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ABSTRACT 

 

The reliability of a mechanical design is established by design validation that is 

carried out using finite element method. Such a numerical technique method provides a very 

useful alternative to experimental testing which can be very expensive. During FE analysis, 

the overestimated stress concentrations need to be resolved or in some cases eliminated, in 

order to predict the actual response of the material. This thesis is aimed at developing a new 

and improved method for resolving and eliminating overestimated stress concentrations from 

an FE model. The proposed method is validated using an appropriate geometry whose 

experimental results are available. This will result in a provision aimed at better mechanical 

design methodology for application on any finite element static analysis.  
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1 INTRODUCTION  

1.1 Introduction 

The ultimate goal of mechanical design process is to keep the maximum stresses that are caused 

by loads, below the yield stress limit of the material. On contrary, faulty mechanical designs 

often lead to catastrophic consequences.  

One of the critical aspect in mechanical design is the presence of stress concentrations. The 

discontinuities in the geometry result in a localized amplification of stress in some regions. 

Mostly these stress concentrations occur at sharp corners, holes, notch tips etc. For an efficient 

mechanical design, it should be known exactly how much the stress is amplified at these points. 

Stress concentration factors give us an idea of how many times higher is the stress going to be 

because of the presence of these geometric discontinuities.  

Mechanical design processes are getting reshaped as mechanical structures are being designed 

and manufactured with improved strength and smarter measurements in order to fulfill their 

objectives efficiently. Numerical simulations are the first choice for any new conceptual design 

assessment. This is followed by experimental testing, which is comparatively much more 

expensive. Finite Element Analysis (FEA) makes use of this method known as finite element 

method (FEM) which relies on dividing the geometry into small discrete regions known as 

elements and subsequently solution can be attained for each node on those elements. However, 

this approximate FEM solution results in divergence from realistic scenarios [5].  

Common errors encountered in FEA include idealization errors as mathematical model is 

derived from the simplification of reality, discretization errors when a continuum is replaced 

with a set of discrete regions (meshing), numerical errors introduced by the solution of the 

discrete system and interpretation errors as the results are analyzed. Therefore there are some 

limitations to these numerical solutions and these concerns must be tackled for a more precise 

solution. 

One of the drawbacks in finite element analysis is occurrence of overestimated and exaggerated 

stress concentrations at localized regions. This strange and unexpected trend is due to the finite 

element methods and modeling practices instead of stress concentrations that exist because of 

geometric non linearities. Thus, it has been seen that at times the maximum stress observed in 
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linear finite element analysis do not represent the actual state of affairs. Especially for notches 

with small radii, up to 10% overestimation is observed when FEA stress concentration factor is 

compared with empirical/experimental stress concentration factor. The overestimation of stress 

concentration in finite element model can be most likely due to inadequate mesh density or 

unreasonable nodal connectivity. This results in the limitation of design with respect to its 

performance. 

1.2 Aim of Study 

The aim of this research is to investigate, develop and validate a new and improved method to 

resolve and eliminate unreal and exaggerated stress concentrations from an FE model within the 

linear elastic region. The validation will be carried out by comparing FEA results with the 

available empirical solutions/experimental results. Three cases will be dealt with for the sake of 

repeatability: 

 Case 1 : Opposite single U-notch in finite width plate (P=40N) 

 Case 2 : Opposite single V-notch in finite width plate (P=40N) 

 Case 3: Opposite single V-notch in finite width plate (P=100N) 

1.3 Methodology 

 

 

 

 

 

 

 

 

 

 

Figure 1: Methodology 
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1.4 Proposal 

In the proposed methodology, a bi linear analysis is carried out in which the material’s yield 

stress is initially specified less than the maximum concentrated stress in the finite element 

analysis (FEA) and then decreased successively. The continual decrease in yield stress of the 

material results in material flow within that localized region and uniform distribution of 

maximum stress will take place in the vicinity of that stress concentration region. Maximum 

stress level will reduce but with an increase in overall deformation and increased total strain 

energy in the structure. This overall deformation and total strain energy may be somewhat 

overestimated when matched with empirical values, but maximum stress value will be reduced. 

In our research we will observe how yielding influences the deflection as well as the total strain 

energy and the amount of stress resolved for different geometries and different loading scenarios. 

Finally, a tolerable level of yield drop will be established to prevent any unrealistic change in 

deflection and unrealistic change in total strain energy. 

1.5 Scope of Study 

The objective of this research is to investigate, develop and validate a new method to resolve and 

eliminate the unreal overestimated stress concentration in FE model. The stress levels will be 

studied within the linear elastic range. Stress concentration factor and the maximum stress value 

for the specified geometry will be calculated by empirical solutions/experimental results. The 

same geometry will be modeled using ANSYS and linear FEA will be performed first to 

determine the maximum stress encountered in the system. Stress concentration factor and 

maximum stress value determined by the FE analysis will be compared to the stress 

concentration factor and maximum stress value calculated by formula earlier. Unreal and 

exaggerated stress concentrations will be then resolved and eliminated by carrying out a bi-linear 

analysis. Results will be analyzed after artificially introducing a non-linear material model and 

forced yielding. The corresponding changes in the overall deformation and total strain energy 

will be studied. 
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2 LITERATURE REVIEW 

 

Several studies [1-3] have been carried out to improve the structural design by removing 

geometric stress concentration. However removing the unreal overestimated stress 

concentrations encountered in finite element model by this methodology has not been published. 

Overestimation of stress concentration in finite element model may be more likely due to 

inadequate mesh density or unreasonable nodal connectivity. It has also been observed that mesh 

density as well as meshing method, considerably influences the FEA results. 

M. Murat Topac, H. Eren Enginar, N. Sefa Kuralay [1] assessed the effect of two design 

parameters i.e. the transition length and transition radius of the critical region’s geometry on the 

stress concentration at the corner bends of an anti-roll bar with the help of Design of 

Experiments approach. Finite element analysis was used to obtain maximum stress values in 

order to determine different design possibilities. 

David Taylor, Andrew Kelly, Matteo Toso and Luca Susmel [2] presented two approaches for 

attaining variable-radius notches. The first approach known as Local Curvature Method (LCM) 

is implemented by initially performing a stress analysis on a constant radius notch and then using 

the post processing results to change the local curvature as a function of local surface stresses.  

LCM was observed to successfully reduce maximum stress at a 90o fillet by factor of 2. In their 

second approach, a commercial software (modeFrontier) was used to investigate the possibility 

of different variable radius notch designs with the help of different finite element models. The 

results were seen to be better in spite of being expensive as far as computing resources were 

concerned. Verification was done by carrying out experimental tests to measure brittle fracture 

strength. 

 

Monika G. Garrell, Albert J. Shih, Edgar Lara-Curzio, and Ronald O. Scattergood [3] 

investigated the stress concentrations at specific locations in ASTM D 638 Type IV flat tension 

specimen with the help of experimental results and finite element analysis. They established a 

linear relationship between the magnitude of the stress concentration factor and the ratio of the 

width in the gage section and the arc radius of the transition region. Their study indicated that the 

magnitude of the stress concentration factor can be reduced by redesigning the specimen 
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geometry without changing its overall size particularly by increasing the radius of the arc in the 

transitional area. 

 

My research involves resolving and eliminating overestimated, unreal and exaggerated stress 

concentration in a finite element model without changing the geometry of the structure. The size 

and dimensions of the structure remain unchanged from the beginning till the point where the 

stress concentration is resolved by this method. With no change being done in the geometry, the 

application of this technique will ensure an improved structural design with low computational 

costs. 
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3 STRESS CONCENTRATION 

3.1 Stress Concentrations 

A localized intensification of a stress field due to geometric discontinuities in an object is called 

a stress concentration. The region where the geometry rapidly changes upsets the smooth flow of 

stresses. These stress concentrations mostly occur at sharp corners, holes and notch tips. For an 

efficient mechanical design, it is vital to know exactly how much the stress is amplified at these 

points. Stress concentration factor Kt gives us this measure of how much the maximum stress 

will exceed the nominal values of stress. Stress concentration factor is calculated by the 

following formula 

Stress concentration factor ݐܭ ൌ  
ఙಾಲ೉

ఙಿೀಾ
  for normal stress (tension or bending) 

The maximum stress produced in the structure is evaluated on the basis of the elasticity theory 

and it can be obtained from an experiment or by finite element analysis. According to the theory 

of elasticity, for a homogeneous elastic body, 2D distribution of stress under known loading is a 

function of only geometry and does not depend on the material properties. 

Since the ultimate goal of the mechanical design is to keep the maximum stresses that are caused 

by loads below the yield stress limit of the material, we are going to deal with elastic stress 

concentration factors throughout our study. 

3.2 Accurateness of stress concentration factor 

Stress concentration factors are attained with the help of elasticity theory in the form of 

analytical solutions, with finite element method in the form of computational results, and with 

photo elastic and strain gage tests in the form of experimental results. When the experimental 

testing is carried out with adequate accuracy, close agreement is expected to be achieved with 

well-recognized analytical stress concentration factors. The theoretical base for determining the 

stress concentration factors is more solid than the use of these factors for design and analysis. 

The solutions for the theory of elasticity are established on formulations that assume the material 

to be isotropic and homogenous. On the other hand, in reality materials may be neither uniform 

nor homogenous and may even contain defects. For the accuracy that is wanted, statistical 

routines need to be carried out and so more data is often demanded. At the same time, directional 

effects present in materials should be cautiously considered. The mechanical design engineer 

may not delay his work to search for precise answers to these questions. Therefore the available 
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information must be reviewed each time while the conclusions should be made use in outlining 

reliable approximate design procedures and inclining to a safe side in case of doubtful scenarios.  

3.3 Stress concentration (2D scenario) 

For a thin plate that is subjected to forces applied at the boundary in the x-y plane, the stress 

components σz, τxz τyz are assumed to be zero. This is called plane stress state and the stress 

components σx, σy, τxy are functions of x and y only. 

In a plane elastic body, the equilibrium equations along with the compatibility equation for the 

stresses σx, σy, τxy are  

߲σx
ݔ߲

൅ 
߲τxy
ݔ߲

൅ Ṕܸݔ ൌ 0 

߲τxy
ݔ߲

൅ 
߲σy
ݕ߲

൅ Ṕܸݕ ൌ 0 

ቆ
߲ଶ

ଶݔ߲
൅

߲ଶ

ଶݕ߲
ቇ ሺσx ൅  σyሻ ൌ  െ݂ሺݒሻ ቆ

߲Ṕܸݔ

ݔ߲
൅
߲Ṕܸݕ

ݕ߲
ቇ 

Where Ṕܸݔ, Ṕܸݕ represent the body force/unit volume components in x and y directions and f(v) 

is a function of Poisson’s ratio where f(v) = 1+v for plane stress. 

The surface conditions are  

௫݌ ൌ ௫ߪ݈ ൅ ݉߬௫௬ 

௬݌ ൌ ݈߬௫௬ ൅  ௬ߪ݉

Where px, py are the surface force / unit area components at the boundary in the x and y 

directions. l and m are the direction cosines of the normal to the boundary. For constant body 

forces 
డṔ௏௫

డ௫
ൌ

డṔ௏௬

డ௬
 = 0 and the equation becomes 

ቆ
߲ଶ

ଶݔ߲
൅

߲ଶ

ଶݕ߲
ቇ ሺσx ൅  σyሻ ൌ 0 

For 2D problems with constant body forces, usually these equations are enough to evaluate the 

distribution of stress. However, these equations do not consist of material constants. Therefore in 

case of plane problems with constant body forces, the stress distribution depends on the 
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geometry and loadings on the boundary and does not depend on the material. Similarly this 

means that for plane problems, stress concentration factors are functions of the geometry and 

loadings and not of the material type. This conclusion can be used as an important advantage 

where stress concentration factors can be established using experimental photoelastic tests by 

making use of a different material other than that used to fabricate a structure. 

The stress concentration factors for the flat members mentioned here forth are for 2D stress 

states i.e. plane stresses and are applicable to very thin sheets where thickness/radius  0. As 

this ratio increases, we move towards a plain strain state where the stress at notch increases at the 

middle of thickness and decreases at the surface. 
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4 CASE STUDY 

 

4.1 Opposite U-notches in finite width plate 

Reliable data is available from strain gage tests (Kikukawa 1962), photoelastic tests (Flynn and 

Roll 1966), and mathematical analysis (Appl and Koerner 1969) for opposite U notches as can be 

observed in Chart 1 (Appendix A).  

 

Figure 2: Opposite U notches in finite width thin element 

Barrata (1972) matched empirical formulas for Ktn with values obtained experimentally and 

established that these formulas are reasonable for analytical use. 

Barrata and Neal (1970) 

௧ܭ ൌ ቌ0.780 ൅ 2.243 ඨ
݄

ݎ
ቍ ቈ0.993 ൅ 0.180  ൬

2݄

ܦ
൰ െ 1.060  ൬

2݄

ܦ
൰
ଶ

൅  1.710  ൬
2݄

ܦ
൰
ଷ

቉ ൬1 െ 
2݄

ܦ
൰ 

Heywood (1952) 

௧௡ܭ ൌ 1 ൅ ቈ
݄ ⁄ݎ

1.55 ሺܦ ݀⁄ ሻ െ 1.3
቉

௡

 

݊ ൌ
ܦ ݀ െ 1 ൅  0.5 ඥ݄ ⁄⁄ݎ

ܦ ݀ െ 1 ൅ ඥ݄ ⁄⁄ݎ
 

With h the depth of a notch, h = (D – d) / 2 

Referring to Chart 1, the first equation provides values which are in conformity with the solid 

curves where r/d < 0.25.  

In Chart 1 (Appendix A) the range of r/d values from 0 to 0.3, and D/d values from 1 to 2, cover 

the most extensively used range of parameters which match up with the observations and 

findings of Kikukawa (1962), Flynn and Roll (1966) and Appl and Koerner (1969). With the 



20 
 

help of significant evidence, it is observed that for larger values of r/d and D/d, the Kt vs D/d 

plot for corresponding r/d ratio does not level out but attains a peak and then drops gradually to a 

slightly lower Kt value as D/d approaches infinity. The small effect is not visible in Chart 1.  

4.2 Opposite V-notches in finite width plate 

As far as geometry is concerned, V shaped notch is of significant importance in mechanical 

design engineering. It is present in various machine elements. The V shaped notch is also used 

for stress concentration test pieces for fatigue and fracture tests.  

For opposite V-notches in finite width plate, stress concentration factors have been found as a 

function of the V angle α (Appl and Koerner 1969). According to the Leven-Frocht (1953), Ktα 

and the Ktu of a corresponding U notch can be related (Chart 2-Appendix A) which proves that 

for D/d = 1.66 the angle α has negligible effect up to 90o. 

 
Figure 3: Opposite V notches in finite width thin element 

For D=50mm, h= 10mm, r=0.2mm, t=0.05mm, d=30mm, according to the Chart 2.4 and Chart 

2.7, we can calculate the stress concentration factor Kt :  

௧ܭ ൌ ଵܥ ൅ ܥଶ
ଶ௛

஽
൅ ଷܥ ቀ

ଶ௛

஽
ቁ
ଶ
൅ ସܥ ቀ

ଶ௛

஽
ቁ
ଷ
  ; Where 

ଵܥ ൌ 1.037 ൅ 1.991ඨ
݄

ݎ
൅ 0.002 

݄

ݎ
 

ଶܥ ൌ െ1.886 െ 2.181ඨ
݄

ݎ
െ 0.048 

݄

ݎ
 

ଷܥ ൌ 0.649 ൅ 1.086ඨ
݄

ݎ
൅ 0.142 

݄

ݎ
 

ସܥ ൌ 1.218 െ 0.922ඨ
݄

ݎ
െ 0.086 

݄

ݎ
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We get C1= 15.2155, C2= -19.7080, C3= 15.4282, C4= -9.6015 for our case and hence Kt= 9.1863 

As per the equation σmax = Kt σnom where σnom = P / td 

 For Case 1 (Opposite U notches), P = 40N, 

 
Figure 4 : Case 1 - Axial tension P = 40N applied to opposite U notches in finite width plate 

σnom = 40 / (0.05)(30) = 26.667 MPa 

σmax = (9.1863)(26.667) = 244.9683 MPa 

 For Case 2 (Opposite V notches), P = 40N, 

 
Figure 5: Case 2 - Axial tension P = 40N applied to opposite V notches in finite width plate 

σnom = 40 / (0.05)(30) = 26.667 MPa 

σmax = (9.1863)(26.667) = 244.9683 MPa 

 For Case 3 (Opposite V notches), P = 100N, 

 
Figure 6: Case 3 - Axial tension P = 100N applied to opposite V notches in finite width plate 

σnom = 100 / (0.05)(30) = 66.667 MPa 

σmax = (9.1863)(66.667) = 612.4203 MPa 
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4.3 Linear FE Analysis of Opposite U notched and V notched plate 

4.3.1 Geometric Dimensions 

The U notched and V-notched plate is modelled as a symmetric model so the FE analysis is 

carried out on one of the quadrants in order to save the computation cost and time. 

4.3.2 Material Properties 

As mentioned before, for plane problems the stress concentration factors are functions of the 

geometry and loading and not of the type of material. However to proceed with the solution, the 

material properties entered are as follows: 

Young’s Modulus, E = 200e9 Pa; Poisson’s Ratio, ν = 0.3 

4.3.3 Element Type 

FEA model of double U and V notched plate was modelled in the global Cartesian coordinate 

system using PLANE182, PLANE183, SOLID185 and SOLSH190. 

 

 
Figure 7: PLANE182 Element [8] 

PLANE182 is mostly used for 2-D modeling of solid structures. The element can be used as 

either a plane element (plane stress, plane strain) or an axisymmetric element. It has four nodes 

with two degrees of freedom per node i.e. translations in the x and y directions. This element is 

able to model plasticity, hyperelasticity, stress stiffening, large deflection, and large strain. It also 

has mixed formulation capability for simulating deformations of nearly incompressible 

elastoplastic materials, and fully incompressible hyperelastic materials [12]. 
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Figure 8: PLANE183 Element [8] 

PLANE183 is a higher order 2-D element with eight nodes or six nodes. This element shows 

quadratic displacement behavior and is more preferred to model meshes that are irregular. For 

eight or six nodes, each node has two degrees of freedom i.e. translations in the x and y 

directions. It can also be used as a plane element (plane stress, plane strain and generalized plane 

strain) or as an axisymmetric element [12].  

 

 

Figure 9: SOLID185 Element [8] 

SOLID185 is used for 3-D modeling of solid structures. It consists of eight nodes with three 

degrees of freedom at each node i.e. translations in the x, y, and z directions. The element offers 

plasticity, hyperelasticity, stress stiffening, creep, large deflection, and large strain capabilities. It 

also has mixed formulation capability for simulating deformations of nearly incompressible 

elastoplastic materials, and fully incompressible hyperelastic materials [12]. 
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Figure 10: SOLSH190 Element [8] 

SOLSH190 is used for shell structures with a variety of thickness ranging from thin to 

moderately thick elements. This element offers continuum solid element configuration and 

consists of eight nodes with three degrees of freedom per node i.e. translations in the x, y, and z 

directions. Therefore no extra effort is required to connect SOLSH190 with other continuum 

elements. The element provides plasticity, hyperelasticity, stress stiffening, creep, large 

deflection, and large strain capabilities. For simulating deformations of nearly incompressible 

elastoplastic materials, and fully incompressible hyperelastic materials, it uses mixed u-P 

formulation capability. The element evaluation is centered on logarithmic strain and true stress 

measurements [12]. 

4.3.4 Shear locking and Hourglassing: Full integration vs Reduced integration  

In finite element analysis, shear locking and hourglassing are two main numerical problems 

because they may result in false solutions for some situations. Fully integrated first order solid 

elements are overly stiff in bending applications as well as modal analysis and may suffer from 

shear locking. FEA tool like ANSYS can therefore give us spurious stresses and wrong 

displacements when fully integrated first order elements are used [20]. 

 

It has been shown that the displacement evaluation for linear elastic finite element analysis 

denotes a lower limit on the strain energy of the system which results in the overestimation of 

system stiffness matrix. Therefore it might be possible to attain a more accurate result by not 

calculating the element stiffness matrices exactly in the numerical integration. This likelihood is 

conceivable if the error in the numerical iteration compensates suitably for the exaggeration of 

the structural stiffness due to the finite element discretization. Hence, final solutions can be 

actually improved by reduction in the typical numerical integration order that is used to evaluate 
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the element stiffness matrices. This theory is stated as reduced integration. This scheme offers a 

softening effect since higher order polynomial terms will disappear at Guass points of a low 

order rule, thus excluding these terms from involvement in the system stiffness matrix. Complex 

displacement modes show less resistance to deformation with less sampling points [21]. 

 

However reduced integration is not flawless. Reduced integration first order element leads to a 

numerical complexity called hourglassing because it can be excessively flexible. Therefore 

hourglassing has to be appropriately controlled. And if it is not properly controlled, the solutions 

from this element type cannot be used [20].  

 

For the FE analysis of opposite U and opposite V notches in finite width plate, reduced 

integration is selected as the element technology. Nevertheless, hourglassing effect is controlled 

and solution accuracy is checked by refining the mesh and verifying that the ratio of artificial 

energy to total energy is less than 5%. Plane stress with thickness was designated as the element 

behavior.  Mapped meshing was used. 

 

4.3.5 Boundary Conditions 

Symmetric boundary conditions were applied on the left and top side of the geometry.  After 

boundary conditions, pressure having magnitude of -16MPa (Case 1 & Case 2) and -40MPa 

(Case 3) was applied on the right side. 

 

 

Figure 11: Front view of FE model and boundary conditions 

 



26 
 

 

4.3.6 Finite Element Analysis 

3D Finite Element Analysis of double U and V notched plate was carried out using SOLID185 

and SOLSH190 element type with same boundary conditions and same loading scenarios as 

applied to the 2D model. The converged maximum stress was found to be overestimated in the 

same manner as it was observed in the 2D analysis with PLANE182 and PLANE183 element 

type. However, the computation time increased to a great extent when the number of elements 

were increased in 3D model to achieve a finer mesh in order to meet the convergence criteria. 

Therefore the detailed investigation and validation of the proposed methodology was carried out 

by using PLANE182 element type. 

A 2D linear static analysis with PLANE182 element type was performed and mesh was refined 

several times until the convergence was achieved with the total number of elements reaching up 

to 230400.  This gave the maximum converged value at the top of notch. 

4.3.7 Solutions 

 Case 1 (Opposite U notches):P = 40N 

Table 1 shows the convergence of the maximum Von mises stress, maximum stress in X- 

direction, maximum deflection and total strain energy as the number of elements are increased.   

                                           

No. of 
elements 

Max. 
von mises 

Max. Sx Max. deflection 
Total Strain 

Energy 

900 158.964 173.664 0.004704 0.0463545 

3600 198.324 210.845 0.00470586 0.0463475 

14400 234.448 242.570 0.00470616 0.0463456 

57600 254.990 259.721 0.00470624 0.0463452 

230400 266.818 269.344 0.00470626 0.0463451 

 

Table 1: Case 1 - FE Solution by mesh refinement 

Figure 12 shows the trend of the maximum stress as the number of elements increase. Numerical 

convergence criteria proposed by G.B. Sinclair in [17] and [18] is as follows 

1st convergence check: 
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2nd convergence check: 

 εs = 0.01 (excellent accuracy), εs = 0.05 (good), εs = 0.10 (satisfactory) 

Where ߪ௠௔௫
௖ = Maximum stress for coarse mesh 

௠௔௫ߪ
௠  = Maximum stress for medium mesh 

௠௔௫ߪ
௙  = Maximum stress for fine mesh 

1st convergence check: (259.721- 242.57) > (269.344- 259.721) 

2nd convergence check: (269.344- 259.721) / 269.344 = 0.036  Good accuracy 

 

Figure 12:  Case 1 - Maximum Von Mises (MPa) vs No. of elements 

Figure 13 shows the ANSYS contour plot showing the converged maximum value of stress in x-

direction i.e. 269.344 MPa at the tip of the U-notch  

 

 

Figure 13: Case 1 - Contour plot - Maximum Stress Sx 
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 Case 2(Opposite V notches): P = 40N 

 

Table 2 shows the convergence of the maximum Von mises stress, maximum stress in X- 

direction, maximum deflection and total strain energy as the number of elements are increased. 

 

          
No. of 

elements 

Max. 
von mises 

Max. Sx Max. deflection 
Total Strain 

Energy 

900 156.809 171.457 0.004705 0.0463655 

3600 196.258 209.202 0.004707 0.0463580 

14400 233.519 241.686 0.004707 0.0463558 

57600 254.420 259.171 0.004707 0.0463553 

230400 266.383 268.915 0.004707 0.0463552 

 

Table 2: Case 2 - FE Solution by mesh refinement 

Figure 14 shows the trend of the maximum stress as the number of elements increase. Numerical 

convergence criteria proposed by G.B. Sinclair in [17] and [18] is implemented 

1st convergence check: (259.171- 241.686) > (268.915- 259.171) 

2nd convergence check: (268.915- 259.171) / 268.915 = 0.036  Good accuracy 

 

 
Figure 14: Case 2 - Max. Von Mises (MPa) vs No. of elements 
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Figure 15 shows the ANSYS contour plot showing the converged maximum value of stress in x-

direction i.e. 268.915 MPa at the tip of the V-notch  

 

 

Figure 15: Case 2 - Contour plot - Maximum Stress Sx 

 

 Case 3 (Opposite V notches):P = 100N 

 

Table 3 shows the convergence of the maximum Von mises stress, maximum stress in X- 

direction, maximum deflection and total strain energy as the number of elements are increased.        

                                      

No. of 
elements 

Max. 
von mises 

Max. Sx Max. deflection 
Total Strain 

Energy 

900 392.023 428.643 0.011762 0.289784 

3600 491.645 523.005 0.011767 0.289737 

8100 548.681 573.921 0.011768 0.289727 

14400 583.797 604.214 0.011768 0.289724 

57600 636.049 647.928 0.011768 0.289721 

230400 665.958 672.286 0.011768 0.289720 

 

Table 3: Case 3 - FE solution by mesh refinement 

Figure 16 shows the trend of the maximum stress as the number of elements increase. Numerical 

convergence criteria proposed by G.B. Sinclair in [17] and [18] is implemented 

1st convergence check: (647.928 - 604.214) > (672.286 - 647.928) 

2nd convergence check: (672.286 - 647.928) / 672.286 = 0.036  Good accuracy 
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Figure 16:  Case 3 - Max. Von Mises (MPa) vs No. of elements 

Figure 17 shows the ANSYS contour plot showing the converged maximum value of stress in x-

direction i.e. 268.915 MPa at the tip of the V-notch  

 

 

Figure 17: Case 3 - Contour plot - Maximum Stress Sx 

 

Evaluating the empirical solutions derived from the experimental photoelastic tests using the 

geometric dimensions, the maximum stress according to the formula is calculated as 244.968 

MPa for Case 1 and Case 2; 612.420 MPa for Case 3. From ANSYS, we have obtained the 

converged maximum stress the value of as 269.344 MPa for Case 1, 268.915 MPa for Case 2 and 

672.286 MPa for Case 3.  
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4.3.8 FEA Stress concentration factor [19] 

The area under the two stress gradient curves i.e. the stress concentration and uniform stress field 

must be equal according to the principle of equivalent energy. It is known that the area under the 

uniform stress field curve AKt = σnom * Distance.  

For FEA, we can get this AKt in ANSYS by using path operations and selecting the nodes to 

define the path which is the distance from the notch tip to the center of the plate. This is followed 

by the application of integration calculations on mapped path item i.e. Sx (stress in x direction) 

in our case to find the area (Appendix B). Solving for σnom, σnom = AKt / Distance 

 

Figure 18: Using integration on mapped path items 

Case 1(Opposite U notches): P=40N 

 

Figure 19: Case 1-Stress (Sx) vs Distance plot in ANSYS 

As we know AKt= σnom* Distance, σnom = AKt / Distance = 400.01 / 15 = 26.6673 MPa 

So the FEA Kt for double V notched plate will be σmax/σnom = 269.34 / 26.6673 = 10.10 

% Error (Formula – FEA) = (9.1863-10.10)/9.1863 *100 = -9.946% 
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Case 2 (Opposite V notches):P=40N 

 

Figure 20: Case 2-Stress (Sx) vs Distance plot in ANSYS 

As we know AKt= σnom* Distance, σnom = AKt / Distance = 400.01 / 15 = 26.6673 MPa 

So the FEA Kt for double V notched plate will be σmax/σnom = 268.91 / 26.6673 = 10.0839 

% Error (Formula – FEA) = (9.1863-10.0839)/9.1863 *100 = -9.8070% 

 

Case 3 (Opposite V notches): P=100N 

 

Figure 21: Case 3 - Stress (Sx) vs Distance plot in ANSYS 

As we know AKt= σnom* Distance, σnom = AKt / Distance = 1000 / 15 = 66.667 MPa 

So the FEA Kt for double V notched plate will be σmax/σnom = 672.286 / 66.667 = 10.0842 

% Error (Formula – FEA) = (9.1863-10.0842)/9.1863 *100 = -9.7748% 
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4.3.9 Linear FEA with different notch radii 

For Case 1, linear finite element analysis was carried out for geometries with different notch 

radii to evaluate the trend of maximum stress overestimation as the radius of the notch was 

increased.  

Radius(mm) h/r Force(N) 
Kt 

(Formula) 
Max. Stress 
(Formula) 

Kt (FEA) 
Max. Stress 

(FEA) 

0.2 50 40 9.1863 244.968 10.101 269.344 

0.4 25 55 6.6316 243.160 7.334 268.912 
1 10 84 4.3648 244.429 4.845 271.313 

 

Table 4: Maximum stress analysis with variation of notch radius 

As it can be observed from Table 4, the maximum stress in the assembly of opposite U notches 

in finite width plate obtained by linear finite element analysis is found to be overestimated in the 

same manner as radius is increased when compared to the maximum stress value evaluated by 

the empirical solutions based on the experimental photoelastic tests.  
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5 Stress Resolving Methodology 

 

5.1 Bilinear Analysis 

The proposed stress resolving technique to eliminate overestimated stress concentration consists 

of the following steps.  

 A linear finite element analysis is conducted while specifying only the material properties 

for a linear material model without specifying yield stress of the material. 

 After ensuring that convergence has been achieved, the overestimated maximum stress 

value is recorded. 

 A nonlinear material model is then introduced and yield stress of the material is specified 

less than the maximum stress which is decreased successively in the subsequent iterations 

while the results are analyzed.  With the yield stress having a decreasing trend, the 

maximum stress levels also get reduced. At the same time there is an increase in the 

overall deflection and total strain energy. Thus, this yield drop has to be limited up to a 

value where distribution of stress remains uniform and the change in deformation and 

total strain energy is linear. The maximum stress at point where the drop in yield stress is 

limited will be the resolved stress. 
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6 Results 

6.1 Computational Results 

Case 1 (Opposite U notches): P=40N 

As seen in the table the overestimated stress concentration was resolved by artificially 

introducing a nonlinear material model and dropping the material’s yield strength below the 

maximum stress produced. In successive iterations, it can be observed that by reducing the yield 

stress of the material, the stress levels decline and at the same time the overall deflection and 

total strain energy increases. 

Case 
Yield 

Strength 
(MPa) 

Max. 
(Von 

Mises) 
Max.Sx 

% Error 
Kt 

Deflection 
(mm) 

% change 
in 

deflection 

Total 
Strain 
Energy 

% change 
in total 
strain 

energy 
Linear  266.818 269.344 -9.949 0.00470626 0 0.0463451 0 

 270 266.818 269.344 -9.949 0.00470626 0 0.0463451 0 
 265 265 267.565 -9.223 0.00470627 0.0002125 0.0463451 0 
 260 260 262.523 -7.165 0.00470627 0.0002125 0.0463452 0.000216 
 255 255 257.485 -5.108 0.00470628 0.000425 0.0463454 0.000647 
 250 250 253.551 -3.502 0.00470629 0.0006374 0.0463455 0.000863 

Resolved 
245 245 249.672 -1.919 0.00470630 0.0008499 0.0463457 0.001295 
240 240 244.496 0.194 0.00470632 0.0012749 0.0463462 0.002373 

 235 235 241.812 1.290 0.00470635 0.0019123 0.0463466 0.003237 
 230 230 238.223 2.755 0.00470637 0.0023373 0.0463471 0.004315 
 225 225 233.250 4.785 0.00470640 0.0029748 0.0463476 0.005394 
 220 220 230.769 5.797 0.00470645 0.0040372 0.0463485 0.007336 

 

Table 5: Case 1 - Stress resolving by dropping yield of material 

Overestimated maximum stress value of 269.344 MPa was observed in linear FEA and that value 

has been reduced to around 244.496 MPa which is the resolved stress in this case. Drop in yield 

stress of material is limited where the change in overall deformation and total strain energy starts 

showing non-linear behavior and starts increasing drastically.  

Percent change in deformation was calculated according to  

% change in deformation = (Resolved Case Deformation – Base Case Deformation) X 100 
Base Case Deformation 

 

Percentage change in total strain energy was calculated according to 

% change in total strain energy = (Resolved Case TSE – Base Case TSE) X 100 
Base Case TSE 
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Figure 22: Case 1 - Max. Stress (Sx) vs Yield Strength (MPa) 

 

Figure 23: Case 1 - Maximum Deformation vs Yield Strength 

 

Figure 24: Case 1 - Total Strain Energy vs Yield Strength 

 

 

210

220

230

240

250

260

270

280

220 225 230 235 240 245 250 255 260 265 270

M
ax
 S
tr
e
ss
 S
x

Yield Strength (MPa)

0.0047062

0.0047062

0.0047063

0.0047063

0.0047064

0.0047064

0.0047065

0.0047065

220 225 230 235 240 245 250 255 260 265 270

M
ax
. D

e
fl
e
ct
io
n
 (
m
m
)

Yield Strength (MPa)

0.046343

0.046344

0.046345

0.046346

0.046347

0.046348

0.046349

220 225 230 235 240 245 250 255 260 265 270

To
ta
l S
tr
ai
n
 E
n
e
rg
y

Yield Strength (MPa)



37 
 

Case 2 (Opposite V notches): P=40N 

As seen in the table the overestimated stress concentration was resolved by artificially 

introducing a nonlinear material model and dropping the material’s yield strength below the 

maximum stress produced. In successive iterations, it can be observed that by reducing the yield 

stress of the material, the stress levels decline and at the same time the overall deflection and 

total strain energy increases. 

Case 
Yield 

Strength 
(MPa) 

Max. 
Stress 
(Von 

Mises) 

Max. 
Sx 

% Error 
Kt Deflection 

(mm) 

% change 
in 

deflection 

Total 
Strain 
Energy 

% change in 
total strain 

energy 

Linear  266.383 268.915 -9.77419 0.00470726 0 0.0463552 0 
 270 266.383 268.915 -9.77419 0.00470726 0 0.0463552 0 
 265 265 267.576 -9.2276 0.00470726 0 0.0463552 0 
 260 260 262.535 -7.1698 0.00470726 0 0.0463553 0.0002157 
 255 255 257.495 -5.11242 0.00470727 0.000212 0.0463554 0.0004314 
 250 250 253.335 -3.41426 0.00470728 0.000425 0.0463556 0.0008629 

Resolved 
245 245 249.661 -1.91449 0.00470729 0.000637 0.0463558 0.0013 
240 240 244.505 0.190252 0.00470731 0.001062 0.0463562 0.0022 

 235 235 241.594 1.378556 0.00470734 0.0017 0.0463567 0.0032 
 230 230 238.215 2.757902 0.00470736 0.002124 0.0463571 0.0041 
 225 225 233.241 4.788346 0.00470739 0.002762 0.0463576 0.0052 
 220 220 230.569 5.879087 0.00470744 0.003824 0.0463585 0.0071 

 

Table 6: Case 2 - Stress resolving by dropping yield of material 

 

Overestimated maximum stress value of 268.915 MPa was observed in linear FEA and that value 

has been reduced to around 244.505 MPa which is the resolved stress in this case. Drop in yield 

stress of material is limited where the change in overall deformation and total strain energy starts 

showing non-linear behavior and starts increasing drastically.   

Percent change in deformation was calculated according to  

% change in deformation = (Resolved Case Deformation – Base Case Deformation) X 100 
Base Case Deformation 

 

Percentage change in total strain energy was calculated according to 

% change in total strain energy = (Resolved Case TSE – Base Case TSE) X 100 
Base Case TSE 
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Figure 25: Case 2 - Maximum Stress (Sx) vs Yield Strength 

 

Figure 26: Case 2 - Maximum Deformation vs Yield Strength 

 

Figure 27: Case 2 -Total Strain Energy vs Yield Strength 
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Case 3(Opposite V notches): P=100N 

As seen in the table the overestimated stress concentration was resolved by artificially 

introducing a nonlinear material model and dropping the material’s yield strength below the 

maximum stress produced. In successive iterations, it can be observed that by reducing the yield 

stress of the material, the stress levels decline and at the same time the overall deflection and 

total strain energy increases. 

Case 
Yield 

Strength 
(MPa) 

Max  
Von Mises 

Max. 
Sx 

% Error 
Kt Deflection 

(mm) 
% change in 
deflection 

Total 
Strain 

Energy 

% change 
in total 
strain 

energy 
Linear  665.958 672.286 -9.7748 0.01176814 0 0.289720 0 

 680 665.958 672.286 -9.7748 0.01176814 0 0.289720 0 
 670 665.958 672.286 -9.7748 0.01176814 0 0.289720 0 
 660 660 666.42 -8.8169 0.01176815 8.49752E-05 0.289720 0 
 650 650 656.336 -7.1704 0.01176816 0.00016995 0.289721 0.000345 
 640 640 646.257 -5.5246 0.01176817 0.000254926 0.289721 0.000345 
 630 630 636.181 -3.8793 0.01176819 0.000424876 0.289722 0.00069 
 620 620 631.064 -3.0438 0.01176821 0.000594826 0.289723 0.001035 

Resolved 
610 610 621.725 -1.5189 0.01176823 0.000764777 0.289724 0.001381 
600 600 611.263 0.18942 0.01176828 0.001189653 0.289726 0.002071 

 590 590 605.013 1.20996 0.01176833 0.001614529 0.289729 0.003106 
 580 580 600.5 1.94687 0.01176838 0.002039405 0.289731 0.003797 
 570 570 590.567 3.56878 0.01176843 0.002464281 0.289733 0.004487 
 560 560 585.151 4.45314 0.01176851 0.003144082 0.289737 0.005868 
 550 550 576.423 5.8783 0.01176860 0.003908859 0.289741 0.007248 
 540 540 567.24 7.37775 0.01176871 0.004843586 0.289746 0.008974 

 

Table 7: Case 3 - Stress resolving by dropping yield of material 

 

Overestimated maximum stress value of 672.286 was observed in linear FEA and that value has 

been reduced to around 621.725 MPa which is the resolved stress in this case. Drop in yield 

stress of material is limited where the change in overall deformation and total strain energy starts 

showing non-linear behavior and starts increasing drastically.  .  

Percent change in deformation was calculated according to  

% change in deformation = (Resolved Case Deformation – Base Case Deformation) X 100 

Base Case Deformation 

Percentage change in total strain energy was calculated according to 

% change in total strain energy = (Resolved Case TSE – Base Case TSE) X 100 
Base Case TSE 
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Figure 28: Case 3 - Maximum Stress (Sx) vs Yield Strength 

 

Figure 29: Case 3 - Maximum Deformation vs Yield Strength 

 

Figure 30: Case 3 - Total Strain Energy vs Yield Strength 
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7 Conclusions and Advantages 

 

In this scheme, the fundamental idea was based on initiation of material flow in a localized 

region in the vicinity of maximum stress by using a nonlinear material model. Specifying the 

yield stress of the material less than the maximum stress in subsequent iterations reduced the 

unreal and overestimated stress concentration at the notch tip. By decreasing yield stress of the 

material in FE model artificially, overall deformation and total strain energy increases as 

expected. However, the vital feature of this methodology that needs to be highlighted is the 

limiting value to which change in overall deformation and total strain energy can be permitted 

for the stress to be termed as resolved. As it can be observed, this increase in overall deformation 

and total strain energy happens slowly and gradually up to a limit and that is the limit of the yield 

drop. It is recommended that the yield drop is limited to the point where the change in overall 

deformation and total strain energy starts behaving nonlinearly and begins to increase 

exponentially. The resolved stress by this technique is found to be near the maximum stress 

value that was calculated by the formula. 

 

Hence it can be concluded that by inducing an artificial nonlinear material model according to 

this methodology, overestimated FEA stress concentrations were resolved with negligible change 

in the deformation and total strain energy. In this study, validation was carried out with the 

available experimental solutions. This technique is not dependent on the type of material and 

loading. It should be clearly understood that yielding is not taking place in the real problem. As it 

was mentioned before the main goal of mechanical design is to keep the stresses within linear 

elastic region and to ensure that the maximum stresses are less than the yield limit. 

 

The method presented in this study to eliminate unreal and overestimated stress concentration in 

an FE model was validated on a simple and conventional model but it can also be applied for 

resolving overestimated stress concentration observed in similar class of complex structures. 

FEA is being widely used for evaluation and validation of mechanical designs and the proposed 

technique offers an application oriented working solution for an improved mechanical design by 

appropriately analyzing true stress distribution in the structure. 
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This stress resolving technique is advantageous in many ways. Overestimated stress 

concentration was economically resolved without changing the geometry of the FE model. As a 

result the structural design was improved and this lead to the prediction of true material response. 

Consequently several critical geometric parameters like thickness can be adjusted accordingly. 

At the same time the material can be selected in view of the resolved maximum stress. This can 

prove to be quite beneficial since reduced cost of material and weight of the structure are critical 

for aerospace applications. Finally, this methodology provides a greater margin for improvement 

in the safety factor as the maximum design load is resolved.  
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Appendix A- Charts

 
Chart 1: Stress concentration factor for flat tension bar with opposite U shaped notches [16] 
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Chart 2: Stress concentration factor for flat tension bar with opposite V shaped notches [16] 
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Appendix B - Tables 
 

S SX AKt 
0 269.34 0 

2.00E-02 235.14 5.0743 
4.02E-02 202.16 9.4777 
6.02E-02 177.98 13.281 
8.01E-02 159.51 16.618 
0.10005 144.76 19.652 
0.50009 62.181 54.927 
1.0006 43.829 80.591 
1.5004 36.344 100.42 
2.0005 32.109 117.45 
2.5007 29.344 132.78 
3.001 27.385 146.95 
3.5007 25.924 160.25 
4.0004 24.791 172.91 
4.5019 23.887 185.1 
5.0004 23.156 196.82 
5.5016 22.55 208.27 
6.0026 22.044 219.44 
6.5008 21.618 230.31 
7.0003 21.256 241.02 
7.5015 20.944 251.59 
8.0005 20.677 261.97 
8.5051 20.444 272.35 
9.0065 20.244 282.55 
9.5009 20.073 292.51 
10.006 19.922 302.61 
10.506 19.794 312.54 
11.006 19.684 322.4 
11.503 19.591 332.17 
12.004 19.513 341.97 
12.508 19.448 351.78 
13.004 19.397 361.41 
13.5 19.358 371.02 

14.003 19.33 380.76 
14.504 19.314 390.43 

15 19.308 400.01 
 

Table 8: List of path items for Case 1 
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S SX AKt 
0 268.91 0 

1.03E-02 254.54 2.705 
2.00E-02 234.76 5.0661 
4.02E-02 201.83 9.4624 
6.02E-02 177.69 13.259 
8.01E-02 159.26 16.591 
0.10005 144.54 19.621 
0.50009 62.199 54.875 
1.0006 43.845 80.549 
1.5004 36.35 100.38 
2.0005 32.11 117.42 
2.5007 29.343 132.74 
3.001 27.383 146.91 
3.5007 25.922 160.21 
4.0004 24.79 172.87 
4.5019 23.886 185.07 
5.0004 23.157 196.79 
5.5016 22.551 208.24 
6.0026 22.045 219.4 
6.5008 21.62 230.28 
7.0003 21.258 240.98 
7.5015 20.947 251.56 
8.0005 20.68 261.94 
8.5051 20.447 272.32 
9.0065 20.248 282.52 
9.5009 20.077 292.49 
9.5078 20.075 292.62 
10.006 19.927 302.59 
10.506 19.799 312.52 
11.006 19.689 322.38 
11.503 19.596 332.15 
12.004 19.518 341.95 
12.508 19.453 351.77 
13.004 19.402 361.4 
13.5 19.363 371.01 

14.003 19.335 380.75 
14.504 19.319 390.43 

15 19.314 400.01 
 

Table 9: List of path items for Case 2 
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S SX AKt 
0 672.29 0 

2.00E-02 586.89 12.665 
4.02E-02 504.58 23.656 
6.02E-02 444.23 33.148 
6.07E-02 443.12 33.341 
8.01E-02 398.15 41.478 
0.10005 361.36 49.051 
0.50009 155.5 137.19 
1.0006 109.61 201.37 
1.5004 90.875 250.96 
2.0005 80.275 293.55 
2.5007 73.358 331.86 
3.001 68.458 367.27 
3.5007 64.805 400.53 
4.0004 61.975 432.18 
4.5019 59.716 462.67 
5.0004 57.891 491.96 
5.5016 56.377 520.59 
6.0026 55.113 548.51 
6.5008 54.051 575.7 
7.0003 53.145 602.46 
7.5015 52.367 628.9 
8.0005 51.7 654.85 
8.5051 51.118 680.79 
9.0065 50.619 706.3 
9.5009 50.193 731.21 
10.006 49.816 756.46 
10.506 49.496 781.3 
11.006 49.222 805.96 
11.503 48.99 830.37 
12.004 48.794 854.88 
12.508 48.632 879.43 
13.004 48.505 903.51 
13.5 48.408 927.53 

14.003 48.338 951.88 
14.504 48.298 976.07 

15 48.284 1000 
 

Table 10: List of path items for Case 3 
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Appendix C- Contour plots for Linear FEA 

 

 

 

Figure 31: Stress (Sx) plot for Case 1 
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Figure 32: Von Mises Stress plot for Case 1 

 

Figure 33: Deformation plot for Case 1 
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Figure 34: Stress (Sx) plot for Case 2 
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Figure 35: Von Mises Stress plot for Case 2 

 

Figure 36: Deformation plot for Case 2 
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Figure 37: Stress (Sx) plot for Case 3 
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Figure 38: Von Mises stress plot for Case 3 

 

 

Figure 39: Deformation plot for Case 3 
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Appendix D - Contour plots for Stress Resolving Method 

 

 

 

Figure 40: Stress (Sx) plot for resolved stress in Case 1 
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Figure 41: Von Mises plot for resolved stress in Case 1 

 

 

Figure 42: Deformation plot for resolved stress in Case 1 
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Figure 43: Stress (Sx) plot for resolved stress in Case 2 
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Figure 44: Von Mises plot for resolved stress in Case 2 

 

 

Figure 45: Deformation plot for resolved stress in Case 2 
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Figure 46: Stress (Sx) plot for resolved stress in Case 3 
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Figure 47: Von Mises plot for resolved stress in Case 3 

 

 

Figure 48: Deformation plot for resolved stress in Case 3 


