
Multi Robot Coverage Path Planning for Pursuit Evasion

Problem in a Known Environment

Author

SAAD SHAIKH

2010-NUST-MSPhD-Mts-01

Supervisor

Lt. Col. Dr. Kunwar Faraz Ahmad Khan

DEPARTMENT OF MECHATRONICS ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD
SEPTEMBER, 2014

Multi Robot Coverage Path Planning for Pursuit Evasion Problem in a

Known Environment

Author

SAAD SHAIKH

2010-NUST-MSPhD-Mts-01

A thesis submitted in partial fulfillment of the requirements for the degree of

MS Mechatronics Engineering

Thesis Supervisor:

Lt. Col. Dr. Kunwar Faraz Ahmad Khan

Thesis Supervisor’s Signature:_________________________________

DEPARTMENT OF MECHATRONICS ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD
SEPTEMBER, 2014

Declaration

I certify that this research work titled “Multi Robot Coverage Path Planning for

Pursuit Evasion Problem in a Known Environment” is my own work. The work has not been

presented elsewhere for assessment. The material used from other sources has been properly

acknowledged / referred.

Signature of Student

Saad Shaikh

2010-NUST-MSPhD-Mts-01

i

Language Correctness Certificate

This thesis has been read by an English expert and is free of typing, syntax, semantic,

grammatical and spelling mistakes. Furthermore, the thesis is according to the format given

by the university.

Signature of Student

Saad Shaikh

2010-NUST-MSPhD-Mts-01

Signature of Supervisor

ii

Copyright Statement

• Copyright in text of this thesis rests with the student author. Copies (by any process)

either in full, or of extracts, may be made only in accordance with instructions given

by the author and lodged in the Library of NUST College of E&ME. Details may be

obtained by the Librarian. This page must form part of any such copies made. Further

copies (by any process) may not be made without the permission (in writing) of the

author.

• The ownership of any intellectual property rights which may be described in this

thesis is vested in NUST College of E&ME, subject to any prior agreement to the

contrary, and may not be made available for use by third parties without the written

permission of the College of E&ME, which will prescribe the terms and conditions of

any such agreement.

• Further information on the conditions under which disclosures and exploitation may

take place is available from the Library of NUST College of E&ME, Rawalpindi.

iii

Acknowledgements

I am thankful to my creator Allah Subhana-Watala to have guided me throughout this

work at every step and for every new thought which You setup in my mind to improve it.

Indeed I could have done nothing without Your priceless help and guidance. Whosoever

helped me throughout the course of my thesis, whether my parents or any other individual

was Your will, so indeed none be worthy of praise but You.

I am profusely thankful to my beloved parents who raised me when I was not capable

of walking and continued to support me throughout in every department of life. It is because

of their valued guidance and persistence that I have been able to achieve this milestone.

I would also like to express my gratitude to my supervisor Dr. Kunwar Faraz for his

help throughout my thesis and also for the Mobile Robotics course he has taught me and my

colleagues. I can safely say that I haven't learned any other engineering subject in such depth

than the one he has taught us.

I would also like to pay special thanks to Mr. Athar Waqas (Advanced Engineering

and Research Organization) for his tremendous support and cooperation. Without his help I

wouldn’t have been able to complete this manuscript. I appreciate his patience and guidance

throughout the whole thesis.

I would also like to thank Dr. Umar Shahbaz and Dr. Umar Izhar for being on my

thesis guidance and evaluation committee and express my gratitude to Dr. Adnan Masood for

taking time out from his commitments and being my external thesis supervisor.

Finally, I would like to express my gratitude to all the individuals who have rendered

valuable assistance to my study, especially my siblings Mr. Haseeb Shaikh and Ms. Urooba

Shaikh for their help in the compilation and finalization of this manuscript.

iv

Dedicated to my special parents and adored siblings whose
tremendous support and cooperation led me to this wonderful

achievement.

v

Abstract

In the past decade, usage of multiple robots for various tasks has gained a lot of

popularity. Robots are becoming a household item being used in multiple dimensions and

areas of life. They are used for routine tasks in houses and offices to heavy-duty tasks in

factories etc. But the application of robots gaining the most popularity in the current world is

their use in security and surveillance. They are used for search and reconnaissance of large

scale environments such as banks, shopping malls etc, as well as for inspection of various

inaccessible areas such as sewers, tunnels and for guiding tourists safely through museums

etc. This is mainly because of the advantages of robots over their human counterparts;

reduced costs, time efficiency, lesser manpower requirement and reduced risk factor to name

a few. This work targets the usage of robots for search and surveillance in a known

environment map. That is, if it is required to secure an area or decontaminate an already

'contaminated' area with a known map, or to declare an area clear of any dangers/intruders.

The term 'contaminated' refers to an area that has an intruder present in it. A lot of work has

already been carried out and is ongoing in this field of robotics. Various techniques have been

devised to complete the Pursuit Evasion Problem (as it is more commonly known) where a

target/intruder is being pursued by a pursuer. The techniques vary in methods of employment

of robots; some are targeted towards guidance of robots, some are related to single robots,

while others are related to multiple robots and the degree of coordination required between

them to secure an area. The concept of 'searcher' and 'blocker agents' is employed and an

algorithm devised to achieve the abovementioned purpose and detect any intruders present in

an area in a way that is time efficient and requires lesser number of agents than the

techniques of uncoordinated search being used.

Keywords: Search and Secure, Pursuit Evasion, Searcher and blocker agents, Coordination

vi

Table of Contents

Declaration ... i
Language Correctness Certificate ... ii
Copyright Statement ... iii
Acknowledgements .. iv
Abstract .. vi
Table of Contents .. vii
List of Figures .. ix
List of Tables .. xi
CHAPTER 1: INTRODUCTION.. 1

1.1 Definitions and Terminologies .. 1
1.2 Background ... 2

1.2.1 Cyclic Strategies ... 3
1.2.2 Markers Based Strategies .. 3
1.2.3 Communication Based Decentralized Strategies .. 3
1.2.4 Cooperation Based Centralized Strategies .. 4
1.2.5 Partitioning Based Strategies .. 4
1.2.6 Contamination Based Strategies ... 4

1.3 Motivation ... 4
1.4 Scope ... 6
1.5 Thesis Outline ... 6

CHAPTER 2: OBJECTIVES AND LITERATURE REVIEW .. 7
2.1 Literature Review .. 7
2.2 Search and Secure Algorithms Overview ... 7

2.2.1 Cyclic Strategies ... 8
2.2.2 Markers-based strategies ... 8
2.2.3 Communication-based decentralized strategies .. 9
2.2.4 Cooperation-Based Centralized Strategies .. 9
2.2.5 Partitioning Strategies ... 10

2.3 Developmental Stages of Partitioning-based Algorithms ... 11
2.3.1 Early Developments .. 11
2.3.2 Objective-based Algorithm Development .. 11
2.3.3 Search and Secure Using Static Robots .. 12

2.4 Search and Secure using Mobile Partitioning-based Robots ... 12
2.4.1 Segmentation and Merging ... 12
2.4.2 Comparison of Voronoi and Delaunay Triangulation ... 13
2.4.3 Creating Minimum Spanning Tree ... 13
2.4.4 Determining Robot Positions and Tree Components .. 13
2.4.5 Identifying Robot Paths .. 14

2.5 Problem Definition .. 14

vii

2.6 Problem Solving Options .. 15
2.7 Thesis Objectives .. 15

CHAPTER 3: ANALYTICAL MODEL AND RESEARCH METHODOLOGY .. 16
3.1 General .. 16
3.2 Analytical Model and Research Methodology .. 16

3.2.1 Algorithm Overview and Description ... 16
3.2.2 Boundary and Obstacle Matrices .. 18
3.2.3 Visibility Graph of Corners .. 19
3.2.4 Triangulation... 20
3.2.5 Merging Triangles into Convex Regions .. 25
3.2.6 Regions Connectivity Graph ... 27
3.2.7 Cycle Detection .. 28
3.2.8 Static Blocker Positions .. 31
3.2.9 Reduced Minimum Spanning Tree ... 34
3.2.10 RMST Root Optimization ... 35
3.2.11 Number of Branches and Search Order .. 36
3.2.12 Blocker Paths .. 36
3.2.13 Searcher Paths ... 38

CHAPTER 4: CASE STUDY FOR VALIDATION OF ALGORITHM ... 40
4.1 Case Study... 40

4.1.1 Environment Map ... 40
4.1.2 Triangulation... 40
4.1.3 Merging Triangles into Convex Regions .. 41
4.1.4 Cycle Detection and Blocker Positions ... 43
4.1.5 Reduced Minimum Spanning Tree ... 44
4.1.6 Root Optimization .. 44
4.1.7 Number of Branches and Search Order .. 45
4.1.8 Blocker Paths .. 45
4.1.9 Searcher Paths ... 47
4.1.10 Conclusion of the Case Study ... 49

CHAPTER 5: RESULTS ... 50
5.1 Environment Map ... 50
5.2 Triangulation and Triangles Graph ... 51
5.3 Merging Triangles into Convex Regions and Regions Graph ... 51
5.4 Cycle Detection and Blocker Positions ... 52
5.5 Reduced Minimum Spanning Tree and Root Optimization .. 53
5.6 Number of Branches and Search Order ... 53
5.7 Blocker Paths .. 53
5.8 Searcher Paths ... 54

CHAPTER 6: CONCLUSION .. 56
REFERENCES ... 57

viii

List of Figures

Figure 1.1: Robotics market size .. 5
Figure 1.2: Global market outlook (KIRIA) ... 5
Figure 3.1: Flowchart of the algorithm ... 17
Figure 3.2: Example Case - Boundary and Obstacles ... 19
Figure 3.3: Example Case - Initial Non-Delaunay Triangulation ... 23
Figure 3.4: Circumcircle of a triangle ... 23
Figure 3.5: (a) Non-Delaunay Triangulation (b) Edge Flipped for Delaunay Triangulation 24
Figure 3.6: Example Case - Delaunay Triangulation .. 24
Figure 3.7: Example Case - Triangles Connectivity Graph (Voronoi Diagram) .. 25
Figure 3.8: Convex and Non-convex Regions .. 25
Figure 3.9: Example Case - Merged Regions ... 27
Figure 3.10: Example Case - Regions Graph.. 28
Figure 3.11: Results of Kruskal (yellow lines) and Prim's Algorithms (orange lines) ... 28
Figure 3.12: A XOR Example .. 29
Figure 3.13: Example Case - Regions Graph (Cycles Depiction) .. 31
Figure 3.14: Example Case - Regions Graph and Regions Numbering .. 32
Figure 3.15: Example Case - Vertex effecting most cycles - Blocker Position (green) .. 33
Figure 3.16: Example Case - Final Blocker Positions (green) .. 33
Figure 3.17: Example Case - RMST and Blocker Positions ... 34
Figure 3.18: Example Case - Root Finalization (cyan star) .. 35
Figure 3.19: Example Case - Blocker Paths ... 38
Figure 3.20: Example Case - Searcher Path (with region numbers) ... 39
Figure 3.21: Example Case - Searcher Path.. 39
Figure 4.1: Case Study - Environment Map ... 40
Figure 4.2: Case Study - Delaunay Triangulation and Triangles Graph (Parent Study) 41
Figure 4.3: Case Study - Delaunay Triangulation and Triangles Graph ... 41
Figure 4.4: Case Study - Convex regions and Regions Graph (Parent Study) .. 42
Figure 4.5: Case Study - Merging triangles into Convex Regions and Regions Graph .. 42
Figure 4.6: Case Study - Blocker Positions and RMST (Parent Study) .. 43
Figure 4.7: Case Study - Blocker Positions and RMST (with and without regions numbering) 43
Figure 4.8: Case Study - Root Node Selection (Parent Study) ... 44
Figure 4.9: Case Study - Root Optimization and Selection .. 45
Figure 4.10: Case Study - Blocker Paths (Parent Study) .. 46
Figure 4.11: Case Study - Blocker Paths (Shortest Paths) .. 46
Figure 4.12: Case Study - Searcher Paths (Parent Study) ... 47
Figure 4.13: Case Study - Searcher Path (with regions numbering) ... 48
Figure 4.14: Case Study - Searcher Path .. 48

ix

Figure 5.1: Results - Environment Map .. 50
Figure 5.2: Results - Triangles Graph ... 51
Figure 5.3: Results - (a) Merged Regions (b) Unpathable-05 Regions ... 51
Figure 5.4: Results - Regions Graph (Voronoi Diagram) ... 52
Figure 5.5: Results - Blocker Positions (and remaining Regions Graph) ... 52
Figure 5.6: Results - RMST and Root Node Selection ... 53
Figure 5.7: Results - Blocker Paths (Shortest Paths) .. 54
Figure 5.8: Results - Searcher Paths ... 54
Figure 5.9: Results - (a) Seacher-1 Path (b) Searcher-2 Path ... 55

x

List of Tables

Table 4.1: Comparison of algorithms depicting time and cost efficiency .. 49
Table 6.1: Summary of results of the environment ... 56

xi

CHAPTER 1: INTRODUCTION

The work presented in this dissertation primarily targets the "Search and Secure

Algorithm" and having robots perform the searching task autonomously. For this purpose, the

robots must be made capable of searching and securing the given environment of any

intruders as well as ensuring that no intruders can sneak back into the already secured area

undetected. This is accomplished through the Search and Surveillance Algorithm discussed in

the upcoming chapters. The algorithm divides the given environment into areas where the

robots can move, where there are obstacles and areas that need to be surveyed but are

inaccessible to the robots (unpathable regions); and then calculates the number of

robots/agents required and the paths/trajectories they have to follow in order to completely

survey and secure the area.

1.1 Definitions and Terminologies

• Obstacle: Obstacle is a polygonal region that is totally inaccessible; both to robots as

well as any sort of intruders.

• Unpathable Region: Unpathable regions are those regions that need to be searched

and secured but they are physically inaccessible to the robots; though intruders can go

into such regions.

• Boundary: Boundary is defined as the outer edges of the environment that contain all

the obstacles, unpathables and the area to be secured. The boundary must be a closed

polygon.

• Decentralized: Decentralized refers to a communication protocol between robots that

is not centralized at a global center, rather it is a local communication protocol.

• Uncoordinated/Non-Communicative: Uncoordinated or non-communicative means

there is no communication of any sort between the robots and they are completely

independent in their tasks.

• Blocker Robots or Blockers: Blocker Robots or simply Blockers are those

agents/UGVs that are used to "block" certain paths/regions; i.e. they secure certain

regions in an environment in order to break loops/cycles.

• Searcher Robots or Searchers: Searcher Robots or simply Searchers are those

agents/UGVs that are used to "search and secure" the environment by moving on their

1

specified paths. Searchers move from one region to another securing them visually

through their cameras.

• Convex Hull: A convex hull refers to a polygon who's inner incident angles are never

greater than 180 degrees. Consequently, each point of a convex hull is visible from

any other point in it.

• Circumcircle of Triangle: The circumcircle of a triangle is that circle which touches

all the vertices of that triangle.

• Lexicographical Order: Lexicographical Order refers to sorting a set of

points/vertices in ascending order w.r.t. their X and Y-coordinates. A

lexicographically minimum point is one that has minimum X and minimum Y

coordinates in a set of points.

• Graph: A graph is a set of points joined together by edges between them showing

their connectivity with each other. A graph may or may not have loops/cycles in it.

• Tree: A tree is a graph with no loops/cycles in it.

• Cycles and Loops: Cycles or loops are sets of points in a graph that are connected

together through multiple paths and there exist back edges between them, such that a

parent node of a vertex can be cycled back to by passing through another set of nodes.

• Minimum Spanning Tree: A Minimum Spanning Tree or MST is a tree that has all

the nodes visited atleast once. The MST has no loops/cycles and if a graph is to be

converted into an MST, its loops need to be broken through Blockers.

• Root of a Tree: A Root node of a tree is the start point of the tree i.e. all the tree

branches are originated from the root.

• Leaves of a Tree: Leaves or leaf of a tree are those nodes that have no children. They

are at the ends of a branch.

• Branches: Branches are series of atleast three connected nodes in a graph or tree.

1.2 Background

In the last decade, surveillance, patrolling, exploration and navigation

algorithms/strategies have piqued the interest of the robotics world. This area has grown in

leaps and bounds because of the variety of approaches that these algorithms discuss and

comprise of. Different authors have come up with different numerical as well as analytical

approaches to solve such complex problems.

2

Mobile robots are used in significant numbers in hazardous and dangerous industrial

tasks such as aerospace, nuclear and mining industries. As the use of robots increases, so does

their interaction with humans. In order to perform various tasks, mobile robots are used either

in collaboration with humans or totally independently. So, research on path planning and

environment coverage algorithms that identify a collision free path along with performing a

certain task at hand is a fundamental requirement in the artificial intelligence industry these

days. Moreover, these paths need to be optimized regarding time as well as space/length

required to reach their termination points.

This section aims to present some of the background work related to different

algorithmic strategies followed by researchers throughout the years for coverage path

planning. Most of them are mixed strategies resulting from the merging of various analytical

systems, hence enforcing the idea that it is not necessary to follow one particular strategy to

solve a problem.

1.2.1 Cyclic Strategies

Cyclic strategies involve identifying the whole area to be explored and obstacles

present in it as a set of vertices. Such strategies are usually used for Patrolling Algorithms

where robots/agents have to "patrol" an area continuously.

1.2.2 Markers Based Strategies

Markers-based strategies are multi-robot, decentralized, non-communicative, local

search techniques, which employ deployment of tags to identify areas which have already

been explored by one of the robots in the team. These strategies are examples of dynamic

path identification since there is no knowledge of the map/environment prior to the start of

exploration.

1.2.3 Communication Based Decentralized Strategies

These techniques are based on communication between robots/agents. As the

technique is not centralized, the communication between the robots is local and not controlled

by any global control system.

3

1.2.4 Cooperation Based Centralized Strategies

As is perceivable from the name of this set of strategies, they employ the use of a

central monitoring and control unit, which helps all robots/agents navigate and makes

changes to their paths according to various requirements are runtime.

1.2.5 Partitioning Based Strategies

Partitioning based strategies are based on resolving a known environment into

segments that are independent from each other and are assigned to different robots for

exploration and monitoring. This particular set of strategies is discussed in most detail in the

later sections of this paper.

1.2.6 Contamination Based Strategies

These are a type of algorithmic technique that assumes that all segments of a partition

of a map/environment are "contaminated". Contamination can refer to any type of problem

according to the task at hand e.g. a bomb in a bomb-disposal problem etc. All these segments

are then "de-contaminated" by different robots/agents keeping in view that no de-

contaminated segment gets contaminated again.

1.3 Motivation

As the security threat in the world is increasing day by day, so is the utilization and

need of multiple mobile robots for searching and surveillance tasks in harsh and dangerous

environments. Similarly, the requirement of robots in the industry has gone up significantly.

Such problem have been widely addressed through mobile robots because their cost has

significantly decreased with a remarkable increase in their capabilities. These advancements

have led research towards utilizing robots rather than humans for accomplishing various tasks

because:

• The tasks are monotonous and very dull.

• The tasks involve a certain element of danger for people, such as bomb disposal,

hostile encounters etc.

• The tasks can be accomplished by robots more efficiently and accurately rather than

by humans.

• Robots can be cost effective.

• Use of robots can result in reduced manpower requirement.

4

Because of all these reasons, the requirement of not only industrial robots, but service

robots as well has gone up notably. According to the International Federation of Robotics

(IFR), significantly growing commercial activities related to personal and service robots have

been identified [1]. Similarly, the Korean Institute for Robot Industry Advancement has

signified an expansion of 40% every year in the service robot sector [2]. This can be seen in

the following figures:

Figure 1.1: Robotics market size

Figure 1.2: Global market outlook (KIRIA)

In order to fulfill this ever increasing global demand for service robots, not only the

hardware, but the software/algorithmic half of these robots needs to be made more efficient.

This work can be seen in a similar perspective, as it aims to implement a service robot

algorithm to efficiently carry out a search and secure task that can be dull and dangerous for

humans to perform. Hence, a solution is proposed for a similar problem in the chapters ahead.

5

1.4 Scope

The scope of this work is to implement a partitioning based strategy to partition a

given environment into smaller regions that are easier to analyze and form a connectivity

graph from these regions. After an analysis of the connectivity graph, the number of robots,

their positions and paths are identified for an Uncoordinated Decentralized Search of the

area. Each robot is assigned a specific role which can either be to stand and cover a certain

location or to follow a certain path surveying different regions accordingly and are declared

blocking robots or searching robots according to their defined roles. The results of the work

are compared with other similar work done for validation purposes.

1.5 Thesis Outline

In this thesis, an algorithm for complete search-and-secure coverage of an

environment is presented. A simulation is performed for the environment and the

corresponding paths for mobile robots are accordingly identified.

In Chapter 1, the title of the research and the scope of work are described, along with

a brief background of the research objectives and some important terminologies used and

their definitions are listed.

In Chapter 2, the problem and corresponding objectives are stated. Afterwards,

important fundamental concepts studied as part of the Literature Review and Research carried

out for the study of various techniques and algorithms being used in this work are presented.

In Chapter 3, the Analytical Model and Research Methodology identified and

implemented to accomplish this work are presented with brief results required to emphasize

the outcome of each step.

In Chapter 4, case studies are presented as well as a comparison of results with a

similar research project already carried out.

In Chapter 5, an implementation of the algorithm on an actual map of a specified

location as well as its detailed results and discussions are presented.

In Chapter 6, the conclusion and different application areas of the research work are

presented.

6

CHAPTER 2: OBJECTIVES AND LITERATURE REVIEW

2.1 Literature Review

The use of Unmanned Ground Vehicles (UGVs) for the "search and secure" problem

is an application of great interest that allows searching an area and securing it using one or

multiple autonomous robots based on the complexity of the area to be searched.

Search and secure involves two aspects; navigation and sensing. Developers have

used different basic techniques to define navigation algorithms. These methods may use a

variety of approaches, some of which may be same or similar. Yet, each method has distinct

logical features, which differentiates it from other methods. The goal of this manuscript is to

further the developments in robot navigation. Each navigation algorithm engenders different

sensing and securing capabilities, hence the algorithms are treated as "search and secure"

algorithms instead of just navigation. This section initially defines and describes the

background for different search and secure algorithms as briefly mentioned in the previous

chapter, which helps the reader identify why "partitioning strategies" are used in this study.

Further, this chapter goes into the detail of partitioning strategies to bring the reader up to

speed with the developments in the field up till now, so that he may do justice to the work

presented in this manuscript.

2.2 Search and Secure Algorithms Overview

This section, as has already been described, takes a look at various navigation

techniques employed for area searching and securing. All techniques have certain advantages

and disadvantages. Some of them offer cost efficiency, while others focus on saving time.

Some are more robust in terms of their tolerance to failure of one or more robots (or "agent"),

while others are based on independence of each agent from the other in order to complete a

task. Some strategies implement their navigation method based on global information of the

area to be explored, while others use local decision making to autonomously make navigation

decisions without knowledge of the global scenario. Yet, a few involve communication

between different agents to tackle an environment, compared to independent partitioned

tasks. The task accomplished in this section is to establish which of the navigation algorithms

allow us to explore the requisite searching and sensing capabilities targeted in this thesis.

7

2.2.1 Cyclic Strategies

Cyclic strategies involve identifying the whole area to be explored and obstacles

present in it as a set of vertices [3]. The path formed by joining of the vertices is termed as

"Hamilton Path", and if a cyclic patrol is established, the cycle is known as "Hamilton Cycle"

[4]. To compute the possibility of existence of Hamilton cycles within a certain map or

"graph", extensive procedures have been established [5]. These help in determining a certain

path for the robots to travel and, hence, are essential to the employment of this technique.

Once the Hamilton path or cycle is identified, a closed loop is established that covers

all the vertices, and the robot team travels along that same path one-by-one. Each robot will

"clear" all the possible hideouts of an intruder or locations of any static object by traversing

through every vertex in the area. Yet, it is easily observable that an intelligent intruder may

observe and identify the route taken by each robot and sneak in between two robots in the

same cycle to remain unobserved at all times. Hence, this technique is only viable for static

object searching, securing, and patrolling, but does not have the requisite properties to serve

as a search, secure, and decontaminate technique for a dynamic intelligent intruder.

2.2.2 Markers-based strategies

As mentioned earlier, Markers-based strategies are multi-robot, decentralized, non-

communicative, local search techniques, which employ deployment of tags to identify areas

which have already been explored by one of the robots in the team. In this technique, there is

no knowledge of the map prior to the start of exploration. The result is dynamic path

identification by every robot based on tags or markers placed in its local region. Different

studies have used this technique using different algorithms; one strategy [6] encompasses the

algorithm: "A robot explores as long as there are open regions left. If all the regions are

explored, then the robot picks the direction which was least recently explored." Another

strategy is inspired by the exploration method used by ants [7], which also drop a marker

fluid to define their path. The navigation probability of a robot in this strategy is highest in

the direction most used by other robots.

As can be easily understood from the description, the target of this strategy is more

towards defining patrolling routes and exploring an unknown area efficiently in terms of

time. Though this technique may be used for searching and securing for static objects, its use

for searching to decontaminate the area seem inadequate, as an intelligent dynamic intruder

may easily observe the navigation path of the robots and find a pattern to identify unobserved

8

regions in the area at any given time. A dynamic intruder may use the pattern over time to

keep hidden from the robots, thus making this strategy unfavorable for the study at hand, and

rather more suited towards exploration and patrolling.

2.2.3 Communication-based decentralized strategies

The name of the technique makes it quite evident that there is at least some form of

direct communication between robots at some point in time during their mission. As this

technique is decentralized, it means that the communication is local, and not fed into a global

monitoring and controlling system. The type and method of communication is solely the

discretion of the specific algorithm developed for a team or a mission. Navigation strategies

are based on the fact that the map is partially or completely unknown at the start of the

mission, hence requiring use of local navigation algorithms.

There are two communication strategies used by Sgorbissa et al. [8]: goal sharing -

which identifies to a robot what targets the other robots have to coordinate local movement;

and state sharing - which helps robots without clearly established goals to communicate with

nearby robots to get help with the identification and establishment of goals. Dollarhide et al.

[9] have shown the viability of communication-based decentralized strategies for searching

and securing for static objects, using different algorithms. Yet, this technique seems

inadequate for searching to decontaminate, as ignorance of the map area and presence of

loopholes in the dynamic search pattern may easily be exploited by an intelligent intruder.

2.2.4 Cooperation-Based Centralized Strategies

These techniques have a central monitoring and controlling unit, which preplans the

navigation of all robots in the mission as well as makes requisite changes during the mission.

Mapping of the environment is necessary for preplanning, and dynamic mapping is also

featured in many algorithms and studies to allow for threat response [10] or enemy location

based navigation [11].

This technique allows for dynamic changes in the search routes taken by any given

robot based on malfunctioning of one or more robots, identification of a static or dynamic

threat and the type of response initiated to deal with it, and emergence of environmental

changes. Hence, this provides the capability to search and secure, as well as decontaminate a

map. Yet, it is quite evident that the equipment is expensive, planning is quite difficult, and

high intelligence in the algorithm is necessary to take care of the uncertainties of the dynamic

situation.

9

2.2.5 Partitioning Strategies

Partitioning strategies are based on resolving the known area of a map into

independent segments, which are then assigned to different robots for exploration and

monitoring. This has been shown by Wurm et al. [12] to reduce the exploration time for

unknown areas of the map significantly. Also for known areas of the map, searching and

securing by this method is the most time efficient, which has been proven through

simulations as well as real-time experiments. This is also a very good patrolling strategy as

well, if the navigation algorithm is based on the probability calculations of least monitored

area at any point in time [13]. This increases the probability of observation of each area and

significantly reduces chances of external intrusion, as the route of each agent is dynamic and

cannot be predicted by an intelligent intruder, unlike in cyclic patrolling techniques.

Contamination-based strategies are another set of algorithmic techniques, which are

primarily based on partitioning. The basic strategy of decontamination is to assume that all

edges and vertices in the map are contaminated and contamination may flow from a vertex to

adjacent edges and vice versa. The objective is to observe and, hence, eliminate the

possibility of or identify all contaminants present.

Once a vertex or edge is observed to be "clear", the algorithm has to make sure that

there is no possibility of the cleared vertex or edge to be contaminated again. As any obstacle

is a closed body, the edges form a cycle which may be traversed by an intruder or a

contaminant without observation if a single agent attempts to observe it by itself. Hence,

every obstacle serves as a cycle, which has to be broken by using multiple observers at the

same time to clear it. To achieve this, a few agents are placed in the map area or "graph" as

static "blockers", which break the cycles present in the graph. Other agents serve as

"searchers" who move through the graph to decontaminate/clear the vertices and edges not

observed by the static blockers, in a manner that the decontamination is permanent [14].

The blocker and searcher placement algorithm is based on furthering the partitioning

strategy. A popular segmentation technique is triangulation, using Delaunay algorithm.

Combining triangulated regions to form convex polygons, and then joining the centers of

adjacent regions results in a diagram known as "Voronoi Diagram" [15]. This diagram is used

to identify cycles present in the graph and locate suitable blockers positions and searcher

paths. Optimal partitioning techniques are being developed [16], which are the focus of this

study as well. The next section focuses on this very topic, and aims to identify the research

that has already been done to develop a base for the work presented in this manuscript.

10

2.3 Developmental Stages of Partitioning-based Algorithms

Every search and secure operation involves determining how many robots will be

required for it, what navigation routes will be implemented, how much time it will take, and

what will the cost of the operation be. To make use of robots for such tasks feasible, it is

necessary to keep the costs minimal, hence the use of the least number of robots for the least

amount of time is the goal. Any "strategy" implemented to perform a "clearing" operation in

an area or "graph" has an associated "strategy cost" [14].

2.3.1 Early Developments

Initial attempts at using partitioning algorithms for search and secure missions

involved clearing contaminated edges in a graph [17]. These were improved upon in further

researches [18]-[21], such that they led to the "graph-clear" problem. More complex methods

evolved [22], allowing planar regions of simply connected environments to be cleared by a

single mobile gap detector, when combined with static blockers as per requirement. The

problem was shown to be NP-complete by Parsons [17], with strategies extracted from a

minimum spanning tree constructed by the algorithm. Though the algorithm suggested good

strategies for blocker placement use of moving blockers, it was proven to be strategically

non-optimal and not as cost-effective as possible, hence leading to further research.

2.3.2 Objective-based Algorithm Development

Gerkey et al. [23] addressed the issue of algorithm development by revising sensory

capabilities of robots and introducing new ones, while Ge and Fua [24] targeted the use of the

least number of robots (say, one) and develop search algorithms that would sweep a given

area completely, with least amount of repetition, and in the least amount of time. Isler et al.

[25] have targeted minimizing the probable decontamination time of an area with an

intelligent and fast intruder, using randomized navigation strategies for even a slow agent.

This strategy employs the cost-efficiency principle by minimizing the number of agents used

to one. Further, it involves the use of randomized movements, instead of pre-determined

clearing movements, as might be the case with generic partitioning-based algorithms. The

research showed that the unpredictability of the movement of the searching agent allows it to

outsmart the faster moving intruder as it cannot use its intelligence effectively. Though time

consumption was comparable to pre-determined navigation strategies, the reduction of

preprocessing costs was deemed significant.

11

2.3.3 Search and Secure Using Static Robots

A research by Ganguli et al. [26] somewhat similar in spirit to what is considered in

this manuscript is related to the "art gallery problem". This research presents its own method

of partitioning a simple polygonal environment. The name given to the technique, "The

vertex-induced tree", involves division of a polygonal environment into star-shaped subsets,

the technique of which is described in detail by the researchers. The differences to the current

research are communication (though limited) between different agents, agent-based decision

making, low prior knowledge of the area they are to be deployed in, and static locations after

deployment for observation of "an art gallery".

All the above researches give a clue regarding the variability among different

techniques used for developing partition-based algorithms. It is evident that identification of

the objective of the algorithm is of primary importance, as it ascertains the type of techniques

which might be utilized. In lieu of this, a summary of the parent research for the current study

is presented in the next section.

2.4 Search and Secure using Mobile Partitioning-based Robots

The search and secure algorithm developed for using mobile robots in the parent

research by Katsilieris [27] targeted sweeping an area with rectangular obstacles. The

objective of the research was not the sensing itself, but to develop a navigation algorithm,

which could be coupled with independent sensory control, processing, and feedback

algorithms. The output of the algorithm was purely navigation trajectories, not robot control

based on environmental inputs. It was supposed that the map environment and obstacle

location was known beforehand, which was an input parameter for the algorithm to produce

navigation trajectories as outputs. All robots were to behave mutually independently, only

performing based on their own pre-determined objectives. No inter-robot communication was

involved in any way. This section describes the steps in the algorithm through which the area

graph was converted to the navigation codes.

2.4.1 Segmentation and Merging

The segmentation technique employed in this study is Delaunay triangulation.

Triangulation simply refers to joining sets of three vertices in a manner such that the whole

region is divided into non-overlapping triangles. Generally, there would be multiple ways of

dividing a map with obstacles into triangles. Hence, this process requires optimization, which

is where the Delaunay algorithm comes in. It prevents the formation of triangles in which

12

very acute angles might be present, which hinders the next set of steps. Still, this

methodology is open for further optimization, and specifics of the implementation of the

Delaunay algorithm change with different studies.

After the formation of triangles within the graph, they are merged to form convex

polygons of the largest possible areas. An optimal implementation of this step along with

optimal triangulation would lead to the best segmentation. If the segmentation is optimal,

lesser regions would be formed in a given graph than any other possible segmentation

solution. This would lead to lesser points to cater for in the steps highlighted ahead. Hence,

this is necessary for optimization of the algorithm, which has been targeted by the author of

the current research.

2.4.2 Comparison of Voronoi and Delaunay Triangulation

When a triangulation segmentation technique is in consideration, it is always best to

perform a Delaunay Triangulation first and then create the connectivity graph by joining the

centroids of all adjacent triangles. This results in lowest errors, 10% less than those produced

by Voronoi Diagram construction directly [28]. Hence, Delaunay Triangulation is preferred

in the coming chapters for partitioning of an environment.

2.4.3 Creating Minimum Spanning Tree

The algorithm further takes the convex regions and joins the centroids of all adjoining

regions, essentially creating a Voronoi Diagram. This diagram is analyzed for loops by the

algorithm, which might be used by an intelligent intruder to evade a searching agent (a

problem discussed earlier in cyclic strategies). They are broken by identifying "cover nodes"

to form a "minimum spanning tree". Generally, each obstacle is a cycle, hence thumb's rule

suggests that there would be as many cover nodes as the number of obstacles present in a

graph.

2.4.4 Determining Robot Positions and Tree Components

Once the position of cover nodes are identified, robot positions are calculated by the

algorithm catering for all cover nodes. This essentially reduces the number of cycle breakers

from the number of cover nodes to the new number of blockers based on the calculations of

this step. This results in the formation of a "reduced minimum spanning tree". The root,

branches, and leaves of this tree are identified, using their standard definitions. This helps

13

determine the nodes of the reduced minimum spanning tree to be searched by the agents. The

root is the starting point of all the searchers.

2.4.5 Identifying Robot Paths

Blocker paths originate from the root and follow the nodes on the minimum spanning

tree to reach their destinations. The target is to spend the least amount of time in travelling,

hence the least time consuming path should be used to take the blockers to their final

positions. Yet, the research being summarized employed a non-optimal path formed through

the minimum spanning tree nodes.

Searcher paths are determined based on the reduced minimum spanning tree. The

number of searchers is determined by the number of branches in the tree. The waypoints

determined by the spanning tree might have a collision with an obstacle, as they are based on

joining centroids with straight lines. So, intermediate path points are established by the

algorithm by taking midpoints of adjoining edges of the RMST.

The critical point to be noted is that there are multiple possible improvements that this

algorithm may undergo and this research focuses on some of those possibilities, as described

in the later chapters.

2.5 Problem Definition

The problem can be defined as: Given a boundary/area with obstacles (multi-

dimensional polygons), search the area completely for any intruders such that the whole

environment is surveyed and no intruders are able to sneak back into an area (without being

detected) that has already been secured. Some important considerations in this regard are:

• The surface of the environment specified should be level/smooth and easily

traversable for the robots.

• The robots are assumed to have 360 degree unlimited vision.

• The algorithm is not aimed at characterizing the control algorithms of the robots,

rather it defines the paths/trajectories that they have to follow.

• The algorithm does not imply usage of image or video processing techniques to

actually detect an intruder. It provides the robot paths and the corresponding video

streams that are henceforth produced by the onboard cameras. These streams can be

analyzed by an observer or by implementing a video processing algorithm.

14

2.6 Problem Solving Options

Two problem solving options are available for obtaining desired solutions.

Developing code in C or MATLAB. MATLAB is chosen as the preferred option as it

provides computational efficiency regarding matrices and a graphical interface to easily

visualize the results in different ways.

2.7 Thesis Objectives

Following are the Objectives and Deliverable Milestones for this research:

• Analytical Analysis of an environment/map for abstraction in the form of a graph.

• Consolidation/Integration of this graph to get a higher abstraction level representation

of the environment.

• Detection of loops/cycles in this representation.

• Identification of required number of robots/agents along with their positioning and

trajectories for complete coverage of the environment.

• Case studies and comparison with results of existing targeted algorithms.

• Implementation of the algorithm on actual map of a specified location.

15

CHAPTER 3: ANALYTICAL MODEL AND RESEARCH

METHODOLOGY

3.1 General

The Search and Secure algorithm presented in this chapter is based on division of the

environment to be analyzed in convex regions. These convex regions are then abstracted in

the form of a graph known as the regions graph with centroids of the regions forming the

nodes/vertices of the graph. The cycles in this graph represent paths that begin and end at the

same vertex, hence providing loops for the intruder to evade the searching robots / agents.

These loops/cycles are broken using static blocker robots (referred to simply as blockers in

the forthcoming text) so that the intruder cannot "sneak back" or escape the robots / agents

pursuing or searching for the intruder. Once the blockers reach their identified positions to

break the cycles, the searching robots (referred to simply as searchers in the forthcoming text)

are deployed in the area to search for any intruders and secure it.

3.2 Analytical Model and Research Methodology

This section explains in detail the Research Methodology used and the Algorithm

developed henceforth.

3.2.1 Algorithm Overview and Description

The flow diagram of the algorithm is depicted in Figure 3.1. Following are the basic

sections in which the algorithm is divided and is discussed in detail in the later text.

• Triangulation: Divide the environment into triangles. After a basic triangulation, the

triangles are analyzed according to the Empty Circle Property regarding Delaunay

Triangulation and Lawson Flip Algorithm to finalize the triangulation results.

• Merging to Regions: The Delaunay Triangles are merged to form convex regions.

• Graphical Abstraction: The centroids of the merged regions are computed and an

adjacency matrix is formed which enlists the neighbours of each region. The centroids

are then connected according to the adjacency matrix to form a graph.

• Cycle Detection: The cycles in this graph are detected through a Depth First Search

(DFS) of the complete graph. Then in order to get all internal cycles, an exclusive or

(XOR) of the cycles obtained from the DFS is done.

16

• Static Blocker Agents: According to the cycles, positions of blocker agents or

blockers are determined in order to break all cycles. Finding the cycles and blocker

positions is an iterative process and blockers are placed intelligently until all cycles

are broken.

• Generate Reduced Minimum Spanning Tree: Once the blocker positions are

determined, the regions graph is converted into a Reduced Minimum Spanning Tree

(RMST) by removing all the regions covered by blockers. The RMST has no cycles

and forms the search tree which is to be searched and secured by searcher robots.

• Search Tree: The RMST is analyzed to identify the branches of the tree. The

number of branches equals to the number of searcher robots required.

• Blocker Paths: Create the paths for blocker robots. These paths are created on the

basis of Dijkstra's Shortest Path Algorithm so that the blockers reach their

designated positions in minimal time.

• Searcher Paths: Create the paths for searcher robots. This also creates shortest paths

for searchers keeping certain criteria in consideration.

Figure 3.1: Flowchart of the algorithm

All these will be discussed in detail in the following sections.

17

3.2.2 Boundary and Obstacle Matrices

The first step is to generate boundary and obstacle matrices for further use. This

involves the following matrices:

𝑆𝑆_𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 = {�𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗 �, 𝑖𝑖 = 1 𝑡𝑡𝑜𝑜 𝑛𝑛_𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑗𝑗 = 1 𝑡𝑡𝑜𝑜 𝑛𝑛_𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖}

𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑆𝑆_𝑜𝑜𝑜𝑜𝑜𝑜1 ∪ … ∪ 𝑆𝑆_𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 ∪ … ∪ 𝑆𝑆_𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛_𝑜𝑜𝑜𝑜𝑜𝑜

𝑆𝑆𝑜𝑜𝑜𝑜𝑏𝑏𝑛𝑛𝑏𝑏𝑜𝑜𝑏𝑏𝑦𝑦 = {(𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘),𝑘𝑘 = 1 𝑡𝑡𝑜𝑜 𝑛𝑛𝑜𝑜𝑜𝑜𝑏𝑏𝑛𝑛𝑏𝑏 }

𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑆𝑆𝑜𝑜𝑜𝑜𝑏𝑏𝑛𝑛𝑏𝑏𝑜𝑜𝑏𝑏𝑦𝑦 ∪ 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

And if an unpathable region also exists, then:

𝑆𝑆_𝑏𝑏𝑛𝑛𝑢𝑢𝑖𝑖 = {(𝑥𝑥𝑚𝑚 ,𝑦𝑦𝑚𝑚), 𝑖𝑖 = 1 𝑡𝑡𝑜𝑜 𝑛𝑛_𝑏𝑏𝑛𝑛𝑢𝑢 ,𝑚𝑚 = 1 𝑡𝑡𝑜𝑜 𝑛𝑛_𝑏𝑏𝑛𝑛𝑢𝑢𝑖𝑖}

𝑆𝑆𝑏𝑏𝑛𝑛𝑢𝑢𝑜𝑜𝑡𝑡 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑆𝑆_𝑏𝑏𝑛𝑛𝑢𝑢1 ∪ … ∪ 𝑆𝑆_𝑏𝑏𝑛𝑛𝑢𝑢𝑖𝑖 ∪ … ∪ 𝑆𝑆_𝑏𝑏𝑛𝑛𝑢𝑢𝑛𝑛_𝑏𝑏𝑛𝑛𝑢𝑢

𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑆𝑆𝑜𝑜𝑜𝑜𝑏𝑏𝑛𝑛𝑏𝑏𝑜𝑜𝑏𝑏𝑦𝑦 ∪ 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ∪ 𝑆𝑆𝑏𝑏𝑛𝑛𝑢𝑢𝑜𝑜𝑡𝑡 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
where

𝑛𝑛_𝑜𝑜𝑜𝑜𝑜𝑜: Total number of obstacles

𝑛𝑛_𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 : Total number of corners of obstacle i

𝑛𝑛_𝑏𝑏𝑛𝑛𝑢𝑢: Total number of unpathable regions

𝑛𝑛_𝑏𝑏𝑛𝑛𝑢𝑢𝑖𝑖 : Total number of corners of unpathable i

𝑛𝑛𝑜𝑜𝑜𝑜𝑏𝑏𝑛𝑛𝑏𝑏 : Total number of boundary corners

𝑆𝑆_𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 : Structure of corner points of obstacle number i

𝑆𝑆_𝑏𝑏𝑛𝑛𝑢𝑢𝑖𝑖 : Structure of corner points of unpathable number i

𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 : Structure of all obstacles

𝑆𝑆𝑏𝑏𝑛𝑛𝑢𝑢𝑜𝑜𝑡𝑡 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 : Structure of all unpathables

𝑆𝑆𝑜𝑜𝑜𝑜𝑏𝑏𝑛𝑛𝑏𝑏𝑜𝑜𝑏𝑏𝑦𝑦 : Structure of all corner points of boundary

𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 : Structure of all corner points

𝑥𝑥𝑗𝑗 , 𝑦𝑦𝑗𝑗 : x and y coordinates of j-th corner point of respective obstacle

𝑥𝑥𝑘𝑘 , 𝑦𝑦𝑘𝑘 : x and y coordinates of k-th corner point of boundary

𝑥𝑥𝑚𝑚 , 𝑦𝑦𝑚𝑚 : x and y coordinates of m-th corner point of respective unpathable

Every point is assigned a unique ID which is used for reference in the next steps. A

vertices array is formed such that:

𝑉𝑉𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 = [(𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖), 𝑖𝑖 = 1 𝑡𝑡𝑜𝑜 𝑛𝑛]
where

n: Total points

𝑉𝑉𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 : Vertices array of all points

i: ID of i-th point

18

Figure 3.2: Example Case - Boundary and Obstacles

Figure 3.2 shows an example case of extracted Boundary (red) and Obstacles

(magenta) numbered 1-6 from a given set of points.

3.2.3 Visibility Graph of Corners

After forming the aforementioned structures, a visibility graph is formed which

basically checks the visibility of each corner with the other. To check the intersection

mentioned in the algorithm below, all unpathable regions are assumed to be obstacles and are

temporarily added to the 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 structure. The algorithm devised for that purpose is as

follows:

1. 𝑆𝑆𝑣𝑣𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦𝑖𝑖 = visibility_all_points()

2. j = i+1;

3. Loop until j <= n

4. line = {�𝑥𝑥𝑖𝑖 𝑥𝑥𝑗𝑗 � , �𝑦𝑦𝑖𝑖 𝑦𝑦𝑗𝑗 �};

5. INT = Check Intersection with all Obstacles, Unpathables and Boundary

6. if (INT == 1)

7. // i.e. the line passes through any obstacle, unpathable or boundary or

 // intersects multiple obstacles/unpathables or boundary

8. j is not visible to i;

9. break;

10. else

11. j is visible to i;

12. Add j to 𝑆𝑆𝑣𝑣𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦𝑖𝑖 matrix;

13. Add i to 𝑆𝑆𝑣𝑣𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦
𝑗𝑗 matrix;

19

14. j = j+1;

15. end

16. end

17. return

Finally:

𝑆𝑆𝑣𝑣𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦 = 𝑆𝑆𝑣𝑣𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦1 ∪ … ∪ 𝑆𝑆𝑣𝑣𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦𝑖𝑖 ∪ … ∪ 𝑆𝑆𝑣𝑣𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦𝑛𝑛
where

𝑆𝑆𝑣𝑣𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦𝑖𝑖 : Visibility array of i-th corner

𝑆𝑆𝑣𝑣𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦 : Visibility matrix of all corners

n: Total number of points

The 𝑆𝑆𝑣𝑣𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦 matrix gives the visibility of all points w.r.t. each other and is then used

in the next steps and the 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 structure is restored back by removing all unpathable

regions from it.

3.2.4 Triangulation

The Triangulation function segregates the environment into triangles according to the

Delaunay Triangulation Algorithm. The Delaunay algorithm creates non-overlapping

triangle meshes for FEM (finite element method). The main feature of the Delaunay

Triangulation Algorithm is that it maximizes the smallest angle in a triangle, thus minimizing

the chances of creation of thin and long triangles. Firstly, an initial Non-Delaunay

Triangulation is formed which is later converted into Delaunay Triangulation through the

Lawson Flip Algorithm. The triangulation technique used follows these steps:

• Sorting the points in a lexicographical order.

• "Seeding" the triangulation with a triangle formed by the first three points of the

lexicographical sort. Seeding means to start the triangulation, an initial triangle is

formed. If the first three points selected for the seed triangle don't make a triangle (not

visible to each other according to the 𝑆𝑆𝑣𝑣𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦 matrix), then the next point is selected

and checked until a seed triangle is formed. This becomes the current triangulation

matrix.

• A convex hull is initiated from this seed triangle which forms the outer edge of the

union of all triangles in the triangulation matrix.

• The convex hull is formed by using the Graham Scan Algorithm. The pseudo code

for the algorithm used is given below.

20

• Adding points one by one to the current convex hull in lexicographical order

according to the visibility matrix and checking the number of triangles thus formed.

The triangles formed will depend on the visibility of the point being added w.r.t. the

points in the current hull i.e. it is checked according to the matrix 𝑆𝑆𝑣𝑣𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦ℎ𝑏𝑏𝑜𝑜𝑜𝑜 . and the

triangles are thus formed according to the hull points visible to the point being added.

• Expanding the hull and triangulation matrix until all the corner points in the

environment are added and all triangles are formed.

Following is the algorithmic representation of the initial triangulation:

1. Sort 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 in lexicographical order

2. 𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑜𝑜𝑛𝑛𝑡𝑡𝑜𝑜𝑜𝑜𝑚𝑚 = {𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑉𝑉𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜 , �𝑉𝑉𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜 �};

3. Check visibility of {𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑉𝑉𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜 , �𝑉𝑉𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜 �} with each other through 𝑆𝑆𝑣𝑣𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦

4. 𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑜𝑜𝑛𝑛𝑡𝑡𝑜𝑜𝑜𝑜 = 𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑜𝑜𝑛𝑛𝑡𝑡𝑜𝑜𝑜𝑜𝑚𝑚 ;

5. 𝑆𝑆ℎ𝑏𝑏𝑜𝑜𝑜𝑜 = convex_hull(𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑜𝑜𝑛𝑛𝑡𝑡𝑜𝑜𝑜𝑜 , pt_next);

6. Loop i < n

a. 𝑆𝑆𝑏𝑏𝑜𝑜𝑚𝑚𝑜𝑜𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛𝑡𝑡 = 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 - 𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑜𝑜𝑛𝑛𝑡𝑡𝑜𝑜𝑜𝑜𝑚𝑚 ;

b. pt_next = 𝑆𝑆𝑏𝑏𝑜𝑜𝑚𝑚𝑜𝑜𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖 ;

c. Check visibility of pt_next w.r.t. hull and form 𝑆𝑆𝑣𝑣𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦ℎ𝑏𝑏𝑜𝑜𝑜𝑜

d. 𝑆𝑆ℎ𝑏𝑏𝑜𝑜𝑜𝑜 = convex_hull(𝑆𝑆ℎ𝑏𝑏𝑜𝑜𝑜𝑜 , pt_next);

e. 𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑜𝑜𝑛𝑛𝑡𝑡𝑜𝑜𝑜𝑜𝑚𝑚 = {𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑉𝑉𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜 , �𝑉𝑉𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜 �};

f. 𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑜𝑜𝑛𝑛𝑡𝑡𝑜𝑜𝑜𝑜 = 𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑜𝑜𝑛𝑛𝑡𝑡𝑜𝑜𝑜𝑜 ∪ 𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑜𝑜𝑛𝑛𝑡𝑡𝑜𝑜𝑜𝑜𝑚𝑚 ;

g. i = i+1;

7. end

8. return

where

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 : First vertex in triangle

𝑉𝑉𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜 : Second vertex in triangle

 �𝑉𝑉𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜 �: Third vertex in triangle

𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑜𝑜𝑛𝑛𝑡𝑡𝑜𝑜𝑜𝑜𝑚𝑚 : m-th triangle, where m = (1 to total_triangles)

𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑜𝑜𝑛𝑛𝑡𝑡𝑜𝑜𝑜𝑜 : Structure of all triangles formed

𝑆𝑆ℎ𝑏𝑏𝑜𝑜𝑜𝑜 : The convex hull formed by all the triangles

𝑆𝑆𝑏𝑏𝑜𝑜𝑚𝑚𝑜𝑜𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛𝑡𝑡 : Points that have not been included in the convex hull yet

21

In order to find the convex hull, the Graham Scan Algorithm [29] is used. All the

points that form the hull are sorted in a lexicographical order and the first point is then

selected (which is basically the lower-most point on the left). The angle of all other points

from this point w.r.t. the positive X-axis is calculated (starting in CW direction) and the

points are sorted on the basis of increasing angle. If two points are at the same angle, the

point at the lesser distance is placed first. Then the points are sequentially added to make a

hull, checking for other points lying to the LEFT of the current point being added. If there is

any point to the left, it means it is to be added first to form a convex hull. The left or right

(LorR) check is basic geometrical calculation and the hull is completed accordingly. If any

points to be checked lie inside the hull, they are removed from the hull boundary array. The

pseudo code for Convex Hull formation using the algorithm explained above is given below:

1. convex_hull(𝑆𝑆ℎ𝑏𝑏𝑜𝑜𝑜𝑜 , pt_next)

2. 𝑉𝑉1
ℎ𝑏𝑏𝑜𝑜𝑜𝑜 = First point after sorting 𝑆𝑆ℎ𝑏𝑏𝑜𝑜𝑜𝑜 in lexicographical order

3. 𝑆𝑆ℎ𝑏𝑏𝑜𝑜𝑜𝑜 _𝑜𝑜𝑛𝑛𝑡𝑡𝑜𝑜𝑜𝑜 = Calculate angle of all 𝑆𝑆ℎ𝑏𝑏𝑜𝑜𝑜𝑜 points w.r.t. 𝑉𝑉1
ℎ𝑏𝑏𝑜𝑜𝑜𝑜

4. Sort 𝑆𝑆ℎ𝑏𝑏𝑜𝑜𝑜𝑜 w.r.t. angle calculated

5. if (𝑆𝑆ℎ𝑏𝑏𝑜𝑜𝑜𝑜 _𝑜𝑜𝑛𝑛𝑡𝑡𝑜𝑜𝑜𝑜
𝑖𝑖 == 𝑆𝑆ℎ𝑏𝑏𝑜𝑜𝑜𝑜 _𝑜𝑜𝑛𝑛𝑡𝑡𝑜𝑜𝑜𝑜

𝑖𝑖+1)

a. Sort i and i+1 points w.r.t. smaller distance

6. end

7. 𝑆𝑆ℎ𝑏𝑏𝑜𝑜𝑜𝑜 _𝑜𝑜𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏 = 𝑉𝑉1
ℎ𝑏𝑏𝑜𝑜𝑜𝑜 ;

8. Loop i < total_hull_points

a. 𝑃𝑃0= 𝑉𝑉𝑖𝑖ℎ𝑏𝑏𝑜𝑜𝑜𝑜 ;

b. 𝑃𝑃1= 𝑉𝑉𝑖𝑖+1
ℎ𝑏𝑏𝑜𝑜𝑜𝑜 ;

c. 𝑃𝑃2= pt_next;

d. if(𝑃𝑃2 is present in 𝑆𝑆𝑣𝑣𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦𝑖𝑖) // i.e. 𝑃𝑃2 is visible to 𝑃𝑃0

i. LorR check 𝑃𝑃2 point being added to 𝑆𝑆ℎ𝑏𝑏𝑜𝑜𝑜𝑜 _𝑜𝑜𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏 ;

ii. if (No other point to left of 𝑃𝑃2)

1. 𝑆𝑆ℎ𝑏𝑏𝑜𝑜𝑜𝑜 _𝑜𝑜𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏 = 𝑆𝑆ℎ𝑏𝑏𝑜𝑜𝑜𝑜 _𝑜𝑜𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏 ∪ 𝑉𝑉𝑢𝑢𝑡𝑡 _𝑛𝑛𝑜𝑜𝑥𝑥𝑡𝑡
𝑜𝑜𝑜𝑜𝑜𝑜 ;

iii. else

1. Add the point 𝑃𝑃1 on the left into the hull;

iv. end

e. else

i. Add the point 𝑃𝑃1 on the left into the hull;

f. end

22

g. i = i + 1;

9. end

10. return

Figure 3.3: Example Case - Initial Non-Delaunay Triangulation

Figure 3.3 shows the results of basic Non-Delaunay Triangulation performed on the

example case. A total of 42 triangles (magenta) are formed with their centroids marked as

stars and numbered accordingly. This clearly shows that there are a large number of thin and

long triangles formed this way.

After forming a basic triangulation, the triangulation is checked for the Empty Circle

Property of Delaunay Triangulation.

Empty Circle Property: The triangulation of a finite set of points 𝑆𝑆 ⊂ 𝑅𝑅2 is a

Delaunay Triangulation if the circumcircle of every triangle in the triangulation has no other

point in it, i.e. it is empty [30].

Figure 3.4: Circumcircle of a triangle

If any other point lies inside the circumcircle of a triangle, the triangulation is not

Delaunay. So in order to make it a Delaunay Triangulation, the edges of the triangles need to

be flipped. This is done according to the Lawson Flip Algorithm.

23

Figure 3.5: (a) Non-Delaunay Triangulation (b) Edge Flipped for Delaunay Triangulation

Lawson Flip Algorithm: The Lawson Flip Algorithm states that if there is a sub-

triangulation of four points that is not Delaunay (Figure 3.5(a)), replace this sub-triangulation

by the other triangulation of the four points [30].

So, Figure 3.5(b) shows a Delaunay Triangulation of the four points that formed a

Non-Delaunay Triangulation in Figure 3.5(a).

In this way all triangles are checked for the Empty Circle Property and their Non-

Delaunay Edges are flipped to form a Delaunay Triangulation.

Figure 3.6: Example Case - Delaunay Triangulation

Figure 3.6 shows the results of example case after applying the Empty Circle Property

and Lawson Flip Algorithm to the Non-Delaunay Triangulation. It can be seen that the thin

and long triangles have been removed by flipping edges; for example the common edge

between triangles 22 and 14 has been flipped. And by connecting the centroids of all these

triangles, a Triangles Connectivity Graph is formed as shown in Figure 3.7. This is also the

Voronoi Diagram as the Delaunay Triangulation and Voronoi Diagram have the property of

duality. The triangles graph is modeled as:

𝑆𝑆_𝐺𝐺𝑏𝑏𝑜𝑜𝑢𝑢ℎ𝑇𝑇 = {𝑉𝑉𝑖𝑖𝑇𝑇 ,𝐸𝐸𝑖𝑖𝑗𝑗𝑇𝑇 , 𝑖𝑖 𝑜𝑜𝑛𝑛𝑏𝑏 𝑗𝑗 = 1 … 𝑡𝑡𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜 𝑡𝑡𝑏𝑏𝑖𝑖𝑜𝑜𝑛𝑛𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜, 𝑖𝑖 ≠ 𝑗𝑗}

where

𝑉𝑉𝑖𝑖𝑇𝑇: Centroid of i-th triangle

24

𝐸𝐸𝑖𝑖𝑗𝑗𝑇𝑇 : Edge between 𝑉𝑉𝑖𝑖𝑇𝑇 and 𝑉𝑉𝑗𝑗𝑇𝑇

The edges of this Triangle Graph also represent the adjacency matrix for each

triangle.

Figure 3.7: Example Case - Triangles Connectivity Graph (Voronoi Diagram)

3.2.5 Merging Triangles into Convex Regions

The triangles formed in the previous step are then merged together to form convex

regions. Convex regions are important because any point within a convex region is visible by

any other point inside the same region [27]. Consequently, a robot standing at any point in the

convex region can secure it completely because any intruder cannot hide from it and can be

detected clearly. The difference between a convex and non-convex region can be seen in

[27].

Figure 3.8: Convex and Non-convex Regions

In the parent study, convex regions are formed only by merging adjacent triangles

once i.e. if a triangle is merged with another into a larger merged region, it is not further

analyzed for merging with other triangles/regions. In the improved algorithm presented in

this manuscript, in order to form merged convex regions, first of all adjacent triangles are

25

analyzed. If all their points are visible to each other, they are merged together to form a larger

merged region that is convex. This larger region is then further analyzed with its

neighbouring triangles and if any triangle can further be merged into this region, it is merged

and the adjacency matrix is updated accordingly. This results in larger merged convex

regions as compared to the parent study. All the triangles are checked and merged according

to the criterion of forming convex regions.

The pseudo code for the algorithm implemented is as follows:

1. merge_to_regions()

2. 𝑆𝑆𝑏𝑏𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 = 𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑜𝑜𝑛𝑛𝑡𝑡𝑜𝑜𝑜𝑜

3. while(i < total regions)

a. j = i+1;

b. while(j <= total regions adjacent to 𝑆𝑆𝑏𝑏𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛𝑖𝑖)

i. 𝑆𝑆𝑏𝑏𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛
𝑗𝑗 = j-th region adjacent to 𝑆𝑆𝑏𝑏𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛𝑖𝑖

ii. Check visibility of points in 𝑆𝑆𝑏𝑏𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛𝑖𝑖 and 𝑆𝑆𝑏𝑏𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛
𝑗𝑗 from 𝑆𝑆𝑣𝑣𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦 matrix

iii. if (All points visible to each other)

1. 𝑆𝑆𝑏𝑏𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛𝑖𝑖 = Merge 𝑆𝑆𝑏𝑏𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛𝑖𝑖 and 𝑆𝑆𝑏𝑏𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛
𝑗𝑗

2. Delete 𝑆𝑆𝑏𝑏𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛
𝑗𝑗

iv. else

1. j = j+1;

v. end

c. end

4. end

5. return

where

𝑆𝑆𝑏𝑏𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 : Regions structure

𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑜𝑜𝑛𝑛𝑡𝑡𝑜𝑜𝑜𝑜 : Triangles structure

𝑆𝑆𝑏𝑏𝑜𝑜𝑡𝑡𝑖𝑖 𝑜𝑜𝑛𝑛𝑖𝑖 : i-th region structure

𝑆𝑆𝑏𝑏𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛
𝑗𝑗 : j-th region structure

26

Figure 3.9: Example Case - Merged Regions

Figure 3.9 shows the results of merging the triangulation depicted in Figure 3.6. The

42 triangles have been merged into a total of 16 regions and as can be seen in the figure, all

regions are convex.

3.2.6 Regions Connectivity Graph

A Regions Connectivity Graph or simply the Regions Graph is formed just as the

Triangles Connectivity Graph was formed, since the Regions Graph and the Regions

Connectivity Graph have the property of duality. It is formed by connecting the centroids of

adjacent regions with each other. The centroids become the nodes/vertices and the lines

connecting them are the edges of the graph. As the regions merging technique is improved (in

previous step), it results in a better Regions Graph (Voronoi Diagram) in this step since the

number of regions in the graph are reduced. The regions graph is modeled as:

𝑆𝑆_𝐺𝐺𝑏𝑏𝑜𝑜𝑢𝑢ℎ𝑅𝑅 = {(𝑉𝑉𝑖𝑖𝑅𝑅 ,𝐸𝐸𝑖𝑖𝑗𝑗𝑅𝑅) , 𝑖𝑖 𝑜𝑜𝑛𝑛𝑏𝑏 𝑗𝑗 = 1 … 𝑡𝑡𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜 𝑏𝑏𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛𝑜𝑜, 𝑖𝑖 ≠ 𝑗𝑗}

where

𝑉𝑉𝑖𝑖𝑅𝑅: Centroid of i-th region

𝐸𝐸𝑖𝑖𝑗𝑗𝑅𝑅 : Edge between 𝑉𝑉𝑖𝑖𝑅𝑅 and 𝑉𝑉𝑗𝑗𝑅𝑅

The edges of this Regions Graph also represent the adjacency matrix for each region.

The Regions Graph for the example case is shown in Figure 3.10. The stars (green) show the

nodes and thick lines (red) show the edges between them. For the particular set of regions,

this can also be called their Voronoi Diagram.

27

Figure 3.10: Example Case - Regions Graph

3.2.7 Cycle Detection

In this step, the regions graph is analyzed to detect loops/cycles. Cycles or loops in

the graph result in paths that the intruder can use to avoid any searching agents. So, first of all

the number of internal cycles present in the current graph are found, and then those cycles are

broken at appropriate positions. By internal cycles we mean the cycles that are not subsets of

each other and their combination results in the complete set of cycles present in the graph.

Various approaches can be used to find the number of cycles and their order in a

graph. The Kruskal's Algorithm and Prim's Algorithm are the most used algorithms in

detecting cycles and creating a Minimum Spanning Tree (MST). The Kruskal's Algorithm is

a greedy algorithm based on selecting the globally optimal edge in a weighted edge graph.

Similarly, the Prim's Algorithm selects the locally optimal edge. Both algorithms terminate

when all nodes are visited once. The results of Kruskal's and Prim's Algorithms for an

example case are as follows [31]:

Figure 3.11: Results of Kruskal (yellow lines) and Prim's Algorithms (orange lines)

But instead of forming a MST as shown above, the algorithm in this manuscript

simply detects the number of cycles and their order in this step and then creates a Reduced

28

Minimum Spanning Tree (RMST) in the next step by placing blocker robots at optimal

locations. The number of cycles are calculated through a simple formula:

Number of Cycles in Graph = Number of Edges - Number of Nodes + 1

The cycles node order is found through the DFS-XOR algorithm explained below:

• Run a DFS on the whole graph. As the stack in the DFS fills up, exploration continues

until all nodes are visited atleast once.

• Whenever a node is visited twice in the DFS, it shows that there exists a cycle; and all

the nodes in between the node visited twice from the stack give us the cycle nodes

order[Cycles Main Ref].

• When all cycles are found, these are not necessarily internal cycles; meaning there can

exist a cycle in our cycles order array that might contain other smaller cycles inside it.

So, all cycles are arranged in descending order w.r.t. cycle area.

• A XOR operation is performed between the edges of a cycle (parent cycle) and any

other detected cycle (child cycle) if it lies inside the parent cycle. The XOR operation

results in edges that are present in only one of these cycles, thus forming a new

smaller cycle from the parent cycle. An example is presented below:

Figure 3.12: A XOR Example

Here the first graph shows a parent cycle (orange edges) and a child cycle (red edges).

When their XOR is taken, the common edges between both cycles (3-4, 4-5, 5-6, 6-7)

get eliminated from the resulting cycle and the uncommon edges form a new cycle

(blue edges) shown in the second graph. This new cycle is saved in place of the parent

cycle.

• This is done until all cycles are checked such that there is no other cycle within them,

giving us the required internal cycles.

The psuedo code for the abovementioned technique is given as follows.

1. n = total_edges - total_nodes + 1;

2. i = 0;

3. dfs_stack = [];

29

4. while (i < n)

a. Run DFS on whole graph and update dfs_stack

b. if (last explored node is already in dfs_stack)

i. Update 𝑆𝑆𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 . 𝑜𝑜𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏 from dfs_stack

ii. Find area of cycle and Update 𝑆𝑆𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 .𝑜𝑜𝑏𝑏𝑜𝑜𝑜𝑜

iii. Find centroid of cycle and Update 𝑆𝑆𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 . 𝑜𝑜𝑜𝑜𝑛𝑛𝑡𝑡𝑏𝑏𝑜𝑜𝑖𝑖𝑏𝑏

c. end

5. end

6. 𝑆𝑆𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑆𝑆𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜1 ∪ … ∪ 𝑆𝑆𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛

7. 𝑆𝑆𝑜𝑜𝑏𝑏𝑜𝑜𝑜𝑜 _𝑜𝑜𝑜𝑜𝑏𝑏𝑡𝑡𝑜𝑜𝑏𝑏 _𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = Sort 𝑆𝑆𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 in descending order w.r.t. cycle area

8. i = 1;

9. while (i < n)

a. updated = 0;

b. for j = i + 1 : n

i. if (𝑆𝑆𝑜𝑜𝑏𝑏𝑜𝑜𝑜𝑜 _𝑜𝑜𝑜𝑜𝑏𝑏𝑡𝑡𝑜𝑜𝑏𝑏 _𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑗𝑗 . 𝑜𝑜𝑜𝑜𝑛𝑛𝑡𝑡𝑏𝑏𝑜𝑜𝑖𝑖𝑏𝑏 lies inside 𝑆𝑆𝑜𝑜𝑏𝑏𝑜𝑜𝑜𝑜 _𝑜𝑜𝑜𝑜𝑏𝑏𝑡𝑡𝑜𝑜𝑏𝑏 _𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑖𝑖)

1. Take XOR of edges of both cycles

2. Update 𝑆𝑆𝑜𝑜𝑏𝑏𝑜𝑜𝑜𝑜 _𝑜𝑜𝑜𝑜𝑏𝑏𝑡𝑡𝑜𝑜𝑏𝑏 _𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑖𝑖 according to XOR result

3. updated = 1;

4. break;

ii. end

c. end

d. if (updated == 0)

i. i = i + 1;

e. end

10. end

11. 𝑆𝑆𝑜𝑜𝑏𝑏𝑜𝑜𝑜𝑜 _𝑜𝑜𝑜𝑜𝑏𝑏𝑡𝑡𝑜𝑜𝑏𝑏 _𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑆𝑆𝑜𝑜𝑏𝑏𝑜𝑜𝑜𝑜 _𝑜𝑜𝑜𝑜𝑏𝑏𝑡𝑡𝑜𝑜𝑏𝑏 _𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
1 ∪ … ∪ 𝑆𝑆𝑜𝑜𝑏𝑏𝑜𝑜𝑜𝑜 _𝑜𝑜𝑜𝑜𝑏𝑏𝑡𝑡𝑜𝑜𝑏𝑏 _𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑖𝑖

12. 𝑆𝑆𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑆𝑆𝑜𝑜𝑏𝑏𝑜𝑜𝑜𝑜 _𝑜𝑜𝑜𝑜𝑏𝑏𝑡𝑡𝑜𝑜𝑏𝑏 _𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

13. return

where:

n: Total number of cycles in current graph

total_edges: Total number of edges in current graph

total_nodes: Total number of uncovered nodes in current graph

30

dfs_stack: Stack of explored nodes in DFS

𝑆𝑆𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 : Structure for i-th cycle

𝑆𝑆𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 : Structure of all cycles

𝑆𝑆𝑜𝑜𝑏𝑏𝑜𝑜𝑜𝑜 _𝑜𝑜𝑜𝑜𝑏𝑏𝑡𝑡𝑜𝑜𝑏𝑏 _𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 : Structure of all cycles sorted in descending order w.r.t. area

𝑆𝑆𝑜𝑜𝑏𝑏𝑜𝑜𝑜𝑜 _𝑜𝑜𝑜𝑜𝑏𝑏𝑡𝑡𝑜𝑜𝑏𝑏 _𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑖𝑖 : Structure for i-th area sorted cycle

Figure 3.13: Example Case - Regions Graph (Cycles Depiction)

Figure 3.13 shows the cycles determined for the example case, depicting a cycle

around each obstacle.

3.2.8 Static Blocker Positions

After finding the cycles in the graph and the regions/nodes that constitute them,

positions for blocker robots or blockers are determined. In the parent study, the author first

creates an MST by identifying cover nodes (nodes where the cycles are to be broken) and the

blocker positions are determined only according to the set of cover nodes specified by the

MST. This compromises the effectiveness of the blocker positions determined as they are

limited only to the set of cover nodes determined (because multiple sets of cover nodes can

exist for the same graph as shown by the Prim's and Kruskal's Algorithms briefly discussed in

previous section).

In the algorithm discussed in this manuscript, an MST is not formed by determining

cover nodes. Rather it is determined that which nodes effect the greatest number of cycles

and then a vertex position for a blocker is finalized. The algorithm is explained below:

31

• From the structure 𝑆𝑆𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 , the order of all cycles (𝑆𝑆𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 . 𝑜𝑜𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏) is analyzed and an

array which shows the number of times a region occurs in any cycle (region is a part

of a cycle) is formed.

• The array formed in the last step is sorted according to descending order w.r.t. the

number of cycles effected by a region.

• The corner vertices of regions effecting the maximum number of cycles are analyzed

to prioritize the vertices according to the following criteria:

o The maximum number of cycles effected by the vertex. If the number of cycles

effected by any two or more vertices are equal, the maximum number of regions

covered by a vertex. Furthermore, if the number of regions covered by any two or

more vertices are also equal, they are prioritized according to the maximum area

covered by a vertex (the total area of the regions visible from the vertex).

Furthermore, if the area covered by two or more vertices is equal, they are

prioritized according to the minimum distance from the root node.

• A blocker position is finalized for the vertex with the highest priority.

Figure 3.14: Example Case - Regions Graph and Regions Numbering

Figure 3.14 shows that Region 6 (highlighted in blue) effects the most number of

cycles (five). Region 6 is formed by 8 vertices, and they all are analyzed for blocker position.

After prioritizing the vertices w.r.t. number of cycles covered, we are left with only one

vertex that effects 6 cycles. That vertex is finalized as a blocker position (shown below).

32

Figure 3.15: Example Case - Vertex effecting most cycles - Blocker Position (green)

All the regions covered by the blocker are removed from the graph and then it is

iteratively re-analyzed for the number of cycles present. If the number of cycles present are

more than zero, the cycle order and covered area are re-determined according to previous step

and the structure 𝑆𝑆𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is updated. 𝑆𝑆𝑜𝑜𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is then again used in this step to determine further

blocker positions until all cycles are broken. As in Figure 3.15, though all the inner cycles

determined in the previous section are broken by one blocker, an outer cycle still needs to be

broken (order: 1-2-13-16-14-10-8-3-1). After re-analyzing the graph, this cycle is broken and

the final blocker positions are shown in the following figure.

Figure 3.16: Example Case - Final Blocker Positions (green)

33

3.2.9 Reduced Minimum Spanning Tree

When Blocker Positions are finalized, all the regions covered by the blockers are

removed from the Regions Graph. This results in a tree which is the Reduced Minimum

Spanning Tree (RMST) as no cycles are present anymore. This can be represented as:

𝑆𝑆𝑏𝑏𝑚𝑚𝑜𝑜𝑡𝑡 = 𝑆𝑆𝑏𝑏𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛

𝑆𝑆𝑏𝑏𝑚𝑚𝑜𝑜𝑡𝑡 (𝑆𝑆𝑏𝑏𝑚𝑚𝑜𝑜𝑡𝑡 == 𝑆𝑆𝑏𝑏𝑜𝑜𝑡𝑡 _𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑘𝑘𝑜𝑜𝑏𝑏𝑜𝑜) = []

In the parent study, the regions covered by blockers are removed from the Regions

Graph unless they result in disconnected nodes. This results in some regions covered by

blockers still being analyzed by searcher robots as they are a part of their branch.

Consequently, the time to search and secure the complete environment increases

unnecessarily. In the algorithm presented in this manuscript, all regions covered by blockers

are removed from the Regions Graph regardless of disconnected nodes. The disconnected

nodes are then checked for minimum distance to the RMST and connected to the tree node

that is closest to them. As a result the searcher can move directly to the node needed to be

searched rather than first searching a node in between that is already covered by blockers.

RMST for the example case is shown in the following figure.

Figure 3.17: Example Case - RMST and Blocker Positions

The edges highlighted in magenta colour are the ones that have been added especially

to connect the disconnected nodes directly to the RMST. In case of unpathable regions, point

regions are added at the corners of unpathables in order to completely survey them. Point

regions are regions that are points (area → 0) and are used to update the RMST such that

unpathable regions are surveyed completely.

34

3.2.10 RMST Root Optimization

In the parent study, an arbitrary root is selected, which can result in increased number

of branches and greater number of searcher robots. In the algorithm presented in this

manuscript, root selection is optimized keeping in consideration that:

• The root is not a leaf node, as it adds to the degree of all branches. Instead, the parent

of this leaf can be used as the root node so that the branch length for all branches can

be minimized. For example, in Figure 3.16, if node 13 is selected as root, it is

preferable to select node 16 as root rather than node 13 and declare node 13 as a leaf

node.

• The root is an end part of a branch, so that the branches can be minimized. This can

be understood from Figure 3.16. If after the previous step node 16 is selected as root

node, it results in the formation of two branches (16-15-11-9-5-4) and (16-13-14-10).

Instead it is preferable to select node 5 or node 14 as root, resulting in a single branch

only (5-4-9-11-15-16-13-14-10). This reduces number of branches and consequently

the number of searchers required.

For the example, node 5 is finalized as root by the algorithm as in the following figure

(cyan star).

Figure 3.18: Example Case - Root Finalization (cyan star)

35

3.2.11 Number of Branches and Search Order

The RMST and root node are shown for the example case in Figure 3.18. In this

section, the number of branches and their search order is determined.

• Number of Branches: A series of at least three connected points in a tree or graph is

known as a branch. A branch starts from the root of a graph or tree and ends in a leaf

node [27]. The termination leaf node of the branch should be such that all the children

of its parent node are leaves, otherwise the branch will continue.

• Leaf Nodes: Leaf node of a tree is one that has only one neighbour (its parent node).

The number of searchers is equal to the number of branches in the RMST. In order to

search a leaf node, no extra searchers are needed as the leaf node is searched by placing the

searcher at a point such that it has vision of both the leaf node as well as its parent. The

branches start from the root node and as there is no loop/cycle in the RMST, no intruder can

contaminate an already cleared area without detection as the searchers move forward to clear

the environment.

Furthermore, in order to accommodate the Unpathable regions, search points for each

unpathable region are identified such that they get searched completely. These search points

are declared point regions and are added to the search order. This is a major improvement

compared to the parent study which doesn't cater for any unpathable regions.

In the example case, No. of branches = 01

After determining the number of branches, the search order 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑏𝑏𝑜𝑜 ℎ_𝑜𝑜𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏 of each

branch is determined according to the regions in the branch starting from the root node and

ending at a leaf node. In the example case, the search order for the branch is:

Search Order: (5-4-9-11-15-16-13-14-10)

3.2.12 Blocker Paths

In this section, the Blocker Paths are finalized. Blocker paths are made according to

the shortest path from root node to blocker positions and is based on the Dijkstra's Shortest

Path Algorithm. The Dijkstra's Algorithm is a graph search algorithm that produces a

shortest path tree from a root node to any destination node given a graph with a single root.

Dijkstra's Algorithm itself only gives the length of the shortest path, but it is modified to

return both the path length as well as the actual path coordinates. Hence, the paths from the

root to blocker positions are determined. The pseudo code for the implemented algorithm is

as follows.

36

1. dist = Array equal to the number of vertices (including root vertex)

2. Initialize dist to infinity (very large value)

3. dist(root) = 0;

4. previous_node = Array to save previous best node in path

5. for i = 1:n

a. Q ← V (Q initialized to contain all vertices)

b. while(1)

i. index = Sort Q w.r.t. minimum distance in (dist)

ii. u = Q(index(1)); //Minimum distance node

iii. Remove u from Q

iv. if (dist(u) == infinity)

1. break;

v. else if (u == 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑘𝑘𝑜𝑜𝑏𝑏 _𝑢𝑢𝑜𝑜𝑜𝑜)

1. 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑘𝑘𝑜𝑜 𝑏𝑏_𝑢𝑢𝑜𝑜𝑡𝑡 ℎ
𝑖𝑖 = Check and add nodes from previous_node to

this array until last node added is the root node

2. break;

vi. end

vii. break;

viii. v = Check visibility of all adjacent nodes to u through 𝑆𝑆𝑣𝑣𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦 (𝑏𝑏)

ix. if (v is visible)

1. d = Calculate distance from u to v

2. if (dist(v) > dist(u) + d)

a. dist(v) = dist(u) + d

3. end

x. end

c. end

6. end

7. 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑘𝑘𝑜𝑜𝑏𝑏 _𝑢𝑢𝑜𝑜𝑡𝑡 ℎ = 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑘𝑘𝑜𝑜𝑏𝑏 _𝑢𝑢𝑜𝑜𝑡𝑡 ℎ
1 ∪ … ∪ 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑘𝑘𝑜𝑜𝑏𝑏 _𝑢𝑢𝑜𝑜𝑡𝑡 ℎ

𝑛𝑛

8. return

where

n: Number of blockers

𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑘𝑘𝑜𝑜𝑏𝑏 _𝑢𝑢𝑜𝑜𝑡𝑡 ℎ
𝑖𝑖 : Path for i-th blocker

𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑘𝑘𝑜𝑜𝑏𝑏 _𝑢𝑢𝑜𝑜𝑡𝑡 ℎ : Structure for all blocker paths

37

Blocker Paths for the example case are shown in the following figure. Red dot is the

root node and the green dots show blocker positions. The green lines lead to the blocker

positions from root node. The blockers move into position first, and then the searchers start

searching the remaining regions.

Figure 3.19: Example Case - Blocker Paths

3.2.13 Searcher Paths

Finally, searcher paths are calculated based on the RMST. Searcher paths are based

on the shortest path algorithm, but the path is optimized for certain improvements.

• According to the 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑏𝑏𝑜𝑜 ℎ_𝑜𝑜𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏 matrix, the searcher paths 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑏𝑏𝑜𝑜 ℎ_𝑢𝑢𝑜𝑜𝑡𝑡 ℎ are formed.

Every searcher paths starts from the root node.

• As the next node from 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑏𝑏𝑜𝑜 ℎ_𝑜𝑜𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏 is to be added to the 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑏𝑏𝑜𝑜 ℎ_𝑢𝑢𝑜𝑜𝑡𝑡 ℎ array, the next

node is analyzed first. If it has any leaf node as its child, the next point in the path is

determined such that it covers both the next node as well as its child leaf.

• For multiple leaves as children of the next node, the 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑏𝑏𝑜𝑜 ℎ_𝑢𝑢𝑜𝑜𝑡𝑡 ℎ is optimized such

that maximum number of leaves are searched with minimum addition of search points

to the path. All child leaves of the next node are analyzed before moving further.

• When the next node is analyzed completely, it is declared the current node and the

node next to it is analyzed. This is done until the path termination leaf is reached. All

leaves are analyzed such that the searcher does not have to enter completely into a

leaf, rather it stays on the edge/corner of a leaf and searches it.

• This caters for unpathable regions as well as their points (point regions) have already

been added to 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑏𝑏𝑜𝑜 ℎ_𝑜𝑜𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏 .

38

Following figure shows the searcher paths for the example case. As there was only

one branch, so one searcher is required. The RMST with region numbers can be seen in

Figure 3.16. The search order for the case is given below again for easier reference:

𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑏𝑏𝑜𝑜 ℎ_𝑜𝑜𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏 : (5-4-9-11-15-16-13-14-10)

Figure 3.20: Example Case - Searcher Path (with region numbers)

Figure 3.21: Example Case - Searcher Path

It can be seen in Figure 3.20 that in order to search node 14 after node 13, the

algorithm analyzed the node such that instead of first going to the vertex of node 14 closest to

node 13 and then onto node 10, it chose the top right corner point of the map which covers

both node 14 as well as the branch termination leaf node 10. This significantly saves time and

path cost in the whole search process.

39

CHAPTER 4: CASE STUDY FOR VALIDATION OF ALGORITHM

4.1 Case Study

In this chapter, a case study is presented to validate the results of the algorithm. It

compares the results of the parent study with the algorithm discussed in this manuscript. The

results are compared stepwise according to the steps discussed in detail in chapter 03.

4.1.1 Environment Map

The Environment Map used for the case study is shown below. It has a rectangular

boundary with 9 obstacles.

Figure 4.1: Case Study - Environment Map

4.1.2 Triangulation

The Triangulation results are presented in the following figures.

• Parent Study: The Delaunay Triangulation alongwith Triangles Graph in the parent

study is shown in Figure 4.2 [27].

40

Figure 4.2: Case Study - Delaunay Triangulation and Triangles Graph (Parent Study)

• Presented Algorithm: The initial Non-Delaunay Triangulation results of the algorithm

discussed in this manuscript are trivial and after application of the Lawson Flip

Algorithm, the Delaunay Triangulation obtained is shown in the following figure. As

it can be seen, a total of 56 triangles have been formed.

Figure 4.3: Case Study - Delaunay Triangulation and Triangles Graph

It can be analyzed from Figure 4.2 and Figure 4.3 that the Delaunay Triangulation

results are very similar in the parent study and the presented algorithm.

4.1.3 Merging Triangles into Convex Regions

The results of Merging the Triangles into Convex Regions are shown below.

• Parent Study: The Convex Regions alongwith the Regions Graph formed in the parent

study for this particular case are shown in the following figure [27].

41

Figure 4.4: Case Study - Convex regions and Regions Graph (Parent Study)

A total of 33 regions are formed in the parent study as can be seen in the figure above.

• Presented Algorithm: The Merging results of the algorithm discussed in this

manuscript are shown in Figure 4.5.

Figure 4.5: Case Study - Merging triangles into Convex Regions and Regions Graph

A significant improvement in the merging of triangles can clearly be seen by

comparing Figure 4.4 and Figure 4.5. 52 Triangles have been merged into a total of 24

regions as shown in Figure 4.5 compared to the 33 regions formed in the parent study. This is

a significant improvement as it reduces the number of regions to be searched, in turn reducing

the time as well as the number of robots required to search the complete environment.

42

4.1.4 Cycle Detection and Blocker Positions

The results of cycle detection, total blockers required and their positions are given in

this section. There are a total of 9 cycles formed in this particular case study corresponding to

the 9 obstacles in the environment (1 cycle around each obstacle). But the results differ in

case of number of blockers and blocker positions which is depicted in the following figures.

• Parent Study: The blocker positions for this particular case study are shown in the

following figure [27]. A total of 04 blockers are used to break the 9 cycles in the

parent study, shown in green dots in Figure 4.6.

Figure 4.6: Case Study - Blocker Positions and RMST (Parent Study)

• Presented Algorithm: The blocker positions evaluated by the algorithm presented in

this manuscript are shown in the following figure.

Figure 4.7: Case Study - Blocker Positions and RMST (with and without regions numbering)

In this case, a total of only 03 blockers are used (shown as green dots) to break the 9

cycles present in the regions graph as compared to the 04 blockers identified by the parent

study. Fewer number of robots required significantly improves performance and uses lesser

resources. It reduces the time the blocking agents take to get to their positions as well.

43

4.1.5 Reduced Minimum Spanning Tree

The RMST computed for this case study are depicted in this section.

• Parent Study: The RMST formed for the case study after using 04 blockers is shown

in Figure 4.6. A total of 16 regions (red dots) are to be analyzed in the RMST (red

lines).

• Presented Algorithm: The RMST for the algorithm presented in this manuscript is

shown in Figure 4.7.

A total of 14 regions (blue dots and cyan star) are to be analyzed in the RMST (red

and magenta lines) while using only 03 blockers; compared to the 16 regions to be analyzed

according to the parent study after using greater number of blocker agents (04). Magenta

lines in Figure 4.7 show the disconnected nodes that have been connected directly to the

closest tree nodes (due to blocker coverage). Lesser number of regions to search reduces the

number of searchers required as well as the total time and path cost.

4.1.6 Root Optimization

The analysis of root optimization for RMST is depicted in this section.

• Parent Study: As mentioned earlier, the parent study selects an arbitrary root node. In

this particular case, the root node selected in the parent study is the node below

Obstacle 08. It is depicted in the following figure (cyan star) [27].

Figure 4.8: Case Study - Root Node Selection (Parent Study)

This is a suboptimal selection of the root node and can lead to an increase in the

number of searchers required.

44

• Presented Algorithm: The algorithm presented in this manuscript performs root

optimization before deducing number of branches and search order as discussed in

chapter 03. The results of root optimization for this particular case are shown in the

following figure with the root highlighted as a cyan star.

Figure 4.9: Case Study - Root Optimization and Selection

In this case, the root node selected is just to the left of Obstacle 01 and its region

number is 06 (as can be seen in Figure 4.7).

4.1.7 Number of Branches and Search Order

This section compares the number of branches generated by both algorithms. The

number of branches significantly depend on proper selection of the root node.

• Parent Study: The number of branches identified in the parent study are 02. This is

clearly visible from Figure 4.8 according to the branch rules discussed in chapter 03.

Therefore, this implies the requirement of 02 searchers.

• Presented Algorithm: The number of branches identified by the algorithm presented

are only 01. This can be seen from Figure 4.9 according to the branch rules discussed

in chapter 03. Hence the presented algorithm requires only 01 searcher compared to

the 02 searchers required in the parent study.

4.1.8 Blocker Paths

This section shows the Blocker Paths used for this particular case study. Blocker

Paths originate from the Root and end at Blocker Positions.

45

• Parent Study: The parent study uses suboptimal paths for blockers. They are not based

on the shortest path algorithm and hence result in longer paths and increased time to

reach the blocker positions. This increases the runtime of the algorithm significantly.

The blocker paths for the case are shown in the following figure [27].

Figure 4.10: Case Study - Blocker Paths (Parent Study)

The paths for the 04 blockers according to the parent study are shown above. The

maximum length for a blocker path in this case is approx. 235 meters and that is the critical

path length as the searchers cannot start searching before all blockers reach their positions.

The time taken by the robot (Groundbot by Rotundus) to reach its final position is 6 minutes

and 8 seconds [27] at an average speed of approx 0.64 m/sec.

• Presented Algorithm: The algorithm presented uses the shortest path algorithm as

discussed in chapter 03 to minimize the path length as well as time to reach the

blocker positions. The resulting blocker paths are shown in the following figure.

Figure 4.11: Case Study - Blocker Paths (Shortest Paths)

46

The blocker paths (green lines) originate from the root (cyan star) and end at the 03

blocker positions specified. As it can be seen from the figure, the paths are the shortest

possible paths to reach the destination positions. The maximum path length for a blocker path

in this case is approx 146 meters compared to the 235 meter maximum path length generated

by the parent study. If the same robot is used with the same average speed (0.64 m/sec) as

reference, all blockers are in position by approx 3 minutes and 48 seconds. This is a much

improved performance compared to the parent study, reducing the critical path time by two

and a half minutes.

4.1.9 Searcher Paths

Finally, a comparison of Searcher Paths for the case is presented in this section.

• Parent Study: The total number of searchers required in the parent study is 02 and

their paths are shown in the following figure [27].

Figure 4.12: Case Study - Searcher Paths (Parent Study)

This figure shows the two searcher paths (red lines) alongwith the blocker positions

(green dots). As is clear from the figure, the searcher paths are formed by using the midpoints

of edges of adjacent regions to be explored. This results in a sub-optimal path that is not the

shortest path. The longest searcher path is approximately 346 meters in this case taking

approx 9 minutes to complete the search (average speed same as before). The total search

time for the parent study comes out to be 15 minutes and 8 seconds.

• Presented Algorithm: The total number of searchers required in the algorithm

presented is 01 compared to the 02 searchers required in the parent study. The

searcher path is shown in the following figures.

47

Figure 4.13: Case Study - Searcher Path (with regions numbering)

Figure 4.14: Case Study - Searcher Path

The figures above show the Searcher Path (red lines) alongwith the Blocker Positions

(green dots). This path have been formed using the shortest path algorithm alongwith the

important rules and considerations mentioned in chapter 03. This results in the shortest path

for all possible Searchers. The Searcher path in this case is approximately 316 meters taking

approx 8 minutes and 13 seconds to complete the search (average speed same as before)

compared to the 9 minutes taken by the parent study. The total search time for the presented

algorithm comes out to be 11 minutes and 51 seconds as compared to the 15 minutes and 8

seconds for the parent study.

48

4.1.10 Conclusion of the Case Study

Table 4.1: Comparison of algorithms depicting time and cost efficiency

 Parent Study Presented Algorithm

No. of Regions 33 24

No. of Blockers 04 03

No. of Searchers 02 01

Critical Path Length (CPL) Blockers 235 meters 146 meters

Time to cover CPL Blockers 06 min 08 sec 03 min 38 sec

Critical Path Length (CPL) Searchers 346 meters 316 meters

Time to cover CPL Searchers 09 min 08 min 13 sec

Total Time to Secure Environment 15 min 08 sec 11 min 51 sec

Total Robots required 06 04

The results of both algorithms can be summarized (Table 4.1) for this particular case

study such that the algorithm presented in this manuscript is more time and cost efficient as it

employs a better merging technique and uses the shortest path algorithm for blockers as well

as searchers.

49

CHAPTER 5: RESULTS

In this chapter, the results of a targeted environment are presented. The results are

compiled stepwise according to the steps discussed in detail in chapter 03.

5.1 Environment Map

The environment on which the algorithm was finally implemented is shown in the

figure below. It is a scaled-down map of College of EME Block-01 to Block-07. (Units:

ft/10)

Figure 5.1: Results - Environment Map

As it can be seen from Figure 5.1, blocks 1 to 7 have been modeled as obstacles 1 to 7

and the lawns in front of the blocks are labeled as unpathable regions where the robots are not

allowed to enter. Intruders can enter the lawns so they are to be surveyed by robots by staying

at the edges/corners of the unpathable regions. Obstacle 8 is inside unpathable 5, so the cycle

around that obstacle has to be catered for by the algorithm. The pathways are the only area

where the robots can move (free area shown in green).

50

5.2 Triangulation and Triangles Graph

The triangulation that forms the Triangles Graph is presented in the following figure.

Figure 5.2: Results - Triangles Graph

A total of 131 triangles were formed in the free area of the environment. In the same

way, all unpathable region were triangulated by treating each as a separate sub-environment.

5.3 Merging Triangles into Convex Regions and Regions Graph

The results of merging the triangles into convex regions are shown below.

Figure 5.3: Results - (a) Merged Regions (b) Unpathable-05 Regions

As it can be seen in Figure 5.3 (a), 131 triangles in the free pathway area have been

merged into a total of 35 regions. Similarly, the triangles within all unpathable regions are

also merged to form 18 more convex regions. Figure 5.3 (b) shows the 5 regions and regions

graph formed within unpathable-05 that has obstacle-08 inside it. A cycle is formed around

the obstacle within the unpathable. This cycle must be catered for (broken) in order to

51

completely survey this unpathable. Unpathable regions 1,2,3,4,6 and 7 have 2,2,3,3,2 and 1

regions respectively. Therefore, there are a total of 53 regions in the complete environment.

Figure 5.4 shows the corresponding Regions Graph.

Figure 5.4: Results - Regions Graph (Voronoi Diagram)

5.4 Cycle Detection and Blocker Positions

The results of cycle detection, total blockers required and their positions are given in

this section. A total of 6 cycles were formed (1 cycle each around unpathables 1 to 5 and one

cycle around obstacle-08 within unpathable-05). The blocker positions evaluated by the

algorithm presented in this manuscript are shown in the following figure.

Figure 5.5: Results - Blocker Positions (and remaining Regions Graph)

A total of only 03 blockers were required (shown as red dots) to break the 6 cycles

present in the Regions Graph and are placed at corners of unpathable-02, 04 and 05

respectively.

52

5.5 Reduced Minimum Spanning Tree and Root Optimization

The RMST computed for the environment is depicted in the following figure. On

comparison of Figure 5.5 and Figure 5.6, it can be seen that 6 region centroids have been

added when finalizing the RMST. These are the point regions (numbered 54 to 59) added on

the corners of unpathable regions required to completely survey the area within them. A point

region is added at a corner of each unpathable except unpathable-02 that is completely

covered by a static blocker. The root of the RMST is placed at an optimized location in order

to minimize the number of branches in the tree.

Figure 5.6: Results - RMST and Root Node Selection

5.6 Number of Branches and Search Order

As discussed earlier, the number of branches significantly depend on proper selection

of the root node. The number of branches identified by the algorithm presented are 02. This

can be seen from Figure 5.6 according to the branch rules discussed in chapter 03. Hence it

requires only 02 searchers to survey the environment, and the search orders are as follows:

Searcher1: (20-56-21-14-12-11-7-55-16-17-13-10-9-8-5-3-54-4-1)

Searcher2: (20-14-12-11-7-17-19-23-22-25-27-57-26-30-32-29-58-31-33-34-59-35)

5.7 Blocker Paths

This section shows the blocker paths computed by the algorithm. Blocker paths for

the 03 blockers originate from the root node and end at respective blocker positions as shown

in the following figure. The maximum length for a blocker path in this case is approx. 105.5

53

meters (CPL). Using the same average robot speed as earlier in chapter 04, all blockers reach

their positions by 02 minutes and 44 seconds.

Figure 5.7: Results - Blocker Paths (Shortest Paths)

5.8 Searcher Paths

The total number of searchers required in the algorithm presented are 02 and their

paths are shown in the following figures.

Figure 5.8: Results - Searcher Paths

54

Figure 5.9: Results - (a) Seacher-1 Path (b) Searcher-2 Path

The figures above show searcher paths alongwith blocker positions. These path have

been formed using the shortest path algorithm alongwith the important rules and

considerations mentioned in chapter 03 according to the search orders identified. The

searcher paths in this case are approximately 278 meters and 357.8 meters (CPL) long

respectively, and the time to cover the CPL is approx 9 minutes and 20 seconds. The total

search time for the environment comes out to be 12 minutes and 04 seconds.

55

CHAPTER 6: CONCLUSION

The results of the Search and Secure algorithm presented in this manuscript can be

summarized such that it is more effective and optimum because of the following:

• Better merging technique results in lesser number of regions in the regions graph.

• Improved blocker position evaluation results in lesser number of blockers required for

breaking cycles.

• Reduced number of regions to be searched in the RMST.

• Root optimization for reducing the number of branches in the RMST and hence the

number of searchers required.

• Shortest path algorithm for blockers resulting in minimum time.

• Shortest path algorithm with optimized leaf node rules for searchers.

• Handling of unpathable regions with internal obstacles.

All these points combine to form a more effective algorithm that significantly reduces

the time and resource requirement for uncoordinated search of a particular environment. It

can be improved even further by implementing a strategy to handle multiple obstacles within

any unpathable region. Table 6.1 shows the summary of results of the environment analyzed

in the previous chapter.

Table 6.1: Summary of results of the environment

No. of Blockers 03

No. of Searchers 02

Critical Path Length (CPL) Blockers 105.5 meters (Blocker-1)

Time to cover CPL Blockers 02 min 44 sec

Critical Path Length (CPL) Searchers 357.8 meters (Searcher-2)

Time to cover CPL Searchers 09 min 20 sec

Total Robots Required 05

Total Time to Secure Environment 12 min 04 sec

56

REFERENCES

[1] Trends in Robotics, International Federation for Robotics.

Available: http://www.robotshop.com/blog/en/trends-in-robotics-9806

[2] The Korea Herald, Published: January 18, 2011.

Available: http://www.koreaherald.com/view.php?ud=20110118000723

[3] Y. Elmaliach, N. Agmon, G. Kaminka, Multi-Robot Area Patrol under Frequency

Constraints, IEEE International Conference on Robotics and Automation (ICRA 07),

385-390, Rome, Italy, April 10-14, 2007. ISBN 1-4244-0601-3.

[4] J. Bondy, U. Monty, Graph Theory with Applications, The Macmillan Press Ltd., 5th

Edition, Elsevier Science Publishing Co. Inc, U.S.A., 1976. ISBN 0-444-19451-7.

[5] F. Rubin, A Search Procedure for Hamilton Paths and Circuits, Journal of the

Association for Computing Machinery, 21(4), pp. 576-580, ACM, New York, U.S.A.,

October, 1974. ISSN 0004-5411.

[6] M. Batalin, G. Sukhatme, Multi-Robot Dynamic Coverage of a Planar Bounded

Environment, Technical Report, Robotic Embedded Systems Laboratory, University of

Southern California, 2002. Available: http://www.cens.ucla.edu/maxim/Publications/

~papers/331.pdf

[7] M. Miazaki, Sistema de controle multi-robo baseado em colonia de formigas artificiais,

Master Thesis, Instituto de Ciencias Matematicas e de Computacao - USP, Brazil,

February, 2007.

[8] A. Sgorbissa, R. Arkin, Local Navigation Strategies for a Team of Robots, Robotica,

461-473, 21(5), Cambridge University Press, October, 2003. ISSN 0263-5747.

[9] R. Dollarhide, A. Agah, Simulation and Control of Distributed Robot Search Teams,

Computers & Electrical Engineering, 625-642, 29(5), Elsevier Science Ltd., 1999.

[10] Y. Guo, L. Parker, R. Madhavan, 9 Collaborative Robots for Infrastructure Security

Applications, Studies in Computational Intelligence (SCI), Springer-Verlag Berlin

Heidelberg, 185-200, Vol. 50, April 22, 2007. ISSN 1860-9503.

[11] M. Likhachev, A. Stentz, Information Value-Driven Approach to Path Clearance with

Multiple Scout Robots, IEEE International Conference on Robotics and Automation

(ICRA'08), 2651-2656, Pasadena, California, U.S.A., May 19-23, 2008. ISBN 978-1-

4244-1646-2.

[12] K.Wurm, C. Stachniss, W. Burgard, Coordinated Multi-Robot Exploration using a

Segmentation of the Environment, IEEE/RSJ International Conference on Intelligent

57

Robots and Systems (IROS 2008), 1160-1165, Nice, France, September 22-26, 2008.

ISBN 978-1-4244-2057-5.

[13] N. Agmon, S. Kraus, G. Kaminka, Multi-Robot Perimeter Patrol in Adversarial Settings,

IEEE International Conference on Robotics and Automation (ICRA 08), 2339-2345,

Passadena, California, U.S.A., May 19-23, 2008. ISBN 978-1-4244-1646-2.

[14] A. Kolling, S. Carpin, The GRAPH-CLEAR Problem: Definition, Theoretical Properties

and its Connections to Multirobot Aided Surveillance, IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS 2007), 1003-1008, San Diego,

California, U.S.A., October 29 - November 2, 2007. ISBN 978-1-4244-0912-9.

[15] D. B. S. Portugal, RoboCops: A study of coordination algorithms for autonomous mobile

robots in patrolling missions, M.S. Thesis, Dept. of Elec. and Comp. Engg., Fac. of Sci.

and Tech., University of Coimbra, Coimbra, Portugal, 2009.

[16] A. Kolling, S. Carpin, Multi-robot Surveillance: an Improved Algorithm for the

GRAPH-CLEAR Problem, IEEE International Conference on Robotics and Automation

(ICRA 2008), 2360-2365, Pasadena, California, U.S.A., May 19-23, 2008. ISBN 978-1-

4244-1646-2.

[17] T. Parsons, Pursuit-evasion in a graph, In Y. Alavi and D. R. Lick, editors, Theory and

Application of Graphs, pp. 426–441, 1976.

[18] N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and C. H. Papadimitriou, The

complexity of searching a graph, J. ACM, 35–1, pp. 18–44, 1988.

[19] L. Barriere, P. Flocchini, P. Fraigniaud, and N. Santoro, Capture of an intruder by

mobile agents, in SPAA ’02: Proceedings of the fourteenth annual ACM symposium on

Parallel algorithms and architectures. New York, NY, USA: ACM Press, 2002, pp. 200–

209.

[20] I. Suzuki and M. Yamashita, Searching for a mobile intruder in a polygonal region,

SIAM Journal on Computing, 21(5), pp. 863–888, 1992.

[21] L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, and R. Motwani, A visibility-based

pursuit-evasion problem, International Journal of Computational Geometry and

Applications, 9(4/5), 1999.

[22] S. Sachs, S. Rajko, and S. M. LaValle, Visibility-based pursuit evasion in an unknown

planar environment, International Journal of Robotics Research, 23(1), pp. 3–26, Jan.

2004.

[23] B. P. Gerkey, S. Thrun, and G. Gordon, Visibility-based pursuit-evasion with limited

field of view, International Journal of Robotics Research, 2004, pp. 299–315.

58

[24] S. S. Ge and C. Fua, Complete multi-robot coverage of unknown environments with

minimum repeated coverage, Robotics and Automation (ICRA), April 2005, pp. 715-720.

[25] V. Isler, S. Kannan, and S. Khanna, Randomized pursuit-evasion in a polygonal

environment, Robotics, 21(5), pp. 875–884, Oct. 2005.

[26] A. Ganguli, J. Cortes, and F. Bullo, Distributed deployment of asynchronous guards in

art galleries, American Control Conference, June 2006.

[27] F. Katsilieris, Search and secure using mobile robots, M.S. Degree Project, Elec. Engg.

KTH, Stockholm, Sweden, 2009.

[28] M. Barclay and A. Galton, Comparison of region approximation techniques based on

Delaunay Triangulations and Voronoi Diagrams, Journal of Computers, Environment

and Urban Systems, 32(4), pp. 261-267, July 2008.

[29] F. Preparata and M. Shamos, Computational Geometry: An Introduction, Chap. 3

"Convex Hulls: Basic Algorithms" (1985).

[30] B. Gartner, and M. Hoffmann, Delaunay Triangulations. In Computational Geometry

Lecture Notes HS 2013 (Ch.06).

Available: http://www.ti.inf.ethz.ch/ew/courses/CG13/lecture/Chapter%206.pdf

[31] A. Kamil, Graph Algorithms, CS61B, 14/04/03, UC Berkeley.

59

	Declaration
	Language Correctness Certificate
	Copyright Statement
	Acknowledgements
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	INTRODUCTION
	Definitions and Terminologies
	Background
	Cyclic Strategies
	Markers Based Strategies
	Communication Based Decentralized Strategies
	Cooperation Based Centralized Strategies
	Partitioning Based Strategies
	Contamination Based Strategies

	Motivation
	Scope
	Thesis Outline

	OBJECTIVES AND LITERATURE REVIEW
	Literature Review
	Search and Secure Algorithms Overview
	Cyclic Strategies
	Markers-based strategies
	Communication-based decentralized strategies
	Cooperation-Based Centralized Strategies
	Partitioning Strategies

	Developmental Stages of Partitioning-based Algorithms
	Early Developments
	Objective-based Algorithm Development
	Search and Secure Using Static Robots

	Search and Secure using Mobile Partitioning-based Robots
	Segmentation and Merging
	Comparison of Voronoi and Delaunay Triangulation
	Creating Minimum Spanning Tree
	Determining Robot Positions and Tree Components
	Identifying Robot Paths

	Problem Definition
	Problem Solving Options
	Thesis Objectives

	ANALYTICAL MODEL AND RESEARCH METHODOLOGY
	General
	Analytical Model and Research Methodology
	Algorithm Overview and Description
	Boundary and Obstacle Matrices
	Visibility Graph of Corners
	Triangulation
	Merging Triangles into Convex Regions
	Regions Connectivity Graph
	Cycle Detection
	Static Blocker Positions
	Reduced Minimum Spanning Tree
	RMST Root Optimization
	Number of Branches and Search Order
	Blocker Paths
	Searcher Paths

	CASE STUDY FOR VALIDATION OF ALGORITHM
	Case Study
	Environment Map
	Triangulation
	Merging Triangles into Convex Regions
	Cycle Detection and Blocker Positions
	Reduced Minimum Spanning Tree
	Root Optimization
	Number of Branches and Search Order
	Blocker Paths
	Searcher Paths
	Conclusion of the Case Study

	RESULTS
	Environment Map
	Triangulation and Triangles Graph
	Merging Triangles into Convex Regions and Regions Graph
	Cycle Detection and Blocker Positions
	Reduced Minimum Spanning Tree and Root Optimization
	Number of Branches and Search Order
	Blocker Paths
	Searcher Paths

	CONCLUSION
	REFERENCES

