

HARDWARE DESIGN OF SYNTHETIC DISCRIMINANT

FUNCTION BANDPASS DIFFERENCE OF GAUSSIAN FILTER

By

Saima Gul

2009-NUST-MS PhD-ComE-10

Submitted to the department of Computer Engineering in fulfillment of the

requirements for the degree of

Master of Science

In

Computer Engineering

Thesis Supervisor

Dr. Saad Rehman

College of Electrical and Mechanical Engineering,

National University of Sciences and Technology

2012

ii

DECLARATION

I hereby declare that the thesis titled “Hardware Design of Synthetic Discriminant

Function Bandpass Difference of Gaussian Filter” is neither whole nor as a part thereof has

been copied from any source (except data). It is further declared that I developed this report

entirely on the basis of my personal efforts. No portion of the work presented in this report

has been submitted in support of any application for any degree and qualification of this or

any other university or institute of learning. All the sources used in this thesis have been cited

and the contents of this thesis have not been plagiarized.

Saima Gul

iii

ACKNOWLEDGEMENTS

All thanks to Almighty Allah, who made all this possible for me. Without His help it

was impossible to achieve this milestone.

I extend my deep appreciation and thank to my thesis supervisor Dr. Saad Rehman

for all his support, guidance and kind cooperation. I am thankful to him for his precious time,

valuable opinion and faith in me. A special thanks to Dr. Shoab Ahmed Khan for his

guidance and precious time. And I am thankful to Dr. Usman Qamar and Dr. Arsalan

Shaukat for their guidance.

A heartiest gratitude to my parents, brothers and sisters who always pray for me and

encourage me to do whatever I want. Last but not the least, I appreciate all those who

remember me in their prayers and encourage me throughout the deals of my life.

The constant advice and encouragement of my friends and the work of early scientists

which blazed this study is also highly acknowledged.

iv

Dedicated to

My loving Parents

v

ABSTRACT

Synthetic Discriminant Function (SDF) has been the main area of focus for many

researchers. It has been applied successfully in different applications. This filter was designed

to overcome the limitations of Matched Filter and Phase Only Filter. The main idea behind

SDF design is to include the expected distortions in the filter design. This technique improved

the immunity to the distortions. SDF filter is computationally very intensive algorithm when

implemented in MATLAB. Its real-time implementation with the specialized hardware is

essentially required in order to achieve high speed. It is an optical technique, which is

digitized.

This research work is focused on the hardware design of Synthetic Discriminant

Function Bandpass Difference of Gaussian Filter. The objective is to provide faster and

cheaper solution to the object recognition problem. This work pays special attention to the

trade-off among area, cost, performance and precision aspects. Hardware design of SDF filter

is the first step towards designing fast and efficient hardware for correlation filters with

distortion invariance.

vii

Table of Contents

 INTRODUCTION Chapter 1

1.1. Problem Overview ..1

1.2. Project Objectives ...2

1.3. Thesis Outline ...2

 CORRELATION FILTERS Chapter 2

2.1. Linear Discrimination Function...3

2.2. Correlation Filters ...5

2.2.1. Matched Filter ...6

2.2.2. Phase Only Filter ...7

2.2.3. Synthetic Discrimination Function Filter (SDF) ...8

2.3. Performance Measures for Correlation Filters ... 10

 DIFFERENCE OF GAUSSIANS FILTER .. 11 Chapter 3

 DIGITAL SYSTEM DESIGN WITH FPGAS Chapter 4

4.1. Components of Digital System Design Process ... 15

4.1.1. Design ... 15

4.1.2. Implementation .. 15

4.1.3. Verification ... 16

4.2. Design objectives of a Digital System ... 16

4.3. Logic Synthesis... 17

4.4. Design Partitioning ... 18

4.5. System Level Design Flow ... 18

4.6. Fixed-point versus Floating-point Hardware ... 19

4.7. Qn.m Format for Fixed-point Arithmetic .. 21

4.7.1. Qn.m format Addition .. 22

4.7.2. Qn.m format Multiplication ... 23

4.8. Xilinx IP Cores ... 23

4.8.1. FPGA Block Memory .. 23

4.8.2. Multiplier IP Core .. 25

4.8.3. Divider IP Core.. 26

4.8.4. Fast Fourier Transform IP Core ... 28

 HARDWARE DESIGN FOR SDF FILTER Chapter 5

5.1. Design Stages ... 30

viii

5.2. Memory for training Data ... 34

5.3. Create SDF Image ... 36

5.3.1. Create Correlation Matrix .. 38

5.3.2. Matrix Inverse ... 41

5.3.3. Coefficients vector ‘a’ ... 46

5.3.4. SDF Image ‘h’ ... 47

5.4. Difference of Gaussian.. 48

5.4.1 Exponential Function .. 49

5.4.2 Integer Power ... 50

5.5. Correlator ... 51

 RESULTS Chapter 6

6.1. Simulation Results .. 54

6.2. ModelSim Simulations .. 67

6.3. Synthesis Results .. 69

Timing Summary: .. 69

Device utilization: .. 69

 CONCLUSIONS AND FUTURE WORK Chapter 7

7.1. Conclusions .. 70

7.2. Future Work ... 70

REFERENCES .. 72

ix

List of Figures

Figure 2.1: Simple Linear Classifier [5] ...4
Figure 2.2: Decision boundaries (a) three class problem (b) five class problem5

Figure 3.1: Mesh plot for Difference of Gaussian wavelet with contour 12
Figure 3.2: Contour plot for Difference of Gaussian wavelet.. 13

Figure 4.1: Fields of bits and their equivalent weights for the text example 21
Figure 4.2: Example of addition in Q format .. 22

Figure 4.3: True dual port RAM ... 24
Figure 4.4: Multiplier IP core schematic symbol .. 25

Figure 4.5: Schematic Symbol for Divider IP Core ... 27
Figure 4.6: FFT IP Core schematic symbol .. 28

Figure 5.1: Design Stages .. 31
Figure 5.2: Structure of Bandpass DoG SDF Filter .. 32

Figure 5.3: Flow chart for the Algorithm ... 33
Figure 5.4: Memory Organization for Training data ... 35

Figure 5.5: CreateSDF Block Diagram ... 36
Figure 5.6: dual port RAM ... 39

Figure 5.7: Hardware architecture for Correlation matrix creation.................................. 40
Figure 5.8: Schematic Symbol for Matrix Inversion system ... 43

Figure 5.9: Matrix Inversion Flow chart ... 44
Figure 5.10: memory initialization for matrix inversion ... 45

Figure 5.11: Matrix Inversion Hardware .. 46
Figure 5.12: Hardware for computation of coefficients vector a 47

Figure 5.13:Part of CreateSDF module that generates SDF image 48
Figure 5.14: Hardware architecture for for exponential function 50

Figure 5.15: Correlator .. 51
Figure 6.1: Set of Reference Images .. 53

Figure 6.2: Composite Image ... 54
Figure 6.3: 0 degree rotated test image ... 55

Figure 6.4: Correlation plane for 0 degree rotated image .. 55
Figure 6.5: 5 degree rotated test image ... 56

Figure 6.6: Correlation plane for 5 degree rotated image .. 56
Figure 6.7: 10 degree rotated test image ... 57

Figure 6.8: Correlation plane for 10 degree rotated image .. 57
Figure 6.9: 15 degree rotated test image ... 58

Figure 6.10: Correlation plane for 15 degree rotated image .. 58
Figure 6.11: 20 degree rotated test image ... 59

Figure 6.12: Correlation plane for 20 degree rotated image .. 59
Figure 6.13: 25 degree rotated test image ... 60

Figure 6.14: Correlation plane for 25 degree rotated image .. 60
Figure 6.15: 30 degree rotated test image ... 61
Figure 6.16: Correlation plane for 30 degree rotated image .. 61

Figure 6.17: 35 degree rotated test image ... 62

file:///D:/MS%20Thesis/Thesis%20Writing/Documentation/Thesis%20Report.docx%23_Toc319089708

x

Figure 6.18: Correlation plane for 35 degree rotated image .. 62
Figure 6.19: 340 degree rotated test image ... 63

Figure 6.20: Correlation plane for 340 degree rotated image .. 63
Figure 6.21: 355 degree rotated test image ... 64

Figure 6.22: Correlation plane for 355 degree rotated image .. 64
Figure 6.23: Correlation plane for 30 degree rotated car image 65

Figure 6.24: Correlation plane for 30 degree rotated car image 66
Figure 6.25: Correlation plane for 30 degree rotated car image 66

Figure 6.26: Create_Corr_Matrix Simulation ... 67
Figure 6.27: Matrix_Inverse Simulation ... 67

Figure 6.28: CreateSDF Simulation ... 68
Figure 6.29: Difference of Gaussian Simulation ... 68

xi

List of Tables

Table 4.1: Multiplier IP core Signal Pinout .. 26
Table 4.2: Divider IP Core Signal Pinout ... 27

Table 4.3: FFT IP Core Signal Pinout .. 29
Table 6.1: Device Utilization ... 69

1

 Chapter 1

INTRODUCTION

1.1. Problem Overview

Correlation filters have been successfully applied for a number of applications, such as

object tracking, automatic target recognition and recognition of biometrics e.g. face, finger

print and iris [1, 2, 3]. Synthetic Discriminant Function filter is one of the well-known

correlation filters. A composite image is formed by the weighted sum of training images.

Input images are preprocessed using a Difference of Gaussian band pass filter which performs

the edge enhancement of an input image and in this way we can get sharp correlation peaks.

Preprocessed image is correlated with the composite image to produce the correlation plane

which is tested for its peak value to detect the object.

SDF filter is computationally very intensive algorithm when implemented in software.

Its real-time implementation with the specialized hardware is essentially required. The

system’s software implementation could be used but there are environments where real time

implementation of SDF is required. For example, an environment in which SDF is required to

be trained at run time. In this case, images are taken by the camera and these images are used

to train SDF filter.

2

1.2. Project Objectives

The main goal is to design digital hardware for Synthetic Discriminant Function filter

to provide a faster and cheaper solution to the pattern recognition problem, and to include

Difference of Gaussian bandpass filter for edge enhancement of the input images.

The system design is divided into three parts. First is the hardware design for SDF

synthesis process. Second, the hardware design of Difference of Gaussians and last is the

Correlator design. The designed system is able to produce composite SDF image, and the

Difference of two Gaussian functions, and finally to produce the correlation plane for the

input image using the Correlator. All the code is written in Verilog and simulations are

performed in ModelSim and the system is synthesized in Xilinx.

1.3. Thesis Outline

This report is organized in seven chapters. Chapter 1 gives a brief introduction of the

research work. Chapter 2 provides an introduction to the Correlation filters and explains some

of the correlation filters and SDF filter in particular. Chapter 3 briefly describes the

Difference of Gaussians filter. Chapter 4 is an overview of the FPGA based digital system

designs and digital signal processing on FPGAs. Chapter 5 discusses the hardware design of

the SDF filter. Results and discussions are presented in Chapter 6. Conclusions and proposed

future work are discussed in Chapter 7.

3

 Chapter 2

CORRELATION FILTERS

2.1. Linear Discrimination Function

Linear Discriminant Analysis is a widely used pattern recognition method. A number

of pattern recognition systems based on LDA have been developed and encouraging results

have been attained.

 “Discriminant analysis finds a set of linear combinations of the variables, whose values are

as close as possible within groups and as far apart as possible between groups. The linear

combinations are called discriminant functions. Thus, a discriminant function is a linear

combination of the discriminating variables”[4].

We can write a linear discriminant function (LDF) of components x as:

 () (1)

Where is the weight vector and
is the threshold weight. The LDF of the form of Equation

(1), is a two category case [5]. This two category classifier follows the following decision

rule.

 Decide if ()

 Decide if ()

4

The equation 0)(xs identifies the decision surface that can separate the points which are

assigned to from the points which are assigned to . When)(xs is linear, the surface is

called a hyperplane. If
1x and

2x are both on the decision surface then

 (2)

By rearranging the above equation

 (3)

 () (4)

Equation (4) concludes that is normal to any vector present in the hyperplane. In

simple words the hyperplane H divides the space into two regions. Region
1R for and

2R

for .

Figure 2.1: Simple Linear Classifier [5]

5

A simple linear classifier with d inputs is shown in fig 2.1 [5]. Each input value ix is

multiplied by the corresponding weight . So sum of all the products ∑ is the final input

to the Decision Unit. In a multi category case, the number of regions will increase as depicted

in figure 2.2 [5].

Figure 2.2: Decision boundaries (a) three class problem (b) five class problem

2.2. Correlation Filters

Correlation filters are commonly used for image processing and pattern recognition

purposes. There are many applications available where these filters have been successfully

applied [6, 7, 8]. A correlation filter must satisfy the following three purposes for pattern

recognition:

 It is invariant to out-of- plane, in-plane and scale mismatch.

 Able to discriminate between objects in a multi class pattern recognition environment.

 Shows good tolerance to clutter and noise.

6

Some correlation filters are discussed in the next sections with their properties.

2.2.1. Matched Filter

The Matched Filter (MF) is optimal in detecting a target in white noise and provides a

high Signal to Noise Ratio (SNR). If () is a waveform then a matched filter has the impulse

response:

 () () (5)

K and are any arbitrary constants. Fourier transform of this impulse response gives the

transfer function.

 dehfjH fj2)()2((6)

Now replacing the value of)(h in equation 6.

 deKxfjH fj2)()2((7)

Now rearranging equation (7)

 dexKfjH fj2)()2((8)

Simplifying equation (8)

 '2'2 '

)()2(dexKefjH fjfj (9)

7

Where ' is taken as the substitution. Now the Fourier transform of () is

 dtetxfjX ftj 2)()2((10)

Now comparing equations (9) and (10)

 fjefjKXfjH 2*)2()2((11)

MF is also called the conjugate filter.

MF fails in the presence of distortions such as in-plane, out-of-plane rotation and scale

mismatch. Matched filter cannot be used for multi-class pattern recognition applications. Also

a large number of filters will be required when handling large number of distortions. Another

drawback of MF is its low Horner Efficiency (Optical Efficiency) [11, 12, 13]. Horner

Efficiency is given by:

2

2

)0(

S

C
H (12)

Where
2

)0(C is the peak correlation energy and
2S is the total energy of light in the input plane.

2.2.2. Phase Only Filter

The performance of the cross-correlation is improved significantly using the Phase

Only Filter [11] (POF) as compared to the MF. The Phase correlation is given by equation 13.

)(.)(

)(.)(
),(

*

*
1

gFfF

gFfF
Fgfr (13)

8

The POF yields sharp peaks hence better object detectability. POF has 100% Horner

Efficiency, as the filter passes the entire incident light. POF is slow to implement as it is

difficult to perform using optical methods and requires a significant increase in operations per

point on a CPU. The phase information makes it very sensitive and greatly reduces its ability

to detect distorted signals [14].

2.2.3. Synthetic Discrimination Function Filter (SDF)

SDF [15, 16, 17, 18] has been the main area of focus for many researchers. It has been

applied successfully in a number of applications [19, 20, 21, 22]. SDF was designed to

overcome the limitations of MF and POF. The main idea behind the SDF design is to include

the expected distortions in the filter design. This technique improved the immunity to the

distortions. This methodology also addressed the multi class pattern recognition problem by

including the non-targets in the filter design.

The conventional SDF is synthesized using a weighted linear combination of distorted

reference images. A composite image is created, hence giving the name as a Composite Filter.

The composite image is cross-correlated with the input images to produce equal correlation

peaks for all the images of the same class. Soon after its invention it was recognized that it

was not optimized for the clutter tolerance.

Let () denotes the composite image and () is the training image set where

 and N is the number of the training images. Then the value at the origin of the

correlation plane between the composite image and each of the training images is assumed to

be equal to a constant c.

The composite image is given in terms of the training images and weights.

9

 () ∑ ()

Where the coefficients () are determined to satisfy the constraint c.

∑

/

igure 2.3: SDF Synthesis Process

Training Image Set

ti(x, y), i = 1, 2, 3, . . . , N

𝑅 𝑡𝑖(𝑥 𝑦)𝑡𝑗
∗(𝑥 𝑦)𝑑𝑥𝑑𝑦

𝑅− 𝑖𝑛𝑣(𝑅)

𝑎 𝑅− 𝑐

 (𝑥 𝑦) ∑𝑎𝑖𝑡𝑖(𝑥 𝑦)

𝑁

𝑖

 Form Correlation matrix R of ti

 Inversion of Correlation matrix R

 Multiplication by appropriate external vector c

 Construction of SDF filter h by the weighted

linear combination of ti

Test Image

fi(x, y), i = 1, 2, 3, . . . , N
Target Identification

10

2.3. Performance Measures for Correlation Filters

To measure the performance of the correlation filters some basic measures have to be

calculated. The basic performance measure is correlation output peak intensity (COPI). It

signifies the maximum intensity value of the correlation output plane. It is defined as [33]:

 { (() }

C is the output Correlation Intensity. A filter with high COPI shows good performance

and a high detection ability.

Another important performance measure is Peak to correlation energy (PCE). The

basis of the PCE is that the COPI should be as high as possible while at the same time the

overall correlation plane energy should be as low as possible. It is defined as [33]:

Where Energyc is the total correlation plane energy and is defined as:

 ∑ ()

11

 Chapter 3

DIFFERENCE OF GAUSSIANS FILTER

Difference of Gaussians is an edge enhancement algorithm for grayscale images that

performs the enhancement by subtracting one blurred version of a grayscale image from

another less blurred version of the same image. The blurred versions of the images are

obtained by correlating the original image with the Gaussian kernels with different standard

deviations. High frequency information is suppressed because of blurring the image with the

Gaussian kernel. When one blurred image is subtracted from the other blurred version of the

same image, spatial information that is preserved is the one that lies between the ranges of

frequencies that are preserved during the blurring of image. Thus, the difference of Gaussians

is a bandpass filter that preserves only some of spatial frequencies that were present in the

original grayscale image.

Difference of Gaussians is defined as:

 () () ()

 ()

 −

 −

Where () are the standard deviations of the two Gaussian functions.

The value of the band pass maximum frequency response should be chosen to give the

best compromise between intra-class distortion tolerance and interclass discrimination of the

http://en.wikipedia.org/wiki/Convolution

12

resulting filter. The low frequencies must be reduced to enhance the discrimination ability of

the filter. The higher frequencies must be reduced enough to give adequate target distortion

tolerance. The best performance of the DOG filter occurs at its closest approximation to the

Mexican hat wavelet when the ratio of 1 to 2 is 1.6 [23].

Figure 3.1: Mesh plot for Difference of Gaussian wavelet with contour

0

20

40

60

0

50

100
-0.3

-0.2

-0.1

0

0.1

13

Figure 3.2: Contour plot for Difference of Gaussian wavelet

10 20 30 40 50 60

10

20

30

40

50

60

70

80

90

100

14

 Chapter 4

DIGITAL SYSTEM DESIGN WITH FPGAS

FPGAs (Field Programmable Gate Arrays) are now widely used components that can

contain very complex systems on a single chip, and in this way enable the user to obtain a

very short time-to-market. FPGAs find applications in a wide range of areas including digital

signal processing, image processing, aerospace and defense systems, software‐defined radio,

medical imaging, ASIC prototyping, pattern recognition systems, computer vision,

bioinformatics, cryptography and radio astronomy.

Due to the technological advancements, FPGAs are now capable to implement more

complex logic and arithmetic functions. This has drawn the attention of Digital Signal

Processing (DSP) designers. And the FPGAs are being widely used for DSP applications.

With the FPGAs, having digital signal processing capabilities, designers can now easily

offload computationally intensive digital signal processing functions from the processor [24].

This chapter gives an introduction to the digital system design and describes the

design of FPGA based hardware systems. A brief explanation of the fixed point arithmetic is

given in this chapter. The use of FPGA available resources (for instance dedicated

multipliers) is also described.

15

4.1. Components of Digital System Design Process

Three main components of the digital design process are Design, Implementation and

Verification.[25]

4.1.1. Design

‘Design’ is the most important part in a digital system design process. A top level

design of the system is partitioned into its components. Each of the components is then

defined at the register transfer level (RTL). This is a level of abstraction where the digital

designer specifies all the registers used in the system and give details of how data flows

among these registers. The combinational logic between any two sets of registers is usually

described using high level mathematical operations, which is drawn as a cloud.

4.1.2. Implementation

When the system components have been described at RTL level, the implementation

of system is then a straightforward translation into an HDL program. HDL based designs are

easier to debug than the schematics. Modern designs are programmed using hardware

description languages like Verilog or VHDL, because it takes significantly less time to write

an HDL code and synthesize a gate level realization of a large circuit. The saved time can be

put to the other parts of the design process. The HDL program is then synthesized to map the

system on an FPGA or ASIC implementation. Synthesis tools create an optimized internal

representation of the system before mapping it to the target technology.

16

4.1.3. Verification

As the number of gates on silicon chips is increasing, so do the challenges of

verification. Verification is a critical part in VLSI design as there is hardly any tolerance for

bugs in the hardware. With the application specific integrated circuits, a bug may require a re-

spin of fabrication, which is expensive, so it is important for an ASIC to be ‘right first time’.

Even bugs found in FPGA based designs result in extended design cycles.

4.2. Design objectives of a Digital System

To achieve an effective design, a designer is needed to explore the design space for

tradeoffs of competing design objectives. The following are some of the most critical design

objectives the designers are needed to consider: [25]

 Area

 Critical path delays

 Testability

 Power dissipation.

The art of digital design is to find the optimal tradeoff among these objectives. These

objectives are competing because, for example, if the designer tries to minimize area then the

design may result in longer critical paths and may also affect the testability of the design.

Similarly, if the design as synthesized for better timing means shorter critical paths, the design

may result in a larger area. Better timing also means more power dissipation, which depends

directly on the clock frequency.

17

4.3. Logic Synthesis

System is designed using a synthesis tool. A synthesis tool is a compiler that can

translate the Verilog code into a gate level description of the system. Only a subset of Verilog

constructs is synthesizable. The synthesizable part of Verilog is called ‘RTL Verilog’. All the

other constructs are ‘non RTL Verilog’. These constructs are helpful in verification, testing,

and simulation. It is imperative for the designer to know at the register transfer level what is

being coded in the design. The RTL indicates the placement of registers in the design and the

flow of data among these registers. The complete Verilog is a combination of RTL and non

RTL constructs. A good hardware designer must have sound understanding of these

differences and comprehensive command of RTL Verilog constructs. The programmer must

also have a comprehension of the design to be coded in RTL Verilog.

The code written in RTL Verilog is synthesized for gate level implementation. The

synthesis process takes the RTL Verilog and translates it into an optimized gate level net list.

For logic synthesis the user specifies design constraints and the target technology in the form

of a standard cell library. The library has standard basic logic gates such as AND and OR, or

macro cells like adders, multipliers, flip flops, multiplexers and so on. The tool completely

converts the design described in RTL hardware description language into a design that

contains standard cells.

To optimally map the high level description into real HW, several steps are performed

by the synthesis tool. In a typical flow of synthesis, RTL description is first converted into a

non-optimized Boolean logic. Then several transformations are applied to optimize the logic

18

subject to user constraints. This optimization is independent of the target technology. Finally,

the tool maps the optimized logic to the technology specific standard cells.

4.4. Design Partitioning

The partitioning of a digital design into a number of modules is important. A module

should be neither too small nor too large. Where possible, the design should be partitioned in

such a way that module boundaries are residing at the register outputs. This will make it easier

to synthesize the top level module or hierarchical synthesis at any level with timing

constraints. The designer should also make sure that no combination cloud is present at the

module boundaries. This gives the synthesis tool more leverage to generate optimized logic.

4.5. System Level Design Flow

Algorithm development is one of the most important steps in system design.

Algorithms are developed using tools such as MATLAB, Simulink or C/C++/C#, or in any

high level language. Functionally meeting R&S is a major consideration when the designer

selects an algorithm out of several options. For example, in pattern matching the designer

makes an intelligent choice out of many techniques including ‘chamfer distance transform’,

‘artificial neural network’ and ‘correlation based matching’. [25]

The developer must keep in mind the ultimate implementation of the algorithm on an

embedded platform consisting of ASICs, FPGAs and DSPs. To ease design partitioning on a

19

hybrid embedded platform, it is important for a system designer to define all the components

of the design, clearly specifying the data flow among them. A component should implement a

complete entity with defined functionality in the design. It is quite pertinent for the system

designer to clearly define inputs and outputs and internal variables. The program flow should

be defined as it will happen in the actual system. For example, with hard real time signal

processing systems, the data is processed on a block by block basis. In this form, a buffer of

input data is acquired and is passed to the first component in the system. The component

processes this buffer of data and passes the output to the component next in execution order.

Alternatively, in many applications, especially in communication receiver design, the

processing is done on a sample by sample basis. In these types of application the algorithmic

implementation should process data sample by sample. Adhering to these guidelines will ease

the task of HW/SW partitioning, co design and co-verification. The design is sequentially

mapped from high level behavioral design to embedded system partitioning in HW mapped

on ASICs or FPGAs and SW running on embedded DSPs or microcontrollers. It is important

for the designers in the subsequent phases in the design cycle to stick to the same components

and variable names as far as possible. This greatly facilitates going back and forth in the

design cycle while the designer is making refinements and verifying its functionality and

performance.

4.6. Fixed-point versus Floating-point Hardware

A digital signal processing algorithm can be implemented using fixed or floating point

format. In floating point format, a numbers is stored in terms of mantissa and exponent.

20

Hardware that supports the floating point format, after executing each computation,

automatically scales the mantissa and updates the exponent to make the result fit in the

required number of bits in a defined way. Because of these operations floating point HW are

more expensive in terms of area and power than fixed point HW. [25]

After executing a computation, the fixed point hardware does not specify the position

of the decimal point and this responsibility is left to the programmer. The decimal point is

fixed for each variable and it is predefined. By fixing the point, a variable can take only a

fixed range of values. As the variable is bounded, if the result of a calculation falls outside of

this range the data is lost or corrupted. This is known as overflow. There are various solutions

for handling overflows in fixed point arithmetic. Handling overflows requires saturating the

result to its maximum positive or minimum negative value that can be assigned to a variable

defined in fixed point format. This results in reduced accuracy or performance. The

programmer can fix the places of decimal points for all variables such that the arrangement

prevents any overflows. This requires the designer to perform testing with all the possible data

and observe the ranges of values all variables take in the simulation. Knowing the ranges of

all the variables in the algorithm, programmer can determine the decimal point that avoids

overflow very trivially.

The implementation of a signal processing and communication algorithm on a fixed

point processor is a straight forward task. Owing to their low power consumption and relative

cheapness, fixed point DSPs are very common in many embedded applications. Whereas

floating point processors normally use 32 bit floating point format, 16 bit format is normally

used for fixed point implementation. This results in fixed point designs using less memory.

On chip memory tends to occupy the most silicon area, so this directly results in reduction in

21

the cost of the system. Fixed point designs are widely used in multimedia and

telecommunication solutions.

4.7. Qn.m Format for Fixed-point Arithmetic

Most signal processing applications are first implemented in double precision floating

point arithmetic. An example of the tools being used is MATLAB. While implementing these

algorithms, the main focus of the developer is to correctly integrate the functionality of the

algorithm. This MATLAB code is then converted into floating point C/C++ code. C++ code

usually runs much faster than MATLAB routines. This code conversion also gives more

understanding of the algorithm as the designer might have used several functions from

MATLAB toolboxes. Their understanding is critical for porting these algorithms in SW or

HW for embedded devices. After getting the desired performance from the floating point

algorithm, this implementation is converted to fixed point format. For this the floating point

variables and constants in the simulation are converted to Qn.m fixed point format. Qn.m has a

fixed position for decimal point.

-2
1
 2

0
 . 2

-1
 2

-2
 2

-3
 2

-4
 2

-5
 2

-6
 Sign bit

Integer bit Fraction bits

Figure 4.1: Fields of bits and their equivalent weights for the text example

22

A two’s complement fixed point number in Qn.m format with equivalent floating point

value:

-bn-1.2
n-1

 + bn-2.2
n-2

 + . . . + b1.2
1
 + b0 + b-12

-1
 + b-2.2

-2
 + . . . b-m.2

-m
 (1)

4.7.1. Qn.m format Addition

Addition of fixed point numbers a and b of formats Qn1.m1 and Qn2.m2, respectively,

results in a Qn.m format number, where n is the larger of n1 and n2 and m is the larger of m1

and m2. Although the decimal is implied and does not exist in HW, the designer needs to

align the location of the implied decimal of both numbers and then appropriately sign extend

the number that has the least number of integer bits. As the fractional bits are stored in least

significant bits, no extension of the fractional part is required. The example below illustrates

Q format addition. Example: Add two signed numbers a and b in Q2.2 and Q4.4 formats. In

Q2.2 format a is 1110, and in Q4.4 format b is 0111_0110. As n1 is less than n2, the sign bit of

a is extended to change its format from Q2.2 to Q4.2 (Figure 4.2).

Qn1.m1 1 1 1 1 1 0 = Q4.2 = -8+4+2+1+0.5+0 = -0.5

Qn2.m2 0 1 1 1 0 1 1 0 = Q4.4 = 1+2+4+0.25+0.125 = 7.375

Qn.m 0 1 1 0 1 1 1 0 = Q4.4 = 2+4+0.5+0.25+0.125 = 6.875

Figure 4.2: Example of addition in Q format

23

4.7.2. Qn.m format Multiplication

If two numbers a and b in, respectively, Qn1.m1 and Qn2.m2 formats are multiplied, the

multiplication results in a product in Q(n1 + n2)(m1 + m2) format. If the numbers are two’s

complement signed numbers, we get a redundant sign bit at the MSB position. This redundant

bit could be removed by left shifting the product by 1, and the format of the product is

changed to Q(n1 + n2 - 1).(m1 + m2 - 1).

4.8. Xilinx IP Cores

Xilinx Intellectual Property (IP) cores are the building blocks of designs targeted for

Xilinx Design Platforms. A large number of IP cores are available to address the needs of the

designers. Use of Xilinx IP cores save precious design time and resources that is normally

spent on designing important functions, instead of focusing on the aspects of the design that

differentiates the design from the competition. [26]

4.8.1. FPGA Block Memory

The Xilinx IP Block Memory Generator core is an advanced memory constructor that

can generate performance and area optimized memories using embedded block RAMs

available with the Xilinx FPGAs. Users can easily create optimized memories through the

core generator tool to get the advantage of available memory resources in FPGAs.

24

The Block Memory Generator core is used to create customized memories to suit any

application. Typical applications include:

 Single-port RAM: Processor scratch RAM, look-up tables

 Simple Dual-port RAM: Content addressable memories, FIFOs

 True Dual-port RAM: Multi-processor storage

 Single-port ROM: Program code storage, initialization ROM

 Dual-port ROM: Single ROM shared between two processors/systems

True Dual-Port RAM

DinA

addrA

weA

enA

rstA

reg_ceA

clkA

DinB

addrB

weB

enB

rstB

reg_ceB

clkB

DoutA

DoutB

Figure 4.3: True dual port RAM

25

4.8.2. Multiplier IP Core

Multiplication is an essential operation in DSP Applications. Main design challenge

for hardware engineers is to achieve maximum cock performance and implementation

efficiency. Xilinx multiplier IP core abstracts away the device specifics of FPGAs and in this

way simplify the design challenge for the designers, while maintains the required resource

efficiency and the system performance. The multiplier core can generate parallel multipliers,

as well as constant coefficient multipliers. Furthermore, it is possible for the designer to select

the optimal solution with the help of resource estimation available with the core generator.

Multiplier IP core provides the designer an option to choose between purely combinational

and fully pipelined system for multiplication. Finally, fully pipelined multiplier provides

maximum clock frequency of up to 450 MHz and uses DSP48 components. Available input

data widths are 2 to 64 bits and could be used with Xilinx System Generator and Xilinx Core

Generator.

Multiplier IP Core

A

B

ce

sclr

clk

P

Figure 4.4: Multiplier IP core schematic symbol

26

Signal Direction Description

A[N-1:0] Input A operand input bus, N bits wide

B[M-1:0] Input B operand input bus, M bits wide (parallel multipliers only)

clk Input Rising-edge clock input

ce Input Active high Clock Enable

sclr Input Active high Synchronous Clear (sclr/ce priority is configurable)

P[X:Y] Output Product Output – bit X down to bit Y

Table 4.1: Multiplier IP core Signal Pinout

4.8.3. Divider IP Core

Division is the most complex of the four basic arithmetic operations. Available

hardware solutions for division are very large and complex. The best solution is to minimize

the number of divisions required for the algorithm.

Divider IP core supports two implementations for division:

 Radix-2: this is used for operand widths up to 16 bits.

 High Radix: used for operand widths greater than 16 bits. This

implementation uses DSP slices and it is unavailable for the devices which do

not have DSP slices.

Figure 4.5 shows the schematic symbol for high radix division.

27

Divider IP Core

Dividend

Divisor

ce

sclr

clk

Fractional

nd

Quotient

rfd

Divide_by_Zero

rdy

Figure 4.5: Schematic Symbol for Divider IP Core

Signal Direction Description

Dividend[M-1:0] Input Dividend input bus, M bits wide

Divisor[M-1:0] Input Divisor input bus, M bits wide

clk Input Rising-edge clock input

ce Input Active high Clock Enable

nd Input Signals the core that new data is present at the input

sclr Input Active high Synchronous Clear

Quotient[M-1:0] Output Signed integer part of the Quotient, M bits wide

Fractional[F-1:0] Output Unsigned fractional part of the quotient, F bits wide

Divide_by_Zero Output Detection of division by zero

rfd Output Signals that core is ready for new data

rdy Output Signals that a result is available at the output

Table 4.2: Divider IP Core Signal Pinout

28

4.8.4. Fast Fourier Transform IP Core

The Xilinx Fast Fourier Transform (FFT) IP core uses the Cooley-Tukey Fourier

Transform algorithm, which is a computationally very efficient algorithm for the calculation

of Discrete Fourier Transform (DFT).

FFT IP Core

XN_RE

XN_IM

ce

sclr

clk

XK_IM

XK_RE

busy

rfd

dv

start

fwd_inv

fwd_inv_we

XK_index

XN_index

done

Figure 4.6: FFT IP Core schematic symbol

BUSY signal goes high while the core is busy with the calculation of transform. DONE

is High when core has completed transform calculation.

29

Direction Description

XN_RE Input Input data bus: Real Component

XN_IM Input Input data bus: Imaginary Component

XK_RE Output Output data bus: Real Component

XK_IM Output Output data bus: Imaginary Component

XN_index Output Index of input data

XK_index Output Index of output data

clk Input Rising-edge clock input

ce Input Active high Clock Enable

sclr Input Master Synchronous Reset

start Input It is asserted to begin the data loading and transform calculation

fwd_inv Input It indicates if a forward FFT or an inverse FFT is performed.

when fwd_inv = 1, a forward transform is computed. If fwd_inv

= 0, an inverse transform is computed.

fwd_inv_we Input
Write enable for fwd_inv (Active High).

done Output
FFT complete strobe (Active High): DONE transitions High for

one clock cycle when the transform calculation has completed.

dv Output This signal is High when the valid data is presented at the output.

rfd Output Signals that core is ready for new data. rfd is High during the

load operation.

busy Output Core activity indicator (Active High): This signal goes High

while the core is computing the transform.

Table 4.3: FFT IP Core Signal Pinout

30

 Chapter 5

HARDWARE DESIGN FOR SDF FILTER

This chapter describes the hardware design for Out of Plane Invariant Synthetic

Discriminant Function Bandpass Difference of Gaussian Composite Filter. Hardware of

the filter is explained using the RTL schematic diagrams for each part of the filter. Aim was

to design a hardware which is fast and cheap. Hardware is parallelized where possible to

make it fast and resources are reused to make it cost effective.

5.1. Design Stages

Literature survey was carried out for the SDF filter and a system model was designed

using MATLAB as well as in System Verilog to identify the required building blocks for

hardware design of the system and the system specifications. RTL model of the system was

written using Verilog and the system simulation was carried out in ModelSim to check the

result of each component of the system. System sub blocks were integrated into a top level

module. A test-bench for the top level module was created to check the functionality of the

system and the results of simulation were compared with the MATLAB results. Figure 5.1

shows the flow chart for the design methodology used.

31

START

Literature Survey

MATLAB Simulation

Identicfication of System

Building blocks

Hardware Design

RTL Code

RTL Simulation

Results compared with

MATLAB results

Synthesis & Timing

Analysis

END

Figure 5.1: Design Stages

32

Figure 5.2 is the block diagram for the out of plane invariant bandpass Difference of

Gaussian SDF filter. Each part will be explained separately in the following sections.

Create SDF
Read

Training Data

Training Data SDF Image

Correlator

Difference of

Gaussian
(Sigma1, Sigma2)

fDoG

Test Image

Correlation

Intensity

SDF Filter

Figure 5.2: Structure of Bandpass DoG SDF Filter

Training images are taken using the installed camera or stored images are used to train

SDF. BRAM is configured for the new training data. CreateSDF module reads training data

from BRAM and creates the SDF image. Next the test image is read and Difference of

Gaussians calculations are performed. Correlator calculates the correlation between test image

and the Difference of Gaussians output and this output is correlated with the SDF image.

Output of the Correlator is written to a text file and sent to MATLAB to plot the correlation

intensity. Flow chart of the algorithm is shown in figure 5.3.

33

IDLE

Accept new test image

New Training Data

Take images using camera or

use stored images

RAM Configuration by

software

Train SDF

Correlation

Write results and plot in

MATLAB

Differnce of Gaussians

calculations

YesNo

Figure 5.3: Flow chart for the Algorithm

34

5.2. Memory for training Data

We used Xilinx Block RAM for the training data. BRAM is initialized using COE file

that was created using MATLAB. Input to this MATLAB function is the path to the directory

containing the training images and output is the COE file that contains the training data.

function [out_file, out_directory] = create_TrainingData_coe(directory)

out_file = 'TrainingData.coe';

out_directory = directory;

initialDirectory = cd;

cd(directory);

imageNames = dir('*.bmp');

[N, dummy] = size(imageNames);

img = imread(imageNames(1).name);

H = size(img, 1);

W = size(img, 2);

height = H * N;

width = W;

s = fopen(out_file,'wb'); %opens the output file

fprintf(s,'%s\n','; VGA Memory Map ');

fprintf(s,'%s\n','; .COE file with hex coefficients ');

fprintf(s,'; Height: %d, Width: %d\n\n', height, width);

fprintf(s,'%s\n','memory_initialization_radix=16;');

fprintf(s,'%s\n','memory_initialization_vector=');

cf = 0;

for i = 1:N

 cnt = 0;

 im = imread(imageNames(i).name);

 for r=1:H

 for c=1:W

 cnt = cnt + 1;

 cf = cf + 1;

 Outbyte = dec2bin(im(r,c),8);

 if (Outbyte(1:4) == '0000')

 fprintf(s,'0%X',bin2dec(Outbyte));

 else

 fprintf(s,'%X',bin2dec(Outbyte));

 end

 if ((i == N) && (c == W) && (r == H))

 fprintf(s,'%c',';');

 else

 if (mod(cnt,32) == 0)

 fprintf(s,'%c\n',',');

 else

 fprintf(s,'%c',',');

 end

 end

 end

 end

end

fclose(s); cd(initialDirectory);

35

Figure 5.4: Memory Organization for Training data

36

Figure 5.4 shows how training data is organized in memory. ‘N’ is the number of the

training images used, ‘U’ is the number of rows and ‘V’ is the number of columns of an

image.

5.3. Create SDF Image

Figure 5.5 shows the steps to create an SDF image.

Create Correlation

Matrix ‘R’

R = ∑ ∑ ti(x , y) tj(x , y)

(i,j = 1.2,…,N)

Matrix Inverse

R_inv = Mat_inv(R)

Initialize Correlation

Vector ‘c’

a = R_inv * c

(Multiplication)

Create SDF Composite

Image ‘h’

h(x , y) = ∑ ai ti(x , y)

(i = 1.2,…,N)

R R_inv

c

a

Training Data

Training Data

SDF Image

Create SDF

Figure 5.5: CreateSDF Block Diagram

The SDF image is synthesized using weighted linear combination of distorted training

or reference images. A composite image is created, hence giving the name as Composite

filter.

37

 () ∑),(yxta ii

 (1)

let h(x,y) denotes a composite image and training image is denoted by ti(x,y) , where

i=1, 2, 3, …, N and N is the number of training images used. Training images are used to

create Correlation matrix R, then inverse of this matrix is calculated which is used to find the

coefficients vector a. [22]

We represent the image data using a vector x of size d × 1, where d is the number of

pixels in the image. This 1-dimensional image data can be obtained by lexicographic ordering

of the image rows (just as we placed the images in the BRAM memory).

In equation (1) coefficients ai are chosen to satisfy the following constraints [22].

 (2)

where T denotes the transpose and cj is a desired cross correlation output peak value.

In vector form, we define the training image data matrix X as

 (3)

where the size of matrix X is d × N. Then the SDF is the solution to the following

optimization problem, [22]

 (4)

The optimal solution is:

 ()− (5)

38

Once h is determined, we apply an appropriate threshold to the output of the cross

correlation, which is the inner product of the test input image and the filter h and decide on

the class of the test image. From equation (5), correlation matrix R is given by

 () (6)

Correlation matrix is of size N*N. Elements of Correlation matrix corresponds to the

all possible combinations of training images. Each training image is correlated with every

other image in the training set and the results are stored as the elements of correlation matrix.

and from equations (1) and (5), coefficients vector a is,

 − ∗ (7)

Now the hardware for each part of module Create_SDF will be explained.

5.3.1. Create Correlation Matrix

Two registers cnt_n1 and cnt_n2 hold the values which correspond to the image

numbers which are being correlated. For example, if image 1 and image 2 are to be correlated,

then cnt_n1 and cnt_n2 contain values 0 and 1 respectively.

BRAM is configured as dual port ROM so that we could read pixels of both the

images being correlated in parallel.

39

Dual Port RAM

addra(16:0)

 addrb(16:0)

clka

clkb

ena

doutb

enb

douta

Figure 5.6: dual port RAM

Indexes to the memory locations to be read are:

 (∗)

 (∗)

Here, d is the total number of pixels of an image and mem_addr is the output from a

counter which is updated when pixels have been read and it is cleared when it reaches the

value equal to the number of pixels of an image to restart counting the number of pixels for

the next two images.

After reading pixel values from memory, they are multiplied and the result of

multiplication is sent to accumulator. When mem_addr reaches the value equal to the number

of pixels in an image, the output of the accumulator is sent to the port (R_out) and a flag

(done_Rout) is set high. This flag tells the calling module that the result could now be written

to the correlation matrix at the location specified by cnt_n1 and cnt_n2. All the functionality

is controlled using an FSM based control unit.

Figure 5.7 shows architecture for the hardware that creates correlation matrix R.

40

C
on

tr
ol

le
r

cl
k

re
se

t

ce

cn
t_

n1

cn
t_

n2

m
em

_a
dd

r

co
un

te
r

co
un

te
r

co
un

te
r

co
un

te
r

co
un

te
r

co
un

te
r

m
ul

1
m

ul
1

m
ul

2
m

ul
2

ad
de

r1
ad

de
r1

ad
de

r2
ad

de
r2

N N

M
em

or
y

(T
ra

in
in

g
D

at
a)

M
em

or
y

(T
ra

in
in

g
D

at
a)

ad
dr

a

ad
dr

b

m
ul

_3
m

ul
_3

A
cc

um
ul

at
or

A
cc

um
ul

at
or

R
eg

R
eg

cn
t_

en
1

cn
t_

en
2

cn
t_

en
3

R
_o

ut

Figure 5.7: Hardware architecture for Correlation matrix creation

5
1
5

5
1
5

5
1

 8

 5
1

 8

5
1
2
6

41

5.3.2. Matrix Inverse

The most computationally expensive operation in the design of SDF filter is the

Matrix Inverse. Correlation matrix R is inverted, and the inverted matrix is multiplied with

the correlation vector c to find the coefficient vector a. Matrix inversion includes the

expensive division operations. It is highly required to reduce the number of divisions to

improve performance and to reduce the resource usage as well. We used Xilinx ip core

dividers in which DSP slices are used to improve the performance.

Some methods to perform matrix inversion in hardware are: Faddeev’s algorithm

[27][28][29], iterative methods[30], Given’s rotations [31], and Gauss-Jordan elimination

method. We are interested in a design using reconfigurable hardware with good performance

and low cost, so we used Gauss Jordan elimination algorithm for matrix inversion. One

important advantage of Gauss Jordan elimination method is that it requires only three

different arithmetic operations, addition/subtraction, multiplication and division. All other

algorithms involve more complex operations as well. For instance, the QRD Gram-Schmidt

ortho-normalization method uses square root also, whereas the QRD Givens-Rotations uses

sine and cosine operations [32].

The computational complexity of matrix inversion is an open question, popular sub-

cubic software solutions such as the O(n
2.807

) Strassen and the O(n
2.376

) Coppersmith-

Winograd based approaches, applied to invert n × n matrices, are of high theoretical interest,

but not used in practice because the speed-up is only visible for very large matrices.

Algorithmically simple methods such as Gauss-Jordan (GJ) elimination, although of higher

42

complexity O(n
3
), are very important for developing practical architectural

implementations.[32].

We designed a parameterizable hardware solution for the matrix inversion based on

the GJ elimination algorithm, where the user can define the matrix-range. The system allows a

matrix range up to 32. This range could easily be increased depending upon the user

requirement. We achieved a small area hardware system for matrix inversion while

maintaining the precision and performance aspects. We chose Q26.24 fixed point format for

input to the matrix inversion system and Q18.32 format for the output of the system. MATLAB

results were used to develop the system’s precision study.

Gauss Jordan elimination method is used to invert a square matrix. This method is

similar to Gaussian Elimination method but it does the elimination process above as well as

below the diagonal on left hand side. In Gaussian elimination method matrix is converted to

Row echelon form in which matrix contains zeros only below the diagonal. Going one step

further by placing zeros above the diagonal converts the matrix to row reduced echelon form

which is done in Gauss Jordan elimination method. Gauss Jordan method applies Gaussian

elimination above and below the augmented matrix, where n is the size of the matrix.

In Gauss Jordan method, each row of the augmented matrix is divided by the diagonal

element of that row, this requires 2n divisions for each row. But as the divisor remains the

same for an entire row, we performed only one division to get reciprocal of the divisor and

multiplied all the elements of the row with that reciprocal. In this way, number of divisions

greatly reduced and hence performance improved in terms of speed and area.

Figure 5.8 shows the schematic symbol for the Matrix Inversion system.

43

Figure 5.8: Schematic Symbol for Matrix Inversion system

System accepts the input in n*n-1 clock cycles via the port r_in. Ports c_in_row and

c_in_col specify the row and column number of the input matrix. Ports c_out_row and

c_out_col specify the row and column number of the output matrix. done signal tells the

calling module that the matrix inversion has been performed, and the valid outputs are present

at the port r_out. fininshed signals that the system has done its work.

Flow chart in figure 5.9 shows that how matrix inversion is performed using Gauss

Jordan elimination method. This chart also explains the structure of the control unit used in

matrix inversion hardware.

44

START

END

Initialize augmented matrix ‘m’

m(c_in_row, c_in_col) = r_in

cnt_input = n*n -1

Pivot element reciprocal

X = 1/m(c, c)

(‘c’ is the pivot index)

Matrix elimination

m(i, j) = m(i, j) - m(i, c)*m(c, j)

{i = 1, 2, . . . , n-1, i != c

j = 0, 1, 2, . . . , 2*n-1}

Pivot row multiplication with X

Increment pivot index

c = c + 1

r_out = m(c_out_row, c_out_col)

cnt_out = n*n-1

c = n

yesno

yesno

yesno

Figure 5.9: Matrix Inversion Flow chart

45

m is the memory used for augmented matrix of size At the start, m is

initialized by placing the matrix at the left side and the identity matrix of size on the

right side of memory m.

When enable_in is high, system starts taking input from the calling module. In our

case, correlation matrix R is the input to the matrix inversion module. enable_in remains high

till the system has received the complete matrix.

Figure 5.10: memory initialization for matrix inversion

if (ce)

begin

if (enable_in)

m[c_in_row][c_in_col] <= R_in

end

for (i=0; i<n; i=i+1)

for (j=0; j<n; j=j+1)

if(i==j)

m[i][j+n] <= {26'd1,32'd0}; // Q26.32 format

46

Controllerclk

reset

ce

cnt_p

cnt_in

cnt_out

countercounter

countercounter

countercounter

Memory
(Augmented

Matrix)

Memory
(Augmented

Matrix)

RegReg

cnt_en1

cnt_en2

cnt_en3

Rinv_out

done

finished

{R_in, 8'd0}

SubtractorSubtractor
Memory

r (Nx1)

Memory

r (Nx1)

MultiplierMultiplier

DividerDivider

1

MUX

sel

DeMux

MUX

sel

Figure 5.11: Matrix Inversion Hardware

5.3.3. Coefficients vector ‘a’

Coefficient vector a is given by the following equation.

 − ∗

R is the correlation matrix, R
-1

 is the output from matrix inverter and c is the

correlation vector. Hardware for the computation of a is shown in figure 5.12.

5

58

58

50

58

58

58

1

47

row_addr

R_inv

(NxN)

Multiplier Accumulator
a

(Nx1)

c

(Nx1)

counter

counter col_addr

Figure 5.12: Hardware for computation of coefficients vector a

5.3.4. SDF Image ‘h’

SDF image is the weighted sum of training images

 () ∑

 ()

Each training image is multiplied with the corresponding coefficient in a. For a given

count, coefficient from a is read and also the pixel value is read from the location indexed at:

 (∗)

Here, d is the total number of pixels of an image and mem_addr_im is the counter

which is updated when pixel value has been read. Coefficient and pixel values are multiplied

48

and result is accumulated to SDF_out and count is updated. When count reaches N (number of

training images), SDF_out is sent to the output (calling module).

mem_addr_im is updated and the above steps are repeated for the next pixel values.

And this continues until mem_addr_im reaches d (number of pixels of training images).

cnt_n

mem_addr

countercounter

countercounter

mul1mul1

adderadder

N

Memory

(Training Data)

Memory

(Training Data)

addr

mul2mul2

AccumulatorAccumulator

RegReg

cnt_en1

cnt_en2

SDF_out

Coefficient

vector ‘a’

Coefficient

vector ‘a’

Figure 5.13:Part of CreateSDF module that generates SDF image

5.4. Difference of Gaussian

Difference of Gaussians is given by:

]
2

exp[
2

1
]

2
exp[

2

1
),(

2

2

22

2

2

2

1

22

2

1

yxyx
yxg

8

50

50

49

In module Diff_of_Gaussian, exponentials are computed and output to the module

DoG. Difference of Gaussian requires exponential function to be implemented in hardware

and also a function for the integer powers of ‘e’. Exponent for e i.e. (
22 yx / 22) for both

1 and 2 are calculated and these values are divided into integer and fractional parts.

Fractional power of e is computed using exponential function and integer power using Integer

power function.

5.4.1 Exponential Function

We implemented exponential function using its series expansion.

Input to the system is ‘x’, which is a fractional number in Q0.15 format. Output of the

system is . Hardware for exponential function is shown is figure 5.14. One multiplier is

used for calculation of numerators. Output of this multiplier is reused to save number of clock

cycles. A multiplexer is used for this purpose. Inputs to this 2 to 1 mux are power (x) and the

output from the multiplier.

Instead of calculating the factorial for each denominator, we are using reciprocals of

factorials as constants. These constants are hardwired instead of using storage space, which

were input to the multiplier through a multiplexer.

50

Controllerclk

reset

ce

count

countercounter

countercounter

RegReg

done

AccumulatorAccumulator

MultiplierMultiplier

MUX

sel

MUX

sel

1/fac_2

1/fac_3

1/fac_4

1/fac_5

1/fac_6

1/fac_7

1/fac_8

1/fac_9

sel

{25'd0, power}

MultiplierMultiplier{25'd0, power}

++

{25'd1, power}

exponential

Figure 5.14: Hardware architecture for for exponential function

5.4.2 Integer Power

This function is used for the calculation of integer powers of exponential ‘e’. Inputs to

the system are the numbers for which integer power is to be calculated and the power.

Number should be in Q25.15 format and power in Q25.0 format.

51

5.5. Correlator

Input test image is correlated with the Difference of Gaussian function and this result

is correlated with the SDF image which is output of the CreateSDF module. Correlations are

performed using Fast Fourier Transform. We are using Xilinx FFT IP Core for this purpose.

Figure 5.15 shows the structure of the Correlator.

Test Image

Difference of

Gaussian

SDF Image

Corr_Int

IFFT

FFT

FFT

Multiplier

conj(SDF))

Multiplier

abs (fDoG)

FFTshift and

Square

FFT

Figure 5.15: Correlator

52

Output of the Correlator i.e. Correlation Intensity is written to a text file and

MATLAB is used to plot it. MATLAB code is given here, which reads each line of text file,

converts the binary number into real number, and stores the numbers in a 2 dimensional

matrix. This 2D matrix is the correlation intensity for a given test image. We plot it to show

the correlation peaks.

Same code could be used to view the composite image i.e. SDF image in MATLAB.

We write the output of CreateSDF to a text file and use the above code to plot the image.

fid = fopen('Corr_Int_output.txt', 'r');

i = 1;

%%%%% convert from binary Q 25.25 format to real

while 1

tline = fgetl(fid);

if ~ischar(tline)

break

end

a(i) = 0;

l = 24;

for j=1:50

x = str2num(tline(j));

a(i) = a(i) + (x*(2^l));

l = l-1;

end

i = i+1;

end

fclose(fid);

%%%%%%%%%%%%%%%% save to a 2D matrix %%%%%%%%%%%%%%%%%%

z = 1;

for n=1:128

for m=1:128

CORRint(m,n) = a(z);

z = z + 1;

end

end

%%%%%%%%%%%%%%%%%%%%%%% Plot %%%%%%%%%%%%%%%%%%%%%%%%%%

figure

surf(real(CORRint), 'EdgeColor', [0 0 0.1], 'EdgeAlpha',

0.16, ...

'FaceColor', [0.5 0.5 0.7], 'AmbientStrength', 0.75, ...

'DiffuseStrength', 0.9, 'SpecularStrength', 0.3);

grid off,lighting gouraud ;

camlight headlight;

53

 Chapter 6

RESULTS

A database of car images was used to demonstrate the working of SDF design.

Database contains total of 72 images with each image differing 5
o
 from each other. Some of

the images are shown in figure 6.1.

Figure 6.1: Set of Reference Images

Composite image is constructed from the reference images using the weighted linear

combination technique which is shown in fig 6.2. This image is the output from the

CreateSDF module. Output of CreateSDF is written to a text file and plot is shown in

MATLAB.

54

Figure 6.2: Composite Image

6.1. Simulation Results

In this section the simulation results are presented and discussed. Composite image is

constructed by using the images of the car rotated at 0, 10, 15, 20, 25 and 30 degrees. We

introduce a number of test images without background noise which are out of plane rotated

for the detection of the car. All the simulation results are obtained using the standard

deviation ratio of 1.6. Correlation Intensity is the output of the Correlator module, which is

written to text file and the Correlation Intensity surfaces are shown in MATLAB. Correlation

Output Peak Intensities and Peak to Correlation Energies are also recorded for all the test

images. These results are compared with the results of MATLAB simulations and we have

found that the results are approximately equal with very less precision errors.

55

Correlation plane for zero degree rotated car is shown in figure 6.4.

Figure 6.3: 0 degree rotated test image

Figure 6.4: Correlation plane for 0 degree rotated image with COPI = 2.2978*10
-4

 and
PCE = 4.1160

56

Correlation plane for five degree rotated car is shown in figure 6.6.

Figure 6.5: 5 degree rotated test image

Figure 6.6: Correlation plane for 5 degree rotated image with COPI = 2.6905*10
-4

 and
PCE = 4.1943

57

Correlation plane for ten degree rotated car is shown in figure 6.8.

Figure 6.7: 10 degree rotated test image

Figure 6.8: Correlation plane for 10 degree rotated image with COPI = 2.8754*10
-4

 and

PCE = 5.0158

58

Correlation plane for fifteen degree rotated car is shown in figure 6.10.

Figure 6.9: 15 degree rotated test image

Figure 6.10: Correlation plane for 15 degree rotated image with COPI = 1.4793*10
-4

 and
PCE = 3.5682

59

Correlation plane for twenty degree rotated car is shown in figure 6.12.

Figure 6.11: 20 degree rotated test image

Figure 6.12: Correlation plane for 20 degree rotated image with COPI = 8.2764*10
-5

 and
PCE = 2.4561

60

Correlation plane for twenty five degree rotated car is shown in figure 6.14.

Figure 6.13: 25 degree rotated test image

Figure 6.14: Correlation plane for 25 degree rotated image with COPI = 4.8986*10
-5

 and

PCE = 1.5625

61

Correlation plane for thirty degree rotated car is shown in figure 6.16.

Figure 6.15: 30 degree rotated test image

Figure 6.16: Correlation plane for 30 degree rotated image with COPI = 8.0559*10
-5

 and
PCE = 2.6891

62

Correlation plane for thirty five degree rotated car is shown in figure 6.18.

Figure 6.17: 35 degree rotated test image

Figure 6.18: Correlation plane for 35 degree rotated image with COPI = 2.5620*10
-5

 and PCE =

0.9531

63

Correlation plane for 340 degree rotated car is shown in figure 6.20.

Figure 6.19: 340 degree rotated test image

Figure 6.20: Correlation plane for 340 degree rotated image with COPI = 2.2202*10
-5

 and

PCE = 0.8288

64

Correlation plane for 355 degree rotated car is shown in figure 6.21.

Figure 6.21: 355 degree rotated test image

Figure 6.22: Correlation plane for 355 degree rotated image with COPI = 8.8591*10
-5

 and

PCE = 2.2131

65

It can be seen from figures 6.4, 6.6, 6.8, 6.10, 6.12, 6.14 6.16, 6.18, 6.20 and 6.22 that the

COPI values are greater for the training images as compared to the testing data. For the test

data as the out of plane rotational angle increases, the peak height decreases. Since there is no

background noise, the correlation output plane shows minimal disruption. The correlation

peaks are localised due to the inclusion of the difference of Gaussian bandpass in the filter

design. The composite image accommodates the out-of-plane rotation of the car allowing

maintenance of the correlation peak height over the swathe of angles covered within the

composite image.

The filtering operation performed by the DOG filter can be controlled by the standard

deviations. The pass band of frequencies is altered by changing the standard deviation in the

DoG construction whilst keeping the ratio equal to 1.6. This in turn translates to different peak

widths in the correlation plane. 30 degree rotated car image is tested. We see that the peak is

sharpest for standard deviations 0.8 and 0.5. [19]

Figure 6.23: Correlation plane for 30 degree rotated car image with = 0.8, = 0.5, COPI =

8.0559*10
-5

, PCE = 2.6891

66

Figure 6.24: Correlation plane for 30 degree rotated car image with = 1.2, = 0.75, COPI =

2.8475*10
-4

 , PCE = 1.8643

Figure 6.25: Correlation plane for 30 degree rotated car image with = 1.6, = 1,
COPI = 5.1740*10

-4
, PCE = 1.2828

67

6.2. ModelSim Simulations

Figure 6.26: Create_Corr_Matrix Simulation

Figure 6.27: Matrix_Inverse Simulation

68

Figure 6.28: CreateSDF Simulation

Figure 6.29: Difference of Gaussian Simulation

69

6.3. Synthesis Results

Timing Summary:

 Speed Grade: -2

 Minimum period: 4.766ns (Maximum Frequency: 209.813MHz)

 Minimum input arrival time before clock: 2.205ns

 Maximum output required time after clock: 1.317ns

Device utilization:

Device Utilization Summary (estimated values)

Logic Utilization Used Available Utilization

Number of Slice Registers 50718 2443200 2%

Number of Slice LUTs 66371 1221600 5%

Number of fully used LUT-FF pairs 48658 78964 62%

Number of bonded IOBs 220 1200 18%

Number of Block RAM or FIFO 60 1292 5%

Number of BUFG or BUFGCTRLs 4 128 3%

Number of DSP48E1s 115 2160 5%

Table 6.1: Device Utilization

70

 Chapter 7

CONCLUSIONS AND FUTURE WORK

7.1. Conclusions

The design was first modeled using MATLAB to get the specifications and

requirements for the hardware system. The RTL code of the design was successfully

simulated in ModelSim. The working of the designed hardware is verified using ModelSim

simulations and compared with the model designed in MATLAB. Fixed point implementation

of the design was carried out by obtaining the floating-point values from MATLAB because

the fixed- point representation is more efficient.

The designed system was synthesized using Xilinx. The operating frequency of the

design is 209.813MHz and minimum period of 4.766ns on Xilinx FPGA. The top design

takes about 115 DSP slices out of 2160 slices on a Virtex 7 FPGA. The device selected is

xc7v2000t at speed grade of 2.

7.2. Future Work

To increase the speed of the system, parallelism and pipelining concepts can be

employed in the implementation of building blocks of SDF filter. The hardware design for

SDF filter provides a base for the design of other correlation filters. This work could be

71

extended to the hardware designs for the advanced correlation filters. Hardware design of log

polar mapping could be added to the current design for the in-plane rotation invariance.

72

REFERENCES

 [1] A. VanderLugt, “Signal detection by complex spatial filtering” IEEE Trans. Informatiom

Theory, no.10, pp.139-145,1964.

[2] B.V.K. Vijay Kumar, “Tutorial survey of composite filter design for optical correlation”

Applied Optics, vol. 31, pp. 4773-4801, 1992.

[3] B.V.K. Vijay Kumar, M. Savvides, C. Xie, K. Venkataramani, J. Thornton, and A.

Mahalanobis, “Biometric Verification with Correlation Filters,” Applied Optics, Vol 43, No.2,

pp. 391-402, 2004.

[4]United Nations Educational, Scientific, and Cultural Organization (UNESCO)

http://www.unesco.org/webworld/idams/advguide/Chapt9_2.htm : Visited April 09, 2011.

[5] Richard O.Duda, Peter E. Hart, David G. Stork, “Pattern Classification”, John Wiley &

Sons, 2nd Edition

[6] S. R. F. Sims and A. Mahalanobis. Performance evaluation of quadratic correlation filters

for target detection and discrimination in infrared imagery. Optical Engineering, 43:1705–

1711, 2004.

 [7] J. Thornton, M. Savvides, and B. V. K. Vijaya Kumar. A Bayesian approach to deformed

pattern matching of iris images. IEEE Trans. Pattern Anal. Machine Intell., 29(4):596–606,

2007.

[8] K. Venkataramani and B. V. K. Vijaya Kumar. Performance of composite correlation

filters for fingerprint verification. Opt. Eng., 43:1820–1827, 2004.

[9] B.V.K. Vijaya Kumar, “Minimum variance synthetic discriminant functions,”

J.Opt.Soc.Am.A, vol. 3, no. 10, pp. 1579–1584, 1986.

http://www.unesco.org/webworld/idams/advguide/Chapt9_2.htm

73

[10] A. Mahalanobis, B.V.K. Vijaya Kumar, and D. Casasent, “Minimum average correlation

energy filters,” Appl. Opt, vol. 26, no. 17, pp. 3633–3640, 1987.

[11] Joseph L. Horner and Peter D. Gianino, “Phase-only matched filtering”, Applied Optics,

Vol 23, No 6, (1984).

[12] Jeffery A. Davis, John J. Kane, and Don M. Cottrell, “Horner efficiency of phase-only

and binary phase-only filters”, 10 September 1993 / Vol. 32, No. 26 / APPLIED OPTICS,

5095-5099

[13] Ph. Refregier, “Optimal trade-off filters for noise robustness, sharpness of the correlation

peak, and Horner efficiency”, June 1, 1991 / Vol. 16, No. 11 / OPTICS LETTERS.

[14] A. A. S. Awwal, H. E. Michel, “Enhancing the Discrimination Capability of Phase Only

Filter”, Asian Journal of Physics, Vol. 8, pp. 381-384, (1999).

[15] H. J. Caulfield and W. Maloney, “Improved discrimination in optical character

recognition”, Applied Optics, Vol. 8, No. 11, pp. 2354-2356, (1969).

[16] C. F. Hester and D. Casasent, “Multivariant technique for multiclass pattern recognition”,

Applied Optics, Vol. 19, pp. 1758-1761, (1980).

[17] Z. Bahri and B. V. K. Kumar, “Generalized synthetic discriminant functions”, Journal of

Optical Society of America, Vol. 5, No. 4, pp. 562-571, (1988).

[18] B. Javidi and J. Wang, “Optimum distortion invariant filters for detecting a noisy

distorted target in background noise”, Journal of Optical Society of America, Vol. 12, 2604-

2614, (1984).

74

[19] Saad Rehman, Peter Bone, Rupert Young, Chris Chatwin, “Object Detection and

Recognition in Cluttered Scenes Using Fully Scale and In-Plane Invariant Synthetic

Discriminant Function Filters”, Journal of Computer and Information Sciences, Vol 1, No 1,

2007.

[20] Peter Bone, Rupert Young, Chris Chatwin, "Position, rotation, scale and orientation

invariant multiple object recognition from cluttered scenes", Optical Engineering, Volume 45,

pp. 077203-1 to 8, No. 7, 2006

[21] K. Raghunath Rao and Jezekiel Ben-Arie,, “Multiple Template Matching Using the

Expansion Filter”, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO

TECHNOLOGY, VOL. 4, NO. 5, OCTOBER 1994.

[22] Kyu-Hwa Jeong, Puskal P. Pokharel, Jian-Wu Xu, Seungju Han, Jose C. Principe,”

Kernel Based Synthetic Discriminant Function for Object Recognition”, ICASSP 2006.

[23] D. Marr, E. Hildreth, “Theory of edge detection”, Proc. R. Soc. Lon. B 20, pp.187-217,

(1980).

[24] Mariusz Rawski, Bogdan J. Falkowski, and Tadeusz Łuba “Digital Signal Processing

Designing for FPGA Architectures” ELEC. ENERG. vol. 20, no. 3, December 2007, 437-459

[25]. Digital Design of Signal Processing Systems: A Practical Approach, First Edition.

Shoab Ahmed Khan._ 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons,

Ltd.

[26] http://www.xilinx.com

http://www.xilinx.com/

75

[27] Hen-Geul Yeh, "Kalman filtering and systolic processors," Acoustics, Speech, and Signal

Processing, IEEE International Conference on ICASSP '86. , vol.11, no., pp. 2139-2142, Apr

1986

[28] Bigdeli, A., Biglari-Abhari, M., Salcic, Z., and Lai, Y. T. 2006. A new pipelined systolic

array-based architecture for matrix inversion in FPGAS with Kalman filter case study.

EURASIP J. Appl. Signal Process. 2006, 1 (Jan. 2006), 75-75. DOI=

http://dx.doi.org/10.1155/ASP/2006/89186

[29] Rao, P.; Bayoumi, M.A., "An efficient VLSI implementation of real-time Kalman filter,"

Circuits and Systems, 1990., IEEE International Symposium on , vol., no., pp.2353-2356

vol.3, 1-3 May 1990

[30] Bonato, Vanderlei; Marques, Eduardo; Constantinides, George A., "A Floating-Point

Extended Kalman Filter Implementation for Autonomous Mobile Robots," Field

Programmable Logic

[31] Baheti, R.S.; O'Hallaron, D.R.; Itzkowitz, H.R., "Mapping extended Kalman filters onto

linear arrays," Automatic Control, IEEE Transactions on , vol.35, no.12, pp.1310-1319, Dec

1990

[32] Janier Arias-Garc´ıa1; Ricardo Pezzuol Jacobi2; Carlos H. Llanos1; Mauricio Ayala-

Rinc´on21, A Suitable Fpga Implementation of Floating-Point Matrix Inversion based on

Gauss-Jordan Elimination 978-1-4244-8848-3/11 ©2011 IEEE

[33] B.V.K. Kumar and L. Hassebrook, “Performance measures for correlation filters”,

Applied Optics, Vol. 29, No. 20, pp. 2997-3006, (1990).

http://dx.doi.org/10.1155/ASP/2006/89186

