener placement and orientation. 

This is an area of ongoing research, the goals of which are to develop general design 

guidelines and criteria that minimize maintenance and failure due to fastener loosening. 
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Ibrahim and Pettit (2003) have discussed the linear and non linear problems that effects the 

dynamics of the bolted joints which includes different preload experiences, energy 

dissipation between joints, variation with respect to many joint parameters and fatigue and 

failure modes. In the same time period, Song has simulated dynamic response of bolted joints 

using finite element method. He has developed a two dimensional adjusted Iwan beam 

element which comprises of springs and frictional sliders which behaves non linearly due to 

stick slip phenomena. This element has 6 joint parameters which are to be determined. At a 

specific location on the beam, acceleration responses are calculated while varying joint 

parameters and further these parameters are validated by comparing the simulated results to 

the experimental results of the system. 

C.T.McCarthy and M.A.McCarthy (2004) has done the finite element analysis of three 

dimensional bolt hole in a single lap composite bolted joint. They summarized that the 

clearance in a bolt hole occurs by increasing rotations of bolt and decreasing its contact area 

and stiffness and so it majorly affects the stiffness and onset load of the joint and it should be 

kept under solid consideration while designing. 

 M. J. Oldfield, H. Ouyang and J. E. Mottershead (2005) worked on a single joint rig. They 

have taken experimental results from a setup made by joining two plates with a bolted joint, 

excited at resonant frequencies. Micro-slip is noticed at the interface and thus time dependent 

displacement is recorded. Hysteresis curves are drawn between torque and angular 

displacement for many preload and excitation conditions. In the hysteretic curves, a deviation 

is clearly visible because of the micro-slip making the presence of super harmonics in 

frequency more visible. They recorded all time dependent data and used analytical approach 

to express it.   

 

Hamid Ahmadian and Hassan Jalali in same year (2005)proposed a nonlinear model for 

bolted lap joints and interfaces, capable of representing the dominant physics involved in the 

joint such as micro/macro-slip. He modeled joint using a nonlinear spring to represent the 

softening phenomenon of the joint interface due to slip. An approximate solution for the 

dynamical behavior of assembled structure is obtained using the method of multiple scales. 
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The solution provides frequency response function of the beam at any desired location due to 

a point excitation at a certain location. The obtained frequency response function is compared 

with the corresponding experimental counterparts to identify the parameters of the bolted 

joint interface. In the identification procedure joint interface parameters are fine tuned so that 

the differences between calculated and measured frequency responses are minimized. 

 

Hamid Ahmadian and Hassan Jalali (2006) further presented a generic element formulation 

to illustrate non-linear characteristics of a single bolted lap joint. This generic element 

formulation was comprised of a general stiffness and damping matrix representing the 

nonlinearities within the joint interface. An assumption is made that the mass matrix is all 

known, whereas stiffness and damping matrices were obtained by the comparisons of 

estimated values and measured responses. Generic element parameters were also observed by 

optimized experimental and analytical results comparison. But a similar behavior was seen 

between all observed and predicted results which proved that the given generic model can be 

used to model the joints accurately. This concept could be extended further to other kind of 

joints as well to get simple and compact representation of structures for easy determination of 

their dynamic behavior. 

 

Segalman (2006) introduced different methods to incorporate damping within dynamics of 

mechanical structures and read different parameters significance from these experiments. He 

also advised methods to get equivalent linear system of representation for the structures to 

have response at specific loadings. Although some of the techniques were already there but  

a major problem with them was that they only validate the linear model of same magnitude 

and type as that of the calibration. Also physical presence of structure is highly required for 

its calibration. Right now these newly advised techniques for the modeling of joints through 

dynamics codes have still much to be done and need time for proper implementation. 

 

O. Damisaa and V.O.S. Olunloyob (2007) discussed that layered structures that are under 

dynamic loading with varying frequency and non-uniform pressure at the interface effects the 

dissipated energy from the system and also the logarithmic damping decrement involved in 

the slip damping phenomenon. He calculated the system's response, the slip at the interface, 
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energy dissipation and the optimized pressure applied on the interface surface for a 

composite cantilever beam under different excitation types. He concluded that dissipated 

energy under dynamic loading is lower than that of the static loading. Also frequency ratio 

highly effects the value of transverse displacement and the slip at the interface whereas the 

combined effect of frequency ratio and pressure gradient again normalizes the displacement 

and slip values. 

 

Jason D. Miller and D. Dane Quinn (2008) discussed that in the analysis of structural 

systems, modeling mechanical joints in an accurate and computationally efficient manner is 

of great importance composed of a large number of connected components. He himself 

decomposed an interface model into a series-series Iwan model together with an elastic 

chain, subjected to interfacial shear loads.  For the simulation of frictional damping  a 

reduced-order formulation of the resulting  model  significantly reduced the computational 

requirements . Results were presented as the interface  subjected to harmonic loading of 

varying amplitude. The models presented were able to qualitatively reproduce experimentally 

observed dissipation scaling. Finally, the interface models were embedded within a larger 

structural system to illustrate their  effectiveness in capturing the structural damping induced 

by mechanical joints.  

 

Khattak (2009) discussed the dynamic characteristic of joints for different types of 

geometries under different excitation conditions. He figured out that in order to get a reduced 

model for joint, the main hurdles are the nonlinearities involved because of the occurrence of 

micro-slip during the phenomenon. He applied POD technique to get to a reduced model for 

joints without violating any laws, where this technique helps in reducing the linear system of 

equations and the nonlinear part is fully determined first and then reduced before the phase of 

integration. By using this technique, calculation time was majorly reduced. This reduced 

order model was made for a joint that is in isolation from the system and is externally 

excited, so that a general reduced model can be obtained and further it can be accommodated 

for different geometries and excitation conditions. It can also be used in accordance with the 

structures to read their dynamics. He verified his reduced model with the full model and 
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result's compatibility was seen.  

 

Hadjila Bournine, DavidJ.Wagg and SimonA.Neild (2010) analyzed the frictional damping 

within a column comprised of two bolted beams. They declared that the dynamic friction can 

enhance the damping effects of this structure significantly. A complete analysis was done to 

see the frictional effects and the effects by changing the tension within the bolts, on the 

structure dynamics. When the tension within the bolt was low, the column properties were 

similar to that of a single beam with an exponential decay, whereas when the tension within 

the bolt was high, the column properties were equivalent to a beam of twice thickness. These 

results were verified  by getting the variation in the natural frequency of beam column model 

under both loading conditions. If the dynamic friction is there and tension within the bolts 

will be adjusted properly, there will be chances of getting friction damping value ten times 

higher than defined viscous damping. 

 

Z.Y. Qin, S.Z. Yan and F.L. Chu (2010) analyzed the dynamics of a clamp band joint model 

along with the flange of interface ring which is subjected to axial excitation. They studied the 

sliding contact and the friction produced between the parts of the system and calculated the 

system parameters by having nonlinear finite element analysis. For this analysis, a scaled 

model of the connector strip clamp was made and static experiments verified the common 

model of the clamping band. They studied the forced response of this dynamic model under 

axial excitation and nonlinearity effect due to the clamp band joint. The results calculated on 

the joint model are quite in line with the experimental data; therefore the said model was 

verified. Along this, the proposed model showed that the clamp band joint reduced the 

stiffness of the system and generates nonlinearity in the system. During payload response, 

jump phenomenon was also visualized due to the stiffness change in the system. The 

parametric study showed that by increasing the wedge angle, the resonance frequency 

decreases and the amplitude of resonance increases. Additionally, it was concluded that 

changes in preload had no significant effect on the response of system as the excitation 

remain within the allowable design load. 

Yu Luan and Zhen-Qun Guan (2011) investigated the static behavior of the bolted flange 

connections. For this purpose a simple nonlinear model was developed in which the 
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mechanical properties of the joint were modeled by bi-linear spring. The results revealed that 

the bi-linear springs of different compressive and tensile modules show accurate axial 

stiffness; also they provide additional flexibility to the system as compared to the linear beam 

model. To visualize the dynamic characteristics of simply bolted flange, a mass - spring 

system with two degree of freedom was developed. There confirmed the occurrence of 

coupling of longitudinal vibration and lateral vibration which is due to the coupling element 

in the stiffness matrix. The impact behavior of this mass spring system was studied which 

showed that that transverse impact can excite the coupling longitudinal vibrations and the 

longitudinal impact only excites longitudinal vibrations.. In addition to this it was also 

established that  the longitudinal frequency doubles the transverse frequency under transverse 

impact . Finally, a reduced nonlinear dynamic model was proposed to accommodate the 

results obtained from the tests in longitudinal and transverse directions but a linear beam 

model cannot generate exact longitudinal response under lateral impact. 

 
I. Ullah and M. Yasin (2011) presented the dynamic response of shear lap bolted joints 

subjected to multi-harmonic loading where the response was obtained for all detailed as well 

as reduced order models. They studied micro-slip and energy dissipated at the joint interface 

while considering the Coulomb Friction Model. The detailed nonlinear dynamic model and 

the reduced model obtained by applying the Proper Orthogonal Decomposition technique to 

the FEM model, both are tested at harmonic and multi-harmonic vibrations at frequencies 

lower and higher than that of resonance and the results i.e. slip and energy dissipated were 

compared for both cases. And they proved that reduced order model extracted by using POD 

to the full solution are compact and computationally less intensive and all the similar results 

could be obtained without any defined loss of accuracy. 

 

J. Abad, J.M. Franco, R. Celorrio and L. Lezáun (2011) studied the joint behavior by 

analyzing a pre stressed bolted lap joint under relative displacement. They presented a 3D 

FEM model with the help of design techniques of experiments in order to adjust the contact 

parameters. They validated the theoretical results obtained by elasto-plastic analysis with 

their experimental ones. They analyzed the preload effect and displacement variation along 

with the nonlinear joint behavior and calculated the equivalent stiffness and energy dissipated 
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from the hysteresis curves drawn. To adjust the contact parameters of 3D FEM model 

effecting the hysteretic behavior, a tensile test was applied according to the design techniques 

of experiments, which helped a lot in reducing the computational cost. The numerical results 

after tuning these parameters were in good co-ordination with the experimental ones where 

maximum error of 5% in stiffness and 10% in dissipated energy was recorded. Thus they 

illustrated the nonlinear joint behavior under the influence of displacement and preload value 

over stiffness and dissipated energy of hysteresis. 

 

Morteza Iranzad and Hamid Ahmadian (2012) modeled a thin layer interface of a bolted joint 

within an assembled structure with elasto plastic material behavior. A constitutive relation 

was introduced by them to represent the joint behavior in three separate phases i.e. sticktion, 

micro-slip and macro-slip. Thin layer parameters were identified under constant force 

amplitudes applied to the nonlinear dynamic model of joint and by lowering the differences 

between response predictions and experimental results. Finally model was verified under 

comparison of model predictions to the observed experimental results for different amplitude 

force levels and a good agreement was seen between the results. Thus the strategy they 

proposed for modeling nonlinear effects in joints was simple, accurate, with low 

computational power and applicable to joints FEM model. 

 

2.3. POD technique 

The proper orthogonal decomposition (POD) is a statistical method that represents data in a 

compact form. This method can be used for two purposes i.e. to get a reduced order model by 

projecting data of more degree of freedom to a space of less degree of freedom and extracts 

the unique and relevant data for this purpose. It extracts the spatial structures or modes from 

time dependent data to estimate the system response. These mode shapes are then used to 

reduce the models through Galerkin reconstruction process. 

 

The output data of a system is discretized in time and space. For n number of observations, p 

–dimensional vectors are collected giving an (mxn) matrix i.e. 
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X = [x1 · · · xn] = [x11 · · · x1n 

    · · ·  · · ·  · · · 

      xm1 · · · xmn]         ......................(2.3) 

Single value decomposition of this matrix gives
[1]

 

   X = U S V
T   ........................(2.4) 

Where U is a (mxm) orthonormal matrix comprised of left singular vectors, S is a (mxn) semi 

positive definite matrix and V is an (nxn) orthonormal matrix with right singular vectors. 

Indeed 

X X
T 

= U S
2 
U

T  ........................(2.5) 

X
T 

X = V S
2 
V

T  ........................(2.6) 

 

Major advantage of using SVD to compute POD is that instead of going into the detail of 

eigen vectors, an additional information is obtained from the vectors of V matrix. Each 

vector of V consists of the time modulation of proper orthogonal modes which are 

normalized by the singular values. This information about modes is very important in the 

dynamics of structures and plays a vital role to update the model of nonlinear systems. 

 

This POD method is well applied to many fields like structural mechanics, fluid dynamics, 

thermal processes and signal processing. Thus many researchers have used it in their 

respective fields and have evolved many new things using this technique. Some of the 

highlighted work related to this study is given below. 

 

M. F. A. Azeezs and A. F. Vakakis (2000) applied K-L method on the structures under 

vibrations, of which they mainly focused on vibro-impacting beams and overhung rotors. 

They first applied this method on an impacted beam model to extract the modes and to 

visualize the energy transfer patterns. These K-L modes are then used to generate lower level 

models with the help of Galerkin approach. Then they applied K-L method to an overhung 

rotor that also experienced vibro-impacts to study the nonlinear effects on the dynamics of 

structure, visualize the energy transfer patterns at both low and high modes, confirm the 

reduced models obtained for dynamics and to prove that this method is a useful tool to study 



 

25 

 

real time changes within the system due to vibrations. They also did an experimental study 

on overhung rotor under vibro impacts at the end. 

 

Tapan K. Sengupta and  S. Dey (2004) presented the relationship between space and time 

dependence for dynamical fluid models with bypass transition. Their work is useful for 

reduced order modeling of models with fluid-structure interaction. They used analytical and 

experimental results for by-pass transition presented by Sengupta and used POD technique to 

study the unsteady viscous flow of fluid. The output of the dynamical system was obtained in 

the form of DNS results. These results showed that even for strong excitations, only a small 

number of modes are required to read the spatial structures of the fluid motion. Where ever 

local flow information was required, linearity property of POD was highly recommendable. 

 

Currently many more people are working on this technique to get through dynamic 

characterization and order reduction of systems. This method can be extended to many 

applications within structural dynamics like damage detection, modal analysis, sensor 

validating process, active control and much more. 
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3.1. Introduction 

As chapter 2 has discussed all the research carried out in the finite element modeling of 

bolted joints and dependence of different parameters on system response. Khattak (2006) 

developed a generic 1D FEM model of a bolted shear lap joint between a rigid and a flexible 

plate which was parameter free still didn’t violate any physics laws. He studied the dynamics 

of an isolated joint while keeping some assumptions like joint will not fail under loading; no 

material nonlinearity is going to be considered etc. Some simplifications were done to the 

model, they were: 

(1) Macro-slip doesn’t exist in the joint 

(2) Any kind of force or displacement is imposed only at the joint’s free end 

(3) Pressure applied due to the presence of joints is uniformly distributed on the joint’s top 

surface  

(4) Elastic compliance doesn’t exist within contact areas  

(5) Force of Coulomb friction is considered 

POD technique was used to get a reduced order model which can reproduce all the results 

similar to the detailed one. He proved that the proposed simplified model can be used instead 

of a complex joint model within a structure and thus can be very useful computationally 

without any loss of accuracy. Here, first his work is verified by modeling a three dimensional 

joint with one rigid and one flexible plate in ANSYS under same loading and boundary 

conditions, and then extended with both flexible plates experiencing friction between them. 

 

3.2. Physical system description 

Physical model of the system consists of one rigid and one flexible steel plates connected 

through a shear lap bolted joint. The upper plate acts as a cantilever beam i.e. it's one face is 

constrained in all DOFs and it is bound to move along the lower one. An imposed horizontal 

displacement on the lower plate is applied to its free end as an effect of excitation.  

Instead of modeling a true bolt between the plates, an equivalent uniform normal pressure is 

applied on the top surface of the overlapping area of plates. Thus a little simplification is 

made to get a quick convergent solution. 

 

Figure 2. Free body diagram of test model 
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The joint is going to be studied in isolation from the system to get a clear understanding of 

the nonlinear dynamics of the joint. 

3.3. Finite Element Modeling 

The above described geometry is modeled in ANSYS 14.1 to carry out a complete 3D FEM 

analysis and study the respective parameter changes. 

3.3.1 Model Geometry 

 The overlapping area of plates is modeled in ANSYS, where dimensions of overlapping area 

of both plates is 500x50 mm. Thickness of both plates is 10 mm. Both plates are made up of 

steel with material properties i.e. Yield strength Sy=6×10
8
Pa, Ultimate strength Su=8×10

8
 pa 

and Poisson ratio= 0.33. However, the elastic modulus of both the plates is different i.e. rigid 

plate is modeled with elastic modulus E=2×10
14

Pa and flexible with E=2×10
11

Pa. 

 

Figure 3. Modeling of volumes in ANSYS 



 

29 

 

3.3.2 Finite Element Mesh 

As it is a contact problem, so mesh of the volumes should be selected with care such that 

behavior of contact can be captured while having a reasonable mesh size at the same time. 3 

or 4 sided mapped meshing is done with 200 elements along length, 15 along width and 3 

along thickness of each beam. The model is meshed with solid 8 node 185 brick elements. 

Finally the model resulted in 9,000 elements.  

 

This number of elements are decided after having a complete mesh sensitivity study as the 

required displacement value starts converging at free end under 1000Hz frequency with 200 

elements along length. If there will be no non-linear forces, less number of elements can be 

an option.  

 

 

Figure 4. Mesh size selection along length 

Mesh size of both the plates is selected to be same, in order to get the nodes of upper plates 

coinciding with that of lower one and if coupling will be required, it will be easy to get it 

done. Because of the displacement of these active region nodes, energy dissipation from the 

system occurs. After meshing, the model looks like- 

 

 

 



 

30 

 

 

 

 

Figure 5. Meshed volumes in ANSYS 

3.3.3 Establishment of Contact 

Before the application of load, to establish a contact between the plates is necessary, because 

without the presence of initial contact, the solution will never converge and both the plates 

will not be bound to move on one another, or not fulfill the joint requirement. Thus, a 

standard contact is generated by the contact manager between the lower contacting surface of 

upper plate and upper surface of lower plate. It is a surface to surface contact modeled 

between two plates with element types CONTA174 and TARGE170 and friction coefficient 

of 0.7 and normal penalty stiffness 1.0. 
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Figure 6. Contact area between two plates 

3.3.4 Coupling 

A few nodes are coupled from the center of the interface of the beams throughout the 

thickness. This coupling will impose a zero displacement at the center of the joint, modeling 

the bolt characteristic of relative zero displacement with respect to the plate. 

As the length of the plates is too long, so there is a possibility that solution will diverge even 

after the establishment of standard contact. This coupling will also avoid slippage of plates 

under applied loading, and will not let the contact open even in case of high amplitude of 

excitation. 

Since the stiffness matrix of the model is singular, the coupling in fact makes it non singular. 

This coupling will not disturb the physics of the system as well. 



 

32 

 

3.3.5 Load steps  

As the excitation loads are supposed to be applied gradually to the system, so solution to it is 

carried out in divided time steps. Here boundary conditions and loadings are applied in two 

steps and time interval of each step is decided according to the excitation frequency. 

 If  excitation frequency is 1000 Hz, the time for each load step taken will be 0.001 sec, if 

100 Hz, it will be 0.01 sec and so on. 

3.3.5.1 Load Step 1 

In the first load step, all the boundary conditions are applied and the equivalent pressure of 

bolts is attained. As the loading applied will be ramped so before the application of external 

excitation in the second step, it is necessary to build up the required pressure due to bolts on 

the system.  

Boundary Conditions 

As upper plate is a cantilever beam, so it’s right face is constrained in all degree of freedom. 

It is not desired to let the plates move in y direction or to let the plate bend in any case, so the 

lower plate is constrained in y direction. 

Selection of Clamping Pressure 

Instead of modeling complete bolt design, case is simplified and a uniform pressure is 

applied on that respective area. As M10 bolts are used, so the equivalent pressure is to be 

calculated to apply on the overlapping top surface area.  The general layout for placing M10 

bolts is given as- 

 

    Figure 7. General layout of M10 bolts 
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To clamp two plates of surface area of 500x50 mm, required bolts are calculated according to 

the given layout. The clamping force of a bolt depends on the fraction of total cross sectional 

area of the bolts to the total area of the joint and the strength of the bolt. For the current case, 

fraction of areas comes out to be 5% and proof load of a M10 bolt is 1000MPa. Taking 70% 

of the proof load, the total clamping pressure of M10 bolts comes out to be 35MPa. Initially 

it was applied to the model and then a major distortion in the elements was seen which lead 

to convergence difficulties and finally the pressure of 8 MPa is decided. In the first load step, 

this pressure is applied as a ramped transition. 

 

 
 

Figure 8. Boundary conditions in ANSYS 

 

This pressure is considered uniform as for a single bolt contact pressure is similar to the 

shape of a cone. However when several bolts are used along the length of the joint, these 

cones overlap to form a uniform distribution of pressure. 
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3.3.5.2  Load step 2 

Imposed Displacement 

Now a simplified bolted lap joint model representation is ready. In order to analyze the 

response of this system under external vibrations, it should be simulated with an imposed 

force or displacement at the free end. Let the system be subjected to a shearing force of 90% 

of the frictional limit, for this the respective calculations are- 

 As pressure on overlapping area is 8 MPa, so equivalent force on that area will be 

  ........................(3.1) 

 

 

Frictional force is defined as 

  ........................(3.2) 

 

 

Applied force is 90% of this frictional force to get a slip in 90% of the joint length 

  ........................(3.3) 

 

 

Shear stress due to this 90% of frictional force is 

   ........................(3.4) 
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Stiffness of a beam is given as 

  ........................(3.5) 

 

 

 

By the applied force, the system should displace  

As,                ........................(3.6) 

 

 

 

Thus, an imposed displacement is applied on the right face of lower beam i.e. in second load 

step the external vibration is simulated with a sinusoidal displacement of 7.87×10
-5

 m 

amplitude in x-direction. In other words, it is displaced 7.87×10
-5

 m to the +ive x-direction, 

then back to mean position, then 7.87×10
-5

 m to the –ive x-direction, back to mean position 

and the cycle goes on.  

Excitation Frequency 

The first extensional resonance of a plate with dimension 500×50×10 mm is calculated as- 

 ........................(3.7) 

At n=0,      

     

And      
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     ........................(3.8)   

 

Where 

 

And  

 

So 

 

When system is excited at this frequency, active length changes and is more than 250 mm. 

Thus excitation frequency is selected well below the system resonance i.e. 1000 Hz 
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Figure 9. Complete loading in ANSYS 

3.3.6 Solution 

After the application of the external vibration at specified frequency whether by the applied 

force or imposed displacement, a transient response of the system is calculated. At each time 

step, force is recorded against value of the imposed displacement or displacement is recorded 

at applied force. This imposed displacement and force is then plotted and hysteresis curve is 

obtained. The area under this hysteresis curve will represent the energy loss due to the 

friction and micro slip between the plates or the displacement of the active nodes present in 

the interface region of bolted joint. 

 

3.3.7 Modeling of both flexible plates  

This simplified 3D generated model is extended to both flexible plates, by changing the 

material properties i.e. both with elastic modulus E = 2×10
11

Pa. Apply the boundary and 

loading conditions in the same way as discussed above to simulate the nonlinear dynamics of 

the joints while doing all the calculations accordingly.  
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The model that is to be analyzed is a lap joint holding two steel beams together under a pressure 

equivalent to the number of bolts. It is a shear joint and shear joints are generally used under 

longitudinal loading rather than the bending one. Dynamics of this joint is studied while 

considering both beams flexible in 3D unlike that of Khattak (2006) who analyzed model in 1D 

by pressing a deformable beam against a rigid one. However, for a better understanding of joint 

dynamics, the joint is preferably investigated in isolation from the structure. 

Furthermore it is assumed that under given loading joint will not fail or there will be a patch of 

length always that will not experience relative displacement. Such patch of length is known as 

the ‘grey length’ of the joint while the one which undergoes micro-slip is known as ‘active 

length’. Two types of nodes i.e. sticking and slipping nodes are there in the active length whereas 

only sticking nodes exists in the grey length as they won’t allow any kind of relative 

displacement. Thus, no macro-slip but micro-slip in a small portion of length will be considered 

during this analysis.  

    

4.1. 3D FEM model 

The above system is simulated by 3D FEM model. The mid nodes along the length are given zero 

imposed displacement and midpoint is taken as the reference point. The upper beam is under 

pressure equivalent to that of joints. This uniformly distributed pressure is applied normal to the 

beam. Upper beam is modeled as a simply supported beam while the lower flexible beam is 

allowed to move against the upper beam in the presence of frictional forces when it is subjected 

to an imposed harmonic displacement in longitudinal direction at its free end. Resultant model is 

three dimensional and is modeled with FEM technique. Brick elements are used to model the 

structure and around 200 elements are taken along its length.  

 

Verification Model 
 

Beams of size 500×50×10 mm are modeled in 3D to verify with idealized system of Khattak with 

which he verified his model with Csaba (1998), using 200 brick elements along length. Upper 

plate is made rigid while lower flexible with friction coefficient taken between them is 0.7; 

pressure applied due to bolts is equivalent to 8MPa or 100kN force on the upper plate. Imposed 

displacement of 4.375×10-5 m at 1000Hz frequency is applied at the free end in positive x 

direction and then with same amplitude in negative x direction, which can move 50% of the 

joint’s length. On the given boundary and loading conditions, the displacement profile of the 

system is plotted as- 
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Figure 10. Displacement profile of Idealized Model 

Recorded displacement and force for this case are given as- 
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Figure 11. Displacement graph 

 

 
 

Figure 12. Force Graph 

 
The hysteresis plot between imposed displacement and force is drawn and dissipated energy from 

the joint is calculated which comes out to be 2.0692J, whereas with same system drawn in 1D by 

Khattak: dissipated energy was calculated to be 2.0431. An error of 1.27% exists which is due to 

the meshing difference i.e. if the model is more finely meshed, this error can be reduced but 

computational time will increase, so an acceptable compromise is done between accuracy and 

computation time – 
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Figure 13.  Three Dimensional Verification Model 

 

 

Figure 14. One Dimensional Verification Model 
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Reference Model 
 
Khattak modeled his reference system with same geometry, initial and boundary conditions as 

that of the idealized system, but displaced with 90% of the frictional force i.e. with amplitude of 

7.87×10-5 m at 1000Hz frequency applied at the free end of the lower plate, to cause a slip in 

90% of the joint length. Same reference system is made in 3D, and the displacement profile 

obtained is like-  

 

 
 

Figure 15. Displacement profile of Reference Model 
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Recorded displacement and force for this case are given as- 

 

 
Figure 16. Displacement graph 

 

 
Figure 17. Force graph 
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The hysteresis plot between imposed displacement and force is drawn and dissipated energy from 

the joint is calculated which comes out to be 5.6265J, 

 

 

 
 

Figure 18. 3D reference model 

Both Flexible Plates Model 

Now, the above reference system is modeled with both flexible plates, i.e. two flexible steel 

plates of 500×50×10 mm dimensions are drawn, with same element type and mechanical 

properties, meshed with 200 elements along length,15 along width and 3 along thickness of 

each plate. Standard flexible contact is generated between them. Upper plate is constrained in 

all DOFs from the right end and is subjected to a uniform pressure of 8MPa while lower plate 

is displaced to 90% of the friction limit i.e. 7.87×10
-5

m in x direction. The nodal contour 

displacement plot of this system is shown below-  
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Figure 19. Displacement profile of Flexible Reference Model 

Recorded displacement and force for this case are given as- 

 

 

Figure 20. Displacement graph 
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Figure 21. Force graph 

The hysteresis plot between imposed displacement and force is drawn and dissipated energy from 

the joint is calculated which comes out to be 2.762J, which is almost half than that of the same 

model designed with one rigid and one flexible plate. This is because the relative displacement 

will be more in rigid flexible case as compared to both flexible case so on application of same force to 

both systems energy dissipated will be more for rigid flexible case than both flexible one. 

 

 Figure 22. Hysteresis Curve for 3D reference system 
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Now, to get this reference model displaced by 90% of the active length, an imposed 

displacement of 31.5×10
-5

m is applied at the lower beam in second load step and the nodal 

contour displacement plot obtained is shown below-  

 

Figure 23. Displacement profile of 3D Flexible Reference Model 
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Recorded displacement and force for this case are given as- 

 

Figure17.1. Displacement graph 

 

 

Figure 24. Force graph 

 

-4.00E-04

-3.00E-04

-2.00E-04

-1.00E-04

0.00E+00

1.00E-04

2.00E-04

3.00E-04

4.00E-04

0 0.001 0.002 0.003 0.004

Displacement 

Displacement

-150000

-100000

-50000

0

50000

100000

150000

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035

Force 

Force



 

50 

 

The hysteresis plot between imposed displacement and force is drawn and dissipated energy from 

the joint is calculated which comes out to be 33.56J. 

 

 

Figure 25. Hysteresis Curve for 3D flexible reference system 

It is known that contact analysis is a nonlinear problem and joint dynamics again includes high 

nonlinearities, which makes it a highly nonlinear system. This nonlinearity tends to increase with 

the increase in the frequency of the external harmonic vibrations. This is proved by plotting 

systems response at different excitation frequencies i.e. reference case geometry in 3D with both 

flexible plates is analyzed under 1, 100 and 1000 Hz frequencies and their dissipated energies are 

1.4131, 1.6366 and 2.762J respectively and are drawn below. 
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Figure 26. Under displacement of 7.87×10
-5

m with 1Hz frequency 

 

Figure 27. Hysteresis Plot at 1Hz frequency 
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Figure 28. Under displacement of 7.87×10
-5

m with 100Hz frequency 

 

Figure 29. Hysteresis Plot at 100 Hz frequency 
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Figure 30. Under displacement of 7.87×10
-5

m with 1000Hz frequency 

 

Figure 31. Hysteresis Plot at 1000Hz frequency 
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Overall, to see the behavior of system response with frequency variation, a graph is plotted which 

is drawn below. It is clearly visible that as at low frequencies there is an increase in the dissipated 

energy but not that significant and as frequency increases to resonance, a rapid increase in 

response is seen in that region. also the resonant frequency is decreasing with the increasing 

amplitude similar to the case of softening systems. 

 

 

 
 

Figure 32. System response with frequency variation 

 

The nonlinearity in the response also tends to increase with the increase in the amplitude of the 

external harmonic vibrations. This is proved by plotting systems response at different excitation 

amplitudes i.e. reference case geometry is analyzed under 7.87×10
-5

m, 19.5×10
-5

m and 

31.5×10
-5

m displacement amplitude at 1000 Hz frequency and their dissipated energies are 

2.762, 12.06 and 33.56J respectively and are drawn below. 
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Figure 33. Under displacement of 7.87×10
-5

m with 1000Hz frequency 

 

Figure 34. Hysteresis Plot at 7.87×10-5m amplitude 
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Figure 35. Under displacement of 19.5×10
-5

m with 1000Hz frequency 

 
 

Figure 36. Hysteresis Plot at 19.5×10-5m amplitude 
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Figure 37. Under displacement of 31.5×10
-5

m with 1000Hz frequency 

 

Figure 38. Hysteresis Plot at 31.5×10-5m amplitude 
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4.2. Proper Orthogonal Decomposition 

 

Proper orthogonal decomposition POD is a technique which is used to decompose the nodal 

displacement matrix of the system obtained from its FEM analysis where d(t)p*n matrix denotes p 

as no of time steps and n as the number of nodes. 

Mathematically SVD is expressed as- 

 

d(t)p*n = Up*p Σp*n Vn*n  ........................(4.1) 

 

Where column vectors of V are the proper orthogonal modes POMs which describes the coherent 

spatial structures. For grey length region where relative displacement is zero, all zero values are 

seen in column vectors of V. The matrix Σ is a diagonal matrix whose diagonal values represents 

the proper values PVs of POMs respectively in descending order. These PVs decide the 

weightage of the POMs accordingly and they can be normalized by dividing each PV with 

equivalent PV and multiplying by 100. After scaling, it is easy to span the space with least 

number of POMs. These POMs will surely have amplitude of zero at active-grey interface. Also 

thy pretty much look like the normal mode shapes obtained for any built in rod. 

     

POD technique provides a basis that can be able to extract to the highlighted patterns of given 

data and is applied to joint dynamics keeping in mind that applied forces or displacements are 

generally imposed on the free end of the joint, which confirms the presence of reduced basis that 

can span complete set of displacements at each node for different excitation conditions. This 

technique is when applied to nonlinear problems, proper orthogonal modes (POMs) obtained are 

used only to minimize the linear set of equations. A few among these POMs can then be used to 

regenerate the response of system very well. But there will be an increase in the computational 

time as stable time is achieved in a little long run.    

 

Again beam of size 500×50×10 mm is modeled in 3D with one rigid and one flexible beam, 

which is the reference case using 200 brick elements along length. Friction coefficient is taken as 

0.7, pressure applied due to bolts is equivalent to 8MPa or 100kN force on those nodes. Imposed 

displacement of 7.87×10-5 m at 1000Hz frequency is applied at the free end which can move 90% 

of the joint length containing major amount of nodes which will help in extracting smooth and 

accurate number of POMs. Here PVs obtained for reference case are normalized which are given 

in the table below and POMs are generated for the nodes at the right side of the reference point. 
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POD of Displacement 

Serial No Proper Values Cumulative Sum 

1 83.247 83.247 

2 13.55 96.79 

3 1.516 98.30 

4 0.69 98.99 

5 0.51 99.50 

 

Figure 39. PVs for right side nodes 

  

First five POMs for right side nodes of the current case are drawn below. 

 

 
 

Figure 40. POMs for right side nodes 
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These modes are compared with that of Khattak’s model, which are like- 

 
Figure 41. POMs of Khattak's reference mode 

The mode shapes of the 3D model and that of the Khattak’s model are quite similar in shape 

and are also of same magnitude.  

 

By using proper orthogonal decomposition technique, the displacement matrix [u] of time 

histories of nodal displacements obtained from FE analysis is decomposed to obtain proper 

orthogonal modes matrix, out of which first few modes according to proper orthogonal 

values whose contribution to total sum of orthogonal values is more than,  say, 99% are 

extracted to reproduce the system. Displacement matrix is now reduced thus lowering the 

DOFs of the system. 
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Mathematically, by using POD technique [u] matrix gets decomposed as- 

[u] = [U] [Ʃ] [VT] 

Where the columns of V matrix are POMs out of which first few are selected on the base of 

PVs. Let new selected modes are given as- 

                                      V1= {v1v2v3……vj}                       where j<n 

With                                                              [u] = V1[ ] 

Where u’ is the displacement of the reduced model. 

In      =  –  

Where fln are the time dependent excitation forces and ff are the frictional forces. Pre 

multiplying this equation with V1
T
results in the reduced order system equation i.e. 

 =  –  

Where                                                        = V1
T
 K V1 

 = V1
T
 C V1 

 = V1
T
 M V1 

 = V1
T

 

 = V1
T

 

All the above equations are straight forward except the one of frictional forces which is 

responsible for nonlinear behavior of the system. This system will result in first order system  

 = A y + b  

Where y = {y1y2}
T 

by using state space formulation with vectors y1=  and y2=  

And                                                 A =  

B=  

Where                                                        X = V1
T
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For the reduced system, the velocity vector is expanded for each time step to the full 

velocity vector using [ ] = V1 [ ] in order to determine nonlinear frictional force vector.This 

expansion of reduced solutionto the full one for obtaining the full nonlinear force vector and 

then the compression of nonlinear force vector to the reduced one gives rise to additional 

computational cost at each time step. Inspite of this drawback, the method results in 

computational savings for the number of modes used in the analysis are much smaller when 

compared with the size of the system. 

As the analysis in my thesis is done while considering joint in isolation from the structure but 

when in real the complete jointed structure needs to be analyzed, it can be divided into two 

sub-structures or regions namely linear and nonlinear region. The linear substructure will be 

the region without frictional dissipation while nonlinear structure will be the region with 

frictional dissipation. As system of equations for dynamics of structures is- 

 =  –  

The vectors in above equation will also be partitioned according to the linear and nonlinear 

regions as u = {u
1
 u

2
}

T
, fln = {fln

1
 fln

2
}

T
 and ff = {ff

1
 ff

2
}

T
where 1 and 2 denotes the nonlinear 

and linear regions respectively. All the entries of ff
2
for linear region will be zero and only the 

last entry of fln
2
will be nonzero corresponding to free end excitation. 

Total DOFs of the system n will be equal to n1+n2i.e. number of DOFs of linear and 

nonlinear regions. Similar is the case with stiffness, damping and mass matrices. 

K =  

C =  

M =  

And the transformation matrix for the above system will be 

 =  

Where V1 is the matrix whose columns are POMs. This transformation matrix shows that 

only the nonlinear region is decomposed while keeping the linear part unchanged. 
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POMs for both flexible plates system are calculated, they are same on both sides of zero slip 

and this is because the geometry, loading and boundary conditions are all same on both sides 

of the middle of the joint. 

 

Figure 42. Right Hand Side POMs 

 

 

Figure 43. Left Hand Side POMs 
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The stick slip behavior is clearly seen in the right nodes of the coupled ones, of which four 

equally distanced nodes behavior is shown below- 

  

 
 

Figure 44. Stick slip behavior of active nodes 

 

This figure shows that as the nodes will be far away from the free end, the more they will 

show the stick slip behavior or not all the nodes move at a time under an excitation but the 

effective active length.  

An important feature in order to reduce the joint model is the selection of active length of the 

joint as POMs used are supposed to be scaled according to this active length. At low 

frequencies, active length depends directly on the excitation amplitude whereas at 

frequencies close to that of resonance, this active length is a high order function of excitation 

frequency and amplitude. Thus the system’s response obtained is quite reasonable at low 

frequencies if active length is also known.
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CONCLUSION AND FUTURE WORK 
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5.1. Conclusions 

Investigation of dynamic characteristics of shear lap bolted joints is done is this thesis. A 

three dimensional generic model of a joint is generated and proper orthogonal decomposition 

technique is used to evolve the joint dynamics. The concluding remarks after doing this study 

are summarized below-  

5.1.1  FE Modeling Of Joint 

A simplified three dimensional FEM model is generated in ANSYS and analyzed under 

different loading conditions and by varying joint parameters. The results obtained from the 

analysis are concluded below- 

 This new 3D generic model of joint with both flexible plates can be incorporated in 

any bolt assembled structure to get a simplified model with less computational cost. It 

is a replacement of the Khattak's 1D model as it is more accurate and still supports all 

his results.  

 Dissipation of energy from a joint is a nonlinear phenomenon and it is calculated 

through  hysteresis curves drawn between the applied excitation force and the relative 

displacement of the plates. Under same conditions, dissipated energy in 3D model is 

twice that of Khattak's 1D model. 

 With the increase in the frequency of the excitation, energy of dissipation increases 

but not significantly. But as frequency continues to increase till resonance, the 

response of the system shoots up in that vicinity and immediately drops after that i.e. 

a mirrored response can be drawn at the resonant point. 

 Dissipated energy at the interface is directly proportional to the excitation amplitude 

i.e. it increases and decreases linearly with the amplitude of vibration. 

5.1.2  Proper Orthogonal Decomposition 

The proper orthogonal decomposition technique is used to decompose model of the joint 

subjected to harmonic loading, which gives a reduced order model by minimizing the linear 

system of equations. The conclusions made by the application of this technique are- 

 The shear lap model of joint dynamics is developed. This POD method is applicable 

to joint model at varying external excitations and parameters. 
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 From the time dependent data obtained from the analysis, the complete space can be 

spanned with the help of proper orthogonal modes extracted from this technique. 

 Proper Orthogonal Modes obtained from presented 3D model are quite similar in 

pattern to that of Khattak's 1D model with a change in amplitude which is because of 

different loading condition but still that difference is justified. 

 The method helps to minimize the linear system of equations which cut down 

computational cost by lowering degree of freedom of the system. 

 

5.2. Limitations 

The limitations of my developed model are- 

 The model is applicable to shear lap friction joints at relatively low frequencies 

compared to the resonances (natural frequencies) of the model and for sinusoidal 

excitations. 

 The joint model can be embedded in an FEA model containing several lap shear 

joints. 

5.3. Future work 

As the joint model presented in this thesis is a better alternative to the models presented yet. 

It is capable to simulate joint dynamics more efficiently and accurately but still it can be 

extended in certain areas which are pointed below. 

 As Khattak modeled the contact surfaces at asperity level but no 3D asperity 

modeling is done here. Thus this 3D system can be further modeled with asperity 

details but it will require huge amount of computational resources as the degrees of 

system will get so much increased. 

 Calculate the response of this new joint model under different types of loadings e.g. 

impulse, step and sinusoid and by varying parameters like friction coefficient, 

clamping pressure etc.  

 Determine the active length for bolted joint model which can be further used to scale 

the proper orthogonal modes obtained from POD technique. This task will be difficult 

to handle near resonant frequencies. 
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 As Khattak has reduced his model using nonlinear functions obtained from the proper 

orthogonal decomposition of the time dependent data and used nonlinear forces to 

investigate the response of joint for different excitation conditions, same can be 

applied to this both flexible plates model in extension to POD results. 
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