
 

 

    

 

Architecture and Digital Design of a flexible Correlation 

filter Processor 

 

 

 

 

 

 

Author 

Abdullah Aman Khan 

2011-NUST-MS PhD-ComE-02 

Supervisor 

Dr. Saad Rehman 

 

DEPARTMENT OF COMPUTER ENGINEERING 

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING 

        NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY 

ISLAMABAD 

MAY, 2014 



 

 

    

 

 

 

Architecture and Digital Design of a flexible Correlation 

filter Processor 

 

Author 

Abdullah Aman Khan 

2011-NUST-MS PhD-ComE-02 

 

A thesis submitted in partial fulfillment of the requirements for the degree of 

MS Computer Engineering 

 

Thesis Supervisor: 

Dr. Saad Rehman 

 

Thesis Supervisor‟s Signature: __________________________________ 

 

 

DEPARTMENT OF COMPUTER ENGINEERING 

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING 

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,  

ISLAMABAD 

MAY, 2014 



 

 

i 

 

Declaration 

I certify that this research work titled “Architecture and Digital Design of a flexible Correlation 

filter Processor” is my own work. The work has not been presented elsewhere for assessment. 

The material that has been used from other sources it has been properly acknowledged / referred.  

 

 

 

Signature of Student  

Abdullah Aman Khan 

2011-NUST-MS PhD-ComE-02 

 

 

 

 

 

 

 

 

 

 

 



 

 

ii 

 

Language Correctness Certificate 

This thesis has been read by an English expert and is free of typing, syntax, semantic, 

grammatical and spelling mistakes. Thesis is also according to the format given by the 

university.  

 

 

 

 

 

 

 

Signature of Student  

Abdullah Aman Khan 

2011-NUST-MS PhD-ComE-02 

 

 

Signature of Supervisor 

Dr. Saad Rehman 



Copyright Statement 

 Copyright in text of this thesis rests with the student author. Copies (by any 

process) either in full, or of extracts, may be made only in accordance with 

instructions given by the author and lodged in the Library of NUST College of 

E&ME. Details may be obtained by the Librarian. This page must form part of 

any such copies made. Further copies (by any process) may not be made without 

the permission (in writing) of the author. 

 The ownership of any intellectual property rights which may be described in this 

thesis is vested in NUST College of E&ME, subject to any prior agreement to the 

contrary, and may not be made available for use by third parties without the 

written permission of the College of E&ME, which will prescribe the terms and 

conditions of any such agreement. 

 Further information on the conditions under which disclosures and exploitation 

may take place is available from the Library of NUST College of E&ME, 

Rawalpindi. 

  



 

 

iv 

 

 

 

Acknowledgements 

 

Foremost, I would like to express my sincere gratitude to my advisor Dr. Saad Rahman 

for the continuous support of my Masters Study and research, for his patience, 

motivation, enthusiasm, and immense knowledge. His guidance helped me in all the time 

of research and writing of this thesis. I could not have imagined having a better advisor 

and mentor for my Masters study. 

Besides my advisor, I would like to thank the rest of my thesis committee Brig. Dr. 

Shoab A Khan, Dr. Umer Munir, Dr. Usman Akram and Mr. Sajid Gul for their 

encouragement, insightful comments, and hard questions.  

Last but not the least; I would like to thank my family supporting me spiritually 

throughout my life.  



 

 

v 

 

 

Abstract 

Dedicated design for pattern recognition techniques can provide processing at higher 

speed, .Many Real time digital designs provide single functionality, but where speed, 

scalability and flexibility is required more extensive research is demanded. These special 

purpose and Application specific designs can provide real time procession for many 

applications. In this thesis the challenges,  problems and design for a correlation patteren 

recognition processor is presented, The design is based on fixed point representation of 

binry numbers, further the fixed point representation is used to represent complex 

numbers as correlation filters are designed in frequency domain. The presented design is 

an educational purposes design, which provides mechanism to handle matrices on chip 

and also is capable of performing simple matrices operation like arithmetic and matrix 

handling. The matrices are represented with simple identifiers and using application 

specific micro instruction provided in the design assist in processing of many complex 

operations which are useful for solving bigger problems when summed up to gather in a 

meaning full manner. The design was successfully implemented and tested using VHDL 

language using Xilinx tool. The objective of this work was to get an area & time efficient 

architecture that can be used as a standalone processor with built in all resources 

necessary for an embedded pattern recognition application. 

  



 

 

vi 

 

 

 

Table of Contents 

Acknowledgements ............................................................................................................. ii 

Abstract .............................................................................................................................. iii 

List of Tables ......................................................................................................... ix 

List of Figures ......................................................................................................... x 

Chapter 1 Introduction ...................................................................................................... 13 

1.1 Typical Methods: ...................................................................................... 16 

1.2 Motivation ................................................................................................. 18 

1.3 Challenges ................................................................................................. 21 

1.3.1 Flexibility ............................................................................................ 21 

1.3.2 Cost Effectiveness ............................................................................... 21 

1.3.3 Common Requirements ...................................................................... 21 

1.4 Orientation of Thesis................................................................................. 23 

Chapter 2 Literature Review ............................................................................................. 24 

2.1 Correlation Filters ........................................................................................... 24 

2.1.1 MACH Filter .......................................................................................... 24 

2.1.2 EMACH Filter ....................................................................................... 26 

2.2 The Fourier Transform .................................................................................... 28 



 

 

vii 

 

 

2.3 Fourier Transform Matrix Representation ...................................................... 29 

2.4 Fixed Point Representation of Binary Numbers ............................................. 31 

Chapter 3 Implementation................................................................................................. 33 

3.1 Main Memory ................................................................................................. 33 

3.2 Memory Manager............................................................................................ 36 

3.3 Sub to Index .................................................................................................... 38 

3.4 Sequence Guide .............................................................................................. 41 

3.5 Arithmetic and Logic Unit .............................................................................. 43 

3.6 Control Unit .................................................................................................... 44 

3.7 Counter and Counter banks ............................................................................. 45 

3.8 Multiplexer ...................................................................................................... 48 

Chapter 4 Instruction Set Architecture ............................................................................. 50 

Matrix Multiplication with Matrix ........................................................................ 50 

Matrix dot multiplication with Matrix .................................................................. 50 

Matrix dot multiplication with immediate Value.................................................. 51 

Matrix dot multiplication with stored Value ......................................................... 51 

Matrix dot division with Matrix ............................................................................ 52 

Matrix dot Division with stored Value ................................................................. 52 

Matrix dot Division with Immediate Value .......................................................... 52 



 

 

viii 

 

 

Matrix Addition with Matrix ................................................................................ 53 

Matrix Subtraction with Matrix ............................................................................ 53 

Matrix Addition with stored Value ....................................................................... 54 

Matrix Subtraction with stored Value ................................................................... 54 

Matrix dot Power with stored Value ..................................................................... 55 

Matrix Subtraction with immediate Value ............................................................ 55 

Matrix Addition with immediate Value ................................................................ 55 

Matrix Raised to the Power of immediate Value .................................................. 56 

Transpose of Matrix .............................................................................................. 56 

Set Conjugate Flag ................................................................................................ 57 

Re-Set Conjugate Flag .......................................................................................... 57 

Fourier Transform First Pass ................................................................................ 58 

Fourier Transform Second Pass ............................................................................ 58 

Scalar Multiplication ............................................................................................. 58 

Scalar Addition ..................................................................................................... 59 

Scalar Subtraction ................................................................................................. 59 

Scalar Division ...................................................................................................... 59 

Scalar Power ......................................................................................................... 60 

Scalar Addition with immediate Value ................................................................. 60 



 

 

ix 

 

 

Scalar subtraction with immediate Value ............................................................. 61 

Scalar Division with immediate Value ................................................................. 61 

Scalar Power with immediate Value ..................................................................... 62 

Jump if equal ......................................................................................................... 62 

Jump if not equal ................................................................................................... 62 

Jump if is less than or equal .................................................................................. 63 

Jump if is Greater than or equal ............................................................................ 63 

Unconditional Jump .............................................................................................. 64 

Jump if is less than ................................................................................................ 64 

Jump if is Greater than .......................................................................................... 64 

Copy real part of matrix ........................................................................................ 65 

Loading a value to a memory Location ................................................................ 65 

Loading negative a value to a memory Location .................................................. 66 

Copy a memory location to a new location .......................................................... 66 

Copy a Matrix location to a new Matrix location ................................................. 66 

Copy a Column of a matrix ................................................................................... 67 

Load Memory content to special register.............................................................. 67 

Write from special register.................................................................................... 68 

Load row and column Address ............................................................................. 68 



 

 

x 

 

 

Write to special register (row and column) ........................................................... 68 

Save from Special Register ................................................................................... 69 

Initialize a new matrix .......................................................................................... 69 

Reshape Matrix ..................................................................................................... 69 

Chapter 5 Data paths and Design ...................................................................................... 71 

5.1 Requirement Details........................................................................................ 71 

5.2 Fourier Transform ..................................................................................... 71 

5.3 Basic Matrix Operations ........................................................................... 72 

5.4 Scalar Arithmetic ...................................................................................... 73 

5.5 Fourier Transform Design............................................................................... 74 

5.6 Representation of a complex Number............................................................. 79 

5.7 Data Paths for Individual instruction Types ................................................... 80 

5.8 The Program Counter ...................................................................................... 80 

5.9 On chip Memory Manager .............................................................................. 81 

5.10 Sub-Index to single index Generation ........................................................... 82 

5.11 Counter and Program Counter clock Selection:............................................ 84 

5.12 The Matrix Addition/Subtraction data path .................................................. 84 

5.13 The Matrix Multiplication............................................................................. 86 

5.14 The Matrix Transpose ................................................................................... 87 



 

 

xi 

 

 

5.15 The Matrix Operations with a Scalar Value place in memory...................... 88 

5.16 Matrix Operations with an Immediate Value................................................ 89 

5.17 Scalar Operations (In Memory) .................................................................... 90 

5.18 Scalar Operations Immediate ........................................................................ 90 

5.19 Jumps and Branching Instructions ................................................................ 91 

5.20 Variable Clock Cycle Implementation along with single cycle.................... 92 

5.21 Main Architecture Design ............................................................................. 92 

Chapter 6 Simulation Results............................................................................................ 94 

Computing DFT .................................................................................................... 94 

Matrix Multiplication ............................................................................................ 96 

Matrix Arithmetic ................................................................................................. 98 

Matrix Transpose .................................................................................................. 99 

Branching ............................................................................................................ 101 

Scalar Arithmetic ................................................................................................ 102 

Instruction Memory Contents View.............................................................. 103 

EMACH Filter Calculation results................................................................ 104 

Chapter 7 Future Work and Conclusion ......................................................................... 105 

Future Work ........................................................................................................ 107 

Pipeline ......................................................................................................... 107 



 

 

xii 

 

 

Embedding FFT ............................................................................................ 107 

System I/O design ......................................................................................... 107 

References ....................................................................................................................... 110 

 



 

 

xiii 

 

 

List of Tables 

Table 6-1 DFT Results comparison with MATLAB ........................................................ 97 

Table 6-2 Matrix Multiplication Results comparison with MATLAB ........................... 100 

Table 6-3 Matrix Multiplication Addition Results comparison with MATLAB ............ 101 

Table 6-4 Filter Results comparison with MATLAB ..................................................... 106 

  



 

 

xiv 

 

 

List of Figures 

Figure 1-1: A fingerprint diagram with some salient features (B. V. K. Vijaya Kumar) . 17 

Figure 1-2: Typical Flow chart for typical Pattern Recognition system. .......................... 18 

Figure 1-3: (a) input pattern (b) Reference image (c) Correlation Plane (correlation results 

of (a) to (b)) ....................................................................................................................... 19 

Figure 1-4: A standalone Model for CPR ......................................................................... 23 

Figure 1-5:  Diagram representing the requirements to perform CPR.............................. 25 

Figure 2-1: A Correlation Filter application flow ............................................................. 26 

Figure 2-2 : Signal represented as a sum of sinusoidal (Kamisetty Rao) ......................... 30 

Figure 2-3: Word Representation of fixed point binary (Khan) ....................................... 34 

Figure 2-4 : Representation of fixed point numbers (Khan) ............................................. 34 

Figure 3-1: Elements of two Matrices placed in same memory (a memory overview) .... 36 

Figure 3-2 : Main memory module layout ........................................................................ 37 

Figure 3-3: Description of common features of clock cycle. ............................................ 37 

Figure 3-4 : Layout of memory manager inputs and outputs. .......................................... 39 

Figure 3-5 : Working Mechanics of Memory Manager .................................................... 39 

Figure 3-6: Linear storage of matric in memory showing their base addresses ............... 40 

Figure 3-7: (a) Representation of Matrix in Subscript (b) Single index representation (row 

oriented) (c) Single index representation (column oriented) ............................................ 41 

Figure 3-8: Conversion of Subscript index to Single Index ............................................. 41 



 

 

xv 

 

 

Figure 3-9: Conversion of Subscript index to Single Index ............................................. 43 

Figure 3-10 : Source, Destination and Target Description ............................................... 44 

Figure 3-11 : The Operation Guide Contents view (Matrix Arithmetic) .......................... 44 

Figure 3-12: The Operation Guide Contents view ............................................................ 45 

Figure 3-13 : Layout of the ALU ...................................................................................... 46 

Figure 3-14: Control Unit layout ...................................................................................... 46 

Figure 3-15 : Inside view of the lookup table for Control Panel ...................................... 46 

Figure 3-16 : Control Unit layout ..................................................................................... 47 

Figure 3-17 : Mechanism for generating index values for a matrix ................................. 48 

Figure 3-18 : Gate Level view of the comparator ............................................................. 49 

Figure 3-19 : Internal view of counter .............................................................................. 49 

Figure 3-20 : Mechanism for generating index values for matrix multiplications ........... 50 

Figure 3-21 : A Multiplexer in-out Description. ............................................................... 51 

Figure 4-1 : Instruction Vector Bits lay out for Matrix Multiplication with Matrix ......... 52 

Figure 4-2 : Bits lay out Matrix dot multiplication with Matrix ....................................... 53 

Figure 4-3 : Bits lay out for Matrix dot multiplication with immediate Value................. 53 

Figure 4-4 : Bits lay out for Matrix dot multiplication with stored Value ........................ 54 

Figure 4-5 : Bits lay out of Matrix dot division with Matrix ............................................ 54 

Figure 4-6 : Bits lay out for Matrix dot Division with stored Value ................................ 54 



 

 

xvi 

 

 

Figure 4-7 : Bits lay out for Matrix dot Division with Immediate Value ......................... 55 

Figure 4-8 : Bits lay out for Matrix Addition with Matrix ............................................... 55 

Figure 4-9 : Bits lay out Matrix Subtraction with Matrix ................................................. 56 

Figure 4-10 : Bits lay out Matrix Addition with stored Value .......................................... 56 

Figure 4-11 : Bits lay out of Matrix Subtraction with stored Value ................................. 56 

Figure 4-12 : Bits lay out Matrix dot Power with stored Value ........................................ 57 

Figure 4-13 : Bits lay out Matrix Subtraction with immediate Value .............................. 57 

Figure 4-14 : Bits lay out Matrix Addition with immediate Value ................................... 58 

Figure 4-15 : Bits lay out Matrix Raised to the Power of immediate Value .................... 58 

Figure 4-16 : Bits lay out Transpose of Matrix................................................................. 59 

Figure 4-17 : Bits lay out Set Conjugate Flag................................................................... 59 

Figure 4-18 : Bits lay out Re-Set Conjugate Flag ............................................................. 59 

Figure 4-19 : Bits lay out Fourier Transform First Pass ................................................... 60 

Figure 4-20 : Bits lay out Fourier Transform Second Pass ............................................... 60 

Figure 4-21 : Bits lay out Scalar Multiplication ............................................................... 61 

Figure 4-22 : Bits lay out Scalar Addition ........................................................................ 61 

Figure 4-23 : Bits lay out Scalar Subtraction .................................................................... 61 

Figure 4-24 : Bits lay out Scalar Division ........................................................................ 62 

Figure 4-25 : Bits lay out Scalar Power ............................................................................ 62 



 

 

xvii 

 

 

Figure 4-26 : Bits lay out Scalar Addition with immediate Value ................................... 63 

Figure 4-27 : Bits lay out Scalar subtraction with immediate Value ................................ 63 

Figure 4-28 : Bits lay out Scalar Division with immediate Value .................................... 63 

Figure 4-29 : Bits lay out Scalar Power with immediate Value ....................................... 64 

Figure 4-30 : Bits lay out Jump if equal ........................................................................... 64 

Figure 4-31 : Bits lay out Jump if not equal ..................................................................... 65 

Figure 4-32 : Bits lay out Jump if is less than or equal ..................................................... 65 

Figure 4-33 : Bits lay out Jump if is Greater than or equal ............................................... 65 

Figure 4-34 : Bits lay out for Unconditional Jump ........................................................... 66 

Figure 4-35 : Bits lay out for Jump if is less than ............................................................. 66 

Figure 4-36 : Bits lay out for Jump if is Greater than ....................................................... 67 

Figure 4-37 : Bits lay out Copy real part of matrix ........................................................... 67 

Figure 4-38 : Bits lay out for loading a value to a memory Location ............................... 67 

Figure 4-39 : Bits lay out Loading negative a value to a memory Location .................... 68 

Figure 4-40 : Bits lay out Copy a memory location to a new location ............................. 68 

Figure 4-41 : Bits lay out Copy a Matrix location to a new Matrix location .................... 69 

Figure 4-42 : Bits lay out Copy a Column of a matrix ..................................................... 69 

Figure 4-43 : Bits lay out Load Memory content to special register ................................ 69 

Figure 4-44 : Bits lay out Write from special register ...................................................... 70 



 

 

xviii 

 

 

Figure 4-45 : Bits lay out Load row and column Address ................................................ 70 

Figure 4-46 : Bits lay out Write to special register (row and column) ............................. 71 

Figure 4-47 : Bits lay out Save from Special Register ...................................................... 71 

Figure 4-48 : Bits lay out Initialize a new matrix ............................................................. 71 

Figure 4-49 : Bits lay out Reshape Matrix ........................................................................ 72 

Figure 5-1 : The sub operations required by Major Operations ........................................ 73 

Figure 5-2 : Operations required to perform a Fourier transform ..................................... 74 

Figure 5-3 : Matrix Operations ......................................................................................... 75 

Figure 5-4 : Scalar Operations required ............................................................................ 75 

Figure 5-5 : Truncation of Values from Larger Generic Matrix for computation of DFT 79 

Figure 5-6 : Representation of a complex Number (Memory Location View) ................ 81 

Figure 5-7 : Representation of a complex Number (Memory Location View) ................ 82 

Figure 5-8 : The micro instruction Fetch Mechanism along the instruction Memory ...... 83 

Figure 5-9 : Data path of the Memory Manager ............................................................... 84 

Figure 5-10 : Index Generation Data path ........................................................................ 85 

Figure 5-11 : Clock feeding to Counters........................................................................... 86 

Figure 5-12 : Data Path for Matrix Addition/ Subtraction ................................................ 87 

Figure 5-13 : Index Generation for Matrix Addition / Subtraction .................................. 88 

Figure 5-14 : Index Generation for Matrix Multiplication ............................................... 88 



 

 

xix 

 

 

Figure 5-15 : Index Generation for Transpose of a Matrix ............................................... 89 

Figure 5-16 : Matrix with Scalar Operations .................................................................... 91 

Figure 5-17 : Matrix with Scalar Operations .................................................................... 91 

Figure 5-18 : Matrix with Scalar Operations .................................................................... 92 

Figure 5-19 : Matrix with Scalar Operations .................................................................... 93 

Figure 5-20 : Branching and looping ................................................................................ 93 

Figure 5-21 All Data Paths Integrated (main Architecture) .............................................. 95 

Figure 6-1 : The configuration file snippet ....................................................................... 96 

Figure 6-2 : Wave/Timing Diagram while calculating the DTFT .................................... 98 

Figure 6-3 : Wave Diagram representing Matrix Multiplication .................................... 100 

Figure 6-4 : Wave Diagram representing Matrix Addition ............................................ 101 

Figure 6-5 : Actual memory Addresses in liner memory ............................................... 102 

Figure 6-6 : Main Memory linear addresses in matrix form ........................................... 102 

Figure 6-7 : Mapping of Matrix values to new locations................................................ 103 

Figure 6-8 : Mapping of Matrix Transpose..................................................................... 103 

Figure 6-9 : Simulation results for branch ...................................................................... 104 

Figure 6-10 : Wave diagrams for results......................................................................... 105 

Figure 6-11 : View of the instruction memory in HEX format ...................................... 105 

Figure 6-12 : Filter generation results ............................................................................. 106  



 

 

20 

 

Chapter 1 Introduction 

 

 

Pattern recognition has been another challenging segment for man-made marvels, with 

the passing flow of time, requirements for Luxury and Necessity are demanding more 

extensive research in the field of pattern Recognition. From above a century 

mathematicians and scientists have devoted their whole lives to create and improve 

algorithms that can perform like Human Recognition System or even better. In a daily 

human life human brain carries out a lot of pattern recognition without even noticing [1], 

even it is an irregular pattern human recognition system is even then capable of 

recognizing. The human brain can also handle new situations even if it‟s an unseen or a 

new case. Human brain is still capable of categorizing the object based on previously 

learned similarity and some logic that might be based on experience. We can even 

categories voices and recognize that what sort of voice is it i.e. the semantics and 

structure, Human brain is also capable of recognizing different persons be their face 

features and body language too, But there are some drawbacks also with the human 

recognition like humans recognition is slow, The other is that scaling is not easy for 

everyone and in some special cases human recognition is incapable of classifying. 

Likewise the case of finger print recognition, not all humans can perform finger print 

matching; only a highly trained person can perform this task but the efficiency and 

accuracy cannot be compared as of a machine. The Human brain lacks memory, in case 

of finding a single sample of fingerprint of a person in a large data, it might take an 

expert from days to even months to match a single print but comparatively a machine can 

do this job in the matter of seconds to minuets. The domain of pattern classification is 

involved in various filed of automations and it is being very extensively used in 

intelligent machines, some common application of Pattern classification are Voice 

recognition, fingerprint recognition, face recognition, Optical Character recognition 

(OCR) Object detection/recognition,  Bio Medical Applications etc. 

 Almost everyone is familiar with the long extending benefits and the services of 

machines to mankind, the benefits that Machines can provide include speed, accuracy, 



 

 

21 

 

cost saving and un-tiring service .Many automatic machines uses the concept of pattern 

recognition. For example a quality check at a high speed conveyor belt on a production 

line will require a trained eye to monitor the quality efficiently. A machine properly 

designed can work more accurately and at very high speeds thus cutting down the cost 

and the bottle neck that human supervision might create comparatively to the machine. 

With the span of time, the increasing demand for such machines has proved their worth. 

The processors that are deliberately designed to perform specific tasks are dedicated 

processors, or in other words are built and designed for specific/dedicated purpose. These 

processors can perform almost all the basic operations like loops and arithmetic and 

logical operations. A processor that can perform logical operations like and, or and not 

and can loop can handle any kind of software related problem. 

 

 Security has been man‟s nightmare from the beginning of time, whether it is an 

organization or an individual being on the safe side matters a lot .There has been a 

tremendous increase in the trend on relying on machines to provide self and automated 

security using vision or sensor systems. A simple camera attached to a machine capable 

of running a smart algorithm can provide a very effective and low cost security watch and 

the best part is that unlike human machine never sleeps and it cannot be bribed either, 

thus can provide a much safer environment. Whether it‟s the matter of home land security 

or security of an individual these machines can provide greater services to mankind. In 

the field of defense modern radar systems are also providing a great deal of protection 

against enemy trespassing and attacks, there are several issues with old radar systems, 

one big problem was that they only provided data visually to the human eye, than the fate 

of the entity to be saved fully relied on the human and brain on the watch. Comparing to 

human, machines can work more efficiently and the efficiency dose not drop throughout 

the time as tiredness and boredom can severely effect humans work performance. 

Correlation Pattern recognition has contributed a lot in the field of pattern recognition [1-

3]. Usually digital machines are dealing with digital signal, Image and Audio can also be 

referred as a digital signal and the techniques of pattern recognition can be applied to 

these digital signals. The main concern is to properly classify an object or an entity so 



 

 

22 

 

that it can be further worked upon. The following diagram represents some features of a 

fingerprint scan, features help in logically classify the object. 

 

 

Figure 1-1: A fingerprint diagram with some salient features [1] 

In pattern recognition usually an input is provided to a system, usually a system should 

perform some preprocessing to adjust the image so that the system can perform 

operations on the image in a more optimal way like removing the noise the input image 

that might have been added at the image acquisition phase or allying some algorithm that 

can enhance classification process. Afterwards the system extracts suitable number of 

required features and the works on the features of the provided pre-processed input, based 

on these features a decision is carried out whether to which class the input may belong to. 

The following diagram explains how a trivial Pattern classification mechanism works. 

 

 

Figure 1-2: Typical Flow chart for typical Pattern Recognition system. 

Pre 

Processing 

Feature 

Extraction 

Classifier 

Application 

Input 

Pattern 

Class 



 

 

23 

 

 

 

1.1 Typical Methods: 

Following methods are generally used for recognizing a pattern 

 Statistical 

 Machine learning 

 Artificial neural 

 Correlation filters 

The above mentioned approaches are mostly carried out in image spatial domain, where 

more significant advantage can be obtained in Frequency domain. All the input image 

might not be the same always there might be some sort of illumination changes in the 

input image, besides illumination there is a chance that multiple repetition of the pattern 

might occur in the input image, this situation should also be cratered .The desired pattern 

can exist anywhere in the scene. Another big challenge is that the desired pattern in the 

image might scale, rotated or translated. There must be an algorithm that that is robust of 

all the above mentioned problems .Luckily correlation filter can provide efficient and 

robust pattern classification. Straight forward correlation of test input can be carried out 

on a reference sample that will result in higher peaks in a correlation plane where the 

reference image exists.  

 

 
 

(a) (b) (c) 

 

 



 

 

24 

 

Figure 1-3: (a) input pattern (b) Reference image (c) Correlation Plane (correlation 

results of (a) to (b)) 

 

The figure shows the correlation results of a test image over a reference image, in the 

resulting correlation plane the peak indicates the location of the test object in the 

reference image, sharper the peak the more is the probability of the test object to be 

present in the reference image. If the image has more than one existence of the test object 

in the reference image,  the peaks will be replicated Straight forward Correlation 

technique lies under the field of statistics but is quite inefficient, Correlation filters 

designed in frequency domain have greater advantage of speed thus helping in building 

real time applications for pattern recognition . 

Typically correlation filters are designed in frequency domain, there are many filter that 

are designed using FFT (Frequency Domain), mostly this technique is employed where 

Real time processing is required .Like the radar systems are critical, the modern aircrafts 

have almost broken the sound barrier and can travel up to or more than speed of sound, it 

is very critical to develop an algorithm that can process the sample gathered by the radar 

system in real time. If the processing is slow there are very high chances that the aircraft 

will reach its target unharmed and it might be too late to apply preventive measures. 

Correlation filter are developed in frequency domain using the reference inputs, which 

are basically referred as the training sample or training data. A correlation filter is 

developed one filter per class, the training data contain the variations of the pattern o be 

detected, the variations include some rotation of the pattern. There also might be some 

scaling difference between the training samples. One filter developed results in a 

correlation plane when it is multiplied (correlated) to a Test input. If the object is present 

in the reference image it will produce peaks. That refers to the location of the pattern on 

the reference image. Furthermore algorithms and methods can be used to detect the 

pattern in the reference image using the obtained peak.  

 Many correlation filters have been developed with time, with grate performance. These 

filters include the synthetic discriminant filter (SDF) which was among the earlier 

developed correlation filter. Furthermore known filters like Maximum Average 

Correlation Height (MACH)[4-6], Extended Maximum Average Correlation Height 



 

 

25 

 

(EMACH)[7, 8], Eigen Extended Maximum Average Correlation Height (EEMACH)[9], 

Maximum Average correlation energy (MACE)[10], minimum noise and average 

correlation plane energy (MINACE)[11], Minimum variance Synthetic Discriminant 

Function (MVSDF) filter  [12] etc. These filters are more robust and can perform the 

recognition at very high speeds. 

 

1.2 Motivation 

Over the years small form factor and power efficient flexible and programmable devices 

have captured the marked trends, These devices can work at very higher speed .custom 

built digital designs are more commonly implemented on these flexible hardware. For a 

mass production of a digital design semiconductor materials based chips are employed, 

the whole system can be fabricated on these chips these. To manufacture these 

semiconductor material dyes have to be manufactured first the manufacturing of these 

dyes itself is an expensive and pain giving procedure,  but ultimately this method in mass 

production cuts down the cost of the digital design. 

On the other hand if there is only one custom design that requires fewer amounts of 

copies to be produced, the simple flexible devices like FPGA, ASIC, CPLD can be 

employed. Although a single piece of custom design hardware will cost more than a 

single piece Mass produced hardware, but on the other hand if it is desired to 

manufacture a single piece of hardware using the mass production strategy that will 

increase the manufacturing cost at very high level. That is the main reason that the trend 

toward these flexible hardware has been increasing over the time. These electronic 

devices allow Design engineers and hobbyist to produce cost effective and very efficient 

and intelligent electronic devices. 

Design Engineers around the world have been employing FPGA, CPLD etc. to 

implement and test their designs. In the last decade with the availability of FPGA with 

more memory has motivated the design engineers to also implement the image processing 

techniques on these devices .These devices can also be programed using Hardware 

Descriptive language (HDL).Some of the manufacture of these devices also provide pre 

built libraries that are tested and optimal speed wise, some open source languages to 

describe the design are have also been introduced into the digital design world. Verilog 



 

 

26 

 

and VDHL are the most common languages used to program this flexible Hardware. The 

reasons why Design engineers use these technologies involve their small size, Low power 

consumption, flexibility and that they are capable of performing at higher speeds 

compared to a general Computer. Now a days top leading electronics devices 

manufactures are manufacturing the state of the art devices these days. A single digital 

camera and a Cellular phone uses up a very powerful processor capable of performing 

different tasks. The digital cameras these days are using small but simple image 

processing techniques to attract the customer. Smile and face detection are some 

examples, these camera are also capable of Enhancing the images using different 

enhancement techniques like filtering  Histogram equalization,  these techniques when 

applied pleases the human eye. The increasing trend in luxury requires more effort to be 

put into the field of embedded and dedicated systems. 

Common correlation filters [1] can be implemented on general computing, but as 

mentioned in the above paragraphs that in some requirements small form factor devices, 

less power consumption and speed is a crucial matter. Face and smile detection can also 

be carried out on a general computer but it not always possible to carry a huge sized 

general computer. Besides this the correlation filters requires huge amount of 

computations .Besides this the general computing environment is usually running an 

operating system, the operating system is handling a lot of demons and application 

running in the background these applications require a lot of processing power, usually in 

general computer the processing power is shared among the tasks running on it where n 

the other hand dedicated hard ware does not require to share resources to other entities. 

FFT [13] its self is a compute intensive procedure and might cover much hardware cost 

itself. The discrete time Fourier transform is slower than FFT and also requires large 

amount of memory even on general computing. The main goal is to provide a very 

flexible architecture that is capable of performing all the tasks required by a correlation 

filter design, thus providing a Correlation Pattern recognition module that is flexible and 

provides great performance. 

There are other Hardware Platforms available in the market at low costs that can provide 

a general computing environment with lesser power consumption, smaller size and the 

flexibility of a general computer .A simple microprocessor and some DSP Processors 



 

 

27 

 

[14] can also carry out the tasks required to perform a correlation Pattern recognition 

application. Besides these devices Raspberry Pi [15] is also providing a small sized ARM 

[16] based Credit card size Computer with necessary Peripherals. Some other companies 

are also manufacturing Flexible processors like Cortex, ARM etc. 

 

 

Figure 1-4: A standalone Model for CPR 

1.3 Challenges 

Designing an architecture that is capable of performing correlation pattern recognition 

requires to perform numerous small tasks that are entirely different in nature .There were 

several possibilities to realize this type of Digital Design. Some of the challenges faced in 

this research project are enlisted with some detail. 

1.3.1 Flexibility 

Most Digital design engineers while designing a dedicated system only focus on certain 

amount of specifications, for example a system is designed to work on an image of (128 

X 128) pixels only .What if the end user has to change the size of the input image to (256 

X 256) pixels. This problem has always been a question mark on the digital design 

industry. A digital design usually has to be replaced if no room is kept to tackle this size 

of problems. Replacing an old design has then its own requirements that can cost a great 

deal of time and money. 

1.3.2 Cost Effectiveness 

Another Big challenge in this case is to provide best performance at low cost. Usually 

Cost is directly proportional to performance. As the designers try to increase the 

performance of the machine the cost raises up to i.e. it consumes more hardware [17]. 

 

CPR Processor 

  

Display (Output) 

Optional  

I/O(s) 



 

 

28 

 

Besides performance, while increasing flexibility of a certain design also increases the 

hardware costs. It‟s nothing but a tradeoff which cannot be ignored. In case of EMACH 

Filter, this filter itself requires a lot of different operations like, Computing Fourier 

transform, Computing Eigen Values and Eigen vectors, Basic Matrix Operations like 

Matrix addition, subtraction, Multiplication. These operations themselves are a very big 

challenge to design individually. Such an architecture that has to perform all of these 

operations all together while saving cost and providing on chip flexibility is the biggest 

challenge. 

1.3.3 Common Requirements 

Many of the operations like finding the Fourier transform, computing the Eigen vector 

and values requires many operations like addition, subtraction Multiplication etc. If each 

module is merged together in a logical way the cost of the hardware will raise too much 

.some of the operations that a correlation filter design may require include .Frequency 

Domain Conversion (Computing FFT),Inverse Fourier Transform (Computing 

IFFT),Finding Eigen Values and Vectors, Finding Maximum and Minimum values, 

Implementation of some Numerical Methods, Maintain orientation of Matrix During 

operations, Matrix Addition, Matrix Subtraction, Matrix Multiplication (Scalar, Dot, 

Matrix),Matrix Division (scalar),Representing Complex Numbers scalar/matrix, 

Representation of conjugates of matrix, Calculating power of a matrix, Calculating 

Transpose of a matrix, Reshaping of a matrix , Provide a use of fractional Values, 

Provide Flexibility, Perform Logical Operations and  Hazards Identification and removal. 

All the required parameters are quite challenging. 

The above mentioned are the sub tasks that are required by the steps involved in the filter 

design, and the correlation. Each thing its self is a very big challenge to be implemented 

on hardware. One other Challenge was to provide these functionalities all to gather while 

cutting down the hardware size.  

 

 



 

 

29 

 

 

Figure 1-5:  Diagram representing the requirements to perform CPR 

 

The figure above shows the required operations to perform a correlation based pattern 

recognition. This is not the exact estimate but a near estimate that a design would require. 

This approach involves implementation of each module separately and then integrating 

the modules via an intelligent switching/Control network, this is one possibility, but to 

reside all the functional modules on a single chip will rise up the cost to a very large 

extent. Here one can clearly see the big challenge in the realization of this CPR generic 

Architecture. Thus it is intended to find common operations used by all the functional 

units (Subset of Operations) and Produce a design that is more cost effective. 

 

1.4 Previous Works 

Many researchers have contributed to the hardware design for image processing. 

Previously presented designs were based of different flexible platforms. These platform 

includes some well know hardware which boosts up image processing speeds. ASIC 

(Application Specific Integrated Chips), DSP (Digital Signal Processors) and some 

reconfigurable devices like FPGA (Field programmable Gate Arrays).Many image 

processing algorithms like edge detection using Sobel‟s, Prewitt‟s and canny were 

implemented on specific hardware implementation  to FPGA manufacturers like Altera, 

Xilinx etc. 

Memory 

Switching/control 

Network 

Matrix 

Operations  
Fourier 

Transform  
Logical 

Operations  

Matrix 

Manager  Counters 

Banks 

Eigen Solver  

Operation 

Sequence 
CPR Processor 



 

 

30 

 

G.S. Richard [29] presented the idea of generating a parameterized program for 

convolution filters implemented on FPGA. Filter was constructed using a set of 

multipliers and adders generated from a canonical serial-parallel multiplier stage. Atmel 

proposed a 3 by 3 run-time reconfigurable convolution filter on FPGA. F.G. Lorca [30] 

presented an implementation of filters for 1D and 2D reducing memory usage and 

computational costs by half in software side and hardware. Nelson [31] presented and 

implementation of rand order filter, Morphological operations on Xilinx Virtix and Altera 

Flex 10K FPGA. Shinichi [32] realized the different image processing techniques for 

computation of image gravity center along with orientation detection using Hough‟s 

transform and radial projection. Fahad [33] proposed a high performance pipelined edge 

detection architecture for real time processing of images. Baran [34] implemented edge 

detection algorithm coded in impulse, further synthesizing the code for Altera Nios. 

1.5 Orientation of Thesis 

The reaming thesis is organized as described below. Chapter 2 contains a brief overview 

of the literature regarding to the processor, Chapter 3 explains the design and working of 

the individual components that builds up the processor. Chapter 4 explains the instruction 

set architecture along ith their use, Chapter 5 shows and explains the data path of 

different type of instructions, chapter 6 shows simulations results compared with actual 

results calculated by Matlab.  



 

 

31 

 

Chapter 2 Literature Review 

 

 

The design of a digital architecture has a mandatory prerequisite, this is to study the 

problem thoroughly .The sub-problems of the main problem should be known very 

precisely to realize the digital version. The digital standalone architecture design of a 

CPR Processor requires to identify the sub operations and their detailed study.in this 

chapter an overview of the theoretical study of sub operations are presented.  

 

2.1 Correlation Filters 

Correlating filter has a significant edge in Pattern recognition due to their shift invariant 

and shift tolerant nature. Design process of a correlation filter involves the Fourier 

transform form of that particular image training samples. Fast Fourier Transform is 

usually employed for conversion from spatial domain to frequency domain. Figure 2-1 

represents the common flow of a correlation filter. Some of the correlation filters 

mathematical back ground is explained in the next section. 

 

 

Figure 2-1: A Correlation Filter application flow 

 

FFT 

 

Input 

image 

  

IFFT Analyze  

 Correlation 

Filter 

 

Filter 

Design 

  

… 
FFT 

Training Image(s) 

Correlation Output 



 

 

32 

 

2.1.1 MACH Filter 

MACH Filter is among recently developed filters. The design of this filter maximizes the 

peak energy using the mean of the training sample of provided image(s).in this section a 

brief overview of this filter design is presented the detailed version can be found at [5] 

.Like other correlation filters MACH Filter is also completely designed in frequency 

domain. The first step in the development of this filter is to compute the Fourier 

transform of a 2 Dimensional Image (2D Matrix) is computed. The size of one training 

image is assumed as d x d pixels. For computational ease the results are then converted to 

column vector, by scanning from left to right. After this the scanning is done from top to 

bottom sequence. The resulting 2D filter h can also be expressed in the same way. The 

    training image‟s correlation output can be represented by equation (2.1.1) 

 

                      (2.1) 

Peak intensity of average training image can be expressed by the expression in 2.2, also 

referred as Average Correlation Height (ACH) [5]. The notation m represents the 

Average of all the Fourier Transforms (FTs) of all the training images, where the total 

number of images is denoted by N. 

   

           |
 

 
∑     

 
   |

 

         (2.2) 

 

A tolerance characterizing measure metric Average Similarity Measure (ASM) is 

introduced which basically shows the dissimilarity between correlation output, training 

images and the average of the training images.ASM can be expressed as follows  

    

    
 

 
∑ |       |

  
    (2.3)  

            
                

    Represents a diagonal Matrix, the diagonal entries contains the elements of the FT 

vector along the diagonal. Matrix   is also a diagonal matrix that has the elements of   

along the diagonal. The size of these tow diagonal matrix will be        .Where     

represents the correlation output of i
th 

training image. The term       refers to optimal 



 

 

33 

 

reference correlation output resulting in minimum mean square error this is usually found 

by measuring the gradient of ASM with respect to      .Afterwards the putting the 

expression equal to zero and solving the expression for     . 

By substituting the values of        and      in equation (2.3) will yield the following 

expression. 

           (2.4) 

         
 

 
∑         

          (2.5) 

 

Up till here    is a diagonal matrix with size        .The small x in the subscript of the 

equation (2.4) indicates the dependence on the training image of a certain class x. By 

using equation (2.4) and (2.2) will result in equation (2.6) shown below. 

 

     
         

           
 

      

         
  (2.6) 

 

Noise also has a role in the images which usually adds at the input, the term        

represents the output noise variance (ONV) [18].This makes this system noise tolerant. 

The filter is then computed by taking the gradient of equation (2.6) w.r.t. h and 

afterwards putting the expression equal to zero. The resultant is given in the following 

equation 

 

        
    (2.7) 

 

In the above section MACH filter was described theoretically, this filter has its own 

limitations. The design of this filter over depends upon the mean of the training images 

(Mean of FTs).The mean of the images results in loss of some small and important details 

which are necessary for a good clutter rejection. Mean of the training images results in 

another clutter image which is quite different from original image [5]. 



 

 

34 

 

2.1.2 EMACH Filter 

EMACH filter is among the modern Developed filter of this era. The over reliance on the 

average training images in MACH filter lead to the development of Extended Maximum 

Average Correlation Height (EMACH) Filter which introduced a new a new metric value 

All Image Correlation Height (AICH) [5]. 

 

      
 

 
∑       

         
  

     (2.8) 

 

The range of the parameter   lies between 0 and 1 .This parameter helps in controlling 

the emphasis on a training image individually. The above mentioned equation can be re 

written as follows after substituting       , where the value of   lies between 0 

and 1. 

 

     
 

 
∑                  

 
  

      (2.9) 

 

Where  

  
 

 
 

 
∑                 

     (2.10)  

 

In equation (2.9) AICH becomes the mean of the peak intensities in the correlation of the 

N Training Images. The MACH filter treated the training images as exemplar, but in this 

case an exemplar is expressed by        .To match the correlation out puts of all 

training images as well another metric  Modified Average Similarity Measure 

(MASM)[8] is introduced which is defined as follows 

 

      
 

 
 ∑ |        |

  
     (2.11) 

 

Where  

 

                                  (2.12) 



 

 

35 

 

Solving the equation (2.4) Yields as below,      is determined by using the method 

described in section 2.1. 

 

          
 
  (2.13) 

 

        
 

  
 

 
∑                           

        (2.14) 

 

By minimizing the value of MASM the system becomes more tolerant towards distortion 

.This minimization allows the transformed      training image to resemble more to the 

reference images (transformed exemplars).Conclusively the EMACH filter should 

maximize AICH value while minimize the MASM value. Also adding the noise (ONV) 

to the denominator to carter the effect of noise, the following expression is obtained [5]. 

 

     
    

        
  

    
 
 

  (     
 
) 

  (2.15) 

 

After saving the above expression using gradient with respect to h the following 

expression is concluded. 

 

      
 
     

 
         (2.16) 

 

Where J (h) is the Eigen value and h is the Eigen vector of the matrix       
 
     

 
  

 

2.2 The Fourier Transform 

A mathematician named Joseph Fourier introduced a method for inter conversion of 

signals between spatial domain and frequency domain. This basically a transformation 

.The best beauty of this transformation is that it is a reversible transform. This method 

has provided many services in the field of engineering and Physics. 

Fourier claimed that a signal can be represented as an ordered (by Frequencies) sum of 

complex sinusoidal. These sinusoidal can be of different frequencies. The Fourier 



 

 

36 

 

transform basically gives the information of frequencies present in a signal, which is 

quite helpful in analyzing the signal in another perspective. A signal can exist as a sum of 

sine waves as shown in the next diagram. 

 

Figure 2-2 : Signal represented as a sum of sinusoidal [13] 

 

 

For a continuous signal, mathematically this transformation can be written as  

 

 ̂    ∫             

  
      (2.17) 

 

Discrete Time Fourier Transform (DTFT) is used to convert Discrete Values of a spatial 

domain signal to frequency domain signal. DTFT has a very large number in practical 

applications these days [1].In time domain any physical quantity or signal is a function 

that is sampled among time. An image in time domain contains pixel intensity among a 

row or column of a matrix. DTFT of a vector can be calculated using the following 

expression 

   ∑    
     

 

    
                            (2.18) 

 

In the above mentioned expression    is the Fourier transform value for     element 

place of the resulting Fourier transform vector. The sign    is a complex number 

representation,   is the     element of the vector. The inverse Fourier transform can be 

obtained using the inverse calculation expression as follows. 

 



 

 

37 

 

   ∑    
     

 

    
                              (2.19) 

 

The expressions mentioned in the above section are capable of inter conversion of a 1D 

array (vector) .But in practice image is a 2D array .the following expression can be used 

to calculate the DTFT and the inverse DTFT of a multidimensional array[19]. 

 

 ̂      ∑ ∑                
             

     (2.20) 

 

 

       
 

  
∑ ∑               

     ̂        
    (2.21) 

 

Although DTFT Provides Fourier transform of the signal, but the method is too slow for 

computation .DTFT has a complexity of  , later faster algorithms were developed. Fast 

Fourier Transform (FFT) is a method developed with much lower complexity than DTFT 

.The complexity of this method was reduced to         which is much lighter and faster 

the DTFT. This method is considered as the most important Algorithm of all time [20].A 

detailed explanation of FFT can be found at [21]. 

 

 

2.3 Fourier Transform Matrix Representation 

As described in the above section, the Fourier Transform of a discrete signal can be 

computed using a summation operator and thus yielding a single value off Fourier 

Transform for the required Point k. The point to be noted here is that this single value of 

the     Fourier Value has the effect of all the values present in the given vector. 

Similarly the Fourier Transform (Discrete) of   Points can be represented in the form of 

a matrix, When this Matrix is multiplied by an input signal it yields the DTFT of the 

input signal Vector. To compute the DFTF of    Points signal the transformation matrix 

will have       elements. 

The DTFT Calculation can be performed as  where    is the resultant Fourier 

Transform,   is the DTFT Transformation matrix and    is the vector of which the 

DTFT is to be computed using  



 

 

38 

 

 

For a vector with   points the transformation matrix of size       can be represented in 

the following way. 

  (
   

√ 
)
           

   (2.22) 

 

The value  represents the primitive     root of unity, also a complex value that 

is   and  is the normalizing factor.expanding the above equation in the 

matrix form can be represented as. 

 

 (2.23) 

Multiplication of this matrix with, a   point vector will yield the DFT of the input vector. 

This technique can be employed for computation of DTFT like a stored table. To find the 

inverse DTFT the sign of the exponent can be reverse to find the Inverse Transform 

another way to compute the inverse DTFT is to multiply the matrix with the conjugate of 

the transformation matrix     . 

An image is represented as a matrix or a 2D vector for the case of images the same 

mechanism can be employed to calculate the Fourier transform of images. In general first 

the Fourier transform can be computed using the DFT equation. The resulting Matrix is 

transposed and again the Fourier transform is computed and then again the transpose of 

the resulting is the final DFT of the 2D matrix. 

 

                                 (2.24) 

 

 Similarly by Matrix Multiplication the Fourier Transform of a 2D Matrix (image) can be 

computed in the following manner. 

       (2.25) 



 

 

39 

 

 

2.4 Fixed Point Representation of Binary Numbers 

In real life problem mathematical numbers usually have a fractional part, for example to 

represent a number half can be expressed by adding a fractional part after a decimal 

point. i.e. (1/2=0.5).Fixed point is a simple and easy way to represent Fractional numbers 

in binary representation for a machine.[22] Another way to represent fractional numbers 

is the Floating point Method which is capable of representing fractional numbers with a 

good precision. The floating point representation will require a separate hardware or 

module for conversion i.e. Floating Point Unit (FPU). In many of the cases speed is more 

critical than accuracy. Fixed point representation can be used in such cases to represent 

fractional numbers in binary. In old computers the calculations were only done on 

integers, and programmers used a software based method to deal with fractional numbers 

[23].Fractional part of a number falls between 0 and 1, in digital signal processing the use 

of real number is essential. The fixed point Binary number representation is a light 

weight method in terms of speed and hardware requirements. This method can also be 

employed in the digital design of a certain application where representation of real 

numbers is mandatory. 

The binary point remains stationary at the same position where the number of binary 

digits in each word remains the same. In the case of floating point, position of the 

decimal point is determined at the time of processing. As compared to the fixed point, 

Floating point has much greater range of numbers that it can expressed. For fixed point 

representations m bits can be used for the whole part and n bits can be used for the 

fractional part this is also refers as Qm.n format. 

 

Figure 2-3: Word Representation of fixed point binary [22] 

 

 



 

 

40 

 

The total number of bits required to express the real number will be the number of bits of 

the Whore part plus the Number of bits used to represent the fractional part. For example 

a Q3.3 where m and n are equal to 3, the number of bits required to express the number 

will be 6.To represent a fractional number two parts are required, the integral part and the 

fractional part. The integral portion can be signed or unsigned .The following 

representation shown for signed and unsigned numbers. 

An N-bit(s) Fixed Point Number in binary can be interpreted as an integer or a fractional 

number .For example for an unsigned 4-bit number with Q2.2, 2bits Integer part and 2 

bits for fractional part. “0100” represents a fractional number 1.0, where as if it‟s viewed 

as an integer it represents 4. 

 

Figure 2-4 : Representation of fixed point numbers  

 

  



 

 

41 

 

Chapter 3 Implementation 

 

As described in the previous chapters, functional requirements for realizing a CPR 

processor. In this chapter the implementation and reasons of the modules is explained in 

detail. As the nature of major operations required to calculate the filter are far different 

from each other, it is then feasible to cut out basic operations and implement them in such 

a manner that the functional parts can be reused over and over instead of integration 

standalone modules,  in this way the flexibility of the modules can be retained . For 

example the Fourier Transform conversion requires the addition and subtraction 

operation, whereas the calculation for Eigen vectors and values also requires an Adder 

and Subtractor. It is possible that we can use a single module for Addition and 

Subtraction and impose some control instructions through which operations can be 

controlled. The internal Architecture of the components is not added because of 

intellectual property of the author. The modules and their individually functionalities are 

explained briefly in the next section. These modules are further used to construct a 

processor capable of performing many complex computations on hardware. 

 

3.1 Main Memory 

The main memory is basically simple memory that is designed to hold the contents of the 

matrix. The memory is liner in nature .It can be assumed of an array holding the contents 

without any logic or in other words the items or elements are place randomly, the 

memory will be un familiar that to which matrix the elements belongs to. For example the 

memory is kept of 64 Kbytes.it means that we can store 64 Thousand values with the 

width of 1 Byte (8-Bits).Suppose we are need to store 2 matrix of size 3 x 3 in this 

memory, the values will be stored in a continuous manner. 

  [
      
      
      

]    [
      
      
      

] 



 

 

42 

 

 

Figure 3-1: Elements of two Matrices placed in same memory (a memory overview) 

 

In general computing the memory is usually managed by the operating system, this 

management is transparent to the user. In case of this processor a liner memory will be 

used and the management of the memory will also be transparent to the end user .The 

user will only have to write the micro instruction like “ADDm C, A, B”, The user will 

only specify whether he wants to add a scalar value or a matrix point to point. There are 

many orientations of memory that can be used, a dual port read memory design like a 

MIPS32 processor has a register file with output ports of data and three input port for 

address, another port for data input plus some Control pins like read write control. In this 

case a similar type of memory will be used, the major benefit of this memory is that it can 

provide two operands and a target location and can complete one instruction in a single 

cycle. The main aim is to keep the processor work in a single cycle per micro instruction. 

The memory layout is shown in the following diagram with its detailed pin in and pin 

out. R/W shows the read or writes signals. The contents of the memory are in mixed 

format, it will store fixed point representation and binary point representation together. 

 

Figure 3-2 : Main memory module layout 

Main 

Memory 

Target Address 

Source Address 

Destination Address 

Data to Write 

Data out Source 

Data out Target 

CLK Write enable 



 

 

43 

 

The source and target address fetches from the same common pool of memory at the 

same time, and the write data will write to the same pool of memory at the address 

specified on the destination address port. The memory is restricted to one operation at an 

edge of clock cycle. The Memory is restricted to read on the rising edge of the clock 

cycle and allowed to write at the falling edge, this methodology is adopted to avoid 

hazards that will be discussed later. 

 

 

 

Figure 3-3: Description of common features of clock cycle. 

 

To write the memory the write enable must be set to „1‟, then on the negative edge of the 

clock cycle with write enable at set position the Data available on the data input will be 

written to the destination address. The size of the address in bits depends on the memory 

size, for a memory of sized N requires an address line of         bits. For example a 

memory of 32 Locations will require an address of          bits, which is 5 bits. Thus to 

access a memory of 32 locations will require a 5 bit wide address line. Images usually 

have large number of pixels. Each pixel is a gray scale value at a certain row, column of a 

matrix location. As an image is represented by a large sized matrix, therefore to serve the 

purpose of image processing application a large amount of memory will be required. For 

example to store 8 gray scale images of sized 64 x 64 pixels, the depth of memory require 

will be (8x64x64) , which is  32768 locations, the width of the memory will be 8bits for a 

gray scale image. So the total amount of memory required will be 32,768 Bytes of 

262,144 bits. This is very large amount of memory. The address bus required for this 

memory size will be              which 15 bits is. A detailed mechanism of saving and 

reusing memory will be providing in chapter 5. 

 

Rising Edge Falling Edge 

Duty Cycle One Cycle 



 

 

44 

 

3.2 Memory Manager 

To provide flexibility to the processor and ease of use to the user an on chip mechanism 

is adopted to provide the dynamic control of functionality. In terms of image size we 

need to specify a size of image that will allow the processor to learn that what image size 

it is working on. A module named memory manager is introduced to the design. This 

module is basically a lookup table that can hold three type of information about a matrix. 

It will hold the base address of the matrix, the total Number of rows and column of a 

matrix. The memory manager will also provide the ease of micro programming. The 

instructions and guidelines to the working of the processor will be flexible. 

In a general code matrix handling mechanism could be written on the software side, but 

addition of this functionality will cost more in terms of CPU cycles as the number of 

decisions and comparisons will be increased, in general computing the main memory of 

the RAM is the major bottle neck, anything that requires to fetch something from the 

memory for an arithmetic use or a logical use can cost many machine cycle, some 

General computing systems even uses cache and virtual memory,  in such a case where 

the required memory location is not available on the cache it will cost even more cycles 

to fetch,  the beauty of the dedicated systems is that custom designs can overcome these 

limitations hence providing more performance, but in some cases the cost in terms of 

silicon may rise up to a very great extent. A mechanism for conversion of matrix from its 

subscript index to a single index is adopted in the realization of this processor the detailed 

reason for using this mechanism is explained in the next section. The processor provides 

an on chip mechanism for handling matrices, for this purpose a sparse memory will be 

used .the layout of this small sized memory is explained below and the module is shown 

in the figure. 



 

 

45 

 

 

Figure 3-4: Layout of memory manager inputs and outputs. 

 

Suppose that the requirement is to store 8 matrices in the memory of size        the 

height of this memory will be 8, and the address lines must be of 3 bits. Memory manager 

is a form of a lookup table which can be written by setting the Write Enable to „1‟ on the 

negative edge of the clock .The data will be accessed from a common pool and will be 

available on the outputs. In the figure shown below the working mechanism of the this 

module is shown, an input address is 2, the module will output the data available on the 

address location 2, The second location points to the properties of Matrix Number 2,  i.e. 

Total Rows (TR),  Total Columns (TC) and Base Address (BA).  

 

Figure 3-5 : Working Mechanics of Memory Manager 

 

The total size (in bits) of the width of single row in memory manager is the sum of Total 

Bits (TR) + Total Bits (TC) +Total Bits (BA).The base Address is determined on chip, 

The base address of the first of size 3x3  matrix stored in the linear memory will be kept 

to zero. The base address of the second of size 3 x 3 matrix stored in the memory will be 

Memory 

Manager 

Source data 

CLK WE 

Source Matrix Address 

Target Matrix Address 
Destination Matrix Address 

Target data 

Destination data 

S/R CF 

enable 

Write Attributes 

Look Up Table 

Address=2 



 

 

46 

 

.Kept 9, indicating the elements of the second matrix is starting from the ninth location in 

the memory. 

 

 

Figure 3-6: Linear storage of matric in memory showing their base addresses 

 

3.3 Sub to Index 

As explained in the above section that we are going to use a linear memory that will 

contain all the matrix placed all to gather without any boundary marking, the module 

memory manager will hold the information about the marking, that what is what on the 

main memory. The mechanism is that an element is a matrix can be addressed by its 

location number. The following will explain the location index of a matrix. Trivially an 

element of a matrix can be expressed by        where x is the row index and y is the 

column index this is usually known as the sub-script notation of an element, this unique 

element can also be represented by a unique index     . 

In other words it can be written as            ,  let us consider an example of a below 

3 x 3 matrix. Given a matrix A with values as given below 

Data 
Address 

Base Address Base Address Base Address 

 = [
 1  2  3
 4  5  6
 7  8  9

] ,  = [
 1  2  3
 4  5  6
 7  8  9

] ,  = [
 1  2  3
 4  5  6
 7  8  9

] 



 

 

47 

 

 

Figure 3-7: (a) Representation of Matrix in Subscript (b) Single index representation 

(row oriented) (c) Single index representation (column oriented) 

 

 

The benefit of using the index notation is that we can put all the items of a matrix in a 

continuous order even in a straight memory and can address the element with index 

representation. To explain the concept in a more feasible let us consider the example of 

MATLAB function              .This function converts the subscript i.e. the row 

column value to a single index.  

 

 

Figure 3-8: Conversion of Subscript index to Single Index 

 

 

 =  

 (1,1)  (1,2)  (1,3)
 (2,1)  (2,2)  (2,3)
 (3,1)  (3,2)  (3,3)

  

(a) 

 =  

 (1)  (2)  (3)
 (4)  (5)  (6)
 (7)  (8)  (9)

   

(b) 

 =  

 (1)  (4)  (7)
 (2)  (5)  (8)
 (3)  (6)  (9)

   

(c) 



 

 

48 

 

To realize this conversion a methodology was adopted. The expression which helps in 

converting the subscript values to single index values. Mathematically the methodology 

can be written as. 

                              (3.1) 

                 (3.2) 

(a) Row Oriented 

             ((         )   ) (3.3) 

                 (3.4) 

(b) Column Oriented 

 

The expression (a) can be used to compute the single index in row orientation and the 

expression (b) can be employed to calculate a single index in column orientation like 

MATLAB. A simple MATLAB simulation code is presented here to justify the index 

conversion, the first provided code work in Row orientation and the second sample code 

works in a column oriented manner. 

 

 

% simulating for subscript to single index conversion 
% Author Abdullah Aman Khan  
% 01 - January -2013 

  

  
% Specify the total number of row and col for a random matrix 
TR=3; 
TC=3; 

  

  
Matrix=rand (TR, TC); 

  
% Setting Up a loop that will traverse thorough all the values of 

the Generated Random Matrix 

  
for x=1:TR 
    for y=1:TC 

  
           single_index= ((y-1)*TR)+x; 
           element_subscript=Matrix (sub2ind([TR TC],x,y)) 
           element_single_index=Matrix (single_index) 
     end 
end 

 



 

 

49 

 

 

 

 

 

Figure 3-9: Conversion of Subscript index to Single Index 

 

 

3.4 Sequence Guide 

Sequence Guide is a type of instruction memory [24] that contains the instruction or 

operation to be carried out; one slice or a row contains the OPcode, the Source, 

% simulating for subscript to single index conversion 
% Author Abdullah Aman Khan  
% 01 - January -2013 

  

  
% Specify the total number of row and col for a random matrix 
TR=3; 
TC=3; 

  

  
Matrix=rand (TR, TC); 
Matrix_tp=Matrix'; 
% Setting Up a loop that will traverse thorough all the values of 

the Generated Random Matrix 

  

  
for x=1:TR 
    for y=1:TC 

  
           single_index= ((x-1)*TC) +y; 
           element_subscript=Matrix (sub2ind([TR TC],x,y)) 
           element_single_index=Matrix_tp(single_index) 

  

  
    end 
end 

 

Subscript 

To  

Index 

Total Columns 

Row Index (x) 

Column Index (y) 
Single Index 



 

 

50 

 

Destination and the target Identifier of the matrix / scalar to be worked upon. The OPcode 

allows differentiating between the types of instructions according to which the control 

sequence will be generated. The nature of the instruction can be different from other. The 

types of instruction are explained in chapter 4. The flow control of a sequence is 

controlled by special register Program Counter (PC).The size of the Program Counter 

Register depends upon the Height of the instruction memory .Suppose if the height of the 

Instruction memory is 128 Locations, then the PC register size will be              

Bits. The operating mechanism of this guide is similar to the memory manager. MD is the 

Destination Matrix, MS is the Source Matrix and MT is the Target matrix.

 

Figure 3-10 : Source, Destination and Target Description 

 

Figure 3-11 : The Operation Guide Contents view (Matrix Arithmetic) 

 

 

The program counter old the address of the current instruction to be carried out. When a 

single instruction is executed the address of the next instruction is stored on the PC 

register, thus allowing a flow of instruction in a sequence. The inputs and outputs of the 

module are described in this section. 

C = A + B 
Destination   = Source + Target 

Address=5 



 

 

51 

 

 

Figure 3-12: The Operation Guide Contents view 

 

The instruction can be broken accordingly, The Size of the MS, MT and MD depends 

upon the Height of the memory manager. The memory manager size is kept 8 then the 

size of the MS, MT and MD will be kept           bits per field. The size of the 

OPcode depends upon the number of instruction types, if there are 64 types of 

instructions the size of OPcode will be            bits. The outputs of the instruction 

memory will be in binary. The total size of the (width) instruction will be then 15 bits. 

3.5 Arithmetic and Logic Unit 

To provide a re-use mechanism of the functional components a central unit is introduced 

which contains the main adder and is capable of performing logical decisions. The 

arithmetic and logic unit has two outputs, which are single elements. Arithmetic and 

Logic operations can be carried out on these operands. 

 The ALU OPcode identifies that what type of operations are to be performed on the 

operands, It can be logical or arithmetic like Add, Subtract, Divide .The ALU performs 

Arithmetic and logical operation on Fixed Point Binary (complex) and Simple Binary 

(complex) Notations .The Processor requires to operate on Simple Binary Numbers and 

Fixed Point Binary Numbers Together, The interpretation is different but the arithmetic 

operations resemble in nature. Fast Adders can be implemented to minimize the delay 

.Similar components can be internally Implemented to maximize the throughput. This 

module is a combinatory circuit; it is not dependent on clock cycles. 

 

Instruction 

Memory 

 

CLK 

Instruction Address Instruction 



 

 

52 

 

 

 

Figure 3-13 : Layout of the ALU 

 

3.6 Control Unit 

The control Unit will dispatch the concerned control signals based on the nature of 

instruction in use .This dispatch of instruction is based on the OPcode. The Control Unit 

is also a combinatory circuit, it is also a combinatory circuit and it is not dependent on 

clock cycles. It is a like a look up table that will output the corresponding set of control 

vector,  the control signals then will be supplied to the to the corresponding fictional unit 

in the architecture. 

 

 

Figure 3-14: Control Unit layout 

 

The control Unit operates like a lookup table, the control vector corresponding to the 

given OPcode will be available on the bus. 

ALU 

Operand A 

ALU OPcode 

Result 
Operand B 

Flag 

CF{A,B} 

Control 

Unit 

OPcode Control Signal 

Vector (BUS) 



 

 

53 

 

 

Figure 3-15 : Inside view of the lookup table for Control Panel 

3.7 Counter and Counter banks 

In general computing usually loops are used to perform matrix, addition, subtraction etc. 

For example to traverse a full Matrix the following sample code will be handy. This code 

will traverse all the elements of the matrix. To provide a control mechanism for the loop 

a special modified counter is built to give a variable to increment over a clock cycle. 

 

 

 

 

The counter designed have a filled that specifies the end point on which the counter will 

reset and raise a flag that the counter has completed one loop. This flag can be used to 

trigger other modules in the circuit. The initial value of the counter starts from one, on 

every clock cycle the initial value is incremented by one. These counter uses up an adder 

and some flip-flops internally. 

OPcode 

000000 

Control Signal 
Vector (BUS) 

% simulating for Matrix Traversal 
% Author: Abdullah Aman Khan  
% 01 - January -2013 

  
Matrix=rand (10, 10); 

  
for x=1:10 
    for y=1:10 

     
Matrix(x,y) 

  
    end 
end 

 



 

 

54 

 

 

Figure 3-16 : Control Unit layout 

 

 

A computer program mechanism is presented to explain the usage of the loop of    

complexity, this mechanism is provided to support on chip loops for matrix operations. 

Whenever the end limit of the loop identifier y is reached the identifier is reset to its 

initial position and then the upper identifier x is incremented until the upper identifier 

reaches its end limit. Here if we assume that the indexes are accessible through a 

memory, we need to derive x and y identifiers that will help in computing the results the 

diagram below explains the concept of using counter for and identifier. These generated 

indexes can be used further with a subscript to single index generating mechanism to 

generate singe addresses for the liner memory. Subtraction and scalar multiplications can 

be carried out in the same way. 

 

Figure 3-17 : Mechanism for generating index values for a matrix 

 

Counter 
End Value Completion 

 Flag 

CLK 

Identifier Value 

Counter Counter 

X Y 

CLK Done Flag 

End Value End Value 



 

 

55 

 

 

 

Following figure shows the internal view of the counter used in the design, the module 

just increments the value starting from one, until the last value. On the last value the 

comparators computers the current and End value, if the current value is the last value 

then an end flag (signal) is raised to inform that one iteration is completed.  

 

Figure 3-18 : Gate Level view of the comparator 

 

 

The comparator can be implemented using XNOR Gates and then feeding the outputs of 

each XNOR gate to a common and Gate.  

% Simulation of Matrix Addition 
% Author: Abdullah Aman Khan  
% 01 - January -2013 

  
A = rand (10, 10); 

B = rand (10, 10); 

C =[]; 

  
for x=1:10 
    for y=1:10 

     
C(x,y)=A(x,y)+B(x,y); 

  
    end 
end 

  



 

 

56 

 

 

Figure 3-19 : Internal view of counter 

 

A schoolbook matrix multiplication has high complexity, and requires    operations 

.some other algorithms that have lesser complexity, but the complexity isn‟t much 

different from schoolbook multiplication algorithm. The next code shown uses up three 

loops with identifiers (z, x, y) .These nested loops are necessary for mutilation of matrix 

in school book manner. The diagram next to the code shows that counters can be used to 

generate index that can be used further .A switching network that uses up different 

multiplexers. From which we can control the flow of and instruction and manage the 

timing of the signal flow. 

 

 

% Simulation of Matrix Multiplication 
% Author: Abdullah Aman Khan  
% 01 - January -2013 

  
a=rand(3,9); 
b=rand(9,3); 

  

  
[r1 c1]=size(a); 
[r2 c2]=size(b); 

  
tmp=zeros(r1,c2); 

  
for z=1:r1 
    for x=1:c2 
           t=0; 
        for y=1:c1 
                t=(a(z,y)*b(y,x))+t; 
        end 
        tmp(i,k)=t; 
    end    
end 

  



 

 

57 

 

 

Figure 3-20 : Mechanism for generating index values for matrix multiplications 

 

3.8 Multiplexer 

Multiplexer is one of the core components of digital design, this components can save a 

lot of resources in terms of hardware. Multiplexers can transfer or select data available on 

its inputs to the output port, based on the selection which can be selected from selection 

switch. For N numbers of input lines the required size of selection switch will be 

         more details for a multiplexer design and working can be found at[25, 26].The 

number of inputs required for each multiplexer may vary according the required size. 

This component costs low in terms of hardware and has very low latency, a multiplexer 

helps in saving huge amount of buses and eventually helps in lowering the cost. 

 

Figure 3-21: A Multiplexer in-out Description. 

  

Counter Counter 

X Y 

CLK Done Flag 

End Value End Value 

Counter 

Z 

End Value 

MUX 

Input 1 

Output 

…
 

Input 2 

Input 3 

Input N 

Selection 



 

 

58 

 

Chapter 4 Instruction Set Architecture 

 

As the nature of operations required compute the filters are different in nature, the 

operations will be carried out by specifying instruction in the operation guide. By 

adopting this methodology the chances of encountering error will decrease .Besides this 

factor the flexibility will be increase, adopting this methodology will allow this processor 

to realize much other application, but the main aim is to calculate and use correlation 

filters.  

The Filter calculation can be achieved by using the Instruction Set Architecture is 

explained in the next section. The instructions are classified according to their use. The 

instruction are classified as follows  

1. Matrix with Matrix 

2. Matrix with Scalar  

3. Scalar with Scalar  

4. Control Instructions 

5. Matrix Manipulation 

Matrix Multiplication with Matrix 

This instruction Multiples a matrix M1 to a matrix M2 and saves the results to a new 

Matrix Location M0. 

M0=M1*M2 

MULm Destination Matrix, Source Matrix, Target Matrix 

MULm M0, M1, M2 

 

 

 

Figure 4-1: Instruction Vector Bits lay out for Matrix Multiplication with Matrix 

OPcode MD MS MT 

6 bit(s) 5 bit(s) 5 bit(s) 5 bit(s) 

DC 

9 bit(s) 

000000 0000 0001 0010 

6 bit(s) 5 bit(s) 5 bit(s) 5 bit(s) 

00000000 

9 bit(s) 



 

 

59 

 

 

 Matrix dot multiplication with Matrix 

This instruction dot multiples a matrix M1 to a matrix M2 and saves the results to a new 

Matrix Location M0. 

M0=M1.*M2 

MULmd Destination Matrix, Source Matrix, Target Matrix 

MULmd M0, M1, M2 

 

 

 

Figure 4-2: Bits lay out Matrix dot multiplication with Matrix 

 Matrix dot multiplication with immediate Value 

This instruction dot multiples a matrix M1 to a scalar Value and saves the results to a 

new Matrix Location M0. 

M0=M1.*2 

MULmi Destination Matrix, Source Matrix, “Immediate Value” 

MULmi M0, M1, 2 

 

 

Figure 4-3: Bits lay out for Matrix dot multiplication with immediate Value 

 

 

OPcode MD MS MT 

6 bit(s) 5 bit(s) 5 bit(s) 5 bit(s) 

DC 

9 bit(s) 

000001 0000 0001 0010 

6 bit(s) 5 bit(s) 5 bit(s) 5 bit(s) 

X 

9 bit(s) 

OPcode MD MS 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

Immediate Value 

000010 0000 0001 000000000010 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 



 

 

60 

 

 Matrix dot multiplication with stored Value 

This instruction dot multiples a matrix M1 to a value stored at the provided address and 

saves the results to a new Matrix Location M0. 

A=5; 

M0=M1.*A 

MULmv Destination Matrix, Source Matrix, Location Address in Memory 

MULmv M0, M1, 10 

 

 

 

Figure 4-4 : Bits lay out for Matrix dot multiplication with stored Value 

 Matrix dot division with Matrix 

This instruction dot divides a matrix M1 to a matrix M2 and saves the results to a new 

Matrix Location M0. 

M0=M1. /M2 

DIVm Destination Matrix, Source Matrix, Target Matrix 

DIVm M0, M1, M2 

 

 

 

Figure 4-5: Bits lay out of Matrix dot division with Matrix 

 

OPcode MD MS 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

Memory Address 

000011 0000 0001 000000001010 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

OPcode MD MS MT 

6 bit(s) 5 bit(s) 5 bit(s) 5 bit(s) 

DC 

9 bit(s) 

000100 0000 0001 0010 

6 bit(s) 5 bit(s) 5 bit(s) 5 bit(s) 

X 

9 bit(s) 



 

 

61 

 

 Matrix dot Division with stored Value 

This instruction dot divides a matrix M1 to a value stored at the provided address and 

saves the results to a new Matrix Location M0. 

A=5; 

M0=M1. /A 

DIVmv Destination Matrix, Source Matrix, Location Address in Memory 

DIVmv M0, M1, 10 

 

 

 

Figure 4-6: Bits lay out for Matrix dot Division with stored Value 

 

 

 Matrix dot Division with Immediate Value 

This instruction dot divides a matrix M1 to an immediate value provided and saves the 

results to a new Matrix Location M0. 

M0=M1. /2 

DIVmi Destination Matrix, Source Matrix, Location Address in Memory 

DIVmi M0, M1, 10 

 

 

 

Figure 4-7: Bits lay out for Matrix dot Division with Immediate Value 

OPcode MD MS 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

Memory Address 

000101 0000 0001 000000001010 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

OPcode MD MS 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

Immediate Value 

000110 0000 0001 000000000010 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 



 

 

62 

 

 

 

 

 Matrix Addition with Matrix 

This instruction adds a matrix M1 to a matrix M2 and saves the results to a new Matrix 

Location M0. 

M0=M1+M2 

ADDm Destination Matrix, Source Matrix, Target Matrix 

ADDm M0, M1, M2 

 

 

 

Figure 4-8: Bits lay out for Matrix Addition with Matrix 

 

 

 Matrix Subtraction with Matrix 

This instruction subtracts a matrix M1 to a matrix M2 and saves the results to a new 

Matrix Location M0. 

M0=M1-M2 

SUBm Destination Matrix, Source Matrix, Target Matrix 

SUBm M0, M1, M2 

 

 

OPcode MD MS MT 

6 bit(s) 5 bit(s) 5 bit(s) 5 bit(s) 

DC 

9 bit(s) 

000111 0000 0001 0010 

6 bit(s) 5 bit(s) 5 bit(s) 5 bit(s) 

X 

9 bit(s) 

OPcode MD MS MT 

6 bit(s) 5 bit(s) 5 bit(s) 5 bit(s) 

DC 

9 bit(s) 



 

 

63 

 

 

Figure 4-9 : Bits lay out Matrix Subtraction with Matrix 

 

 

 

 

 Matrix Addition with stored Value 

This instruction Adds a matrix M1 to a value stored at the provided address and saves the 

results to a new Matrix Location M0. 

A=5; 

M0=M1+A 

ADDmv Destination Matrix, Source Matrix, Location Address in Memory 

ADDmv M0, M1, 10 

 

 

 

Figure 4-10: Bits lay out Matrix Addition with stored Value 

 

 

 Matrix Subtraction with stored Value 

This instruction subtracts a matrix M1 to a value stored at the provided address and saves 

the results to a new Matrix Location M0. 

A=5; 

M0=M1-A 

001000 0000 0001 0010 

6 bit(s) 5 bit(s) 5 bit(s) 5 bit(s) 

X 

9 bit(s) 

OPcode MD MS 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

Memory Address 

001001 0000 0001 000000001010 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 



 

 

64 

 

SUBmv Destination Matrix, Source Matrix, Location Address in Memory 

SUBmv M0, M1, 10 

 

 

 

Figure 4-11 : Bits lay out of Matrix Subtraction with stored Value 

 

 

 

 Matrix dot Power with stored Value 

This instruction calculates the power of all the elements in matrix M1 to a value stored at 

the provided address and saves the results to a new Matrix Location M0. 

A=5; 

M0=M1. ^A 

POWmv Destination Matrix, Source Matrix, Location Address in Memory 

POWmv M0, M1, 10 

 

 

 

Figure 4-12 : Bits lay out Matrix dot Power with stored Value 

 

 

OPcode MD MS 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

Memory Address 

001010 0000 0001 000000001010 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

OPcode MD MS 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

Memory Address 

001110 0000 0001 000000001010 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 



 

 

65 

 

 

 Matrix Subtraction with immediate Value 

This instruction subtracts a matrix M1 to a scalar Value and saves the results to a new 

Matrix Location M0. 

M0=M1-2 

SUBmi Destination Matrix, Source Matrix, “Immediate Value” 

SUBmi M0, M1, 2 

 

 

 

 Figure 4-13: Bits lay out Matrix Subtraction with immediate Value 

 

 

 Matrix Addition with immediate Value 

This instruction adds a matrix M1 to a scalar Value and saves the results to a new Matrix 

Location M0. 

M0=M1+2 

ADDmi Destination Matrix, Source Matrix, “Immediate Value” 

ADDmi M0, M1, 2 

 

 

 

Figure 4-14: Bits lay out Matrix Addition with immediate Value 

OPcode MD MS 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

Immediate Value 

001011 0000 0001 000000000010 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

OPcode MD MS 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

Immediate Value 

001100 0000 0001 000000000010 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 



 

 

66 

 

 

 

 Matrix Raised to the Power of immediate Value 

This instruction calculates the elements of matrix M1 to the power of a scalar Value and 

saves the results to a new Matrix Location M0. 

M0=M1. ^2 

POWmi Destination Matrix, Source Matrix, “Immediate Value” 

POWmi M0, M1, 2 

 

 

 

Figure 4-15: Bits lay out Matrix Raised to the Power of immediate Value 

 

 

 

 

 

 Transpose of Matrix 

This instruction calculates the transpose of matrix M1 and saves the results to a new 

Matrix Location M0. 

M0=M1‟ 

TP Destination Matrix, Source Matrix 

TP M0, M1 

 

 

OPcode MD MS 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

Immediate Value 

001101 0000 0001 000000000010 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

OPcode MD MS 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

DC 



 

 

67 

 

 

Figure 4-16: Bits lay out Transpose of Matrix 

 

 

 

 Set Conjugate Flag 

This instruction sets a flag indication that the given matrix is conjugate. 

SCONJ Destination Matrix 

SCONJ M0 

 

 

 

Figure 4-17: Bits lay out Set Conjugate Flag 

 

 

 Re-Set Conjugate Flag 

This instruction resets a flag indication that the given matrix is not conjugate. 

RCONJ Destination Matrix 

RCONJ M0 

 

 

001111 0000 0001 000000000000 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

OPcode MD 

6 bit(s) 5 bit(s) 16 bit(s) 

DC 

010000 0000 0000000000000000 

6 bit(s) 5 bit(s)  16 bit(s) 

OPcode MD 

6 bit(s) 5 bit(s) 16 bit(s) 

DC 



 

 

68 

 

 

Figure 4-18: Bits lay out Re-Set Conjugate Flag 

 

 

 

 Fourier Transform First Pass 

This instruction multiplies the matrix to a stored table, which computes the Fourier 

Transform and stored to the destination. 

FTm Destination Matrix, Source Matrix 

FTm M0, M1 

 

 

 

Figure 4-19: Bits lay out Fourier Transform First Pass 

 

 

 Fourier Transform Second Pass 

This instruction multiplies the matrix to a stored table, which computes the Fourier 

Transform. Provided M1 contains the first pass results and is stored to M0. 

FTmm Destination Matrix, Source Matrix 

FTmm M0, M1 

 

010001 0000 0000000000000000 

6 bit(s) 5 bit(s)  16 bit(s) 

OPcode MD MS DC 

 
6 bit(s) 5 bit(s) 5 bit(s) 5 bit(s) 

DC 

9 bit(s) 

010010 0000 0001 0000 

6 bit(s) 5 bit(s) 5 bit(s) 5 bit(s) 

00000000 

9 bit(s) 

OPcode MD DC MT 

 
6 bit(s) 5 bit(s) 5 bit(s) 5 bit(s) 

DC 

9 bit(s) 



 

 

69 

 

 

Figure 4-20: Bits lay out Fourier Transform Second Pass 

 

 

 

 Scalar Multiplication  

This instruction Multiples scalar Value R1 to a matrix R2 and saves the results to a new 

memory Location R0. 

R0=R1*R2 

MUL Destination, Source, Target 

MUL R0, R1, R2 

 

 

Figure 4-21: Bits lay out Scalar Multiplication  

 

 

 Scalar Addition  

This instruction adds scalar Value R1 to a matrix R2 and saves the results to a new 

memory Location R0. 

R0=R1+R2 

ADD Destination, Source, Target  

ADD R0, R1, R2 

010011 0000 0000 0001 

 
6 bit(s) 5 bit(s) 5 bit(s) 5 bit(s) 

 

9 bit(s) 

OPcode D S T 

6 bit(s) 5 bit(s) 5 bit(s) 5 bit(s) 

DC 

9 bit(s) 

010111 0000 0001 0010 

6 bit(s) 5 bit(s) 5 bit(s) 5 bit(s) 

00000000 

9 bit(s) 



 

 

70 

 

 

 

Figure 4-22: Bits lay out Scalar Addition  

 

 

 Scalar Subtraction  

This instruction subtracts scalar Value R1 to a matrix R2 and saves the results to a new 

memory Location R0. 

R0=R1-R2 

SUB Destination, Source, Target  

SUB R0, R1, R2 

 

 

Figure 4-23: Bits lay out Scalar Subtraction  

 

 

 Scalar Division  

This instruction Divides scalar Value R1 to a R2 and saves the results to a new memory 

Location R0. 

R0=R1/R2 

DIV Destination, Source, Target  

DIV R0, R1, R2 

OPcode D S T 

6 bit(s) 5 bit(s) 5 bit(s) 5 bit(s) 

DC 

9 bit(s) 

010110 0000 0001 0010 

6 bit(s) 5 bit(s) 5 bit(s) 5 bit(s) 

00000000 

9 bit(s) 

OPcode D S T 

6 bit(s) 5 bit(s) 5 bit(s) 5 bit(s) 

DC 

9 bit(s) 

011000 0000 0001 0010 

6 bit(s) 5 bit(s) 5 bit(s) 5 bit(s) 

00000000 

9 bit(s) 



 

 

71 

 

 

 

Figure 4-24: Bits lay out Scalar Division  

 

 

 Scalar Power  

This instruction computes the exponent of scalar Value R1 to a scalar R2 and saves the 

results to a new memory Location R0. 

R0=R1^R2 

POW Destination, Source, Target  

POW R0, R1, R2 

 

 

Figure 4-25: Bits lay out Scalar Power  

 

 

 

 Scalar Addition with immediate Value 

This instruction adds the source R1 with an immediate provided value and save to 

Location R0. 

R0=R1+2 

ADDi Destination Matrix, Source Matrix, “Immediate Value” 

OPcode D S T 

6 bit(s) 5 bit(s) 5 bit(s) 5 bit(s) 

DC 

9 bit(s) 

011001 0000 0001 0010 

6 bit(s) 5 bit(s) 5 bit(s) 5 bit(s) 

00000000 

9 bit(s) 

OPcode D S T 

6 bit(s) 5 bit(s) 5 bit(s) 5 bit(s) 

DC 

9 bit(s) 

011110 0000 0001 0010 

6 bit(s) 5 bit(s) 5 bit(s) 5 bit(s) 

00000000 

9 bit(s) 



 

 

72 

 

ADDi R0, R1, 2 

 

 

 

Figure 4-26: Bits lay out Scalar Addition with immediate Value 

 

 

 

 Scalar subtraction with immediate Value 

This instruction adds the source R1 with an immediate provided value and save to 

Location R0. 

R0=R1-2 

SUBi Destination Matrix, Source Matrix, “Immediate Value” 

SUBi R0, R1, 2 

 

 

 

Figure 4-27: Bits lay out Scalar subtraction with immediate Value 

 

 

OPcode MD MS 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

Immediate Value 

011010 0000 0001 000000000010 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

OPcode MD MS 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

Immediate Value 

011011 0000 0001 000000000010 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 



 

 

73 

 

 Scalar Division with immediate Value 

This instruction add the source R1 with an immediate provided value and save to 

Location R0. 

R0=R1/2 

DIVi Destination Matrix, Source Matrix, “Immediate Value” 

DIVi R0, R1, 2 

 

 

 

Figure 4-28: Bits lay out Scalar Division with immediate Value 

 

 

 

 Scalar Power with immediate Value 

This instruction adds the source R1 with an immediate provided value and save to 

Location R0. 

R0=R1^2 

POWi Destination Matrix, Source Matrix, “Immediate Value” 

POWi R0, R1, 2 

 

 

 

Figure 4-29: Bits lay out Scalar Power with immediate Value 

OPcode MD MS 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

Immediate Value 

011100 0000 0001 000000000010 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

OPcode MD MS 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

Immediate Value 

011101 0000 0001 000000000010 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 



 

 

74 

 

 

 

 

 Jump if equal 

This instruction performs a branch to specified location if the operands R1, R2 are Equal. 

JEQ Destination Matrix, Source Matrix, “Jump Address” 

JEQ R0, R1, 2 

 

 

 

Figure 4-30: Bits lay out Jump if equal 

 

 

 Jump if not equal 

This instruction performs a branch to specified location if the operands R1, R2 are not 

equal. 

JNE Destination Matrix, Source Matrix, “Jump Address” 

JNE R0, R1, 2 

 

 

  

Figure 4-31: Bits lay out Jump if not equal 

OPcode MD MS 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

Jump Address 

011111 0000 0001 000000000010 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

OPcode MD MS 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

Jump Address 

100000 0000 0001 000000000010 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 



 

 

75 

 

 

 

 Jump if is less than or equal 

This instruction performs a branch to specified location if the operands R1 is less than or 

equal to R2. 

JLE Destination Matrix, Source Matrix, “Jump Address” 

JLE R0, R1, 2 

 

 

 

 

Figure 4-32: Bits lay out Jump if is less than or equal 

 

 

 Jump if is Greater than or equal 

This instruction performs a branch to specified location if the operands R1 is Greater than 

or equal to R2. 

JGE Destination Matrix, Source Matrix, “Jump Address” 

JGE R0, R1, 2 

 

 

 

Figure 4-33: Bits lay out Jump if is Greater than or equal 

OPcode MD MS 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

Jump Address 

100001 0000 0001 000000000010 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

OPcode MD MS 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

Jump Address 

100010 0000 0001 000000000010 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 



 

 

76 

 

 

 

 Unconditional Jump  

This instruction performs a branch to specify without any condition. 

JMP “Jump Address” 

JMP 2 

 

 

 

Figure 4-34: Bits lay out for Unconditional Jump  

 

 

 Jump if is less than  

This instruction performs a branch to specified location if the operands R1 are less than 

R2. 

JLT Destination Matrix, Source Matrix, “Jump Address” 

JLT R0, R1, 2 

 

 

 

Figure 4-35: Bits lay out for Jump if is less than  

 

 

OPcode DC DC 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

Jump Address 

100011   000000000010 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

OPcode MD MS 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

Jump Address 

100100 0000 0001 000000000010 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 



 

 

77 

 

 Jump if is Greater than  

This instruction performs a branch to specified location if the operands R1 is Greater than 

R2. 

JGT Destination Matrix, Source Matrix, “Jump Address” 

JGT R0, R1, 2 

 

 

 

Figure 4-36: Bits lay out for Jump if is Greater than  

 

 

 Copy real part of matrix 

This instruction copies the real part vales of elements of a matrix and stores to 

Destination and the complex part is assumed to be zero. 

M0=real (M1); 

CREAL Destination Matrix, Source Matrix 

CREAL M0, M1 

 

 

 

Figure 4-37: Bits lay out Copy real part of matrix 

 

OPcode MD MS 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

Jump Address 

100101 0000 0001 000000000010 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

OPcode MD MS 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

DC 

100110 0000 0001  

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 



 

 

78 

 

 

  

 Loading a value to a memory Location 

This instruction loads a value to a memory location, this value can be binary or fixed 

point depends upon the usage. 

LOD=5 

LOD R0, 5 

 

 

 

Figure 4-38: Bits lay out for loading a value to a memory Location 

 Loading negative a value to a memory Location 

This instruction loads a negative value to a memory location, this value can be binary or 

fixed point depends upon the usage. 

LODn = -5 

LODn R0, -5 

 

 

 

Figure 4-39: Bits lay out Loading negative a value to a memory Location 

OPcode MD 

6 bit(s) 5 bit(s) 16 bit(s) 

Value 

010001 0000 0000000000001001 

6 bit(s) 5 bit(s)  16 bit(s) 

OPcode MD 

6 bit(s) 5 bit(s) 16 bit(s) 

Value 

101000 0000 1111111111111010 

6 bit(s) 5 bit(s)  16 bit(s) 



 

 

79 

 

 Copy a memory location to a new location 

This instruction copies the real part vales of elements of a matrix and stores to 

Destination. 

R0=R1 

CPY Destination Matrix, Source Matrix 

CPY R0, R1 

 

 

 

Figure 4-40: Bits lay out Copy a memory location to a new location 

 Copy a Matrix location to a new Matrix location 

This instruction copies the real part vales of elements of a matrix and stores to 

Destination. 

M0=M1 

CPYm Destination Matrix, Source Matrix 

CPYm M0, M1 

 

 

 

Figure 4-41: Bits lay out Copy a Matrix location to a new Matrix location 

 Copy a Column of a matrix 

This instruction copies the real part vales of elements of a matrix and stores to 

Destination. 

OPcode MD MS 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

DC 

101001 0000 0001  

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

OPcode MD MS 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

DC 

101010 0000 0001  

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 



 

 

80 

 

R0=1; 

M0=M1 (: R0) 

CPYc Destination Matrix, Source Matrix, Target Memory Location 

CPYc M0, M1, R0 

 

 

 

Figure 4-42: Bits lay out Copy a Column of a matrix 

 Load Memory content to special register 

This instruction copies the memory content of specified location to a special register. 

LSR Source  

LSR R0 

 

 

 

Figure 4-43: Bits lay out Load Memory content to special register 

 Write from special register 

This instruction copies the content of special register to specified location in a matrix. 

WFSR M0, R0, R1  

 

 

OPcode MD MS 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

Memory Address 

101011 0000 0001  

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

OPcode DC MS 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

Memory Address 

101100  0000  

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

OPcode MD MS MT 

6 bit(s) 5 bit(s) 5 bit(s) 5 bit(s) 

DC 

9 bit(s) 



 

 

81 

 

 

Figure 4-44: Bits lay out Write from special register 

 

 

 Load row and column Address 

This instruction copies the row and column index stored in memory location R0, R1. 

LRC R0, R1  

 

 

 

Figure 4-45: Bits lay out Load row and column Address 

BITREV R0, R1 

 

 

Figure 4-46: Instruction layout for bit reversal 

 Write to special register (row and column) 

This instruction copies the content of special register to specified location in a matrix. 

WTSR M0  

 

101101 0000 0000 0001 

6 bit(s) 5 bit(s) 5 bit(s) 5 bit(s) 

00000000 

9 bit(s) 

OPcode DC MS MT 

6 bit(s) 5 bit(s) 5 bit(s) 5 bit(s) 

DC 

9 bit(s) 

101111  0000 0001 

6 bit(s) 5 bit(s) 5 bit(s) 5 bit(s) 

00000000 

9 bit(s) 

OPcode MD MS 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

DC 

111110 0000 0001  

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

OPcode MD DC DC 

6 bit(s) 5 bit(s) 5 bit(s) 5 bit(s) 

DC 

9 bit(s) 



 

 

82 

 

 

Figure 4-47: Bits lay out Write to special register (row and column) 

 

 Save from Special Register 

This instruction copies the content of special register to specified location in a matrix. 

SFSR R0  

 

 

Figure 4-48: Bits lay out Save from Special Register 

 

Initialize a new matrix 

This matrix initializes a new matrix 

IMAT M0, 5, 5 

 

 

Figure 4-49: Bits lay out Initialize a new matrix 

 

 Reshape Matrix 

Change matrix size, these instructions helps in changing the Attributes of a matrix, the 

roc and columns of a matrix can be changed according to need. 

110000 0000   

6 bit(s) 5 bit(s) 5 bit(s) 5 bit(s) 

 

9 bit(s) 

OPcode DC DC DC 

6 bit(s) 5 bit(s) 5 bit(s) 5 bit(s) 

DC 

9 bit(s) 

101110 0000   

6 bit(s) 5 bit(s) 5 bit(s) 5 bit(s) 

 

9 bit(s) 

OPcode MD TR TC 

6 bit(s) 5 bit(s) 8 bit(s) 8 bit(s) 

110001 0000 1001 1001 

 
6 bit(s) 5 bit(s) 8 bit(s) 8 bit(s) 



 

 

83 

 

 

RSHP M0, 5, 5 

 

 

Figure 4-50: Bits lay out Reshape Matrix 

Copy real part of matrix 

This instruction bit reverses the contents of the specified memory location. This operation 

can only be performed on exact integer values used for matrix index manipulation. 

CREAL M0, M2 

 

 

Figure 4-51: Bits lay out Initialize a new matrix 

 

The following table presents the details of available instruction 

 Table 4-1 list of available instructions 

Instruction Syntax Example Machine 

Cycles 

Description 

MULm MULm MD,MS,MT MULm M0, M1, 

M2 

NA x NB x 

MB 

Multiplies two matrices 

MULmd MULmd MD,MS,MT MULmd M0, M1, 

M2 

N x M Multiplies two matrices element by element. 

MULmi MULmi 

MD,MS,Value 

MULmi M0, M1, 2 N x M Matrix with Scalar  multiplication with immediate 

Value 

MULmv MULmv MD, MS, R1 MULmv M0, M1, 

10 

N x M Matrix  with Scalar  multiplication with stored 

Value 

DIVm DIVm MD, MS, MT DIVm M0, M1, M2 N x M Matrix division with Matrix element by element 

DIVmv DIVmv MD, MS, RT DIVmv M0, M1, N x M Matrix dot Division with stored Value 

OPcode MD TR TC 

6 bit(s) 5 bit(s) 8 bit(s) 8 bit(s) 

110010 0000 00001001 00001001 

 
6 bit(s) 5 bit(s) 8 bit(s) 8 bit(s) 

OPcode MD TR DC 

6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 

110001 0000 1001 DC 

 
6 bit(s) 5 bit(s) 5 bit(s) 14 bit(s) 



 

 

84 

 

R1 

DIVmi DIVmi MD, MS, 

Value 

DIVmi M0, M1, 10 N x M Matrix dot Division with Immediate Value 

ADDm ADDm MD, MS, MT ADDm M0, M1, 

M2 

N x M Matrix Addition with Matrix 

SUBm SUBm MD, MS, MT SUBm M0, M1, M2 N x M Matrix Subtraction with Matrix 

ADDmv ADDmv MD, MS, 

RT 

ADDmv M0, M1, 

10 

N x M Matrix Addition with stored Value 

SUBmv SUBmv MD, MS, RT SUBmv M0, M1, 

10 

N x M Matrix Subtraction with stored Value 

POWmv POWmv MD, MS, 

RT 

POWmv M0, M1, 

10 

N x M Matrix dot Power with stored Value 

SUBmi SUBmi MD, MS, 

Value 

SUBmi M0, M1, 2 N x M Matrix Subtraction with immediate Value 

ADDmi ADDmi MD, MS, 

Value 

ADDmi M0, M1, 2 N x M Matrix Addition with immediate Value 

POWmi POWmi MD, MS, 

Value 

POWmi M0, M1, 2 N x M Matrix Raised to the Power of immediate Value 

TP TP MD, MS TP M0, M1 N x M Transpose of Matrix 

SCONJ SCONJ MD SCONJ M0 1 Set Conjugate Flag 

RCONJ RCONJ MD RCONJ M0 1 Re-Set Conjugate Flag 

FTm FTm MD, MS FTm M0, M1 NA x NB x 

MB 

Fourier Transform First Pass 

FTmm FTmm MD, MS FTmm M0, M1 NA x NB x 

MB 

Fourier Transform Second Pass 

MUL MUL RS, RT, RD MUL R0, R1, R2 1 Scalar Multiplication 

ADD ADD RS, RT, RD ADD R0, R1, R2 1 Scalar Addition 

SUB SUB RS, RT, RD SUB R0, R1, R2 1 Scalar Subtraction 

DIV DIV RS, RT, RD DIV R0, R1, R2 1 Scalar Division 

POW POW RS, RT, RD POW R0, R1, R2 1 Scalar Power 

ADDi ADDi RS, RT,Value ADDi R0, R1, 2 1 Scalar Addition with immediate Value 

SUBi SUBi RS, RT,Value SUBi R0, R1, 2 1 Scalar subtraction with immediate Value 

DIVi DIVi RS, RT,Value DIVi R0, R1, 2 1 Scalar Division with immediate Value 

POWi POWi RS, RT,Value POWi R0, R1, 2 1 Scalar Power with immediate Value 

JEQ JEQ RS, RT, Address JEQ R0, R1, 2 1 Jump if equal 

JNE JNE RS, RT, Address JNE R0, R1, 2 1 Jump if not equal 

JLE JLE RS, RT, Address JLE R0, R1, 2 1 Jump if is less than or equal 

JGE JGE RS, RT, Address JGE R0, R1, 2 1 Jump if is Greater than or equal 

JMP JMP Address JMP 2 1 Unconditional Jump 

JLT JLT RS, RT, Address JLT R0, R1, 2 1 Jump if is less than 

JGT JGT RS, RT, Address JGT R0, R1, 2 1 Jump if is Greater than 

CREAL CREAL MD, MS CREAL M0, M1 1 Copy real part of matrix 

LOD LOD RD, Value LOD R0, 5 1 Loading a value to a memory Location 

LODn LODn RD, Value LODn R0, -5 1 Loading negative a value to a memory Location 

CPY CPY RD, RS CPY R0, R1 1 Copy a memory location to a new location 

CPYm CPYm MD, MT CPYm M0, M1 N x M Copy a Matrix location to a new Matrix location 



 

 

85 

 

CPYc CPYc MD, MS, 

Column 

CPYc M0, M1, R0 M Copy a Column of a matrix 

LSR LSR R0 LSR R0 1 Load Memory content to special register 

WFSR  WFSR M0, R0, R1 1 Write from special register 

LRC  LRC R0, R1 1 Load row and column Address 

WTSR  WTSR M0 1 Write to special register (row and column) 

SFSR  SFSR R0 1 Save from Special Register 

IMAT  IMAT M0, 5, 5 1 Initialize a new matrix 

RSHP  RSHP M0, 5, 5 1 Reshape Matrix 

BITREV  BITREV R0, R1 1 Copy real part of matrix 

 

Where MS is the source matrix, MT is the target matrix, MD is the destination matrix, RS 

is the source memory location, RT is target memory location, RD is the destination 

memory location, N is the number of rows, M is the total number of columns, NA is total 

rows of source matrix, NB is total rows of target matrix and MB is total numbers of 

column in matrix. 

  



 

 

86 

 

Chapter 5 Data paths and Design 

 

 5.1 Requirement Details  

The design phase requires intense study of the operations to be done individually. The 

following flow graph explains the flow of the design of the processor. In the case of 

EMACH filter, the design phase of this filter requires some operations, all of these 

operations are quite different from each other .Like for a set of training samples first its 

Fourier Trans formed is required, Further there are some arithmetic operations that are to 

be done on the .In the first section of this chapter some brief details of the functional units 

required by the operations are discussed. The main aim to describe them individually is to 

grab the existence of common requirements and to use them only once to reduce the cost 

of the hardware. 

 

Figure 5-1 : The sub operations required by Major Operations 

 

5.2 Fourier Transform 

The design of some correlation filters are carried out in frequency domain, so this is the 

first basic requirement to convert the image to frequency domain, the major point is that 

the image is a two dimension matrix at this point a gray scale image is considered only 

.Different methodologies for computing Fourier Transform exists, some Flexible device 

manufactures are also providing state of the art prebuilt Fourier Transform Mechanism. 

These core provided by the manufacture can also be used if the Implementation is only 

Operations 

Required  

Fourier Transform  

Matrix Operations  

Eigen Decomposition  

Scalar Handling 

 

Looping Mechanism 

  



 

 

87 

 

restricted to the platform provided by that manufacture or similar platforms. The Fourier 

Transform method that details will be discussed in next section. The Operations required 

to complete Fourier transform are shown in the following figure  

 

Figure 5-2 : Operations required to perform a Fourier transform 

 

 

5.3 Basic Matrix Operations 

Besides the above specified operations, the hardware should be able to handle matrices 

.in most of the processors the design is usually restricted to a fixed length size. The 

libraries provided by the manufacturer can be generated using a simple for, while the 

generation of the module it is a asked for what size the library should be generated, if a 

user selects say 64 points, the user will be restricted to 64k point only Although it is 

possible to compute the Fourier transform of a 32k point Fourier transform by padding 

zeros. In this case the aim is to produce flexibility on the hardware size .Matrix 

management provided with in the digital system that can provide more flexibility and the 

ease of use. 

Fourier 

Transform  

Addition 

Subtractions  

Multiplication  

Memory 
 

Complex Numbers  
 

Looping Mechanism 
  

Flexibility  



 

 

88 

 

The basic Matrix operations include Arithmetic operations of matrix to matrix and matrix 

to scalar. Some of the Basic matrix operations are as shown below 

 

Figure 5-3 : Matrix Operations 

Matrix 

Operations  

Matrix to Matrix 

Matrix to Scalar 

Matrix Transpose  

Addition 

Subtraction 

Multiplication 

Managing Mechanism 

Addition 

Subtraction 

Multiplication 

Division 

Power 



 

 

89 

 

5.4 Scalar Arithmetic 

To provide a flexible control mechanism and for other requirements some scalar 

arithmetic functions are required.in a general loop of a program, 

 

Figure 5-4 : Scalar Operations required 

The requirements mention in the above section shows some the operations required to 

fulfill a correlation Pattern Classification. 

 

5.5 Fourier Transform Design 

The second chapter describes the methodology to compute the DTFT, Matrix 

multiplication can be employed to compute the Fourier transform of a given matrix, as 

described a general matrix can be pre computed and can be further used to compute the 

DTFT by multiplying the matrix with the input vector the resultant will be the DTFT 

(Fourier Transform) of the input vector. 

An image is represented as a matrix or a 2D vector, The DFT can also be computed by 

using the Matrix multiplication Method. The Design already requires Matrix Handling 

Scalar  

Addition 

Subtractions  

Multiplication  

Division 
 

Logical 
  

A = C 

A ≠ C 
 

A ≤ C 
  

A ≥ C 

A < C 
  

A > C  



 

 

90 

 

i.e. Matrix Addition, Multiplication, Subtraction.  The purpose of employing Matrix 

multiplication for computing the DTFT is to save extra Hardware, in the next chapter a 

brief detail of pros and cons is provided. A MATLAB Simulation for Generation for the 

DTFT Transformation Matrix and its use is shown below; the code Snippet basically 

computes the transformation matrix for the size of the vector (a random Provided 

Vector).Afterwards the provided input vector is then multiplied with the input vector, the 

product of these two will be the DTFT. The matrix Multiplication method will be used to 

compute the DFT of vectors with the number of elements can be represented in the exact 

power of two     . For number of elements others zero padding will be required. A 

transformation matrix with other Number of points can also be computed and detailed 

version can be found at [27]. 

 

 

 

For a two dimensional matrix of size       a transformation matrix will still be of the 

size       (for a square Matrix).After computing the Transformation Matrix the DTFT 

of the Two dimensional Matrix (Image) can be computed as described in above section. 

Another MATLAB code snippet that shows the simulation results of a 2D Matrix 

% Simulation: DFT of vector using Matrix Multiplication 
% Author Abdullah Aman Khan  

 
Vector=rand(1,8); 

  
N=size(Vector,2);% The total Number Of point in the vector. 

  
% Generating an N X N DFT Transformation Matrix 
for x=0:N-1 
    for y=0:N-1 

      ft(x+1,y+1)=exp((-2*pi*i*x*y)/N);   

%Ft is the DFT Transformation Matrix 
    end 
end 

  
%Computing DFT with Matrix Multiplication 
DFT= Vector * ft 

 

%MATLAB DTFT Results 

DFT_MATLAB=fft(Vector) 

 

 

 



 

 

91 

 

(Image).The code snippet shows the simulation for computing a Transform Matrix and its 

usage. The Results of MATLAB prebuilt functions for computing DTFT is also 

computed along with the Transformation Matrix results for the purpose of comparison. 

 

 

 

The attached MATLAB Code snippets show the computation of the DTFT for a vector 

and two dimensional matrix (image).Here a problem arises that the matrix is only 

computed for a size of N points, If it is required to compute DFT of points Greater than 

N, The transformation Matrix has to be computed again, the DFT computation is already 

compute intensive .Computing another Transformation Matrix for this new sized vector 

will require more Computation and storage in the memory.  

There is a possibility that a general DFT Transformation matrix can be employed, to 

construct a generic Matrix, a mechanism is required to for truncation of values from a 

bigger pre-computed matrix. Suppose that the Generic Transformation Matrix is 

computed for a       .This matrix will be capable of computing the DFT of N Point 

Vector. Now a situation occurs that it is required to compute the DFT of   Points 

% Simulation: DFT of 2D Matrix using Matrix Multiplication 
% Author Abdullah Aman Khan  
 

% DTFT Matrix for Square Matrix 

  
Vector=rand(8,8);  
N=size(Vector,2);% The total Number Of point in the Matrix. 

   
% Generating an N X N DFT Transformation Matrix 
for x=0:N-1 
    for y=0:N-1 

         

     
        ft(x+1,y+1)=exp((-2*pi*i*x*y)/N); 

  % Ft is the DFT transformation Matrix 

         

         
    end 
end 
 %Computing DFT with Matrix Multiplication 

  
DFT= ft * Vector * ft 

%MATLAB DTFT Results 

DFT_MATLAB=fft2(Vector) 



 

 

92 

 

vector          a simple truncation can be done in the Generic matrix already 

computed for N points. A new matrix can be produced form a larger generic matrix, the 

Truncation can be done from the first row till     row and from first column till     

column. 

 

Figure 5-5 : Truncation of Values from Larger Generic Matrix for computation of DFT 

 

 

In the above figure the bigger Bold Square represents the generic matrix, and the dotted 

square represents the smaller truncated new transformation Matrix. The purpose of using 

this mechanism is to provide a flexible stored table DTFT calculation Matrix .As 

described in section chapter 1,    was stored in the transformation Matrix,  Here 

we can clearly see that it hold the effect of   ,  The goal is to create a general DTFT 

matrix,  that can be further truncated according to the required points. So to achieve this 

we have to remove the effect of    in the equation. Instead of storing the Value  

we can simply store the value      after Truncation the new matrix can be divided by 

the total Number of new point   and afterwards taking the exponential. This will yield a 

new Transformation Matrix. 

      (5.1) 

 

  

N x N 

M x M 



 

 

93 

 

   
    

 ⁄  (5.2) 

              
    

 ⁄    (5.3) 

           

 
  (5.4) 

             (5.5) 

After Truncation 

         

 
 

    

 
 (5.6) 

          
    

 
 (5.7) 

Taking Exponential of above equation the expression reverts back. 

   
    

  (5.8) 

 

 

 

% Simulation: DFT of vector using Matrix Multiplication 
% Author Abdullah Aman Khan  

 
%Generating a general DFT Matrix that can be cropped according to a new 
%General Matrix row and columns 

  
Gr=256; 
Gc=256; 

  
% DTFT Matrix 
for x=0:Gr-1 
    for y=0:Gc-1 

         

         
        ft(x+1,y+1)=(-2*pi*i*x*y); 

  % The table basically stores -j2pi =N ln (dftmatrix) 

         

         
    end 
end 

  
a=rand(1,4) 
[r c]=size(a); 
% truncating generic matrix 

  
mat=exp(ft(1:c,1:c)/c); 

  
% Calculating DFT 
 DFT=a*mat 
 DFT=fft(a) 

 



 

 

94 

 

 

There can be many different possibilities for calculating the Transformation Matrix,  the 

first option is to store the transformation Matrix like a stored table implementation of 

DFT,  The second method is to calculate the transformation Matrix for a specified size of 

input vector,  The third Method can Employee the truncation Method from a generic 

Method  and the fourth Method can me of computing the DFT using the  trivial addition 

method as described in the Fourier transform in the first chapter. 

The Generation of a new Transformation Matrix can save computation and also speed up 

the procedure, For example the A transformation Matrix Generated for computation of 

256 Points ,  This matrix can also be employed to calculate the  DTFT of 128 Points 

Matrix   by zero Padding,  The DTFT was to be calculated 0f 128 point But after zero 

Padding the Vector will be resized to 256 Points thus the calculations required  for the 

128 Point vector will be exactly equal to the calculations required for a 256 Point Vector. 

 

 

5.6 Representation of a complex Number 

The correlation filters are usually designed in frequency domain and the calculations are 

mostly in the frequency domain too. Fourier Transform requires a complex number to 

express the frequency components. Thus it is necessary to express every number as a 

complex number r, Representing every number as a complex number will require very 

large amount of memory, for every N bit Number an M bit Imaginary part is included 

with the real Number . The Implementation is kept flexible in the descriptive language, 

the size of the Binary Fixed point can be changed at compile time i.e. the Number of bits 

of the Fractional Part and the Number of bits of the Whole Part of the number.   

 

 

Figure 5-6 : Representation of a complex Number (Memory Location View) 

 

Real Imaginary 

15-Bits 15-Bits 

30-Bits 



 

 

95 

 

 

Each Location in the memory will have two parts, the real part and the imaginary part. 

The ALU will deal with the Real and Imaginary Parts separately as the arithmetic 

operations are different for Complex Numbers as compared to Real Numbers. The real 

and imaginary parts are them self-Fixed point notations. 

The following Diagram explains the representation of the Memory that actually stores K 

number of bits in the memory,  The memory is unaware of  what type of data is stored in 

the memory,  the real and imaginary part of the memory are fixed point values of  M bits. 

These M bits are considers as scalar Binary Values for scalar operations and Fixed Point 

where there is a need to represent fractional values. The OPcode differentiates whether to 

handle the number as complex, real, fixed point or as binary Number. 

 

 

Figure 5-7 : Representation of a complex Number (Memory Location View) 

 

 

5.7 Data Paths for Individual instruction Types 

A detailed description of the data path for the ISA is presented in this section,  

 

5.8 The Program Counter 

For every processor which has an instruction memory requires a mechanism to fetch the 

next instruction from the Instruction memory. Usually a special Register known as 

Real Imaginary 

Real Imaginary 

Real Imaginary 

Real Imaginary 

Real Imaginary 

Real Imaginary 

30-Bits 

DATA Address 

0 

1 

N 

…
 

2 



 

 

96 

 

Program Counter [28] is employed to hold the address of the next instruction. In a normal 

program flow the starting address „0‟ is loaded on the program counter register  and on 

every clock cycle available to the register the instruction is incremented by one .this 

schemes employs an adder to fulfill this increment. The current address is incremented by 

the adder and is available to the in putt of the program counter register which will be 

written on the next available clock cycle. In some cases Branching might be required, the 

branch instruction directly holds the branch address, which is available on the 

Multiplexer available, on logical operations for branching, and the ALU raises a flag 

which actually works as the selection line for the multiplexer placed it the instruction 

fetching mechanism. When the ALU Flag is set to high, the Multiplexer will select the 

forced input (branch Address) to the Micro Instruction memory, and the next address 

relative to the branch address will be written on the Program Counter Register. 

 

 

 

Figure 5-8 : The micro instruction Fetch Mechanism along the instruction Memory 

 

 

The dotted area shows the components and working of the next instruction fetching 

scheme, for simple processors this scheme is very commonly used, in the next sections 

the Instruction Fetching mechanism will be represented by dotted line which indicates the 

same organization. 

 

Micro 

Instructions 

Memory 

REG 

  

+1 
  

Forced Address 

Clock 

Instruction Fetch 

Mechanism 

 

MUX 

 



 

 

97 

 

5.9 On chip Memory Manager 

The proposed method comprises of an on chip memory manager the major benefit using 

this unit is that it will provide a very large amount of flexibility as explained in the 

introduction section the biggest challenge in implementing High level programming 

techniques to the hardware. Designing fixed size hardware restricts the flexibility to a 

very large extent. Functionality of much bigger instruction can be implemented using 

small scalar instructions, But Complex functions like Matrix handling (size, Addition, 

Subtraction, and Multiplication etc.) are provided on chip. To provide this functionality 

on chip a scheme shown in next figure is employed. 

 

Figure 5-9 : Data path of the Memory Manager 

 

 

The instruction Fetching mechanism will fetch the next instruction, The instruction holds 

basically the address of the matrix, suppose we can store 10, 15 matrix on our Memory 

then the memory manager will hold the information for the size and base address of the 

specified matrix. This information about the total rows and columns of a matrix can also 

be manipulated afterwards to save matrix locations. The information of the required 

corresponding Matrices is then transfer to the next section, which will compute Sub index 

to a single index form. 

Instruction Fetch 

Mechanism 

Micro 

Instructions 

Memory 

Memory 

Manager 

MD MS MT 

MD [Tr, Tc, BA] 

MS [Tr, Tc, BA] 

MT [Tr, Tc, BA] 

Single Index Generation Module 

MD  MT  MS  

Control 



 

 

98 

 

 

5.10 Sub-Index to single index Generation 

As described in the earlier that the counters can generate (X, Y, Z) indices used in a loop 

of a high level language. The counter will be provided with an end value, which will 

determine whether where to stop. The counter is initialized with a value one which is the 

default value of the program. This is done to match the index assignment like MATLAB, 

the matrix sub-indices start from 1 instead of 0 unlike other programming language. 

The control unit sends a control signals to the multiplexers, which helps in selecting the 

right end address for the counter. The major purpose of using these multiplexers are 

because the  nature of operation are different,  Addition and Subtraction may have 

different Index Generation as compared to matrix multiplication,  thus multiplexer are 

used here to provide multi functionality. For operations like matrix Addition, Transpose 

and Subtraction only two counters can play the trick, but to provide on chip matrix 

multiplication a third counter has to be employed for the third index generation as 

explained in the next section. The counters are provided with the end address, on every 

clock cycle the counter starts moving towards its end point, each time the counter is 

incremented by one, as the identifier index of a loop is incremented on every successful 

completion. Another set of multiplexers are provided with the outputs of the counters, 

these multiplexers are then used to create a valid Sub Index Address if the matrix location 

according to the operation in progress.  

 

 



 

 

99 

 

 

Figure 5-10 : Index Generation Data path 

 

 

The single index basically converts the Sub index to a single index as explained earlier in 

the Sub to Index section in the previous chapters. This module will convert the subscript 

to a single index, then for the specific matrix the single index is added to the base address 

of the matrix, the resultant will be the exact address of the element in the main memory. 

The major benefit of providing an on chip index conversion will provide flexibility and 

the ease of use to the programmer,  although this mechanism will cost more in terms of 

hardware .But will increase the functionally to a very large extent. 

 

 

5.11 Counter and Program Counter clock Selection: 

Providing the on chip looping scheme is quite challenging, each counter has to be 

triggered on the right time. The timing issues can be resolved by using an intelligent 

control methodology, on each instruction depending on the type of instruction the control 

panel will decide that which signal should be the clock of the counter, which will trigger 

the next value an intelligent switching network is embedded which determine the 



 

 

100 

 

triggering pulse to a specific counter. Suppose in case of Matrix Addition the Sub indexes 

are the same for the operands and the destination and can be done in two loops using a 

high level programming language, the end signal of the Y index counter can trigger the 

next counter to go to the next state. 

 

Figure 5-11 : Clock feeding to Counters 

5.12 The Matrix Addition/Subtraction data path 

Sub script index to the single index conversions makes it easier and flexible to work with 

variable sized matrices. As shown in the data path diagram below, a normal flow of 

instruction will continue. The Instruction will be fetched in a normal manner; the OPcode 

of the current instruction will determine that is a matrix operation like addition or 

subtraction etc. The instruction will also hold the address of source, target and destination 

addresses of the matrices. These addresses are provided to the memory manager which 

will yield out the required information of matrix to the single index generation module. 

This module will then derive exact address of the elements of the source, target and 

Destination matrices. And the data of the operands will be provided to the Arithmetic and 

logic unit (ALU) which will further work on the provided data either to add, subtract the 

data etc. 



 

 

101 

 

 

Figure 5-12 : Data Path for Matrix Addition/ Subtraction 

Matrix addition and subtraction is quite straight forward, only two indexes can represent 

the Source, target and destination. The following figure shows that only two counters can 

be employed to generate matrix indices. Usually Matrix addition and subtraction can be 

expressed as                                    . It is very clear that only two 

identifiers can be used to traverse the whole matrices and luckily the increment in the 

same order, whereas index generation for Matrix multiplication is quite complex as 

compared to matrix Addition and Subtraction. 

 

 

Figure 5-13 : Index Generation for Matrix Addition / Subtraction 

Instruction Fetch 

Mechanism 

Micro 

Instructions 

Memory 

Memory 

Manager 

MD MS MT 

MD [Tr, Tc, BA] 

MS [Tr, Tc, BA] 

MT [Tr, Tc, BA] 

Single Index Generation Module 

MD  MT  MS  

Control 

Main Memory 

Memory 

ALU 



 

 

102 

 

 

 

5.13 The Matrix Multiplication 

Matrix Multiplication is not straight forward as Matrix addition and subtraction. A 

regular schoolbook Multiplication algorithm requires at least three loops. In other works 

it requires three identifiers i.e. X, Y, K.The Matrix Multiplication for a single resulting 

element can be expressed as  

       ∑        
 
           (5.9) 

 these three identifiers requires three counters to implement the full matrix multiplication, 

that‟s why the single index generation module is designed with three counters,  each 

counters contains a register with an Adder . 

 

Figure 5-14 : Index Generation for Matrix Multiplication 

 

 

The control unit will dispatch the control signal according to the iterations required for 

multiplying a matrix multiplication. The first counter will be fed with a system clock; the 

second counters clock in put will be triggered by the End flag of the first counter and the 

third counter will be fed by the end flag of the second counter .In this way the sub index 

required for the matrix multiplications will be generated and then further element by 

Instruction Fetch 

Mechanism 

Micro 

Instructions 

Memory 

Memory 

Manager 

MD MS MT 

MD [Tr, Tc, BA] 

MS [Tr, Tc, BA] 

MT [Tr, Tc, BA] 

Single Index Generation Module 

MD  MT  MS  

Control 

Main Memory 

Memory 

+ 

ALU 

Feedback 

REG 



 

 

103 

 

element the index will be accessed from the main memory, thus capable of providing a 

full matrix multiplication. The single index generator will generate the exact address of 

the contents. To sum up the product of two elements another adder is employed to save 

machine cycles,  this adder along with an adder keeps on adding the result of each 

multiplications like             where X is the value of the register and A and B are 

the elements of the source and target matrix respectively. This adder uses a feedback 

from the registers and keeps on updating results as required. 

 

5.14 The Matrix Transpose 

Transpose of a matrix is simply computed by reversing the Sub-indices i.e. W      

        the methodology used is quite simple. For this purpose a pair of counters can be 

used to generate the indices. The diagram below shows that how a single pair of counter 

can be used to generate indices.   

 

Figure 5-15 : Index Generation for Transpose of a Matrix 

 

5.15 The Matrix Operations with a Scalar Value place in memory 

In certain situation it is required to perform operations with a scalar value, this value is 

stored in the main memory. To get the data available on the location an address is 

required to access the value from the main memory. This address can be provided in the 

instruction .To multiply the matrix M0 with the value stored on the first location of the 

memory say (R0) with address 0.The location address can be specified in the instruction 



 

 

104 

 

which is stored in the instruction memory, The following data path can perform Matrix to 

scalar addition, Matrix to Scalar Subtraction, Matrix to scalar Multiplication, Matrix to 

scalar Division, Matrix to scalar exponent .All these operation composes  the following 

data path,  the only difference occurs at the ALU OPcode,  the OPcode will let the ALU 

to know that what sort of arithmetic operation has to be performed i.e. Addition, 

subtraction, Multiplication,  Division etc. 

Again based on the OPcode the control panel will determine the control signals and the 

OPcode for the ALU operation. The single index generation will work as before,  the 

output of counter A,  B will be useful,   The counter A clock input will be feed with the 

system clock,  and the clock input of the second counter will be fed with End signal of 

the first counter  (A). In this way the index can be generated.             

            Where Z is single value (scalar) stored at some memory location. For 

example intensities of an image have to be doubled, and then the 2D matrix (Image) can 

be multiplied with a scalar factor i.e. 2.Although this not the exact method for contrast 

stretching, but multiplying the image with 2 will stretch the intensity level. 

 

Figure 5-16 : Matrix with Scalar Operations 

Instruction Fetch 

Mechanism 

Micro 

Instructions 

Memory 

Memory 

Manager 

MD MS MT 

MD [Tr, Tc, BA] 

MS [Tr, Tc, BA] 

MT [Tr, Tc, BA] 

Single Index Generation Module 

MD  MT  MS  

Control 

Main Memory 

Memory 

ALU 



 

 

105 

 

 

5.16 Matrix Operations with an Immediate Value 

The data path is almost the same as of a stored Value operation with a matrix, the only 

difference is at the immediate value .which is defined in the instruction. The Target will 

be treated as the destination address. The index generation will be the same as for other 

matrix operations. 

 

Figure 5-17 : Matrix with Scalar Operations 

 

5.17 Scalar Operations (In Memory) 

Besides Matrix operations, it is compulsory to provide scalar (single Value) operations. 

The scalar value handling does not require single index conversion. The direct memory 

address of the operand can be specified in the instruction. The first 32 locations of the 

memory are reserved for scalar operation, so that they can act as register but are actually 

part of the same common memory. A sign adjustment is required to access the memory 

location. One big challenge is to integrate the matrix and scalar computation on the same 

hardware by re utilizing the components. 

The instruction fetch mechanism will fetch the instruction, now this instruction will 

contain the address of the memory location on which operations are to be performed, 

these operation can be logical or arithmetic. The design provides logical operations only 

Instruction Fetch 

Mechanism 

Memory 

Manager 

MD MS 

MD [ Tr, Tc, BA ] 

MS [ Tr, Tc, BA ] 

MT [ Tr, Tc, BA ] 

Single Index Generation Module 

MD  MT  MS  

Control 

Main Memory 

Memory 

ALU 
Micro 

Instructions 

Memory 



 

 

106 

 

to scalar values. The main purpose is to provide Branching operations based on these 

logical decisions and to find maximum and minimum values in the matrices. 

 

Figure 5-18 : Matrix with Scalar Operations 

 

5.18 Scalar Operations Immediate 

Scalar with immediate value operations works almost same as the scalar operations, only 

the target address is extracted from the instruction.  

Instruction Fetch 

Mechanism 

Micro 

Instructions 

Memory 

RD RS RT 

Control 

Main Memory 

Memory 

ALU 



 

 

107 

 

 

Figure 5-19 : Matrix with Scalar Operations 

 

5.19 Jumps and Branching Instructions 

The branching instruction transfers control to the specified line number of the instruction 

memory. The Jump address is stored in the instruction along with two operands address 

stored. The ALU will set the flag to high if the condition is true (For conditional 

Jump).For unconditional Jump the ALU will set the flag. 

 

Figure 5-20 : Branching and looping 

 

Instruction Fetch 

Mechanism 

Immidiate Value RS RT 

Control 

Main Memory 

Memory 

ALU 

Micro 

Instructions 

Memory 

Instruction Fetch 

Mechanism 

Control 

ALU FLAG 

Branch 

Address 

(Forced Address) 
  

Execution Micro 

Instructions 

Memory 



 

 

108 

 

5.20 Variable Clock Cycle Implementation along with single cycle 

The processor implements complex and simple instructions to gather, the instructions for 

scalar values requires a single cycle for one instruction, whereas the handling for matrices 

requires multi cycle for completion on one instruction. 

The processor is performing operations like Instruction Fetch, Instruction Decode, 

Instruction Execute and Write Back in the same common clock cycle. At the first step the 

instruction Fetch Mechanism fetches the instruction from the instruction memory. After 

wards it is time to decode the instruction, that what type of instruction it is and how many 

operands it has to tackle with, this stage also identifies the operands which can be scalars 

or matrix in this case. Operations like Addition Subtraction multiplication is done in the 

execution stage. After the execution the result is written back to the memory. All of these 

stages are covered in a single cycle for a scalar operation. The next instruction is only 

fetch when the current instruction has completed. 

The determination of length of one clock cycle can be determined by the following 

expression, where CCT is the Clock Cycle time and D is expressing some other latency 

like, data Arrival delay, clock skews adjustment etc. 

      ∑                             (5.10) 

 

5.21 Main Architecture Design 

After merging all the data paths together, the following design can perform all the above 

explained functionality in one single design. 

 



 

 

109 

 

 

Figure 5-21 All Data Paths Integrated (main Architecture)  



 

 

110 

 

Chapter 6 Simulation Results 

 

 

Calculating the exact value is a quite curtail task in digital design, the values if not 

represented in exact decimal places, it can arises a huge possibility that the reverse 

transformation can be corrupted.  The design was simulated and tested using VHDL 

(Verilog Hardware Descriptive Language). 

To see all the aspects of the increasing and decreasing a main a main configuration files 

holds the size of all the buses and Memory module to everything, By changing simple 

Values in the configuration file, the bit size of the modules can be changed so that it can 

produce a variety of regression texting for different number of Numbers (different size of 

bits and Fixed Point).A snapshot of the configuration file is presented below. 

 

 

Figure 6-1 : The configuration file snippet 

 



 

 

111 

 

Computing DFT 

The design is capable of computing Fourier Transforms of variable sized of points; 

initially a matrix is stored into the memory in a linear format, The matrix A contain the 

elements as shown. All the values are in real numbers and have no imaginary part with 

them. A test case is taken of       matrix, as the design is flexible and can carter variable 

sized of matrices. 

  [
   
   
   

]  

The Fourier transform of this matrix can be calculated using the prescribed instruction, 

the simulation results in the form of wave are also provided in the wave diagrams below. 

  [
                                                     

                                                                   
                                                                      

] 

 

Table 6-1 DFT Results comparison with MATLAB 

Matrix SUB Index Processor Results MATLAB Results 

(1,1) 45 +          0i 45 +          0i 

(1,2) 4.5 -     2.5979i 4.5 -     2.5981i 

(1,3) 4.5 +     2.5979i 4.5 +     2.5981i 

(2,1) -13.5+     7.7937i -13.5 +     7.7942i 

(2,2) 0 + 0i 1.7764e-15 + 1.1102e-15i 

(2,3) 0 + 0i 8.8818e-16 + 2.8866e-15i 

(3,1) -13.5 -     7.7937i -13.5 -     7.7942i 

(3,2) 0 + 0i 8.8818e-16 + 2.2204e-16i 

(3,3) 0 + 0i -2.2204e-15 + 1.1102e-15i 

 

 

Following is the code snippet of the calculation of the Fourier transform in the processor, 

As described earlier for matrix operations a single instruction is completed in multiple 

clock cycles, the arrow numbered  (3) shows the normal flow of clock,  which can be 

considered as the main system clock,  the arrow identifier (2) shows the write signal 



 

 

112 

 

which is a single bit,  when the sum of the multiplication of one row and the required 

column is ready the write Enable flag of the memory is raised,  This enabled the memory 

to be written on the specified address. The identifier shows the results of a 2D DFT .The 

results of DFT are calculated in a row oriented manner by the processor. The Identifier 

(1) shows the first four results of the Fourier Transform calculated by the processor. 

Some difference is that the general computing environment works on floating point 

which can provide high precision as compared to fixed point. Difference is due to use of 

two different representation scheme,  MATLAB is using floating point technique and the 

implemented processor is using fixed point,  Fixed point cannot provide the exact amount 

of precision until the number of bits for the fractional part is increased. 

Below is provide the snapshot of the wave form for the simulations, Only the inputs on 

the memory are shown, For testing purpose the real and the imaginary parts of the value 

are shown separately for the comparison, A non-synthesizable function is used to convert 

the fixed point binary value to a Real number also eases to constantly monitor the values 

at the input of the memory. In the next diagrams the results provided by the execution 

unit to the input of the memory are shown. 

 



 

 

113 

 

Figure 6-2 : Wave/Timing Diagram while calculating the DTFT 

 

Matrix Multiplication 

Matrix Multiplication is also a challenging part, rather bottle neck in the whole 

architecture and that the instruction with the most complexity. The matrix Multiplication 

consumes        cycles. For the testing purpose two matrices A and B are stored in the 

main memory. They are random matrices which are fed to the processor for 

multiplication via an instruction. 

  [
   
   
   

]    [
   
   
   

]  

The matrix Multiplication results obtained with the help of MATLAB are given as 

follows 

    [
      
      
      

] 

The wave diagram showing the timing of the outputs is as explained and given below, the 

identifier pointer (2) Indicates the Write signals to the main memory, the main memory is 

only written on a write signal. The other marker (1) Indicate the results produced by the 

ALU, which are then forwarded to the input of the main memory to be written to the 

specific locations. The single index generation mechanism will automatically generate 

the exact memory address of the source, target and destination operands. The Matrix A 

and B had Real numbers with no imaginary part, so the resultant will also be real. Images 

in digital forms are expressed by matrices. Each element represents pixel intensity .This 

representation of pixel intensity is actually in the forms of real numbers. Multiplying 

matrices which have elements as integer the resultant will be in integer. The multiply 

instruction will also consume multiple clock cycles. The matrix multiplication in this case 

will take    cycles to complete a multiplication of matrices with size (N x N).In the case 

of (3 x 3) matrix it will consume 27 clock cycles to complete this instruction. 

 

 

 



 

 

114 

 

Table 6-2 Matrix Multiplication Results comparison with MATLAB 

 

Matrix SUB Index Processor Results MATLAB Results 

(1,1) 16 16 

(1,2) 15 15 

(1,3) 14 14 

(2,1) 52 52 

(2,2) 48 48 

(2,3) 44 44 

(3,1) 88 88 

(3,2) 81 81 

(3,3) 74 74 

 

 

 

 

Figure 6-3 : Wave Diagram representing Matrix Multiplication 

 

Matrix Arithmetic 

Matrix Addition and subtraction operations are completed in    Cycles .The arithmetic 

result of each corresponding element is produced in a single cycle. Again the addition of 

two matrices A and B is performed on this processor.  

 



 

 

115 

 

  [
   
   
   

]    [
   
   
   

]  

The actual results for addition are as follows 

    [
   
   
      

] 

 

The Addresses will be generated automatically. For all other matrix arithmetic operations 

other than Multiplication the results are output in column oriented manner. The following 

table shows the actual results of the matrix addition, and next is the diagram of waveform 

showing the view at the input of the memory. The inputs are the resultants in the column 

oriented form. The marker (2) indicates the write signal to the memory, the indication 

marker (1) is pointing out the results of addition and other arithmetic operations are 

carried out in the same way .The only difference occurs in the OPcode that is sent to the 

ALU for example the data paths and selections would be the same, the signal (OPcode) 

will determine whether to subtract, add etc. 

 

Table 6-3 Matrix Multiplication Addition Results comparison with MATLAB 

 

Matrix SUB Index Processor Results MATLAB Results 

(1,1) 4 4 

(1,2) 3 3 

(1,3) 2 2 

(2,1) 8 8 

(2,2) 7 7 

(2,3) 6 6 

(3,1) 18 18 

(3,2) 16 16 

(3,3) 14 14 

 

 



 

 

116 

 

 

Figure 6-4 : Wave Diagram representing Matrix Addition 

 

Matrix Transpose 

The design as mentioned is capable of performing the transpose operation of a matrix. 

The transpose instruction was run on the following matrix this is the same random 

matrix. 

  [
   
   
   

] 

 

The matrix a was initially stored on the linear memory with the base address 68 i.e. the 

first element of the matrix can be found on the address 68 in the liner memory,  the 

second element on the      location vice versa. The transpose of the matrix is mapped on 

a new location,  The following two figures illustrates the orientation of the two locations  

the locations on the right side indicates the source matrix addresses and the right  i.e. 95-

103 represents the destination addresses. 

 

 

 

 



 

 

117 

 

 

 

 

Figure 6-5 : Actual memory Addresses in liner memory 

 

 

 

 

Figure 6-6 : Main Memory linear addresses in matrix form 

 

 

The transpose of a matrix can be calculated by reversing the row index and column index 

.this way the transpose can be found, the next diagram indicates the data of the matrix a 

mapped on the new address. The data on the       location which is 3 will be mapped on 

the memory address location 95, similarly the data on location 69 (i.e. 2) will be mapped 

to the       location vice versa. 

 

Figure 6-7 : Mapping of Matrix values to new locations 

 

The results of the matrix transpose carried out on the processor are shown below in the 

wave diagram captured from the results. The marker indicator (2) represents the Memory 

write signal, in the case of transpose, the memory is written on every clock cycle as one 



 

 

118 

 

result has to be stored to new location. The marker indicator (4) indicates the read address 

which is in column orientation .Also the indicator (3) represents the write address .The 

data which is written on the memory are tagged by marker (1). This clearly indicate that 

the values are read form the specified address and written to a new location accordingly.  

 

 

Figure 6-8 : Mapping of Matrix Transpose 

 

Branching  

The processor also provides branching facility, the results of an unconditional jump is 

shown in the wave diagram below. On the second location of the instruction memory and 

unconditional branch instruction is used .The second instruction (i.e. on location (1) of 

instruction memory) jumps to the      instruction, the Identifier pcin marked by marker 

(2) clearly indicates that the flow of instruction branched from second instruction to      

instruction and started execution in the normal manner again. 



 

 

119 

 

 

Figure 6-9 : Simulation results for branch 

 

Scalar Arithmetic 

Scalar at thematic is one fundamental part of the processor, the results of the following 

instruction written in text format represents the binaries of the instruction. The instruction 

LOD basically writes a specified value on the specified location .The first instruction load 

a fixed point value 2 on the 0 address of the memory, similarly the fixed point value 2 is 

also written on the address 1 of the memory. 

The third instruction adds the contents of the location 0, 1 of the memory and store to the 

third location. The marker (1) indicates the result which is 4.the 4
th

 instruction Subtracts 

the data on the specified two locations, the result is marked by (3) in the wave timing 

diagram below. Fifth instruction multiplies the data available on the two memory 

locations and stores on the memory location number 3 of the memory. 

1. LOD           & R0               & RF2        

2. LOD           & R1               & RF2    

3. ADD           & R3               & R0            & R1;  

4. SUBB          & R3               & R0            & R1; 

5. MUL           & R3               & R0            & R1; 

 

 



 

 

120 

 

 

Figure 6-10 : Wave diagrams for results 

 

 

Instruction Memory Contents View 

 

 

 

Figure 6-11 : View of the instruction memory in HEX format 

EMACH Filter Calculation results  

A sample program was written for calculation of EMACH filter coefficients with three 

Training sample (images) and the results obtained by MATLAB and the simulation are 

presented below. 

Table 6-4 Filter Results comparison with MATLAB 



 

 

121 

 

SUB Index Processor Results MATLAB Results 

(1,1) -0.000244141+0i -4.9179e-05 + 0i 

(1,2) -0.000244141-0.000488281i 0.00024707 - 0.00040732i 

(1,3) 0.000244141+0.000488281i 0.00024707 + 0.00040732i 

 

 

 

 Figure 6-12 : Filter generation results 

 

 

Figure 6-13 : Synthesis summary 

 



 

 

122 

 

 

Figure 6-14: RTL Diagram 

Device utilization summary: 

--------------------------- 

Selected Device : 6vlx75tff484-3  

Slice Logic Utilization:  

Number of Slice Registers: 7918 out of 93120 8%  

Number of Slice LUTs: 21582 out of 46560 46%  

Number used as Logic: 21578 out of 46560 46%  

Number used as Memory: 4 out of 16720 0%  

Number used as RAM: 4 

 

Slice Logic Distribution:  

Number of LUT Flip Flop pairs used: 22024 

Number with an unused Flip Flop: 14106 out of 22024 64%  

Number with an unused LUT: 442 out of 22024 2%  

Number of fully used LUT-FF pairs: 7476 out of 22024 33%  

Number of unique control sets: 109  



 

 

123 

 

Chapter 7 Future Work and Conclusion 

 

Over the last decades the use of the microprocessors has increased tremendously. The 

current microprocessor market is focusing more on embedded microprocessors as 

compared to common desktop Computers as they are power efficient,  smaller in size and 

weight (in many cases). Various products in the market sector are dependent on these 

embedded processors. Many Features of a modern device can be controlled with one or 

more embedded processor, providing reliability, accessibility and efficiency to the user. 

There is a considerable scope for research in microprocessors as they provide greater 

functionality with optimal speeds at lower costs. 

The mobile device sector has a great trend towards embedded systems, these devices 

provide all at one place like video/audio play back and recording, Video games, Internet, 

Communication Facilities Taking Photos and so much more. To perform this device must 

have a processing element that can perform everything at real time, keeping the cost in 

view. Many of the techniques used in general processor (i.e. Desktop Computers) are not 

suitable for dedicated processors due to higher power and space requirements to so 

alternate techniques are required. 

The cost of the hardware and performance are directly proportional to each other, as the 

performance increase the cost of the hardware will also increase and when the hardware 

has to decrease the performance will decrease. The main goal is to increase hardware to 

some extent to provide flexibility and optimal throughput. CPI (clock per instruction) has 

been a scale to compare different machines/designs. This design belongs to the category 

of dedicated processor and is capable of performing arithmetic operations on Matrices, 

scalars and logical instructions with the assistance of jumps and branches (Loops), these 

instructions will allow the processor to many task related to image processing and pattern 

recognition any piece of can be run able directly or indirectly (may require some 

logical/syntax changes).The design and implementation of Matrix processor is complex 

and time consuming job. The engineering design was an iterative process of specification, 

Analysis, Implementation and synthesis. 



 

 

124 

 

The processor can be used in dedicated and standalone devices which will provide more 

flexibility off use. In this thesis a digital design of a correlation pattern recognition 

processor is presented in brief detail. This processor is capable of computing the filter 

using the training and test image. After the computations of filter for a specific class of 

training image, the digital design is also capable of correlating the test image to the filter. 

The correlation filtering is usually a carried out in frequency domain, it is basically an 

optical technique which is digitized. This conversing can also be carried out on other 

general computing machines. But the aim was to provide a faster and standalone machine 

capable of carrying out the application of correlation filters. The micro code structure can 

provide custom flexibility, i.e. like other general processor its usage can be modified 

according to the need. Suppose that the specific tasks or scenario don‟t fit good using a 

specific filter, another filter derivation algorithm can be brought on the processor, the 

processor is specifically designed to handle matrices of different size with providing the 

power of representing fractional numbers (fixed Points). 

A general computing environment provides reduced instruction and sometimes a mixture 

of complex instructions .Using these instructions and the branching capability of a 

processor, Matrices can also be maintained on the software side, this methodology of 

providing the can save the cost in terms of hardware but will defiantly cost more in terms 

of consumption of clock cycles. The presented digital design saves comparison cycles by 

providing on chip memory management for matrices, besides saving cycles this will also 

provide a great deal of flexibility and ease of use to the programmer with higher 

computation speeds up to real time application. 

 

Also the design of the processor is a base design, and can be used for educational purpose 

for understanding and practicing the core digital components. The processer can be 

custom re programed for changing the size the images, an AutoDetect mechanism can 

also be embedded for new size of matrices .This design basically provides the unitary 

building blocks for a universal use of unlimited applications. Besides Image process and 

machine learning the design can also be configured for other uses to, and data that can be 

represented in Matrices forms and requires processing in the form of matrices this design 



 

 

125 

 

can provide the best functionality and flexibility with very high speed. Except for the 

memory rest of the design has very low cost but very high functionality. 

 

Future Work  

The currently presented design is capable of performing matrices arithmetic operations 

along with scalar handling and branching mechanism. The processor is currently running 

in a single cycle, sum of all the delay of components along with some other delays will 

determine the clock cycle time, A pipelined version can be introduced to achieve implicit 

parallel ism and higher speed of processing. The first goal was to provide such a 

processor capable of performing matrix operations. The next step is to optimize the 

processor over the time. 

 

Pipeline 

The proposed Design has provided the basic architecture that is capable of performing 

Matrix and scalar operations along with branching. A Pipelined version is currently under 

design consideration that will definitely speed up the throughput of the system. 

 

Embedding FFT  

The current design is handling Fourier transform in along with the multiplication data 

path ,  a design is proposed to which will be capable of computing FFT using almost the 

same components available in the design but will be very beneficial as the complexity of 

the FFT is lesser than DFT computations. 

The switching mechanism can be simply modified to compute the FFT of the Matrices 

using the existing hardware. 

 

System I/O design  

The system was actually tested without inputs and outputs, by adding simple Inputs and 

Outputs the system can be either interfaced with a general computer for viewing results 

or either configuring the system. 



 

 

126 

 

References 

1. B. V. K. Vijaya Kumar, A.M., Richard D. Juday "Correlation Pattern 

Recognition" Cambridge University Press ISBN-13 948-0-511-13320-6. 

2. Duda, R.O.H., P.E.; Stork, D.G., Pattern classification, 2nd edn. and N.Y. John 

Wiley & Sons. 

3. James, A.P.D., S., Inter-image outliers and their application, to image 

classification. Pattern Recogn. 43(12)  (2010). 

4. Gardezi, A.A., A.; Birch, P.; Young, R.; Chatwin, C., A space variant maximum 

average correlation height (MACH) filter for object recognition in real time 

thermal images for security applications. SPIE 7838, 78380N (2010). 

5. Mahalanobis, A.K., B.V.K.; Sims, S.R.F.; Epperson, J.F., Unconstrained 

correlation filters. Appl. Opt. 33(17), and (1994). 

6. Qureshi, W.S.A., A.B.N., Object tracking using MACH filter, a.o.f.c.s.a.v.l. 

conditions., and W.p. (2009). 

7. Mohamed, A.K., V.B.V.K.; Abhijit, M., Improved clutter rejection in automatic 

target recognition (ATR) synthetic aperture radar (SAR) imagery using the 

extended maximum average correlation height (EMACH) filter. In: Zelnio, E.G. 

(ed.) Proceedings of the SPIE, vol. 4053, pp. 332–339. Algorithms for Synthetic 

Aperture Radar Imagery VII August (2000). 

8. Vijaya Kumar, B.V.K.A., M.;Mahalanobis, A., Improving the false alarm 

capabilities of composite correlation filters. Opt. Eng. 39(5), 1133–1141 (2000). 

9. David Paul Casasent, T.-H.C., Optical Pattern Recognition, Volume 17. 

10. Kumar, B.V.K.V., Applied Optics, pp. 4773-4801, 1992. 

11. Casasent, G.R.a.D.P., Noise and discrimination performance of the MINACE 

optical correlation filter Applied and p.-. Optics 31(11), April 1992. 

12. Brigham, Prentice Hall. ISBN 0-13-307505-2. 

13. Kamisetty Rao, D.N.K., Jae Jeong Hwang, Fast Fourier Transform - Algorithms 

and Applications: Algorithms  

14. Sen-Maw Kuo, W.-S.G., "Digital signal processors: architectures, 

implementations, and applications " Pearson Prentice Hall, 2005. 



 

 

127 

 

15. Cook, S.M.M., "Raspberry Pi for dummies" Hoboken, NJ : John Wiley & Sons, 

©2013. 

16. Furber, S.B., "ARM System-on-chip Architecture"  Addison-Wesley, 2000. 

17. Choudhry, S., Project Management,  Tata McGraw-Hill Education, 1988. 

18. Russo, D.A., Aerospace and Electronic Systems, IEEE Transactions on  

(Volume:AES-3,   Issue: 5 )  pp 779 - 783 Sept. 1967. 

19. Gonzalez, R.C., Digital Image Processing  3rd Ed. (DIP/3e) by Gonzalez and 

Woods © 2008. 

20. Strang, G.M.J.W.A.S.R.O. 

21. Cooley, J.W.T., John W. (1965). "An algorithm for the machine calculation of 

complex Fourier series". Math. Comput. 19: 297–301. 

22. Khan, S.A., Digital Design of Signal Processing Systems: A Practical Approach, 

John Wiley & Sons, 02-Feb-2011. 

23. Hyde, R., Write Great Code: Volume I: Understanding the Machine  November 

2004. 

24. Roger Woods, J.M., Dr. Ying Yi, Gaye Lightbody, FPGA-based Implementation 

of Signal Processing Systems  

25. Navabi, Vhdl:Modular Design Tata McGraw-Hill Education, 2010. 

26. Vahid, F., Digital Design with RTL Design, Verilog and VHDL John Wiley & 

Sons, 08-Mar-2010. 

27. Robert Schilling, S.H., Fundamentals of Digital Signal Processing Using 

MATLAB Cengage Learning, 01-Jan-2011  

28. Cragon, H.G., Computer Architecture and Implementation, Cambridge University 

Press, 2000. 

29.  Shoup., R., Parameterized Convolution Filtering in a Field Programmable Gate 

Array  nterval. Technical Report, Palo Alto, California .1993. 

 

30. F.G.Lorca, L.K.a.D.D., Efficient ASIC and FPGA implementation of IIR filters 

for Real time edge detection. In the International Conference on image processing 

(ICIP-97) Volume 2. Oct 1997. 

31. Nelson., Implementation of Image Processing Algorithms on FPGA Hardware. 

Masters Thesis, Graduate School of Vanderbilt University, 2000. 

 



 

 

128 

 

32. Shinichi Hirai, M.Z., Tatsuhiko Tsuboi,, Implementing Image Processing 

Algorithms on FPGA-based Realtime Vision System, Proc. 11th Synthesis and 

System Integration of Mixed Information Technologies (SASIMI 2003), pp.378-

385, Hiroshima, April, 2003. 

 

33. Chen, Fahad.A., Real-time high performance Edge detector for computer vision 

applications. In the Proceedings of ASP-DAC, 1997, pp 671-672. 

 

34. Peter Baran, R.B.a.J.H., Reduce Build Costs by Offloading DSP Functions to an 

FPGA. FPGA and Structured ASIC Journal. 

 


