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Abstract

Parkinson’s disease (PD) is a neurological disorder that affects dopaminergic
nerve cells in a specific area of brain called substantia nigra. PD symptoms
include muscle rigidity, tremors, and changes in speech and gait. There is no
cure for PD but surgical treatments, i.e., Deep Brain Stimulation (DBS), can
help in relieving PD symptoms. Traditionally, DBS is done in an open-loop
manner, where stimulation/pacing is always ON, irrespective of the patient
need. As a consequence, patients can feel some side effects due to the con-
tinuous high frequency stimulation. Therefore, closed-loop DBS is preferred
as it allows adjusting stimulation according to the patient need, and it con-
sumes less power as compared to open-loop DBS. However, selection of an
appropriate biomarker for closing the feedback loop is a major challenge in
close-loop DBS. In this thesis, we propose to utilize model checking, i.e., a
formal verification technique used to exhaustively explore the complete state
space of a system, for analyzing DBS controllers. We model the basal ganglia
(BG) region from hybrid automaton to timed automata using timed abstrac-
tion. Thereafter, we analyze the timed automata of the closed-loop DBS
controller in response to the BG model. Furthermore, we formally verified
the closed-loop DBS using timed computation tree logic (TCTL) properties,
i.e., safety, liveness and deadlock. We show that closed-loop DBS significantly
outperforms existing open-loop DBS controller in terms of energy efficiency.
In order to demonstrate the practical effectiveness of our work, we formally
analyze the closed-loop DBS for power efficiency and time behavior with two
different algorithms, i.e., Algorithms A and B. Our results demonstrate that
the closed-loop DBS running the Algorithm B is efficient in terms of time and
power as compared to Algorithm A but stability is not always guaranteed in
Algorithm B.
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Chapter 1

Introduction

1.1 Background

Parkinson’s disease (PD) is a nervous system disorder that affects the body
movement. PD symptoms starts gradually and therefore patients even may
not notice them at the early stages. With the passage of time, PD can have
a major impact on how patients talk, sleep, think and walk. There are more
chances to get PD in the age of sixty or later. After Alzheimer’s, PD is
considered to be the second major progressive neuro syndrome, which causes
vital incapacity that affects patients daily routine task, their families and
more importantly can imbalance their health system [1], [2]. One in seven
patients with PD is under the age of fifty years, i.e., around 0.3-% of the
under fifty years population is affected with PD in developed countries [3].
This frequency increases as age increases, e.g., at the age of sixty this rate
rises to 1% and at the age of eighty this rises even more to 3%. The studies in
UK reflect that in every 0.1M population, about 180 people are affected with
this disease [4]. Parkinson’s is probably expected to be a dominant disease
with the passage of time as the population age increases [5].
PD originates in the basal ganglia (BG) that cause an imbalance in body
movement. The BG is a collection of nuclei situated deeply within the brain
and is responsible for motion related activities. Primate BG is composed of
five different nuclei that are Striatum, Globus pallidus internus (GPi), Globus
pallidus externus (GPE), Subthalamic nucleus (STN) and Substantia nigra
(SN). Substantia nigra cells (SNc) play an important role in body movement
by releasing a chemical called dopamine to carry out messages around the
brain. In PD, SNc start dying, which results in reducing the dopamine lev-
els and thus the patient’s brain does not pass messages for regulating body
movement. This, in turn, leads to body movement difficulties called akinesia,
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muscular stiffness and slackening in physical movement, which is termed as
bradykinesia, shakiness in standing position and tremor [6]. More impor-
tantly, SNc cannot be replaced with healthy body cells, so when the level of
dopamine drops, the brain cannot pass as many messages to control the body
as required. To the best of our knowledge, researchers have not been able
to develop any remedies for PD, however there are several available ways to
manage the symptoms.

1.1.1 Parkinson’s Disease Treatment

L-dopa is traditionally used as a medicine for PD patients, as it helps to cre-
ate dopamine molecules within the BG. However, the chances for L-dopa to
successfully enter in dopaminergic neurons within SNc are quite less, typically
between 1-5 %. Moreover, it works for a limited time due to the tolerance
developed against this drug by people. Surgical options are also available as
a treatment for PD. Deep brain stimulation (DBS) is a tested and certified
treatment for motor symptoms where electric stimulations are delivered to
the BG region of the brain [11,12]. It is a surgical method in which electrodes
are implanted to generate pulses of high frequency (greater than 100 Hz) in
the GPi or STN [7].

1.1.2 Open-Loop and Closed-Loop DBS

The most commonly used DBS devices work in an open-loop manner where
stimulation/pacing is always ON with fixed parameters (e.g., voltage, pulse
repetition frequency, pulse width). In such devices, the stimulation parame-
ters are tuned through manual adjustment by the physicians. In this method,
the DBS battery drains faster due to the continuous stimulation and requires
surgical replacement every two to five years. Furthermore, due to continuous
high frequency stimulation, patients can experience some side effects [8], such
as speech deficits and cognitive dysfunction.
Closed-loop DBS can cater for these issues of continuous high frequency
stimulation side effects [8, 9] and the continuous drainage of battery. In
closed-loop DBS, a sensor continuously monitors the patients state through
a feedback signal, also termed as biomarker, and delivers stimulation ac-
cordingly. However, there are certain challenges in closed-loop DBS such as,
selection of an appropriate biomarker reflecting PD symptoms, a suitable
reference signal and implementing a controller to adapt to dynamic changes
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in the reference signal [15].

1.2 Literature Review

A model based design framework to validate different levels of feedback in
DBS controllers (open and closed-loop DBS), where BGM is implemented
in software and hardware (FPGA), is proposed in [14]. This BGM platform
generated the required responses to DBS and the framework can be used for
design and test DBS controllers. Similarly, a deep reinforcement learning
(RL)-based approach is introduced in [13] for analyzing the DBS controller
patterns that are effective in reducing PD symptoms and are energy effi-
cient. The BG region is modeled as a Markov decision process (MDP) and
the brain-on-chip (BOC) on an FPGA is used to evaluate the performance.
Several studies show that beta band activity can be a suitable feedback signal
for closed-loop DBS. However, during voluntary movement, beta oscillations
in BG desynchronize [10]. Therefore, a reference signal of constant beta
power may not be suitable for DBS controlling mechanism. Thus, to include
the ability in the controller to adapt to dynamic changes in the reference
signal is quite beneficial. Su et al. [15] proposed the beta band power of
GPi neuron that can be used as a biomarker of model state. They used a
Proportional-Integral (PI) controller to calculate the current DBS frequency
according to the dynamic variations in the beta band power. CTx-BG-Th
network’s computational model was used to test the closed-loop adjustment
of stimulation frequency approach.

1.3 Problem Statement and our Proposed So-

lution

The implantable medical devices, such as DBS controllers, are highly safety-
critical due to the dependency of human life on them. Therefore, such sys-
tems need to be rigorously analyzed to guarantee robustness and reliability.
Traditionally, the analysis of DBS controllers has been conducted using sim-
ulation. Due to the sampling based nature of simulation, it is very difficult
to guarantee that all bugs or corner cases are identified during the analy-
sis phase. We propose to employ model checking, i.e., a formal verification
technique, to verify design (system) and requirements (specifications) for a
variety of real-time embedded and safety critical systems [20]. Generally, the
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system is represented as an automaton (state space model) and specifica-
tions are written in temporal logic. Our DBS behavior can best be modeled
as timed automaton due to its critical time nature. So, we used the UPPAAL
model checker, that is based on the theory of timed automata. The query
language of UPPAAL is a subset of timed computation tree logic (TCTL).
There is a dire need of model checking for this problem, because a model
checker rigorously explores the complete state space of the DBS controller
with the given BG behavior, otherwise a missing test case can leads to a
wrong prediction of the battery life or timing behavior. To the best of our
knowledge, no formal verification method has been proposed in the context
of verifying DBS controllers before.
The main contributions of this thesis are as follows:

1. Timed abstraction of the BG model from Hybrid Automata to Timed
Automata.

2. Timed Automata of closed-loop DBS controller to generate relevant
behavior in response to BG model.

3. Identification of TCTL properties to verify safety, liveness and deadlock
freeness.

4. An approach for the formal power analysis of DBS controllers, i.e.,
open-loop DBS and closed-loop DBS, and their comparison.

5. A case study to analyze the power and timing behavior of DBS con-
trollers running a specific algorithm.

1.4 Outline of Thesis

The rest of the thesis is organized as follows: Section II explains some funda-
mental details required for the better understanding of the rest of the thesis.
Section II presents the Hodgkin-Huxley Neuron model implementation for
all the BG region in MATLAB. Section III presents the formal verification
of BG and DBS controller using the UPPPAAL model checker. Section IV
describes the power comparison between open-loop and closed-loop DBS and
a case study on the analysis of time and power with two different algorithms.
Finally, Section V concludes the thesis.
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Chapter 2

Preliminaries

2.1 Model Checking

Model checking is a technique to verify design and requirements for a variety
of real-time embedded and safety critical systems. A model checker exhaus-
tively explores the complete state space of a system to automatically verifies
if the given properties hold for the given system, otherwise it generates a
trace of the counter example. By observing the generated trace, systems
bugs can be easily identified for model correction. State space of a complex
system can be very large and can lead to the infamous state-space explosion
problem during properties verification, due to limited resources in terms of
time and memory. Therefore, complex system models need to be abstracted
in order to resolve this problem. There are many model checkers available,
like NuSMV, PRISM, SPIN, UPPAAL etc. and we chose UPPAAL due to its
distinct features including a user friendly GUI, counter example visualization
and ease to model real-time systems.

2.2 UPPAAL Model Checker

UPPAAL is a toolbox for modeling, validation and verification of real-time
systems, especially in those application areas where timing is critical, e.g.,
real-time controllers and communication protocols. UPPAAL model checker
is based on the theory of timed automata, which is a finite state machine
with clocks. The clocks allow us to keep track of continuous time.

2.2.1 Timed Automata

A timed automaton is a tuple (C, A, F, f0, E, Inv) where:
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• C is a set of clocks.

• A is timed automata, i.e., set of all actions, co-actions and the internal
τ -action.

• F is a finite set of locations.

• f0 ∈ F is an initial location.

• E is the set of edges.

• Inv assigns invariants to locations.

In UPPAAL, a system is composed of concurrent processes, where each of
them modeled as an automaton. The automaton has a finite set of locations
as nodes, and edges as arcs between locations. Transitions are annotated with
guards, selections, synchronization and updates. Guards and synchroniza-
tions on the transition edge are used to decide when to take a transition. At
the time of transition, two updates are possible: reset of clocks or assignment
of variables. Hand-shaking synchronization in UPPAAL allows two or more
automaton to take a transition at the same time. One automaton transmits
a signal using a! and the other automaton receive that signal using a?, where
“a” represents the synchronization channel, “!” represents transmission of a
signal and “?” represents reception of that signal.

2.2.2 Queries

Model verification is a critical step in model-checking where properties are
written in a formal language. UPPAAL utilizes a simpler version of TCTL
properties. UPPAAL query language supports the following types of prop-
erties:

• Safety property:

– E [] P (Exists globally P): There exists a path where query P is
always satisfies.

– A [] P (Always globally P): For all paths, query P always satisfies.

• Validation Property:

– E <> P (Possibly): There exists a path at which query P possibly
satisfies.

6



• Liveness property:

– A<> P (Eventually): For all paths, query P eventually satisfies.

– P →Q (Leads-to): Whenever P satisfies, query Q verifies eventu-
ally.

• Deadlock Property:

– E <> deadlock: Exists deadlock.

– A [] not deadlock: There is no deadlock.

7



Chapter 3

BG Implementation using
Hodgkin-Huxley Neuron Model

In this section, we present Hodgkin-Huxley(HH) neuron model along with im-
plementation of BG region, i.e., healthy and PD brain. This section presents
the BG model implementation on MATLAB with results differentiating the
PD from healthy brain as reported in [14].

3.1 Hodgkin-Huxley Neuron Model

In 1952 Hodgkin and Huxley proposed a conductance-based mathematical
model, which explains the ionic actions of neuron system as a system of cou-
pled ODE’s [16]. The mathematical equation representing the membrane
voltage of a simple neuron is represented as below [16]

Cm
dv

dt
= I − gk(Vm − vk)− gNa(Vm − vNa)− gl(Vm − vl)

where I is the total membrane current per unit area, Cm is the membrane
capacitance per unit area. gK,gNa and gl are the potassium, sodium and
the leak conductance’s per unit area, respectively. VK, VNa and Vl are the
potassium, sodium and leak reversal potentials, respectively.

3.2 BG Model

The general structure of the model is shown in Fig. 3.1 [14], with all basic
components - subthalamic nucleus (STN), thalamus (TH), globus pallidus
internus (GPi) and globus pallidus externus (GPe), showing their connec-
tions and capturing neural activity of the corresponding BG regions [14].

8



Figure 3.1: BGM network with components modeling the basal ganglia re-
gions.

Note that, despite the fact that TH is actually not a technically part of BG,
it reveals actions of GPi and assists in PD detection, and consequently is
incorporated into the model.
Each nucleus of BGM consists of n neurons, where n is a design parameter,
which is modeled using a variation of the Hodgkin-Huxley neuron model [16]
based on the region; so, these are named from their origin (i.e., STN, GPe,
GPi, TH). The electrical potential of each neuron mainly represents their ac-
tivity, that we denoted as vTH

j , vSTN
j , vGPi

j and vGPe
j , for neurons j ∈ {1,...,n}

of the respective region. We provided the final ODE’s for each neuron repre-
senting the membrane electric potential. The complete set of ODE’s for all
BG nuclei are given in [14].

3.2.1 Thalamic Neuron Model (TH)

The membrane electrical potential of a TH neuron, vTH , is calculated us-
ing [14]

Cm
dVth
dt

= −Il − INa − IK − IT − Igith + Iappth

Every TH neuron receives inhibitory input (Igith) from a GPi neuron.
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3.2.2 External Globus Pallidus (GPe) and Internal Globus
Pallidus (GPi) Neuron Model

They give intermediate processing between the input neurons (STN) that is
directly excited by DBS and output neurons (TH), where the effects of DBS
is observed. Therefore, sometimes they are considered as a hidden layer in
the model. Still, GPi activity recording is considered important for model
validation, because it gives good understanding about the working of the BG.
Electrical properties of GPE are given below [14].

Cm
dVGPe

dt
= −Il − INa − IK − IT − ICa − Iahp − Isnge,ampa

−Isnge,nmda − Igege − Istrgpe + Iappgpe

Electrical properties of GPi are given below [14].

Cm
dVGPi

dt
= −Il − INa − IK − IT − ICa − Iahp − Isngi − Igegi

−Istrgpe + Iappgpi

3.2.3 Subthalamic Nucleus (STN)

Every STN nuclei get events from two corresponding GPe nuclei, and stimu-
lations from the DBS device. We can also consider it as system input neurons,
because only STN cell get inputs from the DBS controller.
The electric potential emergence is given below as [14]

Cm
dVSTN

dt
= −Ia − IL − INa − IK − IT − ICak − Il − Igesn

−Icosn,ampa − Icosn,nmda +−Idbs

3.3 Experimental Detail and Results

In this implementation, the first step is the modeling of Hodgkin Huxley
equations for all the nuclei of BG region. There are different numerical
methods to solve the Hodgkin-Huxley model. Six different numerical meth-
ods have been used by the researchers to solve the arbitrary ordinary differ-
ential equation. The numerical methods used are: forward Euler, modified
Euler, backward Euler, Runge-Kutta, Adams-Bashforth-Moulton, predictor-
corrector and MATLAB ODE45 function. We used the forward Euler’s ap-
proach for solving and approximating the first order differential equation. We
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have created the MATLAB code for all the nuclei of BG region, and solved
the Hodgkin-Huxley model with Euler’s numerical method.
Thereafter, the second step is to generate and differentiate the behavior of
normal brain form PD brain through simulation. It has been reported [14]
that PD symptoms are reflected in globus pallidus internal (GPi) and tha-
lamus (TH) neural cell activity. TH cell exhibits regular spiking behavior
in the healthy brain, and these spikes becomes irregular in the PD affected
brain and the TH cell cannot fire properly with a regular pattern [14]. This
also holds for the GPi cell that in healthy brain GPi exhibits regular spiking
behavior, while in PD brain GPi spiking becomes more frequent and grouped
(burst-like). We were able to generate and differentiate the healthy behavior
from PD as can be seen in Figs. 3.2a & 3.2b, where the irregular spiking
behavior of the TH cell is highlighted in red color to show the difference
between neural activity in the healthy and PD brain. It can be noticed that
the GPi cell produces more bursting in the PD condition as compared to
healthy brain in Figs. 3.2c & 3.2d.

(a) TH cell neural activity in Healthy brain (b) TH cell neural activity in PD brain

(c) GPi cell neural activity in Healthy brain (d) GPi cell neural activity in PD brain

Figure 3.2: Thalamus (TH) and Globus Pallidus Internus (GPi) cell neural
activity pattern for Healthy and PD brain
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Chapter 4

Proposed Methodology

In this section, we present the formal verification of BG and closed-loop DBS
controller. BG model is the timed abstraction of hybrid automata to timed
automata. Thereafter, we present the timed automaton of closed-loop DBS
controller behavior in response to BG. Furthermore, we describe the TCTL
properties, i.e., safety, liveness and deadlock freeness, that can be used to
verify our models.

4.1 System Overview:

We propose a design methodology, where TH neuron behavior and beta power
of GPi neuron is monitored to detect the PD condition, as TH neuron pattern
and beta power of GPi cell assist in PD detection [14]. Thereafter, if PD
condition is detected then stimulations are delivered to STN.
The overview of the closed-loop system is shown in Fig. 4.1, where BG and
DBS model behavior can be observed in terms of broadcast channels, i.e.,
THget, THnotS, GPiget, BetaP and SP. THget indicates TH activation in
healthy or PD range, THnotS indicates that the TH activation is not sensed
at all, GPiget indicates that the beta band power lies in the healthy range,
BetaP indicates that the beta band power lies in the PD range and SP
indicates pacing from DBS to BG. The BG generates some actions, i.e.,
THget!, THnotS!, GPiget! and BetaP!, representing BG condition that DBS
takes as input. Thereafter, DBS processes these signals and generates the
pacing action, i.e., SP!, to the corresponding nuclei of BG if PD is detected.
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Figure 4.1: An overview of our proposed methodology representing the DBS
and BG model communication through some synchronization channels

4.2 Modeling the Basal Ganglia:

In order to verify the functionality of the closed-loop DBS controller, we
need a model of the BG that can capture how a human brain generates the
sensory events. BG can be modeled using non-linear differential equation
of Hodgkin-Huxley neuron model [14]. The model described by such non-
linear differential equations, consists of multiple continuous state variables
and comes under the category of a continuous-time systems. DBS algorithms
can be best modeled as a composition of timed-automata, while the relevant
features of BG can be described as a network of hybrid automata.
We model each neuron of BG as timed automata by abstracting the hybrid
automata, keeping in view the required level of detail for the analysis. As
mentioned in [18], a cell/neuron excitation (voltage change with time), upon
stimulation, can be partitioned into some distinct phases that are upstroke,
repolarization and resting. In each phase, the dynamics can be captured
by a linear differential equation and this behavior is described as a hybrid
automata. Thereafter, that hybrid automaton is further abstracted to timed
automata based upon the timing that a signal takes to travel through a cell
chain as mentioned in [18]. We abstracted the BG from hybrid automata to
timed automata using the same approach, where timing values (stimulation
time interval) for PD and healthy brain are calculated from the data avail-
able in literature [14]. Each BG neuron, i.e., TH, GPi, STN, is modeled as
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(a) STN Cell (b) GPI Cell

(c) TH Cell

Figure 4.2: Timed Automaton for the different regions of BG

a separate process with a global clock named x, and some activation signals,
i.e., THget!, THnotS!, GPiget!, BetaP!, Sget!, as shown in Fig. 4.2. Each BG
neuron automaton communicates with DBS timed automata using broadcast
channels, i.e., Sget!, THget!, THnotS!, GPiget! and BetaP!.

Firing pattern/time detail of these nuclei are mentioned in Table 4.1 for both
PD and healthy behavior, where the first two columns represent the mean
firing rates available in literature [14] for these nuclei. We calculated the time
interval of these spikes from these mean firing rates as presented in the last
two columns of Table 4.1. Fig. 4.2a shows a healthy STN cell that relays an
activation signal, i.e., Sget!, with an interval of [34-111ms]. We aim to analyze
TH and GPi cell beta power to detect the PD condition, so we randomly
modeled TH and GPi cell such that they can fire non-deterministically in
the healthy or PD range. For example, TH neuron can fire in any of these

Table 4.1: Mean Firing Rate Values of Different BG Regions

Cell Healthy PD Healthy PD
mfr [Hz] mfr [Hz] Spikes Interval [ms] Spikes Interval [ms]

STN [9,29] [11,41] [34.4,111.1] [24.3, 90.9]
GPI [59.8,101.2] [76.6,135.4] [9.8,16.7] [7.3, 13.1]
TH [10,20] [5,166.6] [50,100] [6,200]
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intervals, i.e., [50-100ms] for healthy and for PD the interval is [6-50ms] and
[>100ms]. Once TH non-deterministically relays its activation signal to DBS,
its behavior is analyzed according to the corresponding received signal, i.e.,
signal activation with respect to the corresponding time interval. GPi is
also modeled non-deterministically which means that it can generate healthy
or PD behavior by relaying its activation signal, i.e., GPiget! or BetaP!,
where GPiget! indicates that the beta band power of GPi neuron lies in the
healthy range and BetaP! indicates the beta band power value lies in the PD
range. Thereby, DBS model takes TH and GPi activation signals as input
and delivers stimulations to STN if required, i.e., SP!, from DBS to STN.
A separate automaton is also developed for modeling the refractory period,
i.e., amount of time it takes for an excitable membrane to be ready for a
second stimulus once it returns to its resting state after excitation, for each
cell of BG as shown in Fig. 4.3. Whenever it senses the STN activation,
i.e., Sget?, it will go to the SRP state followed by the inter state, where it
remains for the TSRP duration, i.e., STN refractory period duration. By
doing so, we limit any excessive neuron spikes, i.e., Sget? cannot be sensed
before the completion of the refractory period and again can be sensed after
TSRP time duration. The other two neurons, i.e., TH and GPi, are similarly
modeled as shown in Fig. 4.3.

(a) STN Cell (b) GPI Cell

(c) TH Cell

Figure 4.3: Timed Automaton Modeling the Refractory Period of different
regions of BG
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4.3 Modeling the DBS (Timed Automata):

We considered TH neuron pattern to detect any abnormality in BG, as re-
ported in [14], by considering that TH is not a part of BG but is there to just
assist in detecting the PD condition. After that, selection of a biomarker to
close the feedback loop is quite challenging in the closed-loop system but we
used the beta band power of GPi neuron to identify the PD condition [15],
since its an appropriate biomarker reflecting PD symptoms. So, in order to
detect PD, we used both signals, i.e., TH behavior and beta band power
of GPi neuron. The DBS controller takes some input signals from BG, i.e.,
THget!, THnotS!, GPiget! and BetaP!, indicating the brain condition, and
it delivers stimulations to STN, i.e., transmits the SP! signal to BG, if PD
is detected otherwise remains in its IDLE state of sensing.
The timed automata of DBS for a closed-loop DBS behavior in response to
BG is shown in Fig. 4.4. In this design implementation, the DBS model
remains in its initial state named IDLE as long as the received BG behavior
is healthy. Initially, the DBS controller keeps sensing the TH behavior in
its IDLE state by receiving the signals from TH automaton, i.e., THget! or
THnotS!. TH automaton is modeled non-deterministically because we want
to observe all combinations, i.e., either healthy or PD. The DBS model takes
further actions according to the received TH pattern with respect to time as
shown in Fig. 4.1, i.e., to transition back to the IDLE state if normal TH be-
havior is observed otherwise transition to the next state where GPi cell beta
power is monitored for further actions. Beta band power of GPi is monitored
through a signal from GPi automaton, i.e., GPiget!, which indicates that the
beta band power value lies within the normal range and BetaP! indicates
that the beta band power value of GPI lies in the PD range. The DBS takes
further actions after monitoring the GPi cell condition, i.e., delivers stimula-

Figure 4.4: Timed Automaton of Closed-loop DBS Controller.
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tions to STN if PD is detected otherwise it transitions to the IDLE state if
healthy behavior is detected. Once PD is detected, stimulations are delivered
to STN by relaying the activation signal, i.e., Sp!, from DBS to BG. There
are certain stimulation parameters that need to be considered while applying
stimulation, i.e., frequency, amplitude and pulse width.
After detecting the PD condition, stimulation is applied to STN but the
question is how do we ensure that applied stimulation of any random fre-
quency helps to suppress the PD symptoms. Jovanov et al. [14] provided a
range of beta band power that can be used to estimate the BG behavior,
i.e., healthy or PD. These frequency stimulations that can shift the beta
band power range from PD to healthy [15] are quite useful in the context
of suppressing PD symptoms. Fei et al. [15] implemented a PI controller,
that delivers the stimulation of randomly selected frequency and estimates
the beta band power of that applied stimulation. The calculated beta band
power is provided as a feedback signal to the PI controller and the error
is estimated, as the difference between the desired beta band power (refer-
ence signal) and calculated beta band power (feedback signal). Then the
PI controller changes the frequency of its current stimulation according to
the error, and keeps on changing the stimulation frequency until the error is
minimized or until the calculated beta band power (feedback signal) becomes
equal to the desired beta band power (reference signal). So, we implemented
the same methodology, where DBS delivers the stimulation of randomly se-
lected frequency and calculates the beta power of the applied stimulation.
Accordingly, we considered the relation between the applied DBS frequency
and beta power of that stimulation frequency from [15].
The DBS controller keeps on changing the stimulation frequency parameter
based upon the error between the calculated and desired beta band power
until the error is zero. The desired beta band power is known [15] as we
considered its value to be 110. Our DBS model keeps on iterating the loop
of StateC to StateD or StateG to StateH as shown in Fig. 4.4, where two
functions are called named Check Power and Feedback. Check Power is used
to calculate the beta band power in response to that selected/applied fre-
quency and the Feedback function is used to check the error between the
calculated beta band power and the desired beta band power. Once the beta
band power of that applied frequency signal becomes equal to the desired
beta band power, then the model transitions to StateE or SateI (stability
is achieved at this state). After achieving stability, stimulations are applied
for some time interval according to the design parameters of the considered
algorithm and transitions back to its IDLE state. Once the IDLE state is
reached, the same procedure is repeated, i.e., to detect PD and apply stim-
ulation and return to the IDLE state once stability is achieved.
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4.4 Verifying the DBS requirements

Model verification is a critical step where the requirements are verified against
their real-time embedded system or controller, i.e., DBS in our case, using
a formal tool. UPPAAL uses a simpler version of TCTL properties. We
formally verified our DBS model requirements using the following properties:

4.4.1 Safety

Safety properties are of the form: “something bad will never happen”. We
aim to deliver stimulations to STN whenever PD or any abnormality in BG
is detected. We made a separate automaton named P1 as shown in Fig. 4.5a
with a local clock named tt. BetaPS and Sp are broadcast channels, i.e.,
we want to detect these signals whenever they are transmitted by the DBS
timed automaton. The clock is reset on the reception of BetaPS signal, i.e.,
when PD is detected, and the clock keeps on counting until STN pacing,
i.e., reception of SP signal form DBS automaton. By doing this, we actually
count the total time it takes to deliver stimulations to STN after PD detec-
tion.

(a) P1 Automaton
(b) P2 Automaton

(c) P3 Automaton

Figure 4.5: Timed Automaton for Properties Verification
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Our model delivers stimulations to STN during its normal spike time inter-
val, i.e., not before the refractory period and not after the maximum spike
time interval of healthy STN cell. TSRP indicates the STN refractory period
and TSLRI indicates the longest rate interval, i.e., a longest time interval
that a healthy STN neuron can take to fire. Verified safety properties for
this requirement are mentioned below

• A[] P1.two a imply (P1.tt>=TSRP && P1.tt<=TSLRI )

• A[] not(P1.two a && P1.tt>TSLRI)

• A[] not(P1.two a && P1.tt<TSRP)

By using the above mentioned properties, we verified that stimulations
to STN are delivered within TSRP and TSLRI interval. We want to make
sure that bad state should never happen while fulfilling safety requirements.
There are two bad states possible in our case, i.e., STN stimulation delivery
before TSRP or after TSLRI, so the last two properties are just used to en-
sure that the bad state never happens.
Another automaton named P2, as shown in Fig. 4.5b, works with its own
local clock named tt, and two broadcast signals, i.e., BetaPSS and SP. All
constraints and requirements are the same as mentioned above in the P1
automaton with just a different broadcast channel, i.e., BetaPSS instead of
BetaPS. BetaPSS in P2 automaton indicates the detection of PD when the
TH activation is not sensed at all, while in P1 automaton the BetaPS signal
indicates the detection of PD with abnormal TH activation. So both cases
and requirements are the same with just different TH neuron pattern de-
tection. The following safety requirements for this automaton were verified
successfully.

• A[] P2.two a imply (P2.tt>=TSRP && P2.tt<=TSLRI )

• A[] not(P2.two a && P2.tt>TSLRI)

• A[] not(P2.two a && P2.tt<TSRP)

Another safety constraint is to not have an excessive STN stimulation,
i.e., the interval between two consecutive STN pacing ∈ [TSRP,TSLRI]. We
made another automaton, named P3, for verifying this safety requirement as
shown in Fig. 4.5c. In this design implementation, local clock named tt is
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reset whenever the Sp signal is received. By doing this, we actually measure
the time between two consecutive STN pacing. We verified the following
properties for these safety requirements.

• A[] P3.two a imply (P3.tt>=TSRP && P3.tt<=TSLRI )

• A[] not(P3.two a && P3.tt>TSLRI)

• A[] not(P3.two a && P3.tt<TSRP)

4.4.2 Liveness

The liveness property states that, under certain conditions, some event will
ultimately occur. In our design methodology, the considered event is STN
pacing under the PD condition. So, we want to verify that whenever the PD
is detected, STN pacing will eventually happen. We used and verified the
below mentioned properties in order to satisfy liveness requirements in our
design implementation.

• A<> (T1.StateBeta ) imply (T1.StateE or T1.StateD)

• A<> (T1.StateBeta 1) imply (T1.StateH or T1.StateI)

As can be observed from Fig. 4.4, i.e., the T1 automaton, where PD is
detected in StateBeta or StateBeta 1 and consequently STN pacing is ap-
plied in StateE, SatetD, StateH and StateI. So, by the verification of the
above-mentioned liveness properties we can conclude that whenever PD is
detected the STN pacing will eventually occur.

4.4.3 Supremum and infimum Queries for Time and
Power Analysis

In this case study, we aim to analyze power and timing constraints that
provide an important design guideline in selecting the DBS parameters. By
doing so, we can estimate the instantaneous power of delivered stimulations
from DBS to STN. Thereby, the total power consumption of the DBS con-
troller can easily be estimated by using the below mentioned formula [19].

P = (A ∗ A ∗ PW ∗ f)/R
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There are certain parameters that need to be considered for power estima-
tion, i.e., amplitude (A), pulse width (PW), frequency (f) and resistance (R).
All parameters except resistance are programmable. Thereby, we considered
a range of these parameters as can be observed from Fig. 4.4, where DBS
model randomly selects any value of these parameters from the given range
of amplitude, pulse width and frequency. We consider a constant value of R
corresponding to the tissue impedance faced by electrodes while delivering
stimulations [19].
Generally, UPPAAL return the status of queries by indicating whether they
are satisfied or not. However, for some queries, some additional information
is also provided, like for the supremum and infimum queries. These queries
find the supremum (max) or infimum (min) for a given expression for all
reachable states that satisfy a particular predicate. We use the following
properties to find the maximum and minimum instantaneous power of deliv-
ered stimulations, where q represents delivered instantaneous power.

• sup{T1.StateE or T1.StateD} : q

• inf{T1.StateE or T1.StateD} : q

By using the above-mentioned queries, power bounds can be easily estimated
for a given range of parameters. UPPAAL exhaustively explores the whole
state space for all possible combinations of these parameters and generates
maximum and minimum power value, i.e., sup generates the max power value
and inf generates the min power value. The get trace option can also be used
to identify the parameters responsible for these power values generation.
Some results are shown in Fig. 4.6a, for both inf and sup queries with these
parameters - frequency = [60,130,180], amplitude = [1,3] and pulse width =
[60,200] with R constant.

(a) Sup and Inf queries for power analysis(b) Sup and Inf queries for time analysis

Figure 4.6: Bounded Liveness Queries for Power and Time Analysis
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Stimulation timing analysis is also a critical step for any DBS controller de-
sign, i.e., for how much time stimulation are given to achieve stability. We
aim to check for how much time these stimulations are given until stability
is achieved. Whereas, as mentioned in the last section, stability is achieved
when the beta band power of applied signal becomes equal to the desired
beta band power. By using these properties, we can find the maximum and
minimum time to achieve stability for a given range of values. The get trace
option can also be used to trace out the parameters responsible for that time
value generation. Properties used for timing analysis are

• inf{T1.StateE} : T1.ptime

• sup{T1.StateE} : T1.ptime

Whereas ptime is a local clock in the T1 automaton, that we reset once
we achieve stability, i.e., StateE or StateI. Results for inf and sup query are
shown in Fig. 4.6b with the same parameters ranges considered for power
analysis.
Power and time analysis results are used to select DBS design and parame-
ters. A detailed depiction of how power and time varies with these parameters
is shown in Table 4.2 with different stimulation parameters ranges, i.e., fre-
quency, amplitude and pulse width. Table 4.2 shows the result of inf and
sup queries (listed on the extreme left side of the table) for both power and
time analysis with stimulation parameters ranges mentioned on the top of
the table.

Table 4.2: Power and Time analysis result for different range of stimulation
parameters

f∈{60,130,180} f∈{80,105,155} f∈{90,145,195} f∈{105,170,190}
Properties A∈{1,3} A∈{1,3} A∈{1,2} A∈{1,2}

PW∈{60,200} PW∈{60,200} PW∈{50,100} PW∈{50,100}

inf{T1.StateE or T1.StateD} : q 3uj 4uj 4uj 10uj
sup{T1.StateE or T1.StateD} : q 324uj 279uj 78uj 152uj

inf{T1.StateE } : T1.ptime 200000us 200000us 300000us 400000us
inf{T1.StateE } : T1.ptime 600000us 500000us 900000us 700000us
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4.4.4 Deadlock and Reachability

Reachability properties are often used while designing a model to perform
sanity checks. For instance, when creating a model of a communication pro-
tocol involving a sender and a receiver, it is quite desirable to know whether
it is possible for the sender to send a message at all or whether a message can
possibly be received. In our design, we intend to ask whether it is possible
for the DBS to send stimulations to STN or to achieve stability. We used
the following properties to verify reachability requirement:

• E<> T1.StateE

• E<> T1.StateD

• E<> T1.StateH

• E<> GPiComponent.GPiCell

The deadlock property is used to check that the system is deadlock-free as
follows:

• A[] not deadlock

• E<> deadlock

4.5 Case Study for DBS Design and Param-

eter Selection

In this section, we present a case study on analyzing open-loop and closed-
loop DBS. We show how our proposed models and properties in UPPAAL can
be used to compare these two types of controllers in term of energy efficiency.
Our results demonstrate that the closed-loop DBS outperforms the existing
open-loop DBS in term of energy efficiency. We also present an analysis of
stimulation time for a given programming algorithm to select DBS design
parameters.
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4.5.1 Power comparison of open-loop and closed-loop
DBS:

An open-loop DBS automaton is shown in Fig. 4.7, with a delay activation
signal, i.e., Sp!. Open-loop DBS does not sense and send stimulations to
STN with fixed parameters. Therefore, we also did not include any sensing
or feedback signal in this design model, and stimulations with fixed param-
eter are delivered to STN as can be observed in Fig. 4.7, i.e., A=1, f=115,
R=1000 and PW=200. Instant power is calculated whenever stimulation is
delivered to STN, i.e., Sp!, by using the following formula.

P [i] = (A ∗ A ∗ PW ∗ f)/R

Figure 4.7: Timed Automaton of Open-loop DBS Controller

Where i indicates the index number of the P array. We simulated this au-
tomaton for 292 iterations that is approximately equal to 2.5s, as shown in
Fig. 4.8. Due to fixed parameters, the instant power value remains the same
for the whole time and average power comes out to approximately 23uj.
In order to do a fair comparison between both controllers, we apply the
same methodology to closed-loop DBS model with the same parameters, i.e.,
A=1, R=1000, PW=200, except the frequency variation as mentioned in
the previous section. We simulated this closed-loop DBS timed automaton
for 190 iterations that is approximately equal to 2.5s, as shown in Fig. 4.9.
Closed-loop DBS pattern can easily be observed that it randomly selects any
frequency from the given range and feedback its error signal, and achieves
stability after some time. This behavior is randomly simulated where both
healthy and PD behavior are considered non-deterministically, i.e., healthy
behavior generated in [0-0.2s] and PD behavior generated in [0.3-0.9s] and so

24



Figure 4.8: Graph representing the instantaneous power behavior of Open-
loop DBS Controller. Total instantaneous power comes out to be 6716uj
approximately and average power 23uj approximately for 2.5s.

Figure 4.9: Graph representing the instantaneous power behavior of Closed-
loop DBS Controller. Total instantaneous power comes out to be 4485uj
approximately and average power 14.8uj approximately for 2.5s.

on, as can be observed throughout the graph in Fig. 4.9. The average power
is approximately equal to 14.8uj.
As we know in closed-loop DBS, stimulations are only applied when PD is
detected in order to prolong the battery life. Open-loop and closed-loop DBS
power analysis is made only for 2.5s, and it can be clearly observed that the
closed-loop DBS outperforms open loop DBS in terms of energy efficiency
and thus prolongs the battery life.

4.5.2 Effect of programming Algorithm:

There can be multiple programming algorithms even for the same hardware,
so the selection of an optimal algorithm for DBS can be a challenging task. As
mentioned in our design methodology, in Section IV, DBS delivers the stim-
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ulation of randomly selected frequency and beta band power of that applied
stimulation is calculated. After that, the error is calculated, i.e., difference
between the desired beta band power (reference signal) and calculated beta
band power of the current stimulation (feedback signal). The DBS controller
keeps changing its stimulation frequency until the error is zero, i.e., stability
is achieved.
The response of controller and the error correction scheme depends on the de-
sign methodology. For this case study, we designed two different algorithms
for error calculation and DBS frequency updates as shown in Figs. 4.10a &
4.10b, and we name them as Algorithms A and B, respectively. We used
the same parameters and functions as mentioned in Section IV with just
a different variation in feedback function, i.e., where the error is calculated
and frequency is updated. In Algorithm A, DBS chooses random frequency
stimulation according to the available frequency range and the frequency is
updated with a step size of 5 until the beta band power of that signal be-
comes equal to the desired beta band power. By doing so, it checks all the
available frequency range with a step size of 5. For example, if the DBS ini-
tially chooses randomly f=100 and if its beta band power is not equal to the
desired beta band power then it will update its frequency with an increment
of 5 according to Algorithm A, and the new updated frequency will become
f=105. After the frequency update, it again checks the beta band power of
the updated frequency stimulation and keeps on updating its frequency until
stability is achieved, i.e., beta band power of that applied frequency signal

(a) Algorithm A (b) Algorithm B

Figure 4.10: Example of two different Programming Algorithms for Power
and Time Analysis
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becomes equal to the desired beta band power.
In Algorithm B, DBS chooses random frequency stimulation according to the
available frequency range in that particular algorithm and the error is cal-
culated, i.e., difference between the desired beta band power and beta band
power in response to the applied signal. The frequency update depends upon
the value of error as can be seen in Fig. 4.10b, and the DBS keeps on updat-
ing the stimulation frequency until stability is achieved. Comparison of both
cases is given in Table 4.3, with the same parameters, i.e., A, PW, F and R,
for a fair comparison. We used inf and sup queries for time analysis, i.e., to
calculate the upper and lower bounds of time to achieve stability.
It can be clearly observed that Algorithm A takes more time to achieve sta-

bility as compared to Algorithm B, because Algorithm A checks all frequency
ranges until the stability is achieved while on the other side Algorithm B just
updates the frequency based on the error and achieves stability in less time
due to less number of iterations. In Algorithm A, stability is guaranteed
because it checks all frequency combinations, but in Algorithm B, stability is
not always guaranteed because we can never certainly say that the DBS will
achieve the desired frequency or not, i.e., a large error may lead to frequent
frequency updates and may get stuck in a loop where it iterates over a par-
ticular value and thus never gets out of it. So Algorithm A takes more time

Properties F ∈ {90,140,190} F ∈ {100,150,195} F ∈ {80,130,185} F ∈ {70,100,130}
A = 1 A = 1 A = 1 A = 1
PW =100 PW =100 PW =100 PW =100

infT1.StateE : T1.ptime 200000 300000 200000 200000
supT1.StateE : T1.ptime 3300000 3100000 2500000 700000

(a) Algorithm A

Properties F ∈ {90,140,190} F ∈ {100,150,195} F ∈ {80,130,185} F ∈ {70,100,130}
A = 1 A = 1 A = 1 A = 1
PW =100 PW =100 PW =100 PW =100

infT1.StateE : T1.ptime 200000 300000 200000 200000
supT1.StateE : T1.ptime 700000 900000 400000 800000

(b) Algorithm B

Table 4.3: Time Analysis of Algorithms A and B. “Table. 4.3a and 4.3b”
show the result of inf and sup queries with different stimulation parameter
ranges for Algorithms A and B, respectively. From the overall comparison
between these two algorithms, it can easily be observed that Algorithm B
takes less time to achieve stability as compared to Algorithm A but stability
is not always guaranteed in Algorithm B as compared to Algorithm A.
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to achieve stability but stability is always guaranteed, Algorithm B takes
less time to achieve stability but stability is not always guaranteed. These
findings clearly indicate the usefulness of the proposed analysis of a given al-
gorithm for DBS time, i.e., maximum and minimum time to obtain stability,
that can help to design or select different DBS design parameters.
We also conducted the power analysis of Algorithms A and B. Instant power
depends upon certain factors, i.e., amplitude, pulse width, frequency and
tissue impedance. The result in Table 4.2 clearly demonstrate how instant
power value varies by changing any of these parameters. Table 4.2 simply
depicts the effect of these parameters on power values. We also considered
another case where we made the power comparison of Algorithms A and B.
As mentioned previously, Algorithm A takes more time to achieve stability
as compared to Algorithm B, which means stimulations are delivered for a
longer period of time in order to achieve stability in Algorithm A, that in turn
leads to more power consumption for a specific time duration as compared
to Algorithm B. So, we can say that Algorithm B is best if we consider the
power aspect only, but at the same time stability is not always guaranteed in
Algorithm B, so there are pros and cons for both options and our approach
allows us to choose the best option according to the given requirements.
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Chapter 5

Conclusions

5.1 Summary

In this thesis, we presented a verification methodology to formally analyze the
DBS controllers for PD in response to BG activity, i.e., for analyzing the effect
of design parameters on power and timing analysis of DBS controller. In
order to verify the functionality of closed-loop DBS controller, we developed
a model of BG by abstracting the hybrid automaton to timed automata.
Thereafter, we developed a closed-loop DBS controller model and studied
its behavior in response to BG model. We then formally verified the closed-
loop DBS controller requirements using TCTL properties, i.e., safety, liveness
and deadlock. We also developed an open-loop DBS model to compare both
open and closed loop controllers in terms of energy efficiency and our results
demonstrate that the closed-loop DBS outperforms the open loop DBS in
terms of energy efficiency and prolongs the DBS battery life. To illustrate
the effectiveness of the proposed methodology, we analyzed two algorithms
with nominal parameter values to see their effect on DBS power consumption
or stimulation time. The analysis results were found to be quite useful in the
context of DBS programming algorithms and design parameter selection.

5.2 Future Work

In this thesis, we verified the closed-loop DBS requirements by abstract-
ing the BG (can best be modeled as non-linear differential equation of H-H
neuron model) as otherwise we observed the state-space explosion problem
during properties verification, due to limited resources in terms of time and
memory. Therefore, we abstracted the complex BG model from hybrid au-
tomata to timed automata, in order to resolve this problem.
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The DBS design algorithm to detect the PD behavior and stimulation pat-
tern of DBS to BG are the main design steps of any DBS controller that
can also vary from manufacturer to manufacturer. The design of CL-DBS
was formulated based on the available data and resources. A case study was
designed based on possible real scenarios as the algorithms of commercially
available DBS controllers are not available. The purpose of this case study is
to analyze a given DBS controller behavior in terms of time and power with
given stimulation parameters. As future work, we would like to evaluate the
efficiency of any DBS with given algorithm because the ultimate goal for a
pacemaker is to maintain the efficiency of the BG behavior.

30



Bibliography

[1] R. L. Nussbaum, C. E. Ellis. “Alzheimer’s disease and Parkinson’s dis-
ease.” The New England journal of medicine vol. 348,14 (2003): 1356-64.
doi:10.1056/NEJM2003ra020003

[2] E. A. Chrischilles, L. M. Rubenstein, M. D. Voelker, R. B. Wallace, R.
L. Rodnitzky. “The health burdens of Parkinson’s disease.” Movement
disorders : official journal of the Movement Disorder Society vol. 13,3
(1998): 406-13. doi:10.1002/mds.870130306

[3] L. M. de Lau, M. M. Breteler. “Epidemiology of Parkinson’s disease.”
The Lancet. Neurology vol. 5,6 (2006): 525-35. doi:10.1016/S1474-
4422(06)70471-9

[4] National Collaborating Centre for Chronic Conditions (UK). Parkin-
son’s Disease: National Clinical Guideline for Diagnosis and Manage-
ment in Primary and Secondary Care. London: Royal College of Physi-
cians (UK); 2006. PMID: 21089238.

[5] L. J. Findley. “The economic impact of Parkinson’s dis-
ease.” Parkinsonism related disorders vol. 13 (2007): S8-S12.
doi:10.1016/j.parkreldis.2007.06.003

[6] J. Jankovic. “Parkinson’s disease: clinical features and diagnosis.” Jour-
nal of neurology, neurosurgery, and psychiatry vol. 79,4 (2008): 368-76.
doi:10.1136/jnnp.2007.131045

[7] M. C. Rodriguez-Oroz, J. A. Obeso, A.E Lang, J. L. Houeto, P. Pollak,
S. Rehncrona, J. Kulisevsky, A. Albanese, J. Volkmann, M. I. Hariz,
N. P. Quinn, J. D. Speelman, J. Guridi, I. Zamarbide, A. Gironell,
J. Molet, B. Pascual-Sedano, B. Pidoux, A. M. Bonnet, Y. Agid, J.
Xie, A. L. Benabid, A. M. Lozano, J. Saint-Cyr, L. Romito, M. F.
Contarino, M. Scerrati, V. Fraix, N. Van Blercom. “Bilateral deep brain
stimulation in Parkinson’s disease: a multicentre study with 4 years

31



follow-up.” Brain : a journal of neurology vol. 128,Pt 10 (2005): 2240-9.
doi:10.1093/brain/awh571

[8] P. J. Rossi, A. Gunduz, J. Judy, L. Wilson, A. Machado, J. J. Gior-
dano, W. J. Elias, M. A. Rossi, C. L. Butson, M. D. Fox, C. C. McIn-
tyre, N. Pouratian, N. C. Swann, C. de Hemptinne, R. E. Gross, H.
J. Chizeck, M. Tagliati, A. M. Lozano, W. Goodman, J. P. Langevin,
R. L. Alterman, U. Akbar, G. A. Gerhardt, W. M. Grill, M. Hallett,
T. Herrington, J. Herron, C. van Horne, B. H. Kopell, A. E. Lang, C.
Lungu, D. Martinez-Ramirez, A. Y. Mogilner, R. Molina, E. Opri, K.
J. Otto, K. G. Oweiss, Y. Pathak, A. Shukla, J. Shute, S. A. Sheth,
L. C. Shih, G. K. Steinke , A. I. Tröster, N. Vanegas, K. A. Zaghloul,
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