Anx-B

Intelligent Navigation and Control of Mobile Robots Using
Android Platform

LL- 2} 1. ﬁl
LAKTSTAY

Author
Muhammad Zohaib
2011-NUST-MSPhD-Mts-25

Supervisor

Dr. Kunwar Faraz Ahmed

DEPARTMENT OF MECHATRONICS ENGINEERING
COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING
NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY
ISLAMABAD
MAY, 2014

Anx-B
Intelligent Navigation and Control of Mobile Robots Using Android

Platform

Author
Muhammad Zohaib

2011- NUST-MSPhD-Mts-25

A thesis submitted in partial fulfillment of the requirements for the degree of

MSMechatronics Engineering

Thesis Supervisor:

Dr. Kunwar Faraz Ahmed

Thesis Supervisor’s Signature:

DEPARTMENT OF MECHATRONICS ENGINEERING
COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING
NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD
MAY, 2014

Anx-B

Declaration

I certify that this research work titled “Intelligent Navigation and Control of Mobile Robots
Using Android Platform” is my own work. The work has not been presented elsewhere for
assessment. The material that has been used from other sources it has been properly

acknowledged / referred.

Signature of Student
Muhammad Zohaib

2011-NUST-MSPhD-Mts-25

Anx-B

Language Correctness Certificate

This thesis has been read by an English expert and is free of typing, syntax, semantic,
grammatical and spelling mistakes. Thesis is also according to the format given by the

university.

Signature of Student
Muhammad Zohaib

2011-NUST-MS PhD-Mts-25

Signature of Supervisor

Anx-B

Copyright Statement

Copyright in text of this thesis rests with the student author. Copies (by any process)
either in full, or of extracts, may be made onlyin accordance with instructions given by
the author and lodged in the Library of NUST College of E&ME. Details may be
obtained by the Librarian. This page must form part of any such copies made. Further
copies (by any process) may not be made without the permission (in writing) of the
author.

The ownership of any intellectual property rights which may be described in this thesis is
vested in NUST College of E&ME, subject to any prior agreement to the contrary, and
may not be made available for use by third parties without the written permission of the
College of E&ME, which will prescribe the terms and conditions of any such agreement.
Further information on the conditions under which disclosures and exploitation may take

place is available from the Library of NUST College of E&ME, Rawalpindi.

Anx-B

Acknowledgements

Innumerable words of praise and thanks to Allah, the Almighty, and the Creator of the universe
for carving the path for me and always helping me out in the best possible way. Without His Will
and Mercy, I would not have been able to accomplish this milestone. I am grateful to my parents
for their immense love, moral support, encouragement and prayers throughout my academic

carcer.

I am deeply beholden to my supervisor, Dr. Kunwar Faraz Ahmed, for his continuous guidance,
inspiration, and patience. His ability of management and foresightedness taught me a lot of

things which will be more helpful for me in my practical life.

I would also like to thank my fellow students especially Mr. Hamid and Mr. Arsalan, who at the
climax time of my thesis, guided mein the right direction which led to the completion of this

thesis on time.

I gratefully acknowledge the help and guidance provided by Guidance and Examination
Committee members, Dr. Khurrum Kamal, Dr. Umer Shahbaz, and Dr. Arslan Shaugqat, that their
valuable suggestions and comments were a great source to improve the research work presented

in this thesis.

Anx-B

Dedicated to my exceptional parents and adored siblings whose
tremendous support and cooperation led me to this

wonderfulaccomplishment.

Anx-B

Abstract

In this thesis a method is proposed for the navigation and control of mobile robot using pure
vision based algorithm under real time constraints. This project is dedicated to developing
control systems for robots using vision based technology only. In recent years, mobile robot
systems and its applications have expanded beyond the basic function. Virtually any task can be
adapted and implemented using it. The objective of this project is to develop a system to control
a robot and navigate a robot autonomously, the advantages of which include wireless access and

easy-to-use GUI.

Key Words:Smartphones,android, computer vision, opencv, Unmanned Ground Vehicle, UGV,
Mobile Robots, Robotics, Control Systems, iRobot, Roomba.

vi

Anx-B

Table of Contents

(D LTo] P =1 Ao o OSSPSR P PRSP PP i
Language CorreCtness CertifICALE..........coiiiiiiiiie bbbt sb et b et sb e b nre e i
107010}V g1 a1] 7= 1<) 14T 1 (OO RSSO UUPTRTURTRN iii
Yo L0 LY [=To [o =T o g T=T o (SRS iv
AADSTIACT ... E R e R R Rt r et Vi
TADIE OF CONTENTS. ...ttt bbb b bbbt bbb ettt e bt ettt bbbt vii
[T o) T TN LSOO S USO PP iX
CHAPTER 1: INTRODUGCTION.cititiittitiseait ettt st b ket e bbb et he b e et et sbesb e st e abeebe e e eneees 1
1.1 Background and SCOPE.......c.eecviiieiieiieeiet ettt ettt sttt e e te st e s ettt et e be st e se e se e seenneennennes 1
1.2 11 (o 57221 2 (o) PSP |
1.3 OB JEOTIVES. ¢ttt ettt ettt et et ekttt st e et e st es e st et et e et e et e eeeebeemeem e en s e e et e eb e et e ebeeaeen e eneenten s et e bt eheebeeneenteneentenes 2
CHAPTER 2: LITERATURE REVIEW ..ottt bttt bt 3
2.1 Related Scientific TECHNIGQUES:.......cuiiieiieeieit ettt ettt et e e st et e e st e enbessaesseesseeseensesnnennes 3
2.1.1 Blob based ObStacle AVOIAANCEc.coeiruieriieiieiietieetiete ettt ettt ettt e st e b et e e e eneeene 3
2.1.2 Single IMage PersSpectiVe CUEScueeuiiiieiiitieiieieeiteett ettt sttt ettt sttt ettt s beesbe e be e e eaeesae 4
2,13 SEEIEO VISION ettt ettt ettt et eh et ettt b e e bt e bt bt eh et en et e st e ebesbeeb e e st en b et e et e e bt sbeebe et ensenee 4
2,14 MONOCUIAT VISIOM c.ontintiiiitiitieiteitetet sttt ettt sttt et et be bt e be et e et et e b e sb et bt sbeebe et ensenee 5

2.2 Image ProcesSing LADTATY:ooiiiiiieieetee ettt sttt ettt et et eaeesbeenbeas 6
2.3 Development ENVITONMENL:ccccviiviiiiiiieriietieteeteeteesteesieetesteseeesaeesaeesseesaeeseesseesseessesssesssesseessesssesssenses 6
2.3.1 Eclipse (fOr ANAIOId OS)ccciiiiiiieiieieeie ettt ettt ettt et e testesstesseesseensesnaesseenseeseenseensesnsennes 6
2.3.2 Microsoft Visual Studio 2013ottt ettt ettt ettt r et e 8
CHAPTER 3: METHODOLOGY ..ottt sttt sttt st bt b be st s e e e e sbesb e s besaeab e e e enbesbesbesbesbeabeeneeneeee 9
3.1 FLOW CRAITS ...ttt ettt b e s bbbt e st et e e bt s bt ebesbeeb e ea e et et e naeebesbeebeeneenseneens 9

T8 I Y -V B 0 (0 = 41 o SRR 9

TR N Ko (0 5 L1 410 SRS PSSP 10
3.1.3 Steering Control CONAILIONSeeeiiriiieieieriee ettt ettt et e steete et et eee st e tesaesbeebeeaeeseeneensennens 10

32 AlgOrithm IMPIEeMENTATION.........eiiiitiiiiieiieie ettt ettt et e e e ste e beeaesaesteesseeseesseesseessasseesseessenssesssensens 11
TN B © 1 1o B 2 (o) USSP 11
3.2.2 Lucas-Kanade Pyramidal Optical FIOWcooiiiiiiiiiiiiiee et 12
3.2.3 Obstacle to Robot distance CalCulationccueiuiririiieieieeie ettt ebe e 14
324 FeaUI® DEECTION ... ceutitititietiettei ettt sttt ettt ettt st b e bt bttt e b e st e bt sbeebeeb e e bt et et e ebesbeebe et ensenaens 14

33 ODbstacle AVOIAANCE STrALEEYeecvierieeieriieiieieeiesie st et ettt e ste st eteesteeseeesaesseeseensesnsesssesseesseesssenseansenns 15
34 Communication MethOdOLOZY.........couiiiiiiiiieeee ettt st ee et e ae e e eeeens 15
CHAPTER 4: EXPERIMENTATION ...ttt sttt sbe sttt et sbesbesbe et e e e aneennen 16
4.1 BINATY TMAEZES ..eevieiieiieiieieeiesitete ettt ete st este bt e b e et e ete et eesbeesseesbesssesseessaesseesseassesssesseenseessenssenssessnesens 16
4.2 COlOT SEZMENTATION.cueiiieeieii et eteettestte bt eteetesttesteessee st esseesseeseeseenseenseassesssessaessaenseensesssesseesseenseensenns 17

4.3 Initial RGB IMPIeMENtAtiONc..covieiieieiiieiieiteeie ettt eteete et e steeste e beesseessessaessaesseesseessesseesseesseensenns 17
CHAPTER 5: EXTENSIVE EXPERIMENTATIONS ..ottt 19
5.1 Optical Flow Outliers ReMOVAL..........cooiiiiiiiiiieet ettt sttt et esaeesaee e ens 19
52 Easy Navigation USING SUD-AIVISIONeeuiiiiiiiitieiieieee ettt sttt et sttt eetesbeesbeenbees 20
53 Delaunay Triangulation IMplementation............c.ecverviecrierierierienieerieeieseesreesseeseessesseesseesseessesssesssessaessees 21
54 Delaunay Triangulation IMProOVEMENLevieriieriieieeieniieieeieecteste sttt e e aeseesseesseeseenseensesseessaensees 22
55 Delaunay Triangulation Sub-DIVISION..........cccciruierieiiieiieieeieseesie ettt et enee e sseennees 23
5.6 Steering Control COMAItIONS........c..eiuiriiieie ettt ettt ettt ettt e bt aeeeeeseese et e sentesbeeseebeeneeneenseneas 24
5.7 Practical EXPEIIMENTS.ccveiiieiieieiieiieseeie e cteettesteeste et e esseetaestaebeesseessasssesssesseesseesseenseessenssenssenssesses 24
CHAPTER 6: CONCLUSION AND FUTURE WORKooiiiiiiiiiieieiee et 27
6.1 FULUIE WOTK ..ottt ettt st e s bt e st e e et e et eneesaeesaeenteeneeeneeeneeeneennean 27
F AN o = N B 1 G NSRS URUPT 29
REFERENGCES ...ttt bbbt b e e h e b e bt H e b £ e Rt e R b e e e e b e e b e eb e e b e e Rt en b e nbeebenbeebeebeennennennen 38

viii

Anx-B

List of Figures

Figure 1. Image from camera (Left), Segmented Image (right), Courtesy [4] 3
Figure 2. (Top) Original Images of staircases, (Bottom) Images with bold red lining depicting location of staircases,

Courtesy [5] 4
Figure 3. Canny Edge Detection 7
Figure 4. Feature Detection (1) 7
Figure 5. Feature Detection (2) 8
Figure 6. Main Program Flow Chart 9
Figure 7. Algorithm Flow Chart 10
Figure 8. Steering Control Conditions Flow Chart 10
Figure 9. Sparse Optical flow (left) and Dense Optical Flow (right) 11
Figure 10. Binary Images (1) 16
Figure 11. Binary images (2) 17
Figure 12. Color Segmented Images 17
Figure 13. RGB with Optical Flow Images (1) 18
Figure 14. RGB with Optical Flow Images (2) 18
Figure 15. Optical Flow with Error 19
Figure 16. Optical Flow without Error 20
Figure 17. Easy Navigation using Sub-Division 21
Figure 18. Delaunay Implementation 22
Figure 19. Delaunay Improvements 22
Figure 20. Delaunay Triangulation without Sub-Division 23
Figure 21. Delaunay Triangulation with Sub-Division 23
Figure 22. Practical Implementation Examples (1) 25
Figure 23. Practical Implementation Examples (2) 25
Figure 24. Practical Implementation Examples (3) 26

Anx-B

CHAPTER 1: INTRODUCTION

This chapter introduces the thesis topic. Research for this thesis with a specific
introductionfor the motivation and encouragementof the general field, are presented.

Furthermore, the objectives of this thesis are defined within the following chapter.

1.1 Background and Scope

Robots are widely used across many fields now. The use of robots has been developed for
the requirement of precision making. As general rule suggests that work done by a robot is much
more efficient and precise as compared to a human being. Therefore for the making of robots,
certain requirements arises, which lead towards the character building of robotic platform.
Including the algorithm involved for most of it, while the design also plays its part. Considering
the design does not much greatly effect certain conditions, therefore the algorithm must be of
high intelligence. The requirement of thus an intelligent algorithm is the main motivation for this
thesis.

The control of a robot also plays a vital role, as if there seems no communication between
a robot and its server (the body who controls) then the robot is basically useless. So the control
of the robot is also taken into much consideration.The control main mechanism in this project
lies basically via Bluetooth connection. All robotic control commands are generated and
communicated via Bluetooth connection, by sending the basic serial type data over Bluetooth. It
is chosen so as the connection to remain wireless, as wired connections might be found useful in
certain parts but mostly wireless connections are preferred due to the nature of being wireless

and hassle-free behavior.

1.2 Motivation

Considering a practical point of view, optical flow can be used for many types of vision
based models, supposedly the main sensor based and motion based models, in the field of

autonomous navigation. Optical flow, whereas, is used here for motion based as for autonomous

Anx-B

navigation using single camera model. The need and use of single camera greatly improves in the
usefulness of its operation, as in case of being single, first of all, being cheaper and smaller and
lighter and the optical flow robustness depends on it, as only vision of one camera is being
processed through it. As cameras are also becoming much smaller and lighter, it is becoming
easier for it to mount on an autonomous vehicle.

The less need of having more type of sensors mounted on the robot also yields a positive
aspect, so as less amount of information is communicated via several times, instead only vision
based camera info is only transferred.

Optical flow is already known to be capable of determining rotational quantity of a
motion [1,2, 3]. And here we are dealing with the translational motion only, as the rotational

motion is not required.

1.3 Objectives

The objectives or steps involved for the completion of this dissertation included,
e Familiarization with image Processing Techniques.
e Interfacing Robot and Windows platform wirelessly. (Bluetooth module used).
e Designing the interface to Robot Control.

e Developing the algorithm for Autonomous (collision free) behavior of the robot.

Anx-B

CHAPTER 2: LITERATURE REVIEW

There seems to exist number of ways to control and navigate a robot using stereo vision

and mono vision, a review of the existingmethods are briefly discussed here.

2.1 Related Scientific Techniques:

2.1.1 Blob based Obstacle Avoidance

Blob based obstacle avoidance deals with a simple strategy of thresholding an image and
by doing edge detection, obstacle detection is tried on this edge detected image as simply the
edges contained are the obstacle points and the result would be to avoid them [4]. The three main
conditions required for obstacle detection that were used in the paper [4] were that the object
must be not hanging, the obstacles must be entirely different then the floor and the ground is

relatively flat.

Figure 1.Image from camera (Left), Segmented Image (right), Courtesy [4]

The main aspect to notice here is that, the consideration that the main blob is considered
floor and is segmented, what if there are number of obstacles having similar color tone, then

instead of avoiding the obstacles the robot will try to hit them.

Anx-B

2.1.2 Single Image Perspective Cues

Single image perspective cues works in such a way that, the robot is considered to move
in the direction where the sets of lines align themselves and act as a single perspective. The
perfect example used by [5], is the staircase, as the lines being made are by a staircase which will
definitely be easily obtained by a simple canny edge detection and then determining the
vanishing point, this vanishing point then definitely helps in determining the nature of the
environment in which the robot is placed. The far most basic problem with such implementation
is that it works in only a few set of environments and is not a wholly solely obstacle avoidance in

itself.

Figure 2. (Top) Original Images of staircases, (Bottom) Images with bold red lining depicting
location of staircases, Courtesy [5]

2.1.3 Stereo Vision

Stereo vision, as the name suggests there are two cameras used for the purpose of
navigation, which is in fact less robust if we look overall, as computing vision from two cameras
and computing using one camera makes the difference less by almost 50%. Whereas it has the

ability to achieve vision algorithms used for object recognition without using additional sensors.

[6].

Anx-B

In stereo vision, 2 cameras are used to get the same environment using different views.
Therefore for getting 3 dimensions from 2 dimensional images, one require more than one 2
dimensional image. In case of more than 2D images, there has to be a relative position of objects
to be known and also the relative position of camera be also known, for the finding of the depth
inside the images. Also tangential and other disorders and outliers are needed to be removed
incase for finding distance to objects. Therefore for such requirements adjustment of angles and
distances between the cameras plays a vital role.

The requirement here is still that it requires at least 2 dimensional cameras, as opposed to
initial thought to have just one camera used as a sensor. So basically using two cameras means
processing all the vision data 2 times as that of one, therefore doubling the amount of processing

required.

2.1.4 Monocular Vision

From biological aspect we already know that by just using one camera i.e.in case of
bird’s eyes being positioned in such a way that binocular depth vision is impossible [7]. There
exists number of methods to extract the depth information from single camera, such monocular
depth measures include occlusion, texture gradients and optical flow [7]. It is been already
discussed that optical based vision depends on two images obtained from one camera with a
specific amount of time interval, whereas 2 cameras are talented enough of extracting depth
information.

If the environment is static, then by merely using a single camera one can state that two
frames are taken at a specific time interval, which will act as they were taken from two separate
cameras. The assumption taken here, do limits some criteria’s, that any moving object in any of
the frame will violate this condition. The basic requirement of using single camera is that one has
to find the transformation from one frame to another and for every frame to come. Apart from
the other complexity the most important aspect lies with finding one features of a frame in
another which has been transformed. Finding these important points/features and using them for
vision purposes is known as structure from motion [8]. A common possibility for performing
such operation is by using optical flow, therefore by finding the important points and finding

those points in the coming consecutive frames. [3,7,9,10,11].

Anx-B

2.2 Image Processing Library:

For the sake of better provisions and improvements and not being required to develop the
basic imageprocessing techniques, OpenCV (Open Computer Vision) Library was selected.lt
was selected as the basic programming could be done in C++ / C language, and due to its
improved,

e Speed

e Efficiency

e Optimization

e Cross Platform Support and
e Being Open Source

The Cross Platform support is so much wide that for all popular Operating Systems, there

exists a supporting linking library of OpenCV.

The Library is mainly aimed at real time computer vision tasks, its core libraries are

written in C++/C, therefore making it further easier for making algorithm run in same

language.

2.3 Development Environment:

For the development of the algorithm, there needs to be a suitable platform/environment
for the algorithm to work on. As OpenCV core libraries are written under C++/C,therefore for
the easy implementation of OpenCV functions, there needed to have a development platform
which can directly link to those libraries. Therefore for the case of using an Android platform,
Samsung Galaxy Note III was used for the algorithm implementation and development cell. For
the sake of programming for this respective cell phone, eclipse development platform was

chosen and OpenCV libraries were linked to it.
2.3.1 Eclipse (for Android OS)

Eclipse is an integrated development environment (IDE). It consists of workspace for the

use of making an algorithm or for performing respective operations. It is mostly written in java,

6

Anx-B

but some native interfaces can be made for writing programs in C++/C languages and others, as
in this case C++ is used, the OpenCV libraries are linked into eclipse and then for writing the
program in C++/C language, Java Native Interface (JNI) was used. Java Native Interface was
developed for linking the core libraries of OpenCV and the C++/C program, as programming in
Java and using the libraries in Java only were not possible, considering the scope of the thesis
project.
Using Eclipse number of image processing techniques were implemented, which include
e Image manipulations (grayscale, sepia, etc.)
e Canny edge detection

e Feature detection, etc.

Figure 3. Canny Edge Detection

Figure 4. Feature Detection (1)

Anx-B

+ 8:.03PM

Figure 5.Feature Detection (2)

The Results obtained using eclipse were impuissant and insufficient, and a better
approach was needed. As for the utilization of basic Opencv functions, special instructions were
required for the java native interface (JNI). For the sake of debugging and understanding the
result of every new line of algorithm code, it was way too difficult using Eclipse program, as
even if errors are resolved the program “stops responding”, and the debugger points towards JNI

as a whole. Therefore there was a need for a change in development platform.

2.3.2 Microsoft Visual Studio 2013

Microsoft Visual Studio 2013 is a vast language support platform, for performing
multiple tasks. It works on a Microsoft Windows Operating System. It consists of comprehensive
amount of tools to perform a wide variety of tasks. The OpenCV libraries at their core language
C++/C level were linked and their functions were used successfully. Therefore for the
implementation of OpenCV libraries at their core C++/C language level, visual studio was
introduced and results were driven out of it.

Therefore the current platform is Windows 8.1 Operating System where libraries of

OpenCV 2.4.8 are integrated with Visual Studio 2013.

Anx-B

CHAPTER 3: METHODOLOGY

This chapter clarifies the methodology that has been implemented using the algorithm
being made. The main aspect of which is based on optical flow technique. Whereas the

methodology can be divided into two categories.
e Algorithm Implementation

e Obstacle Avoidance Strategy

3.1 Flow Charts

The Idea of the implementation of the algorithm can be understood considering the below

flow charts.

3.1.1 Main Program
Roomba full control :
Algorithm Algorithm
Improvements implementation
Roomba Steering Roomba
_> .
control calculation Movement

Figure 6. Main Program Flow Chart

3.1.2 Algorithm

1* Frame
Extraction

2" Frame Lucas-Kanade pyramid
Extraction Optical Flow Calculation

Delaunay

Feature Detection
Using Shi-Tomasi

Anx-B

Optical Flow
Improvements

Delaunay Frames Sub-
Improvements mplementatio Division

»
»

Figure 7. Algorithm Flow Chart

3.1.3 Steering Control Conditions

Calculate Optical
flow Velocity
Vectors

Find Good
Features

Find Navigational
Area, Considering
all above to be true

Navigational
Area Found?

Only Consider Good
Features and Delaunay
Triangulation

Calculate
Delaunay
Triangulation

Roomba
Movement

Figure 8. Steering Control Conditions Flow Chart

10

Anx-B

3.2 Algorithm Implementation

A moving camera produces a succession of timely ordered images/frames. Each frame
whereas consists of projection of 2D pixel array. And for processing these successive frames

optical flow is implemented.

3.2.1 Optical Flow

Since optical flow plays a prominent role in biology, it is not surprising that a lot of
research [1, 2, 12,13,14,15] has been done considering the computer vision. Optical flow
provides many applications in computer vision out of which the main aspect is considered as
motion estimation/detection. Optical flow can be also used to detect or track markers to estimate
the translational quantity. Another important aspect of it of object segmentation, as when
assuming the camera is static and the object is moving inside the environment.

Optical Flow generates flow vectors which purely depends on the features being found
between successive frames. Therefore for the velocity vectors to be greater it depicts that the
motion is greater and whereas the vectors are smaller depicts that motion is small. In my case the
motion of the robot is purely translational therefore the rotational complexity of the optical flow
is not taken into account and only the translational components are dealt with.

It is much anticipated that optical flow will work in our case but which type of optical
flow has not been discussed. There exists two main types of optical flow.

e Dense optical flow and
e Sparse Optical flow

\

Figure 9. Sparse Optical flow (left) and Dense Optical Flow (right)

11

Anx-B

Dense optical flow algorithms compute the velocity vectors of optical flow for every
pixel of the frame i.e. flow per every pixel whereas sparse optical flow algorithms compute the
velocity vectors of optical flow for only good features. These good features are usually the
corner/edgy features of the frame and are usually provided to the sparse optical flow using some
feature detection technique.

Dense optical flow also needs the assumption that the movement between the
images/frames is very less, even up to a single pixel in distance. This leads to problems for the
use of robotics [16], since there might happen chances of delay in robotic control and its decision
making causing a further distance travel not being supported by dense optical flow. So what is
then done is some good features are tracked along the frames which is sparse optical flow, but
the problem of distance travel of one pixel assumption is still present, therefore to further
improve it pyramidal Lucas-Kanade is used, which solves this problem. [17]

In order to reduce the complexity and computational processing sparse optical flow

Lucas-Kanade pyramid implementation is considered.

3.2.2 Lucas-Kanade Pyramidal Optical Flow

There said to be three basic assumptions that are needed to be understood for the
implementation of optical flow. They are that the image must has a constant brightness, i.e. the
brightness on each every pixel value does not change with time, there has to exist temporal
persistence or small movements that the robot must not move abruptly thereby changing the
whole environment of its detection frame and the third to be the spatial coherence, which states
that for a specific defined neighboring window size take it 3x3 or 10x10 of a pixel remains same
throughout the operation of optical flow.

From analytical point of view let’s assume that “I” is the intensity of a frame which is

constant from t to t +3t. Then following constraint equation is obtained
I (x,y) =1 (x+ox, y+oy, t+ot)
Applying tailor series to the above constraint equation gives,

ol d ol d ol
ordc aldy ol _

=0
oxdt oydt ot

12

Anx-B

The tailor series is applied for only first derivative along time t. Therefore reconsidering
the partial variables to new variables, as when distance y is derivated along time t and same case
for x, we get

IXu+va+It=0
Where u and v are the simple x and y distances of velocity vectors being made from their
original point of coordinates X,y to their new position in x,y in time t.
Or Lou+Iv=-I

Now for the case when we consider the neighboring pixels inside a definite window for

the case of optical flow we have,

L(qDu+1Iy(ql)v="- L(ql)

L (g2)u +1y(g2)v =- L (q2)

L (qnju + Iy (qn)v = - I; (qn)
Putting the above equation in the form of matrices or simply AV = b, and solving for

velocity vector V.

EACH Iifi;{ﬂj- I)
Felga) Iif':.{fﬂ:' —f:{fi_‘:'
A= . . h= :
L) Jglg), | 1fay) V=lu ol

Considering the above matrices one can tell that it has more equations than unknowns
this it is usually over-determined. Thereby Lucas-Kanade obtains a compromise solution by least
square principle.

V=(A"4)"A"b
This same velocity vector “}” is found by using the optical flow function used by

OpenCV function “calcOpticalFlowPyrLK”.

13

Anx-B

3.2.3 Obstacle to Robot distance Calculation

‘i obstacle

camera
Considering the figure above, we can deliberately say that the optical flow is function of

forward velocity of robot/camera, as

1_, ¥
OF = — - sina
b
Or rearranging it for calculating the distance, as
| .
- SL

_D:
OF

Therefore when robot velocity, optical flow velocity vectors and angle of object to

obstacle is known then the distance is also calculated.

3.2.4 Feature Detection

As already discussed that the optical flow that is to be implemented is sparse optical flow
and to be precise the pyramidal Lucas-Kanade optical flow. Also that the lucas-kanade requires a
set of good features as a requirement for its function. Therefore there is a need of a good feature
detection technique for the working of lucas-kanade optical flow. For this purpose an optimum
feature detection technique was required. And for that purpose the common edge detection
techniques, the corner detection techniques like Harris-corner detection etc. and many other were
implemented. Out of which the famous Shi-Tomasi technique was selected. It is basically a
modified form of Harris- Corner detection technique [18], as both find the same good features
but another parameter of minimum threshold is introduced in case of Shi-Tomasi technique, and
for its implementation some parameters are to be defined which include the selection of mask

size, the number of features to be detected, selection of image quality etc.

14

Anx-B

3.3 Obstacle Avoidance Strategy

The robot which is being used for the purpose of autonomous navigation is the famous
iRobot Create. The vision is being provided to it by means of camera mounted on top of it and
the algorithm being run wirelessly via a windows operating system. The algorithm is based on
purely optical flow and the vision information provided to it, nothing else, no feedback from the
sensors of the iRobot Create or any other sort of ultrasonic sonars/sensors. Therefore for the
obstacle avoidance strategy, all the calculations are based on the data obtained from optical flow.
The most common strategy for navigation using optical flow is the Balance Strategy [19], which
states that,

e (alculate the amount of flow present at the half right side and the half left side of the

image plane.

e Navigate towards the direction where flow is minimum, so as to avoid the obstacles.

Initially the Balance Strategy was implemented and results were driven out of it and
further for a condition of moving straight, the image plane was divided into three equal frames.
And according to their flows the navigation was done. Further improvements are also done,

which are discussed in coming chapters.

3.4 Communication Methodology

The robot consists of a Bluetooth module for wireless communication. Therefore
Bluetooth technology was used for the communication between the robot (iRobot Create) and the
computer. The data sent is interpreted on the robot and the robot moves or acts accordingly, all
done autonomously on-the-fly (real-time).

Using Bluetooth type communication, com port identification and selection is done.
According to the com port designated as an outgoing port, linked between the robot and the
computer. The 8-bit data is sent serially to the com port on which the Bluetooth module is
connected to the pc. That data is then transmitted via Bluetooth to the Bluetooth module installed
on iRobot create. The Robot interprets the provided data and make various actions accordingly.

(Turning radius, Movement direction/speed etc.)

15

Anx-B
CHAPTER 4: EXPERIMENTATION

Here I would like to introduce the steps involved in implementation of the algorithm that
has been developed. The initial steps whereas would be on simple basic images and then later on,
it is conducted in real-time video imaging.

To test out the algorithm, images were taken by the camera mounted on iRobot Create at
a resolution of 640 by 480 pixels. Initially the experimentation is done on different set of images,

which includes;

4.1 Binary Images

The images were converted into binary (i.e. Black and White) and optical flow was
implemented on them. The optical flow had a very vast amount of error included as the data
provided was in black and white and as the optical flow is based on purely pixels intensity so the

reason of implementing it on binary images did not be found useful.

A

Figure 10. Binary Images (1)

16

Anx-B

|

Figure 11. Binary images (2)

4.2 Color Segmentation

Suppose if there are number of obstacles that have a unique color, then by segmenting
those obstacles based on their hue intensity, it is possible to avoid them, or they could be only

tracked if required.

MecHh T RONIE

. — sl
Figure 12. Color Segmented Images

4.3 Initial RGB implementation

Initially the results obtained when optical flow was applied to the RGB images, it looked
something like this

17

Anx-B

Figure 13. RGB with Optical Flow Images (1)

Figure 14. RGB with Optical Flow Images (2)

In the figure 14, the camera of the laptop was first placed at a static position and an image
was taken then the camera was moved almost 20 degrees upward, therefore causing the optical
flow vectors being generated in the upward direction. The algorithm was controlled in such a
way that only after specific key pressed it would track the features therefore the images are

produced as such.

18

Anx-B

CHAPTER 5: EXTENSIVE EXPERIMENTATIONS

Afterwards when optical flow was implemented, it was figured out that there was a quite
huge amount of error involved in the data provided by the optical flow vectors. As many of them
are produced at wrong angles, many of them had near infinite amount of velocity vector
magnitudes, therefore to compensate them many of the improvements were made to the optical

flow. The improvements are classified as such;

5.1 Optical Flow Outliers Removal

There was a huge amount of error involved in Lucas kanade pyramid method, as we can
see here that there are numerous flow vectors that are made erroneously, to tackle the outliers

obtained using the Lucas kanade pyramid method, modification in algorithm was made.

Figure 15. Optical Flow with Error

Let’s consider the features from “previous” frames having coordinates as x1,yl and the
features tracked by Lucas kanade pyramid in “present” frame as x2,y2 , therefore for eliminating
the ones which are erroneous, that those which show that sudden motion has taken place where
as actually there has not, as being shown by the majority of the flow. Therefore for their
detection and elimination, magnitude of all the features has been calculated, that is using the

previous and present frame. After the calculation of the magnitudes of all the vectors, the

19

Anx-B

magnitude is summed up of all vectors and it is then divided by the total number of vectors,
thereby providing with the average magnitude of all vectors.

The distance between feature flow vectors is calculated as

\/Z(XZ —x1)2 + (y2 —y1)?

After that another loop was formed for finding those features which were outliers, by
applying an “if” command and checking out that which features are those that have magnitude
greater than 2 times of the average magnitude of all vectors. And thereby discarding those

features. Therefore after the implementation, satisfactory results were obtained, as shown below

Figure 16. Optical Flow without Error

5.2 Easy Navigation using sub-division

The image plane is split into 3 equal vertically divided frames.“Robustness” of each
frame of image is summed up individually. The magnitude of all the optical flow velocity vectors
are also calculated separately.The obstacles thereby that are far from the robot will have less
optical flow as the ones that are near, and the weightage is given accordingly to the right side,
middle side and the center one frame of the full plane. According to which the robot move
against the flow that is greater.

Certain conditions were also implemented according the detection of the frames and
velocity vectors being present in certain sided frames. The lowest weightage was given to the

center frame as for the robot to collide with an obstacle the minimum distance it would be to

20

Anx-B

move straight towards it, therefore only after the middle frame is 0.7 times the right frame and
the left frame then only the robot was allowed to move forward. This 0.7 decrease of weightage
of the middle frame was inserted to make sure that errors could also be compensated. The frames

after division looked something like this

o
el

features only == “

rgb+features -

Figure 17. Easy Navigation using Sub-Division

5.3 Delaunay Triangulation Implementation

For the better judgment and estimation of object/obstacle representation/structure using
the feature points obtained by Shi-Tomasi technique, Delaunay triangulation method was
implemented. The basic need was for the better optimization and calibration of the robot
environment. Therefore for all the 300 feature detected points, Delaunay triangulation was
applied. Delaunay triangulation also helps with providing the intensity values of an obstacle, as
number of vertices and edges are drawn using the feature points of the obstacle. The direct
implementation of Delaunay wasn’t possible using the available functions of Opencv, therefore
rather other possible ways were considered for its implementation.

After the implementation of Delaunay triangulation, the results were achieved as,

21

Anx-B

el
s

Figure 18. Delaunay Implementation

5.4 Delaunay Triangulation Improvement

After successful Delaunay implementation, there was a need for further implementations
of conditions on Delaunay Triangulation for better results, as many edges of the triangles are
generated from infinity and also from feature points placed (0,0) (which were those feature
points that were considered as erroneous).

Therefore for omitting those erroneous features points from being considered in
Delaunay triangulation, conditions were implied, which stated to not include the feature points
that are at location (0,0) and which primary connects with points at infinity.After such

improvements the results obtained were much efficient and satisfactory.

)

Figure 19. Delaunay Improvements

22

Anx-B

5.5 Delaunay Triangulation Sub-Division

Delaunay triangulation was further improved by dividing the triangulation made by itself

into 3 frames. Considering the case when Delaunay is used for the complete frame at once.

features only

Figure 20. Delaunay Triangulation without Sub-Division

One can see that all the good feature points are used by Delaunay and every point is
interlinked with its neighbor, whether it even lies in all 3 frames, example, a feature is present in
frame one, and its neighboring feature points to make a triangle are present in frame two and
frame three, therefore for making a triangle the Delaunay creates a triangle which is present in all
the 3 frames.

Now let’s separate the all 3 frames, so that only the adjacent feature points present in one
frame can be used for making a Delaunay triangulation for that respective feature point.After

successful segmentation, the results were such as

features only = =l u] delaunay only S “

Figure 21. Delaunay Triangulation with Sub-Division

23

Anx-B

One can clearly see the amount of improvement being obtained by segmenting the frames

in Delaunay triangulation.

5.6 Steering Control Conditions

By taking into account the steering control conditions being mentioned in the flow chart,
it becomes pretty clear that there are three main conditions to fulfill for the navigation being able
to be performed. It means that the three conditions that are, the magnitude of velocity vectors and
good features and calculating of Delaunay Triangulation, for them all to point towards one
direction will let the robot move in that specific direction but if one of them points towards any
other direction, then only the good features and Delaunay calculations are considered, and the
robot moves according to the later decision, it has been found that almost 90% of the time the
decision is already made by these conditions but if somehow the good features and Delaunay
even fail to compromise on single direction, then the robot stops for that respective iteration and

then continues to look further for next iteration.

5.7 Practical Experiments

The iRobot create was made to avoid obstacles in the real world in different scenarios,
initially the windows operated laptop was placed fixed and the robot was allowed to move
according to the actions being performed infront of the laptop as the robot was moving instead of

the obstacles.

24

Anx-B

Figure 22. Practical Implementation Examples (1)

Then the laptop was placed on the robot and the robot avoided the single obstacle placed

directly in front of him.

Figure 23. Practical Implementation Examples (2)

25

Anx-B

Afterwards a camera was mounted on the iRobot Create and two obstacles were placed in
front of it, due to their flow being generated equally on both sides of the image plane, and less
flow being generated in the middle, the robot navigated towards the front but when it came near
enough the middle frame flow became greater and thus the robot navigated away from the

obstacles.

Figure 24. Practical Implementation Examples (3)

26

Anx-B

CHAPTER 6: CONCLUSION AND FUTURE WORK

An intelligent navigation and control of mobile robot has been successfully developed.
The objectives that were involved in reaching this point included mainly the development of an
intelligent algorithm for the autonomous movement of the robot and the interfacing of the robot
and the windows platform wirelessly, i.e. via the Bluetooth module.

The algorithm was made using the OpenCV library, linked with the Visual Studio 2013
environment. The algorithm was made as a single “.cpp” file, whereas to control the robot there
need to introduce two files, rs232.cpp and rs232.h, the C++ and header files respectively. They
were needed for the control of the robot, having sent data serially via Bluetooth module.

The robot in return receives the data being transmitted using the algorithm via Bluetooth

module, and it acts according to the instruction being provided for its navigation.

6.1 Future Work

The robot was successfully controlled using windows operating system by OpenCV
libraries, the same libraries were also linked in the eclipse environment for android platform. But
the libraries were not stable and robust enough for the kind of autonomous work that was
required out of it. The developers of OpenCV libraries are continuously working on improving
the functions being used by android of OpenCV and is therefore being made robust and more
efficient. Therefore making small adjustments to the present code written in C language, can be
directly used by Android platform, if the libraries are linked successfully and the support of most
of the functions being used are made properly.

Now the iRobot Create has been given vision,then number of tasks and work can be done
using the iRobot Create. Which could include the improvement of a path planning being
introduced where the video feedback is being continuously monitored and a predefined path is
being navigated without the collision of the obstacles being found. And even further instead a
GPS module could be used and feedback being provided by it could also help in reaching a
desired target/goal.

In this dissertation, obstacle avoidance has been done, as mentioned in previous chapters,

that obstacle tracking is also possible, as optical flow key feature include tracking behavior.

27

Anx-B

Therefore a color segmented object tracking or tracking a specific structure based object is also
possible.

An introduction of voice controlled robot navigation is also possible. Which can be done
using the Microsoft Speech Recognition API for windows or Android Speech Recognition API

for android platform.

28

APPENDIX A

AlgorithmCode

/* --Intelligent Navigation and Control of Mobile Robot--
* Written in C Using OpenCV Library

* Written by Muhammad Zohaib

*/

#pragma comment(lib,"Winmm.lib")

#include "opencv2/imgproc/imgproc_c.h"
#include "opencv2/video/tracking.hpp"

#include "opencv2/highgui/highgui.hpp"

#include "rs232.h"

#include <Windows.h>

#include <iostream>

using namespace std;

static const double pi =3.14159265358979323846;

inline static double square(int a)

{
return a * a;
j
double NormCalculator(CvPoint p, CvPoint q)
{
return sqrt(square(p.x - q.x) + square(p.y - q.y));
}

inline static void allocateOnDemand(Ipllmage **img, CvSize size, int depth, int channels)

{
if (*img != NULL) return;
*img = cvCreatelmage(size, depth, channels);
if (*img == NULL)
{
fprintf(stderr, "Error: Couldn't allocate image. Out of memory?\n");
exit(-1);
}
}

void Create_init(int port_numb, int baud)

{
if (RS232 OpenComport(port numb, baud))
{
printf("Can not open comport\n");
}
else
{

29

Anx-B

Anx-B

printf("Port opened successfully\n\n");

}
unsigned char initial[2] = { 128, 132 };

printf("Setting CREATE to FULL CONTROL mode\n\n");
int a=RS232 SendBuf(port numb, initial, 2);
if(a==-1)
{
printf("Error in Setting CREATE to Full Control mode\n\n");

printf("CREATE set into Full Control mode\n\n");

void FwdVelRad(int port numb, unsigned int speed, unsigned int rad)
{

unsigned char fwdvel[2];

unsigned char radm[2];

unsigned int radmm;

int a;

unsigned int spd;

spd = speed;

cout << spd << end];

fwdvel[0] = spd & OxFF;

fwdvel[1] = (spd >> 8) & OxFF;

cout << "fwdvell " << fwdvel[0] << endl;

cout << "fwdvel2 " << fwdvel[l] << endl;

radmm = rad;
radm[0] = radmm & OxFF;
radm[1] = (radmm >> 8) & OxFF;

/lunsigned char dr[1]={137};
unsigned char cmd[5] = { 137, fwdvel[0], fwdvel[1], radm[0], radm[1] }; // DRIVE
int n = RS232 SendBuf(port numb, cmd, 5);
if(n ==-1)
{
printf("Error in send command for drive\n\n");
exit(EXIT _FAILURE);

printf("roomba moving... ;)\n\n");

30

Anx-B

int main(void)
{ .
nt
cport_nr=3§, /* /dev/ttySO (COM1 on windows) */
bdrate = 57600; /* 57600 baud */
int inf = 1000;

Create _init(cport_nr, bdrate); //initializing the serial communication.

CvCapture *input_video = cvCaptureFromCAM(1);
if (input_video == NULL)
{
fprintf(stderr, "Error: Can't open video.\n");
return -1;

}

/* Read the video's frame size out of the AVI. */
CvSize frame size;
frame size.height =
(int)cvGetCaptureProperty(input_video, CV_CAP_PROP_FRAME HEIGHT);
frame size.width =
(int)cvGetCaptureProperty(input_video, CV_CAP PROP FRAME WIDTH);

int framecheck = 0;
int leftcount = 0, rightcount = 0, centercount = 0, leftcenter = 0, rightcenter = 0;
int draw_main = true;

long current_frame = 0;
do

{
static Ipllmage *frame = NULL, *framel = NULL, *framel 1C = NULL, *frameD =
NULL, *frameF = NULL, *frame2 1C =NULL, *eig_image = NULL, *temp image = NULL,
*pyramidl = NULL, *pyramid2 = NULL;
framecheck = 0;

frame = cvQueryFrame(input_video);

if (frame == NULL)

{
fprintf(stderr, "Error: Hmm. The end came sooner than we thought.\n");
return -1;

}

//create a frame for delaunay triangles only with zero filled
frameD = cvCreatelmage(frame_size, [IPL_ DEPTH 8U, 1);
cvZero(frameD);

//create a frame for features only with zero filled

31

frameF = cvCreatelmage(frame_size, IPL_ DEPTH_8U, 1);
cvZero(frameF);

framel 1C = cvCreatelmage(frame size, [IPL DEPTH 8U, 1);
cvConvertlmage(frame, framel 1C, 0);
allocateOnDemand(&framel, frame size, IPL. DEPTH 8U, 3);
cvConvertlmage(frame, framel, 0);

frame = cvQueryFrame(input_video);

if (frame == NULL)

fprintf(stderr, "Error: Hmm. The video does not exist.\n");
return -1;
}
allocateOnDemand(&frame2 1C, frame size, IPL DEPTH 8U, 1);
cvConvertlmage(frame, frame2 1C, 0);

/* Shi and Tomasi Feature Tracking! */

allocateOnDemand(&eig_image, frame size, IPL DEPTH_32F, 1);

allocateOnDemand(&temp_image, frame_size, IPL_ DEPTH_32F, 1);

int number_of features = 300;

const int total features = 300;

CvPoint2D32f framel features[total features];

cvGoodFeaturesToTrack(framel 1C, eig_image, temp_image, framel features,
&number of features, .01, .01, NULL, 3);

CvPoint2D32f frame2 features[total features];

char optical flow found feature[total features];

float optical flow feature error[total features];

CvSize optical flow window = cvSize(3, 3);

CvTermCeriteria optical flow_termination_criteria

= cvTermCriteria(CV_TERMCRIT ITER | CV_TERMCRIT_EPS, 20, .1);

allocateOnDemand(&pyramidl, frame size, [IPL DEPTH 8U, 1);

allocateOnDemand(&pyramid2, frame size, [IPL_ DEPTH_8U, 1);

cvCalcOpticalFlowPyrLK(framel 1C, frame2 1C, pyramidl, pyramid2,
framel features, frame2 features, number of features, optical flow window, 5,
optical flow found feature, optical flow feature error, optical flow termination_ criteria, 0.01);

double average features[total features];

double average fea add = 0;

cv::Scalar delaunay color(255, 255, 255);

cv::Rect rect(0, 0, cvGetCaptureProperty(input_video,
CV_CAP_PROP_FRAME WIDTH), cvGetCaptureProperty(input_video,
CV_CAP_PROP FRAME HEIGHT));

cv::Subdiv2D subdiv(rect);

CvPoint p, q;
for (int i = 0; i <number of features; i++)
{

p-x = (int)framel _features[i].x;

p.y = (int)framel features[i].y;

g.x = (int)frame2_features[i].x;

q.y = (int)frame2_features[i].y;

average features[i] = NormCalculator(p, q);
average fea add = average fea add + average features|[i];

32

Anx-B

Anx-B

double average fea =average fea add/total features;

for (int 1= 0; i < number of features; i++)
{
draw_main = true;
if (average features[i] > (average fea * (.5))

{
draw_main = false;
framel features[i].x = 0.0;
frame2 features[i].x = 0.0;
}

if (draw_main == false) continue;

if (frame2 features[i].x > cvGetCaptureProperty(input_video,
CV_CAP _PROP FRAME WIDTH) || frame2 features[i].y > cvGetCaptureProperty(input_video,
CV_CAP PROP FRAME HEIGHT) || frame2 features[i].x <0 || frame2 features[i].y < 0)

{
framel features[i].x = 0.0;
frame2 features[i].x = 0.0;
continue;

J

/* If Pyramidal Lucas Kanade didn't really find the feature, skip it. */
if (optical flow found feature[i] == 0)
{

framel features[i].x = 0.0;

frame2 features[i].x = 0.0;

continue;

//skip those features which contains error
if (optical flow feature error[i] == 1)

{
framel features[i].x = 0.0;
frame2 features[i].x = 0.0;
continue;
}
int line_thickness; line_thickness = 1;
CvScalar line_color; line_color = CV_RGB(255, 0,

0);

p.x = (int)framel features[i].x;
p.y = (int)framel features|[i].y;
g.x = (int)frame2_features|[i].x;
q.y = (int)frame2_features[i].y;

cv::Point2f fp = q;
cvCircle(frameD, fp, 1, delaunay color, CV_FILLED, 1, 0);

33

Anx-B

subdiv.insert(fp);
cvirvector<cv::Vec6f> triangleList;
subdiv.getTriangleList(triangleList);
cv::vector<cv::Point> pt(3);
for (size_ti=0; i < triangleList.size(); it++)
{
cv::Vec6f t = triangleList[i];
pt[0] = cv::Point(cvRound(t[0]), cvRound(t[1]));
pt[1] = cv::Point(cvRound(t[2]), cvRound(t[3]));
pt[2] = cv::Point(cvRound(t[4]), cvRound(t[5]));
int draw = true;
for (int 1 = 0; i<3; i++)

{
if (pt[i].x>cvGetCaptureProperty(input_video,
CV_CAP_PROP_FRAME WIDTH) || pt[i].y>cvGetCaptureProperty(input_video,
CV_CAP_PROP_FRAME HEIGHT) || pt[i].x <0 || pt[i]l.y <0)
draw = false;
if ((q.x <214) && (pt[i].x >214))
draw = false;
if (((q-x > 213) && (q.x <428)) && ((pt[i].x > 427) ||
(pt[i].x < 214)))
draw = false;
if ((q.x > 427) && (pt[i].x < 428))

draw = false;
}
if (draw)
{
cvLine(frameD, pt[0], pt[1], delaunay color, 1, CV_AA,
0);
cvLine(frameD, pt[1], pt[2], delaunay color, 1, CV_AA,
0);
cvLine(frameD, pt[2], pt[0], delaunay color, 1, CV_AA,
0);
j
}
cvCircle(frameF, p, 1, delaunay color, CV_FILLED, 8, 0);
double angle; angle = atan2((double)p.y - q.y, (double)p.x -
q.x);
double hypotenuse; hypotenuse = sqrt(square(p.y - q.y) + square(p.x
- 4:X));
if (hypotenuse > 5)
{
if (p.x <214 && q.x <214))
leftcount = leftcount + hypotenuse;
if (px>213) && (p-x <428)) && ((q.x > 213) && (q.x <
428)))

centercount = centercount + hypotenuse;
if ((p.x > 427) && (q.x > 427))
rightcount = rightcount + hypotenuse;

34

Anx-B

if (p.x <214) && ((q.x <427) && (q.x > 213)))
leftcenter = leftcount + hypotenuse;
if ((p.x >427) && ((q.x <427) && (q.x > 213)))
rightcenter = rightcount + hypotenuse;
if ((q.x > 427) && ((p.x <427) && (p.x > 213)))
rightcount = rightcount + hypotenuse;
if ((q-x <213) && ((p-x <427) && (p.x > 213)))
leftcount = leftcount + hypotenuse;
}
g-x = (int)(p.x - 1 * hypotenuse * cos(angle));
g.y = (int)(p.y - 1 * hypotenuse * sin(angle));

cvLine(framel, p, q, line_color, line_thickness, CV_AA, 0);
p.x = (int)(q.x + 9 * cos(angle + pi/ 4));

p.y = (int)(q.y + 9 * sin(angle + pi / 4));

cvLine(framel, p, q, line_color, line_thickness, CV_AA, 0);
p-x = (int)(q.x + 9 * cos(angle - pi/ 4));

p.y = (int)(q.y + 9 * sin(angle - pi / 4));

cvLine(framel, p, q, line_color, line_thickness, CV_AA, 0);

}

cv::Point rectstart(0, 0);
cv::Point rectlstart(213, 0);
cv::Point rectlend(213, 480);
cv::Point rect2start(427, 0);
cv::Point rect2end(427, 480);
cv::Point rectend(640, 480);

cvLine(frameD, rectlstart, rectlend, cvScalar(170, 160, 60), 2, CV_AA, 0);
cvLine(frameD, rect2start, rect2end, cvScalar(170, 160, 60), 2, CV_AA, 0);
cvLine(frameF, rectlstart, rectlend, cvScalar(170, 160, 60), 2, CV_AA, 0);
cvLine(frameF, rect2start, rect2end, cvScalar(170, 160, 60), 2, CV_AA, 0);
cvLine(framel, rectlstart, rectlend, cvScalar(170, 160, 60), 2, CV_AA, 0);
cvLine(framel, rect2start, rect2end, cvScalar(170, 160, 60), 2, CV_AA, 0);

cv::Mat framelD(frameD, cv::Rect(rectstart.x, rectstart.y, rectlend.x,

rectlend.y));

cv::Mat frame2D(frameD, cv::Rect(rectlstart.x, rectlstart.y, (rectlend.x + 1),
rectlend.y));

cv::Mat frame3D(frameD, cv::Rect(rect2start.x, rect2start.y, rectlend.x,
rectlend.y));

float D1 = cv::countNonZero(framelD == 255);

float D2 = cv::countNonZero(frame2D == 255);

float D3 = cv::countNonZero(frame3D == 255);

float DT = D1 + D2 + D3;

cv::Mat framelF(frameF, cv::Rect(rectstart.x, rectstart.y, rectlend.x,
rectlend.y));

cv::Mat frame2F(frameF, cv::Rect(rectlstart.x, rectlstart.y, (rectlend.x + 1),
rectlend.y));

35

rectlend.y));

D3 << end],;

<< endl;

Anx-B

cv::Mat frame3F(frameF, cv::Rect(rect2start.x, rect2start.y, rectlend.x,

float F1 = cv::countNonZero(framelF == 255);

float F2 = cv::countNonZero(frame2F == 255);

float F3 = cv::countNonZero(frame3F == 255);

float FT =F1 + F2 + F3;

fprintf(stderr, "Number of Delaunay pixels,");
cout<<"DT="<<DT<<"Dl="<<DIl<<"D2="<<D2<<"D3="<<

fprintf(stderr, " \n\n Number of Feature pixels,");
cout<<"FT="<<FT<<"Fl="<<Fl<<"F2="<<F2<<"F3="<<F3

std::stringstream s;

float totalleft = (F1 + ((D1 / DT) * 100));
float totalright = (F3 + ((D3 / DT) * 100));
float totalcenter = (F2 + ((D2 / DT) * 100));
float totaldiff = totalleft - totalright;
cv::norm(totaldiff);

if (((0.7 * centercount < rightcount) && (0.7 * centercount < leftcount))

&& ((0.7 * totalcenter) < totalright && (0.7 * totalcenter)<totalleft))

{
(s << "Move Straight");
FwdVelRad(cport_nr, 2, 5);
framecheck = 1;
Sleep(150);
}
else
{
if ((leftcount > rightcount) && (totalleft > totalright))
{
(s << "Move Straight+Right");
FwdVelRad(cport_nr, 2, -1); //half radius in clockwise
framecheck = 1;
Sleep(60);
}
else if ((rightcount > leftcount) && (totalright > totalleft))
{
(s << "Move Straight+Left");
FwdVelRad(cport_nr, 2, 0); //half radius in c.clockwise
framecheck = 1;
Sleep(60);
}
}

if (framecheck == 0)

if ((0.7 * totalcenter) < totalright && (0.7 * totalcenter)<totalleft)

36

Anx-B

(s << "Move Straight");
FwdVelRad(cport_nr, 2, 5);

Sleep(150);
}
else
{
if (totalleft > totalright)
{
(s << "turn Right");
FwdVelRad(cport_nr, 2, -1);
Sleep(60);
else if (totalright > totalleft)
{
(s << "turn Left");
FwdVelRad(cport_nr, 2, 0);
Sleep(60);
}
h

cv::putText((cv::Mat)framel, s.str(), cv::Point2{(100, 100),
cv::FONT HERSHEY PLAIN, 1, cv::Scalar(0, 0, 255, 255), 2);

cvNamedWindow("delaunay only", CV_.WINDOW _ AUTOSIZE);
cvShowImage("delaunay only", frameD);
cvNamedWindow("features only", CV_WINDOW_AUTOSIZE);
cvShowlmage("features only", frameF);
cvNamedWindow("rgb+features", CV_WINDOW _ AUTOSIZE);
cvShowlmage("rgb+features", framel);

int key pressed = cvWaitKey(1);
FwdVelRad(cport_nr, 0, 0);
Sleep(400);

twhile (GetAsyncKeyState(VK_ESCAPE) == 0);

Bluetooth Control code:
Files for the Bluetooth control codes having been placed on a CD and attached with the

dissertation.

37

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Anx-B

REFERENCES

A. Dev. Visual Navigation on Optical Flow. PhD thesis, University of Amsterdam,
September 1998.

B. Kelly. Structure from stereo vision using optical flow. Master’s thesis, University of
Canterbury, November 2006.

K. Kanatani. Self-calibration from optical flow and its reliability evaluation.In TAPR
Workshop on Machine Vision Applications (MVA2000), pages 443—446, 2000.

I. Ulrich and 1. R. Nourbakhsh. Appearance-based obstacle detection with monocular
color vision. In A4AI/IAAI’00, pages 866—871, 2000.

C. Bills, J. Chen, and A. Saxena. Autonomous mav flight in indoor environments using
single image perspective cues. International Conference on Robotics and Automation
(ICRA), 2011.

F. Blais. Review of 20 years of range sensor development. Journal of Electronic
Imaging, 13(1), 2004.

S. F. te Pas. Perception of Structure in Optical Flow Fields. PhD thesis, University of
Utrecht, September 1996.

M. Varga. Practical Image Processing and Computer Vision, chapter 13. John Wiley &
Sons, 2009.

B. D. Lucas and T. Kanade. Optical Navigation by the Method of Differences. In
International Joint Conference on Artificial Intelligence, pages 981-984.

G. Bleser and G. Hendeby. Using optical flow as lightweight slam alternative. Mixed
and Augmented Reality, IEEE / ACM International Symposium on, 0:175-176, 2009.
ISBN 978-1-4244-5390-0.

M. Zucchelli, J. Santos Victor, and H. Christensen. Constrained structure and motion
estimation from optical flow. Pages I: 339-342, 2002.

D. J. Fleet and Y. Weiss. Mathematical Models in Computer Vision: The Handbook
(Optical Flow Estimation), chapter 15, pages 239-258. Springer, 2005.

J. A. Saunders and D. C. Niehorster. A bayesian model for estimating observer

translation and rotation from optic flow and extra-retinal input. Journal of Vision,

10(10):1-22, 2010.

38

[14]

[15]

[16]

[17]

[18]

[19]

Anx-B

D. Kane, P. Bex, and S. Dakin. Quantifying “the aperture problem” for judgments of
motion direction in natural scenes. Journal of Vision, 11(3): 1-20, 2011.

S. J. Huston and H. G. Krapp. Visuomotor transformation in the fly gaze stabilization
system. PLoS Biol, 2008.

J. Barron, D. Fleet, and S. Beauchemin. Performance of optical flow techniques. IJCV,
12(1):43-77, 1994

J.-Y. Bouguet. Pyramidal implementation of the Lucas kanade feature tracker. Intel
Corporation, Microprocessor Research Labs, 2000.

“Vision Based Collision Avoidance System for UAVs”. By Prof K Dana, Nakul N.,
Arjun K.

Kahlouche Souhila and Achour Karim. Optical flow based robot obstacle avoidance.

International Journalof Advanced Robotic Systems, 4(1):13—-16, 2007

39

Anx-B

Completion Certificate

It is to certify that the thesis titled “Intelligent Navigation and Control of Mobile Robots

Using Android Platform” submitted by Regn. No. 2011-NUST-MS-PHD-Mts-25,
Muhammad Zohaib of MS-70Mechatronics Engineering is complete in all respects as per the
requirements of Main Office, NUST (Exam branch).

Supervisor:
Dr. Kunwar Faraz Ahmed

Date: May, 2014

40

