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Abstract 

 

In the past decade, usage of multiple robots for various tasks has gained a lot of 

popularity. Robots are becoming a household item being used in multiple dimensions and 

areas of life. They are used for routine tasks in houses and offices to heavy-duty tasks in 

factories etc. But the application of robots gaining the most popularity in the current world is 

their use in security and surveillance. They are used for search and reconnaissance of large 

scale environments such as banks, shopping malls etc, as well as for inspection of various 

inaccessible areas such as sewers, tunnels and for guiding tourists safely through museums 

etc. This is mainly because of the advantages of robots over their human counterparts; 

reduced costs, time efficiency, lesser manpower requirement and reduced risk factor to name 

a few. This work targets the usage of robots for search and surveillance in a known 

environment map. That is, if it is required to secure an area or decontaminate an already 

'contaminated' area with a known map, or to declare an area clear of any dangers/intruders. 

The term 'contaminated' refers to an area that has an intruder present in it. A lot of work has 

already been carried out and is ongoing in this field of robotics. Various techniques have been 

devised to complete the Pursuit Evasion Problem (as it is more commonly known) where a 

target/intruder is being pursued by a pursuer. The techniques vary in methods of employment 

of robots; some are targeted towards guidance of robots, some are related to single robots, 

while others are related to multiple robots and the degree of coordination required between 

them to secure an area. The concept of 'searcher' and 'blocker agents' is employed and an 

algorithm devised to achieve the abovementioned purpose and detect any intruders present in 

an area in a way that is time efficient and requires lesser number of agents than the 

techniques of uncoordinated search being used. 

 

Keywords: Search and Secure, Pursuit Evasion, Searcher and blocker agents, Coordination  
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CHAPTER 1: INTRODUCTION 

 
The work presented in this dissertation primarily targets the "Search and Secure 

Algorithm" and having robots perform the searching task autonomously. For this purpose, the 

robots must be made capable of searching and securing the given environment of any 

intruders as well as ensuring that no intruders can sneak back into the already secured area 

undetected. This is accomplished through the Search and Surveillance Algorithm discussed in 

the upcoming chapters. The algorithm divides the given environment into areas where the 

robots can move, where there are obstacles and areas that need to be surveyed but are 

inaccessible to the robots (unpathable regions); and then calculates the number of 

robots/agents required and the paths/trajectories they have to follow in order to completely 

survey and secure the area. 

1.1 Definitions and Terminologies 

• Obstacle: Obstacle is a polygonal region that is totally inaccessible; both to robots as 

well as any sort of intruders. 

• Unpathable Region: Unpathable regions are those regions that need to be searched 

and secured but they are physically inaccessible to the robots; though intruders can go 

into such regions. 

• Boundary: Boundary is defined as the outer edges of the environment that contain all 

the obstacles, unpathables and the area to be secured. The boundary must be a closed 

polygon. 

• Decentralized: Decentralized refers to a communication protocol between robots that 

is not centralized at a global center, rather it is a local communication protocol. 

• Uncoordinated/Non-Communicative: Uncoordinated or non-communicative means 

there is no communication of any sort between the robots and they are completely 

independent in their tasks. 

• Blocker Robots or Blockers: Blocker Robots or simply Blockers are those 

agents/UGVs that are used to "block" certain paths/regions; i.e. they secure certain 

regions in an environment in order to break loops/cycles. 

• Searcher Robots or Searchers: Searcher Robots or simply Searchers are those 

agents/UGVs that are used to "search and secure" the environment by moving on their 
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specified paths. Searchers move from one region to another securing them visually 

through their cameras. 

• Convex Hull: A convex hull refers to a polygon who's inner incident angles are never 

greater than 180 degrees. Consequently, each point of a convex hull is visible from 

any other point in it. 

• Circumcircle of Triangle: The circumcircle of a triangle is that circle which touches 

all the vertices of that triangle. 

• Lexicographical Order: Lexicographical Order refers to sorting a set of 

points/vertices in ascending order w.r.t. their X and Y-coordinates. A 

lexicographically minimum point is one that has minimum X and minimum Y 

coordinates in a set of points. 

• Graph: A graph is a set of points joined together by edges between them showing 

their connectivity with each other. A graph may or may not have loops/cycles in it.  

• Tree: A tree is a graph with no loops/cycles in it. 

• Cycles and Loops: Cycles or loops are sets of points in a graph that are connected 

together through multiple paths and there exist back edges between them, such that a 

parent node of a vertex can be cycled back to by passing through another set of nodes. 

• Minimum Spanning Tree: A Minimum Spanning Tree or MST is a tree that has all 

the nodes visited atleast once. The MST has no loops/cycles and if a graph is to be 

converted into an MST, its loops need to be broken through Blockers. 

• Root of a Tree: A Root node of a tree is the start point of the tree i.e. all the tree 

branches are originated from the root. 

• Leaves of a Tree: Leaves or leaf of a tree are those nodes that have no children. They 

are at the ends of a branch. 

• Branches: Branches are series of atleast three connected nodes in a graph or tree. 

1.2 Background 

In the last decade, surveillance, patrolling, exploration and navigation 

algorithms/strategies have piqued the interest of the robotics world. This area has grown in 

leaps and bounds because of the variety of approaches that these algorithms discuss and 

comprise of. Different authors have come up with different numerical as well as analytical 

approaches to solve such complex problems. 
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Mobile robots are used in significant numbers in hazardous and dangerous industrial 

tasks such as aerospace, nuclear and mining industries. As the use of robots increases, so does 

their interaction with humans. In order to perform various tasks, mobile robots are used either 

in collaboration with humans or totally independently. So, research on path planning and 

environment coverage algorithms that identify a collision free path along with performing a 

certain task at hand is a fundamental requirement in the artificial intelligence industry these 

days. Moreover, these paths need to be optimized regarding time as well as space/length 

required to reach their termination points. 

This section aims to present some of the background work related to different 

algorithmic strategies followed by researchers throughout the years for coverage path 

planning. Most of them are mixed strategies resulting from the merging of various analytical 

systems, hence enforcing the idea that it is not necessary to follow one particular strategy to 

solve a problem. 

1.2.1 Cyclic Strategies 

Cyclic strategies involve identifying the whole area to be explored and obstacles 

present in it as a set of vertices. Such strategies are usually used for Patrolling Algorithms 

where robots/agents have to "patrol" an area continuously. 

1.2.2 Markers Based Strategies 

Markers-based strategies are multi-robot, decentralized, non-communicative, local 

search techniques, which employ deployment of tags to identify areas which have already 

been explored by one of the robots in the team. These strategies are examples of dynamic 

path identification since there is no knowledge of the map/environment prior to the start of 

exploration. 

1.2.3 Communication Based Decentralized Strategies 

These techniques are based on communication between robots/agents. As the 

technique is not centralized, the communication between the robots is local and not controlled 

by any global control system. 
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1.2.4 Cooperation Based Centralized Strategies 

As is perceivable from the name of this set of strategies, they employ the use of a 

central monitoring and control unit, which helps all robots/agents navigate and makes 

changes to their paths according to various requirements are runtime. 

1.2.5 Partitioning Based Strategies 

Partitioning based strategies are based on resolving a known environment into 

segments that are independent from each other and are assigned to different robots for 

exploration and monitoring. This particular set of strategies is discussed in most detail in the 

later sections of this paper.  

1.2.6 Contamination Based Strategies 

These are a type of algorithmic technique that assumes that all segments of a partition 

of a map/environment are "contaminated". Contamination can refer to any type of problem 

according to the task at hand e.g. a bomb in a bomb-disposal problem etc. All these segments 

are then "de-contaminated" by different robots/agents keeping in view that no de-

contaminated segment gets contaminated again. 

1.3 Motivation 

As the security threat in the world is increasing day by day, so is the utilization and 

need of multiple mobile robots for searching and surveillance tasks in harsh and dangerous 

environments. Similarly, the requirement of robots in the industry has gone up significantly. 

Such problem have been widely addressed through mobile robots because their cost has 

significantly decreased with a remarkable increase in their capabilities. These advancements 

have led research towards utilizing robots rather than humans for accomplishing various tasks 

because: 

• The tasks are monotonous and very dull. 

• The tasks involve a certain element of danger for people, such as bomb disposal, 

hostile encounters etc. 

• The tasks can be accomplished by robots more efficiently and accurately rather than 

by humans. 

• Robots can be cost effective. 

• Use of robots can result in reduced manpower requirement. 
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Because of all these reasons, the requirement of not only industrial robots, but service 

robots as well has gone up notably. According to the International Federation of Robotics 

(IFR), significantly growing commercial activities related to personal and service robots have 

been identified [1]. Similarly, the Korean Institute for Robot Industry Advancement has 

signified an expansion of 40% every year in the service robot sector [2]. This can be seen in 

the following figures: 

 
Figure 1.1: Robotics market size 

 
Figure 1.2: Global market outlook (KIRIA) 

In order to fulfill this ever increasing global demand for service robots, not only the 

hardware, but the software/algorithmic half of these robots needs to be made more efficient. 

This work can be seen in a similar perspective, as it aims to implement a service robot 

algorithm to efficiently carry out a search and secure task that can be dull and dangerous for 

humans to perform. Hence, a solution is proposed for a similar problem in the chapters ahead. 
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1.4 Scope 

The scope of this work is to implement a partitioning based strategy to partition a 

given environment into smaller regions that are easier to analyze and form a connectivity 

graph from these regions. After an analysis of the connectivity graph, the number of robots, 

their positions and paths are identified for an Uncoordinated Decentralized Search of the 

area. Each robot is assigned a specific role which can either be to stand and cover a certain 

location or to follow a certain path surveying different regions accordingly and are declared 

blocking robots or searching robots according to their defined roles. The results of the work 

are compared with other similar work done for validation purposes. 

1.5 Thesis Outline 

In this thesis, an algorithm for complete search-and-secure coverage of an 

environment is presented. A simulation is performed for the environment and the 

corresponding paths for mobile robots are accordingly identified. 

In Chapter 1, the title of the research and the scope of work are described, along with 

a brief background of the research objectives and some important terminologies used and 

their definitions are listed. 

In Chapter 2, the problem and corresponding objectives are stated. Afterwards, 

important fundamental concepts studied as part of the Literature Review and Research carried 

out for the study of various techniques and algorithms being used in this work are presented. 

In Chapter 3, the Analytical Model and Research Methodology identified and 

implemented to accomplish this work are presented with brief results required to emphasize 

the outcome of each step. 

In Chapter 4, case studies are presented as well as a comparison of results with a 

similar research project already carried out. 

In Chapter 5, an implementation of the algorithm on an actual map of a specified 

location as well as its detailed results and discussions are presented. 

In Chapter 6, the conclusion and different application areas of the research work are 

presented. 
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CHAPTER 2: OBJECTIVES AND LITERATURE REVIEW 

 

2.1 Literature Review 

The use of Unmanned Ground Vehicles (UGVs) for the "search and secure" problem 

is an application of great interest that allows searching an area and securing it using one or 

multiple autonomous robots based on the complexity of the area to be searched.  

Search and secure involves two aspects; navigation and sensing. Developers have 

used different basic techniques to define navigation algorithms. These methods may use a 

variety of approaches, some of which may be same or similar. Yet, each method has distinct 

logical features, which differentiates it from other methods. The goal of this manuscript is to 

further the developments in robot navigation. Each navigation algorithm engenders different 

sensing and securing capabilities, hence the algorithms are treated as "search and secure" 

algorithms instead of just navigation. This section initially defines and describes the 

background for different search and secure algorithms as briefly mentioned in the previous 

chapter, which helps the reader identify why "partitioning strategies" are used in this study. 

Further, this chapter goes into the detail of partitioning strategies to bring the reader up to 

speed with the developments in the field up till now, so that he may do justice to the work 

presented in this manuscript. 

2.2 Search and Secure Algorithms Overview 

This section, as has already been described, takes a look at various navigation 

techniques employed for area searching and securing. All techniques have certain advantages 

and disadvantages. Some of them offer cost efficiency, while others focus on saving time. 

Some are more robust in terms of their tolerance to failure of one or more robots (or "agent"), 

while others are based on independence of each agent from the other in order to complete a 

task. Some strategies implement their navigation method based on global information of the 

area to be explored, while others use local decision making to autonomously make navigation 

decisions without knowledge of the global scenario. Yet, a few involve communication 

between different agents to tackle an environment, compared to independent partitioned 

tasks. The task accomplished in this section is to establish which of the navigation algorithms 

allow us to explore the requisite searching and sensing capabilities targeted in this thesis. 
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2.2.1 Cyclic Strategies 

Cyclic strategies involve identifying the whole area to be explored and obstacles 

present in it as a set of vertices [3]. The path formed by joining of the vertices is termed as 

"Hamilton Path", and if a cyclic patrol is established, the cycle is known as "Hamilton Cycle" 

[4]. To compute the possibility of existence of Hamilton cycles within a certain map or 

"graph", extensive procedures have been established [5]. These help in determining a certain 

path for the robots to travel and, hence, are essential to the employment of this technique. 

Once the Hamilton path or cycle is identified, a closed loop is established that covers 

all the vertices, and the robot team travels along that same path one-by-one. Each robot will 

"clear" all the possible hideouts of an intruder or locations of any static object by traversing 

through every vertex in the area. Yet, it is easily observable that an intelligent intruder may 

observe and identify the route taken by each robot and sneak in between two robots in the 

same cycle to remain unobserved at all times. Hence, this technique is only viable for static 

object searching, securing, and patrolling, but does not have the requisite properties to serve 

as a search, secure, and decontaminate technique for a dynamic intelligent intruder. 

2.2.2 Markers-based strategies 

As mentioned earlier, Markers-based strategies are multi-robot, decentralized, non-

communicative, local search techniques, which employ deployment of tags to identify areas 

which have already been explored by one of the robots in the team. In this technique, there is 

no knowledge of the map prior to the start of exploration. The result is dynamic path 

identification by every robot based on tags or markers placed in its local region. Different 

studies have used this technique using different algorithms; one strategy [6] encompasses the 

algorithm: "A robot explores as long as there are open regions left. If all the regions are 

explored, then the robot picks the direction which was least recently explored." Another 

strategy is inspired by the exploration method used by ants [7], which also drop a marker 

fluid to define their path. The navigation probability of a robot in this strategy is highest in 

the direction most used by other robots. 

As can be easily understood from the description, the target of this strategy is more 

towards defining patrolling routes and exploring an unknown area efficiently in terms of 

time. Though this technique may be used for searching and securing for static objects, its use 

for searching to decontaminate the area seem inadequate, as an intelligent dynamic intruder 

may easily observe the navigation path of the robots and find a pattern to identify unobserved 
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regions in the area at any given time. A dynamic intruder may use the pattern over time to 

keep hidden from the robots, thus making this strategy unfavorable for the study at hand, and 

rather more suited towards exploration and patrolling. 

2.2.3 Communication-based decentralized strategies 

The name of the technique makes it quite evident that there is at least some form of 

direct communication between robots at some point in time during their mission. As this 

technique is decentralized, it means that the communication is local, and not fed into a global 

monitoring and controlling system. The type and method of communication is solely the 

discretion of the specific algorithm developed for a team or a mission. Navigation strategies 

are based on the fact that the map is partially or completely unknown at the start of the 

mission, hence requiring use of local navigation algorithms. 

There are two communication strategies used by Sgorbissa et al. [8]: goal sharing - 

which identifies to a robot what targets the other robots have to coordinate local movement; 

and state sharing - which helps robots without clearly established goals to communicate with 

nearby robots to get help with the identification and establishment of goals. Dollarhide et al. 

[9] have shown the viability of communication-based decentralized strategies for searching 

and securing for static objects, using different algorithms. Yet, this technique seems 

inadequate for searching to decontaminate, as ignorance of the map area and presence of 

loopholes in the dynamic search pattern may easily be exploited by an intelligent intruder. 

2.2.4 Cooperation-Based Centralized Strategies 

These techniques have a central monitoring and controlling unit, which preplans the 

navigation of all robots in the mission as well as makes requisite changes during the mission. 

Mapping of the environment is necessary for preplanning, and dynamic mapping is also 

featured in many algorithms and studies to allow for threat response [10] or enemy location 

based navigation [11].  

This technique allows for dynamic changes in the search routes taken by any given 

robot based on malfunctioning of one or more robots, identification of a static or dynamic 

threat and the type of response initiated to deal with it, and emergence of environmental 

changes. Hence, this provides the capability to search and secure, as well as decontaminate a 

map. Yet, it is quite evident that the equipment is expensive, planning is quite difficult, and 

high intelligence in the algorithm is necessary to take care of the uncertainties of the dynamic 

situation. 
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2.2.5 Partitioning Strategies 

Partitioning strategies are based on resolving the known area of a map into 

independent segments, which are then assigned to different robots for exploration and 

monitoring. This has been shown by Wurm et al. [12] to reduce the exploration time for 

unknown areas of the map significantly. Also for known areas of the map, searching and 

securing by this method is the most time efficient, which has been proven through 

simulations as well as real-time experiments. This is also a very good patrolling strategy as 

well, if the navigation algorithm is based on the probability calculations of least monitored 

area at any point in time [13]. This increases the probability of observation of each area and 

significantly reduces chances of external intrusion, as the route of each agent is dynamic and 

cannot be predicted by an intelligent intruder, unlike in cyclic patrolling techniques. 

Contamination-based strategies are another set of algorithmic techniques, which are 

primarily based on partitioning. The basic strategy of decontamination is to assume that all 

edges and vertices in the map are contaminated and contamination may flow from a vertex to 

adjacent edges and vice versa. The objective is to observe and, hence, eliminate the 

possibility of or identify all contaminants present. 

Once a vertex or edge is observed to be "clear", the algorithm has to make sure that 

there is no possibility of the cleared vertex or edge to be contaminated again. As any obstacle 

is a closed body, the edges form a cycle which may be traversed by an intruder or a 

contaminant without observation if a single agent attempts to observe it by itself. Hence, 

every obstacle serves as a cycle, which has to be broken by using multiple observers at the 

same time to clear it. To achieve this, a few agents are placed in the map area or "graph" as 

static "blockers", which break the cycles present in the graph. Other agents serve as 

"searchers" who move through the graph to decontaminate/clear the vertices and edges not 

observed by the static blockers, in a manner that the decontamination is permanent [14]. 

The blocker and searcher placement algorithm is based on furthering the partitioning 

strategy. A popular segmentation technique is triangulation, using Delaunay algorithm. 

Combining triangulated regions to form convex polygons, and then joining the centers of 

adjacent regions results in a diagram known as "Voronoi Diagram" [15]. This diagram is used 

to identify cycles present in the graph and locate suitable blockers positions and searcher 

paths. Optimal partitioning techniques are being developed [16], which are the focus of this 

study as well. The next section focuses on this very topic, and aims to identify the research 

that has already been done to develop a base for the work presented in this manuscript. 
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2.3 Developmental Stages of Partitioning-based Algorithms 

Every search and secure operation involves determining how many robots will be 

required for it, what navigation routes will be implemented, how much time it will take, and 

what will the cost of the operation be. To make use of robots for such tasks feasible, it is 

necessary to keep the costs minimal, hence the use of the least number of robots for the least 

amount of time is the goal. Any "strategy" implemented to perform a "clearing" operation in 

an area or "graph" has an associated "strategy cost" [14]. 

2.3.1 Early Developments 

Initial attempts at using partitioning algorithms for search and secure missions 

involved clearing contaminated edges in a graph [17]. These were improved upon in further 

researches [18]-[21], such that they led to the "graph-clear" problem. More complex methods 

evolved [22], allowing planar regions of simply connected environments to be cleared by a 

single mobile gap detector, when combined with static blockers as per requirement. The 

problem was shown to be NP-complete by Parsons [17], with strategies extracted from a 

minimum spanning tree constructed by the algorithm. Though the algorithm suggested good 

strategies for blocker placement use of moving blockers, it was proven to be strategically 

non-optimal and not as cost-effective as possible, hence leading to further research. 

2.3.2 Objective-based Algorithm Development 

Gerkey et al. [23] addressed the issue of algorithm development by revising sensory 

capabilities of robots and introducing new ones, while Ge and Fua [24] targeted the use of the 

least number of robots (say, one) and develop search algorithms that would sweep a given 

area completely, with least amount of repetition, and in the least amount of time. Isler et al. 

[25] have targeted minimizing the probable decontamination time of an area with an 

intelligent and fast intruder, using randomized navigation strategies for even a slow agent. 

This strategy employs the cost-efficiency principle by minimizing the number of agents used 

to one. Further, it involves the use of randomized movements, instead of pre-determined 

clearing movements, as might be the case with generic partitioning-based algorithms. The 

research showed that the unpredictability of the movement of the searching agent allows it to 

outsmart the faster moving intruder as it cannot use its intelligence effectively. Though time 

consumption was comparable to pre-determined navigation strategies, the reduction of 

preprocessing costs was deemed significant. 
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2.3.3 Search and Secure Using Static Robots 

A research by Ganguli et al. [26] somewhat similar in spirit to what is considered in 

this manuscript is related to the "art gallery problem". This research presents its own method 

of partitioning a simple polygonal environment. The name given to the technique, "The 

vertex-induced tree", involves division of a polygonal environment into star-shaped subsets, 

the technique of which is described in detail by the researchers. The differences to the current 

research are communication (though limited) between different agents, agent-based decision 

making, low prior knowledge of the area they are to be deployed in, and static locations after 

deployment for observation of "an art gallery". 

All the above researches give a clue regarding the variability among different 

techniques used for developing partition-based algorithms. It is evident that identification of 

the objective of the algorithm is of primary importance, as it ascertains the type of techniques 

which might be utilized. In lieu of this, a summary of the parent research for the current study 

is presented in the next section. 

2.4 Search and Secure using Mobile Partitioning-based Robots 

The search and secure algorithm developed for using mobile robots in the parent 

research by Katsilieris [27] targeted sweeping an area with rectangular obstacles. The 

objective of the research was not the sensing itself, but to develop a navigation algorithm, 

which could be coupled with independent sensory control, processing, and feedback 

algorithms. The output of the algorithm was purely navigation trajectories, not robot control 

based on environmental inputs. It was supposed that the map environment and obstacle 

location was known beforehand, which was an input parameter for the algorithm to produce 

navigation trajectories as outputs. All robots were to behave mutually independently, only 

performing based on their own pre-determined objectives. No inter-robot communication was 

involved in any way. This section describes the steps in the algorithm through which the area 

graph was converted to the navigation codes. 

2.4.1 Segmentation and Merging 

The segmentation technique employed in this study is Delaunay triangulation. 

Triangulation simply refers to joining sets of three vertices in a manner such that the whole 

region is divided into non-overlapping triangles. Generally, there would be multiple ways of 

dividing a map with obstacles into triangles. Hence, this process requires optimization, which 

is where the Delaunay algorithm comes in. It prevents the formation of triangles in which 
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very acute angles might be present, which hinders the next set of steps. Still, this 

methodology is open for further optimization, and specifics of the implementation of the 

Delaunay algorithm change with different studies. 

After the formation of triangles within the graph, they are merged to form convex 

polygons of the largest possible areas. An optimal implementation of this step along with 

optimal triangulation would lead to the best segmentation. If the segmentation is optimal, 

lesser regions would be formed in a given graph than any other possible segmentation 

solution. This would lead to lesser points to cater for in the steps highlighted ahead. Hence, 

this is necessary for optimization of the algorithm, which has been targeted by the author of 

the current research. 

2.4.2 Comparison of Voronoi and Delaunay Triangulation 

When a triangulation segmentation technique is in consideration, it is always best to 

perform a Delaunay Triangulation first and then create the connectivity graph by joining the 

centroids of all adjacent triangles. This results in lowest errors, 10% less than those produced 

by Voronoi Diagram construction directly [28]. Hence, Delaunay Triangulation is preferred 

in the coming chapters for partitioning of an environment. 

2.4.3 Creating Minimum Spanning Tree 

The algorithm further takes the convex regions and joins the centroids of all adjoining 

regions, essentially creating a Voronoi Diagram. This diagram is analyzed for loops by the 

algorithm, which might be used by an intelligent intruder to evade a searching agent (a 

problem discussed earlier in cyclic strategies). They are broken by identifying "cover nodes" 

to form a "minimum spanning tree". Generally, each obstacle is a cycle, hence thumb's rule 

suggests that there would be as many cover nodes as the number of obstacles present in a 

graph. 

2.4.4 Determining Robot Positions and Tree Components 

Once the position of cover nodes are identified, robot positions are calculated by the 

algorithm catering for all cover nodes. This essentially reduces the number of cycle breakers 

from the number of cover nodes to the new number of blockers based on the calculations of 

this step. This results in the formation of a "reduced minimum spanning tree". The root, 

branches, and leaves of this tree are identified, using their standard definitions. This helps 
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determine the nodes of the reduced minimum spanning tree to be searched by the agents. The 

root is the starting point of all the searchers. 

2.4.5 Identifying Robot Paths 

Blocker paths originate from the root and follow the nodes on the minimum spanning 

tree to reach their destinations. The target is to spend the least amount of time in travelling, 

hence the least time consuming path should be used to take the blockers to their final 

positions. Yet, the research being summarized employed a non-optimal path formed through 

the minimum spanning tree nodes.  

Searcher paths are determined based on the reduced minimum spanning tree. The 

number of searchers is determined by the number of branches in the tree. The waypoints 

determined by the spanning tree might have a collision with an obstacle, as they are based on 

joining centroids with straight lines. So, intermediate path points are established by the 

algorithm by taking midpoints of adjoining edges of the RMST. 

The critical point to be noted is that there are multiple possible improvements that this 

algorithm may undergo and this research focuses on some of those possibilities, as described 

in the later chapters. 

2.5 Problem Definition 

The problem can be defined as: Given a boundary/area with obstacles (multi-

dimensional polygons), search the area completely for any intruders such that the whole 

environment is surveyed and no intruders are able to sneak back into an area (without being 

detected) that has already been secured. Some important considerations in this regard are: 

• The surface of the environment specified should be level/smooth and easily 

traversable for the robots. 

• The robots are assumed to have 360 degree unlimited vision. 

• The algorithm is not aimed at characterizing the control algorithms of the robots, 

rather it defines the paths/trajectories that they have to follow. 

• The algorithm does not imply usage of image or video processing techniques to 

actually detect an intruder. It provides the robot paths and the corresponding video 

streams that are henceforth produced by the onboard cameras. These streams can be 

analyzed by an observer or by implementing a video processing algorithm. 
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2.6 Problem Solving Options 

Two problem solving options are available for obtaining desired solutions. 

Developing code in C or MATLAB. MATLAB is chosen as the preferred option as it 

provides computational efficiency regarding matrices and a graphical interface to easily 

visualize the results in different ways. 

2.7 Thesis Objectives 

Following are the Objectives and Deliverable Milestones for this research: 

• Analytical Analysis of an environment/map for abstraction in the form of a graph. 

• Consolidation/Integration of this graph to get a higher abstraction level representation 

of the environment. 

• Detection of loops/cycles in this representation. 

• Identification of required number of robots/agents along with their positioning and 

trajectories for complete coverage of the environment. 

• Case studies and comparison with results of existing targeted algorithms. 

• Implementation of the algorithm on actual map of a specified location. 
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CHAPTER 3: ANALYTICAL MODEL AND RESEARCH 

METHODOLOGY 

 

3.1 General 

The Search and Secure algorithm presented in this chapter is based on division of the 

environment to be analyzed in convex regions. These convex regions are then abstracted in 

the form of a graph known as the regions graph with centroids of the regions forming the 

nodes/vertices of the graph. The cycles in this graph represent paths that begin and end at the 

same vertex, hence providing loops for the intruder to evade the searching robots / agents. 

These loops/cycles are broken using static blocker robots (referred to simply as blockers in 

the forthcoming text) so that the intruder cannot "sneak back" or escape the robots / agents 

pursuing or searching for the intruder. Once the blockers reach their identified positions to 

break the cycles, the searching robots (referred to simply as searchers in the forthcoming text) 

are deployed in the area to search for any intruders and secure it. 

3.2 Analytical Model and Research Methodology 

This section explains in detail the Research Methodology used and the Algorithm 

developed henceforth. 

3.2.1 Algorithm Overview and Description 

The flow diagram of the algorithm is depicted in Figure 3.1. Following are the basic 

sections in which the algorithm is divided and is discussed in detail in the later text. 

• Triangulation: Divide the environment into triangles. After a basic triangulation, the 

triangles are analyzed according to the Empty Circle Property regarding Delaunay 

Triangulation and Lawson Flip Algorithm to finalize the triangulation results. 

• Merging to Regions: The Delaunay Triangles are merged to form convex regions. 

• Graphical Abstraction: The centroids of the merged regions are computed and an 

adjacency matrix is formed which enlists the neighbours of each region. The centroids 

are then connected according to the adjacency matrix to form a graph. 

• Cycle Detection: The cycles in this graph are detected through a Depth First Search 

(DFS) of the complete graph. Then in order to get all internal cycles, an exclusive or 

(XOR) of the cycles obtained from the DFS is done. 
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• Static Blocker Agents: According to the cycles, positions of blocker agents or 

blockers are determined in order to break all cycles. Finding the cycles and blocker 

positions is an iterative process and blockers are placed intelligently until all cycles 

are broken. 

• Generate Reduced Minimum Spanning Tree: Once the blocker positions are 

determined, the regions graph is converted into a Reduced Minimum Spanning Tree 

(RMST) by removing all the regions covered by blockers. The RMST has no cycles 

and forms the search tree which is to be searched and secured by searcher robots. 

• Search Tree: The RMST is analyzed to identify the branches of the tree. The 

number of branches equals to the number of searcher robots required. 

• Blocker Paths: Create the paths for blocker robots. These paths are created on the 

basis of Dijkstra's Shortest Path Algorithm so that the blockers reach their 

designated positions in minimal time. 

• Searcher Paths: Create the paths for searcher robots. This also creates shortest paths 

for searchers keeping certain criteria in consideration. 

 
Figure 3.1: Flowchart of the algorithm 

All these will be discussed in detail in the following sections. 
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3.2.2 Boundary and Obstacle Matrices 

The first step is to generate boundary and obstacle matrices for further use. This 

involves the following matrices: 

𝑆𝑆_𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 = {�𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗 �, 𝑖𝑖 = 1 𝑡𝑡𝑜𝑜 𝑛𝑛_𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑗𝑗 = 1 𝑡𝑡𝑜𝑜 𝑛𝑛_𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖} 

𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =  𝑆𝑆_𝑜𝑜𝑜𝑜𝑜𝑜1 ∪ … ∪  𝑆𝑆_𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖  ∪ … ∪  𝑆𝑆_𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛_𝑜𝑜𝑜𝑜𝑜𝑜   

𝑆𝑆𝑜𝑜𝑜𝑜𝑏𝑏𝑛𝑛𝑏𝑏𝑜𝑜𝑏𝑏𝑦𝑦 = {(𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘),𝑘𝑘 = 1 𝑡𝑡𝑜𝑜 𝑛𝑛𝑜𝑜𝑜𝑜𝑏𝑏𝑛𝑛𝑏𝑏 } 

𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 =  𝑆𝑆𝑜𝑜𝑜𝑜𝑏𝑏𝑛𝑛𝑏𝑏𝑜𝑜𝑏𝑏𝑦𝑦 ∪  𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  

And if an unpathable region also exists, then: 

𝑆𝑆_𝑏𝑏𝑛𝑛𝑢𝑢𝑖𝑖 = {(𝑥𝑥𝑚𝑚 ,𝑦𝑦𝑚𝑚 ), 𝑖𝑖 = 1 𝑡𝑡𝑜𝑜 𝑛𝑛_𝑏𝑏𝑛𝑛𝑢𝑢 ,𝑚𝑚 = 1 𝑡𝑡𝑜𝑜 𝑛𝑛_𝑏𝑏𝑛𝑛𝑢𝑢𝑖𝑖} 

𝑆𝑆𝑏𝑏𝑛𝑛𝑢𝑢𝑜𝑜𝑡𝑡 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =  𝑆𝑆_𝑏𝑏𝑛𝑛𝑢𝑢1 ∪ … ∪  𝑆𝑆_𝑏𝑏𝑛𝑛𝑢𝑢𝑖𝑖  ∪ … ∪  𝑆𝑆_𝑏𝑏𝑛𝑛𝑢𝑢𝑛𝑛_𝑏𝑏𝑛𝑛𝑢𝑢  

𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 =  𝑆𝑆𝑜𝑜𝑜𝑜𝑏𝑏𝑛𝑛𝑏𝑏𝑜𝑜𝑏𝑏𝑦𝑦 ∪  𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  ∪  𝑆𝑆𝑏𝑏𝑛𝑛𝑢𝑢𝑜𝑜𝑡𝑡 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  
where 

𝑛𝑛_𝑜𝑜𝑜𝑜𝑜𝑜: Total number of obstacles 

𝑛𝑛_𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 : Total number of corners of obstacle i 

𝑛𝑛_𝑏𝑏𝑛𝑛𝑢𝑢: Total number of unpathable regions 

𝑛𝑛_𝑏𝑏𝑛𝑛𝑢𝑢𝑖𝑖 : Total number of corners of unpathable i 

𝑛𝑛𝑜𝑜𝑜𝑜𝑏𝑏𝑛𝑛𝑏𝑏 : Total number of boundary corners 

𝑆𝑆_𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 : Structure of corner points of obstacle number i 

𝑆𝑆_𝑏𝑏𝑛𝑛𝑢𝑢𝑖𝑖 : Structure of corner points of unpathable number i 

𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 : Structure of all obstacles 

𝑆𝑆𝑏𝑏𝑛𝑛𝑢𝑢𝑜𝑜𝑡𝑡 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 : Structure of all unpathables 

𝑆𝑆𝑜𝑜𝑜𝑜𝑏𝑏𝑛𝑛𝑏𝑏𝑜𝑜𝑏𝑏𝑦𝑦 : Structure of all corner points of boundary 

𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 : Structure of all corner points 

𝑥𝑥𝑗𝑗 , 𝑦𝑦𝑗𝑗 : x and y coordinates of j-th corner point of respective obstacle 

𝑥𝑥𝑘𝑘 , 𝑦𝑦𝑘𝑘 : x and y coordinates of k-th corner point of boundary 

𝑥𝑥𝑚𝑚 , 𝑦𝑦𝑚𝑚 : x and y coordinates of m-th corner point of respective unpathable 

Every point is assigned a unique ID which is used for reference in the next steps. A 

vertices array is formed such that: 

𝑉𝑉𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜  =  [(𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖), 𝑖𝑖 =  1 𝑡𝑡𝑜𝑜 𝑛𝑛] 
where 

n: Total points 

𝑉𝑉𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 : Vertices array of all points 

i: ID of i-th point 

18 
 



 
Figure 3.2: Example Case - Boundary and Obstacles 

Figure 3.2 shows an example case of extracted Boundary (red) and Obstacles 

(magenta) numbered 1-6 from a given set of points. 

3.2.3 Visibility Graph of Corners 

After forming the aforementioned structures, a visibility graph is formed which 

basically checks the visibility of each corner with the other. To check the intersection 

mentioned in the algorithm below, all unpathable regions are assumed to be obstacles and are 

temporarily added to the 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  structure. The algorithm devised for that purpose is as 

follows: 

1. 𝑆𝑆𝑣𝑣𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦𝑖𝑖  = visibility_all_points() 

2. j = i+1; 

3. Loop until j <= n 

4.  line = {�𝑥𝑥𝑖𝑖  𝑥𝑥𝑗𝑗 � , �𝑦𝑦𝑖𝑖  𝑦𝑦𝑗𝑗 �}; 

5.  INT = Check Intersection with all Obstacles, Unpathables and Boundary 

6.  if (INT == 1) 

7.   // i.e. the line passes through any obstacle, unpathable or boundary or 

  // intersects multiple obstacles/unpathables or boundary 

8.   j is not visible to i; 

9.   break; 

10.  else 

11.   j is visible to i; 

12.   Add j to 𝑆𝑆𝑣𝑣𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦𝑖𝑖  matrix; 

13.   Add i to 𝑆𝑆𝑣𝑣𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦
𝑗𝑗  matrix; 
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14.   j = j+1; 

15.  end 

16. end 

17. return 

Finally: 

𝑆𝑆𝑣𝑣𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦  = 𝑆𝑆𝑣𝑣𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦1  ∪ … ∪  𝑆𝑆𝑣𝑣𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦𝑖𝑖  ∪ … ∪  𝑆𝑆𝑣𝑣𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦𝑛𝑛  
where 

𝑆𝑆𝑣𝑣𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦𝑖𝑖 : Visibility array of i-th corner 

𝑆𝑆𝑣𝑣𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦 : Visibility matrix of all corners 

n: Total number of points 

The 𝑆𝑆𝑣𝑣𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦  matrix gives the visibility of all points w.r.t. each other and is then used 

in the next steps and the 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  structure is restored back by removing all unpathable 

regions from it. 

3.2.4 Triangulation 

The Triangulation function segregates the environment into triangles according to the 

Delaunay Triangulation Algorithm. The Delaunay algorithm creates non-overlapping 

triangle meshes for FEM (finite element method). The main feature of the Delaunay 

Triangulation Algorithm is that it maximizes the smallest angle in a triangle, thus minimizing 

the chances of creation of thin and long triangles. Firstly, an initial Non-Delaunay 

Triangulation is formed which is later converted into Delaunay Triangulation through the 

Lawson Flip Algorithm. The triangulation technique used follows these steps: 

• Sorting the points in a lexicographical order. 

• "Seeding" the triangulation with a triangle formed by the first three points of the 

lexicographical sort. Seeding means to start the triangulation, an initial triangle is 

formed. If the first three points selected for the seed triangle don't make a triangle (not 

visible to each other according to the 𝑆𝑆𝑣𝑣𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦  matrix), then the next point is selected 

and checked until a seed triangle is formed. This becomes the current triangulation 

matrix. 

• A convex hull is initiated from this seed triangle which forms the outer edge of the 

union of all triangles in the triangulation matrix. 

• The convex hull is formed by using the Graham Scan Algorithm. The pseudo code 

for the algorithm used is given below. 
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• Adding points one by one to the current convex hull in lexicographical order 

according to the visibility matrix and checking the number of triangles thus formed. 

The triangles formed will depend on the visibility of the point being added w.r.t. the 

points in the current hull i.e. it is checked according to the matrix 𝑆𝑆𝑣𝑣𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦ℎ𝑏𝑏𝑜𝑜𝑜𝑜 . and the 

triangles are thus formed according to the hull points visible to the point being added. 

• Expanding the hull and triangulation matrix until all the corner points in the 

environment are added and all triangles are formed. 

Following is the algorithmic representation of the initial triangulation: 

1. Sort 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜  in lexicographical order 

2. 𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑜𝑜𝑛𝑛𝑡𝑡𝑜𝑜𝑜𝑜𝑚𝑚  = {𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  ,𝑉𝑉𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜  , �𝑉𝑉𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜 �}; 

3. Check visibility of {𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  ,𝑉𝑉𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜  , �𝑉𝑉𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜 �} with each other through 𝑆𝑆𝑣𝑣𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦  

4. 𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑜𝑜𝑛𝑛𝑡𝑡𝑜𝑜𝑜𝑜  = 𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑜𝑜𝑛𝑛𝑡𝑡𝑜𝑜𝑜𝑜𝑚𝑚 ; 

5. 𝑆𝑆ℎ𝑏𝑏𝑜𝑜𝑜𝑜  = convex_hull(𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑜𝑜𝑛𝑛𝑡𝑡𝑜𝑜𝑜𝑜 , pt_next); 

6. Loop i < n 

a. 𝑆𝑆𝑏𝑏𝑜𝑜𝑚𝑚𝑜𝑜𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛𝑡𝑡  = 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜  - 𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑜𝑜𝑛𝑛𝑡𝑡𝑜𝑜𝑜𝑜𝑚𝑚 ; 

b. pt_next = 𝑆𝑆𝑏𝑏𝑜𝑜𝑚𝑚𝑜𝑜𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖 ; 

c. Check visibility of pt_next w.r.t. hull and form 𝑆𝑆𝑣𝑣𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦ℎ𝑏𝑏𝑜𝑜𝑜𝑜  

d. 𝑆𝑆ℎ𝑏𝑏𝑜𝑜𝑜𝑜  = convex_hull(𝑆𝑆ℎ𝑏𝑏𝑜𝑜𝑜𝑜  , pt_next); 

e. 𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑜𝑜𝑛𝑛𝑡𝑡𝑜𝑜𝑜𝑜𝑚𝑚  = {𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  ,𝑉𝑉𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜  , �𝑉𝑉𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜 �}; 

f. 𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑜𝑜𝑛𝑛𝑡𝑡𝑜𝑜𝑜𝑜  =  𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑜𝑜𝑛𝑛𝑡𝑡𝑜𝑜𝑜𝑜  ∪ 𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑜𝑜𝑛𝑛𝑡𝑡𝑜𝑜𝑜𝑜𝑚𝑚 ; 

g. i = i+1; 

7. end 

8. return 

where 

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 : First vertex in triangle 

𝑉𝑉𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜 : Second vertex in triangle 

 �𝑉𝑉𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜 �: Third vertex in triangle 

𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑜𝑜𝑛𝑛𝑡𝑡𝑜𝑜𝑜𝑜𝑚𝑚 : m-th triangle, where m = (1 to total_triangles) 

𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑜𝑜𝑛𝑛𝑡𝑡𝑜𝑜𝑜𝑜 : Structure of all triangles formed 

𝑆𝑆ℎ𝑏𝑏𝑜𝑜𝑜𝑜 : The convex hull formed by all the triangles 

𝑆𝑆𝑏𝑏𝑜𝑜𝑚𝑚𝑜𝑜𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛𝑡𝑡 : Points that have not been included in the convex hull yet 
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In order to find the convex hull, the Graham Scan Algorithm [29] is used. All the 

points that form the hull are sorted in a lexicographical order and the first point is then 

selected (which is basically the lower-most point on the left). The angle of all other points 

from this point w.r.t. the positive X-axis is calculated (starting in CW direction) and the 

points are sorted on the basis of increasing angle. If two points are at the same angle, the 

point at the lesser distance is placed first. Then the points are sequentially added to make a 

hull, checking for other points lying to the LEFT of the current point being added. If there is 

any point to the left, it means it is to be added first to form a convex hull. The left or right 

(LorR) check is basic geometrical calculation and the hull is completed accordingly. If any 

points to be checked lie inside the hull, they are removed from the hull boundary array. The 

pseudo code for Convex Hull formation using the algorithm explained above is given below: 

1. convex_hull(𝑆𝑆ℎ𝑏𝑏𝑜𝑜𝑜𝑜  , pt_next) 

2. 𝑉𝑉1
ℎ𝑏𝑏𝑜𝑜𝑜𝑜  = First point after sorting 𝑆𝑆ℎ𝑏𝑏𝑜𝑜𝑜𝑜  in lexicographical order 

3. 𝑆𝑆ℎ𝑏𝑏𝑜𝑜𝑜𝑜 _𝑜𝑜𝑛𝑛𝑡𝑡𝑜𝑜𝑜𝑜  = Calculate angle of all 𝑆𝑆ℎ𝑏𝑏𝑜𝑜𝑜𝑜  points w.r.t. 𝑉𝑉1
ℎ𝑏𝑏𝑜𝑜𝑜𝑜  

4. Sort 𝑆𝑆ℎ𝑏𝑏𝑜𝑜𝑜𝑜  w.r.t. angle calculated 

5. if ( 𝑆𝑆ℎ𝑏𝑏𝑜𝑜𝑜𝑜 _𝑜𝑜𝑛𝑛𝑡𝑡𝑜𝑜𝑜𝑜
𝑖𝑖  == 𝑆𝑆ℎ𝑏𝑏𝑜𝑜𝑜𝑜 _𝑜𝑜𝑛𝑛𝑡𝑡𝑜𝑜𝑜𝑜

𝑖𝑖+1  ) 

a. Sort i and i+1 points w.r.t. smaller distance 

6. end 

7. 𝑆𝑆ℎ𝑏𝑏𝑜𝑜𝑜𝑜 _𝑜𝑜𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏  = 𝑉𝑉1
ℎ𝑏𝑏𝑜𝑜𝑜𝑜 ; 

8. Loop i < total_hull_points 

a. 𝑃𝑃0= 𝑉𝑉𝑖𝑖ℎ𝑏𝑏𝑜𝑜𝑜𝑜 ; 

b. 𝑃𝑃1= 𝑉𝑉𝑖𝑖+1
ℎ𝑏𝑏𝑜𝑜𝑜𝑜 ; 

c. 𝑃𝑃2= pt_next; 

d. if(𝑃𝑃2 is present in 𝑆𝑆𝑣𝑣𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦𝑖𝑖 )   // i.e. 𝑃𝑃2 is visible to 𝑃𝑃0 

i. LorR check 𝑃𝑃2 point being added to 𝑆𝑆ℎ𝑏𝑏𝑜𝑜𝑜𝑜 _𝑜𝑜𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏 ; 

ii. if ( No other point to left of 𝑃𝑃2 ) 

1. 𝑆𝑆ℎ𝑏𝑏𝑜𝑜𝑜𝑜 _𝑜𝑜𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏  = 𝑆𝑆ℎ𝑏𝑏𝑜𝑜𝑜𝑜 _𝑜𝑜𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏  ∪  𝑉𝑉𝑢𝑢𝑡𝑡 _𝑛𝑛𝑜𝑜𝑥𝑥𝑡𝑡
𝑜𝑜𝑜𝑜𝑜𝑜 ; 

iii. else 

1. Add the point 𝑃𝑃1 on the left into the hull; 

iv. end 

e. else 

i. Add the point 𝑃𝑃1 on the left into the hull; 

f. end 
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g. i = i + 1; 

9. end 

10. return 

 
Figure 3.3: Example Case - Initial Non-Delaunay Triangulation 

Figure 3.3 shows the results of basic Non-Delaunay Triangulation performed on the 

example case. A total of 42 triangles (magenta) are formed with their centroids marked as 

stars and numbered accordingly. This clearly shows that there are a large number of thin and 

long triangles formed this way. 

After forming a basic triangulation, the triangulation is checked for the Empty Circle 

Property of Delaunay Triangulation. 

Empty Circle Property: The triangulation of a finite set of points 𝑆𝑆 ⊂  𝑅𝑅2 is a 

Delaunay Triangulation if the circumcircle of every triangle in the triangulation has no other 

point in it, i.e. it is empty [30]. 

 
Figure 3.4: Circumcircle of a triangle 

If any other point lies inside the circumcircle of a triangle, the triangulation is not 

Delaunay. So in order to make it a Delaunay Triangulation, the edges of the triangles need to 

be flipped. This is done according to the Lawson Flip Algorithm. 
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Figure 3.5: (a) Non-Delaunay Triangulation (b) Edge Flipped for Delaunay Triangulation 

Lawson Flip Algorithm: The Lawson Flip Algorithm states that if there is a sub-

triangulation of four points that is not Delaunay (Figure 3.5(a)), replace this sub-triangulation 

by the other triangulation of the four points [30]. 

So, Figure 3.5(b) shows a Delaunay Triangulation of the four points that formed a 

Non-Delaunay Triangulation in Figure 3.5(a). 

In this way all triangles are checked for the Empty Circle Property and their Non-

Delaunay Edges are flipped to form a Delaunay Triangulation. 

 
Figure 3.6: Example Case - Delaunay Triangulation 

Figure 3.6 shows the results of example case after applying the Empty Circle Property 

and Lawson Flip Algorithm to the Non-Delaunay Triangulation. It can be seen that the thin 

and long triangles have been removed by flipping edges; for example the common edge 

between triangles 22 and 14 has been flipped. And by connecting the centroids of all these 

triangles, a Triangles Connectivity Graph is formed as shown in Figure 3.7. This is also the 

Voronoi Diagram as the Delaunay Triangulation and Voronoi Diagram have the property of 

duality. The triangles graph is modeled as: 

𝑆𝑆_𝐺𝐺𝑏𝑏𝑜𝑜𝑢𝑢ℎ𝑇𝑇 = {𝑉𝑉𝑖𝑖𝑇𝑇 ,𝐸𝐸𝑖𝑖𝑗𝑗𝑇𝑇  , 𝑖𝑖 𝑜𝑜𝑛𝑛𝑏𝑏 𝑗𝑗 = 1 … 𝑡𝑡𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜 𝑡𝑡𝑏𝑏𝑖𝑖𝑜𝑜𝑛𝑛𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜, 𝑖𝑖 ≠ 𝑗𝑗} 

where 

𝑉𝑉𝑖𝑖𝑇𝑇: Centroid of i-th triangle 
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𝐸𝐸𝑖𝑖𝑗𝑗𝑇𝑇 : Edge between 𝑉𝑉𝑖𝑖𝑇𝑇  and 𝑉𝑉𝑗𝑗𝑇𝑇  

The edges of this Triangle Graph also represent the adjacency matrix for each 

triangle. 

 
Figure 3.7: Example Case - Triangles Connectivity Graph (Voronoi Diagram) 

3.2.5 Merging Triangles into Convex Regions 

The triangles formed in the previous step are then merged together to form convex 

regions. Convex regions are important because any point within a convex region is visible by 

any other point inside the same region [27]. Consequently, a robot standing at any point in the 

convex region can secure it completely because any intruder cannot hide from it and can be 

detected clearly. The difference between a convex and non-convex region can be seen in  

[27]. 

 
Figure 3.8: Convex and Non-convex Regions 

In the parent study, convex regions are formed only by merging adjacent triangles 

once i.e. if a triangle is merged with another into a larger merged region, it is not further 

analyzed for merging with other triangles/regions. In the improved algorithm presented in 

this manuscript, in order to form merged convex regions, first of all adjacent triangles are 
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analyzed. If all their points are visible to each other, they are merged together to form a larger 

merged region that is convex. This larger region is then further analyzed with its 

neighbouring triangles and if any triangle can further be merged into this region, it is merged 

and the adjacency matrix is updated accordingly. This results in larger merged convex 

regions as compared to the parent study. All the triangles are checked and merged according 

to the criterion of forming convex regions. 

The pseudo code for the algorithm implemented is as follows: 

1. merge_to_regions() 

2. 𝑆𝑆𝑏𝑏𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛  = 𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑜𝑜𝑛𝑛𝑡𝑡𝑜𝑜𝑜𝑜  

3. while(i < total regions) 

a. j = i+1; 

b. while(j <= total regions adjacent to 𝑆𝑆𝑏𝑏𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛𝑖𝑖 ) 

i. 𝑆𝑆𝑏𝑏𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛
𝑗𝑗  = j-th region adjacent to 𝑆𝑆𝑏𝑏𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛𝑖𝑖  

ii. Check visibility of points in 𝑆𝑆𝑏𝑏𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛𝑖𝑖  and 𝑆𝑆𝑏𝑏𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛
𝑗𝑗  from 𝑆𝑆𝑣𝑣𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦  matrix 

iii. if ( All points visible to each other ) 

1. 𝑆𝑆𝑏𝑏𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛𝑖𝑖  = Merge 𝑆𝑆𝑏𝑏𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛𝑖𝑖  and 𝑆𝑆𝑏𝑏𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛
𝑗𝑗  

2. Delete 𝑆𝑆𝑏𝑏𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛
𝑗𝑗  

iv. else 

1. j = j+1; 

v. end 

c. end 

4. end 

5. return 

where 

𝑆𝑆𝑏𝑏𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 : Regions structure 

𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑜𝑜𝑛𝑛𝑡𝑡𝑜𝑜𝑜𝑜 : Triangles structure 

𝑆𝑆𝑏𝑏𝑜𝑜𝑡𝑡𝑖𝑖 𝑜𝑜𝑛𝑛𝑖𝑖 : i-th region structure 

𝑆𝑆𝑏𝑏𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛
𝑗𝑗 : j-th region structure 
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Figure 3.9: Example Case - Merged Regions 

Figure 3.9 shows the results of merging the triangulation depicted in Figure 3.6. The 

42 triangles have been merged into a total of 16 regions and as can be seen in the figure, all 

regions are convex. 

3.2.6 Regions Connectivity Graph 

A Regions Connectivity Graph or simply the Regions Graph is formed just as the 

Triangles Connectivity Graph was formed, since the Regions Graph and the Regions 

Connectivity Graph have the property of duality. It is formed by connecting the centroids of 

adjacent regions with each other. The centroids become the nodes/vertices and the lines 

connecting them are the edges of the graph. As the regions merging technique is improved (in 

previous step), it results in a better Regions Graph (Voronoi Diagram) in this step since the 

number of regions in the graph are reduced. The regions graph is modeled as: 

𝑆𝑆_𝐺𝐺𝑏𝑏𝑜𝑜𝑢𝑢ℎ𝑅𝑅 = {(𝑉𝑉𝑖𝑖𝑅𝑅 ,𝐸𝐸𝑖𝑖𝑗𝑗𝑅𝑅) , 𝑖𝑖 𝑜𝑜𝑛𝑛𝑏𝑏 𝑗𝑗 = 1 … 𝑡𝑡𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜 𝑏𝑏𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛𝑜𝑜, 𝑖𝑖 ≠ 𝑗𝑗} 

where 

𝑉𝑉𝑖𝑖𝑅𝑅: Centroid of i-th region 

𝐸𝐸𝑖𝑖𝑗𝑗𝑅𝑅 : Edge between 𝑉𝑉𝑖𝑖𝑅𝑅  and 𝑉𝑉𝑗𝑗𝑅𝑅  

The edges of this Regions Graph also represent the adjacency matrix for each region. 

The Regions Graph for the example case is shown in Figure 3.10. The stars (green) show the 

nodes and thick lines (red) show the edges between them. For the particular set of regions, 

this can also be called their Voronoi Diagram. 
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Figure 3.10: Example Case - Regions Graph 

3.2.7 Cycle Detection 

In this step, the regions graph is analyzed to detect loops/cycles. Cycles or loops in 

the graph result in paths that the intruder can use to avoid any searching agents. So, first of all 

the number of internal cycles present in the current graph are found, and then those cycles are 

broken at appropriate positions. By internal cycles we mean the cycles that are not subsets of 

each other and their combination results in the complete set of cycles present in the graph. 

Various approaches can be used to find the number of cycles and their order in a 

graph. The Kruskal's Algorithm and Prim's Algorithm are the most used algorithms in 

detecting cycles and creating a Minimum Spanning Tree (MST). The Kruskal's Algorithm is 

a greedy algorithm based on selecting the globally optimal edge in a weighted edge graph. 

Similarly, the Prim's Algorithm selects the locally optimal edge. Both algorithms terminate 

when all nodes are visited once. The results of Kruskal's and Prim's Algorithms for an 

example case are as follows [31]: 

 
Figure 3.11: Results of Kruskal (yellow lines) and Prim's Algorithms (orange lines) 

But instead of forming a MST as shown above, the algorithm in this manuscript 

simply detects the number of cycles and their order in this step and then creates a Reduced 
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Minimum Spanning Tree (RMST) in the next step by placing blocker robots at optimal 

locations. The number of cycles are calculated through a simple formula: 

Number of Cycles in Graph = Number of Edges - Number of Nodes + 1 

The cycles node order is found through the DFS-XOR algorithm explained below: 

• Run a DFS on the whole graph. As the stack in the DFS fills up, exploration continues 

until all nodes are visited atleast once. 

• Whenever a node is visited twice in the DFS, it shows that there exists a cycle; and all 

the nodes in between the node visited twice from the stack give us the cycle nodes 

order[Cycles Main Ref]. 

• When all cycles are found, these are not necessarily internal cycles; meaning there can 

exist a cycle in our cycles order array that might contain other smaller cycles inside it. 

So, all cycles are arranged in descending order w.r.t. cycle area. 

• A XOR operation is performed between the edges of a cycle (parent cycle) and any 

other detected cycle (child cycle) if it lies inside the parent cycle. The XOR operation 

results in edges that are present in only one of these cycles, thus forming a new 

smaller cycle from the parent cycle. An example is presented below: 

 
Figure 3.12: A XOR Example 

Here the first graph shows a parent cycle (orange edges) and a child cycle (red edges). 

When their XOR is taken, the common edges between both cycles (3-4, 4-5, 5-6, 6-7) 

get eliminated from the resulting cycle and the uncommon edges form a new cycle 

(blue edges) shown in the second graph. This new cycle is saved in place of the parent 

cycle. 

• This is done until all cycles are checked such that there is no other cycle within them, 

giving us the required internal cycles. 

The psuedo code for the abovementioned technique is given as follows. 

1. n = total_edges - total_nodes + 1; 

2. i = 0; 

3. dfs_stack = []; 
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4. while ( i < n ) 

a. Run DFS on whole graph and update dfs_stack 

b. if ( last explored node is already in dfs_stack ) 

i. Update 𝑆𝑆𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 . 𝑜𝑜𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏 from dfs_stack 

ii. Find area of cycle and Update 𝑆𝑆𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 .𝑜𝑜𝑏𝑏𝑜𝑜𝑜𝑜 

iii. Find centroid of cycle and Update 𝑆𝑆𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 . 𝑜𝑜𝑜𝑜𝑛𝑛𝑡𝑡𝑏𝑏𝑜𝑜𝑖𝑖𝑏𝑏 

c. end 

5. end 

6. 𝑆𝑆𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =  𝑆𝑆𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜1  ∪ … ∪  𝑆𝑆𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛  

7. 𝑆𝑆𝑜𝑜𝑏𝑏𝑜𝑜𝑜𝑜 _𝑜𝑜𝑜𝑜𝑏𝑏𝑡𝑡𝑜𝑜𝑏𝑏 _𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  = Sort 𝑆𝑆𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  in descending order w.r.t. cycle area 

8. i = 1; 

9. while ( i < n ) 

a. updated = 0; 

b. for j = i + 1 : n 

i. if ( 𝑆𝑆𝑜𝑜𝑏𝑏𝑜𝑜𝑜𝑜 _𝑜𝑜𝑜𝑜𝑏𝑏𝑡𝑡𝑜𝑜𝑏𝑏 _𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑗𝑗 . 𝑜𝑜𝑜𝑜𝑛𝑛𝑡𝑡𝑏𝑏𝑜𝑜𝑖𝑖𝑏𝑏 lies inside 𝑆𝑆𝑜𝑜𝑏𝑏𝑜𝑜𝑜𝑜 _𝑜𝑜𝑜𝑜𝑏𝑏𝑡𝑡𝑜𝑜𝑏𝑏 _𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑖𝑖 ) 

1. Take XOR of edges of both cycles 

2. Update 𝑆𝑆𝑜𝑜𝑏𝑏𝑜𝑜𝑜𝑜 _𝑜𝑜𝑜𝑜𝑏𝑏𝑡𝑡𝑜𝑜𝑏𝑏 _𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑖𝑖  according to XOR result 

3. updated = 1; 

4. break; 

ii. end 

c. end 

d. if ( updated == 0 ) 

i. i = i + 1; 

e. end 

10. end 

11. 𝑆𝑆𝑜𝑜𝑏𝑏𝑜𝑜𝑜𝑜 _𝑜𝑜𝑜𝑜𝑏𝑏𝑡𝑡𝑜𝑜𝑏𝑏 _𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =  𝑆𝑆𝑜𝑜𝑏𝑏𝑜𝑜𝑜𝑜 _𝑜𝑜𝑜𝑜𝑏𝑏𝑡𝑡𝑜𝑜𝑏𝑏 _𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
1  ∪ … ∪  𝑆𝑆𝑜𝑜𝑏𝑏𝑜𝑜𝑜𝑜 _𝑜𝑜𝑜𝑜𝑏𝑏𝑡𝑡𝑜𝑜𝑏𝑏 _𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑖𝑖  

12. 𝑆𝑆𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =  𝑆𝑆𝑜𝑜𝑏𝑏𝑜𝑜𝑜𝑜 _𝑜𝑜𝑜𝑜𝑏𝑏𝑡𝑡𝑜𝑜𝑏𝑏 _𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  

13. return 

where: 

n: Total number of cycles in current graph 

total_edges: Total number of edges in current graph 

total_nodes: Total number of uncovered nodes in current graph 
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dfs_stack: Stack of explored nodes in DFS 

𝑆𝑆𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 : Structure for i-th cycle 

𝑆𝑆𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 : Structure of all cycles 

𝑆𝑆𝑜𝑜𝑏𝑏𝑜𝑜𝑜𝑜 _𝑜𝑜𝑜𝑜𝑏𝑏𝑡𝑡𝑜𝑜𝑏𝑏 _𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 : Structure of all cycles sorted in descending order w.r.t. area 

𝑆𝑆𝑜𝑜𝑏𝑏𝑜𝑜𝑜𝑜 _𝑜𝑜𝑜𝑜𝑏𝑏𝑡𝑡𝑜𝑜𝑏𝑏 _𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑖𝑖 : Structure for i-th area sorted cycle 

 
Figure 3.13: Example Case - Regions Graph (Cycles Depiction) 

Figure 3.13 shows the cycles determined for the example case, depicting a cycle 

around each obstacle. 

3.2.8 Static Blocker Positions 

After finding the cycles in the graph and the regions/nodes that constitute them, 

positions for blocker robots or blockers are determined. In the parent study, the author first 

creates an MST by identifying cover nodes (nodes where the cycles are to be broken) and the 

blocker positions are determined only according to the set of cover nodes specified by the 

MST. This compromises the effectiveness of the blocker positions determined as they are 

limited only to the set of cover nodes determined (because multiple sets of cover nodes can 

exist for the same graph as shown by the Prim's and Kruskal's Algorithms briefly discussed in 

previous section). 

In the algorithm discussed in this manuscript, an MST is not formed by determining 

cover nodes. Rather it is determined that which nodes effect the greatest number of cycles 

and then a vertex position for a blocker is finalized. The algorithm is explained below: 
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• From the structure 𝑆𝑆𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 , the order of all cycles (𝑆𝑆𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 . 𝑜𝑜𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏) is analyzed and an 

array which shows the number of times a region occurs in any cycle (region is a part 

of a cycle) is formed. 

• The array formed in the last step is sorted according to descending order w.r.t. the 

number of cycles effected by a region. 

• The corner vertices of regions effecting the maximum number of cycles are analyzed 

to prioritize the vertices according to the following criteria: 

o The maximum number of cycles effected by the vertex. If the number of cycles 

effected by any two or more vertices are equal, the maximum number of regions 

covered by a vertex. Furthermore, if the number of regions covered by any two or 

more vertices are also equal, they are prioritized according to the maximum area 

covered by a vertex (the total area of the regions visible from the vertex). 

Furthermore, if the area covered by two or more vertices is equal, they are 

prioritized according to the minimum distance from the root node. 

• A blocker position is finalized for the vertex with the highest priority. 

 
Figure 3.14: Example Case - Regions Graph and Regions Numbering 

Figure 3.14 shows that Region 6 (highlighted in blue) effects the most number of 

cycles (five). Region 6 is formed by 8 vertices, and they all are analyzed for blocker position. 

After prioritizing the vertices w.r.t. number of cycles covered, we are left with only one 

vertex that effects 6 cycles. That vertex is finalized as a blocker position (shown below). 
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Figure 3.15: Example Case - Vertex effecting most cycles - Blocker Position (green) 

All the regions covered by the blocker are removed from the graph and then it is 

iteratively re-analyzed for the number of cycles present. If the number of cycles present are 

more than zero, the cycle order and covered area are re-determined according to previous step 

and the structure 𝑆𝑆𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  is updated. 𝑆𝑆𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  is then again used in this step to determine further 

blocker positions until all cycles are broken. As in Figure 3.15, though all the inner cycles 

determined in the previous section are broken by one blocker, an outer cycle still needs to be 

broken (order: 1-2-13-16-14-10-8-3-1). After re-analyzing the graph, this cycle is broken and 

the final blocker positions are shown in the following figure. 

 
Figure 3.16: Example Case - Final Blocker Positions (green) 
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3.2.9 Reduced Minimum Spanning Tree 

When Blocker Positions are finalized, all the regions covered by the blockers are 

removed from the Regions Graph. This results in a tree which is the Reduced Minimum 

Spanning Tree (RMST) as no cycles are present anymore. This can be represented as: 

𝑆𝑆𝑏𝑏𝑚𝑚𝑜𝑜𝑡𝑡 = 𝑆𝑆𝑏𝑏𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛  

𝑆𝑆𝑏𝑏𝑚𝑚𝑜𝑜𝑡𝑡 (𝑆𝑆𝑏𝑏𝑚𝑚𝑜𝑜𝑡𝑡 ==  𝑆𝑆𝑏𝑏𝑜𝑜𝑡𝑡 _𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑘𝑘𝑜𝑜𝑏𝑏𝑜𝑜 )   =  [] 

In the parent study, the regions covered by blockers are removed from the Regions 

Graph unless they result in disconnected nodes. This results in some regions covered by 

blockers still being analyzed by searcher robots as they are a part of their branch. 

Consequently, the time to search and secure the complete environment increases 

unnecessarily. In the algorithm presented in this manuscript, all regions covered by blockers 

are removed from the Regions Graph regardless of disconnected nodes. The disconnected 

nodes are then checked for minimum distance to the RMST and connected to the tree node 

that is closest to them. As a result the searcher can move directly to the node needed to be 

searched rather than first searching a node in between that is already covered by blockers. 

RMST for the example case is shown in the following figure. 

 
Figure 3.17: Example Case - RMST and Blocker Positions 

The edges highlighted in magenta colour are the ones that have been added especially 

to connect the disconnected nodes directly to the RMST. In case of unpathable regions, point 

regions are added at the corners of unpathables in order to completely survey them. Point 

regions are regions that are points (area → 0) and are used to update the RMST such that 

unpathable regions are surveyed completely. 

34 
 



3.2.10 RMST Root Optimization 

In the parent study, an arbitrary root is selected, which can result in increased number 

of branches and greater number of searcher robots. In the algorithm presented in this 

manuscript, root selection is optimized keeping in consideration that: 

• The root is not a leaf node, as it adds to the degree of all branches. Instead, the parent 

of this leaf can be used as the root node so that the branch length for all branches can 

be minimized. For example, in Figure 3.16, if node 13 is selected as root, it is 

preferable to select node 16 as root rather than node 13 and declare node 13 as a leaf 

node. 

• The root is an end part of a branch, so that the branches can be minimized. This can 

be understood from Figure 3.16. If after the previous step node 16 is selected as root 

node, it results in the formation of two branches (16-15-11-9-5-4) and (16-13-14-10). 

Instead it is preferable to select node 5 or node 14 as root, resulting in a single branch 

only (5-4-9-11-15-16-13-14-10). This reduces number of branches and consequently 

the number of searchers required. 

For the example, node 5 is finalized as root by the algorithm as in the following figure 

(cyan star). 

 
Figure 3.18: Example Case - Root Finalization (cyan star) 
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3.2.11 Number of Branches and Search Order 

The RMST and root node are shown for the example case in Figure 3.18. In this 

section, the number of branches and their search order is determined. 

• Number of Branches: A series of at least three connected points in a tree or graph is 

known as a branch. A branch starts from the root of a graph or tree and ends in a leaf 

node [27]. The termination leaf node of the branch should be such that all the children 

of its parent node are leaves, otherwise the branch will continue. 

• Leaf Nodes: Leaf node of a tree is one that has only one neighbour (its parent node). 

The number of searchers is equal to the number of branches in the RMST. In order to 

search a leaf node, no extra searchers are needed as the leaf node is searched by placing the 

searcher at a point such that it has vision of both the leaf node as well as its parent. The 

branches start from the root node and as there is no loop/cycle in the RMST, no intruder can 

contaminate an already cleared area without detection as the searchers move forward to clear 

the environment. 

Furthermore, in order to accommodate the Unpathable regions, search points for each 

unpathable region are identified such that they get searched completely. These search points 

are declared point regions and are added to the search order. This is a major improvement 

compared to the parent study which doesn't cater for any unpathable regions. 

In the example case, No. of branches = 01 

After determining the number of branches, the search order 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑏𝑏𝑜𝑜 ℎ_𝑜𝑜𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏  of each 

branch is determined according to the regions in the branch starting from the root node and 

ending at a leaf node. In the example case, the search order for the branch is: 

Search Order: (5-4-9-11-15-16-13-14-10) 

3.2.12 Blocker Paths 

In this section, the Blocker Paths are finalized. Blocker paths are made according to 

the shortest path from root node to blocker positions and is based on the Dijkstra's Shortest 

Path Algorithm. The Dijkstra's Algorithm is a graph search algorithm that produces a 

shortest path tree from a root node to any destination node given a graph with a single root. 

Dijkstra's Algorithm itself only gives the length of the shortest path, but it is modified to 

return both the path length as well as the actual path coordinates. Hence, the paths from the 

root to blocker positions are determined. The pseudo code for the implemented algorithm is 

as follows. 
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1. dist = Array equal to the number of vertices (including root vertex) 

2. Initialize dist to infinity (very large value) 

3. dist(root) = 0; 

4. previous_node = Array to save previous best node in path 

5. for i = 1:n 

a. Q ← V (Q initialized to contain all vertices) 

b. while( 1 ) 

i. index = Sort Q w.r.t. minimum distance in (dist) 

ii. u = Q(index(1));    //Minimum distance node 

iii. Remove u from Q 

iv. if (dist(u) == infinity) 

1. break; 

v. else if (u == 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑘𝑘𝑜𝑜𝑏𝑏 _𝑢𝑢𝑜𝑜𝑜𝑜 ) 

1. 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑘𝑘𝑜𝑜 𝑏𝑏_𝑢𝑢𝑜𝑜𝑡𝑡 ℎ
𝑖𝑖  = Check and add nodes from previous_node to 

this array until last node added is the root node 

2. break; 

vi. end 

vii. break; 

viii. v = Check visibility of all adjacent nodes to u through 𝑆𝑆𝑣𝑣𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦 (𝑏𝑏) 

ix. if ( v is visible ) 

1. d = Calculate distance from u to v 

2. if ( dist(v) > dist(u) + d ) 

a. dist(v) = dist(u) + d 

3. end 

x. end 

c. end 

6. end 

7. 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑘𝑘𝑜𝑜𝑏𝑏 _𝑢𝑢𝑜𝑜𝑡𝑡 ℎ =  𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑘𝑘𝑜𝑜𝑏𝑏 _𝑢𝑢𝑜𝑜𝑡𝑡 ℎ
1  ∪ … ∪  𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑘𝑘𝑜𝑜𝑏𝑏 _𝑢𝑢𝑜𝑜𝑡𝑡 ℎ

𝑛𝑛  

8. return 

where 

n: Number of blockers 

𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑘𝑘𝑜𝑜𝑏𝑏 _𝑢𝑢𝑜𝑜𝑡𝑡 ℎ
𝑖𝑖 : Path for i-th blocker 

𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑘𝑘𝑜𝑜𝑏𝑏 _𝑢𝑢𝑜𝑜𝑡𝑡 ℎ : Structure for all blocker paths 
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Blocker Paths for the example case are shown in the following figure. Red dot is the 

root node and the green dots show blocker positions. The green lines lead to the blocker 

positions from root node. The blockers move into position first, and then the searchers start 

searching the remaining regions. 

 
Figure 3.19: Example Case - Blocker Paths 

3.2.13 Searcher Paths 

Finally, searcher paths are calculated based on the RMST. Searcher paths are based 

on the shortest path algorithm, but the path is optimized for certain improvements. 

• According to the 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑏𝑏𝑜𝑜 ℎ_𝑜𝑜𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏  matrix, the searcher paths 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑏𝑏𝑜𝑜 ℎ_𝑢𝑢𝑜𝑜𝑡𝑡 ℎ  are formed. 

Every searcher paths starts from the root node. 

• As the next node from 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑏𝑏𝑜𝑜 ℎ_𝑜𝑜𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏  is to be added to the 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑏𝑏𝑜𝑜 ℎ_𝑢𝑢𝑜𝑜𝑡𝑡 ℎ  array, the next 

node is analyzed first. If it has any leaf node as its child, the next point in the path is 

determined such that it covers both the next node as well as its child leaf. 

• For multiple leaves as children of the next node, the 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑏𝑏𝑜𝑜 ℎ_𝑢𝑢𝑜𝑜𝑡𝑡 ℎ  is optimized such 

that maximum number of leaves are searched with minimum addition of search points 

to the path. All child leaves of the next node are analyzed before moving further. 

• When the next node is analyzed completely, it is declared the current node and the 

node next to it is analyzed. This is done until the path termination leaf is reached. All 

leaves are analyzed such that the searcher does not have to enter completely into a 

leaf, rather it stays on the edge/corner of a leaf and searches it. 

• This caters for unpathable regions as well as their points (point regions) have already 

been added to 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑏𝑏𝑜𝑜 ℎ_𝑜𝑜𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏 . 
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Following figure shows the searcher paths for the example case. As there was only 

one branch, so one searcher is required. The RMST with region numbers can be seen in 

Figure 3.16. The search order for the case is given below again for easier reference: 

𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑏𝑏𝑜𝑜 ℎ_𝑜𝑜𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏 : (5-4-9-11-15-16-13-14-10) 

 
Figure 3.20: Example Case - Searcher Path (with region numbers) 

 
Figure 3.21: Example Case - Searcher Path 

It can be seen in Figure 3.20 that in order to search node 14 after node 13, the 

algorithm analyzed the node such that instead of first going to the vertex of node 14 closest to 

node 13 and then onto node 10, it chose the top right corner point of the map which covers 

both node 14 as well as the branch termination leaf node 10. This significantly saves time and 

path cost in the whole search process.  
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CHAPTER 4: CASE STUDY FOR VALIDATION OF ALGORITHM 

 

4.1 Case Study 

In this chapter, a case study is presented to validate the results of the algorithm. It 

compares the results of the parent study with the algorithm discussed in this manuscript. The 

results are compared stepwise according to the steps discussed in detail in chapter 03. 

4.1.1 Environment Map 

The Environment Map used for the case study is shown below. It has a rectangular 

boundary with 9 obstacles. 

 
Figure 4.1: Case Study - Environment Map 

4.1.2 Triangulation 

The Triangulation results are presented in the following figures.  

• Parent Study: The Delaunay Triangulation alongwith Triangles Graph in the parent 

study is shown in Figure 4.2 [27]. 
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Figure 4.2: Case Study - Delaunay Triangulation and Triangles Graph (Parent Study) 

• Presented Algorithm: The initial Non-Delaunay Triangulation results of the algorithm 

discussed in this manuscript are trivial and after application of the Lawson Flip 

Algorithm, the Delaunay Triangulation obtained is shown in the following figure. As 

it can be seen, a total of 56 triangles have been formed. 

 
Figure 4.3: Case Study - Delaunay Triangulation and Triangles Graph 

It can be analyzed from Figure 4.2 and Figure 4.3 that the Delaunay Triangulation 

results are very similar in the parent study and the presented algorithm. 

4.1.3 Merging Triangles into Convex Regions 

The results of Merging the Triangles into Convex Regions are shown below. 

• Parent Study: The Convex Regions alongwith the Regions Graph formed in the parent 

study for this particular case are shown in the following figure [27]. 
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Figure 4.4: Case Study - Convex regions and Regions Graph (Parent Study) 

A total of 33 regions are formed in the parent study as can be seen in the figure above. 

• Presented Algorithm: The Merging results of the algorithm discussed in this 

manuscript are shown in Figure 4.5. 

 
Figure 4.5: Case Study - Merging triangles into Convex Regions and Regions Graph 

A significant improvement in the merging of triangles can clearly be seen by 

comparing Figure 4.4 and Figure 4.5. 52 Triangles have been merged into a total of 24 

regions as shown in Figure 4.5 compared to the 33 regions formed in the parent study. This is 

a significant improvement as it reduces the number of regions to be searched, in turn reducing 

the time as well as the number of robots required to search the complete environment. 
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4.1.4 Cycle Detection and Blocker Positions 

The results of cycle detection, total blockers required and their positions are given in 

this section. There are a total of 9 cycles formed in this particular case study corresponding to 

the 9 obstacles in the environment (1 cycle around each obstacle). But the results differ in 

case of number of blockers and blocker positions which is depicted in the following figures. 

• Parent Study: The blocker positions for this particular case study are shown in the 

following figure [27]. A total of 04 blockers are used to break the 9 cycles in the 

parent study, shown in green dots in Figure 4.6. 

 
Figure 4.6: Case Study - Blocker Positions and RMST (Parent Study) 

• Presented Algorithm: The blocker positions evaluated by the algorithm presented in 

this manuscript are shown in the following figure. 

 
Figure 4.7: Case Study - Blocker Positions and RMST (with and without regions numbering) 

In this case, a total of only 03 blockers are used (shown as green dots) to break the 9 

cycles present in the regions graph as compared to the 04 blockers identified by the parent 

study. Fewer number of robots required significantly improves performance and uses lesser 

resources. It reduces the time the blocking agents take to get to their positions as well. 
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4.1.5 Reduced Minimum Spanning Tree 

The RMST computed for this case study are depicted in this section. 

• Parent Study: The RMST formed for the case study after using 04 blockers is shown 

in Figure 4.6. A total of 16 regions (red dots) are to be analyzed in the RMST (red 

lines). 

• Presented Algorithm: The RMST for the algorithm presented in this manuscript is 

shown in Figure 4.7. 

A total of 14 regions (blue dots and cyan star) are to be analyzed in the RMST (red 

and magenta lines) while using only 03 blockers; compared to the 16 regions to be analyzed 

according to the parent study after using greater number of blocker agents (04). Magenta 

lines in Figure 4.7 show the disconnected nodes that have been connected directly to the 

closest tree nodes (due to blocker coverage). Lesser number of regions to search reduces the 

number of searchers required as well as the total time and path cost. 

4.1.6 Root Optimization 

The analysis of root optimization for RMST is depicted in this section. 

• Parent Study: As mentioned earlier, the parent study selects an arbitrary root node. In 

this particular case, the root node selected in the parent study is the node below 

Obstacle 08. It is depicted in the following figure (cyan star) [27]. 

 
Figure 4.8: Case Study - Root Node Selection (Parent Study) 

This is a suboptimal selection of the root node and can lead to an increase in the 

number of searchers required. 
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• Presented Algorithm: The algorithm presented in this manuscript performs root 

optimization before deducing number of branches and search order as discussed in 

chapter 03. The results of root optimization for this particular case are shown in the 

following figure with the root highlighted as a cyan star. 

 
Figure 4.9: Case Study - Root Optimization and Selection 

In this case, the root node selected is just to the left of Obstacle 01 and its region 

number is 06 (as can be seen in Figure 4.7). 

4.1.7 Number of Branches and Search Order 

This section compares the number of branches generated by both algorithms. The 

number of branches significantly depend on proper selection of the root node. 

• Parent Study: The number of branches identified in the parent study are 02. This is 

clearly visible from Figure 4.8 according to the branch rules discussed in chapter 03. 

Therefore, this implies the requirement of 02 searchers. 

• Presented Algorithm: The number of branches identified by the algorithm presented 

are only 01. This can be seen from Figure 4.9 according to the branch rules discussed 

in chapter 03. Hence the presented algorithm requires only 01 searcher compared to 

the 02 searchers required in the parent study. 

4.1.8 Blocker Paths 

This section shows the Blocker Paths used for this particular case study. Blocker 

Paths originate from the Root and end at Blocker Positions. 
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• Parent Study: The parent study uses suboptimal paths for blockers. They are not based 

on the shortest path algorithm and hence result in longer paths and increased time to 

reach the blocker positions. This increases the runtime of the algorithm significantly. 

The blocker paths for the case are shown in the following figure [27]. 

 
Figure 4.10: Case Study - Blocker Paths (Parent Study) 

The paths for the 04 blockers according to the parent study are shown above. The 

maximum length for a blocker path in this case is approx. 235 meters and that is the critical 

path length as the searchers cannot start searching before all blockers reach their positions. 

The time taken by the robot (Groundbot by Rotundus) to reach its final position is 6 minutes 

and 8 seconds [27] at an average speed of approx 0.64 m/sec. 

• Presented Algorithm: The algorithm presented uses the shortest path algorithm as 

discussed in chapter 03 to minimize the path length as well as time to reach the 

blocker positions. The resulting blocker paths are shown in the following figure. 

 
Figure 4.11: Case Study - Blocker Paths (Shortest Paths) 
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The blocker paths (green lines) originate from the root (cyan star) and end at the 03 

blocker positions specified. As it can be seen from the figure, the paths are the shortest 

possible paths to reach the destination positions. The maximum path length for a blocker path 

in this case is approx 146 meters compared to the 235 meter maximum path length generated 

by the parent study. If the same robot is used with the same average speed (0.64 m/sec) as 

reference, all blockers are in position by approx 3 minutes and 48 seconds. This is a much 

improved performance compared to the parent study, reducing the critical path time by two 

and a half minutes. 

4.1.9 Searcher Paths 

Finally, a comparison of Searcher Paths for the case is presented in this section. 

• Parent Study: The total number of searchers required in the parent study is 02 and 

their paths are shown in the following figure [27]. 

 
Figure 4.12: Case Study - Searcher Paths (Parent Study) 

This figure shows the two searcher paths (red lines) alongwith the blocker positions 

(green dots). As is clear from the figure, the searcher paths are formed by using the midpoints 

of edges of adjacent regions to be explored. This results in a sub-optimal path that is not the 

shortest path. The longest searcher path is approximately 346 meters in this case taking 

approx 9 minutes to complete the search (average speed same as before). The total search 

time for the parent study comes out to be 15 minutes and 8 seconds. 

• Presented Algorithm: The total number of searchers required in the algorithm 

presented is 01 compared to the 02 searchers required in the parent study. The 

searcher path is shown in the following figures. 
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Figure 4.13: Case Study - Searcher Path (with regions numbering) 

 
Figure 4.14: Case Study - Searcher Path 

The figures above show the Searcher Path (red lines) alongwith the Blocker Positions 

(green dots). This path have been formed using the shortest path algorithm alongwith the 

important rules and considerations mentioned in chapter 03. This results in the shortest path 

for all possible Searchers. The Searcher path in this case is approximately 316 meters taking 

approx 8 minutes and 13 seconds to complete the search (average speed same as before) 

compared to the 9 minutes taken by the parent study. The total search time for the presented 

algorithm comes out to be 11 minutes and 51 seconds as compared to the 15 minutes and 8 

seconds for the parent study. 
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4.1.10 Conclusion of the Case Study 

Table 4.1: Comparison of algorithms depicting time and cost efficiency 

 Parent Study Presented Algorithm 

No. of Regions 33 24 

No. of Blockers 04 03 

No. of Searchers 02 01 

Critical Path Length (CPL) Blockers 235 meters 146 meters 

Time to cover CPL Blockers 06 min 08 sec 03 min 38 sec 

Critical Path Length (CPL) Searchers 346 meters 316 meters 

Time to cover CPL Searchers 09 min 08 min 13 sec 

Total Time to Secure Environment 15 min 08 sec 11 min 51 sec 

Total Robots required 06 04 

The results of both algorithms can be summarized (Table 4.1) for this particular case 

study such that the algorithm presented in this manuscript is more time and cost efficient as it 

employs a better merging technique and uses the shortest path algorithm for blockers as well 

as searchers.  
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CHAPTER 5: RESULTS 

In this chapter, the results of a targeted environment are presented. The results are 

compiled stepwise according to the steps discussed in detail in chapter 03. 

5.1 Environment Map 

The environment on which the algorithm was finally implemented is shown in the 

figure below. It is a scaled-down map of College of EME Block-01 to Block-07. (Units: 

ft/10) 

 
Figure 5.1: Results - Environment Map 

As it can be seen from Figure 5.1, blocks 1 to 7 have been modeled as obstacles 1 to 7 

and the lawns in front of the blocks are labeled as unpathable regions where the robots are not 

allowed to enter. Intruders can enter the lawns so they are to be surveyed by robots by staying 

at the edges/corners of the unpathable regions. Obstacle 8 is inside unpathable 5, so the cycle 

around that obstacle has to be catered for by the algorithm. The pathways are the only area 

where the robots can move (free area shown in green). 
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5.2 Triangulation and Triangles Graph 

The triangulation that forms the Triangles Graph is presented in the following figure.  

 
Figure 5.2: Results - Triangles Graph 

A total of 131 triangles were formed in the free area of the environment. In the same 

way, all unpathable region were triangulated by treating each as a separate sub-environment. 

5.3 Merging Triangles into Convex Regions and Regions Graph 

The results of merging the triangles into convex regions are shown below. 

 
Figure 5.3: Results - (a) Merged Regions (b) Unpathable-05 Regions 

As it can be seen in Figure 5.3 (a), 131 triangles in the free pathway area have been 

merged into a total of 35 regions. Similarly, the triangles within all unpathable regions are 

also merged to form 18 more convex regions. Figure 5.3 (b) shows the 5 regions and regions 

graph formed within unpathable-05 that has obstacle-08 inside it. A cycle is formed around 

the obstacle within the unpathable. This cycle must be catered for (broken) in order to 
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completely survey this unpathable. Unpathable regions 1,2,3,4,6 and 7 have 2,2,3,3,2 and 1 

regions respectively. Therefore, there are a total of 53 regions in the complete environment. 

Figure 5.4 shows the corresponding Regions Graph. 

 
Figure 5.4: Results - Regions Graph (Voronoi Diagram) 

5.4 Cycle Detection and Blocker Positions 

The results of cycle detection, total blockers required and their positions are given in 

this section. A total of 6 cycles were formed (1 cycle each around unpathables 1 to 5 and one 

cycle around obstacle-08 within unpathable-05). The blocker positions evaluated by the 

algorithm presented in this manuscript are shown in the following figure. 

 
Figure 5.5: Results - Blocker Positions (and remaining Regions Graph) 

A total of only 03 blockers were required (shown as red dots) to break the 6 cycles 

present in the Regions Graph and are placed at corners of unpathable-02, 04 and 05 

respectively. 
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5.5 Reduced Minimum Spanning Tree and Root Optimization 

The RMST computed for the environment is depicted in the following figure. On 

comparison of Figure 5.5 and Figure 5.6, it can be seen that 6 region centroids have been 

added when finalizing the RMST. These are the point regions (numbered 54 to 59) added on 

the corners of unpathable regions required to completely survey the area within them. A point 

region is added at a corner of each unpathable except unpathable-02 that is completely 

covered by a static blocker. The root of the RMST is placed at an optimized location in order 

to minimize the number of branches in the tree. 

 
Figure 5.6: Results - RMST and Root Node Selection 

5.6 Number of Branches and Search Order 

As discussed earlier, the number of branches significantly depend on proper selection 

of the root node. The number of branches identified by the algorithm presented are 02. This 

can be seen from Figure 5.6 according to the branch rules discussed in chapter 03. Hence it 

requires only 02 searchers to survey the environment, and the search orders are as follows: 

Searcher1: (20-56-21-14-12-11-7-55-16-17-13-10-9-8-5-3-54-4-1) 

Searcher2: (20-14-12-11-7-17-19-23-22-25-27-57-26-30-32-29-58-31-33-34-59-35) 

5.7 Blocker Paths 

This section shows the blocker paths computed by the algorithm. Blocker paths for 

the 03 blockers originate from the root node and end at respective blocker positions as shown 

in the following figure. The maximum length for a blocker path in this case is approx. 105.5 

53 
 



meters (CPL). Using the same average robot speed as earlier in chapter 04, all blockers reach 

their positions by 02 minutes and 44 seconds. 

 
Figure 5.7: Results - Blocker Paths (Shortest Paths) 

5.8 Searcher Paths 

The total number of searchers required in the algorithm presented are 02 and their 

paths are shown in the following figures. 

 
Figure 5.8: Results - Searcher Paths 
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Figure 5.9: Results - (a) Seacher-1 Path (b) Searcher-2 Path 

The figures above show searcher paths alongwith blocker positions. These path have 

been formed using the shortest path algorithm alongwith the important rules and 

considerations mentioned in chapter 03 according to the search orders identified. The 

searcher paths in this case are approximately 278 meters and 357.8 meters (CPL) long 

respectively, and the time to cover the CPL is approx 9 minutes and 20 seconds. The total 

search time for the environment comes out to be 12 minutes and 04 seconds. 

  

55 
 



CHAPTER 6: CONCLUSION 

The results of the Search and Secure algorithm presented in this manuscript can be 

summarized such that it is more effective and optimum because of the following: 

• Better merging technique results in lesser number of regions in the regions graph. 

• Improved blocker position evaluation results in lesser number of blockers required for 

breaking cycles. 

• Reduced number of regions to be searched in the RMST. 

• Root optimization for reducing the number of branches in the RMST and hence the 

number of searchers required. 

• Shortest path algorithm for blockers resulting in minimum time. 

• Shortest path algorithm with optimized leaf node rules for searchers. 

• Handling of unpathable regions with internal obstacles. 

All these points combine to form a more effective algorithm that significantly reduces 

the time and resource requirement for uncoordinated search of a particular environment. It 

can be improved even further by implementing a strategy to handle multiple obstacles within 

any unpathable region. Table 6.1 shows the summary of results of the environment analyzed 

in the previous chapter. 

Table 6.1: Summary of results of the environment 

No. of Blockers 03 

No. of Searchers 02 

Critical Path Length (CPL) Blockers 105.5 meters (Blocker-1) 

Time to cover CPL Blockers 02 min 44 sec 

Critical Path Length (CPL) Searchers 357.8 meters (Searcher-2) 

Time to cover CPL Searchers 09 min 20 sec 

Total Robots Required 05 

Total Time to Secure Environment 12 min 04 sec 
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