
Anx‐B

Intelligent Navigation and Control of Mobile Robots Using

Android Platform

Author

Muhammad Zohaib

2011-NUST-MSPhD-Mts-25

Supervisor

Dr. Kunwar Faraz Ahmed

DEPARTMENT OF MECHATRONICS ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

 NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD

MAY, 2014

Anx‐B

Intelligent Navigation and Control of Mobile Robots Using Android

Platform

Author

Muhammad Zohaib

2011- NUST-MSPhD-Mts-25

A thesis submitted in partial fulfillment of the requirements for the degree of

MSMechatronics Engineering

Thesis Supervisor:

Dr. Kunwar Faraz Ahmed

Thesis Supervisor’s Signature:_____________________________________

DEPARTMENT OF MECHATRONICS ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD

MAY, 2014

Anx‐B

i

Declaration

I certify that this research work titled “Intelligent Navigation and Control of Mobile Robots

Using Android Platform” is my own work. The work has not been presented elsewhere for

assessment. The material that has been used from other sources it has been properly

acknowledged / referred.

Signature of Student

Muhammad Zohaib

2011-NUST-MSPhD-Mts-25

Anx‐B

ii

Language Correctness Certificate

This thesis has been read by an English expert and is free of typing, syntax, semantic,

grammatical and spelling mistakes. Thesis is also according to the format given by the

university.

Signature of Student

Muhammad Zohaib

2011-NUST-MS PhD-Mts-25

Signature of Supervisor

Anx‐B

iii

Copyright Statement

• Copyright in text of this thesis rests with the student author. Copies (by any process)

either in full, or of extracts, may be made onlyin accordance with instructions given by

the author and lodged in the Library of NUST College of E&ME. Details may be

obtained by the Librarian. This page must form part of any such copies made. Further

copies (by any process) may not be made without the permission (in writing) of the

author.

• The ownership of any intellectual property rights which may be described in this thesis is

vested in NUST College of E&ME, subject to any prior agreement to the contrary, and

may not be made available for use by third parties without the written permission of the

College of E&ME, which will prescribe the terms and conditions of any such agreement.

• Further information on the conditions under which disclosures and exploitation may take

place is available from the Library of NUST College of E&ME, Rawalpindi.

Anx‐B

iv

Acknowledgements

Innumerable words of praise and thanks to Allah, the Almighty, and the Creator of the universe

for carving the path for me and always helping me out in the best possible way. Without His Will

and Mercy, I would not have been able to accomplish this milestone. I am grateful to my parents

for their immense love, moral support, encouragement and prayers throughout my academic

career.

I am deeply beholden to my supervisor, Dr. Kunwar Faraz Ahmed, for his continuous guidance,

inspiration, and patience. His ability of management and foresightedness taught me a lot of

things which will be more helpful for me in my practical life.

I would also like to thank my fellow students especially Mr. Hamid and Mr. Arsalan, who at the

climax time of my thesis, guided mein the right direction which led to the completion of this

thesis on time.

I gratefully acknowledge the help and guidance provided by Guidance and Examination

Committee members, Dr. Khurrum Kamal, Dr. Umer Shahbaz, and Dr. Arslan Shauqat, that their

valuable suggestions and comments were a great source to improve the research work presented

in this thesis.

Anx‐B

v

Dedicated to my exceptional parents and adored siblings whose

tremendous support and cooperation led me to this

wonderfulaccomplishment.

Anx‐B

vi

Abstract

In this thesis a method is proposed for the navigation and control of mobile robot using pure

vision based algorithm under real time constraints. This project is dedicated to developing

control systems for robots using vision based technology only. In recent years, mobile robot

systems and its applications have expanded beyond the basic function. Virtually any task can be

adapted and implemented using it. The objective of this project is to develop a system to control

a robot and navigate a robot autonomously, the advantages of which include wireless access and

easy-to-use GUI.

Key Words:Smartphones,android, computer vision, opencv, Unmanned Ground Vehicle, UGV,

Mobile Robots, Robotics, Control Systems, iRobot, Roomba.

Anx‐B

vii

Table of Contents

Declaration ..i

Language Correctness Certificate ... ii

Copyright Statement ... iii

Acknowledgements ...iv

Abstract ...vi

Table of Contents .. vii

List of Figures ...ix

CHAPTER 1: INTRODUCTION... 1
1.1 Background and Scope ... 1

1.2 Motivation .. 1

1.3 Objectives... 2

CHAPTER 2: LITERATURE REVIEW .. 3
2.1 Related Scientific Techniques: ... 3

2.1.1 Blob based Obstacle Avoidance .. 3

2.1.2 Single Image Perspective Cues .. 4

2.1.3 Stereo Vision ... 4

2.1.4 Monocular Vision .. 5

2.2 Image Processing Library: ... 6

2.3 Development Environment: ... 6

2.3.1 Eclipse (for Android OS) ... 6

2.3.2 Microsoft Visual Studio 2013 .. 8

CHAPTER 3: METHODOLOGY ... 9
3.1 Flow Charts .. 9

3.1.1 Main Program .. 9

3.1.2 Algorithm ... 10

3.1.3 Steering Control Conditions .. 10

3.2 Algorithm Implementation ... 11

3.2.1 Optical Flow .. 11

3.2.2 Lucas-Kanade Pyramidal Optical Flow ... 12

3.2.3 Obstacle to Robot distance Calculation ... 14

3.2.4 Feature Detection ... 14

3.3 Obstacle Avoidance Strategy ... 15

3.4 Communication Methodology .. 15

CHAPTER 4: EXPERIMENTATION .. 16
4.1 Binary Images .. 16

4.2 Color Segmentation .. 17

Anx‐B

viii

4.3 Initial RGB implementation ... 17

CHAPTER 5: EXTENSIVE EXPERIMENTATIONS .. 19
5.1 Optical Flow Outliers Removal .. 19

5.2 Easy Navigation using sub-division ... 20

5.3 Delaunay Triangulation Implementation .. 21

5.4 Delaunay Triangulation Improvement ... 22

5.5 Delaunay Triangulation Sub-Division .. 23

5.6 Steering Control Conditions ... 24

5.7 Practical Experiments ... 24

CHAPTER 6: CONCLUSION AND FUTURE WORK .. 27
6.1 Future Work ... 27

APPENDIX A ... 29

REFERENCES .. 38

Anx‐B

ix

List of Figures

Figure 1. Image from camera (Left), Segmented Image (right), Courtesy [4] 3
Figure 2. (Top) Original Images of staircases, (Bottom) Images with bold red lining depicting location of staircases,
Courtesy [5] 4
Figure 3. Canny Edge Detection 7
Figure 4. Feature Detection (1) 7
Figure 5. Feature Detection (2) 8
Figure 6. Main Program Flow Chart 9
Figure 7. Algorithm Flow Chart 10
Figure 8. Steering Control Conditions Flow Chart 10
Figure 9. Sparse Optical flow (left) and Dense Optical Flow (right) 11
Figure 10. Binary Images (1) 16
Figure 11. Binary images (2) 17
Figure 12. Color Segmented Images 17
Figure 13. RGB with Optical Flow Images (1) 18
Figure 14. RGB with Optical Flow Images (2) 18
Figure 15. Optical Flow with Error 19
Figure 16. Optical Flow without Error 20
Figure 17. Easy Navigation using Sub-Division 21
Figure 18. Delaunay Implementation 22
Figure 19. Delaunay Improvements 22
Figure 20. Delaunay Triangulation without Sub-Division 23
Figure 21. Delaunay Triangulation with Sub-Division 23
Figure 22. Practical Implementation Examples (1) 25
Figure 23. Practical Implementation Examples (2) 25
Figure 24. Practical Implementation Examples (3) 26

Anx‐B

1

CHAPTER 1: INTRODUCTION

This chapter introduces the thesis topic. Research for this thesis with a specific

introductionfor the motivation and encouragementof the general field, are presented.

Furthermore, the objectives of this thesis are defined within the following chapter.

1.1 Background and Scope

Robots are widely used across many fields now. The use of robots has been developed for

the requirement of precision making. As general rule suggests that work done by a robot is much

more efficient and precise as compared to a human being. Therefore for the making of robots,

certain requirements arises, which lead towards the character building of robotic platform.

Including the algorithm involved for most of it, while the design also plays its part. Considering

the design does not much greatly effect certain conditions, therefore the algorithm must be of

high intelligence. The requirement of thus an intelligent algorithm is the main motivation for this

thesis.

The control of a robot also plays a vital role, as if there seems no communication between

a robot and its server (the body who controls) then the robot is basically useless. So the control

of the robot is also taken into much consideration.The control main mechanism in this project

lies basically via Bluetooth connection. All robotic control commands are generated and

communicated via Bluetooth connection, by sending the basic serial type data over Bluetooth. It

is chosen so as the connection to remain wireless, as wired connections might be found useful in

certain parts but mostly wireless connections are preferred due to the nature of being wireless

and hassle-free behavior.

1.2 Motivation

 Considering a practical point of view, optical flow can be used for many types of vision

based models, supposedly the main sensor based and motion based models, in the field of

autonomous navigation. Optical flow, whereas, is used here for motion based as for autonomous

Anx‐B

2

navigation using single camera model. The need and use of single camera greatly improves in the

usefulness of its operation, as in case of being single, first of all, being cheaper and smaller and

lighter and the optical flow robustness depends on it, as only vision of one camera is being

processed through it. As cameras are also becoming much smaller and lighter, it is becoming

easier for it to mount on an autonomous vehicle.

 The less need of having more type of sensors mounted on the robot also yields a positive

aspect, so as less amount of information is communicated via several times, instead only vision

based camera info is only transferred.

 Optical flow is already known to be capable of determining rotational quantity of a

motion [1,2, 3]. And here we are dealing with the translational motion only, as the rotational

motion is not required.

1.3 Objectives

The objectives or steps involved for the completion of this dissertation included,

• Familiarization with image Processing Techniques.

• Interfacing Robot and Windows platform wirelessly. (Bluetooth module used).

• Designing the interface to Robot Control.

• Developing the algorithm for Autonomous (collision free) behavior of the robot.

Anx‐B

3

CHAPTER 2: LITERATURE REVIEW

There seems to exist number of ways to control and navigate a robot using stereo vision

and mono vision, a review of the existingmethods are briefly discussed here.

2.1 Related Scientific Techniques:

2.1.1 Blob based Obstacle Avoidance

Blob based obstacle avoidance deals with a simple strategy of thresholding an image and

by doing edge detection, obstacle detection is tried on this edge detected image as simply the

edges contained are the obstacle points and the result would be to avoid them [4]. The three main

conditions required for obstacle detection that were used in the paper [4] were that the object

must be not hanging, the obstacles must be entirely different then the floor and the ground is

relatively flat.

 Figure 1.Image from camera (Left), Segmented Image (right), Courtesy [4]

The main aspect to notice here is that, the consideration that the main blob is considered

floor and is segmented, what if there are number of obstacles having similar color tone, then

instead of avoiding the obstacles the robot will try to hit them.

Anx‐B

4

2.1.2 Single Image Perspective Cues

Single image perspective cues works in such a way that, the robot is considered to move

in the direction where the sets of lines align themselves and act as a single perspective. The

perfect example used by [5], is the staircase, as the lines being made are by a staircase which will

definitely be easily obtained by a simple canny edge detection and then determining the

vanishing point, this vanishing point then definitely helps in determining the nature of the

environment in which the robot is placed. The far most basic problem with such implementation

is that it works in only a few set of environments and is not a wholly solely obstacle avoidance in

itself.

Figure 2. (Top) Original Images of staircases, (Bottom) Images with bold red lining depicting

location of staircases, Courtesy [5]

2.1.3 Stereo Vision

Stereo vision, as the name suggests there are two cameras used for the purpose of

navigation, which is in fact less robust if we look overall, as computing vision from two cameras

and computing using one camera makes the difference less by almost 50%. Whereas it has the

ability to achieve vision algorithms used for object recognition without using additional sensors.

[6].

Anx‐B

5

In stereo vision, 2 cameras are used to get the same environment using different views.

Therefore for getting 3 dimensions from 2 dimensional images, one require more than one 2

dimensional image. In case of more than 2D images, there has to be a relative position of objects

to be known and also the relative position of camera be also known, for the finding of the depth

inside the images. Also tangential and other disorders and outliers are needed to be removed

incase for finding distance to objects. Therefore for such requirements adjustment of angles and

distances between the cameras plays a vital role.

The requirement here is still that it requires at least 2 dimensional cameras, as opposed to

initial thought to have just one camera used as a sensor. So basically using two cameras means

processing all the vision data 2 times as that of one, therefore doubling the amount of processing

required.

2.1.4 Monocular Vision

From biological aspect we already know that by just using one camera i.e.in case of

bird’s eyes being positioned in such a way that binocular depth vision is impossible [7]. There

exists number of methods to extract the depth information from single camera, such monocular

depth measures include occlusion, texture gradients and optical flow [7]. It is been already

discussed that optical based vision depends on two images obtained from one camera with a

specific amount of time interval, whereas 2 cameras are talented enough of extracting depth

information.

If the environment is static, then by merely using a single camera one can state that two

frames are taken at a specific time interval, which will act as they were taken from two separate

cameras. The assumption taken here, do limits some criteria’s, that any moving object in any of

the frame will violate this condition. The basic requirement of using single camera is that one has

to find the transformation from one frame to another and for every frame to come. Apart from

the other complexity the most important aspect lies with finding one features of a frame in

another which has been transformed. Finding these important points/features and using them for

vision purposes is known as structure from motion [8]. A common possibility for performing

such operation is by using optical flow, therefore by finding the important points and finding

those points in the coming consecutive frames. [3,7,9,10,11].

Anx‐B

6

2.2 Image Processing Library:

For the sake of better provisions and improvements and not being required to develop the

basic imageprocessing techniques, OpenCV (Open Computer Vision) Library was selected.It

was selected as the basic programming could be done in C++ / C language, and due to its

improved;

• Speed

• Efficiency

• Optimization

• Cross Platform Support and

• Being Open Source

The Cross Platform support is so much wide that for all popular Operating Systems, there

exists a supporting linking library of OpenCV.

The Library is mainly aimed at real time computer vision tasks, its core libraries are

written in C++/C, therefore making it further easier for making algorithm run in same

language.

2.3 Development Environment:

For the development of the algorithm, there needs to be a suitable platform/environment

for the algorithm to work on. As OpenCV core libraries are written under C++/C,therefore for

the easy implementation of OpenCV functions, there needed to have a development platform

which can directly link to those libraries. Therefore for the case of using an Android platform,

Samsung Galaxy Note III was used for the algorithm implementation and development cell. For

the sake of programming for this respective cell phone, eclipse development platform was

chosen and OpenCV libraries were linked to it.

2.3.1 Eclipse (for Android OS)

Eclipse is an integrated development environment (IDE). It consists of workspace for the

use of making an algorithm or for performing respective operations. It is mostly written in java,

Anx‐B

7

but some native interfaces can be made for writing programs in C++/C languages and others, as

in this case C++ is used, the OpenCV libraries are linked into eclipse and then for writing the

program in C++/C language, Java Native Interface (JNI) was used. Java Native Interface was

developed for linking the core libraries of OpenCV and the C++/C program, as programming in

Java and using the libraries in Java only were not possible, considering the scope of the thesis

project.

 Using Eclipse number of image processing techniques were implemented, which include

• Image manipulations (grayscale, sepia, etc.)

• Canny edge detection

• Feature detection, etc.

Figure 3. Canny Edge Detection

Figure 4. Feature Detection (1)

Anx‐B

8

Figure 5.Feature Detection (2)

The Results obtained using eclipse were impuissant and insufficient, and a better

approach was needed. As for the utilization of basic Opencv functions, special instructions were

required for the java native interface (JNI). For the sake of debugging and understanding the

result of every new line of algorithm code, it was way too difficult using Eclipse program, as

even if errors are resolved the program “stops responding”, and the debugger points towards JNI

as a whole. Therefore there was a need for a change in development platform.

2.3.2 Microsoft Visual Studio 2013

Microsoft Visual Studio 2013 is a vast language support platform, for performing

multiple tasks. It works on a Microsoft Windows Operating System. It consists of comprehensive

amount of tools to perform a wide variety of tasks. The OpenCV libraries at their core language

C++/C level were linked and their functions were used successfully. Therefore for the

implementation of OpenCV libraries at their core C++/C language level, visual studio was

introduced and results were driven out of it.

Therefore the current platform is Windows 8.1 Operating System where libraries of

OpenCV 2.4.8 are integrated with Visual Studio 2013.

Anx‐B

9

CHAPTER 3: METHODOLOGY

This chapter clarifies the methodology that has been implemented using the algorithm

being made. The main aspect of which is based on optical flow technique. Whereas the

methodology can be divided into two categories.

• Algorithm Implementation

• Obstacle Avoidance Strategy

3.1 Flow Charts

The Idea of the implementation of the algorithm can be understood considering the below

flow charts.

3.1.1 Main Program

Figure 6. Main Program Flow Chart

Video Input

Algorithm
implementation

Algorithm
Improvements

Roomba full control
set via Bluetooth

Roomba Steering
control calculation

Roomba
Movement

Anx‐B

10

3.1.2 Algorithm

1st Frame
Extraction

Feature Detection
Using Shi‐Tomasi

2nd Frame
Extraction

Lucas‐Kanade pyramid
Optical Flow Calculation

Optical Flow
Improvements

Frames Sub‐
Division

Delaunay
Implementation

Delaunay
Improvements

Figure 7. Algorithm Flow Chart

3.1.3 Steering Control Conditions

Figure 8. Steering Control Conditions Flow Chart

Find Navigational
Area, Considering
all above to be true

Navigational
Area Found?No

Only Consider Good
Features and Delaunay

Triangulation

Roomba
Movement

Yes

Calculate Optical
flow Velocity

Vectors

Calculate
Delaunay

Triangulation

Find Good
Features

3.2 A

A

whereas

optical fl

S

research

provides

motion e

the trans

assuming

O

between

motion is

motion o

is not tak

It

flow has

• D

• S

Algorithm

A moving ca

consists of

low is implem

3.2

ince optical

[1, 2, 12,1

many appli

estimation/de

slational qua

g the camera

Optical Flow

successive

s greater and

of the robot i

ken into acco

t is much an

not been dis

Dense optical

parse Optica

Figur

Implemen

amera produ

projection o

mented.

2.1 Optical

l flow plays

13,14,15] ha

ications in c

etection. Opt

antity. Anot

a is static and

w generates f

frames. The

d whereas th

is purely tran

ount and only

nticipated th

scussed. The

l flow and

al flow

re 9. Sparse O

ntation

uces a succe

of 2D pixel

l Flow

s a prominen

as been don

computer vis

tical flow ca

ther importa

d the object i

flow vectors

erefore for t

he vectors are

nslational th

y the transla

hat optical fl

ere exists two

Optical flow

11

ssion of tim

array. And

nt role in b

ne consideri

sion out of

an be also us

ant aspect

is moving in

s which pure

the velocity

e smaller dep

herefore the

ational comp

ow will wor

o main types

w (left) and D

mely ordered

for process

iology, it is

ing the com

which the m

sed to detect

of it of obj

nside the env

ely depends

vectors to b

picts that mo

rotational co

ponents are d

rk in our ca

s of optical f

Dense Optica

d images/fram

sing these su

s not surpris

mputer visio

main aspect

t or track ma

ject segmen

vironment.

on the featu

be greater it

otion is sma

omplexity of

dealt with.

ase but whic

flow.

al Flow (righ

A

mes. Each f

uccessive fr

sing that a l

on. Optical

is considere

arkers to esti

ntation, as w

ures being f

t depicts tha

ll. In my cas

f the optical

ch type of op

ht)

Anx‐B

frame

rames

lot of

flow

ed as

imate

when

found

at the

se the

flow

ptical

Anx‐B

12

Dense optical flow algorithms compute the velocity vectors of optical flow for every

pixel of the frame i.e. flow per every pixel whereas sparse optical flow algorithms compute the

velocity vectors of optical flow for only good features. These good features are usually the

corner/edgy features of the frame and are usually provided to the sparse optical flow using some

feature detection technique.

Dense optical flow also needs the assumption that the movement between the

images/frames is very less, even up to a single pixel in distance. This leads to problems for the

use of robotics [16], since there might happen chances of delay in robotic control and its decision

making causing a further distance travel not being supported by dense optical flow. So what is

then done is some good features are tracked along the frames which is sparse optical flow, but

the problem of distance travel of one pixel assumption is still present, therefore to further

improve it pyramidal Lucas-Kanade is used, which solves this problem. [17]

In order to reduce the complexity and computational processing sparse optical flow

Lucas-Kanade pyramid implementation is considered.

3.2.2 Lucas-Kanade Pyramidal Optical Flow

There said to be three basic assumptions that are needed to be understood for the

implementation of optical flow. They are that the image must has a constant brightness, i.e. the

brightness on each every pixel value does not change with time, there has to exist temporal

persistence or small movements that the robot must not move abruptly thereby changing the

whole environment of its detection frame and the third to be the spatial coherence, which states

that for a specific defined neighboring window size take it 3x3 or 10x10 of a pixel remains same

throughout the operation of optical flow.

From analytical point of view let’s assume that “I” is the intensity of a frame which is

constant from t to t +δt. Then following constraint equation is obtained

 I (x,y) = I (x+δx, y+δy, t+δt)

Applying tailor series to the above constraint equation gives,

∂I
∂௫

dx
dt

 + ∂I
∂௬

dy
dt

 + ∂I
∂௧

ൌ 0

T

the partia

for x, we

W

original p

O

N

the case o

P

velocity v

C

this it is u

square pr

T

OpenCV

The tailor ser

al variables t

e get

Where u and

point of coor

Or

Now for the

of optical flo

utting the a

vector V.

Considering t

usually over

rinciple.

This same v

V function “c

ries is applie

to new varia

v are the sim

rdinates x,y

case when w

ow we have,

above equati

the above m

r-determined

velocity vect

alcOpticalFl

ed for only f

ables, as whe

I

mple x and y

to their new

we consider

,

Ix (q1)u

Ix (q2)u

Ix (qn)u

on in the fo

matrices one

d. Thereby L

V =
tor “V” is f

lowPyrLK”.

13

first derivati

en distance y

Ix u + Iy v + I

y distances o

w position in

Ix u + Iy v =

the neighbo

u + Iy (q1)v

u + Iy (q2)v
..
..

u + Iy (qn)v

orm of matr

 can tell tha

Lucas-Kanad

= (AT A)-1

found by us

ve along tim

y is derivate

It = 0

of velocity v

x,y in time t

- It

oring pixels

= - It (q1)

= - It (q2)

= - It (qn)

ices or simp

at it has mo

de obtains a c

1 AT b
sing the opt

me t. Therefo

d along time

vectors being

t.

inside a def

ply AV = b,

ore equations

compromise

tical flow f

A

ore reconsid

e t and same

g made from

finite window

, and solvin

s than unkn

e solution by

function use

Anx‐B

dering

e case

m their

w for

ng for

owns

y least

ed by

C

forward v

O

T

obstacle

A

and to be

set of go

detection

feature d

technique

implemen

modified

but anoth

for its im

size, the

3.2

Considering t

velocity of r

Or rearrangin

Therefore wh

is known the

3.2

As already di

e precise the

od features a

n technique f

detection tec

es, the corne

nted. Out o

d form of Ha

her paramete

mplementatio

number of fe

2.3 Obstac

the figure ab

robot/camera

ng it for calcu

hen robot v

en the distan

2.4 Feature

iscussed that

pyramidal L

as a requirem

for the work

chnique was

er detection t

of which the

arris- Corne

er of minimu

on some par

features to be

cle to Robot

bove, we can

a, as

ulating the d

velocity, opt

nce is also ca

e Detection

t the optical

Lucas-Kanad

ment for its

king of lucas

s required.

techniques l

e famous Sh

r detection t

um threshold

rameters are

e detected, se

14

distance Ca

n deliberatel

distance, as

tical flow v

alculated.

flow that is

de optical flo

function. Th

s-kanade op

And for tha

ike Harris-c

hi-Tomasi te

technique [1

d is introduc

e to be defin

election of im

alculation

ly say that th

velocity vect

to be implem

ow. Also tha

herefore ther

ptical flow. F

at purpose t

orner detect

echnique wa

18], as both

ced in case o

ned which in

mage quality

he optical flo

tors and an

mented is sp

at the lucas-k

re is a need

For this purp

the common

ion etc. and

as selected.

find the sam

of Shi-Toma

nclude the s

y etc.

A

ow is functi

ngle of obje

parse optical

kanade requi

of a good fe

pose an opti

n edge dete

many other

It is basica

me good fea

asi technique

selection of

Anx‐B

on of

ect to

 flow

ires a

eature

imum

ection

were

ally a

atures

e, and

mask

Anx‐B

15

3.3 Obstacle Avoidance Strategy

The robot which is being used for the purpose of autonomous navigation is the famous

iRobot Create. The vision is being provided to it by means of camera mounted on top of it and

the algorithm being run wirelessly via a windows operating system. The algorithm is based on

purely optical flow and the vision information provided to it, nothing else, no feedback from the

sensors of the iRobot Create or any other sort of ultrasonic sonars/sensors. Therefore for the

obstacle avoidance strategy, all the calculations are based on the data obtained from optical flow.

The most common strategy for navigation using optical flow is the Balance Strategy [19], which

states that,

• Calculate the amount of flow present at the half right side and the half left side of the

image plane.

• Navigate towards the direction where flow is minimum, so as to avoid the obstacles.

Initially the Balance Strategy was implemented and results were driven out of it and

further for a condition of moving straight, the image plane was divided into three equal frames.

And according to their flows the navigation was done. Further improvements are also done,

which are discussed in coming chapters.

3.4 Communication Methodology

The robot consists of a Bluetooth module for wireless communication. Therefore

Bluetooth technology was used for the communication between the robot (iRobot Create) and the

computer. The data sent is interpreted on the robot and the robot moves or acts accordingly, all

done autonomously on-the-fly (real-time).

Using Bluetooth type communication, com port identification and selection is done.

According to the com port designated as an outgoing port, linked between the robot and the

computer. The 8-bit data is sent serially to the com port on which the Bluetooth module is

connected to the pc. That data is then transmitted via Bluetooth to the Bluetooth module installed

on iRobot create. The Robot interprets the provided data and make various actions accordingly.

(Turning radius, Movement direction/speed etc.)

Anx‐B

16

CHAPTER 4: EXPERIMENTATION

Here I would like to introduce the steps involved in implementation of the algorithm that

has been developed. The initial steps whereas would be on simple basic images and then later on,

it is conducted in real-time video imaging.

To test out the algorithm, images were taken by the camera mounted on iRobot Create at

a resolution of 640 by 480 pixels. Initially the experimentation is done on different set of images,

which includes;

4.1 Binary Images

The images were converted into binary (i.e. Black and White) and optical flow was

implemented on them. The optical flow had a very vast amount of error included as the data

provided was in black and white and as the optical flow is based on purely pixels intensity so the

reason of implementing it on binary images did not be found useful.

Figure 10. Binary Images (1)

Anx‐B

17

Figure 11. Binary images (2)

4.2 Color Segmentation

Suppose if there are number of obstacles that have a unique color, then by segmenting

those obstacles based on their hue intensity, it is possible to avoid them, or they could be only

tracked if required.

Figure 12. Color Segmented Images

4.3 Initial RGB implementation

Initially the results obtained when optical flow was applied to the RGB images, it looked

something like this

Anx‐B

18

Figure 13. RGB with Optical Flow Images (1)

Figure 14. RGB with Optical Flow Images (2)

In the figure 14, the camera of the laptop was first placed at a static position and an image

was taken then the camera was moved almost 20 degrees upward, therefore causing the optical

flow vectors being generated in the upward direction. The algorithm was controlled in such a

way that only after specific key pressed it would track the features therefore the images are

produced as such.

Anx‐B

19

CHAPTER 5: EXTENSIVE EXPERIMENTATIONS

Afterwards when optical flow was implemented, it was figured out that there was a quite

huge amount of error involved in the data provided by the optical flow vectors. As many of them

are produced at wrong angles, many of them had near infinite amount of velocity vector

magnitudes, therefore to compensate them many of the improvements were made to the optical

flow. The improvements are classified as such;

5.1 Optical Flow Outliers Removal

There was a huge amount of error involved in Lucas kanade pyramid method, as we can

see here that there are numerous flow vectors that are made erroneously, to tackle the outliers

obtained using the Lucas kanade pyramid method, modification in algorithm was made.

Figure 15. Optical Flow with Error

Let’s consider the features from “previous” frames having coordinates as x1,y1 and the

features tracked by Lucas kanade pyramid in “present” frame as x2,y2 , therefore for eliminating

the ones which are erroneous, that those which show that sudden motion has taken place where

as actually there has not, as being shown by the majority of the flow. Therefore for their

detection and elimination, magnitude of all the features has been calculated, that is using the

previous and present frame. After the calculation of the magnitudes of all the vectors, the

Anx‐B

20

magnitude is summed up of all vectors and it is then divided by the total number of vectors,

thereby providing with the average magnitude of all vectors.

The distance between feature flow vectors is calculated as

ට෍ሺx2 െ x1ሻଶ ൅ ሺy2 െ y1ሻଶ

After that another loop was formed for finding those features which were outliers, by

applying an “if” command and checking out that which features are those that have magnitude

greater than 2 times of the average magnitude of all vectors. And thereby discarding those

features. Therefore after the implementation, satisfactory results were obtained, as shown below

Figure 16. Optical Flow without Error

5.2 Easy Navigation using sub-division

The image plane is split into 3 equal vertically divided frames.“Robustness” of each

frame of image is summed up individually. The magnitude of all the optical flow velocity vectors

are also calculated separately.The obstacles thereby that are far from the robot will have less

optical flow as the ones that are near, and the weightage is given accordingly to the right side,

middle side and the center one frame of the full plane. According to which the robot move

against the flow that is greater.

Certain conditions were also implemented according the detection of the frames and

velocity vectors being present in certain sided frames. The lowest weightage was given to the

center frame as for the robot to collide with an obstacle the minimum distance it would be to

Anx‐B

21

move straight towards it, therefore only after the middle frame is 0.7 times the right frame and

the left frame then only the robot was allowed to move forward. This 0.7 decrease of weightage

of the middle frame was inserted to make sure that errors could also be compensated. The frames

after division looked something like this

Figure 17. Easy Navigation using Sub-Division

5.3 Delaunay Triangulation Implementation

For the better judgment and estimation of object/obstacle representation/structure using

the feature points obtained by Shi-Tomasi technique, Delaunay triangulation method was

implemented. The basic need was for the better optimization and calibration of the robot

environment. Therefore for all the 300 feature detected points, Delaunay triangulation was

applied. Delaunay triangulation also helps with providing the intensity values of an obstacle, as

number of vertices and edges are drawn using the feature points of the obstacle. The direct

implementation of Delaunay wasn’t possible using the available functions of Opencv, therefore

rather other possible ways were considered for its implementation.

After the implementation of Delaunay triangulation, the results were achieved as,

Anx‐B

22

Figure 18. Delaunay Implementation

5.4 Delaunay Triangulation Improvement

After successful Delaunay implementation, there was a need for further implementations

of conditions on Delaunay Triangulation for better results, as many edges of the triangles are

generated from infinity and also from feature points placed (0,0) (which were those feature

points that were considered as erroneous).

Therefore for omitting those erroneous features points from being considered in

Delaunay triangulation, conditions were implied, which stated to not include the feature points

that are at location (0,0) and which primary connects with points at infinity.After such

improvements the results obtained were much efficient and satisfactory.

Figure 19. Delaunay Improvements

Anx‐B

23

5.5 Delaunay Triangulation Sub-Division

Delaunay triangulation was further improved by dividing the triangulation made by itself

into 3 frames. Considering the case when Delaunay is used for the complete frame at once.

Figure 20. Delaunay Triangulation without Sub-Division

One can see that all the good feature points are used by Delaunay and every point is

interlinked with its neighbor, whether it even lies in all 3 frames, example, a feature is present in

frame one, and its neighboring feature points to make a triangle are present in frame two and

frame three, therefore for making a triangle the Delaunay creates a triangle which is present in all

the 3 frames.

Now let’s separate the all 3 frames, so that only the adjacent feature points present in one

frame can be used for making a Delaunay triangulation for that respective feature point.After

successful segmentation, the results were such as

Figure 21. Delaunay Triangulation with Sub-Division

Anx‐B

24

One can clearly see the amount of improvement being obtained by segmenting the frames

in Delaunay triangulation.

5.6 Steering Control Conditions

By taking into account the steering control conditions being mentioned in the flow chart,

it becomes pretty clear that there are three main conditions to fulfill for the navigation being able

to be performed. It means that the three conditions that are, the magnitude of velocity vectors and

good features and calculating of Delaunay Triangulation, for them all to point towards one

direction will let the robot move in that specific direction but if one of them points towards any

other direction, then only the good features and Delaunay calculations are considered, and the

robot moves according to the later decision, it has been found that almost 90% of the time the

decision is already made by these conditions but if somehow the good features and Delaunay

even fail to compromise on single direction, then the robot stops for that respective iteration and

then continues to look further for next iteration.

5.7 Practical Experiments

The iRobot create was made to avoid obstacles in the real world in different scenarios,

initially the windows operated laptop was placed fixed and the robot was allowed to move

according to the actions being performed infront of the laptop as the robot was moving instead of

the obstacles.

Anx‐B

25

Figure 22. Practical Implementation Examples (1)

Then the laptop was placed on the robot and the robot avoided the single obstacle placed

directly in front of him.

Figure 23. Practical Implementation Examples (2)

Anx‐B

26

Afterwards a camera was mounted on the iRobot Create and two obstacles were placed in

front of it, due to their flow being generated equally on both sides of the image plane, and less

flow being generated in the middle, the robot navigated towards the front but when it came near

enough the middle frame flow became greater and thus the robot navigated away from the

obstacles.

Figure 24. Practical Implementation Examples (3)

Anx‐B

27

CHAPTER 6: CONCLUSION AND FUTURE WORK

An intelligent navigation and control of mobile robot has been successfully developed.

The objectives that were involved in reaching this point included mainly the development of an

intelligent algorithm for the autonomous movement of the robot and the interfacing of the robot

and the windows platform wirelessly, i.e. via the Bluetooth module.

The algorithm was made using the OpenCV library, linked with the Visual Studio 2013

environment. The algorithm was made as a single “.cpp” file, whereas to control the robot there

need to introduce two files, rs232.cpp and rs232.h, the C++ and header files respectively. They

were needed for the control of the robot, having sent data serially via Bluetooth module.

The robot in return receives the data being transmitted using the algorithm via Bluetooth

module, and it acts according to the instruction being provided for its navigation.

6.1 Future Work

The robot was successfully controlled using windows operating system by OpenCV

libraries, the same libraries were also linked in the eclipse environment for android platform. But

the libraries were not stable and robust enough for the kind of autonomous work that was

required out of it. The developers of OpenCV libraries are continuously working on improving

the functions being used by android of OpenCV and is therefore being made robust and more

efficient. Therefore making small adjustments to the present code written in C language, can be

directly used by Android platform, if the libraries are linked successfully and the support of most

of the functions being used are made properly.

Now the iRobot Create has been given vision,then number of tasks and work can be done

using the iRobot Create. Which could include the improvement of a path planning being

introduced where the video feedback is being continuously monitored and a predefined path is

being navigated without the collision of the obstacles being found. And even further instead a

GPS module could be used and feedback being provided by it could also help in reaching a

desired target/goal.

In this dissertation, obstacle avoidance has been done, as mentioned in previous chapters,

that obstacle tracking is also possible, as optical flow key feature include tracking behavior.

Anx‐B

28

Therefore a color segmented object tracking or tracking a specific structure based object is also

possible.

An introduction of voice controlled robot navigation is also possible. Which can be done

using the Microsoft Speech Recognition API for windows or Android Speech Recognition API

for android platform.

Anx‐B

29

APPENDIX A

AlgorithmCode
/* --Intelligent Navigation and Control of Mobile Robot--
* Written in C Using OpenCV Library
* Written by Muhammad Zohaib
*/
#pragma comment(lib,"Winmm.lib")
#include "opencv2/imgproc/imgproc_c.h"
#include "opencv2/video/tracking.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "rs232.h"
#include <Windows.h>
#include <iostream>
using namespace std;
static const double pi = 3.14159265358979323846;

inline static double square(int a)
{
 return a * a;
}
double NormCalculator(CvPoint p, CvPoint q)
{
 return sqrt(square(p.x - q.x) + square(p.y - q.y));
}

inline static void allocateOnDemand(IplImage **img, CvSize size, int depth, int channels)
{
 if (*img != NULL) return;

 *img = cvCreateImage(size, depth, channels);
 if (*img == NULL)
 {
 fprintf(stderr, "Error: Couldn't allocate image. Out of memory?\n");
 exit(-1);
 }
}

void Create_init(int port_numb, int baud)
{
 if (RS232_OpenComport(port_numb, baud))
 {
 printf("Can not open comport\n");
 }
 else
 {

Anx‐B

30

 printf("Port opened successfully\n\n");
 }
 unsigned char initial[2] = { 128, 132 };

 printf("Setting CREATE to FULL CONTROL mode\n\n");
 int a = RS232_SendBuf(port_numb, initial, 2);
 if (a == -1)
 {
 printf("Error in Setting CREATE to Full Control mode\n\n");
 }

 else
 {
 printf("CREATE set into Full Control mode\n\n");
 }
}

void FwdVelRad(int port_numb, unsigned int speed, unsigned int rad)
{
 unsigned char fwdvel[2];
 unsigned char radm[2];
 unsigned int radmm;
 int a;
 unsigned int spd;
 spd = speed;
 cout << spd << endl;
 fwdvel[0] = spd & 0xFF;
 fwdvel[1] = (spd >> 8) & 0xFF;
 cout << "fwdvel1 " << fwdvel[0] << endl;
 cout << "fwdvel2 " << fwdvel[1] << endl;

 radmm = rad;
 radm[0] = radmm & 0xFF;
 radm[1] = (radmm >> 8) & 0xFF;

 //unsigned char dr[1]={137};
 unsigned char cmd[5] = { 137, fwdvel[0], fwdvel[1], radm[0], radm[1] }; // DRIVE
 int n = RS232_SendBuf(port_numb, cmd, 5);
 if(n ==-1)
 {
 printf("Error in send command for drive\n\n");
 exit(EXIT_FAILURE);
 }
 else
 {
 printf("roomba moving... ;)\n\n");
 }

}

Anx‐B

31

int main(void)
{
 int
 cport_nr = 8, /* /dev/ttyS0 (COM1 on windows) */
 bdrate = 57600; /* 57600 baud */
 int inf = 1000;

 Create_init(cport_nr, bdrate); //initializing the serial communication.

 CvCapture *input_video = cvCaptureFromCAM(1);
 if (input_video == NULL)
 {
 fprintf(stderr, "Error: Can't open video.\n");
 return -1;
 }

 /* Read the video's frame size out of the AVI. */
 CvSize frame_size;
 frame_size.height =
 (int)cvGetCaptureProperty(input_video, CV_CAP_PROP_FRAME_HEIGHT);
 frame_size.width =
 (int)cvGetCaptureProperty(input_video, CV_CAP_PROP_FRAME_WIDTH);

 int framecheck = 0;
 int leftcount = 0, rightcount = 0, centercount = 0, leftcenter = 0, rightcenter = 0;
 int draw_main = true;

 long current_frame = 0;
 do
 {
 static IplImage *frame = NULL, *frame1 = NULL, *frame1_1C = NULL, *frameD =
NULL, *frameF = NULL, *frame2_1C = NULL, *eig_image = NULL, *temp_image = NULL,
*pyramid1 = NULL, *pyramid2 = NULL;
 framecheck = 0;

 frame = cvQueryFrame(input_video);
 if (frame == NULL)
 {
 fprintf(stderr, "Error: Hmm. The end came sooner than we thought.\n");
 return -1;
 }

 //create a frame for delaunay triangles only with zero filled
 frameD = cvCreateImage(frame_size, IPL_DEPTH_8U, 1);
 cvZero(frameD);
 //create a frame for features only with zero filled

Anx‐B

32

 frameF = cvCreateImage(frame_size, IPL_DEPTH_8U, 1);
 cvZero(frameF);
 frame1_1C = cvCreateImage(frame_size, IPL_DEPTH_8U, 1);
 cvConvertImage(frame, frame1_1C, 0);
 allocateOnDemand(&frame1, frame_size, IPL_DEPTH_8U, 3);
 cvConvertImage(frame, frame1, 0);
 frame = cvQueryFrame(input_video);
 if (frame == NULL)
 {
 fprintf(stderr, "Error: Hmm. The video does not exist.\n");
 return -1;
 }
 allocateOnDemand(&frame2_1C, frame_size, IPL_DEPTH_8U, 1);
 cvConvertImage(frame, frame2_1C, 0);

 /* Shi and Tomasi Feature Tracking! */
 allocateOnDemand(&eig_image, frame_size, IPL_DEPTH_32F, 1);
 allocateOnDemand(&temp_image, frame_size, IPL_DEPTH_32F, 1);
 int number_of_features = 300;
 const int total_features = 300;
 CvPoint2D32f frame1_features[total_features];
 cvGoodFeaturesToTrack(frame1_1C, eig_image, temp_image, frame1_features,
&number_of_features, .01, .01, NULL, 3);
 CvPoint2D32f frame2_features[total_features];
 char optical_flow_found_feature[total_features];
 float optical_flow_feature_error[total_features];
 CvSize optical_flow_window = cvSize(3, 3);
 CvTermCriteria optical_flow_termination_criteria
 = cvTermCriteria(CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 20, .1);
 allocateOnDemand(&pyramid1, frame_size, IPL_DEPTH_8U, 1);
 allocateOnDemand(&pyramid2, frame_size, IPL_DEPTH_8U, 1);
 cvCalcOpticalFlowPyrLK(frame1_1C, frame2_1C, pyramid1, pyramid2,
frame1_features, frame2_features, number_of_features, optical_flow_window, 5,
optical_flow_found_feature, optical_flow_feature_error, optical_flow_termination_criteria, 0.01);
 double average_features[total_features];
 double average_fea_add = 0;
 cv::Scalar delaunay_color(255, 255, 255);
 cv::Rect rect(0, 0, cvGetCaptureProperty(input_video,
CV_CAP_PROP_FRAME_WIDTH), cvGetCaptureProperty(input_video,
CV_CAP_PROP_FRAME_HEIGHT));
 cv::Subdiv2D subdiv(rect);
 CvPoint p, q;
 for (int i = 0; i < number_of_features; i++)
 {
 p.x = (int)frame1_features[i].x;
 p.y = (int)frame1_features[i].y;
 q.x = (int)frame2_features[i].x;
 q.y = (int)frame2_features[i].y;
 average_features[i] = NormCalculator(p, q);
 average_fea_add = average_fea_add + average_features[i];
 }

Anx‐B

33

 double average_fea = average_fea_add / total_features;

 for (int i = 0; i < number_of_features; i++)
 {
 draw_main = true;
 if (average_features[i] > (average_fea * 0.5))
 {
 draw_main = false;
 frame1_features[i].x = 0.0;
 frame2_features[i].x = 0.0;
 }

 if (draw_main == false) continue;
 if (frame2_features[i].x > cvGetCaptureProperty(input_video,
CV_CAP_PROP_FRAME_WIDTH) || frame2_features[i].y > cvGetCaptureProperty(input_video,
CV_CAP_PROP_FRAME_HEIGHT) || frame2_features[i].x < 0 || frame2_features[i].y < 0)
 {
 frame1_features[i].x = 0.0;
 frame2_features[i].x = 0.0;
 continue;
 }

 /* If Pyramidal Lucas Kanade didn't really find the feature, skip it. */
 if (optical_flow_found_feature[i] == 0)
 {
 frame1_features[i].x = 0.0;
 frame2_features[i].x = 0.0;
 continue;
 }
 //skip those features which contains error
 if (optical_flow_feature_error[i] == 1)
 {
 frame1_features[i].x = 0.0;
 frame2_features[i].x = 0.0;
 continue;
 }

 int line_thickness; line_thickness = 1;
 CvScalar line_color; line_color = CV_RGB(255, 0,
0);

 p.x = (int)frame1_features[i].x;
 p.y = (int)frame1_features[i].y;
 q.x = (int)frame2_features[i].x;
 q.y = (int)frame2_features[i].y;

 cv::Point2f fp = q;
 cvCircle(frameD, fp, 1, delaunay_color, CV_FILLED, 1, 0);

Anx‐B

34

 subdiv.insert(fp);
 cv::vector<cv::Vec6f> triangleList;
 subdiv.getTriangleList(triangleList);
 cv::vector<cv::Point> pt(3);
 for (size_t i = 0; i < triangleList.size(); i++)
 {
 cv::Vec6f t = triangleList[i];
 pt[0] = cv::Point(cvRound(t[0]), cvRound(t[1]));
 pt[1] = cv::Point(cvRound(t[2]), cvRound(t[3]));
 pt[2] = cv::Point(cvRound(t[4]), cvRound(t[5]));
 int draw = true;
 for (int i = 0; i<3; i++)
 {
 if (pt[i].x>cvGetCaptureProperty(input_video,
CV_CAP_PROP_FRAME_WIDTH) || pt[i].y>cvGetCaptureProperty(input_video,
CV_CAP_PROP_FRAME_HEIGHT) || pt[i].x < 0 || pt[i].y < 0)
 draw = false;
 if ((q.x < 214) && (pt[i].x > 214))
 draw = false;
 if (((q.x > 213) && (q.x < 428)) && ((pt[i].x > 427) ||
(pt[i].x < 214)))
 draw = false;
 if ((q.x > 427) && (pt[i].x < 428))
 draw = false;
 }
 if (draw)
 {
 cvLine(frameD, pt[0], pt[1], delaunay_color, 1, CV_AA,
0);
 cvLine(frameD, pt[1], pt[2], delaunay_color, 1, CV_AA,
0);
 cvLine(frameD, pt[2], pt[0], delaunay_color, 1, CV_AA,
0);
 }
 }

 cvCircle(frameF, p, 1, delaunay_color, CV_FILLED, 8, 0);
 double angle; angle = atan2((double)p.y - q.y, (double)p.x -
q.x);
 double hypotenuse; hypotenuse = sqrt(square(p.y - q.y) + square(p.x
- q.x));

 if (hypotenuse > 5)
 {
 if ((p.x < 214 && q.x < 214))
 leftcount = leftcount + hypotenuse;
 if (((p.x > 213) && (p.x < 428)) && ((q.x > 213) && (q.x <
428)))
 centercount = centercount + hypotenuse;
 if ((p.x > 427) && (q.x > 427))
 rightcount = rightcount + hypotenuse;

Anx‐B

35

 if ((p.x < 214) && ((q.x < 427) && (q.x > 213)))
 leftcenter = leftcount + hypotenuse;
 if ((p.x > 427) && ((q.x < 427) && (q.x > 213)))
 rightcenter = rightcount + hypotenuse;
 if ((q.x > 427) && ((p.x < 427) && (p.x > 213)))
 rightcount = rightcount + hypotenuse;
 if ((q.x < 213) && ((p.x < 427) && (p.x > 213)))
 leftcount = leftcount + hypotenuse;
 }
 q.x = (int)(p.x - 1 * hypotenuse * cos(angle));
 q.y = (int)(p.y - 1 * hypotenuse * sin(angle));

 cvLine(frame1, p, q, line_color, line_thickness, CV_AA, 0);
 p.x = (int)(q.x + 9 * cos(angle + pi / 4));
 p.y = (int)(q.y + 9 * sin(angle + pi / 4));
 cvLine(frame1, p, q, line_color, line_thickness, CV_AA, 0);
 p.x = (int)(q.x + 9 * cos(angle - pi / 4));
 p.y = (int)(q.y + 9 * sin(angle - pi / 4));
 cvLine(frame1, p, q, line_color, line_thickness, CV_AA, 0);

 }
 cv::Point rectstart(0, 0);
 cv::Point rect1start(213, 0);
 cv::Point rect1end(213, 480);
 cv::Point rect2start(427, 0);
 cv::Point rect2end(427, 480);
 cv::Point rectend(640, 480);

 cvLine(frameD, rect1start, rect1end, cvScalar(170, 160, 60), 2, CV_AA, 0);
 cvLine(frameD, rect2start, rect2end, cvScalar(170, 160, 60), 2, CV_AA, 0);
 cvLine(frameF, rect1start, rect1end, cvScalar(170, 160, 60), 2, CV_AA, 0);
 cvLine(frameF, rect2start, rect2end, cvScalar(170, 160, 60), 2, CV_AA, 0);
 cvLine(frame1, rect1start, rect1end, cvScalar(170, 160, 60), 2, CV_AA, 0);
 cvLine(frame1, rect2start, rect2end, cvScalar(170, 160, 60), 2, CV_AA, 0);

 cv::Mat frame1D(frameD, cv::Rect(rectstart.x, rectstart.y, rect1end.x,
rect1end.y));
 cv::Mat frame2D(frameD, cv::Rect(rect1start.x, rect1start.y, (rect1end.x + 1),
rect1end.y));
 cv::Mat frame3D(frameD, cv::Rect(rect2start.x, rect2start.y, rect1end.x,
rect1end.y));
 float D1 = cv::countNonZero(frame1D == 255);
 float D2 = cv::countNonZero(frame2D == 255);
 float D3 = cv::countNonZero(frame3D == 255);
 float DT = D1 + D2 + D3;

 cv::Mat frame1F(frameF, cv::Rect(rectstart.x, rectstart.y, rect1end.x,
rect1end.y));
 cv::Mat frame2F(frameF, cv::Rect(rect1start.x, rect1start.y, (rect1end.x + 1),
rect1end.y));

Anx‐B

36

 cv::Mat frame3F(frameF, cv::Rect(rect2start.x, rect2start.y, rect1end.x,
rect1end.y));
 float F1 = cv::countNonZero(frame1F == 255);
 float F2 = cv::countNonZero(frame2F == 255);
 float F3 = cv::countNonZero(frame3F == 255);
 float FT = F1 + F2 + F3;
 fprintf(stderr, "Number of Delaunay pixels,");
 cout << " DT = " << DT << " D1 = " << D1 << " D2 = " << D2 << " D3 = " <<
D3 << endl;
 fprintf(stderr, " \n\n Number of Feature pixels,");
 cout << " FT = " << FT << " F1 = " << F1 << " F2 = " << F2 << " F3 = " << F3
<< endl;

 std::stringstream s;
 float totalleft = (F1 + ((D1 / DT) * 100));
 float totalright = (F3 + ((D3 / DT) * 100));
 float totalcenter = (F2 + ((D2 / DT) * 100));
 float totaldiff = totalleft - totalright;
 cv::norm(totaldiff);

 if (((0.7 * centercount < rightcount) && (0.7 * centercount < leftcount))
&& ((0.7 * totalcenter) < totalright && (0.7 * totalcenter)<totalleft))
 {
 (s << "Move Straight");
 FwdVelRad(cport_nr, 2, 5);
 framecheck = 1;
 Sleep(150);
 }
 else
 {
 if ((leftcount > rightcount) && (totalleft > totalright))
 {
 (s << "Move Straight+Right");
 FwdVelRad(cport_nr, 2, -1); //half radius in clockwise
 framecheck = 1;
 Sleep(60);
 }
 else if ((rightcount > leftcount) && (totalright > totalleft))
 {
 (s << "Move Straight+Left");
 FwdVelRad(cport_nr, 2, 0); //half radius in c.clockwise
 framecheck = 1;
 Sleep(60);
 }

 }

 if (framecheck == 0)

 if ((0.7 * totalcenter) < totalright && (0.7 * totalcenter)<totalleft)
 {

Anx‐B

37

 (s << "Move Straight");
 FwdVelRad(cport_nr, 2, 5);
 Sleep(150);
 }
 else
 {
 if (totalleft > totalright)
 {
 (s << "turn Right");
 FwdVelRad(cport_nr, 2, -1);
 Sleep(60);
 }
 else if (totalright > totalleft)
 {
 (s << "turn Left");
 FwdVelRad(cport_nr, 2, 0);
 Sleep(60);
 }
 }

 cv::putText((cv::Mat)frame1, s.str(), cv::Point2f(100, 100),
cv::FONT_HERSHEY_PLAIN, 1, cv::Scalar(0, 0, 255, 255), 2);

 cvNamedWindow("delaunay only", CV_WINDOW_AUTOSIZE);
 cvShowImage("delaunay only", frameD);
 cvNamedWindow("features only", CV_WINDOW_AUTOSIZE);
 cvShowImage("features only", frameF);
 cvNamedWindow("rgb+features", CV_WINDOW_AUTOSIZE);
 cvShowImage("rgb+features", frame1);

 int key_pressed = cvWaitKey(1);
 FwdVelRad(cport_nr, 0, 0);
 Sleep(400);
 }while (GetAsyncKeyState(VK_ESCAPE) == 0);
}

Bluetooth Control code:

Files for the Bluetooth control codes having been placed on a CD and attached with the

dissertation.

Anx‐B

38

REFERENCES

[1] A. Dev. Visual Navigation on Optical Flow. PhD thesis, University of Amsterdam,

September 1998.

[2] B. Kelly. Structure from stereo vision using optical flow. Master’s thesis, University of

Canterbury, November 2006.

[3] K. Kanatani. Self-calibration from optical flow and its reliability evaluation.In IAPR

Workshop on Machine Vision Applications (MVA2000), pages 443–446, 2000.

[4] I. Ulrich and I. R. Nourbakhsh. Appearance-based obstacle detection with monocular

color vision. In AAAI/IAAI’00, pages 866–871, 2000.

[5] C. Bills, J. Chen, and A. Saxena. Autonomous mav flight in indoor environments using

single image perspective cues. International Conference on Robotics and Automation

(ICRA), 2011.

[6] F. Blais. Review of 20 years of range sensor development. Journal of Electronic

Imaging, 13(1), 2004.

[7] S. F. te Pas. Perception of Structure in Optical Flow Fields. PhD thesis, University of

Utrecht, September 1996.

[8] M. Varga. Practical Image Processing and Computer Vision, chapter 13. John Wiley &

Sons, 2009.

[9] B. D. Lucas and T. Kanade. Optical Navigation by the Method of Differences. In

International Joint Conference on Artificial Intelligence, pages 981–984.

[10] G. Bleser and G. Hendeby. Using optical flow as lightweight slam alternative. Mixed

and Augmented Reality, IEEE / ACM International Symposium on, 0:175–176, 2009.

ISBN 978-1-4244-5390-0.

[11] M. Zucchelli, J. Santos Victor, and H. Christensen. Constrained structure and motion

estimation from optical flow. Pages I: 339–342, 2002.

[12] D. J. Fleet and Y. Weiss. Mathematical Models in Computer Vision: The Handbook

(Optical Flow Estimation), chapter 15, pages 239–258. Springer, 2005.

[13] J. A. Saunders and D. C. Niehorster. A bayesian model for estimating observer

translation and rotation from optic flow and extra-retinal input. Journal of Vision,

10(10):1–22, 2010.

Anx‐B

39

[14] D. Kane, P. Bex, and S. Dakin. Quantifying “the aperture problem” for judgments of

motion direction in natural scenes. Journal of Vision, 11(3): 1–20, 2011.

[15] S. J. Huston and H. G. Krapp. Visuomotor transformation in the fly gaze stabilization

system. PLoS Biol, 2008.

[16] J. Barron, D. Fleet, and S. Beauchemin. Performance of optical flow techniques. IJCV,

12(1):43–77, 1994

[17] J.-Y. Bouguet. Pyramidal implementation of the Lucas kanade feature tracker. Intel

Corporation, Microprocessor Research Labs, 2000.

[18] “Vision Based Collision Avoidance System for UAVs”. By Prof K Dana, Nakul N.,

Arjun K.

[19] Kahlouche Souhila and Achour Karim. Optical flow based robot obstacle avoidance.

International Journalof Advanced Robotic Systems, 4(1):13–16, 2007

Anx‐B

40

Completion Certificate

It is to certify that the thesis titled “Intelligent Navigation and Control of Mobile Robots

Using Android Platform” submitted by Regn. No. 2011-NUST-MS-PHD-Mts-25,

Muhammad Zohaib of MS-70Mechatronics Engineering is complete in all respects as per the

requirements of Main Office, NUST (Exam branch).

Supervisor: ___________

Dr. Kunwar Faraz Ahmed

Date: ____ May, 2014

