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Abstract

Stream ciphers are quite well known for providing security in comunication. Due to their efficient

implementation they have received attention of many cipher designers in previous years. Many

new designs have been proposed and extensively analyzed in the form of NESSIE and eSTREAM

projects. In general a new proposed design has to ensure, at least, that it is resistant to the existing

attacks. Algebraic attack is now quite a familiar threat for stream ciphers. Therefore, to make

out the design components, that can strengthen a cipher, against algebraic cryptanalysis must

also be of interest to stream cipher designers. Algebraic cryptanalysis, in its general form, aims at

recovering the internal secret state bits of the registers of the cipher by solving non-linear algebraic

equations. That is why it is considered, not to be applicable on stream ciphers, where registers

are updated non-linearly. Since, in this case, degree of algebraic equations, which relate internal

states with key-stream bits, increase with each clock. However, different designs with nonlinear

update may offer disparate levels of resistance.

In this thesis, we analyze some structures of stream ciphers with non-linear update and identify the

level of resistance their design shows against the reocvery of secret internal states. Our objective

is to analyze and compare the design of the key generating mechanism and not the cipher along

with its initialization mechanism. Thus, we concentrate on the key generating part and compare

the ciphers on the basis that how many of their internal state bits can be recovered by solving non-

linear algebraic equations, using guess and determine approach. Caused by a rise in the degree



of equations with each clock, some of the internal state bits have to be guessed to recover the

remaining. Our analysis reveals, that due to some thoughtful guessing, more internal state bits

can be recovered which are not possible otherwise. However, some structures are resistent to give

secret state bits by solving algebraic equations, even after guessing large number of bits. Aim of

this thesis is to identify such structures.

Ciphers considered for this work are A5/1, A5/2, Trivium, Grain and Mickey. Significance of

this work also lies in the fact that we have analyzed those ciphers which have been selected

for the final portfolio of completed eSTREAM project. Based on our analysis, we also propose

some modifications in the design of Grain-v1 to strengthen it against intial state recovery attack,

without any increase in the secret state bits. Some modifications in the design of Trivium are also

suggested therefore, the same structure can be used with larger key bit space.
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Chapter 1

INTRODUCTION

1.1 Introduction

The history of cryptology is the story of the centuries-old battle between cryptographers and crypt-

analysts. Cryptography strives to construct ways and means for defending communications while

cryptanalysis aims at designing powerful methods to attack a secured system. A diverse range

of disciplines and technologies have been developed during this combat. Past few decades have

witnessed a revolution of digital and network communications. Now this area is more relevant

than ever before. Today, secured data storage and transmission is not only the need of military

and commercial sector, but it is a common man’s problem also, because he uses mobile phones,

internet, banking systems and other services.

Thus Cryptology is the science that aims at providing information security in the digital world

and its constituent fields are cryptography and cryptanalysis. Cryptography, studies the design of

algorithms and protocols for information security and cryptanalysis is concerned with the study

of Mathematical techniques, that attempt to break cryptographic primitives. Although the ideal

situation would be to develop algorithms, which are provably secure, but generally practical sys-

tems are not provably secure and on the other hand provably secure systems are not practical.

Therefore, the security of a cryptographic algorithm or protocol is usually assessed by testing all

possible known attacks on it. Thus, analysis of the strength of ciphers becomes a very important

objective of the cryptanalytic techniques.
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Besides, the conventional role of cryptography of providing confidentiality of communication and

data it also aims at providing services like authentication, data integrity and non-repudiation. To

provide these services, three categories of cryptographic primitives are used. These three cate-

gories are as follows: unkeyed primitives which involve hash functions, symmetric key primitives

includes block ciphers and stream ciphers and asymmetric key or public key primitives comprise

public key ciphers and signatures. This thesis deals with stream ciphers mainly, which make an

important part of symmetric key primitives.

Following sections of this chapter are devoted to the general introduction to the topic. Conse-

quently the general frame work and outline of this thesis will be presented.

1.2 Overview of Symmetric Ciphers

The conventional way of encrypting is to use symmetric-key cryptography, where the word “Sym-

metric” means that same key is used for encryption and decryption or more generally the decryp-

tion key can be easily computationally derived from the encryption key. Two standard design

approaches of symmetric key ciphers are block ciphers and stream ciphers.

Block ciphers, as the name shows is a type of symmetric key encryption which functions fixed-

length blocks of bits with an unvarying transformation. When encrypting, a block cipher takes an

n-bit block of plaintext and secret key as input, and gives a corresponding n-bit block of ciphertext

as output. The first known block cipher was developed according to the design methodology given

by Horst Feistel is Lucifer Feistel (1970, 1973) that was a contribution of IBM in the 1970s. Data

Encryption Standard (DES) is actually a revised version of the Lucifer that was adopted as a US

government FIPS standard. DES was publicly released in 1976 and has been widely used. Block

ciphers are mainly based on the concept of confusion and diffusion as laid down by by Shannon
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in his paper, ”Communication Theory of Secrecy Systems” published in 1949 Shannon (1949).

Advanced Encryption Standard (AES) however, has replaced DES now as a United States Federal

Standard. It was adopted by National Institute of Standards and Technology (NIST) in 2001 after

a 5-year standardization process. AES has a block size of 128 bits and three possible key sizes,

128, 192 and 256 bits. This cipher is widely accepted, and it has strong resistance against various

kinds of attacks.

Another form of symmetric encryption is known as stream ciphers. Here plaintext bits are com-

bined with a pseudorandom bit stream (keystream), of the length of pliantext, typically by bit

wise XOR operation Rueppel (1986). In a stream cipher the plaintext digits are encrypted, one at

a time, also the transformation of successive digits varies during the encryption. Stream ciphers

is an important class of cipher systems. Designing high-speed stream ciphers has been an impor-

tant cryptographic topic for the last few years. It is widely believed that a stream cipher can be

considerably faster than block ciphers in software, and also simpler to implement in hardware.

Since each bit of the palintext is encrypted individually, therefore error propagation is limited.

This makes them most suitable for providing security in telecommunication systems especially

wireless communications.

The security of stream cipher depends on the randomness of the bits of this secret sequence.

In information theoretic sense, a random sequence provides unconditional security if the secret

sequence, once used for encryption, is never used again. The concept of unconditional or perfect

secrecy was established by Claude Shannon some years after the introduction of one-time pad

(OTP). The first one-time pad system was electrical and invented by Gilbert Vernam in 1917.

One time pad is perfectly secure against ciphertext-only cryptanalysis because if the key is truly

random, an attacker cannot compute the plaintext from the ciphertext without knowlege of the
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key, even via a brute force search of the space of all keys, because all possible plaintexts are

equally likely decryptions of the ciphertext. Although OTP provides perfect secrecy still it is not

feasible to apply it to practical systems. Stream ciphers follow this basic concept of OTP. Stream

ciphers have a different design structure from block ciphers but in some cases a block cipher can

be made to act effectively as a stream cipher.

All the modern ciphers are designed to meet theoretical security of OTP but they also have to be

practical. Thus their design goal is to efficiently generate pseudo-random bits, which are practi-

cally indistinguishable from the truly random bits. A stream cipher and a Psuedo-random number

generator(PRNG) are not identical, but since mostly cryptanalysis of the steam ciphers is done in

the assumed known plaintext scenario, therefore breaking the PRNG would mean breaking of the

stream cipher.

Unlike block ciphers, stream ciphers do not have a standard model. A variety of constructions

of stream ciphers can be found in literature in comparison with basic model of SPN and Feistal-

ciphers in Block cipher design. Till 2001, the only generic standards for stream ciphers were

the block ciphers in different modes including output feedback (OFB), ciphertex feedback (CFB)

and Counter (CTR) mode etc. However some application-specific standards exists which include:

A5/1, A5/2 and A5/3 for GSM, RC4 adopted by IEEE 802.11 as part of WEP, etc. In general

many people are convinced that there is no need for separate or different model for stream cipher,

and using any block cipher in some stream cipher mode can easily serve the purpose. Now

that we have AES, whose security has been thoroughly checked and it is also efficient in both

hardware (HW) and software (SW). But the argument against this approach is that many such

stream cipher structures can be designed which are much faster in SW and smaller in HW than

Rijndael and their security is also better than the block ciphers in counter mode. Since in multi-
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media applications like mobile phones, music and video, where, extremely high throughput is

needed and low-complexity HW is also required. These requirements can be fulfilled by dedicated

stream ciphers only. Also a stream cipher can be designed to be highly efficient on one platform

only, so that technology specific requirements may be met.

1.3 Overview of Cryptanalysis

The first cryptanalysis known in the history, exploited the variation in the frequencies of lettes.

This eventually gave birth to the science of code breaking. The earliest known description of

the technique is by an Arab philosopher Abu Yusuf Ya’qub ibn Is-haq ibn as-Sabbah ibn ’omran

ibn Ismail al-Kindl. His work entitled A Manuscript on Deciphering Cryptographic Messages;

was rediscovered in 1987 in the Sulaimaniyyah Ottoman Archive in Istanbul. This manuscript

describes the oldest cryptanalysis method frequency analysis. Cryptanalysis was thus emerged

as a result of scholarly efforts of Muslim scientists of ninth century who had gained a sufficiently

higher and sophisticated level of knowledge in several disciplines including Mathematics, Statis-

tics and linguistics.

During the course of history, techniques of cryptanalysis grew with the development of techniques

of cryptography. For different cryptographic primitives, many attacks have been developed so far.

Our focus in this thesis is on the Stream ciphers. Now we will mainly discuss cryptanalytic

attacks on stream ciphers. Initially it was generally thought that cipher algorithm itself is a part

of the secret. But this approach failed in many cases and today’s cryptanalysis is based on the

Kerchoff’s principle which states that: The security of the encryption scheme must depend only

on the secrecy of the key, and not on the secrecy of the algorithm. .

For modern cipher systems, following attack senarios are considered conventionally. However,
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each analysis is performed under Kerchoff’s principle.

• Ciphertext only attack. In this scenario adversary has only the ciphertext and tries to analyse

it to receive some information from it. It could be a proof or a disproof for some hypothesis

stated, or even the secret key recovering.

• Known plaintext attack. Adversary knows both the ciphertext and the corresponding plain-

text. This is the most common scenario in modern cryptanalysis.

• Chosen plaintext attack. In this case adversary chooses the messages to be sent, and then

gets the corresponding ciphertext.

• Chosen ciphertext attack. In this scenario adversary has temporary access to the decryption

device, and chooses herself ciphertext to be decrypted receiving the corresponding plaintext.

The results of cryptanalysis could be one of the following:

• Total break when the secret key is recovered, and then the rest of the message is known as

well. This is the most desirable result.

• Partial break which helps to reduce the search space for the secret key.

• Information deduction which allows the adversary to get some partial information about

the plaintext.

• A distinguishing algorithm means that we can show that the corresponding cipher has a

significant bias, when comparing with a perfect cipher. When applied to stream ciphers,

the keystream is analysed. In this case we say a distinguisher can recognize whether the

keystream comes from a cipher or a random source.
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Since our focus in this thesis is on the cryptanalysis of stream ciphers, therefore details of the

cryptanalytic techniques of symmetric ciphers in general, are not given here. For a comprehen-

sive discussion on the techniques of cryptanalysis one can refer to Maximov (June, 2006). In

consequent section we give an overview of the cryptanalysis of stream ciphers.

1.3.1 Cryptanalysis of Stream Ciphers

Stream ciphers are more often analyzed in a known-plaintext situation. For synchronous stream

ciphers, this means that the designed attack on the key-stream generator needs a known segment

of the generated sequence. Attacks on key-stream generators can be divided into key-recovery at-

tacks, where the secret key or internal state is completely or partially recovered and distinguishing

attacks, where the goal is to distinguish the key stream from a purely random sequence.

Unlike block ciphers, stream ciphers are known to have some known components like LFSR,

NLFSR, Boolean functions, clock control mechanism etc. By virtue of these common design

strategies there are also some generic attacks on stream ciphers. Generally strength of a stream

cipher is evaluated on the basis of the results of the known cryptanalytic attacks. One of the most

efficient classes of key-recovery attacks that can be applied to all synchronous ciphers are (fast)

correlation attacks. Correlation attack that was introduced by Siegenthaler Siegenthaler (1984,

1985) and later on refined in Gunter (1988); Meier and Staffelbach (1989) can now be found

with many improvements Wiener (1999); Johansson and Jonsson (1999); Bellare (2000); Preneel

(2000); Davies (2000); Johansson and Jonsson (2000). Other key-recovery attacks that exploit

the inherent linearity of LFSR’s underlying a key-stream generator, are usually referred to as

algebraic attacks. Algebraic attack was first applied to block ciphers and public key cryptosystems

Courtois and Pieprzyk (2002); Courtois (2001). Its first successful application to stream ciphers

was done on Toyocrypt Courtois (2002), and its application to LILI 128 Courtois and Meier (2003)
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made them very popular. Because of the interest of the thesis, we will give a detailed account of

algebraic cryptanalysis on stream ciphers in next chapter.

Attacks that exploit statistical irregularities in a key stream are called statistical attacks. Ideally

an attacker should not be able to differentiate between a truly random sequence and the sequence

generated by the keystream generator. An attacker can get some knowledge about the guessed

plaintext if the sequence derived from guessed plaintext, and observed ciphertex has any statistical

deviation from a truly random sequence.

1.4 Background for this Thesis

Stream ciphers are an important class of cipher systems. Designing high-speed stream ciphers has

been widely studied during the last few years. Owing to their good cryptographic properties, as

well as, ease of implementation, they have vast applications. However, their security is a question

which is being addressed in many of the researches. The security evaluation includes the main

general characteristics of a stream cipher and the attacks to which it should be resistant. As

discussed earlier, there is no standard model for stream ciphers unlike the block ciphers standard

DES and AES. However, the only standards covering stream ciphers (apart from the CTR, OFB

and CFB block cipher modes of operation) were those produced for specific applications. Most

notable amongst these are the stream ciphers A5/1, A5/2 and A5/3 designed for use with GSM;

the RC4 stream cipher, standardised for use with IEEE 802.11 wireless networks as part of a

system called Wired Equivalent Privacy (WEP), and E0 for Bluetooth.

For last few years security of stream ciphers has received increasing attention. Two European

projects: NESSIE snd ECRYPT, have great influence on the evolution of stream ciphers. NESSIE

NESSIE (1999) stands for New European Schemes for Signatures, Integrity, and Encryption. It
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was a project within the Information Society Technologies (IST) Programme of the European

Commission which started in 2000 and ended in 2004. The main objective of NESSIE has been

to put forward a portfolio of strong cryptographic primitives obtained after an open call and eval-

uated using a transparent and open process. None of the stream ciphers submitted in the NESSIE

project were selected for the final portfolio, attributed to the weaknesses found in them. NESSIE

project was followed by eSTREAM project by ECRYPTeSTREAM (2005). ECRYPT is a Net-

work of Excellence within the Information Societies Technology (IST) Programme of the Euro-

pean Commission; it was launched in February 2004. In November 2004, ECRYPT, gave a call for

Stream Cipher Primitive. This provides an opportunity to the cryptographic community to settle

on a new encryption standard. 34 stream ciphers were submitted against this call till April 2005.

The eSTREAM call encompassed two different profiles, for which ECRYPT believed stream ci-

phers may offer significant advantages compared to block ciphers. eSTREAM project has been

concluded and a report published online on April 2008 gave the final portfolio of the eSTREAM

candidates Steve Babbage and Robshaw (2008). Final portfolio has selected eight stream ciphers

for both profile out of 34 submissions of diverse structures. Organizers of eSTREAM, expect that

with the time as the analysis matures for different structures, ciphers for specific deployment may

be selected accordingly. Focus of this thesis involves analysis of hardware oriented stream ciphers

with non-linear update, especially those included in eSTRAEM project.

Most of the cryptanalysis on stream ciphers is performed under a known plaintext assumption.

Algebraic attacks on stream ciphers with linear feedback are quite practical and have received a

lot of attention. Algebraic Cryptanalysis has been proved to be quite a successful technique for

the security evaluation of stream ciphers as well as a threat to the structures which are resistant

to other types of attacks. Some pioneering works include Courtois (2002); Courtois and Meier

(2003); Courtois (2005a); Armknecht and Karuse (2003); Courtois (2003); Armknecht (2004a).
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Originally algebraic attacks are proved to be successful against ciphers having combining or fil-

tering Boolean function along with the linear part. Thus it is generally assumed that the structures

with non-linear feed back are not vulnerable to algebraic cryptanalysis. One of the aims of this

research is to uncover the level of difficulty of mounting a practical algebraic attack on some

recent stream ciphers, which do not have the conventional structure vulnerable to algebraic crypt-

analysis.

Every new proposed design ensures at least that it is resistant to the existing attacks. As mentioned

earlier, algebraic attack is now quite a familiar threat for stream ciphers. Moreover, to make out

the design components that can strengthen a cipher against algebraic cryptanalysis, must also

be of interest to stream cipher designers. Algebraic cryptanalysis, in its general form, aims to

recover the internal secret state bits of the cipher by solving non-linear algebraic equations. That

is why it is considered to be non-applicable on stream ciphers, where registers are updated non-

linearly. Since in this case, degree of algebraic equations, which relate internal states with key-

stream bits, increase with each clock. However, different designs with nonlinear update may offer

disparate levels of resistance. This research compares some eSTREAM proposed structures of

stream ciphers and identify the level of resistance their design shows against recovering the secret

internal states. eSTREAM proposed stream ciphers: Grain, Trivium and Mickey M. Hell and

Meier (2005a,b); Cannière (2006); Cannière and Preneel (2005b); Babbage and Dodd (n.d.b,n)

are analyzed and their key generating structures are compared. Moreover, some modifications in

the design of Trivium and Grain-v1 are also suggested to enhance their security level without an

increase in the number of secret state bits.
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1.5 Organization of the Thesis

This thesis consists of three main parts. The first part including Chapter 1 and Chapter 2 is a

general introduction to the main topic of the thesis. Chapter 1 gives a brief overview of the stream

ciphers, their importance and an introduction to the general approach of cryptanalysis of stream

ciphers. Whereas Chapter 2 gives brief details of the algebraic cryptanalysis in general. Chapter

3 through 6 gives experimental results on algebraic analysis of stream ciphers with non-linear

update. In the final part, Chapter 7 and 8 some modifications in the stream ciphers Grain and

Trivium are suggested based on the analysis made in previous chapters. Chapter 9 will summarize

and conclude the thesis. Next, a detail of all chapters is given. The work given in this thesis

is based on following works Afzal and Masood (2007, 2008d); Afzal et al. (2006); Afzal and

Masood (2008b); Afzal et al. (2008); Afzal and Masood (2008c,a,e, 2009, 2010) that have been

already published. For experimental results PC environment is used with CPU at 1.73 GHz and

1 GB RAM. Whereas Maple 10 Maple (n.d.) has been used for generation of equations of the

ciphers and non-linear equations are solved using F4 algorithm of finding Groebner basis Faugère

(1999) implemented in Magma version 2.13-5 System (n.d.)

In Chapter 2, we give details of the algebraic cryptanalysis technique for stream ciphers. Alge-

braic attack is a vital development in cryptanalytic techniques. This attack falls under the known

and chosen plain-text attack and algebraic in nature rather than statistical. The efficiency of the at-

tack depends on the efficiency of the algorithm to generate the algebraic equations and to solve the

generated large set of multivariate equations. The generation of algebraic equations is algorithm

specific, while solving the system of multivariate algebraic equations is a much studied problem

in the field of computational algebraic geometry and commutative algebra. In Chapter 2, we

will also discuss the techniques used efficiently for solving algebraic equations of Cryptographic
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algorithms.

In Chapter 3, algebraic cryptanalysis of A5/1 and A5/2 is discussed. Both of these versions of

GSM security system have clock controlled structures. A5/1 uses mutually controlled registers

therefore an efficient algebraic attack to recover all the internal state bits is not possible. We

have tried to figure out the number of state bits that can be practically found using Groebner

basis technique for solving equations. Most successful attack on A5/2, the weaker version of

GSM encryption algorithm, is algebraic in nature. We also give or experimental results using an

implementation of Groebner basis algorithm. Our results show that state bits of the cipher can

be recovered in fewer number of data frames than required in a previous efficient attack against

GSM communication.

Chapter 4 gives Algebraic analysis of Grain family of ciphers. Two versions Grain-v1 and Grain-

128 have been analyzed and experimental results on solving their algebraic equations are given.

Both of these versions have a NLFSR along with a LFSR and that is why registers of the cipher

are non-linearly updated. We have also analyzed their structures to obtain low degree equations.

Results on finding internal state bits are given using guess and determine approach.

In Chapter 5, we have considered Trivium, an eSTREAM candidate which has been included in

their final portfolio also. Trivium has an internal state of 288 bits and three of its states are updated

non-linearly at each clock. Therefore, in this case also, degrees of equations relating internal state

bits with output bits do not remain constant. We have shown in this chapter, that with some bits

guessed we can practically recover rest of the internal state bits. We have also analyzed a tweaked

version Trivium/128, that has been proposed in literarture to improve upon the security of Trivium

to 128 bits. Our results show that tweaked version is not suitable to offer 128 bit security.

In Chapter 6, the structure of Mickey is considered for Algebraic analysis. Registers of Mickey
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are also updated non-linearly. But in this case due to the interdependent clocking of registers guess

and determine approach fails to work. Therefore, our experiments could not recover internal state

bits of the registers with some guessed bits for Mickey unlike Grain and Trivium.

Chapter 7 and Chapter 8 are meant to propose some changes in the structure of Grain-v1 and

Trivium respectively. We have tried to make them better resistant against recovery of internal

state bits by solving algebraic system of equations with guess and determine approach. We aim to

improve upon the algebraic structure of the structures so that recovery of internal state bits can be

avoided. Our proposed modification does not at all affect the main design philosophy of ciphers

in both cases. Rather we attempt to make very small changes which can make the recovery of

internal state bits difficult with the approach used in previous chapters.

Chapter 9 will conclude this thesis.

1.6 Conclusion

In this chapter, we have given an introduction of the thesis. Background and importance of this

work is explained and layout of the following chapters has also been presented.
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Chapter 2

Algebraic Cryptanalysis of Stream Ciphers

2.1 Introduction

Most of the cryptanalysis on stream ciphers is performed under a known plaintext assumption.

For the additive stream cipher this means that the attacker has direct access to the key-stream

output from the generator. Algebraic attack is a development in the cryptanalysis of symmetric

encryption techniques that has received much attention in past few years. Algebraic attacks are

more applicable on stream ciphers than any other primitive. Due to successful applicability of

algebraic attack on stream ciphers, especially on those which have linear feed back, this technique

is considered an important threat for stream ciphers. In this chapter, a study on algebraic attacks

mounted on stream ciphers in general is presented. We will also discuss briefly the possible

application of this class of attacks on stream ciphers with somewhat different structures, like

clock-controlled ciphers, and ciphers with non-linear update.

2.2 Algebraic Cryptanalysis of LFSR Based Stream Ciphers

Stream ciphers are generally very suitable for the applications which require fast encryption rate

or extremely low implementation cost in hardware. A linear transition functions along with a non-

linear filtering function to break the inherent linearity, therefore, are very common components of

stream ciphers. Amongst all linear components, LFSRs are very popular because of their low cost

implementation. To destroy the linear and periodic sequence produced by one or more LFSRs, a
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non-linear combiner or filtering function is used. General structure is shown in Figure 2.1
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Figure 2.1: An additive stream cipher, where (cipher − text)ci = (plain − text)yi ⊕

(keystream)zi and f is the non linear function

LFSR based stream ciphers are suitable for many cryptanalytic attacks as well. Algebraic crypt-

analysis is also now one of the well known threats to such ciphers. The basic principle of algebraic

attacks is based on the Shannons concept. That is to express the whole cipher as a large system

of multivariate algebraic equations and then to solve it to recover the secret key. The complexity

of this kind of attack will depend largely on the degree of the underlying algebraic system. Thus,

Algebraic attacks can be viewed as a two step process:

First step: Find a system of algebraic equations that relates the bits of the initial state K and bits

of the key-stream Z, this step differs for each cipher and depends mainly on its internal structure.

However, it is a pre-computation step and once equations are formed, these can be used for at-

tacking multiple key-streams.
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Second step: Second step is performed after some key stream bits are obtained. The observed

key-stream bits are substituted into the algebraic equations already formed and then these equa-

tions are solved using different methods like Linearization, XL, and Groebner bases. This solution

is efficient if degree of equations is low, and a sufficient number of equations can be formed from

the observed key-stream. Hence, to find low degree equations is a desirable goal in algebraic

attacks.

2.2.1 Generation of Algebraic Equations

This section is devoted to give an outline on generating low degree equations for stream ciphers.

First ever research on algebraic attacks on stream cipher is found on simple combiners Cour-

tois and Meier (2003); Courtois (2002). In Courtois (2002), correlation properties of non-linear

function are exploited. Further, an over defined system of multivariate equations of low degree

is solved using XL algorithm. The complexity of the proposed attack was much lower than any

other known attack. Whereas in Courtois and Meier (2003) no such low degree approximation

is required, rather a new method for generating low degree equations is proposed. A brief de-

tail of the approach will be given in the next section. Later, fast algebraic attacks were given by

Courtois Courtois (2003), in which complexity of the attack was reduced by reducing the degree

of equations using pre-computation algorithm. His results were further enhanced by Armknecht

in Armknecht (2004a). Another research in Armknecht and Karuse (2003), showed an improved

method for fast algebraic attacks using Fast Fourier Transform (FFT) and made the argument of

algebraic attack on LFSR based stream ciphers being the most effective one.

2.2.1.1 Generating Equations for Combiners Without Memory

Simple combiners without memory can be represented as in Figure 2.2
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Figure 2.2: Simple Combiner without Memory

As described above, first step for an algebraic attack is to set up a system of equations in the

unknowns st and output bits zt. Suppose that LFSRs have k-bit state, and initial state is S0 =

(s0, s1, ..., sk−1). Output bits and initial state bits can be algebraically related as follows:

f(s0, ...sk−1) = z0

f(L(s0, ...sk−1)) = z1

f(L2(s0, ...sk−1)) = z2

..................

The following equation always holds as a relation between initial states of LFSRs and output bits

zt: f(st)⊕ zt = 0,∀t, where st+1 = Lt(S0) = Lt(s0, ..., sk−1)

⇒ f(Lt(s0, ...sk−1))⊕ zt = 0,∀t (2.1)

Above equation can be used to set up a system of equations while f and L are known. Here,

degree of equations depends on the degree of f .
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2.2.1.2 Combiners With Memory

A combiner with memory can generally be represented as in Figure 2.3:

LFSRs f
St zt

Memory c
Ct

Ct+1

Figure 2.3: A Combiner with Memory

Stream ciphers, comprising of combiners with memory were primarily considered resistant to al-

gebraic attacks but subsequent researches Armknecht and Karuse (2003); Courtois (2005a) proved

it wrong. In this case, due to the role of memory bits, initial state bits and output bits may be re-

lated as follows:

zt = f(st, ct)where, st+1 = L(st) = Lt(S0)ct+1 = C(st, ct) (2.2)

. Acoording to equation 2.1, the following equation is followed:

f(Lt(s0, ...sk−1, ct))⊕ zt = 0,∀t. (2.3)

It has been proved theoretically Armknecht and Karuse (2003) that for any combiner with k inputs

and l bits of memory, an algebraic attack always exists.
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2.2.1.3 Criteria For The Existence Of Low-Degree Equations

Following criteria have been given by Courtois for the algebraic attack on stream ciphers with

simple combiners Courtois and Meier (2003):

• Boolean function f has a low algebraic degree

• f can be approximated by such a function with a probability close to 1, this probability is

usually denoted as 1− ε for small ε

• The multivariate polynomial f has some multiple g such that f.g is of low degree.

• f.g can be approximated by a function of low degree with some probability 1− ε

These criteria were extended further in Armknecht and Karuse (2003) and it has been proved that,

for any combiner with k inputs and l bits of memory, required multivariate relations always exist

with degree at most dk(l + 1)/2e. Moreovor a general criterion for the existence of low-degree

equations for all the three cases: simple combiners, combiners with memory and for S-boxes were

presented in Armknecht (2004b). Following definitions are required to state the general criterion.

• Annihilator: Let f, g ∈ Bn be Boolean function then g is annihilator of f if f.g ≡ 0 and

set of annihilators is defined as: An(f) = {g ∈ Bn|f.g ≡ 0}

• Characteristic function for simple combiners:Let f, g ∈ Bn be the output function of a

simple combiner. For z ∈ {0, 1}, Characteristic function Cz ∈ Bn is defined as: Cz(X) =

1 ⇔ f(X) = z, ∀X ∈ {0, 1}n. For simple combiners it is easy to see that: C0 = fandC1 =

f ⊕ 1
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• Z-function For a combiner with memory, for Z ∈ {0, 1}r, r ∈ I, r ≥ 1, a function Fz :

{0, 1}k.r → {0, 1} is a z-function if the following holds for all clocks t:

(zt, ..., zt+r−1) = Z ⇒ Fz(X) = 0,∀X = (X1, ...Xr) ∈ {0, 1}k.r

• Characteristic function for combiners with memory For a given (k, l) combiner, for

Z ∈ {0, 1}r, then the charecteristic function CZ : {0, 1}k.r → {0, 1} is defined as:

Cz(X1, ...Xr) = 1 ⇔ ∃M ∈ {0, 1}l : f r(M, X1, ...Xr) = Z

Thus the criterion for existence of low degree equations is given as:

Let C ∈ Bn be a charecteristic function. Then an equation of degree ≤ d exists iff C has an

annihilator of degree ≤ d.

Thus, the existence of low degree equations and of low-degree annihilators can be considered

equivalent.

2.2.2 Solving Algebraic Equations

The problem of solving systems of multivariate polynomial equations is NP-complete even for

the quadratic equations in the binary field (GF(2)). As an example, the case of AES-128 can be

considered, for which key can be recovered with a high probability from one AES-128 plaintext-

ciphertext pair if a system of 8000 quadratic equations over GF(2) with 1600 variables can be

solved Courtois and Pieprzyk (2002). The classical algorithm for solving such a system is Buch-

bergers algorithm for constructing Groebner bases and its many variants. In this section, a brief

description of the techniques for solving the system of multivariate algebraic equations, like lin-

earization, XL, XSL, Buchberger algorithm, F4 algorithm is given.
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2.2.2.1 Linearization

Linearization is the simplest technique for solving the system of multivariate polynomial equa-

tions. It solves an over defined system of non-linear equations in polynomial time if enough

linearly independent equations are given. Principle of linearization is to first replace each mono-

mial with a new variable and then solve a linear system of a large number of indeterminates.

• Complexity of Linearization: Linearization method is easy and simple to implement, but

its major drawback is its requirement of the knowledge of large amount of key-stream bits.

There are about T ≈
d∑

i=1

 n

i

 monomials of degree≤ d in the n variables. Consid-

ering each of these monomials as a new variable, if there are T + M key-stream bits,

a system of R ≥ T linear equations is obtained with T variables that can be solved by

Gaussian Elimination on a linear system of size T . In theory, time taken by Guassian elim-

ination is T ω, where ω ≤ 2.376. Based on the Strassen’s algorithm that requires about

7.T log27 operations and the assumption that a modern CPU can handle 64 such operations

in one single CPU clock, Courtois gave an estimation of the number of CPU clocks neces-

sary in the attack as: 7/64.T log27. However, this complexity estimate has been revised as:

E(T, R) = 0.76TR1.8 + 0.023R2.8 ) based on the fact that Strassen’s algorithm has a large

probability of failure in GF(2).

2.2.2.2 Relinearization

While linearization does not always lead to a unique solution, another technique Relineariza-

tion can solve many systems of equations which could not be solved by linearization Kipnis and

Shamir (1999). Its complexity and success rate are however not well understood. The general

idea of this method is to use linearization technique to solve m equations in n(n + 1)/2 variables
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(That is number of 2 or less degree monomials on n variables).

2.2.2.3 Extended Linearization

Extended Linearization(XL algorithm) was first proposed to solve quardratic equations Kipnis and

Shamir (1999). Although XL is simple, the number of equations and variables for which it termi-

nates successfully is not clear and also its asymptotic complexity is not known. XL can be further

improved by techniques like XSL, FXL, XL, and XL2 Kipnis and Shamir (1999). Still, a number

of issues are to be settled regarding the success and implementation of XL and its variants.

2.2.2.4 Groebner Bases Algorithms

A brief description is given here that how a system of multivariate equations can be solved by

using Groebner bases for the ideal generated by the multivariate polynomials. For this, consider

the following problem: Problem: Let the base field is GF (q) = Fq and e1, e2, ..., em are m

multivariate polynomials with n variables over the field Fq with

Xq
i = Xi for 1 ≤ n, i.e., ej ∈ Fq[X1, X2, ...Xn] 〈X1q = X1, ..., Xn = Xq

n〉 for 1 ≤ j ≤ m

The problem is, thus, to find the solution(s): (x1, x2, ..., xn) ∈ F n
q such that ei(x1, x2, ..., xn) = 0

for 1 ≤ i ≤ m

In abstract algebra, the above problem is studied in the following way:

Let I ⊆ Fq[X1, ...Xn] be the ideal generated by the polynomials e1, ...em. The set of solutions

V (e1, ...em) = (x1, ..., xn) ∈ F n
q |ei(x1, ...xn) = 0,∀1 ≤ i ≤ m, is known as affine variety defined

by e1, ...em. So, the problem is the same as asking for the points in the affine variety: V (e1, ...em).

This problem can be solved using Groebner basis of the ideal I. To describe the meaning of

Groebner basis of an ideal, following must be considered:

Let≺ be a total monomial order on the set of monomials Xα, where α ∈ F n
q . As the terms of each
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polynomial can be uniquely ordered with respect to ≺, the notion of leading coefficient (LC(f)),

leading monomial (LM(f)) and leading terms (LT(f)) are well defined.

Let I ⊆ Fq[X1, ..., Xn] be an ideal and LT (I) = LT (f)|f ∈ I . A finite subset G = g1, ..., gs of I

is said to be a Groebner basis if 〈LT (g1), ..., LT (gs)〉 = 〈LT (I)〉.

It can be shown that every non-trivial ideal has a Groebner basis fixing a monomial order ≺. It

may not be unique, but it is possible to get uniquely reduced Groebner basis. As the structure

of the polynomials in Groebner is very simple, it is easy to exploit G for finding V (G). Since

V (G) = V (I) = V (e1, ..., em), finding V (G) is enough. So, the remaining task is to generate the

Groebner basis.

The concept of Groebner Bases was introduced by Buchberger (1965) in the context of his work

on performing algorithmic computations in residue classes of polynomial rings. Buchbergers

algorithm Buchberger (1985) the classical algorithm for computing the Groebner bases is given

as follows:

Buchberger’s algorithm uses the generalized Euclidean division algorithm to find out the remain-

der polynomial by dividing a polynomial by a set of polynomials. As given in the algorithm for an

ideal 〈e1, ..., em〉, all S-polynomials are calculated and are reduced with respect to (e1, ..., em). If

rem(S(ei, ej), (e1, ..., em)) 6= 0 then (e1, ...em) is to be extended with rem(S(ei, ej), (e1, ..., em)).

Next, all S-polynomials are calculated which already have not been calculated and are re-

duced similarly. If rem(S(ei, ej), (e1, ..., em)) 6= 0 then lm(rem(S(ei, ej), (e1, ..., em))) /∈

〈lm(f1, ..., lm(fk))〉. So, each time the generating set is extended, the monomial ideal generated

by leading monomial of the generator is also extended. The termination is guaranteed by Dicksons

lemma. And result is the Groebner bases. For details one may refer to Froeberg (1999). The com-

plexity of the algorithm is closely related to the total degree of the intermediate polynomials that
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Algorithm 1 The Buchberger’s Algorithm
Require: E = (e1, ..., em)

Ensure: A Groebner basis G = (g1, ..., gs) for I = 〈e1, ..., em〉

1: Initialize G = E

2: repeat

3: Ǵ = G

4: for each pair p, q, p 6= q in Ǵ do

5: Combine each p, q by cancelling the leading terms to get S(p, q)

6: Compute the remainders of S(p, q) by G

7: Augment the non-zero remainders with G

8: end for

9: until G = Ǵ

are generated during the execution of the algorithm. In the worst case it is known to run in double

exponential time and on average its running time seems to be single exponential. A number of

modifications of the algorithm exist to improve its performance regarding implementation. These

include especially F4 Faugère (1999) and F5 Faugère (2002). Algorithms proposed by Faugere

which are based on the idea of viewing Euclidean division algorithm in terms of matrix reduc-

tion algorithm. These are the fastest implementations of algorithm for finding Groebner bases so

far. These fast implementations made them suitable for algebraic attacks also Faugere and Joux

(2003). Some researches have also compared the efficiency of Groebner basis algorithms and XL

algorithm. Groebner basis algorithms have been established to be more efficient Gwenole Ars and

Sugita (2004); Makoto Sugita and Imai (n.d.).
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2.3 Algebraic Cryptanalysis of Stream Ciphers With Non-linear Update

As discussed in previous sections, algebraic cryptanalysis has been proved successful for stream

ciphers where linear update of states is being used with some non-linear component. The most

common design is that of an LFSR with non-linear Boolean function s. In this case, degree of

the non-linear equations is an important parameter to test the complexity of algebraic attack. The

main efforts in this situation are directed towards formulating any method to reduce the degrees of

equations. In this context researches on developing efficient algorithms for finding annihilators of

Boolean functions are important. However, for stream ciphers in which internal state is updated

non-linearly, degrees of the equations which relate internal states with output bits, increase with

each clock. This creates a difficulty in applying conventional method of algebraic cryptanalysis

on stream ciphers with non-linear update. That is why, algebraic attack is generally considered

difficult for stream ciphers with non-linear update.

2.4 Conclusion

Algebraic cryptanalysis of stream ciphers are reviewed in this chapter. A description of the equa-

tion generation for stream ciphers and different techniques for lowering the degrees of equations is

given. We have also briefly discussed different methods used for solution of non-linear equations.
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Chapter 3

Algebraic Analysis of A5/1 and A5/2

3.1 Introduction

Global System for Mobile communication (GSM) is a global standard for digital cellular com-

munication. GSM is the name of a standardization group that was established in 1982. Today

GSM mobile phones are used world wide for communication, via voice and short-message-service

(SMS) text. A5 is a collective name for encryption algorithms used in GSM communication. A5/0

means no encryption. A5/1 is the “standard” encryption algorithm, while A5/2 is the “export”,

algorithm. A5/3 is a new algorithm based on the UMTS/WCDMA algorithm Kasumi that will

make the future standard for GSM.

A5/1 and A5/2 possess a simple clock controlled structure. Clock control is one of the mecha-

nisms employed to introduce non-linearity into key stream generator built from linear feedback

shift registers. Many cryptanalytic attacks against both A5/1 and A5/2 can be found in literature.

Soon after that the structures of A5/1 and A5/2 were unveiled Briceno et al. (1999), these two

have been extensively analyzed. First ever attack against A5/1 on its alleged structure is carried

out by Golic Golic (1997). Successive are many time-memory trade off, search algorithms, corre-

lation and hardware based attacks Biham and Dunkelman (2000); J.D.Golic and Conner (1994);

Krause (2002); Ekdahl and Johansson (2003); T A. Biryukov and Wagner (2001); Pornin and

Stern (2000). In this chapter, we will consider the algebraic analysis of A5/1 and A5/2 ciphers.

Algebraic attack against clock controlled stream ciphers has been studied in Al-Hinai et al. (2006)
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where mainly those ciphers are considered in which one generator controls the clocking of other

generators. Due to mutual clocking of registers of A5/1, algebraic equations which relate its

internal states with output bits obtain very high and varying in time degrees. However, due to

weak structure of A5/2 most of the attacks against it are algebraic in nature. Generally, flaws

in the GSM protocol are exploited in these attacks and opportunely they are extended to cipher-

text only attacks I. Goldberg and Green (1999); Petrovic and Fuster-Sabater (2000); Barkan et al.

(2003); A. Bogodanov and Rupp (2003).

Organization of this chapter is as follows: Section 3.2 and Section 3.3 gives algebraic analysis of

A5/1 and A5/2 respectively. Chapter is concluded in Section 3.4.

3.2 Algebraic Analysis of A5/1

3.2.1 Design Structure of A5/1

The design of A5/1 was initially kept secret from public, but its design was reverse engineered

in 1999 M. Blaze and Roe (1999). A5/1 is a binary additive stream cipher based on irregular

clocking of three maximal length linear feedback shift registers. The three registers are of lengths

19, 22 and 23, thus, the key size is 64 bits and the key-stream is produced by XOR-ing the output

from the three registers. The LFSRs are clocked in an irregular fashion. It is a type of stop/go

clocking which is based on the majority rule. Each register has a single clocking bit. A majority

function is calculated from the clocking bit of each register which are input bits of the function.

This function output is 1 or 0 if two or more of the input bits are 1 or 0 respectively. Based on

the output of majority function, a register is clocked if its clock bit contains a value equal to this

majority value. The binary clock-controlled bits are derived from each register by using stop/ go

rule described above and key-stream is then produced as the XOR of the output bits of the three
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Figure 3.1: The Structure of A5 Key-Stream Generator

registers.

The structure of A5/1 algorithm is shown in Figure 3.1. It has three primitive linear feedback shift

registers R1, R2 and R3 of lengths p, m and n, so they produce maximum length sequences when

clocked regularly. Their initial states are represented as A1...Ap, B1, ...Bm and C1, ...Cn.

Each register has a single clocking bit represented as Aclk, Bclk and Cclk. The binary clock-

controlled bits are derived from each register by using stop/ go rule as described in the previous

section and key-stream is then produced as the XOR of the output bits of the three registers. In

the case of A5/1 algorithm of GSM, the lengths are respectively 19, 22 and 23. R1, R2 and

R3 are clocked respectively iff maj(Aclk, Bclk, Cclk) = Aclk, maj(Aclk, Bclk, Cclk) = Bclk, and

maj(Aclk, Bclk, Cclk) = Aclk. where maj(X, Y, Z) = XY ⊕XZ ⊕ Y Z.

The relation of output bit of LFSR A with its state bits can be written as:

At
p = At−1

p (At−1
clk ⊕ At−1

clk Bt−1
clk ⊕ At−1

clk Ct−1
clk ⊕Bt−1

clk Ct−1
clk )

⊕ At−1
p−1(1⊕ At−1

clk ⊕ At−1
clk Bt−1

clk ⊕ At−1
clk Ct−1

clk ⊕Bt−1
clk Ct−1

clk ) (3.1)
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If we represent ft−1 = At−1
clk Bt−1

clk ⊕ At−1
clk Ct−1

clk ⊕Bt−1
clk Bt−1

clk then equation 3.1 can be written as:

At
p = At−1

p (At−1
clk ⊕ ft−1)⊕ At−1

p−1(1⊕ At−1
clk ⊕ ft−1) (3.2)

Or, At
p = At−1

p−1 ⊕ (At−1
p−1 ⊕ At−1

p )(At−1
clk ⊕ ft−1) ; Similarly:

Bt
m = Bt−1

m−1 ⊕ (Bt−1
m−1 ⊕ Bt−1

m )(Bt−1
clk ⊕ ft−1) ; And Ct

n = Ct−1
n−1 ⊕ (Ct−1

n−1 ⊕ Ct−1
n )(Ct−1

clk ⊕ ft−1)

Since, key-stream bit at time t is found by taking addition modulo 2 of the output bits at time t of

the three LFSRs, therefore, key-stream bit at time t can be represented as:

zt = At
p ⊕Bt

m ⊕ Ct
n ⇒ zt = (At−1

p−1 ⊕Bt−1
m−1 ⊕ Ct−1

n−1)⊕ (At−1
p−1 ⊕ At−1

p )(At−1
clk ⊕ ft−1)

⊕ (Bt−1
m−1 ⊕Bt−1

m )(mt−1
clk ⊕ ft−1)⊕ Ct−1

n−1 ⊕ Ct−1
n )(Ct−1

clk ⊕ ft−1) (3.3)

This system of equations represents A5/1 cipher, but it can be seen that degree of this system of

equations will increase at each step.

Reducing the degree of the equations is primary in the algebraic attack. Taking binary derivative

to simplify the degree of equations. From equation 3.3 we can obtain:

At+1
p = At

p(A
t
clk ⊕ ft)⊕ At

p−1(1⊕ At
clk ⊕ ft) (3.4)

From equation 3.1 and 3.3 we have:

⇒ At+1
p ⊕ At

p = At
p(1⊕ At

clk ⊕ ft)⊕ At
p−1(1⊕ At

clk ⊕ ft) = (1⊕ At
clk ⊕ ft)(A

t
p ⊕ At

p−1)

Thus we obtain:

⇒ zt ⊕ zt+1 = (At
p ⊕ At

p−1 ⊕Bt
m ⊕Bt

m−1 ⊕ Ct
n ⊕ Ct

n−1)(1⊕ ft)

⊕ At
clk(A

t
p ⊕ At

p−1)⊕Bt
clk(B

t
m ⊕Bt

m−1)⊕ Ct
clk(C

t
n ⊕ Ct

n−1) (3.5)
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⇒ (zt ⊕ zt+1).ft = (At
clk(A

t
p ⊕ At

p−1)⊕Bt
clk(B

t
m ⊕Bt

m−1)⊕ Ct
clk(C

t
n ⊕ Ct

n−1)).ft (3.6)

As it is known that ft is of degree 2, therfore, after first iteration degree of the developed equa-

tions will increase at each step. Yet another approach to reduce the degree of equations can be

considered as follows: from equation 3.5:

(zt ⊕ zt+1)(1 ⊕ At
p ⊕ At

p−1 ⊕ Bt
m ⊕ Bt

m−1 ⊕ Ct
n ⊕ Ct

n−1) = (At
clk(A

t
p ⊕ At

p−1) ⊕ Bt
clk(B

t
m ⊕

Bt
m−1)⊕ At

clk(C
t
n ⊕ Ct

n−1))(1⊕ At
p ⊕ At

p−1 ⊕Bt
m ⊕Bt

m−1 ⊕ Ct
n ⊕ Ct

n−1)

Here, if we consider the case of consecutive same bits then the equations will become:

(At
clk(A

t
p ⊕At

p−1)⊕Bt
clk(B

t
m ⊕Bt

m−1)⊕ACtclk(C
t
n ⊕Ct

n−1))(1⊕At
p ⊕At

p−1 ⊕Bt
m ⊕Bt

m−1 ⊕

Ct
n ⊕Ct

n−1) = 0 ⇒ (At
p ⊕At

p−1)(B
t
m ⊕Bt

m−1)(A
t
clk ⊕Bt

clk)⊕ (At
p ⊕At

p−1)(C
t
n ⊕Ct

n−1)(A
t
clk ⊕

Ct
clk)⊕ (Bt

m ⊕Bt
m−1)(C

t
n ⊕ Ct

n−1)(B
t
clk ⊕ Ct

clk) = 0

or

At
clk(A

t
p ⊕ At

p−1)(B
t
m ⊕Bt

m−1 ⊕ Ct
n ⊕ Ct

n−1)⊕Bt
clk(B

t
m ⊕Bt

m−1)(A
t
p ⊕ At

p−1⊕

Ct
n ⊕ Ct

n−1)⊕ Ct
clk(C

t
n ⊕ Ct

n−1)(A
t
p ⊕ At

p−1 ⊕Bt
m ⊕Bt

m−1) = 0 (3.7)

equation 3.7 also gives product of three variables like previous equations. But here, since we are

looking for consecutive same bits, therefore, some equations obtained from the initial clocking

will be discarded, and this will lead to even more rapid increase in the degree of equations. In this

case however, increase in the degrees varies with different initial state bits.

For solving non-linear equations, we adopted the method of guess and determine and used F4

algorithm implemented in Magma. Since, clocking of registers is interdependent, therefore if one

register or even two complete registers are guessed, third register cannot be recovered. Since,

middle bits control the clocking of LFSRs, therefore, degrees of the algebraic equations increase
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Figure 3.2: The Structure of A5/2 Key-Stream Generator

immediately after first clocking. Therefore, to obtain some linear equations, guessed bits must

be from the clocking bits to starting bits of each LFSR. Guessing bits in this way, we can obtain

nineteen out of 64 internal state bits in a fraction of a second on a PC with CPU at 1.73 GHz and

I GB RAM.

3.3 Algebraic Cryptanalysis of A5/2

3.3.1 System of Algebraic Equations for A5/2 Key-Stream Generator

The generic structure of A5/2 cipher is given in Figure 3.2. It shows the algebraic relation of

internal states of A5/2 with output bits. The cipher has four LFSRs represented as R1, R2, R3

and R4 of lengths p, q, r and n respectively. The connection polynomials of all the registers are

primitive, that is when regularly clocked they are maximal length registers.

The initial states of the four registers are represented as x1...xp, y1, ...yq, z1, ...zr and A1, ...An.

For A5/2 these lengths p, q, r, and n are 19, 22, 23 and 17 respectively. Initialization procedure is
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linear in 64 bits key and 22 bits publicly known frame. For details of initialization procedure one

may refer to E. Barkan and Keller (2003); Krause (2002). After initialization, stop/go clocking

of R1, R2, and R3 is started according to the feedback given in Figure 3.2. R4 controls the

irregular clocking of the rest of three registers. R4 is regularly clocked and at each clock R1, R2

and R3 are clocked according to the following rule: R1, R2 and R3 are clocked respectively

iff maj(A4, A8, A11) = A11, maj(A4, A8, A11) = A4, and maj(A4, A8, A11) = A8. where

maj(X, Y, Z) = XY ⊕ XZ ⊕ Y Z. Thus, in each cycle at least two of the three registers are

clocked. Middle bits of the three registers therefore, contribute in deciding of their clocking or

not. At each cycle, one output bit at time t is produced as:

output− bitt = xt
19 ⊕maj(xt

13, 1⊕ xt
15, x

t
16)⊕ yt

22 ⊕maj(yt
10, y

t
14, 1

⊕ yt
17)⊕ zt

23 ⊕maj(1⊕ zt
14, z

t
17, z

t
19) (3.8)

Due to the irregular clocking algebraic relation of state bits of register R1 with previous states can

be written as follows:

xt
p = xt−1

p · (At−1
4 ⊕maj(At−1

4 , At−1
8 , At−1

11 ))⊕ xt−1
p−1 · (1⊕At−1

4 ⊕maj(At−1
4 , At−1

8 , At−1
11 )) where

p = 2..19

and

xt
1 = xt−1

1 ·(At−1
4 ⊕maj(At−1

4 , At−1
8 , At−1

11 ))⊕feedbackR1t−1·(1⊕At−1
4 ⊕maj(At−1

4 , At−1
8 , At−1

11 ))

where feedbackR1t−1 = xt−1
14 ⊕ xt−1

17 ⊕ xt−1
18 ⊕ xt−1

19

From above expression, we can find the contribution of R1 register into the XOR of output bit at

time t as:
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(xt−1
19 ⊕maj(xt−1

13 , 1⊕ xt−1
15 , xt−1

16 )) · (At−1
11 ⊕maj(At−1

4 , At−1
8 , At−1

11 ))⊕ (xt
19⊕

maj(xt
13, 1⊕ xt

15, x
t
16)) · (1⊕ At−1

11 ⊕maj(At−1
4 , At−1

8 , At−1
11 )) (3.9)

Similarly outputs from R2 and R3 can be obtained as follows:

(yt−1
22 ⊕maj(yt−1

10 , yt−1
14 , 1⊕ yt−1

17 )) · (At−1
4 ⊕maj(At−1

4 , At−1
8 , At−1

11 ))⊕ (yt
22⊕

maj(yt
10, 1⊕ yt

14, y
t
17)) · (1⊕ At−1

4 ⊕maj(At−1
4 , At−1

8 , At−1
11 )) (3.10)

and

(zt−1
23 ⊕maj(zt−1

14 , zt−1
17 , 1⊕ zt−1

19 )) · (At−1
8 ⊕maj(At−1

4 , At−1
8 , At−1

11 ))⊕ (zt
23⊕

maj(zt
14, 1⊕ zt

17, z
t
19)) · (1⊕ At−1

8 ⊕maj(At−1
4 , At−1

8 , At−1
11 )) (3.11)

From above expressions, it can be seen that degrees of algebraic equations, which relate internal

states of the registers with output bits, increase with time. But this increase is only because of

the bits from R4 which is the smallest register. This situation invites guessing of R4 bits as is

adopted in major attacks against A5/2 E. Barkan and Keller (2003); Krause (2002). And the

failure of this approach in case of A5/1 is attributed to the mutual dependency of registers for

clocking, guessing one register or few bits of all registers does not help in reducing the degrees

of all algebraic equations. Our emphasis here, is on the fact that apart from cryptanalysis friendly

protocol of GSM, the structure of A5/2 itself is vulnerable to very efficient algebraic attack.

3.3.2 Experimental Results on Algebraic Cryptanalysis of A5/2 Using Groebner Basis

Our implementation is software based and approach is similar to E. Barkan and Keller (2003).

The difference lies in the application of Groebner basis to solve algebraic equations thus formed

by relating internal states of R1, R2, and R3 with the output bits, while R4 is guessed.
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Groebner basis can be efficiently used for solving algebraic equations and so, their use for al-

gebraic cryptanalysis is quite well known. Though, exact complexity of algorithm for finding

Groebner basis is not yet known. Therefore, it is important to find experimentally the data and

time complexity of solving equations with Groebner basis. Our simulation environment is same

as described in Chapter 1 and thus, system of non-linear equations is solved using F4 algorithm

implemented in Magma version 2.13-5 System (n.d.)

It can be observed easily that protocol independent A5/2 cipher is also an easy prey to algebraic

cryptanalysis. Using the same approach as has been used in previous attacks, bits from R4 are

guessed and for each guess, system of quardratic equations is developed. Our experiments show

that second degree equations can be solved in 0.42 sec to recover 64 secret internal state bits with

a few more than 500 equations of one cycle.

When A5/2 runs in GSM protocol, after one initialization only 114 equations can be obtained

from each frame. For detail of the GSM protocol E. Barkan and Keller (2003) is referred. Also,

one bit of each register is known, after loading 64 keybits and 22 frame bits. So, we have to

guess 16 bits of R4 to recover 61 bits of the other three registers. An important consideration

is that for each register Ri, XOR difference between Rif and Rif+1 is known, where f and

f + 1 represent two different frames. Initial states of three registers of one frame (just before 99

clocking) can be taken as 61 variables and initial states of next frames can be written linearly in

these variables. Thus, we can make a system of quadratic equations in 61 variables, 114 equations

from each frame. Then the number of frames to obtain enough equations to solve the system is

to be decided. Linearization of quadratic equations of 61 variables renders a linear system of 655

variables. However, it is found experimentally E. Barkan and Keller (2003) that 450 equations

from four frames are enough to solve the equations of A5/2 cipher due to the presence of a number
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of linear variables of system and other variables expressed as products of those for each frame.

We have tested experimentally that algebraic equations of A5/2 of any three frames can be solved

with Magma, in 2 to 3 seconds. It should be noted here that we need to solve this system of

equations 216 − 1 times that is for each non-zero guess of R4. For each wrong guess, the system

of equations becomes inconsistent, and Groebner basis of such a system is found to be one. The

inconsistency of the system is decided in a fraction of a second. Thus, overall time complexity of

our approach is comparable to E. Barkan and Keller (2003), but we need less data.

Ciphertext-only attack described in E. Barkan and Keller (2003), exploits the structured redun-

dancy in the message which is introduced into the message because of employment of error cor-

rection code prior to encryption. However, the technical difference between ciphertext-only and

known-plaintext attacks is the requirement of data frames. In ciphertext-only attack, only 272

equations can be extracted from 456 bits of cipher text (4 data frames). Thus, the ciphertext-only

attack of E. Barkan and Keller (2003), requires eight frames to obtain enough equations for lin-

earization. But when we solve equations using Groebner basis, 272 equations are actually enough

to solve the equation to obtain 61 unknowns. Time required, however, to solve 272 equations

is nearly 30 sec. But in this case also the inconsistency is decided in less than a second time.

Thus, if same equations are solved with Groebner basis algorithm, only four data frames will be

needed instead of eight. Data requirements for our and previous (E. Barkan and Keller (2003))

experimental results are summarized in Table 3.1, time complexity is comparable in both cases:

3.4 Conclusion

Mostly those ciphers can be successfully algebraically attacked in which relation of output bits

can be easily developed in terms of state bits of LFSRs. If this is not the case, then mounting
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Table 3.1: Experimental results of solving equations of A5/2 with groebner basis

Att. Required

Data Frames

Known Plain-Text 4

attack E. Barkan and Keller (2003)

Known plain-text 3

with Groebner basis

Cipher text only 8

attack E. Barkan and Keller (2003)

Cipher text only 4

with Groebner basis

an algebraic attack becomes difficult. Successful Algebraic attacks on clock-controlled stream

ciphers show that security of clock-controlling must also be checked against algebraic attack

along with correlation and other divide and conquer type of attacks. In this context the analysis

A5/1 key-stream generator against algebraic attack is important and is achieved in this research.

It is found that this type of clocking shows more resistance to algebraic attack rather than the

irregular clocking used in stop-and-go generator; alternating step generator, self-decimated and

step1/step2 generator. Due to mutual dependence of registers in clocking, guess and determine

approach is not very successful and very high degree equations are formed. We also found that at

maximum, 19 state bits can be recovered for A5/1 generator if remaining bits are guessed.

An evidence of experiments using Groebner basis is also presented to enhance previous results on

algebraic cryptanalysis of A5/2 cipher of GSM. Our results demonstrate that we need three data

frames instead of four to mount a known plaintext attack with the same time complexity. And
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in case of cipher-text only attack our requirement is of four data frames as compared to eight of

previous attacks.
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Chapter 4

Algebraic Analysis of Grain Family of Ciphers

4.1 Introduction

Stream ciphers with keystream generators are very commonly used for secure communication.

However, it is important to analyze a keystream generator against existing cryptanalytic attacks.

In this context cryptanalysis is generally considered a tool to measure the strength of a cipher

in terms of its resistance against different types of attacks. Algebraic cyptanalysis is a very im-

portant development in this field and has received a lot of attention in many researches as dis-

cussed in previous chapters. In this chapter, we focus on the algebraic cryptanalysis of non-linear

feedback shift register (NLFSR) based stream cipher. Grain M. Hell and Meier (2005a,b), one

of the ECRYPT stream cipher project eSTREAM (2005) candidates, has a NLFSR along with

a non-linear Boolean function and a linear feed back shift register (LFSR). Till third phase of

eSTREAM project, two versions of Grain have emerged; and we have analyzed both of these

versions. Existing attacks on Grain version 1 (Grain-v1), includes: a correlation attack based on

linear approximation Berbain et al. (2006) and a distinguishing attack using linear circuit approx-

imation S. Khazaei and Kiaei (n.d.). Whereas Grain version 2 (Grain-128) has not yet faced any

serious attack.

In case of Grain family of ciphers, and other such possible structures in which NLFSRs are used,

internal state of the cipher is updated nonlinearly and as a result algebraic equations possess con-

tinually rising degrees. In this work, algebraic equations for both versions of Grain are generated
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and also analyzed thoroughly to obtain low degree equations. An approach of guess and deter-

mine by solving algebraic equations is also discussed. Further, the importance of guessing bits at

different positions is also presented. Thus, we try to figure out the maximum number of bits that

can be recovered while other bits are guessed.

Both versions of Grain have an initialization procedure with a secret key and an initialization

vector. We, however, analyze the cipher after initialization. So, the target here is to recover the

secret initial states of LFSR and NLFSR, as is the case generally in algebraic attacks, rather than

to recover the secret key which is an input of initialization step.

Organization of this chapter is as follows: Section 4.2 presents a brief account of both versions of

Grain. In Section 4.3 and 4.4, we describe algebraic analysis of equations generated for Grain-v1

and Grain-128. A study of variation in the degrees of algebraic equations with different state bits

guessed is also presented. Section 4.5 wil summarize and conclude this chapter.

4.2 Design of Grain-v1 and Grain-128

Grain family of ciphers has an NLFSR, along with a non-linear Boolean function and an LFSR.

Till third phase of eSTREAM project, two versions of Grain have emerged; and we have consid-

ered both of these versions for our experiments. The basic structure of Grain has an internal state

of size 2n bits, with n being the secret key bits. The internal state is divided into NLFSR and

LFSR of length n bits each. At each clock pulse, selecting some bits of the LFSR and some of the

NLFSR and applying a Boolean function one key stream bit is produced. The general structure of

Grain family of ciphers is given in Figure 4.1.

The design of Grain-v1 uses LFSR and NLFSR of 80 bits each and a Boolean function of 11

variables as the feedback function of the NLFSR and another Boolean function of five variables to
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Figure 4.1: An Overview of Grain Cipher

filter the contents of five fixed bits of the internal states of LFSR and NLFSR. The key generation

procedure for the Grain-v1 is given as the following code where the initial states of the LFSR and

NLFSR are denoted as (y1, y2, ...y80) and (x1, x2, ...x80) :

procedure Grain-v1((y1..y80), (x1, ..x80))

1: for k = 1 to n do

2: keybitk := x1 + h(x64, y65, y47, y26, y4)

3: feedbackLFSR := (y1, y14, y24, y39, y52, y63)

4: feedbackNLFSR := (y1 + g(x64, x61, x53, x46, x38, x34, x29, x22, x16, x10, x1))

5: for i = 1 to 79 do

6: yi := yi+1

7: xi := xi+1

8: y80 := feedbackLFSR

9: x80 := feedbackNLFSR

10: end for
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11: end for

where function g and h are given as:

g(x11, x10, x9, x8, x7, x6, x5, x4, x3, x2, x1) = x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 +

x2 + x1 + x11x10 + x7x6 + x3x2 + x10x9x8 + x6x5x4 + x11x8x5x2 + x10x9x7x6 + x11x10x4x3 +

x11x10x9x8x7 + x6x5x4x3x2 + x9x8x7x6x5x4

and

h(x5, x4, x3, x2, x1) = x2+x5+x1x4+x3x4+x4x5+x1x2x3+x1x3x4+x1x3x5+x2x3x5+x3x4x5

The main building blocks of Grain-128 are an LFSR and an NLFSR of length 128 each and an

output Boolean function, similar to that of Grain-v1. With initial states of the LFSR and NLFSR

denoted as: (y1, y2, ..., y128) and (x1, x2, ..., x128), the key bits are generated as follows:

procedure Grain-128 ((y1, .., y128), (x1, .., x128))

1: for k = 1 to n do

2: keybitk := x3+x16+x37+x46+x65+x74+x90+y94+h(x13, y9, y14, y21, x96, y43, y61, y80, y96)

3: feedbackLFSR := (y1, y8, y39, y71, y82, y97)

4: feedbackNLFSR := (y1+g(x1, x27, x57, x92, x97, x4, x68, x12, x14, x18, x19, x28, x60, x41, x49,

x62, x66, x69, x85))

5: for i = 1 to 127 do

6: yi := yi+1

7: xi := xi+1

8: y128 := feedbackLFSR

9: x128 := feedbackNLFSR

10: end for
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11: end for

where g and h in this case are given by: g(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14,

x15, x16, x17, x18, x19) = x1 + x2 + x3 + x4 + x5 + x6x7 + x8x9 + x10x11+

x12x13 + x14x15 + x16x17 + x18x19

and

h(x1, x2, x3, x4, x5, x6, x7, x8, x9) = x1x2 + x3x4 + x5x6 + x7x8 + x1x5x9

4.3 Alegbraic Analysis of Grain-v1

As mentioned earlier, the internal state of Grain Version 1 is of 160 bits, with 80 bits each of

LFSR and NLFSR. If the initial state of NLFSR is labeled as: x1, x2, .., x80, and those of LFSR as

y1, y2, .., y80. According to the structure of the cipher, given earlier, output bit stream of the cipher

can be expressed in these variables representing the internal state bits. Consider for example,

the following five output bit expressions. Equating these expressions with the known output bits,

gives us a non-linear system of algebraic equations in 160 variables.

x1 +y26 +x64 +y4y65 +y47y65 +x64y65 +y4y26y47 +y4y47y65 +y4y47x64 +y26y47x64 +y47y65x64,

x2 +y27 +x65 +y5y66 +y48y66 +x65y66 +y5y27y48 +y5y48y66 +y5y48x65 +y27y48x65 +y48y66x65,

x3+y28+x66+y6y67+y49y67+x66∗y67+y6y28y49+y6y49y67+y6y49x66+y28y49x66+y49y67x66,

x4 +y29 +x67 +y7y68 +y50y68 +x67y68 +y7y29y50 +y7y50y68 +y7y50x67 +y29y50x67 +y50y68x67,

x5 + y30 +x68 + y8y69 + y51y69 +x68y69 + y8y30y51 + y8y51y69 + y8y51x68 + y30y51x68 + y51y69x68

After a few clocks, some of the internal states become non-linear. And consequently, the suc-

ceeding equations which involve those state bits have even more higher degree. So, here, after

17 equations of degree 3, we obtain a collection of equations with degree 8. In a similar manner,

degrees of equations continue to increase in steps. Figure 4.2 demonstrates the degrees of some
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equations of Grain-1. It can be seen that after almost 80 equations, the degree of the equations

becomes as high as 160, which is the maximum possible degree here.

Figure 4.2: Variation in the degrees of algebraic equations of Grain-1, with all 160 unknown state

bits

4.3.1 Lowering the Degrees of Equations

A major parameter which influences the complexity of an algebraic attack is the degree of the

underlying algebraic system. When the transition is linear, any keystream bit can obviously be

expressed as a function of the same degree as of the combining or filtering Boolean function

f , in the initial state bits. It has been established, however, that the keystream generator may

be vulnerable to algebraic attacks even if the degree of the algebraic function is high due to the

existence of a low degree annihilator of f or of (1 + f) Meier et al. (2004). The concept of

annihilator cannot be used in the conventional way in the case of Grain due to the non-linear

update of state bits. Next, we will discuss, however, the use of annihilator of to lower the degree

of equations of Grain-v1.
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The Boolean function h of five variables which is used to filter the contents of five fixed bits of

the internal states of LFSR and NLFSR is of degree three. Second degree annihilator of h and

1 + h can be found. The second degree annihilator of h is f1(x1, x2, x3, x4, x5) = 1 + x1 +

x4 + x5 + x1.x4 + x1.x5 + x2.x3 + x3.x5 + x4.x5, whereas that of 1 + h is f2(x1, x2, x3, x4, x5) =

x4+x1.x3+x1.x4+x1.x5+x2.x3+x4.x5. Since keybitk = x1+h(x64, y65, y47, y26, y4), therefore

the use of annihilator is dependent on the value of x1, that is a state bit of NLFSR. Hence, with

guessed bits of NLFSR, when the output bit is generated with the annihilator as given below the

degree of the overall equations can be reduced by one:

if outputbit + x1 = 1 then

output = f1(x64, y65, y47, y26, y4)

else

if outputbit + x1 = 0 then

output := f2(x64, y65, y47, y26, y4)

end if

end if

It is also important to note here, that an equation with annihilator can only be generated if both

the keystream and x1 bits are known. Therefore, only eighty equations can be generated when

all the eighty bits of NLFSR are guessed. Since, update function of NLFSR involves bits from

LFSR also, therefore, further equations can only be generated when some bits of LFSR are also

guessed. Therefore, if we have to reduce the number of guessing bits, we will obtain lesser

equations. Thus, to make use of annihilator for lowering the degrees of equations, it is necessary

to limit the number of equations to be genarated. Once equations are generated, next step of an

algebraic attack is to solve them. Discussion given below will show how we can solve algebraic
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equations when bits from LFSR are guessed. But still some other methods of solving equations

like Raddum (n.d.) can be tried to solve a small set of equations that are generated with some bits

of NLFSR guessed using annihilators for low degree equations.

Simulations are performed within the same resources as mentioned in Chapter 1. System of non-

linear equations has been solved with F4 algorithm implemented in Magma System (n.d.).

A number of experiments is performed to find out the maximum number of bits that can be

recovered while others are guessed, by guessing bits at different positions. Our experiments show

that out of all 160 bits, no more than 77 bits can be recovered, while remaining 83 are guessed.

The next important thing is to know that which bits must be guessed to give best results.

If the guessed bits give some linear equations, then these equations along with some high degree

equations can be solved to give unknown bits. To give a comparison between degrees of algebraic

equations, where 83 bits of both LFSR and NLFSR cipher are guessed at different positions, we

plot degrees of equations as they grow with generated equations. Figure 4.3 (a) demonstrates

the rise in the degree of algebraic equations of Grain-1 when all state bits of LFSR are guessed,

whereas those of NLFSR are unknown. Figure 4.3 (b) and (c) illustrate the degrees when three

bits of NLFSR at its first and last positions are guessed respectively alongwith all guessed bits

of LFSR. In a similar manner, Figure. 4.4 (a), (b) and (c) illustrate the degrees when all bits of

NLFSR and 3 bits at different positions of LFSR are guessed. The fact that we cannot guess less

than 83 bits is attributed to the memory requirements for solving equations thus formed, by F4

algorithm in Magma. Adding even one more unknown variable makes the memory requirements

beyond the available.

Considering Figure 4.3, almost identical increase in the degrees of equations can be observed for

all the three cases. Among some very high degree equations, we obtain some equations of degree
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Figure 4.3: Variation in the degrees of algebraic equations of Grain-v1, with all 80 bits of LFSR,

and 3 different internal state bits of NLFSR guessed.

as low as 3. In this situation, we choose the approach of solving equations in steps. That is, first,

we solve some lower degree equations among them to obtain values of some of the unknowns.

In the subsequent step, these obtained values replace the variables in equations. As a result,

some other lower degree equations are obtained, which can next be solved to give the remaining

unknowns. Table 4.1, explains our approach in solving equations of Grain-v1.

The First column of Table 4.1 gives the three different positions of the guessed bits as illustrated

in Figure.4.3. Corresponding to all of these three cases considered here, we give the time and

memory taken for each computation with the above mentioned resources. Only the situation

when all bits of LFSR are guessed and 3 last bits of NLFSR are guessed, results in solution of the

equations to give 77 unknown bits. In first step, 48 linear equations are chosen from 150 generated
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Figure 4.4: Variation in the degrees of algebraic equations of Grain-v1, with all 80 bits of NLFSR,

and 3 different internal state bits of LFSR guessed.

equations. Values of 46 unknowns obtained in this step are substituted in all 150 equations. This

in turn, reduces the overall degrees of equations. Amongst these equations, those with degree up

to 7 are chosen for the next step. And other 31 unknowns are obtained by solving 37 equations

of degree not more than seven. The situation given in Figure 4.4 however, does not have any

equation of degree lower than 3. Our experiments do not succeed in solving equations in this

case.

4.4 Algebraic Analysis of Grain-128

Grain-128, has an internal structure of 256 bits, half bits each for both LFSR and NLFSR. The goal

here is to find out these 256 bits from the algebraic equations which are developed to relate internal

states with output bits. As is the case with Grain-1, solving its equations to obtain all unknown
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Table 4.1: Experimental results of solving equations of Grain-v1 in two steps when all bits of

LFSR and 3 bits of NLFSR at different positions are guessed

Guessed Number of Number of Degrees of Time to Memory

positions variables found equations solved equations used find solution Usage

Fig 3(a)

1st step 44 48 1 0.016 sec 5.8 MB

2nd step none 37 7 - Exceeds the

available

Fig 3(b)

1st step 41 48 1 0.016 sec 5.8 MB

2nd step none 37 7 - Exceeds the

available

Fig 3(c)

1st step 46 48 1 0.016 sec 5.8 MB

2nd step 31 37 7 0.188 sec 6.36 MB

bits is not possible. An analysis regarding the degrees of equations with different guessed bits is

presented next, which will help in determining the number and position of guessed bits, to achieve

the best possible results. Figure 4.5 illustrates the degrees of 200 equations of Grain-128, with all

256 unknown bits.

4.4.1 Lowering the Degrees of Equations

The output combining Boolean function of Grain-128 is of degree three. The overall degrees of

output equations can be reduced, if this combining function h is replaced by some lower degree

48



Figure 4.5: Variation in the degrees of equations of Grain-128, with all 256 unknown state bits

function. We have obtained second degree approximations of 9-variable Boolean function of

Grain-128: h(x1, x2, x3, x4, x5, x6, x7, x8, x9) = x1x2 + x3x4 + x5x6 + x7x8 + x1x5x9

Our results are summarized in Table. 4.2

Table 4.2: Second degree aproximations of Grain-128

Second Degree Approximation Primitive Polynomial Correlation Coefficient

Used in Our Heuristic

h1 = x5 + x1x2 + x1x5 + x3x4 1 + x4 + x5 + x8 + x9 0.75

+x5x6 + x5x9 + x7x8

h2 = x1x2 + x3x4 + x5x6 + x7x8 1 + x4 + x5 + x8 + x9 0.75

Two approximations of correlation coefficient of 0.75 can be seen in Table 4.2. Therefore, out

of 512 output bits of Boolean function h(x1, x2, x3, x4, x5, x6, x7, x8, x9) and its approximations,

448 bits are similar, whereas only 64 are different. Replacing original function with its second

degree approximation, one can reduce the degrees of algebraic equations of the cipher, which
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relate internal states of the cipher with output bits. A comparison of the degrees of equations with

original h of degree three and those with second degree approximation is shown in Figure.4.6.

Figure 4.6: Comparison of the degrees of equations of the cipher with original h and its approxi-

mation.

An observation about these two obtained approximations is that all of the last 256 output bits

of first approximation shown in Table. 4.2, whereas all first 256 output bits of the second

approximation are similar to those of the original h. XOR of the actual Boolean function h

and its two approximations is respectively given in Hexadecimal format as follows: h ⊕ h1 =

0000AAAA0000AAAA0000AAAA0000AAAA0000AAAA0000AAAA0000

AAAA0000AAAA0000000000000000000000000000000000000000000000000

000000000000000

h⊕ h2 = 000000000000000000000000000000000000000000000000000000000000000

00000555500005555000055550000555500005555000055550000555500005555
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It is evident that there is a symmetry in the correlation between the third degree Boolean function

h of the Grain and its two second degree approximations h1 and h2. Due to this symmetry, lower

degree algebraic equations are expected to be generated by replacing actual third degree function

with second degree approximations.

XOR of the function h and h1 has last 256 bits as zero which means that whenever bit x1 of the

input (x1, x2...x9) vector is one; the output of functions h and h1 is same whereas when x1 = 0

the output of h is similar to that of h2. From the algorithm of Grain-128, we know that first

bit of the input vector of function h is thirteenth bit of the NLFSR. Thus, based on the value of

the thirteenth bit we can generate 2nd degree equations instead of 3rd degree due to the output

function h.

To exploit second degree approximation in place of third degree output function h, we need to

guess first input bit that is thirteenth bit of the NLFSR. Thus, we can generate as many equations as

bits of NLFSR are guessed starting from its thirteenth bit. Since, the bits of NLFSR are guessed,

the input bits x1 and x5 of function h are also among them. These two input bits of function

h contribute in its third degree term. Therefore degrees of equations for h or second degree

approximation of h are same. Therefore, the second degree approximations do not help in finding

lower degree equations in case of Grain-128. It will be seen in the next paragraphs that only 64

bits of inner state of Grain-128 can be found when all the remaining bits are guessed.

It can be noticed from Figure. 4.2 and Figure. 4.5 that degrees of equations of Grain-128 do not

rise as quickly as in the case of Grain-v1. But each equation of Grain-128 involves a large number

of unknowns and that is why solving equations of Grain-128 is more computationally extensive.

After a number of experiments with different number of guessed bits, it is concluded that not more

than 64 bits can be recovered from the algebraic equations within the available resources. The
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Figure 4.7: Variation in the degrees of algebraic equations of Grain-128, with all 128 bits of

LFSR, and 64 different internal state bits of NLFSR guessed.

memory requirements for loading and solving the equations with variables more than the above

mentioned limit exceeds the available resources. However, to decide what position of guessed bits

gives best results, a comparison of the degrees of equations for different situations is presented in

Figure. 4.7 and Figure.4.8.

Figure 4.7 (a) illustrates the rise in the degree of generated equations with all 128 guessed bits

of LFSR while all 128 bits of NLFSR are unknown. Figure. 4.7 (b), (c) and (d) demonstrate the

situations when along with 128 guessed bits of LFSR, 64 bits of NLFSR are guessed at first con-

secutive, alternate, and last consecutive positions respectively. Figure. 4.8 presents the otherwise

situation, that is, when all bits of NLFSR are guessed, while half of the bits of LFSR are guessed

at different positions.
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Figure 4.8: Variation in the degrees of algebraic equations of Grain-128, with all 128 bits of

NLFSR, and 64 different internal state bits of LFSR guessed.

First we take into consideration the situation given in Figure 4.8, where all 128 bits of LFSR are

guessed, and we have to recover 64 bits of NLFSR. Comparing the Figure. 4.8 (b), (c) and (d) it

can be seen that almost same number of linear equations is obtained. With last 64 bits of NLFSR

guessed, a large number of 2nd degree equations is also obtained. That is why for this case only;

equations can be solved to give values of 64 unknowns. Likewise, we compare the degrees of

equations shown in Figure 4.7 (b), (c) and (d), where all bits of NLFSR are guessed and the goal

is to recover 64 bits of LFSR. Here, the most favorable situation is when alternate bits of LFSR are

guessed, since a few linear equations are obtained. However, in case of Figure. 4.7 (b), a number

of second degree equations is also obtained, therefore, a few unknown bits can be obtained by

solving equations. Detail is given in Table 4.3.
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Table 4.3: Experimental results of solving equations of Grain-128.

Guessed Number of Number of Time to Memory

positions variables found equations solved find solution Usage

Figure.4.7(d) 60 110 5.422 sec 10.8 MB

Figure.4.7(d) 64 110 65.67 sec 25.4 MB

Figure.4.8(b) 58 150 11.87 sec 15.58 MB

Figure.4.7 (c) 64 100 0.906 sec 7.77 MB

Table 4.4: Summary of simulation results of algebraic analysis of both versions of Grain

Version Total Deg of Deg of No. of bits No. of bits Time to key-bits

internal g h guessed recovered find used

state bits solution

Grain-v1 160 6 3 83 77 0.204 sec 150

Grain-128 256 2 3 192 64 0.906 100

4.5 Summary of the Results and Time Complexity of overall Attack

Our results of algebraic analysis on both versions of Grain are summarized in Table 4.4. Here,

the best results are included for both cases.

It can be observed here, that non-linear update function of Grain-v1 is of the higher degree than

Grain-128. Also, the overall degrees of system of algebraic equations of Grain-1 are much higher

than those of Grain-128, still more state bits can be recovered in case of Grain-v1. This happens

because output bit, in case of Grain-128, is masked with a large number of variables from NLFSR.

Consequently, all linear equations include a large number of unknown bits. To find all unknowns,

a large number of equations needs to be generated. However, as described in the above section,
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it is not possible within the available resources. Hence, not more than 64 unknown bits can be

obtained. In case of Grain-v1, although there are some equations with the very high degrees but

when half of the internal state bits are guessed, enough linear equations in fewer variables can be

obtained. And as a result, comparatively more variables can be recovered. Time complexity of

overall attack is given in Table 4.5

Table 4.5: Time Compelxities of Solving Equations of Grain-v1 and Grain-128

Cipher Time (in seconds)

Grain-v1 280.70

Grain-128 2191.86

4.6 Conclusion

In this chapter algebraic analysis of Grain, that is a cipher with NLFSR is performed. We aimed

to find the maximum possible internal state bits from the algebraic equations of the ciphers, while

some bits are guessed. Algebraic equations of both versions of Grain are extensively analyzed by

guessing bits at different positions to obtain best results.
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Chapter 5

Algebraic Analysis of Trivium and Trivium/128

5.1 Introduction

Trivium Cannière and Preneel (2005a); Cannière (2006); Cannière and Preneel (2005b), is one of

the ECRYPT stream cipher project eSTREAM (2005) candidates. It is hardware oriented, syn-

chronous cipher which supports a key size of 80 bits and an IV size of 80 bits. It has remained

unchanged since it was submitted. A few papers on its cryptanalysis can be found on the eS-

TREAM website Maximov and Biryukov (2007); Khazaei and Hassanzadeh (n.d.); Turan and

Kara (2007); Raddum (n.d.); Babbage (n.d.). Results given in Khazaei and Hassanzadeh (n.d.)

and Turan and Kara (2007) proved Trivium to be in general strong against linear sequential ap-

proximation attacks. Another approach which is algebraic in nature presented in Raddum (n.d.)

establishes that Trivium can withstand the attack; however, a two-round variant of Trivium is

shown to be compromised. Some other suggestions and ideas on attacking Trivium are given by

Babbage in Babbage (n.d.). Maximov and Biryukov Maximov and Biryukov (2007) gave theoret-

ical complexity for recovering internal state bits of Trivium with time complexity around c283.5.

They have also proposed a tweaked version of Trivium which can resist their proposed attacks.

The objective of our work is to find the time complexity of actually recovering the internal state

bits of the cipher and to compare it with the tweaked structure proposed in Maximov and Biryukov

(2007). Trivium updates its internal states non-linearly and that is why, the degrees of algebraic

equations, which relate internal states with output bits, increase with clocking. Thus, solving
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equations of Trivium to obtain all the 288 unknown bits, is not possible within the practically

feasible resources. However, suitable guessing of selective bits may lead to a system of equations

with remaining variables, which can be solved in practical time. Resources used for simulation of

equation generation and solving are same as mentioned in chapter 1.

In Maximov and Biryukov (2007) authors also discussed the issue of increasing the secret key

from 80 bits to 128 bits. Instead of giving any theoretical bounds, we give experimental results

of our simulations. Our experiments reveal that within the available resources, 168 bits can be

recovered with 120 guessed bits of the original Trivium, whereas for tweaked version, half bits

can be recovered with half bits guessed. With somewhat better resources these results can be

further improved. Thus, it can be concluded that the tweaked structure is also not suitable for 128

bit key.

Bivium Raddum (n.d.) is a reduced and simplified version of Trivium which has been extensively

used for analysis in literature. Since, its design philosophy is same as that of Trivium, therefore,

it is easy to experiment different analysis techniques with Bivium. We have applied our guessing

technique on Bivium also and results are compared with the existing results on it.

Rest of the paper is organized as follows: next section presents the brief description of the struc-

ture of Trivium and its modified structure proposed in Maximov and Biryukov (2007). In Section

5.3 and Section 5.4, we describe the analysis of algebraic equations of cipher and also results

of our experiments, followed by some comments on our approach in Section 5.6. We also com-

pare our results with other existing algebraic attacks which have been applied with different ap-

proaches. This chapter will be concluded in Section 5.7.
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5.2 Brief Description of Trivium

Trivium is a simple hardware oriented synchronous stream cipher. The proposed design uses 80-

bit secret key and 80-bit IV. It consists of an iterative process, which extracts the values of 15

specific state bits and uses them both to update 3 bits of the state and to compute 1 bit of the key

stream. The state bits are then rotated and the process is repeated. The cipher is shown to be

suitable to generate up to 264 bits of key stream from a pair of key and IV.

Let the 288-bit internal state of the cipher be represented as (s1, s2, ...s288), then the complete

description of the cipher is given by the following simple pseudo-code:

procedure Trivium− original(s1, s2, ...s288)

1: for t = 1 to n do

2: t1 := s66 + s93

3: t2 := s162 + s177

4: t3 := s243 + s288

5: zt := t1 + t2 + t3

6: t1 := t1 + s91.s92 + s171

7: t2 := t2 + s175.s176 + s264

8: t3 := t3 + s286.s287 + s69

9: (s1, s2...s93) := (t3, s1, ...s92)

10: (s94, s95...s177) := (t1, s94, ...s176)

11: (s178, s179...s288) := (t2, s178, ...s287)

12: end for

For key initialization, the 80 bit key and IV is directly assigned to the internal state of the cipher
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Figure 5.1: Design of the Trivium Cipher

and the remaining bits (except the last three) are set to zero. Then, the cipher is clocked 4 full

cycles without producing any output. Figure 5.1 shows the original structure of Trivium. Modified

version of Trivium proposed in Maximov and Biryukov (2007), has additional three AND gates,

which are connected backward. With these changes, the tweaked structure can be described with

the following psuedo-code:

procedure Trivium− 128(s1, s2, ...s288)

1: for t = 1 to n do

2: t1 := s65 + s93

3: t2 := s161 + s177

4: t3 := s242 + s288

5: zt := t1 + t2 + t3

6: t1 := t1 + s91.s92 + s162.s164 + s171

7: t2 := t2 + s175.s176 + s243.s245 + s264

8: t3 := t3 + s286.s287 + s66.s68 + s69
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9: (s1, s2...s93) := (t3, s1, ...s92)

10: (s94, s95...s177) := (t1, s94, ...s176)

11: (s178, s179...s288) := (t2, s178, ...s287)

12: end for

Bivium, a smaller version of Trivium is composed of two registers instead of three of Trivium.

The design philosophy of Bivium, however remains similar to that of Trivium. Thus with 177

internal state bits, its structure can be seen by the following psuedo-code:

procedure Bivium(s1, s2, ...s177)

1: for t = 1 to n do

2: t1 := s66 + s93

3: t2 := s162 + s177

4: zt := t1 + t2

5: t1 := t1 + s91.s92 + s171

6: t2 := t2 + s175.s176 + s69

7: (s1, s2...s93) := (t2, s1, ...s92)

8: (s94, s95...s177) := (t1, s94, ...s176)

9: end for

5.3 Algebraic Analysis of Trivium

Trivium, due to non-linear update of internal states, has equations which vary with clocking. The

increase in the degree of algebraic equations of Trivium is in steps. The increase in the degree of

algebraic equations of Trivium, as they are generated is illustrated in Figure 5.2. Despite the fact

that there are quite a reasonable number of linear and quadratic equations, still these cannot be
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Figure 5.2: Variation in the degrees of algebraic equations of Trivium with all 288 state bits

unknown

solved for all variables within the above mentioned resources. The reason being, each expression

involves a large number of variables. As already discussed, we guess some of the state bits to

obtain the remaining bits.

5.3.1 Results of Experiments on Original Trivium

In order to find out the bits that must be guessed to simplify our problem of solving equations,

we first analyze the algebraic equations of the cipher. If the initial state bits are labeled as:

y1, y2, ...y288, the polynomial expressions of the generated output bits in terms of the initial state

bits, during first five clocks can be seen as:

y66 + y93 + y162 + y177 + y243 + y288,

y65 + y92 + y161 + y176 + y242 + y287,

y64 + y91 + y160 + y175 + y241 + y286,

y63 + y90 + y159 + y174 + y240 + y285,
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y62 + y89 + y158 + y173 + y239 + y284

After 66 clocks, we obtain 2nd degree expressions, consider now a few of them:

y243 + y288 + y286.y287 + y69 + y27 + y96 + y111 + y162 + y177 + y175.y176 + y264 + y222,

y242 + y287 + y285y286 + y68 + y26 + y95 + y110 + y161 + y176 + y174.y175 + y263 + y221,

y241 + y286 + y284.y285 + y67 + y25 + y94 + y109 + y160 + y175 + y173.y174 + y262 + y220,

y240 + y285 + y283.y284 + y24 + y93 + y91.y92 + y171 + y108 + y159 + y174 + y172.y173 + y261 + y219,

y239 + y284 + y282.y283 + y23 + y92 + y90.y91 + y170 + y107 + y158 + y173 + y171.y172 + y260 + y218.

The occurrence of alternate variables in above expressions reveals the importance of guessing

alternate bits. If half of the state bits occurring at alternate positions are guessed, a large number

of linear equations are obtained. As we have seen that 288 bits internal state of Trivium can be

viewed as three registers each of length nearly 96 bits. Designers of Trivium have claimed that

a guess and determine approach can be successful to determine immediately the remaining bits

if overall 195 bits from three registers are guessed Cannière and Preneel (2005b). However, 144

that is half of the internal state bits can be easily recovered. Overall degrees of equations with

half bits guessed is shown in Figure 5.3. Our result for solving equations with alternate guessed

bits is shown in Table 5.1.

We can further improve our results if system of equations can be solved with less than half vari-

ables guessed. If first consecutive 32 bits are left as unknown bits along with the following

alternate guessed bits, 160 bits can be recovered with 128 guessed bits. Figure 5.4 when first 32

consecutive bits along with next alternate bits are unknown.

Guessed bits can be further reduced to 120, if first 10 to 12 state bits from each of the three divi-

sions of state bits (s1..s93, s94..s177, s178..s288) are guessed and for rest of the state bits, alternate
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Figure 5.3: Variation in the degrees of algebraic equations of Trivium, with alternate state bits

guessed.

positions are guessed. However, if number of unknown variables is further increased, the system

of equations formed cannot be solved because memory requirements exceed the available. (All

of our experiments are performed within the resources mentioned earlier, so with better memory

and computing resources these results can be further improved). Our results of algebraic analysis

of Trivium are summarized in Table 5.1. Here, the best results in terms of maximum number of

state bits recovered and minimum time required are shown.

Table 5.1: Experimental results of solving equations of Trivium.

Total internal No. of bits No. of bits Time to find Output-bits

state bits guessed recovered solution used

288 144(alternate) 144 0.141 sec 144

288 128 160 13 sec 250

288 120 168 1.5 min 250
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Figure 5.4: Variation in the degrees of algebraic equations of Trivium, with first 32 along with the

following alternate unknown state bits respectively.

5.4 Experimental Results on Algebraic Analysis of Tweaked Trivium

Overall degrees of equations for the tweaked version are higher than the original version due to

three additional AND gates. A comparison of the degrees of both versions of Trivium is presented

in Figure. 5.5. Similar to previous section, if the initial state bits are assumed as: y1, y2, ...y288,

the polynomial expressions of the generated output bits in terms of the initial state bits, during

first five clocks in the case of tweaked version can be seen as:

y65 + y93 + y161 + y177 + y242 + y288,

y64 + y92 + y160 + y176 + y241 + y287,

y63 + y91 + y159 + y175 + y240 + y286,

y62 + y90 + y158 + y174 + y239 + y285,

y61 + y89 + y157 + y173 + y238 + y284

In this case also we obtain 65 linear polynomials followed by quardratic and then higher degree
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Figure 5.5: A comparison of the degrees of equations of Trivium and its tweaked version.

expressions. First five quardratic expressions are given below to examine their structure:

y242+y288+y286.y287+y69+y66.y68+y28+y96+y112+y161+y177+y175.y176+y264+y243.y245+y223,

y241+y287+y285.y286+y68+y65.y67+y27+y95+y111+y160+y176+y174.y175+y263+y242.y244+y222,

y240+y286+y284y285+y67+y64y66+y26+y94+y110+y159+y175+y173y174+y262+y241y243+y221,

y239 + y285 + y283y284 + y66 + y63y65 + y25 + y65 + y93 + y91.y92 + y171 + y162.y164 + y109 + y158 +

y174 + y172y173 + y261 + y240y242 + y220,

y238 + y284 + y282.y283 + y65 + y62y64 + y24 + y64 + y92 + y90.y91 + y170 + y161.y163 + y108 + y157 +

y173 + y171y172 + y260 + y239.y241 + y219

From above expressions, it is evident that guessing alternate bits can help in simplifying the

equations but all second degree equations cannot be reduced to linear due to the presence of

products like: y66.y68, y243.y245, y162.y164.... In this situation, system of equations cannot be solved

even for 144 variables as easily as in the case of original Trivium. However, some appropriate

guessing may lead to simpler equations. It can be observed from the psuedo-code of the cipher

that all 288 bits can be divided into three segments namely s1..s93, s94..s177, s178..s288. Each of
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these segments can be further divided into three sub-segments like:

s1..s65, s66..s69, s70..s93

s94..s161, s162..s171, s172..s177

s178..s242, s243..s264, s265..s288

The product terms of those variables which are not at alternate positions lie in the middle segment

of each of the three divisions. If we guess two bits after one bit each, within these segments and

for the remaining segments alternate bits are guessed, we will obtain some more linear equations.

The number of linear equations is not decreased if first 5 to 6 states of each of the three main

divisions is kept as unknown variables. In this way, system of equations obtained by guessing

half of the bits is solvable within given resources. Figure 5.6 shows a comparison of the degrees

of equations with all unknown state bits and with half state bits guessed but selected as mentioned

above. Our experimental results on tweaked version of Trivium are summarized in Table 5.2

Figure 5.6: Variation in the degrees of algebraic equations of Trivium, with alternate state bits

guessed.
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Table 5.2: Experimental results of solving equations of tweaked Trivium

Total internal No. of bits No. of bits Time to find Output-bits

state bits guessed recovered solution used

288 144 144 4.3 sec 200

Our approach of finding the maximum number of bits that can be recovered from the algebraic

equations of Trivium and its tweaked version, aims at investigating the resistance that the cipher

with non-linear update offers against algebraic cryptanalysis. Since, Trivium is a live candidate of

eSTREAM project, our experimental work is significant. These results show that we can recover

168 internal state bits of Trivium, with 120 guessed bits and for its tweaked version, half of the bits

can be obtained while remaining half are guessed in a few seconds. It should also be noted that to

mount an actual attack with this approach, it is required that for each guess a system of equations

be solved. However, it is important that for a wrong guess, equations become inconsistent and

Magma decides inconsistency in a fraction of second by giving Groebner basis of the system as

1. Our experiments are performed in limited resources, and it can be concluded that with better

resources these results can be further improved.

Trivium actually offers a security level of 80 bits, but as already mentioned in Maximov and

Biryukov (2007), on account of initialization, the complexity of exhaustive search of 80 bit key

will be more than 280. Thus, our approach can recover internal state bits of Trivium with time

complexity comparable to exhaustive search, if not better. Although, tweaked version offers

somewhat complex equations and also with our resources, we do not succeed to recover more

than half state bits, still the structure is not suitable to offer 128 bit security.
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5.5 Results on Bivium

Using the same guessing technique, we have obtained results on Bivium too. We have found

that within the available resources, we can recover 133 bits out of 177 while 44 secret internal

state bits are guessed. In this case also, like Trivium, we have guessed alternate bits from 46 to

93 and then from position 139 to 177. While bits from 1 to 45 and 94 to 138 are all unknown.

Experimental results on Bivium are summarized in Table 5.3

Table 5.3: Experimental results of solving equations of Bivium

Total internal No. of bits No. of bits Time to find Output-bits

state bits guessed recovered solution used

177 49 128 1.59 sec 200

177 44 133 236.5 sec 200

5.6 Overall Time Complexity of Attack on Bivium and Trivium and Comparison with

Existing Attacks

We can make a comparison of time complexity of solving equations of both Trivium and Bivium

with some previous results. Best result on Trivium with our guessing approach is to guess 120

bits to obtain remaining bits in 1.5 min that is 90 seconds (≈ 26.5). Since, 120 bits have to be

guessed, this means that we will have to repeat the experiment for 2120 times as a worst case

scenario before we get the right solution. As already mentioned for a wrong guess we will obtain

inconsistent system of equations and Groebner basis for such a system would be one. Most of the

time, Magma gives solution for inconsistent system of equations in less time than the consistent

system. However, to avoid any confusion we take here the time taken for solving equations with

right guessed bits. Results of our experiments are compared with another solving technique using
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SAT solvers given in McDonald et al. (2009) and are shown in Table 5.4

Table 5.4: A Comparison of Time Compelxities of Solving Equations of Trivium and Bivium.

Cipher Time (in seconds)

MiniSat RSat PicoSati Magma(F4) with our approach of guessing bits

Trivium 2159.9 2161.9 2161.6 2126.5

Bivium 242.7 246.6 245.9 249.66

Although time complexity of the proposed attack is far from the practical threat still it can be seen

that our approach gives better results on Trvium than the existing practical attacks McDonald

et al. (2009).

5.7 Conclusion

Trivium is a simple hardware oriented candidate cipher of eSTREAM project. We have analyzed

and compared the original design of Trivium with a proposed tweaked version. Our approach is

experimental, and we aimed at finding the maximum possible internal state bits, while others are

guessed. The results show that tweaked version is also not suitable to offer 128 bit security.
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Chapter 6

Resitance of Ciphers like Mickey for Algebraic Attack

6.1 Introduction

We have seen that structures like A5/1 with mutually clocked registers can resist algebraic crypt-

analysis in Chapter 3. In this chapter, we will discuss the structure of Mickey Babbage and Dodd

(n.d.b,n) a candidate cipher of eSTREAM project which has been included in its final portfolio.

Internal registers of Mickey are updated non-linearly as in the case of Grain and Trivium. Our

approach of solving equations with some guessed bits shows Mickey to be most resistant against

this approach.

Rest of the chapter is organized as follows: Section 6.2 gives a brief description of the structure

of Mickey and Section 6.3 presents analysis of Mickey. In Section 6.4 some comments and

discussion are given and Section 6.5 will conclude the chapter.

6.2 Structure of Mickey

Two versions of Mickey have been proposed Babbage and Dodd (n.d.b,n). Mickey offers a se-

curity level of 80 bits with internal states of 160 bits, whereas, Mickey-128 has an internal state

of 256 bits and security level of 128 bits. The design strategy of both versions is same and fol-

lows the irregular clocking of registers C.J.A.Jansen (2004). The key generation mechanism of

the cipher has two registers both of length 80. Bits ri(0 ≤ i ≤ r79) of LFSR R are clocked

depending upon a control bit. Another register S also has an internal state of 80 bits labelled as
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Figure 6.1: The Mutual Clocking of Mickey.

si(0 ≤ i ≤ s79). This register is non-linear and its clocking is also made in two ways based on

another control bit. We do not give here the detailed structure of Mickey, that can be found from

their design specifications Babbage and Dodd (n.d.b,n). We, however, use the same terminology

and names etc. of the registers as are used originally. The main design strategy of the cipher is of

irregular clocking which is achieved by mutual interdependence of registers. That is clock control

bits are derived from both registers. Interdependent clocking of Mickey can be seen from Figure

6.1.

6.3 Analysis of Mickey

Generation of algebraic equations, which can relate internal state bits of the Mickey with the

output bits, is not straightforward as in Grain and Trivium.

To generate algebraic equations of Mickey cipher which can relate internal state bits with the

output bits, we have to turn the parts of the algorithm, which involve conditional logic, to the

expression without it. For instance, the register “R” is clocked according as:

If CONTROL−BIT −R = 1
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For0 ≤ i ≤ 79

ŕi = ŕi ⊕ ri

For generation of equations above logic must be modified as follows:

For 0 ≤ i ≤ 79

ŕi = ŕi ⊕ ri ∗ CONTROL−BIT −R

And similarly the conditional part of the algorithm for clocking register “S” can be seen as fol-

lows: Register “S” has the following code for clocking:

If CONTROL−BIT − S = 0

For0 ≤ i ≤ 79

śi = ŝi ⊕ (FB0i.FEEDBACK −BIT )

If instead CONTROL−BIT − S = 1

For 0 ≤ i ≤ 79

śi = ŝi ⊕ (FB1i.FEEDBACK −BIT )

This can be viewed as below:

For 0 ≤ i ≤ 79

śi = (1⊕ CONTROL − BIT − S).(ŝi ⊕ (FB0i.FEEDBACK − BIT )⊕ (CONTROL −

BIT − S).(ŝi ⊕ (FB1i.FEEDBACK −BIT )

Internal states are updated non-linearly in this case also. However, due to irregular clocking the

rise in the degree of equations is much higher than Grain and Trivium. Our simulations for Mickey

resulted in the generation of equations with very high degree. For example, rise in the degrees of

first five equations is given as: 1, 2, 4, 7, 11.... So that even generation of more equations becomes
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quite difficult. Attempts to obtain some low order equations by guessing even a large number bits

also do not succeed. It is notable here that a number of experiments are performed in which

state bits are guessed at different locations based on the structure of equations. However, due to

interdependence of registers, these attempts do not succeed. It is thus concluded that design of

Mickey has very tight security margin against any allowance for state bits to be recovered using

an algebraic approach.

6.4 Some Comments

As evident from the previous chapters, structures of Grain-1 and Trivium are easier for internal

state recovery algebraically as compared to Grain-128 and Mickey. Non-linear update of registers

is a way to defend against algebraic cryptanalysis but structure must also be strong enough so that

guessing some of the bits may not result in a large number of linear and low degree equations, as

happens with Trivium.

Mickey uses the concept of irregularly clocking of registers. Although algebraic attack against

clock controlled stream ciphers has been studied with focus on ciphers, in which one generator

controls the clocking of other generators Al-Hinai et al. (2006). Whereas, ciphers that involve the

clocking in which none of the registers are regularly clocked, are quite resistant as is the case in

A5/1. Mickey also combines irregular clocking and interdependence of registers for clocking and

as a result, its algebraic equations gain very fast increase in degree. Also the form of equations

does not give any help in selectively guessing some of the bits to find others. Both of its registers

are mutually dependent and guessing one or the other or in any other form does not at all help in

obtaining linear or low order equations to make the solution possible
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6.5 Conclusion

Design of a stream cipher must ensure that it can resist all known attacks. In this context, iden-

tifying design of the ciphers which can resist any particular strategy for their analysis also has

importance. This chapter aimed at doing algebraic analysis of the Mickey that has been selected

for the final portfolio of eSTREAM project. It has been found, that due to the clocking with inter-

dependent registers, our approach of finding secret state bits by solving algebraic equations with

guess and determine, does not work. Mickey, is thus, resistant to internal state recovery attack.
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Chapter 7

Improving the Resistance of Grain-V1 against Algebraic Attack

7.1 Introduction

In chapter 4, we have seen algebraic analysis of Grain-v1. It has been experimentally verified

that half bits of Grain-v1 can be recovered if remaining half are guessed by solving algebraic

equations in a fraction of a second within limited resources. Although, this attack is not better

than exhaustive search, still it gives a method to attack the cipher other than brute force attack.

It can also be argued that solving equations to obtain half of the internal state bits is better than

brute force attack because for that we will have to include the complexity of initialization process.

Moreover, results can be further improved with better resources. This attack is possible because

degrees of the equations formed due to the internal mechanics of the cipher is greatly reduced

when some selective bits are guessed.

Grain-v1 has already been revised and Grain-128 Hell et al. (n.d.) has been proposed that sup-

ports a key size of 128 bits. In this chapter, we focus on the improvement of Grain-v1 without

increasing its internal state or key size. This work aims at giving an improved version by an-

alyzing the algebraic equations of Grain-v1, so that it may give better resistance against above

mentioned algebraic attack. We propose a small modification in the structure of Grain-v1 that can

give a defense against algebraic analysis without increasing the number of its internal state bits.

Our proposed modification improves upon the algebraic structure of the cipher and it intend to

avoid recovery of internal state bits due to solving algebraic equations with guess and determine
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approach. Moreover, this modification does not affect the overall complexity of enciphering or

deciphering process because we do not add any additional components.

Rest of the chapter has following organization: Next Section gives the proposed modified version

of Grain and also gives an analysis and comparison of the proposed and original version in the

light of algebraic attack using guess and determine approach. The chapter is concluded in Section

7.3.

7.2 Proposed Modifications In Grain-v1

Based on the analysis given in previous chapters, it can be seen that if input of h includes more

than one bits from NLFSR, we will not obtain linear equation, even in the initial output bits, in

terms of variables from NLFSR on guessing even all bits of LFSR. Our experiments show that

adding one more variable is enough in this case. With this small modification, output function

can be viewed as:

keybitk := x1 + h(x64, x10, y47, y26, y4)

Here, y64 is replaced by x10 as second input variable of Boolean function h. Thus, the influence

of NLFSR in output bit is increased. The second variable from the NLFSR is taken from the early

states, so that non-linear update of NLFSR can play its effective role in the initial equations. The

equations obtained with this modified output function will have much higher degrees even with all

bits of LFSR guessed. It has been experimentally verified that system of equations, thus obtained

cannot be solved within the same resources as has been used in solving the equations of Grain-v1.

Above mentioned modification does not affect the overall degrees of the equations of Grain-v1

when all variables are unknown. Figure 7.1 illustrates this fact by giving a comparison of the

degrees of algebraic equations of the original and proposed version.
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Figure 7.1: A Comparison of the degrees of Grain-v1 for proposed and original version with all

unknown variables.

However, this modification will have a remarkable effect when bits from LFSR are being guessed

to obtain bits from NLFSR. Justification for this increase in the degree is due to the function h.

Since ,

h(x64, x10, y47, y26, y4) = y26 + x64 + y4.x10 + y47.x10 + x10.x64 + y4.y26.y47 + y4.y47.x10 +

y4.y47.x64 + y26.y47.x64 + y47.x10.x64

Above mentioned form of the function results in the initial algebraic equations to be of second

degree due to the presence of the term x10.x64. Since in the original function h the term x64 is

multiplied with a variable from LFSR and when bits from LFSR are guessed, this product will lead

to a linear term. However, in the modified h the term y47.x10.x64 also exists, therefore, whenever

y47 is 1, equation becomes linear. However, since for different initial states, the term y47 can be 1

or 0 with equal probability, therefore half of the equations will be quadratic in comparison to all

linear equations in the case of original version. After a few clocks, degrees of the equations rise

in both cases due to the nonlinear update states of NLFSR.
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It should also be noted that replacing any of the four input variables of the NLFSR in original h

with one bit from LFSR will create the same result. To demonstrate the concept described above,

a comparison of the degrees of the equations for the original and proposed version is presented in

Figure 7.2. Here, the guessed bits of NLFSR are as follows:

[0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0,

0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0,

0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0,

0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1]

Figure 7.2: A comparison of the degrees of original and proposed version when bits of LFSR are

guessed.

It is also important to see the impact of this modification on the algebraic equations when bits of

LFSR are guessed instead of NLFSR. Figure 7.3 presents the degrees of the algebraic equations

of Grain-v1 with guessed bits of LFSR for both: the original and proposed versions of Grain-v1.

It can be seen clearly that degrees of the equations for both versions is same. It is known from

chapter 4 that with LFSR bits guessed, equations thus formed cannot be solved. Thus, with this
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modified structure also, system of equations cannot be solved within the available resources.

Figure 7.3: A comparison of the degrees of original and proposed version when bits of NLFSR

are guessed.

The proposed version replaces one input bit from LFSR of function h with a bit from NLFSR to

obtain higher degree equations for the situation when all bits from LFSR are guessed to obtain

all unknown bits of NLFSR. This substitution is made to provide a defense against an algebraic

attack which is successful in retrieving all bits of NLFSR when all bits of LFSR are guessed.

Now we will consider the case that if we replace two input bits of h, so that three input bits of h

are from NLFSR. The equations so obtained are of even higher degree and none of the equations

constructed after guessing LFSR will be linear. But in that case, bits from LFSR can be retrieved

by guessing bits from NLFSR. This can be verified in Figure 7.4, where a comparison between

the degrees of equations of original version of Grain-v1 is given with bits from NLFSR guessed

with modified version when two input bits of the function h are substituted. Because of many

linear equations, it has been experimentally verified that this system of equations can be easily

solved.
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Therefore, it can be concluded that substitution of two input bits of function h will increase the

degrees of equations with one guessing situation but will decrease for the other guessing strategy.

Thus, substitution of two bits is not suitable. However, substitution of one bit will increase the

degrees of equations in the case where LFSR is guessed in comparison with the equations formed

for the original version of Grain-v1. And this substitution also does not decrease the degree of

equations and thus complexity of solving equations for the situation where NLFSR is guessed to

obtain bits from LFSR.

Figure 7.4: A comparison of the degrees of original and a modified version where two input bits

of function h are substituted and bits of NLFSR are guessed.

A single bit alteration in the input variables of the output function can successfully help in im-

proving the security level of Grain-v1 against recovery of internal state bits by solving algebraic

equations. It is, however, important to see the effect of this modification on other attacks on

the cipher also. In general, a small change in the cipher may increase its resistance against one

while decrease against some other cryptanalytic technique. In case of Grain-v1, a well known

attack is correlation attack Berbain et al. (2006). However, it has also been recommended in the
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same paper that by increasing the influence of NLFSR in output relation correlation attack can be

avoided. Therefore, it is expected that the proposed modification will show better results against

correlation attack also.

7.3 Conclusion

A small modification by changing the input variable of the output function in the design of Grain-

v1 is proposed to improve the resistance of Grain-v1 against algebraic attack with guess and

determine approach. It has been verified that the proposed design shows better resistance against

the guessing technique which otherwise works for the original version. The proposed version has

also been analyzed and compared with the original design of Grain-v1.
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Chapter 8

Modifications in the Design of Trivium to Increase its Security Level

8.1 Introduction

Trivium has an internal state of 288 bits but provides a security level of only 80 bits, an obvious

desire is to raise its security level to at least 128 bits without increasing its internal state bits. The

study and analysis of Trivium given in chapter 5 has proved that mainly the algebraic structure

of the cipher has the propensity that a guess and determine type of attack, to recover the internal

state bits of the cipher by solving algebraic equations, can be mounted. In this chapter, we propose

some modifications in the structure of Trivium so that its elegant structure can be used to give a

larger security margin. The modified versions show better resistance to the internal state recov-

ery attack. Trivium/128 Maximov and Biryukov (2007) uses one additional AND gate in each

register to improve its security margin. We, however, present two simple modifications without

any additional AND gates and show that our proposed modifications can provide better security

level than actual Trivium. Other two modifications with additional AND gates, are also proposed

but these can provide remarkably better resistance than Trivium/128, and thus can give a larger

security margin with the same number of internal state bits. We compare our proposed structures

with the original Trivium and Trivium/128.

The analysis presented in chapter 5, shows that the possibility of recovering state bits can be

reduced if we can have lesser number of linear equations in the start and also the variables in

the product terms are distributed in a way that degrees of equations do not decline on guessing
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some of the selective bits. The proposed modifications have this inspiration. We, therefore, give a

comparison of the degrees of equations, which are formed from our proposed modifications, with

degrees of original Trivium and Trivium/128. In general, the degrees of equations cannot be taken

as the only criteria for deciding about a system difficult enough or not to be solved. In this case,

as the original structure let too many bits to be recovered owing to the presence of many lower-

degree equations, therefore, keeping the main design strategy intact, we compare our modified

designs with the original design based on these criteria.

Rest of the chapter is organized as follows: Next two sections present the proposed modifications

of Trivium with and without additional AND gates respectively. A detailed comparative analysis

of the proposed modifications is given in succeeding section. The article is concluded in the last

Section.

8.2 Modifications of Trivium without Additional Product Terms

In this section, we propose two modified designs of Trivium. Our focus is to increase the degrees

of algebraic equations to be higher than the original version without adding any product terms so

that the efficiency of the original structure is not declined.

8.2.1 First Modification of Trivium Trivium-A:

Our first proposal for modification is simple, and the idea is to reduce the number of linear equa-

tions that emerges during the earlier clocks of the cipher. The system of equations thus formed has

a higher degree than the original Trivium. We have seen in the preceding sections that the struc-

ture of algebraic equations of the original cipher has the allowance that if some bits are guessed

at some selective positions, many linear and other lower degree equations can be obtained. And

as a result remaining secret bits can be recovered in a few seconds within the limited resources.
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Figure 8.1: First Modified Version Trivium-A.

The proposed modification tries to avoid this easy recovery of bits even when half of the bits are

guessed. This may be achieved if feedback of the product term appears in the output bits earlier.

Consider the possible modification as given in Figure 8.1, keeping the above-mentioned criterion

in mind. The following pseudo-code represents the above mentioned modified version:

procedure Trivium− A(s1, s2, ...s288)

1: for t = 1 to n do

2: t1 := s36 + s93

3: t2 := s126 + s177

4: t3 := s213 + s288

5: zt := t1 + t2 + t3

6: t1 := t1 + s91.s92 + s147

7: t2 := t2 + s175.s176 + s246

8: t3 := t3 + s286.s287 + s63

9: (s1, s2...s93) := (t3, s1, ...s92)
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10: (s94, s95...s177) := (t1, s94, ...s176)

11: (s178, s179...s288) := (t2, s178, ...s287)

12: end for

In this case, we obtain 33 linear equations compared with 66 of the original structure and 65 of

Trivium/128 Maximov and Biryukov (2007). As already pointed out that in case of Trivium-A,

the feedback of product terms appear in output earlier than the original version of Trivium. In

both cases s1, s94 and s178 are replaced by t3, t1, and t2 respectively. In case of Trivium and

Trivium/128, the distance between the taps and the outcome pins of the gates is minimum 66 and

65 respectively and that is why first second degree term appears after 65 clocks with update of s1,

s94 or s178. Whereas, Trivium-A is designed with the view that difference between the taps and

outcome pins is maintained to be not less than 32.

This modification does not involve any additional AND gate; just a change in the placement of the

feedback function can help in reducing the number of linear equations. A comparison between the

degrees of algebraic equations of Trivium-A with those of the original Trivium and Trivium/128 is

presented in Figure 8.2. It can be seen that degrees of Trivium-A are higher than both those of the

original Trivium and Trivium/128. A thorough analysis of the proposed modification Trivium-A

and its comparison with Trivium and Trivium/128 is presented in Section 8.4.

8.2.2 Second Modification of Trivium-Trivium-B

In this section, we introduce another possible modification in the structure of Trivium. Here

also no additional AND gate is used; rather the product of variables is placed due to the mutual

dependence introduced within the internal state bits. Due to this, second-degree feedback is gen-

erated, thus the product of variables in steps 6, 7, and 8 of the procedure of the original Trivium
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Figure 8.2: A Comparison of the degrees of Algebraic equations of Trivium-A with the original

version of Trivium and Trivium/128.

is replaced.

In stream ciphers, mutual dependence of registers in clocking can resist algebraic cryptanalysis

due to the quick rise in the degree of equations Afzal and Masood (2007, 2008d); Al-Hiana et al.

(2007). The structure of Trivium, as shown in Figure 5.1, also has three registers. We propose

that if updating of the feedback variables of the three registers becomes mutually dependent, the

degrees of equations rise more rapidly. However, it will naturally result in another product of

variables or an additional AND gate in implementation of the cipher. Therefore, to maintain the

number of AND gates as in the original structure, we eliminate the product terms at subsequent

steps. Given below is the procedure for updating the variables t1, t2 and t3 based on mutual

dependence of the three portions of the state bits:

1: if s162 = 1 then

2: t1 := t1 + s66 + s147

3: else
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4: t1 := t1 + s147

5: end if

6: if s243 = 1 then

7: t2 := t2 + s162 + s246

8: else

9: t2 := t2 + s246

10: end if

11: if s66 = 1 then

12: t3 := t3 + s243 + s63

13: else

14: t3 := t3 + s63

15: end if

This change in the updated variables results in the following complete procedure of the proposed

modified version Trivium-B:

procedure Trivium−B(s1, s2, ...s288)

1: for t = 1 to n do

2: t1 := s36 + s93

3: t2 := s126 + s177

4: t3 := s213 + s288

5: zt := t1 + t2 + t3

6: t1 := t1 + s66.s162 + s147

7: t2 := t2 + s162.s243 + s246

8: t3 := t3 + s243.s66 + s63
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9: (s1, s2...s93) := (t3, s1, ...s92)

10: (s94, s95...s177) := (t1, s94, ...s176)

11: (s178, s179...s288) := (t2, s178, ...s287)

12: end for

With the modification Trivium-B we obtain first 33 linear equations similar to Trivium-A, as

compared to the 66 linear equations from the original Trivium. Afterwards, degrees are increased

step wise. A comparison between the degrees of algebraic equations of the original Trivium

with the Trivium/128 and Trivium-B is presented in Figure 8.3. Compared with the original

Figure 8.3: A Comparison of the degrees of Algebraic equations of original version of Trivium

with the proposed modified version Trivium-B.

version, Trivium-B achieves considerably high degrees. Moreover, in case of Trivium-B, alternate

guessing of bits is not helpful because instead of product terms of alternate bits here, bits from

different registers are combined with AND gate. It is clear from Figure 8.3, that the proposed

version has degrees higher than even Trivium/128, whereas Trivium/128 also has an additional

AND gate to improve the security level to 128 bits. A detailed analysis is given in Section 8.4.
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8.3 Proposed Modifications with Additional Product Terms

In this section, we propose some other modified designs of the Trivium again without altering

its main design philosophy. Here, our approach is to increase the degrees of algebraic equations

much higher without disturbing the original design of the cipher. We aim to achieve a form of

equations such that with guessing some of the bits, one cannot turn the degrees of equations

lower enough to make the system solvable. These modifications with additional AND terms aim

to provide security level of 128 bits and we have shown experimentally that our modifications

provide better resistance to the algebraic attack with guess and determine approach as compared

to Trivium/128.

8.3.1 Third Modification of Trivium- Trivium-C

This proposed design uses the same idea as in Trivium-B. Here, we introduce the same product

terms resulting from the interdependent updating of three portions of the internal state of the ci-

pher. Unlike Trivium-B, here we do not remove the product of alternate bits in the original design

of Trivium. Thus, the AND gates introduced in Trivium-B are additionally included within the de-

sign. Moreover, to eliminate the linear equations, the non-linear terms are included in the output

from start. We compare this design for degrees of equations with not only the original Trivium,

from which it must offer higher-degree equations but also with Trivium/128. The comparison

with Trivium/128 shows that our proposed version gives much higher degrees of the system of

equations, although the proposed version also uses three additional AND gates as in Trivium/128.

Proposed design of Trivium-C is illustrated with the following pseudo-code:

procedure Trivium− C(s1, s2, ...s288)

1: for t = 1 to n do
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2: t1 := s66.s162 + s36 + s93

3: t2 := s162.s243 + s126 + s177

4: t3 := s243.s66 + s213 + s288

5: zt := t1 + t2 + t3

6: t1 := t1 + s91.s92 + s147

7: t2 := t2 + s175.s176 + s246

8: t3 := t3 + s286.s287 + s63

9: (s1, s2...s93) := (t3, s1, ...s92)

10: (s94, s95...s177) := (t1, s94, ...s176)

11: (s178, s179...s288) := (t2, s178, ...s287)

12: end for

A comparison of the degrees of algebraic equations of Trivium-C with those of the original Triv-

ium and Trivium/128 is presented in Figure 8.4 Similar to Trivium-B, alternate guessing of bits

Figure 8.4: A Comparison of the degrees of Algebraic equations of original version of Trivium

with the proposed modified version Trivium-B.
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will not be helpful for Trivium-C. However, in this case, due to the additional product terms, even

the selective guessing will not work. A detailed analysis is given in Section 8.4.

8.3.2 Fourth Modification of Trivium- Trivium-D

Another modification in the design of Trivium is proposed here, to increase the security level of

cipher with the same number of internal state bits. As we have seen in the original design of

Trivium, states are updated nonlinearly with the second-degree expressions. However, the output

is simple XOR of three state bits. That is why linear equations are obtained in the first 66 clocking,

and afterwards degrees are increased in steps. If the output function is also made nonlinear, then

there will be no linear equation even at the start of the clocking. Here, the nonlinear update and

the remaining design approach are not altered at all.

For illustration, we have selected simple majority function:f(x1, x2, x3) = x1x2⊕x1x3⊕x2x3. In

this case, we have added three product terms or in other words three AND gates but as a result we

obtain much higher degree equations as compared to Trivium/128. Pseudo-code of the Trivium-D,

with modification described above is given below:

procedure Trivium−D(s1, s2, ...s288)

1: for t = 1 to n do

2: t1 := s66 + s93

3: t2 := s162 + s177

4: t3 := s243 + s288

5: zt := t1t2 + t1t3 + t2t3

6: t1 := t1 + s91.s92 + s171

7: t2 := t2 + s175.s176 + s264
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8: t3 := t3 + s286.s287 + s69

9: (s1, s2...s93) := (t3, s1, ...s92)

10: (s94, s95...s177) := (t1, s94, ...s176)

11: (s178, s179...s288) := (t2, s178, ...s287)

12: end for

Rise in the degrees of equations of Trivium-D with the original Trivium and Trivium/128 is given

in Figure 8.5 The modified version Trivium-D also has second-degree terms of alternate state bits,

Figure 8.5: A Comparison of the degrees of Algebraic equations of original version of Trivium

with the proposed modified version Trivium-D

but here alternate guessing of bits does not reduce the overall degrees of output equations. The

reason naturally lies in the fact that there are many second-degree terms in the output polynomial

attributed to the combining second-degree Boolean functions. Thus, even if a large number of

state bits is guessed, linear equations or lower-degree equations are not obtained, and the system

is not solvable.

The idea of Trivium-D is of placing a more complex Boolean function at the output instead of
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using simple XOR of bits from three registers. Although, structures having LFSR with combin-

ing Boolean functions are quite an easy prey to algebraic attack, but in the case of Trivium all the

three registers are non-linearly updated. We have selected a simple Boolean function of degree

two, non-linearity two and correlation immunity zero to combine three bits; because along with

improving the security level of the cipher, we want to maintain its good performance in hardware

and software as near as possible to the original Trivium. In further researches, the structure of

Trivium combined with some Boolean functions of different characteristics (non-linearity, corre-

lation immunity, algebraic immunity etc.) can be tried with different trade-offs of security, speed

and area.

8.4 Comparative Analysis of Proposed Modifications

This section is devoted to the analysis of proposed modified versions of Trivium so that changes

in the design may be justified. We will also discuss the performance and the resistance of these

designs against other cryptanalytic attacks.

8.4.1 Trivium-A

In Trivium-A, linear taps are shifted backwards. However, change of taps has to be done with

some important considerations. First concern in this context is related to the period of the Trivium.

Since the internal state of Trivium evolves in a nonlinear way therefore, it is hard to determine

its period Cannière and Preneel (2005b). But still, as a design principle of Trivium all of its taps

are divisible by three and the linear taps of the Trivium are selected in a way that if the AND

gates are omitted (resulting in a completely linear scheme), then any key/IV pair would generate

a stream with a period of at least 296−3 Cannière and Preneel (2005b); Y.Tian et al. (2009). While

modifying the structure to Trivium-A, the same design philosophy is maintained. The linear taps
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of Trivium-A are also selected with the property that if the AND gates are omitted, then any initial

state would generate a stream with a period of at least 296−3, because its characteristic polynomial

is primitive of order 93.

Another important feature of Trivium is that its design provides a way to parallelize its operations.

This is done by ensuring that any state bit is not used for at least 64 iterations after it has been

modified. This way, up to 64 iterations can be computed at once, provided that the three AND

gates and eleven XOR gates in the original scheme are duplicated, a corresponding number of

times. Trivium-A, however, provides only 32-bit parallelism. A comparison of the performance

of Trivium-A and other modifications with original Trivium is given in next section.

The overall rise in the degrees of equations is already given. Since, in this case the form of equa-

tions is not changed, therefore, alternate guessing of bits will simplify the equations. However,

it has been experimentally verified that due to the presence of higher-degree equations, the sys-

tem of equations will not be solved with half bits guessed. Since, the proposed modifications are

aimed to show better resistance against algebraic recovery of internal state bits, therefore, for sim-

ulations we have used similar resources as have been used to mount a practical algebraic attack

on Trivium 5.3.1.

8.4.2 Trivium-B

Linear taps of Trivium-B are modified similar to Trivium-A. Therefore, it has all the properties of

Trivium-A as discussed in previous section. But the difference between these two modifications is

in product terms. Therefore, the alternate guessed bits do not help finding lower degree equations

in case of Trivium-B. Due to the structure of Trivium-B, some selective guessing of bits can be

useful. As described earlier, the internal states of Trivium can be divided into three segments.
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If alternate bits of two of the segments and some consecutive bits from the third segment are

guessed, we may obtain some linear equations. Figure 8.6 shows a comparison of the degrees of

original Trivium when state bits at alternate places are guessed with proposed Trivium-B when

state bits at alternate and selective positions are known. It can be seen from the Figure 8.6 that

Figure 8.6: A Comparison of the degrees of Algebraic equations of original version of Trivium

with the proposed modified version Trivium-B with alternate and selective bits guessed

as compared to the large number of linear equations obtained as a result of guessing state bits

at alternate places of original Trivium, the degrees of equations of Trivium-B are much higher.

We do not consider here the case of guessing more than half the state bits because in the case

of the original Trivium, we can do with fairly less than half to recover the rest of the internal

state bits. Thus, we conclude after trying a number of ways for guessing (with half of the bits

guessed), Trivium-B does not give enough lower-degree equations that can be solved. It can thus

be concluded that the Trivium-A and the Trivium-B provide resistance to the algebraic attack with

guess and determine approach. Thus, the recovery of internal secret state bits of Trivium is more

complex than before, so that it will have a better security margin.
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8.4.3 Trivium-C and Trivium-D

Both of these versions have been proposed with additional gates to provide a security level of 128

bits. It is concluded after experiments with many options based on the structure of the equations

that even after guessing a large number of state bits (a lot more than half), we do not obtain a

simplified enough system that could be solved within resources similar to those that were used for

within the similar resources as were used for the original Trivium and Trivium/128 5.3.1. Due to

an additional product term in which alternate taps are not used alternate guessing of bits is not as

useful in Trivium/128, Trivium-C and Trivium-D as in Trivium. But due to inclusion of non-linear

terms in the earlier clocks, in case of Trivium-C and Trivium-D no linear terms appear in their

case unlike Trivium/128. A comparison of degrees of Trivium/128, Trivium-C and Trivium-D

with half bits guessed in all the three cases is shown in Figure 8.7.

Figure 8.7: A Comparison of the degrees of Algebraic equations of Trivium/128 with the proposed

modified version Trivium-C and Trivium-D with alternate bits guessed

In all the four modifications discussed above, we did not attempt to guess more than half the state
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bits and, therefore, have not found the limit to the minimum number of state bits that need to

be guessed to make the system of equations feasible to be solved. All the situations discussed

here show better results in generating complex equations than original Trivium. Moreover, the

proposed versions with additional AND gates are more difficult to solve than Trivium/128.

A comparison of the number of obtained linear equations for all the proposed modifications and

Trivium and Trivium/128 is presented in Table 8.1. Although for Trivium/128, more linear equa-

tions can be obtained when guessed bits are not alternate but selected in a way based on its

structure 5.4. But here we compare the case with alternate bits guessed. Only the number of

linear equations is compared because the large number of linear equations obtained actually helps

in solving the algebraic system obtained in remaining bits.

Table 8.1: A Comparison of the number of linear equations with all unknown and half guessed

bits for proposed modifications with Trivium and Trivium/128

Version Number of Number of Linear equations

Linear equations with alternate bits guessed

Trivium 66 148

Trivium/128 65 65

Trivium-A 33 118

Trivium-B 33 58

Trivium-C 0 16

Trivium-D 0 0
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8.4.4 Resistance against Other Attacks

The proposed modifications of Trivium in this article aim mainly to increase the complexity of

Algebraic attack against Trivium. Due to the structure of Trivium, using guess and determine ap-

proach a large number of its state bits can be recovered by solving algebraic equations. However,

it can be prospected that while trying to increase the complexity of one attack, we may make our

cipher vulnerable to any other attack. Attack scenarios in Maximov and Biryukov (2007) are built

on the fact that non-linear equations are not obtained immediately as the clocking is started rather

non-linearity comes into play after some delay, thus guessing the AND terms some linear equa-

tions are obtained to give some bits of the internal state. Since, all of our modifications attempt to

decrease the linear equations, therefore, it is not difficult to see that proposed modifications will

make the attack scenario of Maximov and Biryukov (2007) also more difficult.

Correlation attack against stream ciphers with linear feedback shift registers is very important,

however, Trivium’s state evolves in a nonlinear way. Correlations in Trivium have been consid-

ered in a few researches. Results given in Khazaei and Hassanzadeh (n.d.) and Turan and Kara

(2007) discuss linear approximation attacks. Trivium is shown to be strong against linear sequen-

tial circuit approximation attack, in spite of the linearity of its output function and the fact that,

except three, all of the next state functions are linear Khazaei and Hassanzadeh (n.d.). Two of

our modifications have similar number of linear and non-linear relations that can result in similar

difficulty in deriving linear relations, whereas two other proposed modifications have increased

number of nonlinear relation that will increase the difficulty in deriving linear approximations

with good correlation coefficient. Yet another approach of finding correlation may find any good

correlation in proposed modification also.

We have analyzed our proposed modified designs theoretically against all existing attacks on Triv-
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ium and found that complexity of most of the attacks remain unchanged, if not increased. Its main

reason is that we have not changed the basic design philosophy of the Trivium cipher. It should

also be noted that while proposing a design, no one can claim that no attack can ever be designed

against it. Generally, claims are made on the existing attacks and their results. Therefore, the pro-

posed designs are as vulnerable to some new attack or some existing attack designed in a different

way as is the original Trivium or any other new cipher. To the best of our knowledge, there is

no other existing successful attack on the cipher and therefore, this article mainly discusses the

effect of proposed modifications on the recovery of internal state bits by exploiting its algebraic

structure of the cipher.

8.4.5 Performance Comparison

In the original Trivium, no taps appear on the first 64 bits of each shift register, so each novel state

bit is not used until at least 64 rounds after it is generated. This is the key to Trivium’s software

performance and flexibility in hardware. A straightforward hardware implementation of Trivium

would use 3488 logic gates and produce one bit per clock cycle. However, because each state bit

is not used for at least 64 rounds, 64 state bits can be generated in parallel at a slightly greater

hardware cost of 5504 gates Cannière and Preneel (2005b).

Changing the taps of register may disturb its property of parallelism. As mentioned in previous

sections, Trivium-A, Trivium-B and Trivium-C will support 32 bit parallelism, whereas Trivium-

4 is suitable for 64-bit parallelism. A comparison of estimation of the gate count for different

degrees of parallelization for Trivium, Trivium/128 and all the proposed modifications are given

in Table 8.2. Estimation is done based on Cannière and Preneel (2005b) i.e., 12 NAND gates per

Flip-op, 2.5 gates per XOR, and 1.5 gates per AND:
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Table 8.2: Estimated gate counts of 1-bit to 64-bit hardware implementations.

Components 1-bit 8-bit 16-bit 32-bit 64-bit

Trivium Flip-flops 288 288 288 288 288

AND gates 3 24 48 96 192

XOR gates 11 88 176 352 704

NAND gate count 3488 3712 3968 4480 5504

Trivium/128 Flip-flops 288 288 288 288 288

AND gates 6 48 96 192 384

XOR gates 15 120 240 480 960

NAND gate count 3502 3828 4200 4944 6432

Trivium-A Flip-flops 288 288 288 288 N/A

and Trivium-B AND gates 3 24 48 96

XOR gates 11 88 176 352

NAND gate count 3488 3712 3968 4480

Trivium-C Flip-flops 288 288 288 288 N/A

AND gates 6 48 96 192

XOR gates 15 120 240 480

NAND gate count 3502 3828 4200 4944

Trivium-D Flip-flops 288 288 288 288 288

AND gates 6 24 48 96 192

XOR gates 11 88 176 352 704

NAND gate count 3492 3748 4040 4624 5792
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8.5 Concluson

Trivium, a selected candidate for the final portfolio of the eSTREAM project, has a simple and

elegant structure. Since its internal state is quite larger than its key-stream length, a natural ques-

tion arises whether its bit security level can be increased with the same number of internal state

bits. Based on the experiments, it was found that this can be achieved with small design modifica-

tions. We have proposed here some modified versions of Trivium to increase its bit security level.

Compared with an earlier proposed tweak, Trivium/128, our modifications show better resistance

against the algebraic cryptanalysis of Trivium with a larger bit security level. Two of our proposed

modifications do not use any additional AND gates but still achieve better security margin than

the original Trivium. Whereas, the other two proposed versions with additional AND gates show

a much better security level than Trivium/128.
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Chapter 9

Summary and Conclusions

9.1 Introduction

This chapter is meant to provide a summary of previous chapters so, as to conclude this work.

It gives an overview of our proposed algebraic attack on different stream ciphers with non-linear

update and also highlights the main contributions of this work.

The chapter is organized as follows. Next section summarizes the algebraic cryptanalysis of the

selected stream ciphers presented in previous chapter. Following Section is about the proposed

modifications in Grain-v1 and Trivium. Chapter will be concluded in last section.

9.2 Algebraic Cryptanalysis of Stream Ciphers A5/1, A5/2, Grain, Trivium and Mickey

Due to their extensive application in secure communication, many new stream ciphers have been

proposed recently. Stream cipher project eSTREAM eSTREAM (2005) has played a very im-

portant role in identifying some new and promising stream ciphers. Designers of most of the

newly proposed ciphers, try to establish that their proposed designs are strong against the existing

cryptanalytic attacks. Also the design strategy, which has been victimized greatly, is generally

avoided. Due to the success of algebraic attacks against stream ciphers, the design strategy of

LFSR with high order Boolean functions, which is the ideal one for algebraic cryptanalysis, can-

not be found in recently appreciated ciphers. In eSTREAM project, the ciphers like Sfinks and

WG Braeken et al. (2005); Nawaz and Gong (2005) with this design philosophy were proposed
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but Sfinks was not included in the 2nd phase, whereas WG was no more in the 3rd phase of the

project. Successful analysis against Sfinks can be seen in Courtois (2005b).

It is thus important to identify also the design philosophy in stream ciphers that can show resis-

tance to recovery of internal state bits using algebraic approach. If internal states of the registers

involved in a cipher are updated non-linearly then the degrees of underlying equations of the ci-

pher will increase with clocking of the registers. This may defeat the algebraic attack. However,

different structures with non-linear update may offer different levels of security against algebraic

attack.

This thesis was aimed at identifying the design strategy of stream ciphers, which can resist internal

state recovery with algebraic approach. For this purpose, we consider the ciphers with non-

linear update in their structure and analyze their resistance or otherwise vulnerability to algebraic

cryptanalysis. We have analyzed and compared the design of the key generating mechanism,

therefore, we have not considered the cipher as such, along with its initialization mechanism etc.

The key generating parts of different ciphers are analyzed and are compared on the basis that how

many of their internal state bits can be recovered by solving non-linear algebraic equations. Due

to rise in the degree of equations with each clock, some of the internal state bits are guessed to

recover the remaining bits. Our analysis reveals that due to some tactful guessing, one cipher may

allow to recover a lot more bits than the other.

Grain, Trivium and Mickey are three candidate ciphers of eSTREAM project which have been

included in its final portfolio. These ciphers have come under much scrutiny and concerning

the existing cryptanalytic attacks, they satisfy the security margin that their designs offer. Our

approach of solving equations with some guessed bits also confirms their security level. However,

it is found that for Grain-v1 and Trivium, a large number of bits can be recovered on a PC in a
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few seconds, thus showing a thin security margin with respect to the algebraic cryptanalysis. This

reveals that it is also prospective that with some better resources algebraic cryptanalysis of these

ciphers may show better results than brute force attack. For Grain-128 quite a few state bits can

be recovered, and Mickey seems to be most resistant against this approach. Significance of this

work also lies in making a comparison of these worthy members of the hardware portfolio of

eSTREAM project based on their allowance to give away the number of internal state bits by

solving algebraic equations. This analysis can also help in revising any of these designs to show

better security margin so, it may be used with increased bits of secret key with the same number

of internal state bits.

We also have included GSM encryption algorithms A5/1 and A5/2 in our analysis. Both of these

ciphers have clock controlled structures with the difference that A5/1 uses clocking with mutually

controlled registers whereas in A5/2 an independently and regularly clocked register controls the

clocking of other three registers. Due to this fact A5/1, has been proved to be resistent to algebraic

attack, whereas A5/2 is an easy prey for this attack. Structure of A5/2 has been extensively

analyzed algebraically in literature, we, however, have applied an attack on A5/2 using Groebner

basis. Due to this, data requirement in the form of frame numbers is reduced.

Grain-v1 although have a higher degree of Boolean function in comparison to the Grain-128, but

overall almost 50% of the state bits can be recovered in case of Grain-v1, whereas Grain-128

only permits to recover 25%. This occurs because output bit, in case of Grain-128, is masked

with a large number of variables from NLFSR. Consequently, all linear equations include several

indeterminate values. Furthermore, the system cannot be solved for more than 64 unknowns.

For Grain-v1, although there are some equations with very high degrees, still guessing half of

the internal states gives enough linear equations in fewer variables. As a result, relatively more
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variables can be recovered. Hence, Grain-1 hardly satisfies the security of margin of 80 bits

whereas, Grain-128 has rather safe margin.

Trivium on the other hand, with all its elegance and ease of structure gives a large number of

linear equations even without guessing a single bit. Moreover, the presence of alternate state

bits in the algebraic equations suggests some ways of guessing the bits, which made the analysis

easier. Thus, Trivium also gives a thin security margin and its design actually allows finding quite

a number of state bits. This also suggests difficulty in increasing the security level of the cipher

with same design and number of state bits. We have also shown that with our guessing approach,

time complexity of retrieving bits from Trivium using F4 algorithm implemented in Magma is

less than the other solving methods. This research, however, can be further extended by solving

the equations generated with our guessing approach with some other equations solving techniques

like Raddum (n.d.).

Mickey uses the idea of irregularly clocking of registers. Although algebraic attack against the

clock controlled stream ciphers has been studied with focus on ciphers in which one generator

controls the clocking of other generators Al-Hinai et al. (2006). Whereas, ciphers that involve the

clocking in which none of the registers are regularly clocked are quite resistant as is the case in

A5/1. Mickey also combines irregular clocking and interdependence of registers for clocking and

as a result, its algebraic equations gain very fast increase in the degree. Furthermore, the form of

equations does not give any help in selectively guessing some of the bits to find others. Both of

its registers are mutually dependent and guessing one or the other or in any other form does not

at all help in gaining linear or low order equations to make the solution possible.

Algebraic cryptanalysis is although difficult to apply on stream ciphers in which the internal secret

state bits are updated non-linearly but not impossible altogether. With some careful guessing,
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some structures can reveal a large number of their secret state bits. However, if the registers

are mutually interdependent, algebraic attack can be defeated even with guess and determine

approach.

9.3 Some Suggestions for the Design of Grain-v1 and Trivium based on the Analysis

We have seen in the previous chapter that 80 bits of Grain-v1 can be recovered very easily thus

giving a marginal security of Grain-v1. Therefore, we have proposed some design modifications

in Grain-v1 so that its defense can be enhanced against algebraic attack without any increase in

the internal state length or making any other big changes in its structure.

Generally, for a stream cipher, the number of internal state bits is important to decide its security

level. Thus, for the cipher with internal state bits which are larger in number than the secret key

bits, a natural question arises, whether the security level of the cipher can also be increased. Our

analyses of these promising and interesting designs of ciphers also try to find the answer to these

questions. For example, if we want to increase the security level of Trivium from 80 bits, should

its internal states be increased also? Whereas, it already has a large number of internal state bits:

288 bits. But in the case of Mickey, no reasonable number of bits can be recovered algebraically at

least within the on hand resources, thus showing its strength against recovery of internal state bits.

In this case, with the same design and number of internal state bits, one can think of increasing

the security level of the cipher. Obviously, here it is assumed that no other attack on the cipher

exists, or steps to counter that attack are already taken. Our proposed modifications for Trivium

aim to achieve an increase in the key bit length of Trivium. We have also proposed some changes

in the design to improve its resistance to internal state recovery with the same key bit length. Our

main effort is not to disturb the actual design philosophy of Trivium design.
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9.4 Conclusion

Studying the vulnerability or otherwise, resistance of different cipher structures to different types

of cryptanalytic attacks is an important task for design and cryptanalysis of both stream and

block cipher systems. The thesis is about the algebraic cryptanalysis of those stream ciphers

whose internal state is updated non-linearly. It has been concluded that while some structures are

vulnerable to such attacks due to their structures while some other structures can defeat this attack

due to their interdependence of state registers. In this chapter, we have summarized the analysis

presented in previous chapters.
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