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Abstract 

Parallel kinematic machines or parallel robots have been a topic of research for many researchers 

in the field of robotics for the last two decades. The core idea is to develop systems that can 

perform a given task in as desirable a way as possible. The serial robots have been deployed in 

the industry for quite some time; but the ever increasing requirements on accuracy, 

controllability and capability to perform tasks in an efficient way; has somehow moved the 

researchers to find alternate systems. The best alternative to the serial robots so far is in the form 

of parallel robots. These robots have none of the drawbacks associated with the serial robots 

hence they become the natural choice to replace their serial counterparts. The parallel robots 

have their own drawbacks e.g. the workspace is small, irregular shaped and has a lot of 

singularities. For the industry to use these systems to their full potential there is an immense need 

of research that could somehow enhance the performance of parallel machines. This project 

intends to develop a methodology to find the optimum design parameters to get the best results 

on multiple objectives, hence the title of the project “Multi-Criteria Workspace Optimization of 

Parallel Kinematic Machines”. These objectives include the workspace volume (size of the 

workspace) and some other factors that control the quality of the workspace. 

 

 

Key Words: Parallel Kinematic Machines, Workspace Optimization, Multi-Criteria, Design 

Parameters 
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Chapter 1: Introduction 

The preceding few years have beheld a tremendous increase in the usage of robots in the industry 

to perform certain tasks, mainly due to the fact that they provide great flexibility in process 

planning and optimization. However the machine-driven structure of most common type of 

robots does not appear to be perfect in many errands. For this reason further categories of 

architectures have been considered and used more recurrently in the industrialized world. One 

class of such architectures is parallel robots. The serial robots have inherent drawbacks that limit 

their use in the industry. 

The serial robots when deployed have a tendency to magnify the error at the actuator by a factor 

equal to the sum of the link lengths. Moreover the structures of serial robots have to be designed 

in such a way that every link has to be strong enough to bear the two loads one due to the 

payload and the other due to the weight of all the consequent links. These design constraints 

make the structure heavier. This implies that to cover a certain workspace the links of a serial 

robot have to be heavier than a parallel robot that can cover the same workspace. Whereas the 

control of serial robots has advanced and reached up to a level that almost any kind of serial 

robot can be controlled these days. 

On the contrary the parallel robots have a better payload to weight ratio, the error amplification 

is smaller in parallel robots as when equated with the serial equivalents. Whereas the workspace 

of parallel robots is smaller in size, irregular in shape and has a lot of singularities.  

The above discussion shows that both parallel and serial robots have a different set of drawbacks 

associated with them. The current state of automation achieved in the industry and the future 

trends dictate that the parallel robots can be a potential alternative to the serial robots if the 

drawbacks/ their effects can somehow be limited to a certain level. 

Workspace optimization is scheme to remove the drawbacks/ reduce their effects. It is a field that 

deals with the improvement of quality of workspace of a machine. By improving the workspace 

of a machine we mean that the drawbacks associated with the machine have been reduced or 

eliminated. 

The optimization schemes generally used include weighted sum, modified weighted sum, pareto 

front optimization, particle swarm and genetic algorithms. The selection of an optimization 
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scheme is generally application dependent however; weighted sum and modified weighted sum 

techniques fail in the applications of this type. The technique used in this work is pareto front 

optimization. 

1.1. Document Organization: 

Chapter 2 discusses the background of the research. It includes some definitions, thesis statement 

and the rationale of the research. 

Chapter 3 is the literature review. First of all the state of research is described based upon the 

literature review carried out. After that a brief analysis of the literature review is presented. 

Followed by the conclusions of the literature review, objectives of the current research, scope of 

work, strategic plan, methodology (followed during the research), its justification and the sources 

of data. 

Chapter 4 describes the proposed methodology in detail. First of all the most important 

objectives are defined. Then the most effective optimization schemes are discussed. Then the 

design process is explained in detail. Then the methodology developed for the workspace 

optimization is explained. At the end the validation of results is discussed. 

Chapter 5 is the validation of results through an example. First of all the geometric model of the 

mechanism is presented. Then the design factors to be optimized are listed. It is followed by the 

ranges of the design parameters. After that the objectives for optimization are listed. It is 

followed by the requirements for/ constraints on the objectives. Then these constraints are 

translated briefly to the physics of the mechanism. Followed by iterations, impact/ longevity and 

results follow. 

Chapter 6 is the conclusion it discusses the conclusions of the current research and also describes 

the future work that can be carried out in this domain.
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Chapter 2: Background 

2.1. Terminologies and Abbreviations: 

Important terminologies and abbreviations used in this research are discussed in the following 

lines. 

2.1.1.Parallel Manipulators (PKM) : 

A closed loop kinematic chain mechanism with its end-effector connected to the base by 

numerous independent kinematic chains is known as a PKM [1; 12]. 

This description of a PKM is too broad and unrestricted. We shall rather use the following 

definition for parallel manipulators in this study: 

A PKM consists of an end-effector with ‘n’ degrees of freedom, and of an immovable base, to 

each other by minimum two autonomous kinematic chains. Actuation takes place through ‘n’ 

simple actuators [1; 13]. 

PKMs for which quantity of chains is stringently equivalent to the number of DOF of the end 

effector are called completely parallel manipulators [2; 457]. 

2.1.2.Inverse Kinematic Jacobian: 

Inverse kinematic Jacobian is defined as the matrix relating the end-effector velocity to the 

actuated joint velocities that defines the velocity linear input-output equations. [1; 154]. 

The inverse kinematic Jacobian matrix is indispensable for the velocity and course control and 

planning of robots. 

2.1.3.Manipulability: 

It is defined as the forbearance to haphazardly modify the location and positioning at a given 

position [3]. This quantity is extremely useful for design and control of robots and mission 

organization [4, 5]. There exist a number of different formulae in the literature that can be used 

as a quantitative measure of manipulability. One of the many formulae for manipulability is M = 

(J JT) 1/m where ‘m’ is the number of DOF of the manipulator [3]. 
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2.1.4.Condition Number: 

It is the product of the 2nd norm of Jacobian matrix and the 2nd norm of the inverse Jacobian 

matrix [6]. 

Another description of condition number is specified in [7]. It states that the condition number is 

the ratio of the smallest and largest singular values of the Jacobian matrix. 

2.1.5.Isotropy: 

Postures with a conditioning index one are known as isotropic poses [1; 169]. It is generally 

desirable that all the poses in the workspace of a manipulator should be isotropic. Planning a 

parallel robot that is isotropic in one posture or is isotropic over its thorough workspace is 

sometimes deliberated to be the design objective. 

2.1.6.Global Conditioning Index: 

The global conditioning index is defined as the integral of reciprocal of the conditioning index 

over the whole workspace [6]. 

2.1.7.Uniformity: 

It is the ratio of smallest and largest value of manipulability i.e. U = Mmin/Mmax. Its value is 

always positive and less than or equal to unity and is preferred to be as nearby to unity as 

conceivable [3]. 

2.1.8.Global Manipulability: 

It is the summation of the manipulability over the entire workspace [3]. 

2.1.9.Error Amplification Factor: 

As the name suggests it is the factor by which the error on actuator is amplified at the end 

effector. 

2.1.10. Singular Configurations: 

These are the configurations of the robot for which the robot loses its characteristic inestimable 

stiffness and the end effector will have uncontainable DOF [1; 179] 
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2.1.11. Effective Regular Workspace: 

It is a regular shaped workspace with good dexterity [7]. 

2.2. Synopsis/ Thesis statement: 

The field of parallel robots has been explored intensively during the past few years but the focus 

of the research has been on new designs rather than improving the performance of the existing 

systems to fit into the current industrial environment. All the work so far carried on in the 

domain of workspace optimization of parallel robots focuses on the workspace optimization 

subject to a single objective at a time. The basic idea of this work is to propose a procedure for 

the optimization of workspace subject to multiple criteria simultaneously. These objectives/ 

criteria often have conflicting requirements which is a serious challenge in this domain. This will 

be beneficial for the researchers around the globe since the use of these systems is not limited to 

conventional systems but a new horizon for these systems is the field of surgical robots. 

2.3. Rationale: 

The aim of this work is to cultivate a procedure for the multi-criteria optimization of workspace. 

As stated earlier there are some inherent drawbacks associated with the serial robots; parallel 

robots on the other hand overcome the drawbacks associated with the serial robots but have their 

own drawbacks. An example of such a drawback is the shape of workspace which is generally 

not of a regular shape. Another drawback is that there exist parallel singularities in the 

workspace and there are some others as well. 

It is evident from the above discussion that it is more desirable to use a parallel manipulator 

instead of a serial one as the complexity of the application increases. To increase the use of 

parallel manipulators or to replace the serial manipulators with their parallel counterparts it is of 

utmost importance that methodologies be developed to overcome the drawbacks associated with 

the parallel manipulators. These methodologies should optimize the workspace in such a way 

that all the desired factors of the workspace be in a desirable range.
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Chapter 3: State of the Art and Research Methodology 

3.1. Literature Review: 

Parallel kinematic machines (PKMs) are acknowledged for their great dynamic performances 

and little positioning errors. However parallel singularities occur in the workspace where the 

end-effector cannot resist any exertion; and consequently are too detrimental. These are normally 

eradicated during the project.  The performance indices like maximum speed, force, accuracy 

and stiffness etc. differ significantly for all points in the workspace and for all directions at a 

given point for the reason that the Jacobian matrix is not constant and not isotropic. This is a 

severe downside for machining applications. Few parallel machines are isotropic all the way 

through their workspace. Conversely their little mechanical rigorousness makes them insufficient 

for machining applications since their links are subject to twisting. To be of concern for 

machining applications a PKM should have good workspace properties, that is, Consistent 

workspace form and tolerable kinetostatic performances all the way through. These kinetostatic 

performances may include a number of factors like manipulability, dexterity, condition number, 

stiffness, force transmission factor, velocity transmission factor, symmetry, workspace volume, 

isotropy etc. Let's say, in milling machines, the machining conditions must remain continuous 

end to end in the entire tool route. 

The customary parallel robots have ascertained their rewards in facets of stiffness, rigidity, 

dexterity, re-configurability, with the widespread application in machine tools [9-11], motion 

simulators [12], picking and placing, sensors [13,14]. Parallel platforms are presently being used 

in many applications as multi DOF systems with large stiffness, large payload to weight ratio, 

large precision and small inertia [15, 16].These are also the desired features of the joint modules 

of re-configurable robots. Six legged; six DOF parallel machines have been employed as joint 

modules of the re-configurable machines in [17]. Due to these properties the PKMs are 

extensively acknowledged as perfect machines in engineering industries. However inadequate 

workspace, intricate input-output relationships and richness of singularities in the workspace 

have deteriorated the parts of above mentioned returns. 

The beauty of PKMs is that it is possible for the mechanism to be designed in such a way that the 

moving structure does not have to bare the weight of the actuators driving it. This facilitates 
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large powerful actuators to drive somewhat smaller loads. This enables the designer to design a 

PKM that is far better than its serial counterparts in terms of speed, stiffness and strength. The 

optimization of PKM’s workspace volume depends upon a means of shaping the workspace of a 

parallel manipulator for a specified set of design variables. 

Amid all kinematic properties, workspace is the rudimentary and the most imperative index in 

design of a parallel manipulator. There are two types of workspace optimization a). One is to 

produce a manipulator whose workspace holds a given space [18], [19], [20], [21]. b). the other 

conceivable devising is to catch the geometric parameters of a manipulator that maximize the 

workspace. A design whose lone purpose is to maximize the workspace is not recommended 

since there are other workspace properties that effect the performance of the manipulator that 

need to be taken into account otherwise a maximized workspace with poor workspace properties 

might not be as useful as a small workspace but with good workspace properties. In most of the 

practical applications a manipulator with regular shape and good dexterity is more desirable than 

a manipulator whose workspace has been maximized with poor workspace properties. 

Generally there are several performance criteria that a design should meet. However, most of the 

researchers have considered only two of the basic factors i.e. workspace and condition number. 

Some literatures have accompanied the design process using one or two other factors as well. 

Few design literatures have considered numerous measures. But it is an essential to deliberate 

several measures in design for specific applications. For example in case of a machine tool not 

only necessitates a great workspace and good condition number, but also decent accuracy, 

extraordinary stiffness, speed and great force etc. 

Parallel manipulators have smaller workspaces relative to the serial manipulators of the same 

degree of freedom; consequently numerous investigators addressed the workspace optimization 

of parallel robots [18] [22- 23]. However optimization for such an objective may lead to a 

manipulator with a workspace that has poor kinetostatic performance measures. To lessen this 

problem some researchers deliberated on both performance indices and workspace volume 

instantaneously [24, 25]. 

In most of the applications we are interested in dexterous workspace rather than the accessible 

workspace. The collection of points that its end-effector can reach makes the workspace of the 
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manipulator. Kinetostatic performance indices or dexterity measures how well the structure 

performs in regards to force and motion transportation.  

The above paragraphs show the importance that workspace optimization carries and the 

complexity involved in the process. A general requirement is to have a workspace equivalent to 

or greater than the serial counterpart but with better kinetostatic indices e.g. stiffness, 

manipulability, condition number, force transmission factor, velocity transmission factor, high 

precision, low inertia, isotropy, uniformity, error amplification factor and many more. 

The researchers so far have not been able to or have not yet felt the need of defining the core 

properties that need to be optimized irrespective of the application where the manipulator is to be 

used and the type of parallel manipulator. 

This study is focused on proposing a generic optimization methodology that is applicable on 

every type of parallel manipulator and for every type of application. In the coming paragraphs 

we briefly present the work that has so far been done by the researchers around the world. This 

section will form the bases of the research.  

In [7] a study was carried out on this topic. They defined the problem as maximizing the volume 

of so called maximum effective regular workspace. A regular-shaped workspace having good 

dexterity is wanted continually. They proposed that for a manipulator that can translate as well as 

rotate the workspace volume is given as the weighted sum of both translational and rotational 

workspaces. If we define α to be the set of kinematic parameters of interest then we can say that 

for permanent ranges of actuators of a manipulator, its workspace volume always increases with 

increase in its complete dimensions i.e. ‘α’. These dimensions are also under certain constraints. 

A regular workspace ought to be confined in the total workspace of the manipulator. For each 

point ‘X’ in the workspace we need to find its inverse kinematic solution. This should lie in the 

actuation range of the corresponding actuator. For a point in regular workspace, if there occurs 

an inverse kinematic solution in the actuator range, the point is accessible. 

In order to make sure that the regular workspace generated is effective, constraints are 

introduced on the dexterity index. The most frequently used dexterity index is the conditioning 

index of the Jacobian matrix. It is the ration between the smallest and largest singular values of 

the Jacobian matrix. This value lies in the range [0, 1]. If the manipulator has both translational 
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and rotational DOF then the components of Jacobian bear different units. A design based on this 

Jacobian will not be reliable. This was first reported by Lipkin and Duffy in [26]. The most 

commonly used approach for this problem is the introduction of characteristic length [27]. 

Jacobian is at that time normalized by dividing a characteristic length out of all translational 

elements. In [28] scholars defined the natural length as the characteristic length that is capable of 

producing the unsurpassed performance degree and applied this notion in design optimization. 

With the modified Jacobian the dexterity requirement is stated as “the condition number should 

be greater than or equal to a constant specified by the user”. 

The optimization problem is thus identified as to maximize the regular workspace volume on the 

bases of ‘α’ the design parameters such that every point included in the workspace should have a 

conditioning index in the given range and the inverse kinematic solution for every point should 

also lie in the actuation ranges. 

In [29] a research was carried out with three aims 

i. The workspace covered by the manipulator encloses a given workspace. 

ii. The manipulator owns good conditioning index at every point in the given workspace. 

iii. The manipulator owns decent performance on performance indices like accuracy, 

stiffness, velocity/force transmission factor. 

First the workspace is discretized and for every point in the workspace the inverse kinematic 

solution is found, if it happens to be existent, real and is in the actuation range then this point 

will certainly be in the workspace produced by the consequential manipulator. They formulated a 

pair of quadratic inequalities that were used for the optimization of workspace. 

A usual requirement on the condition number is that the manipulator should be restricted to be 

far-off from the singularity manifold or even to be in the vicinity of isotropic configurations. It 

means that we want the conditioning index of the Jacobian matrix to be less than a given number. 

The Jacobian is then split into the forward and inverse Jacobian matrices and the condition 

restated, the conditioning index of the forward Jacobian should be less than a given number and 

same goes for the inverse Jacobian matrix. The conditioning index of the forward Jacobian 

matrix restricts the manipulator to be far-off from the forward singularity manifold and to be in 

the vicinity of forward isotropic configurations. The conditioning index of the inverse Jacobian 
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matrix restricts the manipulator to be isolated from the inverse singularity manifold and to be in 

the region of inverse isotropic configurations. 

Moreover they derived some conditions that would monitor the accuracy, stiffness. Velocity 

transmission factor and force transmission factor. For accuracy the condition is “maximize the 

maximum singular value of inverse Jacobian matrix for every point in the workspace and then 

select the minimum of these values” or equivalently “curtail the minimum singular value of 

Jacobian matrix for every point in the workspace and then select the maximum of these values”. 

In real implementation a loose requirement serves the purpose of forcing all the maximum 

singular values of inverse Jacobian to be smaller than a given bound so that the manipulator 

possesses a required precision. 

For velocity transmission factor the condition is “curtail the minimum singular value of inverse 

Jacobian matrix for every point in the workspace and then select the maximum of these values” 

or equivalently “maximize the maximum singular value of Jacobian matrix for every point in the 

workspace and then select the minimum of these values”. 

The extreme speed which should be achieved at any point of time throughout the operation of the 

manipulator is given as a design condition. This necessitates that a set of design factors should 

fulfil the condition that all the smallest singular values of the inverse Jacobian matrix are greater 

than a particular bound. Where the bounding value is dictated by the conditions on the velocity 

to be achieved. 

For force transmission factor the condition is “curtail the minimum singular value of Jacobian 

matrix for every point in the workspace and then select the maximum of these values” 

In physical employment free condition is specified so that the manipulator produces a given 

amount of supreme force at all points in the given workspace. This necessitates that a set of 

design considerations ought to fulfil the condition that all the smallest singular values of the 

Jacobian matrix are greater than a given bound. Where the bounding value is dictated by the 

conditions on the force to be transferred. 

For stiffness the condition is to minimize the minimum eigenvalue of the JTJ in the prescribed 

workspace and then select the maximum of these values. 
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It is to be noted that eigenvalue of the JTJ is equivalent to the singular value of the J2 matrix. This 

holds for both the largest and smallest values of both the eigenvalues of JTJ and the singular 

values of J2. 

This means that the condition on stiffness can be restated as “to minimize the minimum singular 

value of the Jacobian matrix for every point in the workspace and choose the maximum of these 

values. 

This necessitates that a collection of design parameters should fulfil the condition that all the 

lowest singular values of the Jacobian matrix are greater than a given bound. Where the 

bounding value is dictated by the conditions on the stiffness to be achieved. 

The conditions on singular values of Jacobian matrix are conflicting with each other so a tradeoff 

has to be made. An appropriate collection of design parameters ‘α’ ought to satisfy the condition 

that all the minimum singular values of the Jacobian matrix need to be greater than a certain 

bounding value and all the maximum singular values of the Jacobian matrix need to be less than 

a certain bounding value. These bounds are defined by the conditions imposed on the singular 

values by the individual objectives. 

The above condition can be stated as for a certain parameter set ‘α’ and for some point in the 

given workspace all singular values are in the range of S1 and S2; where S1 and S2 are the 

bounding values for the singular values. 

The optimization problem is thus stated as minimizing the objective function subject to the 

following conditions: 

 The inverse kinematic solution of each point lies in the actuation range. 

 The condition number for every point is less than a certain number. 

 The singular values of the Jacobian matrix at every point lie in the range of s1 and s2. 

 

Figure 3-1: (a) Inverse condition Number of J at z=-250; (b) Inverse condition number of J at z=0. 
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Figure 3-2: (a) Inverse condition Number of J at z=250; (b) Workspace generated by the orthoglide at z=-250. 

In the research carried out in [30] a study on the multi criteria optimization of a 3DOF RAF 

parallel manipulator was performed. A multi objective function centered on the mathematical 

notion of power of a point with refrencet to surface is framed. The recommended technique is 

modest and operational in examining the design vector defining the robot with the minimum 

workspace and covering a given volume in space. 

The paper focuses at designing the RAF parallel robot by calculating the workspace and 

optimizing the design vector comprising a given volume in space. 

The workspace of the RAF robot consists of two parts namely active and passive workspaces. 

The workspace of the robot is defined as the connection of the active and passive workspaces. 

Define the workspace constraints for the active workspace and passive workspace and these can 

be derived using the kinematics of the robot. Subject to the constraints on the workspace we need 

to curtail the objective function F (I, P). Where P is any point under consideration and I is the 

unidentified vector of parameters these parameters are the link lengths. 

Methodology adopted here is to minimize the summation of the powers of the vertices which 

will depend on I. 

They first obtain a design that contains all the possible points Pk and then we move on to 

minimize the sum of powers of the points. There are weighting factors associated with both 

active and passive workspaces. Changing these factors changes the optimal solution. 

Workspace volume is calculated using the algorithm proposed in [31]. 
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In [32] a research was carried out on this subject and they optimized the workspace of a 3dof 

translational stand for well-conditioned workspace. In this investigation they carried out two 

optimization studies. The objective to begin with is to maximize the aggregate volume of the 

manipulator workspace irrespective of the superiority of the workspace. In the 2nd revision they 

optimized the aggregate volume of well-conditioned workspace by maximizing a global 

conditioning number. The global conditioning number is a means of measuring the error 

amplification between the actuators and the end effector. Optimization of manipulator workspace 

volume is reliant on a method of defining the workspace for a given set of design variables. They 

computed a statistical value of the workspace size (Volume) by means of the monte-carlo 

method for the purpose of workspace optimization. The manipulator used in this revision was a 

3-DOF translational machine. The design variables deliberated upon were the leg lengths, 

relative size of the base and moveable platform and the angular position of the legs 2 and 3 from 

the first leg that is considered to be at home position. The problem was then constrained using 

constraints on the link length and angular separation between legs. These constraints are 

 The total link length is not to exceed 1. 

 Every leg should have an angular parting of no less than 5 degrees from other legs. 

 Leg lengths cannot be equal to or less than zero. 

After the devising of the problem it was optimized using the MATLAB optimization tool box. 

 

Figure 3-3: Workspace of manipulator for maximum workspace 

The second study optimized the global conditioning index of the manipulator. The defined the 

condition number to be the product of 2nd norm of Jacobian matrix and the 2nd norm of inverse of 

Jacobian matrix. Global condition index was defined as the integral of the inverse of the 
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conditioning index over the complete workspace. To find this value again monte-carlo technique 

is used and a algebraic expression for the global conditioning number is found. And this 

expression was then optimized to find out the optimum workspace. The workspace produced by 

the manipulator in such condition is shown below: 

 

Figure 3-4: Workspace of manipulator for maximum global condition index 

The comparison can be seen if we compare the curve of global condition index at a given level 

for both cases. Figure 3-5 shows the curve of global condition index at z = 0.5 plane when only 

the workspace volume is maximized. 

 

 

Figure 3-5: Reciprocal of the condition number at z=0.5 plane for the total workspace optimized manipulator 

Figure 3-6 shows the same for the case when the workspace is optimized considering the global 

conditioning index. 
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Figure 3-6: Reciprocal of the condition number at the z=0.5 plane for the global condition index optimized manipulator 

The results of their research showed that a manipulator premeditated to optimize entire 

workspace volume is considerably dissimilar from the one optimized for a well-conditioned 

workspace. Furthermore the outcomes showed that a manipulator intended to optimize entire 

workspace volume results in an ill conditioned workspace. The above comparison shows that it 

is better to maximize the workspace volume by maximizing the global condition index instead of 

only workspace volume. This will insure that the performance of the manipulator in the 

workspace is up to a certain standard. 

In [33] the researchers used Particle swarm algorithm for the optimization of a parallel 

mechanism. The workspace is generated and recorded on basic boundary searching technique. 

The particle swarm procedure is applied to hunt for the optimum volume of workspace. Basic 

workspace demonstration and optimization methodologies are established for a fresh parallel 

mechanism. The suggested techniques are universal and appropriate for visual analysis, 

modeling and optimization of workspace for the diverse categories of parallel manipulators. 

Workspace of a parallel mechanism is coarsely distributed in job workspace and joint workspace. 

The job workspace mentions the motion choices of the moving platform in 2 or 3 dimensions. 

The entire area was computed to define the performance of a 3D job workspace. After generation 

of workspace by simplified boundary search method, the geometric parameters of the mechanism 

are optimized using the particle swarm optimization to maximize the workspace volume. 
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In [21] the design problem was formulated as to design a parallel mechanism in a way that its 

workspace encompasses a given workspace with good conditioning number in it. 

In [34] the culling algorithm was applied to optimize the global isotropy index (GII) that happens 

to be the fraction amid the smallest and largest singular values of the kinematic Jacobian matrix 

in the workspace. The objective function was designed and optimized using the MAX-DET 

problem. It was subjected to the constraints that the conditioning index of the Jacobian matrix at 

all points in the workspace is less than (1 + ɤ) where ɤ is a threshold specified by the user and 

that the inverse kinematic solution of every point should lie in the actuation range of the 

actuators. 

In [6] the researchers optimized the workspace of a parallel robot by considering the maximum 

inscribed workspace and reciprocal of the conditioning index of the workspace. The golden 

search method is used to quest the workspace of the manipulator and mesh the boundary. 

Optimization considering the maximum inscribed workspace we find the relationship between 

leg lengths and the geometric parameters and these were optimized. The conditioning index is 

the product of 2nd norm of the Jacobian matrix and that of the inverse Jacobian matrix. The 

global conditioning index that deliberates the conditioning index of the Jacobian matrix over the 

whole workspace is the integral of the conditioning index over the entire workspace. The need 

for the conditioning index optimization ascends due to the fact that the workspace optimization 

by maximizing the workspace volume will probably result in poor dexterity and other kinematic 

characteristics. 

In [3] the researchers worked on the optimum creation for workspace and manipulability of 

parallel flexure mechanism. They started off with the Yoshikawa’s manipulability index that is 

given as the 2nd root of the determinant of JJT matrix. 

But this index is both scale and order dependent, to remove the order dependencies Kim and 

Khosla replaced the square root of the formula by the mth root and by doing this they removed 

the order dependency. Later on the scale dependency was removed by dividing the order 

independent manipulability with the square of a basic dimension L [35]. 
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Global assessment of manipulability was done by integrating the manipulability over the whole 

workspace and dividing it with the workspace volume. The other important parameter was the 

uniformity of manipulability. There are two draw backs that a good uniformity index can remove 

 Non-precise motion of platform 

 The flexure mechanism cannot move due to high force transmission 

The optimization problem was stated as maximizing the workspace area subject to a constraint 

on global manipulability and uniformity of manipulability. The optimization variables are the 

dimensions of the Virtual Rigid body model, range of actuators and the initial pose. 

In [36] the researcher worked on the collision-lass workspace design and optimization of the 3-

DOF gantry-tau PKM. He optimized the workspace for the collision free operating region and 

found that the by this methodology the total workspace to fixing space ratio is VInstallation / VFixing= 

3.5228 m3. This ratio is huge equated to most of the other PKMs which characteristically have a 

ratio of less than one. 

In [37] the researchers worked on the dexterous workspace optimization of a tricept PKM. The 

higher and lower bounds of actuators, spherical and universal joints, link lengths and platform 

radii are subjected to constraints for this problem. The optimization was performed considering 

the dexterity measures, viz. the conditioning index as a confined conditioning index and smallest 

singular values. Variables to be optimized are the radii of the moving and base platforms and the 

higher part of the middle link length. 

In [38] the researchers proposed the optimization of parallel manipulators on the bases of global 

stiffness using kinetostatic indices. It is proposed that the average value and the standard 

deviation of the trace of the generalized compliance matrix may be used as the design index. It is 

eminent that the trace of the compliance matrix is same as the matrix, so the dissemination of the 

system stiffness/compliance is the dissemination of the trace. In this context the average value 

and the standard deviation of the trace of the compliance matrix can be understood. Generally a 

lower mean value indicates less distortion. Likewise an inferior standard deviation means a more 

unchanging stiffness distribution above the workspace. 

In [39] the researchers proposed a unique set of optimization parameters. They defined two 

objective functions. First of the two objective functions was the moving mass that had to be 
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minimized. The other being the regular shaped workspace that needs to be maximized. Moreover 

they calculated the condition number by using the Frobenius norm instead of 2-norm. There were 

three types of constraints in this problem, the geometric constraints, condition number and 

accuracy. 

In [8] the researchers presented the concept of error amplification factor. They first of all 

formulated a total error transformation matrix for the hexa slide mechanism. They noted that 

three types of error amplification factors can be defined on the bases of total error transformation 

matrix and either of the three can be used for the optimization problem.  

Global error amplification factor was then defined as the integral of error amplification factor 

over the complete workspace divided by the workspace volume. The optimization problem was 

thus stated as to minimize the global error amplification factor subject to the design variable 

limits and workspace constraints. A total of 60 design parameters existed but the problem was 

simplified by exploiting the symmetry property of the hexa slide mechanism and the number of 

design variables is thus reduced to six. 

In [40] the researchers carried out an optimization of a 3DOF parallel manipulator. They 

optimized the manipulator on considering the shape of the workspace and the objective was to 

achieve a regular shaped workspace. Geometric constraints were introduced on the mechanism 

and interval analysis method was used for optimization. 

In [41] the researchers worked on the workspace optimization of 3-legged universal prismatic 

universal (UPU) and universal prismatic spherical (UPS) parallel platforms with constraints on 

the mobility of joints. They used 3 indices to characterize the workspace of the system. First one 

is the workspace volume, 2nd average of inverse of conditioning index and 3rd global 

conditioning number as used in [42]. It is defined as the ratio of summation of inverse 

conditioning index computed in the entire workspace, to the volume of the workspace. The 

condition index used in this research is the product of 2nd and 3rd index. 

Generally researchers have used genetic algorithms, interval analysis, max-det and few other 

numerical methods for the subject optimization. The choice of algorithms is totally dependent on 

the application and the discretion of the researcher. 
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3.2. Research Analysis: 

Researches on the subject have indicated that the most important factors that should be 

considered in the workspace optimization are conditioning number, error amplification factor, 

singular values of the Jacobian matrix, the mean and standard deviation of trace of the 

compliance matrix, the moving mass, shape of the workspace, isotropy index, uniformity index 

and manipulability. 

The choice of parameters is application dependent and needs to be decided by considering the 

application area, the task to be performed and the critical factors that can affect the performance 

of the manipulator in the given application. 

The choice of algorithm is also dependent on the application of the manipulator and its type. 

Generally genetic algorithms are preferred because of their ability to easily avoid local extrema. 

Another important thing in this type of problems is the thresholds that are applied on different 

factors, these thresholds need to be decided carefully otherwise the results can be drastically 

misleading and the manipulators thus generated most unreliable and unsuitable for the 

application. 

 

3.3. Conclusion: 

Conclusions drawn from the detailed analysis of the literature review are summarized here. The 

methodologies generally include some analytic models and genetic algorithms. Simultaneous 

optimization of multiple criteria has not yet been carried out in the field of parallel machines. 

The most frequently optimized objectives are workspace volume, shape, global conditioning 

number, force transmission factor, velocity transmission factor and accuracy. Literature shows 

that these objectives often require opposite conditions i.e. optimizing one objective worsens the 

performance of the others. Moreover it is concluded that most of the objectives are dependent on 

the Jacobian and inverse Jacobian. Most of the times to optimize an objective the maximum and 

minimum singular values of inverse and forward kinematic Jacobians are used. Workspace 

volume and shape of workspace however do not depend on the Jacobian and its inverse. 
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3.4. Objectives: 

This study is related to the workspace optimization of PKMs. The aim of this study is to propose 

a methodology to optimize the workspace of parallel manipulators considering multiple criteria. 

The researches till now do not focus on optimizing the workspace by considering all the factors 

simultaneously. In this work a procedure to optimize the workspace of parallel manipulators by 

considering multiple criteria simultaneously. The research is divided following sub tasks 

sections: 

• Identifying the objectives to be optimized 

• Mathematical interpretation of the objectives 

• Devising a methodology 

• Applying a suitable optimization technique 

• Verifying/ validating the results 

 

3.5. Scope: 

Scope of this project includes: 

• Devising a methodology for workspace optimization 

• Validation by comparison with published results 

 

3.6. Strategic plan: 

This project is divided into different sub-tasks including following steps with sequence 

• Literature Review 

• Understanding the techniques adopted so far 

• Understanding different objectives 

• Mathematical and physical interpretation of these objectives 

• Finding the optimization objectives 

• Devising an optimization methodology 

• Applying the methodology on an existing system 
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• Comparison of results with published results 

3.7. Methodology: 

The methodology adopted for this research can be briefly explained by the following steps: 

• Literature Review 

• Summarizing the literature review in the form of a literature review report 

• Reproducing the work done in some researches 

• Defining problem statement 

• Developing a methodology for workspace optimization 

• Benchmarking a research for the validation of results 

• Generating results 

• Comparison with the benchmark results 

First of all an extensive literature review was carried out. About 50-60 research papers on 

different techniques and methods adopted in the field were studied. The work done in the 

relevant fields was then summarized in the form of a literature review report. This report was 

helpful since it provided a summary of the current state of the art and helped in setting the goals 

for the current research. 

After this report results of some researches were reproduced. It was done in order to gain some 

insight to the techniques being used and the field of parallel manipulators. Moreover this helped 

to get a head start in the field. 

The next step was defining the problem statement and setting up the objectives of the project. 

This was done after a lot of deliberation on the literature review report and the reproduction of 

results of different researches. 

Next step was to develop a methodology for the simultaneous multi-criteria workspace 

optimization of PKMs. The methodology focused on achieving the goals accurately and in a less 

complex manner. 

A research was benchmarked so that the results generated by our research could be validated 

against some already published work in the said field. In the next step the methodology was 
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implemented on a mechanism and results were generated. These results were then validated 

against the results of the benchmark research. 

3.8. How is it beneficial? 

The methodology is beneficial since it was a stepwise scheme. The difficulty level was raised 

slightly and according to the need. Since there hasn’t been a lot of work in this domain it was 

kept in mind that the validation of results was going to be a tough ask hence special 

consideration was given to this aspect and a novel approach was adopted to validate the results. 

It was helpful since before getting in the actual work the researcher was fully aware of the 

current state of the art and the domain itself. It is beneficial since unlike the existing state of the 

art the methodology focuses on the simultaneous multi-objective workspace optimization of 

PKMs. Moreover the choice of optimization algorithm is also important since there are a number 

of algorithms that are used for the multi-objective optimization. These include algorithms 

ranging from as simple as weighted sum to as complex as genetic algorithms. 

 

3.9. Resource/ Source of data: 

The resource of data has mostly been the literature reviewed. Since there has not been a 

significant work in the field of multi objective workspace optimization of PKMs, majority of the 

data has been extracted from the literature as concepts. No major values or techniques have been 

found from the literature. Primarily the source of data has been the research papers studied.
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Chapter 4: Proposed Methodology 

The quality of workspace of PKMs depends on the objectives that are used to optimize the 

workspace. Each factor has its own significance and has a considerable effect on the quality of 

the workspace generated by the manipulator. But important fact is that most of the applications 

will require the optimization with respect to more than one objectives.  

Off course we cannot expect that all the objectives have the same weightages since every 

application demands different constraints on different objectives. In order to generate correct 

results we have to keep this fact in mind. 

4.1. Most effective objectives: 

The criterion to judge most effective objective is not simple. The effectiveness of an objective is 

dictated by the application where the manipulator has to be used. But most of the applications 

can be handled if suitable constraints are imposed on the following factors: 

• Workspace Volume 

• Global Condition Number 

• Accuracy 

• Velocity Transmission Factor 

• Force Transmission Factor 

• Inverse Condition Number 

Handling these objectives effectively and optimizing them generally results in the optimization 

of manipulator for most of the applications. However there are some other objectives that mau 

need to be optimized for some applications. 

4.2. Most effective optimization schemes: 

The most effective optimization scheme could have been the weighted sums in this kind of multi 

criteria problems. The problem here is that the weights of the objectives are not fixed rather they 

are highly dependent on the application where the manipulator has to be used. So the weights 

sum optimization cannot be used. 
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Next we considered the evolutionary algorithms in general and genetic algorithms in 

particular. A genetic algorithm (or GA) is a search technique used in computing to find true 

or approximate solutions to optimization and search problems. They are categorized as global 

search heuristics. This is a particular class of evolutionary algorithms that uses techniques 

inspired by evolutionary biology such as inheritance, mutation, selection, and crossover (also 

called recombination). 

Genetic algorithms are implemented as a computer simulation in which a population of 

abstract representations (called chromosomes or the genotype or the genome) of candidate 

solutions (called individuals, creatures, or phenotypes) to an optimization problem evolves 

toward better solutions.  

The evolution usually starts from a population of randomly generated individuals and 

happens in generations.  

In each generation, the fitness of every individual in the population is evaluated, multiple 

individuals are selected from the current population (based on their fitness), and modified 

(recombined and possibly mutated) to form a new population. 

A typical genetic algorithm requires two things to be defined: 

 A genetic representation of the solution domain 

 A fitness function to evaluate the solution domain 

The most common type of genetic algorithm works like this:  

A population is created with a group of individuals created randomly. The individuals in the 

population are then evaluated against a fitness function. The evaluation or fitness function is 

provided by the programmer and gives the individuals a score based on how well they 

perform at the given task. Two individuals are then selected based on their fitness, the higher 

the fitness, the higher the chance of being selected. These individuals then "reproduce" to 

create one or more offspring, after which the offspring are mutated randomly. This continues 

until a suitable solution has been found or a certain number of generations have passed, 

depending on the needs of the programmer. 

Initially many individual solutions are randomly generated to form an initial population. The 

population size depends on the nature of the problem, but typically contains several hundreds 

or thousands of possible solutions. Traditionally, the population is generated randomly, 

covering the entire range of possible solutions (the search space). Occasionally, the solutions 

may be "seeded" in areas where optimal solutions are likely to be found. 

During each successive generation, a proportion of the existing population is selected to 

breed a new generation. Individual solutions are selected through a fitness-based process, 

where fitter solutions (as measured by a fitness function) are typically more likely to be 

selected. Certain selection methods rate the fitness of each solution and preferentially select 

the best solutions. Other methods rate only a random sample of the population, as this 

process may be very time-consuming. Most functions are stochastic and designed so that a 



25 
 

small proportion of less fit solutions are selected. This helps keep the diversity of the 

population large, preventing premature convergence on poor solutions. 

The next step is to generate a second generation population of solutions from those selected 

through genetic operators; crossover (also called recombination), and/or mutation. For each 

new solution to be produced, a pair of "parent" solutions is selected for breeding from the 

pool selected previously. By producing a "child" solution using the above methods of 

crossover and mutation, a new solution is created which typically shares many of the 

characteristics of its "parents". New parents are selected for each child, and the process 

continues until a new population of solutions of appropriate size is generated. These 

processes ultimately result in the next generation population of chromosomes that is different 

from the initial generation. Generally the average fitness will have increased by this 

procedure for the population, since only the best organisms from the first generation are 

selected for breeding, along with a small proportion of less fit solutions, for reasons already 

mentioned above. 

This generational process is repeated until a termination condition has been reached.  

Common terminating conditions are: 

 A solution is found that satisfies minimum criteria  

 Fixed number of generations reached  

 Allocated budget (computation time/money) reached  

 The highest ranking solution's fitness is reaching or has reached a plateau such that 

successive iterations no longer produce better results  

 Manual inspection  

 Any Combinations of the above 

Following are the key advantages associated with the GA’s: 

 Concept is easy to understand 

 Modular, separate from application 

 Supports multi-objective optimization 

 Good for “noisy” environments 

 Always an answer; answer gets better with time 

 Inherently parallel; easily distributed 

 Many ways to speed up and improve a GA-based application as knowledge about  

problem domain is gained 

 Easy to exploit previous or alternate solutions 

 Flexible building blocks for hybrid applications 

 Substantial history and range of use 

Following are the key disadvantages associated with the GA’s: 

 Choosing basic implementation issues 

 representation 
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 population size, mutation rate, ... 

 selection, deletion policies 

 crossover, mutation operators 

 Termination Criteria 

 Performance, scalability 

 Solution is only as good as the evaluation function (often hardest part) 

GA’s can be used in the applications where: 

 Alternate solutions are too slow or overly complicated 

 Need an exploratory tool to examine new approaches 

 Problem is similar to one that has already been successfully solved by using a GA 

 Want to hybridize with an existing solution 

 Benefits of the GA technology meet key problem requirements 

Keeping the above applications and advantages of GA’s in view we can safely assume that the 

best possible algorithm for the problem at hand is GA’s. But the problem lies in the 

disadvantages stated above. The problem at hand is one where the fitness function is totally 

application dependent meaning thereby that a fitness function that is perfect for the optimization 

of one objective may be the worst for the optimization of other objective since the objectives are 

conflicting. Therefore defining a fitness function for such an application is near impossible. 

Hence we are left with no choice but to use the pareto front optimization is instead of GA’s for 

the problem at hand. 

 So the choice left is the use of pareto front optimization algorithms. These algorithms are easy to 

use and generate a set of non-dominant points the selection of design point is based on the 

application where the manipulator is to be used.  

This project is aimed to provide the simultaneous multi objective workspace optimization of 

PKMs. The idea is that the methodology developed should be generic, the user needs to know 

their mechanism and the methodology can handle the rest. The selection of design point from the 

pareto front again is a task for the user since this selection is application specific. 

4.3. Design process: 

The methodology is designed with the intent of optimizing the workspace of any given parallel 

manipulator. This has to be done keeping in mind the level of difficulty for the implementation 

of optimization scheme and the trends generally being followed in the field. Another important 

factor is considering the current state of the art in the field so that the results generated by the 

methodology developed are validated against some published work. 
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The simpler the methodology is the more efficient it would be. The project emphasizes on the 

simplicity with the physical system involved and the functionality of the system as well. 

The methodology is implemented a number of times with different conditions and the results are 

compared with the benchmark. 

4.4. The Methodology: 

After detailed literature review and deliberation on the research already carried out in the fields 

of optimization as well as parallel machines, a methodology has been proposed. 

• First of all for any given mechanism the design parameters (geometric parameters that 

effect the objectives) are identified 

• The ranges for design parameters and number of points in this range are calculated 

• Once the design parameters have been recognized and the points calculated, the 

optimization objectives are identified 

• The third step is to define a cube in the 3-D space where the manipulator has to operate 

• The cube is discretized into X3 number of points 

• All the points generated are checked for the inverse kinematics solution 

• The points satisfying the inverse kinematics solution are added to the workspace against 

every value of the design parameters 

• The objectives are calculated against every point in the workspace 

• Objective matrices are normalized 

• Normalized matrices are sent to the optimization algorithm 

• The optimum values are returned by the algorithm 

• The values of objectives are fetched from the already created matrices 

First of all the design parameters of the manipulator (parameters to be optimized) are identified. 

These are the parameters that represent the active joints of the mechanism and in some cases 

reflect the geometric properties of the PKM that effect the properties of the workspace generated. 

Once these parameters have been identified, the maximum and minimum values of these 

parameters are found depending upon the actuators being used or the effects of the geometric 

properties of the PKM on the performance of the manipulator. These ranges are then divided into 

a suitable number of points. The choice of this number (the division of the range) depends on the 
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computational power available, however the greater the number of points the better the results 

are. 

After having performed the first step we identify the optimization objectives. The section of 

objectives is subject to the application where the manipulator has to be used. The objectives that 

have to be optimized in most of the cases are the following: 

• Workspace Volume 

• Global Condition Number 

• Accuracy 

• Velocity Transmission Factor 

• Force Transmission Factor 

• Inverse Condition Number 

At this point it is important that the detail of a brief explanation of these objectives be resented.  

The global condition number has been defined in chapter one. This depends on the norms of 

Jacobian and its inverse. The formulas follow in the next chapter. 

Condition number has also been defined in chapter one. Inverse of condition number is simply 

the reciprocal of the conditioning index. This is a sign of the isotropy of the system. The closer 

the value is to 1 the better the system performs. 

Velocity transmission factor is a measure of how effectively the manipulator transmits the 

velocity to the work piece. This is important with regards to the machining and surgical robots. 

To increase the velocity transmission factor we need to maximize the smallest singular value of 

the inverse Jacobian matrix. 

Force transmission factor is a measure of how effectively the manipulator transmits the force to 

the work piece. This too is important with regards to the machining and surgical robots. To 

increase the force transmission factor we need to maximize the smallest singular value of the 

Jacobian matrix. 

Accuracy, as the name suggest, is the measure of how accurately the manipulator can position 

itself at a given point. This parameter is important in every kind of applications of the parallel 
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manipulators. To increase the accuracy of the manipulator we need to minimize the largest 

singular value of the inverse Jacobian matrix. 

After the identification of optimization objectives the next step is generating a cube that encloses 

the 3-D space in which the manipulator has to operate. The 3-dimensional space is discretized 

into X3 number of points where ‘X’ is the amount of divisions of each axis. The points so 

created are then used for further calculations.  

Each of the 3-dimensional points is then checked as a candidate point for being in the workspace 

of the manipulator. A candidate point that fulfills inverse kinematics equation of the manipulator 

is considered to be in the workspace of the PKM. The set of these points is called constrained 

workspace of the manipulator. Once the workspace of the PKM is calculated the matrices for the 

objectives functions are created.  

Every factor other than the workspace volume is dependent either on Jacobian or inverse 

Jacobian of the manipulator. 

This set of calculations is repeated for all the values of the design variables. The matrices so 

created are normalized and sent to the optimization algorithm which optimizes the data and gives 

the optimum points in the design space. 

Increase in the number of divisions in the 3-dimensional space results in the improvement of 

results. However this also increases the computational power required to perform the 

calculations. 

For the optimization algorithm, a number of choices were considered first of all the simplest 

method of weighted sums was considered. The key advantage of this method is the simple 

mathematics involved in it and the ease with which this can be implemented. The problem 

however is; since there hasn’t been any research in the simultaneous optimization; the relative 

weights of our objectives are not available in the literature and there aren’t any guidelines 

available in the literature to decide the relative weights. 

The next choice in this regard was the implementation of the evolutionary algorithms. This 

option was not exercised due to the fact that the implementation of evolutionary algorithms in 

itself is a huge task. 
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The natural choice in this scenario for this task was the pareto front optimization. Pareto front 

optimization is a simple approach. Pareto front is the collection of non-dominant points in the 

design space. A non- dominant point is a point in the design space where if u want to improve 

the performance of one of the objectives it worsens at least one of the other objectives. Selection 

of the final result from the pareto front however is again application specific. 

Calculating pareto front for 6 objectives is a tedious task hence a new approach to calculating 

multiple objective pareto front was adopted. There are six objectives that need to be optimized. 

So to start with a pareto front with two objectives is calculated; the two objectives used are 

workspace volume and global conditioning index. In the next step another pareto front is 

calculated, in this step however; global conditioning index is replaced by any other objective 

while workspace volume remains there. Similarly 5 pareto fronts are calculated one each for 

every objective against the workspace volume. The points of these pareto fronts in objectives 

space are mapped into the design space. This yield five sets of points. Now the final design 

points are selected by taking out all the points that appear in every pareto front. This approach 

simplifies the calculations however; it does not affect the results. 

4.5. Validation of results: 

The research paper in [43] was benchmarked for the validation of results. The mechanism used is 

a 3-UPU parallel kinematic machine. Results generated in the benchmark however are based on 

the single objective optimization.
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Chapter 5: Validation 

The machine in this thesis is a 3-UPU PKM.  It consists of two triangular plates connected to 

each other with three legs. The legs are connected to the triangular plates with the help of 

universal joints. The legs themselves are prismatic joints. The basic model of the mechanism is 

explained in this chapter. 

5.1. Geometric Model: 

Consider the base triangular plate of the 3-UPU mechanism. The three vertices of the triangular 

base plate are known as A1, A2 and A3. The vertices of the moving triangular plate are B1, B2 

and B3. Consider the following triangular figure; here the centroid and vertices of the triangle are 

labeled. The centroid of the base triangular plate is the global origin or the origin of the global 

co-ordinate system.  

 

Figure 5-1: Geometric model of the manipulator 

The base plate is an equilateral triangle. Let the length of each side of triangle is Ex units. The 

coordinates of the point A1 A2 and A3 are  (Ex/-2, (-1)Ex*cos(30)/3), (Ex/2;(-

1)Ex*cos(30)/3)and (0;2*Ex*cos(30)/3) respectively. Similarly the mobile platform is also an 

equilateral triangle. Let the lengths of all sides of the mobile platform is Ex1 units. The 

coordinates of the points B1, B2 and B3 are (Ex1/-2, (-1)Ex1*cos(30)/3), (Ex1/2;(-
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1)Ex1*cos(30)/3)and (0;2*Ex1*cos(30)/3) respectively. These equations can be derived by using 

the elementary geometry. 

Since the legs of the mechanism are prismatic joints therefore we define a lower and an upper 

range of the leg lengths. Maximum length of any leg at any point in time is 1 and the minimum 

length can be found out by using the formula qmin = 1 / (1 + si/100) where si is the maximum 

translation for each leg’s prismatic actuator.  

5.2. Design Parameters to be Optimized: 

The two geometric parameters that control the performance and the design of the manipulator are 

si and ci. As stated earlier si is the maximum translation of the leg’s prismatic actuator while ci is 

the difference between the coordinates of vertices of the two platforms in the global reference 

frame. 

The value of si controls the length of legs while ci defines the difference between the sizes of 

two plates. Hence too large a distance means that the legs will stretch to their maximum to 

connect them resulting in no motion or very small motion resulting in very small workspace. 

Manipulators with too small a distance present extra DOF (self-motion of the platform) that 

possibly will not be controlled from the actuation motion. In real world applications this type of 

designs are not tolerable.  

5.3. Ranges of the Design Parameters: 

The values of ci and si used in this work are as follows: 

 ci: 0.27 – 0.645 [41] 

 si: 20% - 87.5% [41]. 

5.4. Objectives for Optimization: 

The factors being used for optimization are as follows: 

 Workspace volume 

 Inverse of condition number 

 Global condition number 

 Maximum singular value of inverse Jacobian 

 Minimum singular value of inverse Jacobian 

 Minimum singular of value of Jacobian. 
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5.5. Requirements for the Objectives for Optimization: 

The requirements are as follows on these factors: 

 Maximize the workspace volume 

 Maximize inverse of condition number 

 Maximize global condition number 

 Minimize the maximum singular value of inverse Jacobian 

 Maximize the minimum singular value of inverse Jacobian 

 Maximize the minimum singular value of Jacobian 

These requirements are conflicting to each other i.e. improving one worsens the other; hence 

require to be handled carefully to optimize the workspace of the mechanism in such a way that 

all the factors are at an optimum value. The technique used is the pareto front optimization. 

Pareto front is the set of points that have the optimum values of all the factors, trying to improve 

any of the factors worsens at least one of the other factors. 

5.6. Brief translation: 

The methodology developed is useful in the sense since it yields the results that conform to the 

already published works and the level of complexity involved is very low. The methodology 

proposed is one of a kind and the problem of multi-criteria workspace optimization is handled 

effectively and efficiently. The methodology is practical and can be used for the design of any 

parallel manipulator even though there is room for improvement in the methodology at the 

moment. 

We have achieved a level of research to grasp an extent of accuracy to be accepted as suitable for 

this project. The design of this system completely satisfies the idea, objectives and scope of the 

project. The simplicity, efficiency, accuracy and output of the project completely match with the 

initial objectives of the project. 

 

5.7. Iteration: 

Generating the results once is not sufficient the results are generated with a number of different 

conditions. This is important to make sure that the methodology works precisely as intended. The 

iterations performed change a couple of values and then the whole cycle is repeated but the 

results generated again match the benchmark. 
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5.8. Impact/ longevity: 

This project once adopted can benefit the industry in a lot of ways. It can provide a means of an 

optimization engine for the design of PKMs in the fields of: 

 Tele-scopes  

 Fine positioning devices 

 Fast packaging 

 Machine-tool 

 Medical application 

 Motion Simulators 

 Optics 

 Micro-component fabrication  

The project also enhances the ability to use the small workspace of parallel manipulators to the 

fullest and in the most effective way possible. This also helps in designing the mechanism for a 

specific problem with emphasis on the factors critical to the application. 

Following flow chart shows the algorithm. 
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Figure 5-2: The flow chart of the program 

 

Increase in the number of divisions in the 3-dimensional space results in the improvement of 

results. However if only one objective function is optimized at a time the resulting pareto front 

contains only one point i.e. the optimum value of the design parameters to achieve the optimum 

performance of the manipulator. 
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Points in the pareto front varies with the discretization of the space but does not follow any 

specific trend. The pareto front thus calculated contains all the points where all the objectives 

have the optimum value and improving anyone results in the deterioration of at least one of the 

objectives. 

The pareto front optimization is one of the most commonly used multi-objective optimization 

algorithm used. It yields a set of points that yield optimum values of the objective functions. The 

point to be used is application specific one may use the point that optimizes the required 

objective, the objective whose optimum behavior is the most critical for the application. 

5.9. Results and Discussion: 

The results generated by this methodology are in accordance with the benchmarked research. 

The values of objectives differ with that of the benchmark but the trends remain the same. This is 

due to the fact that different parameters that were unknown for the benchmark had to be assumed 

these include the volume of the cube which encloses the workspace and the sizes of the plates 

themselves. Normalizing the objective matrices solves this problem as well. 

The following figure shows the plot of workspace volume created in the benchmark: 

 

Figure 5-3: The plot of workspace volume created in the benchmark 

The following figure shows the same plot created using the proposed methodology: 
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Figure 5-4: Plot of workspace volume 

The optimization engine is designed to calculate the pareto front by minimizing all the objectives 

hence the objectives that need to be optimized are first inverted and then sent to the optimizer 

program to calculate pareto frontier. The plots of these objectives are shown in the following 

figures: 

 

 

Figure 5-5: Plot of inverted workspace volume 

si ci 
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Figure 5-6: Inverted inverse of condition number 

 

 

Figure 5-7: Inverted global condition number 
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Figure 5-8: Maximum singular value of inverse Jacobian 

 

 

Figure 5-9: Inverted minimum singular value of inverse Jacobian 
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Figure 5-10: Inverted minimum singular value of Jacobian 

The pareto frontier of these plots is calculated and the following points are found to be pareto 

optimal: 

Stroke 

Length 

Difference in 

Magnitude 

20 0.59142 

20 0.618205 

20 0.64499 

22.59615 0.59142 

22.59615 0.618205 

22.59615 0.64499 

25.1923 0.59142 

25.1923 0.618205 

25.1923 0.64499 

27.78845 0.59142 

27.78845 0.618205 

27.78845 0.64499 

30.3846 0.59142 

30.3846 0.618205 

30.3846 0.64499 

32.98075 0.59142 

32.98075 0.618205 

32.98075 0.64499 
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35.5769 0.59142 

35.5769 0.618205 

35.5769 0.64499 

38.17305 0.59142 

38.17305 0.618205 

38.17305 0.64499 

40.7692 0.59142 

40.7692 0.618205 

40.7692 0.64499 

43.36535 0.59142 

43.36535 0.618205 

43.36535 0.64499 

45.9615 0.618205 

45.9615 0.64499 

48.55765 0.59142 

48.55765 0.618205 

48.55765 0.64499 

51.1538 0.59142 

51.1538 0.618205 

51.1538 0.64499 

53.74995 0.618205 

53.74995 0.64499 

56.3461 0.59142 

56.3461 0.618205 

56.3461 0.64499 

58.94225 0.59142 

58.94225 0.618205 

58.94225 0.64499 

61.5384 0.618205 

61.5384 0.64499 

64.13455 0.59142 

64.13455 0.618205 

64.13455 0.64499 

66.7307 0.59142 

66.7307 0.618205 

66.7307 0.64499 

69.32685 0.59142 

69.32685 0.618205 

69.32685 0.64499 

71.923 0.618205 

71.923 0.64499 
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74.51915 0.59142 

74.51915 0.618205 

74.51915 0.64499 

77.1153 0.59142 

77.1153 0.618205 

77.1153 0.64499 

79.71145 0.59142 

79.71145 0.618205 

79.71145 0.64499 

82.3076 0.59142 

82.3076 0.618205 

82.3076 0.64499 

84.90375 0.59142 

84.90375 0.618205 

84.90375 0.64499 

87.4999 0.59142 

87.4999 0.618205 

87.4999 0.64499 

Table 5-1: Pareto front calculated for the six objectives 

When the same optimization code is run for the three optimization parameters of the benchmark 

it yields the following results: 

Stroke 

Length 

Difference in 

Magnitude 

87.4999 0.64499 
Table 5-2: Pareto front for the three objectives in the benchmark 

This however is not the validation of our results since these values are obtained by 

simultaneously optimizing the three objectives whereas in the benchmark research the objectives 

have been optimized one at a time. 

When the proposed methodology is run for the workspace optimization subject to the global 

conditioning index it yields the following results: 

Stroke 

Length 

Difference in 

Magnitude 

85 0.27 
Table 5-3: Pareto front for global conditioning index as calculated in the benchmark 

These are the values that were obtained in the benchmark research. Now that our results match 

with the bench marked research it can be stated that the proposed methodology works well on 
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simultaneously optimizing the objectives since it gives the same results as the benchmark when 

used with a single objective. 
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Chapter 6: Conclusion 

This research aims at proposing a methodology for the workspace optimization of PKMs; using 

multiple criteria simultaneously. Another important factor that was not foreseen at the beginning 

of the research is the optimization scheme. So far no such research has been carried out where 

multiple objectives are simultaneously used to optimize the workspace of a PKMs. 

A methodology is proposed that performs the multi criteria workspace optimization of PKMs. 

The optimization scheme used is pareto front optimization. Another novelty of the research is 

that a new method to implement the pareto front optimization is proposed and implemented.  

The validation of proposed methodology was a challenge in itself since no work of such sort is 

available in the literature. Validation is performed by generating the results of single objective 

optimization using the new methodology. The proposed methodology produces results in 

accordance with the benchmarked research when a single optimization objective is selected. It is 

therefore expected that the results produced for the simultaneous optimization of all the six 

objectives are correct. Hence a methodology is proposed and the results validated for the “Multi-

criteria Workspace Optimization of PKMs”. 

6.1. Future Works: 

Even though the methodology is validated there are still some points where it can be improved. 

Firstly there is no consideration for the collision of the mechanism links with each other. In real 

applications all such poses must be avoided, hence this needs to be added into the methodology. 

Serial programming was used in the code for this research; this proved to be a major drawback 

since the computational power needed for such computations was not available. For this reason 

the discretization used wherever required was very small affecting the precision of the solution. 

Keeping above discussion in view it is recommended that parallel programing with higher 

discretization should be used instead of using serial programming with lower discretization. This 

not only will increase the precision of the calculations but also yield a better, more realistic and 

optimized solution. The validation part also needs some attention it is recommended that the 

scheme be implemented on at least a couple of more mechanisms and the results be compared 

with the published research. Yet another aspect of improvement in this regard is the relative 

weights of the objectives. So far there is no scheme in the literature that can be used for the 

calculation of the relative weights. If the relative weights of the objectives could somehow be 
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found it will highly improve the methodology since weighted sum or modified weighted sum 

optimization schemes can be used then. These schemes are easier to understand and implement 

and make the methodology even simpler.  
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APPENDIX ‘A’ 

The Code: 

clc   

clear all 

close all 

  

% This is the programme for the benchmarked paper 

% In the name of ALLAH I begin 

% It is 09:34 A.M 25th April 2012 

% A1 stands for the point where leg 1 is connected to the base 

% B1 """""""""""""""""""""""""""""""""""""""""""""""""""" moving platform 

% and so on so forth 

% The length of each side of the triangular plate is assumed to be 0.5 units 

% The length of each side of the base plate is assumed to be 0.75 units 

% The maximum length of the legs is assumed to be 1 

% The minimum length of a leg is given by formula qmin = 1 / ( 1 + si/100) 

% Matrices Px, Py, Pz contain the cordinates of the points that are to be 

% checked for bieng the candidate points. 

% The coordinates of the points Bi are calculated by subtractung the local 

% frame center from the coordinates of the points Bi in the center local 

% frame 

  

ex = 0.75; 

ex1 = 0.5; 

NOP = 30; 

A1 = [ex/-2;ex*cosd(30)/-3]; 

A2 = [ex/2;ex*cosd(30)/-3]; 

A3 = [0;2*ex*cosd(30)/3]; 

Stroke_Length = 1; 

Workspacex = []; 

Workspacey = []; 

Workspacez = []; 

UC_Workspacex = []; 

UC_Workspacey = []; 

UC_Workspacez = []; 

xbounds = zeros(1,6); 

ybounds = zeros(1,6); 

  

flag = 0; 

for si = 17.40385:2.59615:87.5 

    Diff_Mag = 1; 

    qmin(Stroke_Length) = 1 / ( 1 + si/100); 

    zmin = (sqrt(qmin(Stroke_Length)^2 - ((ex - ex1) / 2)^2)); 

    zmax = (sqrt(1 - ((ex - ex1) / 2)^2)); 



50 
 

    %     Pz = sqrt(qmin(Stroke_Length)^2 - ((ex - ex1) / 2)^2):(sqrt(1 - ((ex - ex1) / 2)^2) - 

sqrt(qmin(Stroke_Length)^2 - ((ex - ex1) / 2)^2)) / (NOP - 1) :sqrt(1 - ((ex - ex1) / 2)^2); 

 

    Pz = zmin : (zmax - zmin)/ (NOP - 1) : zmax; 

    for ci = 0.27:0.026785:0.645 

        SOIOCN = 0; 

        xbounds(1) = (ex1/ -2) - A1(1) + ci; 

        xbounds(2) = (ex1/ 2) - A2(1) + ci; 

        xbounds(3) = - A3(1) + ci; 

        xbounds(4) = (ex1/ -2) - A1(1) - ci; 

        xbounds(5) = (ex1/ 2) - A2(1) - ci; 

        xbounds(6) = - A3(1) - ci; 

        ybounds(1) = (ex1*cosd(30)/-3) - A1(2) + ci; 

        ybounds(2) = (ex1*cosd(30)/3) - A2(2) + ci; 

        ybounds(3) = (2*ex1*cosd(30)/3) - A3(2) + ci; 

        ybounds(4) = (ex1*cosd(30)/-3) - A1(2) - ci; 

        ybounds(5) = (ex1*cosd(30)/3) - A2(2) - ci; 

        ybounds(6) = (2*ex1*cosd(30)/3) - A3(2) - ci; 

        xmin = min(xbounds); 

        xmax = max(xbounds); 

        ymin = min(ybounds); 

        ymax = max(ybounds); 

        Px = xmin : ((xmax - xmin)/(NOP - 1)) : xmax; 

        Py = ymin : ((ymax - ymin)/(NOP - 1)) : ymax; 

 

        %         Px = min(xbounds):(max(xbounds) - min(xbounds)) / (NOP - 1) :max(xbounds); 

        %         Py = min(ybounds):(max(ybounds) - min(ybounds)) / (NOP - 1) :max(ybounds); 

        %         Vol_Factor = (((max(xbounds) - min(xbounds)) * (max(ybounds) - min(ybounds)) * 

(Pz(NOP) - Pz(1))) / ((length(Px)) * (length(Py)) * (length(Pz)))); 

 

        Vol_Factor = ((xmax - xmin) * (ymax - ymin) * (Pz(NOP) - Pz(1))) / ((length(Px)) * 

(length(Py)) * (length(Pz))); 

        z = 1; 

        ucw = 1; 

        max_s_v = []; 

        for i = 1:1:NOP 

            l = 1; 

            for j = 1:1:NOP 

                m = 1; 

                for k = 1:1:NOP 

                    A1 = [ex/-2;ex*cosd(30)/-3]; 

                    A2 = [ex/2;ex*cosd(30)/-3]; 

                    A3 = [0;2*ex*cosd(30)/3]; 

                    B1 = [(ex1/-2) - Px(i) ;(ex1*cosd(30)/-3) - Py(j)]; 

                    B2 = [(ex1/2) - Px(i); (ex1*cosd(30)/-3) - Py(j)]; 

                    B3 = [0 - Px(i); (2*ex1*cosd(30)/3) - Py(j)]; 
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                    C1 = A1 - B1; 

                    C2 = A2 - B2; 

                    C3 = A3 - B3; 

                    magC1 = sqrt(C1(1)^2 + C1(2)^2); 

                    magC2 = sqrt(C2(1)^2 + C2(2)^2); 

                    magC3 = sqrt(C3(1)^2 + C3(2)^2); 

                    Q(1) = sqrt((Px(i) - C1(1))^2 + (Py(j) - C1(2))^2 + Pz(k)^2); 

                    Q(2) = sqrt((Px(i) - C2(1))^2 + (Py(j) - C2(2))^2 + Pz(k)^2); 

                    Q(3) = sqrt((Px(i) - C3(1))^2 + (Py(j) - C3(2))^2 + Pz(k)^2); 

                    if min(Q) >= qmin(Stroke_Length) && max(Q) <= 1         %&& magC1 == ci 

                        if ci <= magC1 <= ci + 0.00000026785 && ci <= magC2 <= ci + 0.00000026785 

&& ci <= magC3 <= ci + 0.00000026785 

                            Workspacex(z) = Px(i); 

                            Workspacey(z) = Py(j); 

                            Workspacez(z) = Pz(k); 

                            z = z + 1; 

                            UC_Workspacex(ucw) = Px(i); 

                            UC_Workspacey(ucw) = Py(j); 

                            UC_Workspacez(ucw) = Pz(k); 

                            b1 = [(ex1/-2) - UC_Workspacex(ucw) ;(ex1*cosd(30)/-3) - 

UC_Workspacey(ucw); UC_Workspacez(ucw)]; 

                            b2 = [(ex1/2) - UC_Workspacex(ucw); (ex1*cosd(30)/-3) - 

UC_Workspacey(ucw); UC_Workspacez(ucw)]; 

                            b3 = [0 - UC_Workspacex(ucw); (2*ex1*cosd(30)/3) - UC_Workspacey(ucw); 

UC_Workspacez(ucw)]; 

                            a1 = [ex/-2;ex*cosd(30)/-3; 0]; 

                            a2 = [ex/2;ex*cosd(30)/-3; 0]; 

                            a3 = [0;2*ex*cosd(30)/3; 0]; 

                            u1 = b1 - a1; 

                            u2 = b2 - a2; 

                            u3 = b3 - a3; 

                            ub1 = u1/sqrt(u1(1)^2 + u1(2)^2 + u1(3)^2); 

                            ub2 = u2/sqrt(u2(1)^2 + u2(2)^2 + u2(3)^2); 

                            ub3 = u3/sqrt(u3(1)^2 + u3(2)^2 + u3(3)^2); 

                            Jaco = [ub1(1) ub2(1) ub3(1);ub1(2) ub2(2) ub3(2); ub1(3) ub2(3) ub3(3)]; 

                            Inversejaco = inv(Jaco); 

                            SOIOCN = SOIOCN +(1/ (norm(Jaco) * norm (Inversejaco))); 

                            ucw = ucw + 1; 

                            mx_s_v(ucw) = svds(Inversejaco,1); 

                            mn_s_v(ucw) = svds(Inversejaco,1,0); 

                            f_mx_s_v (ucw) = svds (Jaco,1); 

                            f_mn_s_v (ucw) = svds (Jaco,1,0); 

 

                            %                                 if mn_s_v(ucw) == 0 

                            %                                     mn_s_v(ucw) = 10000; 

                            %                                 end 
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                        end 

                    elseif 0 <= min (Q) <= qmin(Stroke_Length) 

                        %                             if ci <= magC1 <= ci + 0.026785 || ci <= magC2 <= ci + 

0.026785 || ci <= magC3 <= ci + 0.026785 

 

                        UC_Workspacex(ucw) = Px(i); 

                        UC_Workspacey(ucw) = Py(j); 

                        UC_Workspacez(ucw) = Pz(k); 

                        ucw = ucw + 1; 

                        b1 = [(ex1/-2) - UC_Workspacex(ucw) ;(ex1*cosd(30)/-3) - 

UC_Workspacey(ucw); UC_Workspacez(ucw)]; 

                        b2 = [(ex1/2) - UC_Workspacex(ucw); (ex1*cosd(30)/-3) - 

UC_Workspacey(ucw); UC_Workspacez(ucw)]; 

                        b3 = [0 - UC_Workspacex(ucw); (2*ex1*cosd(30)/3) - UC_Workspacey(ucw); 

UC_Workspacez(ucw)]; 

                        a1 = [ex/-2;ex*cosd(30)/-3; 0]; 

                        a2 = [ex/2;ex*cosd(30)/-3; 0]; 

                        a3 = [0;2*ex*cosd(30)/3; 0]; 

                        u1 = b1 - a1; 

                        u2 = b2 - a2; 

                        u3 = b3 - a3; 

                        ub1 = u1/sqrt(u1(1)^2 + u1(2)^2 + u1(3)^2); 

                        ub2 = u2/sqrt(u2(1)^2 + u2(2)^2 + u2(3)^2); 

                        ub3 = u3/sqrt(u3(1)^2 + u3(2)^2 + u3(3)^2); 

                        Jaco = [ub1(1) ub2(1) ub3(1);ub1(2) ub2(2) ub3(2); ub1(3) ub2(3) ub3(3)]; 

                        Inversejaco = inv(Jaco); 

                        SOIOCN = SOIOCN +(1/ (norm(Jaco) * norm (Inversejaco))); 

                        mx_s_v(ucw) = svds(Inversejaco,1); 

                        mn_s_v(ucw) = svds(Inversejaco,1,0); 

                        f_mx_s_v (ucw) = svds (Jaco,1); 

                        f_mn_s_v (ucw) = svds (Jaco,1,0); 

 

                        %                                 if mn_s_v(ucw) == 0 

                        %                                     mn_s_v(ucw) = 10000; 

                        %                                 end 

                        %                             end 

 

                    end 

                end 

            end 

             

        end 

        Volume(Stroke_Length,Diff_Mag) = Vol_Factor * length(Workspacex); 

        ICN(Stroke_Length,Diff_Mag) = SOIOCN/length(UC_Workspacez); 
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        GCN(Stroke_Length,Diff_Mag) = SOIOCN * (((max(xbounds) - min(xbounds)) * 

(max(ybounds) - min(ybounds)) * (Pz(NOP) - Pz(1)))/length(UC_Workspacex)); 

        max_sing_value (Stroke_Length,Diff_Mag) = max(mx_s_v); 

        for q = 1:1:size(mn_s_v) 

            if mn_s_v(q) == 0 

                mn_s_v(q) = 1000; 

            end 

        end 

        min_sing_value (Stroke_Length,Diff_Mag) = min(mn_s_v); 

        f_max_sing_value (Stroke_Length, Diff_Mag) = max(f_mx_s_v); 

        for q = 1:1:size(f_mn_s_v) 

            if f_mn_s_v(q) == 0 

                f_mn_s_v(q) = 1000; 

            end 

        end 

        f_min_sing_value (Stroke_Length,Diff_Mag) = min(f_mn_s_v); 

        Diff_Mag = Diff_Mag + 1; 

    end 

    Stroke_Length = Stroke_Length + 1; 

    flag = flag + 1 

end 

  

% % % % % % % % % % % % % % % % % % [p q] = size(Volume); 

% % % % % % % % % % % % % % % % % %  

% % % % % % % % % % % % % % % % % % for i =1:1:p-1 

% % % % % % % % % % % % % % % % % %     for j = 1:1:q 

% % % % % % % % % % % % % % % % % %         Volume1 (i,j) = Volume (i+1,j); 

% % % % % % % % % % % % % % % % % %         ICN1 (i,j) = ICN (i+1,j); 

% % % % % % % % % % % % % % % % % %         GCN1 (i,j) = GCN (i+1,j); 

% % % % % % % % % % % % % % % % % %         max_sing_value1 (i,j) = 

max_sing_value(i+1,j); 

% % % % % % % % % % % % % % % % % %         min_sing_value1 (i,j) = 

min_sing_value(i+1,j); 

% % % % % % % % % % % % % % % % % %         f_max_sing_value1 (i,j) = 

f_max_sing_value(i+1,j); 

% % % % % % % % % % % % % % % % % %         f_min_sing_value1 (i,j) = 

f_min_sing_value(i+1,j); 

% % % % % % % % % % % % % % % % % %     end 

% % % % % % % % % % % % % % % % % % end 

% % % % % % % % % % % % % % % % % % ci = 0.27:0.026785:0.645; 

% % % % % % % % % % % % % % % % % % si = 20:2.59615:87.5; 

% % % % % % % % % % % % % % % % % %  

% % % % % % % % % % % % % % % % % % surfl (ci,si,Volume1) 

% % % % % % % % % % % % % % % % % % figure 

% % % % % % % % % % % % % % % % % % surfl (ci,si,ICN1) 

% % % % % % % % % % % % % % % % % % figure 
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% % % % % % % % % % % % % % % % % % surfl (ci,si,GCN1) 

% % % % % % % % % % % % % % % % % % figure 

% % % % % % % % % % % % % % % % % % surfl(ci,si,max_sing_value1) 

% % % % % % % % % % % % % % % % % % figure 

% % % % % % % % % % % % % % % % % % surfl(ci,si,min_sing_value1) 

% % % % % % % % % % % % % % % % % % figure 

% % % % % % % % % % % % % % % % % % surfl(ci,si,f_max_sing_value1) 

% % % % % % % % % % % % % % % % % % figure 

% % % % % % % % % % % % % % % % % % surfl(ci,si,f_min_sing_value1) 

  

  

% To increase the accuracy of the manipulator we need to minimize the 

% maximum singular value of the inverse Jacobian matrix. 

  

  

% To increase the velocity transmission factor we need to maximize the 

% minimum singular value of the inverse Jacobian matrix. 

  

  

% To increase the force transmission factor we need to maximize the minimum 

% singular value of the Jacobian matrix. 

  

for i = 1:1:Stroke_Length - 1 

     

    for j = 1:1:Diff_Mag - 1 

         

        WorkspaceVolume (i,j) = ( Volume(i,j) - min(min(Volume)))/(max(max(Volume)) - 

min(min(Volume))); 

         

        inverted_workspace_volume = 1 - WorkspaceVolume; 

         

        % minimize inverted_workspace_volume 

         

        InverseOfConditionNumber (i,j) = ( ICN(i,j) - min(min(ICN)))/(max(max(ICN)) - 

min(min(ICN))); 

         

        inverted_inverse_of_condition_number = 1 - InverseOfConditionNumber; 

         

        % minimize inverted_inverse_of_condition_number 

         

        GlobalConditionNumber (i,j) = ( GCN(i,j) - min(min(GCN)))/(max(max(GCN)) - 

min(min(GCN))); 

         

        inverted_global_condition_number = 1 - GlobalConditionNumber; 

         

        % minimize  inverted_global_condition_number 
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        MaximumSingularValueOfInverseJacobian (i,j) = ( max(max(max_sing_value)) - 

max_sing_value(i,j))/(max(max(max_sing_value)) - min(min(max_sing_value))); 

         

        % minimize  MaximumSingularValueOfInverseJacobian 

         

        MinimumSingularValueOfInverseJacobian (i,j) = (min_sing_value(i,j) - 

min(min(min_sing_value)))/(max(max(min_sing_value)) - min(min(min_sing_value))); 

         

        inverted_minimum_singular_value_of_inverse_Jacobian = 1 - 

MinimumSingularValueOfInverseJacobian; 

         

        % minimize inverted_minimum_singular_value_of_inverse_Jacobian 

         

        MinimumSingularValueOfJacobian (i,j) = (f_min_sing_value(i,j) - 

min(min(f_min_sing_value)))/(max(max(f_min_sing_value)) - min(min(f_min_sing_value))); 

         

        inverted_minimum_singular_value_of_Jacobian = 1 - MinimumSingularValueOfJacobian; 

         

        % minimize  inverted_minimum_singular_value_of_Jacobian      

         

    end 

     

end 

  

  

[p q] = size(Volume); 

  

for i =1:1:p-1 

    for j = 1:1:q 

        inverted_workspace_volume1 (i,j) = inverted_workspace_volume (i+1,j); 

        inverted_inverse_of_condition_number1 (i,j) = inverted_inverse_of_condition_number 

(i+1,j); 

        inverted_global_condition_number1 (i,j) = inverted_global_condition_number (i+1,j); 

        MaximumSingularValueOfInverseJacobian1 (i,j) = 

MaximumSingularValueOfInverseJacobian (i+1,j); 

        inverted_minimum_singular_value_of_inverse_Jacobian1 (i,j) = 

inverted_minimum_singular_value_of_inverse_Jacobian (i+1,j); 

 

%         f_max_sing_value1 (i,j) = f_max_sing_value(i+1,j); 

 

        inverted_minimum_singular_value_of_Jacobian1 (i,j) = 

inverted_minimum_singular_value_of_Jacobian (i+1,j); 

    end 

end 

ci = 0.27:0.026785:0.645; 
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si = 20:2.59615:87.5; 

  

surfl (ci,si,inverted_workspace_volume1) 

title ('Inverted Workspace Volume'); 

xlabel ('Difference in Magnitude'); 

ylabel ('Stroke Length'); 

zlabel ('Inverted Workspace Volume'); 

figure 

surfl (ci,si,inverted_inverse_of_condition_number1) 

title ('Inverted Inverse of Condition Number'); 

xlabel ('Difference in Magnitude'); 

ylabel ('Stroke Length'); 

zlabel ('Inverted Inverse of Condition Number'); 

figure 

surfl (ci,si,inverted_global_condition_number1) 

title ('Inverted Global Condition Number'); 

xlabel ('Difference in Magnitude'); 

ylabel ('Stroke Length'); 

zlabel ('Inverted Global Condition Number'); 

figure 

surfl(ci,si,MaximumSingularValueOfInverseJacobian1) 

title ('Maximum Singular Value of Inverse Jacobian'); 

xlabel ('Difference in Magnitude'); 

ylabel ('Stroke Length'); 

zlabel ('Maximum Singular Value of Inverse Jacobian'); 

figure 

surfl(ci,si,inverted_minimum_singular_value_of_inverse_Jacobian1) 

title ('Inverted Minimum Singular Value of Inverse Jacobian'); 

xlabel ('Difference in Magnitude'); 

ylabel ('Stroke Length'); 

zlabel ('Inverted Minimum Singular Value of Inverse Jacobian'); 

 

% figure 

% surfl(ci,si,f_max_sing_value1) 

 

figure 

surfl(ci,si,inverted_minimum_singular_value_of_Jacobian1) 

title ('Inverted Minimum Singular Value of Jacobian'); 

xlabel ('Difference in Magnitude'); 

ylabel ('Stroke Length'); 

zlabel ('Inverted Minimum Singular Value of Jacobian'); 

  

  

  

  

% For time being we define the objective function as the sum of all the 



57 
 

% above factors that have been calculated in the nested for loop just 

% above. 

  

% % % % % % % % % % % % % % % % % BestSoFar = 0; 

% % % % % % % % % % % % % % % % % BestWeightsSoFar.WrokspaceVolumeWeight = 0; 

% % % % % % % % % % % % % % % % % 

BestWeightsSoFar.InverseOfConditionNumberWeight = 0; 

% % % % % % % % % % % % % % % % % BestWeightsSoFar.GlobalConditionNumberWeight 

= 0; 

% % % % % % % % % % % % % % % % % 

BestWeightsSoFar.MaximumSingularValueOfInverseJacobianWeight = 0; 

% % % % % % % % % % % % % % % % % 

BestWeightsSoFar.MinimumSingularValueOfInverseJacobianWeight = 0; 

% % % % % % % % % % % % % % % % % 

BestWeightsSoFar.MinimumSingularValueOfJacobianWeight = 0; 

% % % % % % % % % % % % % % % % %  

% % % % % % % % % % % % % % % % % for j =1:1:1000 

% % % % % % % % % % % % % % % % %     for i=1:1:1000 

% % % % % % % % % % % % % % % % %         weights(i).WrokspaceVolumeWeight = 

rand(1); 

% % % % % % % % % % % % % % % % %         weights(i).InverseOfConditionNumberWeight 

= rand(1); 

% % % % % % % % % % % % % % % % %         weights(i).GlobalConditionNumberWeight = 

rand(1); 

% % % % % % % % % % % % % % % % %         

weights(i).MaximumSingularValueOfInverseJacobianWeight = rand(1); 

% % % % % % % % % % % % % % % % %         

weights(i).MinimumSingularValueOfInverseJacobianWeight = rand(1); 

% % % % % % % % % % % % % % % % %         

weights(i).MinimumSingularValueOfJacobianWeight = rand(1); 

% % % % % % % % % % % % % % % % %         sum = weights(i).WrokspaceVolumeWeight + 

weights(i).InverseOfConditionNumberWeight + weights(i).GlobalConditionNumberWeight +  

weights(i).MaximumSingularValueOfInverseJacobianWeight + 

weights(i).MinimumSingularValueOfInverseJacobianWeight + 

weights(i).MinimumSingularValueOfJacobianWeight; 

% % % % % % % % % % % % % % % % %         weights(i).WrokspaceVolumeWeight = 

weights(i).WrokspaceVolumeWeight/sum; 

% % % % % % % % % % % % % % % % %         weights(i).InverseOfConditionNumberWeight 

= weights(i).InverseOfConditionNumberWeight/sum; 

% % % % % % % % % % % % % % % % %         weights(i).GlobalConditionNumberWeight = 

weights(i).GlobalConditionNumberWeight/sum; 

% % % % % % % % % % % % % % % % %         

weights(i).MaximumSingularValueOfInverseJacobianWeight = 

weights(i).MaximumSingularValueOfInverseJacobianWeight/sum; 
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% % % % % % % % % % % % % % % % %         

weights(i).MinimumSingularValueOfInverseJacobianWeight = 

weights(i).MinimumSingularValueOfInverseJacobianWeight/sum; 

% % % % % % % % % % % % % % % % %         

weights(i).MinimumSingularValueOfJacobianWeight = 

weights(i).MinimumSingularValueOfJacobianWeight/sum; 

% % % % % % % % % % % % % % % % %     end 

% % % % % % % % % % % % % % % % %     for i=1:1:1000 

% % % % % % % % % % % % % % % % %         ObjectiveFunction =  

weights(i).WrokspaceVolumeWeight * WorkspaceVolume + 

weights(i).InverseOfConditionNumberWeight * InverseOfConditionNumber + 

weights(i).GlobalConditionNumberWeight * GlobalConditionNumber + 

weights(i).MaximumSingularValueOfInverseJacobianWeight * 

MaximumSingularValueOfInverseJacobian + 

weights(i).MinimumSingularValueOfInverseJacobianWeight * 

MinimumSingularValueOfInverseJacobian + 

weights(i).MinimumSingularValueOfJacobianWeight * MinimumSingularValueOfJacobian; 

% % % % % % % % % % % % % % % % %         if max(max(ObjectiveFunction)) >= 

BestSoFar 

% % % % % % % % % % % % % % % % %             BestSoFar = 

max(max(ObjectiveFunction)); 

% % % % % % % % % % % % % % % % %             

BestWeightsSoFar.WrokspaceVolumeWeight = weights(i).WrokspaceVolumeWeight; 

% % % % % % % % % % % % % % % % %             

BestWeightsSoFar.InverseOfConditionNumberWeight =  

weights(i).InverseOfConditionNumberWeight; 

% % % % % % % % % % % % % % % % %             

BestWeightsSoFar.GlobalConditionNumberWeight = 

weights(i).GlobalConditionNumberWeight; 

% % % % % % % % % % % % % % % % %             

BestWeightsSoFar.MaximumSingularValueOfInverseJacobianWeight =  

weights(i).MaximumSingularValueOfInverseJacobianWeight; 

% % % % % % % % % % % % % % % % %             

BestWeightsSoFar.MinimumSingularValueOfInverseJacobianWeight = 

weights(i).MinimumSingularValueOfInverseJacobianWeight; 

% % % % % % % % % % % % % % % % %             

BestWeightsSoFar.MinimumSingularValueOfJacobianWeight = 

weights(i).MinimumSingularValueOfJacobianWeight; 

% % % % % % % % % % % % % % % % %         end 

% % % % % % % % % % % % % % % % %     end 

% % % % % % % % % % % % % % % % % end 

% % % % % % % % % % % % % % % % %  

% % % % % % % % % % % % % % % % % ObjectiveFunction =  

BestWeightsSoFar.WrokspaceVolumeWeight * WorkspaceVolume + 

BestWeightsSoFar.InverseOfConditionNumberWeight * InverseOfConditionNumber + 

BestWeightsSoFar.GlobalConditionNumberWeight * GlobalConditionNumber + 
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BestWeightsSoFar.MaximumSingularValueOfInverseJacobianWeight * 

MaximumSingularValueOfInverseJacobian + 

BestWeightsSoFar.MinimumSingularValueOfInverseJacobianWeight * 

MinimumSingularValueOfInverseJacobian + 

BestWeightsSoFar.MinimumSingularValueOfJacobianWeight * 

MinimumSingularValueOfJacobian; 

% % % % % % % % % % % % % % % % % [p q] = size(ObjectiveFunction); 

% % % % % % % % % % % % % % % % %  

% % % % % % % % % % % % % % % % % for i =1:1:p-1 

% % % % % % % % % % % % % % % % %     for j = 1:1:q 

% % % % % % % % % % % % % % % % %         OF2(i,j) = ObjectiveFunction(i+1,j); 

% % % % % % % % % % % % % % % % %         WV2(i,j) =  WorkspaceVolume (i+1,j); 

% % % % % % % % % % % % % % % % %         IOCN2(i,j) = InverseOfConditionNumber 

(i+1,j); 

% % % % % % % % % % % % % % % % %         GCN2(i,j) = GlobalConditionNumber (i+1,j); 

% % % % % % % % % % % % % % % % %         MaxSVOIJ2(i,j) = 

MaximumSingularValueOfInverseJacobian (i+1,j); 

% % % % % % % % % % % % % % % % %         MinSVOIJ2(i,j) = 

MinimumSingularValueOfInverseJacobian (i+1,j); 

% % % % % % % % % % % % % % % % %         MSVOJ2(i,j) = 

MinimumSingularValueOfJacobian (i+1,j); 

% % % % % % % % % % % % % % % % %          

% % % % % % % % % % % % % % % % %     end 

% % % % % % % % % % % % % % % % % end 

% % % % % % % % % % % % % % % %  

% % % % % % % % % % % % % % % % % si = 20:2.59615:87.5; 

% % % % % % % % % % % % % % % % % figure 

% % % % % % % % % % % % % % % % % surfl(ci,si,OF2) 

% % % % % % % % % % % % % % % % % figure 

% % % % % % % % % % % % % % % % % surfl(ci,si,WV2) 

% % % % % % % % % % % % % % % % % figure 

% % % % % % % % % % % % % % % % % surfl(ci,si,IOCN2) 

% % % % % % % % % % % % % % % % % figure 

% % % % % % % % % % % % % % % % % surfl(ci,si,GCN2) 

% % % % % % % % % % % % % % % % % figure 

% % % % % % % % % % % % % % % % % surfl(ci,si,MaxSVOIJ2) 

% % % % % % % % % % % % % % % % % figure 

% % % % % % % % % % % % % % % % % surfl(ci,si,MinSVOIJ2) 

% % % % % % % % % % % % % % % % % figure 

% % % % % % % % % % % % % % % % % surfl(ci,si,MSVOJ2) 

% % % % % % % % % % % % % % % % %  

% % % % % % % % % % % % % % % % % maxer = max(max(OF2)); 

% % % % % % % % % % % % % % % % % [p q] = size(OF2); 

% % % % % % % % % % % % % % % % %  

% % % % % % % % % % % % % % % % %  

% % % % % % % % % % % % % % % % % for i = 1:1:p 
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% % % % % % % % % % % % % % % % %     for j = 1:1:q 

% % % % % % % % % % % % % % % % %         if OF2(i,j) == maxer 

% % % % % % % % % % % % % % % % %             strokeflag = i; 

% % % % % % % % % % % % % % % % %             diffmagflag = j; 

% % % % % % % % % % % % % % % % %         end 

% % % % % % % % % % % % % % % % %     end 

% % % % % % % % % % % % % % % % % end 

% % % % % % % % % % % % % % % % %  

% % % % % % % % % % % % % % % % % stroke_length = ((strokeflag - 1) * 2.59615) + 20 

% % % % % % % % % % % % % % % % % Diff_magnitude = ((diffmagflag - 1) * 0.026785) + 

0.27 

% % % % % % % % % % % % % % % % % workspacevolume = 

Volume(strokeflag,diffmagflag) 

% % % % % % % % % % % % % % % % % inverseconditionnumber = 

ICN(strokeflag,diffmagflag) 

% % % % % % % % % % % % % % % % % globalconditionnumber = 

GCN(strokeflag,diffmagflag) 

% % % % % % % % % % % % % % % % % maximumsingularvalueofinverseJacobian = 

max_sing_value(strokeflag,diffmagflag) 

% % % % % % % % % % % % % % % % % minimumSingularValueOfInverseJacobian = 

min_sing_value(strokeflag,diffmagflag) 

% % % % % % % % % % % % % % % % % minimumSingularValueOfJacobian = 

f_min_sing_value(strokeflag,diffmagflag) 

  

  

% Creating an objective matrix that will be used to find the Pareto front 

% of the system. The front matrix is logical matrix where '1' represents a 

% point that is part of the pareto front. 

  

Temp = 1; 

  

  

for i = 1:1:Stroke_Length - 2 

     

    for j = 1:1:Diff_Mag - 1 

         

        ObjectiveMatrix (Temp, 1) =  inverted_workspace_volume1 (i, j); 

         

        ObjectiveMatrix (Temp, 2) =  inverted_inverse_of_condition_number1 (i, j); 

         

        ObjectiveMatrix (Temp, 3) =  inverted_global_condition_number1 (i, j); 

         

        %ObjectiveMatrix (Temp, 4) =  MaximumSingularValueOfInverseJacobian1 (i, j); 

         

        %ObjectiveMatrix (Temp, 5) =  inverted_minimum_singular_value_of_inverse_Jacobian1 

(i, j); 
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        %ObjectiveMatrix (Temp, 6) =  inverted_minimum_singular_value_of_Jacobian1 (i, j); 

         

        Temp = Temp + 1; 

         

    end 

     

end 

  

front = paretoGroup (ObjectiveMatrix); 

  

% To increase the accuracy of the manipulator we need to minimize the 

% maximum singular value of the inverse Jacobian matrix. 

  

  

% To increase the velocity transmission factor we need to maximize the 

% minimum singular value of the inverse Jacobian matrix. 

  

  

 % To increase the force transmission factor we need to maximize the minimum 

% singular value of the Jacobian matrix. 

  

% Pareto_Front = struct('Stroke_Length',{}, 'Difference_Magnitude', {}, 'Workspace_Volume', 

{},'Maximum_Singular_Value_of_Inverse_Jacobian',{},'Minimum_Singular_Value_of_Inverse_J

acobian',{},'Minimum_Singular_Value_of_Jacobian',{},'Global_Condition_Number',{},'Inverse_

of_Condition_Number',{}); 

  

  

% Once the pareto front is calculated in terms of points we again find the 

% different parameters associated with that point by using the already done 

% calculations 

 

Temp = 1; 

  

ci = 0.27:0.026785:0.645; 

si = 20:2.59615:87.5; 

temp2 = 0; 

for i = 1:1:Stroke_Length - 2 

     

    for j = 1:1:Diff_Mag - 1 

         

        if front(Temp) == 1 

            temp2 = temp2 + 1; 

            Pareto_Front(temp2).Stroke_Length = si(i); 

            Pareto_Front(temp2).Difference_Magnitude = ci(j); 

            Pareto_Front(temp2).Workspace_Volume = Volume(i,j); 
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            %Pareto_Front(temp2).Maximum_Singular_Value_of_Inverse_Jacobian = 

max_sing_value (i,j); 

            %Pareto_Front(temp2).Minimum_Singular_Value_of_Inverse_Jacobian = 

min_sing_value (i,j); 

            %Pareto_Front(temp2).Minimum_Singular_Value_of_Jacobian = f_min_sing_value 

(i,j); 

            Pareto_Front(temp2).Global_Condition_Number = GCN(i,j); 

            Pareto_Front(temp2).Inverse_of_Condition_Number = ICN(i,j); 

             

        end 

            Temp = Temp + 1; 

    end 

end 
 


