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ABSTRACT 

Open source projects for example eclipse and fire fox have open source bug repositories.  User 

reports bugs to these repositories. Users of these repositories are usually non-technical and cannot 

assign correct class to these bugs. Triaging of bugs to developer to fix them is a tedious and time 

consuming task. Developers are usually expert in some particular area. For example few 

developers are expert in GUI and others are in pure java functionality. Assigning a particular bug 

to relevant developer could save time as well as would help to maintain the interest level of 

developers by assigning those bugs according to their interest. However Assigning right bug to 

right developer is quite difficult for tri-ager without knowing the actual class a bug belongs to.  In 

this research, I have classified the bugs in different labels on the basis of summary of the bug. I 

have used multinomial Naïve Bayes text classifier for Classification purpose. For feature selection 

Chi-Square and TFIDF algorithms were used. Using Naïve Bayes and chi- square we get average 

of 83 % accuracy. 
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CHAPTER 1:   Introduction to Text Mining 

1.1  Introduction 

Data mining is the process of extracting useful information through data analysis. It is 

also known as knowledge discovery. Useful knowledge obtained as a result of data mining 

can be use to cuts costs, increase revenues or both. Target data for mining purpose is 

categorical and numerical having data types like integer, decimal, float, char, varchar2 etc.  

In case one wants to mine numerical or categorical data then what should be the 

technique? Some examples of data other than numerical or categorical are product 

specifications, emails, sound files, web documents, document libraries, digital images and 

power point presentations etc. How to perform mining if data is descriptive such as comment 

fields in reports, product descriptions or call centre notes? 

 Data mining techniques cannot be applied to data that is not numerical or categorical. 

85% of enterprise data falls in the category of non numerical or non categorical [2]. For the 

success of business, knowledge extraction from this unstructured data can be critical. 

Unstructured data is processed using text mining techniques so that it can be 

processed by data mining algorithms and techniques. Techniques from information 

extraction, information retrieval and natural language processing are used by text mining [2]. 

Text mining is not a separate field from data mining but an extension/specialization of it. The 

source of information in data mining is numeric or categorical data which is easy to use for 

knowledge extraction. But in text mining, data is in the form of documents/text which 

requires a lot of pre-processing to make it analyzable for knowledge extraction algorithms. 

1.2  Classification 

Classification is a function of data mining to assign classes/categories to items in a 

collection. Basic goal of classification is the accurate prediction of target class for each case 

in data. For example, loan applications can be classified into high, medium or low risks on 

the basis of classification model.  
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For classification a dataset is required in which classes are already known. For 

instance, classification model for credit risk prediction would require observed data for loan 

applications collected over a long time. Other attributes like employment history, number of 

investments, type of investments, home ownership, time of residence etc are also tracked 

along with historical credit rating. In this example all the attributes will be the predictors, the 

target would be the credit rating and each customer data would be the case.  

Classifications apply to discrete data. Order does not get implied in classification. 

Floating point, continuous values are numerical rather than categorical. Such models use 

regression algorithm rather than classification algorithms for prediction. 

Binary classification is simplest type of classification. In this classification there are 

only two target values. In loan risk example, for example there are only two target values: 

high credit rating and low credit rating. In multiclass classification there is more than one 

target value like unknown, high, medium or low credit rating. 

During training process (also known as model build process), classification algorithm 

finds the relationship between target values and predictors. Different techniques are used by 

different classification algorithms for finding relationship. The trained model is then applied 

to data set in which class assignments are unknown for classification purpose.  

During testing phase, results which are predicted by classification models are 

compared with known target values in data set. Classification data is typically divided into 

two sets for classification purpose: one for the training purpose (model building) and other 

for testing the model. 

1.3  Difference between classification and clustering 

Usually clustering and classification are considered as same, but actually they are 

different analytical approaches. In order to differentiate between the two consider some data 

having customer records, where customer‟s attribute is represented by each record. There can 

be number of identifiers included like demographic information, name, financial attributes 

like revenue spent and income, address, age and gender etc. Clustering techniques are used to 
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group together the related records. The grouping is done on the basis of records having 

similar attribute values. Clustering is often used as an exploratory process because for the 

analyst/end-user may not necessarily specify ahead of time how records should be related 

together. Basic objective of clustering is in fact to discover clusters and then examine the 

values and attributes that define segments or clusters. Such analysis can be used to drive 

promotion strategies and marketing to target specific types of customers.   

There are large number of clustering algorithms available, all of which work on the 

process of assigning records to a cluster, calculating similarity and/or distinctiveness 

measure, and records reassignment to clusters until measure get stable showing that a stable 

segment is obtained by converging the process. Clusters are created by placing similar 

records in a same cluster. These records are more similar to each other and more different 

from the records of other clusters. Different similarity measures are used for clustering e.g. 

statistical variability, spatial distance etc. Overall goal of all these approaches is to converge 

to groups of related records.  

Although classification is different technique than clustering but still there are some 

similarities between the two approaches. Like clustering, classification also segment records 

into distinct segments called classes. But unlike clustering, in classification analysis, how 

classes are defined is known ahead of time. For example, in customer loan applicants 

example discussed above the default classes would be (Yes/No). In classification training 

data is mandatory to build model. Training data have already defined classes (already 

classified). Classification is not as exploratory as clustering because each record has a value 

for the attribute used to define the classes. Main objective of classification is to decide how 

new records should be classified instead of explore the data to discover interesting segments 

[1]. 

1.4  Application Domains of Classification 

Classification has number of applications in drug and biomedical response modeling, 

business modeling, customer segmentation, credit analysis and marketing. In some of these 

applications it is used as a function of data mining while in others it‟s used as statistical 

modeling. Some of the common applications of classification are: 
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a. Drug discovery and development  

1. Quantitative structure-activity relationship 

2. Toxicogenomics 

b. Computer vision  

1. Optical character recognition 

2. Medical imaging and medical image analysis 

3. Video tracking 

c. Handwriting recognition 

d. Geostatistics 

e. Biometric identification 

f. Speech recognition 

g. Biological classification 

h. Document classification 

i. Statistical natural language processing 

j. Internet search engines 

k. Pattern recognition 

l. Credit scoring 

1.5  Classification Algorithms 

1.5.1 Decision Tree 

Decision trees are classification models in which leaves represent dataset 

partitions/classes while branches represent classification question. Some known 

algorithms of decision tree are ID3, C4.5, Cart. Figure 1.2 shows a decision tree for 

churn analysis of a telephonic company. 

 

http://en.wikipedia.org/wiki/Drug_discovery
http://en.wikipedia.org/wiki/Drug_development
http://en.wikipedia.org/wiki/Quantitative_structure-activity_relationship
http://en.wikipedia.org/wiki/Toxicogenomics
http://en.wikipedia.org/wiki/Computer_vision
http://en.wikipedia.org/wiki/Optical_character_recognition
http://en.wikipedia.org/wiki/Medical_imaging
http://en.wikipedia.org/wiki/Video_tracking
http://en.wikipedia.org/wiki/Handwriting_recognition
http://en.wikipedia.org/wiki/Geostatistics
http://en.wikipedia.org/wiki/Biometric
http://en.wikipedia.org/wiki/Speech_recognition
http://en.wikipedia.org/wiki/Biological_classification
http://en.wikipedia.org/wiki/Document_classification
http://en.wikipedia.org/wiki/Statistical_natural_language_processing
http://en.wikipedia.org/wiki/Search_engines
http://en.wikipedia.org/wiki/Pattern_recognition
http://en.wikipedia.org/wiki/Credit_scoring
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Figure 1.1 Decision tree for churn analysis of Cellular Telephony Network [30] 

1.5.2 Naive Bayes 

Naïve Bayes classifier is a probabilistic classification model based on Bayesian 

theorem with independent assumptions. “Independent feature model” would be the more 

descriptive form term for this model. 

Independent assumption means the presence or absence of a feature of a class is 

independent of presence or absence of another feature. For example, an apple has features 

like it is red, about 4” in diameter and round. Naïve bayes classifier marks all these 

features to be equally contributed to the probability that this fruit is an apple.  

1.5.3 Generalized Linear Models 

Generalized linear model is a generalized version of linear regression that generalizes the 

linear model by relating it to the response variable through some link function and by 

allowing the magnitude of the variance of each measurement to be a function of its 

predicted value. 
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1.5.4 Support Vector Machine 

Support vector machine (SVM) analyzes data to recognize patterns which are then 

use for regression analysis and classification. SVM is a supervised learning method that 

takes a set of input data and using this it predicts the possible class against each input. 

Standard SVM is a non-probabilistic binary linear classifier. Given training data, in 

which each record belong to one of the two categories, an SVM training algorithm builds 

a classification model that can categorize the new unclassified records into one of the two 

classes. 

SVM uses vector representation in which examples are mapped as points in space in 

such a way that examples belonging to separate categories are divided by a clear gap that 

is as wide as possible. Using the same space new examples are mapped and predicted to 

belong to one of the two categories. 

1.6  Classification- A two Step Process 

1.6.1  Model construction and training 

Classifier model is constructed in this step using training data and classification 

algorithm.  

 

Figure 1.2 Model construction and training [31] 
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1.6.2 Prediction through trained model 

Trained model is applied on data without labels. Labels/classes of data is predicted using the 

trained model. 

 

 

Figure 1.3 Prediction using trained model [31] 

1.7  Supervised vs. Unsupervised Classification 

Machine learning algorithms are divided into two categories: supervised and 

unsupervised. The difference is on the basis on how classification model classifies data. In 

supervised learning algorithms, classes are predefined. In other words certain segment of data 

will be labeled using such classification models. Machine learner‟s task is pattern searching 

and mathematical model construction. Accuracy of model is then measured by evaluating the 

prediction accuracy of model. Some examples of supervised learning algorithms are decision 

tree, Naïve Bayes etc. 

In unsupervised learning labels are not predefined. Basic task of unsupervised 

learning is automatic classification labels development. Classification is done on the basis of 
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similarity between records in such a way that they can be assigned in a group. These groups 

are knows as clusters.  

 Unsupervised learning is also known as cluster analysis. In cluster analysis prediction 

model is not told how texts/records are to be grouped. It‟s the task of clustering algorithm to  

arrive at some group/cluster. In some unsupervised algorithms (K-means e.g.), number of 

clusters to be created is told to machine in advanced.  
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Chapter 2:  Introduction to Mining Software Repositories 

2.1  Introduction 

To understand constantly evolving software systems is a very daunting task.  Software 

systems have history of how they come to be and this history is maintained in software 

repositories. Software repositories are the artifacts that document the evolution of software 

systems. Software repositories often contain data from years of development of a software 

project. [4]  

Examples of software repositories are: 

a) Runtime Repositories: Example of runtime repositories are deployment logs that 

contain useful information about application usage on deployment sites and its 

execution. 

b) Historical Repositories: Examples of historical repositories are bug repositories, 

source code repositories and archived communication logs. 

c) Code Repositories: Examples of code repositories are Google code and codeforge.net 

that store source code of various open source projects. [3] 

By referring these repositories, one can easily understand a piece of code. Although these 

repositories are a huge treasure of information about software system and software project 

but to extract useful knowledge from these repositories is a mess. So, the idea behind mining 

software repositories is to devise tools to access this wealth of information and to extract 

useful knowledge by analyzing them.  

MSR is the process of software repositories analysis to discover meaningful and 

interesting information hidden in these repositories.  

2.2  History of mining software repositories 

Meir Lehman‟s studies of IBM operating system software introduced the concept of 

software evolution.  He discovered that software evolution was largely the result of feedback 

system rather than individual management decisions, and that studying the feedback process 

could lead to more effective software management.  He identified defect reports, advances in 
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technology, changes resulting from installation and operation of the system and changing 

user needs as some of the feedback mechanisms [5].  He found that it is important to study 

the input and output entities of feedback systems both individually and jointly. 

 

While Lehman‟s studies of IBM sparked interest in investigations of software 

repositories, research was limited by lack of access to repositories that contained long-term 

rich data worth investigating. Commercial software developers, the most valuable source of 

data, were, in most cases, unwilling to make their repositories public. A few commercial 

enterprises, however, did allow researchers to access their information. [4]. 

 

Basili and Perricone [6] used data from a NASA software project to analyze the 

relationship between software development errors and environmental factors such as module 

complexity, developer familiarity with software, and whether the module was new or 

modified. Mockus, Weiss, and Yang [7] used MSR with version control and problem 

tracking repositories from Avaya Labs to predict how much effort would be needed to repair 

problems during development or after release of a software project. ATT, Nortel, Nokia, and 

Mitel also made their software databases available to MSR researchers. However, it was the 

advent of open source software that resulted in access to the large, varied, and long-term 

software repositories needed for productive MSR research. [4] 

 

2.3  Effect of Open Source Software 

Two of the most popular open source version control systems are CVS (Concurrent 

Versioning System) and SVN (Subversion). These two repositories are basically the source 

code repositories that track changes in source code and maintain such information as well 

like who made this change, when was the change made, at which revision a particular file is 

committed etc. Bugzilla and jira are bug repositories. Each bug report contains a summary 

description of the bug, when it was reported, its severity and priority, operating system in 

which it was reported, its current status etc. Communication repositories include project 

emails, chats and other archived communications between developers working on a project.  

Runtime repositories containing deployment and execution audit data, source forge and 
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Google code that are centralized repositories are some other open source repositories 

available to MSR. 

 

Open source software repositories offer a wealth of information but to extract 

meaningful information from them is not easy due to lack of integration. Code of the project 

might move to SVN, the developers of the same project discuss this code with other 

developers via email and bug tracking tools contain the bug reports of the same project. 

Although all the necessary information of the project is stored in these repositories but these 

repositories are not integrated to each other and there is no way to retrieve all of developer‟s 

activities or to track artifacts across different projects. 

 

The Hipikat tool, developed by Cubranic et al [8], is one attempt to overcome the 

problem of non-integrated repositories in MSR research. Cubranic et al addressed the 

problem that arises in a situation when a new software developer joins a team that is already 

working on any project and new developer must be trained to speed up the project. When 

members of the development team are in the same location, a senior developer can explain 

the intricacies of the project to the new developer and provide feedback and advice. 

However, when the team is a virtual team, this type of support is not available. Hipikat is an 

MSR tool that accesses the entire project memory source code, bug tracking, 

communications, and project documents by establishing relationships between the artifacts. 

Hipikat establishes these relationships by combining information from different sources, or 

by inferring relationships based on meta-information contained within the databases. A 

major advantage of Hipikat is that it builds the project memory automatically and does not 

require any significant changes in existing work practices. [8] 

2.4  Other Early Uses 

Some other uses of MSR which were worked out in its early life were bug 

identification and prediction, and finding the code that can be reused by developers for their 

need. CP-Miner is a tool, developed by Li and Lu that can identify copy-paste code and 

copy-paste bugs in large software systems. [9] Copy-paste approach is used in large software 

applications to reuse code and thus to reduce development effort but this strategy might be 
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the source of bugs in the system because developers forget to modify the identifiers in such 

code.  Mandelin et al developed the Prospector tool to help developers search repositories to 

find specific code for reuse. The user submits a simple query describing the desired input and 

output, and Prospector automatically returns a candidate list of code snippets. [10] 

 

Although the early uses of MSR showed valuable contributions of this field but still 

the need of the time was further research in this field to create tools and techniques to help 

analyzing these repositories and extracting meaningful information from them. A one day 

international Workshop on MSR was held in Edinburg, Scotland in 2004. It continued to be 

an annual event expanding to a Workshop Conference in 2008.  

2.5  MSR within Software Engineering and Process 

2.5.1  MSR and Software Engineering 

There is a huge Software Engineering data over the course of time. MSR picks 

this data, processes and analyzes it, and detects patterns in this data.  MSR is an open 

field, both in what can be mined and what one can learn from the practice.  Any 

software repository can be mined not necessarily the code, bug or archived 

communication repositories.  One prize winning study in MSR analyzed the use of 

IRC channels used as a source of meetings between developers developing open 

source project. In that project, chat logs were mined to find the information such as 

when was the meeting held, which developers attended the meeting, what was 

discussed and most important whether the meeting was useful or not.  

 

Another important source of information is archive communication 

repositories such as emails which were used as a source of communication between 

developers. Similarly, bug repositories can be used along with the source code 

repositories having change logs, for instance, comments in CVS and summary given 

by the user while reporting bug can be used for source code changes categorization as 

an attribute of corrective maintenance activity.  Another major repository to be mined 

is source code repository. Much creative information can be mined from this 

repository, for example, using source code as a communication tool, one analyst 
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conducted a research in which he used the comments (e.g. TODO tag) as a source of 

communication. Such comments are termed task comments.  Although this is not a 

good source of information like communication archives but at least it shows a 

company it‟s high time to have a communication tool as code comments are hardly an 

ideal way to communicate. 

2.5.2  Software Maintenance: 

These repositories track software changes by managing software evolution.  

Software change is defined as addition, deletion, or modification in software artifacts.  

Most important artifact in software life cycle is source code change. All other artifacts 

are maintained to manage and track these code changes [11]. These repositories grow 

larger and larger with the evolution of software and thus these are the best part where 

MSR can be applied. Software maintenance is the most expensive part of software 

life cycle and thus MSR techniques prove to be extremely valuable by benefiting this 

piece of process. Code cloning is an inexpensive way to reuse existing code. 

However, analyzing the software repositories which use this technique, it is found 

that using this technique makes the maintenance of these software products quite 

complicated and thus too much clone code is a risk. 

MSR techniques are very effective in predicting faults. Gall worked on 

common semantic dependencies between source code classes due to modification or 

addition of a class, on the basis of its version history. Thus, by using the repositories, 

one can see the coupling and dependency between classes or other piece of codes and 

thus help in maintenance of system by seeing what other components might affect by 

changing the particular component.  In fact, fault finding and predicting is probably 

the largest application of MSR. A number of tools are created for this purpose. 

2.5.3  Other Uses in Software Evolution 

By using MSR, developers and architects can have an insight into the design 

of the system that would be impossible otherwise. To create a software using visual 

representation is one of the most confusing and difficult tasks in software 

engineering. This is crucial when dealing with legacy systems or during reverse 

engineering.  Mining repositories can help with this issue in a number of ways. 
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Eclipse repositories were mined to develop author topic models to help 

developers find the experts on the given part of the system. Author-Topic modeling 

(AT) captures the relationship of author and topic. Of course, general reverse 

engineering would be a lofty goal. Some information is not available in software 

repositories such as architecture models and designs. They are required to be 

reproduced using reverse engineering to support MSR questions.  This sort of 

information is essential to software evolution as component and subsystem reuse is 

seen by many to be the best way to decrease the time required to bring a software 

product to completion. By mining the repositories available, one can certainly gain 

valuable architectural insights though. 
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Chapter 3:  Literature Review 

3.1  Previous Research 

An extensive research has been conducted to learn the techniques and algorithms 

which are already being used in field of MSR. Some of these techniques are mentioned in 

this section. 

3.2  A framework for automatic assignment of bugs 

Manual bugs triaging i.e. bugs assignment to individual developers for fixation is a 

time consuming and tedious task. Micheal W. Godfrey, Olga Baysal and Robin Cohen 

presented a framework for automatic assignment of bugs to developers for fixation [12]. The 

approach presented by them employs preference elicitation to learn developer predilections 

in fixing bugs. The knowledge about developer‟s expertise is inferred by analyzing the bugs 

history fixed by the developer. When a new bug report arrives, using vector space model, 

system automatically assigns it to the appropriate developer considering developer‟s 

expertise, preference and workload. He addresses the task allocation problem by proposing a 

set of heuristics that support accurate assignment of bug reports to the developers. 

 

3.3  A Dynamic Approach to Software Bug Estimation 

Outsourcing is a common trend in today‟s software market. Project development in 

globally distributed environment is increasing day by day. However, to manage these 

globally distributed projects and their resources is much harder. Hemant Josh, Chuanlei 

Zhouang, Oskum Bayrak presented a methodology to predict future bugs using history data. 

This information can be used for support management and resource planning in distributed 

projects. Their algorithm works in a two step analysis mode: Global and Local. Global 

analysis, for each component, finds the counts of bug over time while local analysis analyzes 

the past history of a bug. Results were compared by eclipse software data and bug prediction 

was very close to the actual bug count [13]. 
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3.4  Bug Classification in Web Based Applications 

Popularity of web based applications is increasing day by day and they are changing 

life styles of people. Dependency of people on web based applications is an increasing trend. 

However, web based applications development is still a very challenging task, depicted by 

hundreds and thousands of bugs reported daily in bug reporting and tracking tools. Lei Xu, 

Lian Yu, Jingtao Zhao, Changzhu Kong, and HuiHui Zhang proposed an algorithm using 

data mining techniques that automatically classifies the bugs of web-based applications by 

predicting their bug type. They further proposed debug strategy association rules which find 

the relationship between bug types and bug fixing solutions. Debug strategy is built based on 

what was the bug, and what was the most effective solution given by the developer to fix it 

[14].  

 

3.5  Automated Duplicate Bugs Detection  

In software evolution, bug tracking tool is very important to record the software 

maintenance activities and bugs and problems in a system. However, in open source bug 

tracking systems like mentis and bugzilla, a number of duplicates are reported which hamper 

the utility of these bug tracking systems. Sometimes, as many as one fourth of all the reports 

in a project are duplicates. Triagers and developers identify duplicate bug reports manually 

which is a time consuming and high cost process in terms of project management and 

maintenance. Nicholas Jalbert and Westley Weimer  proposed a system that automatically 

indicates whether an arriving bug report is original or duplicate of an already existing report. 

It saves developer‟s time. To predict bug duplication, system uses textual semantics, graph 

clustering and surface features. In their experiments, they used bug data from Mozilla bug 

repository and included almost 29,000 bug reports. Experimental results show that the system 

was able to filter out 8% of duplicate bugs and thus reduces the development cost [15]. 

 

3.6  Software Escalation Prediction with Data Mining 

Defect escalation is a term used for significant impact of a defect on customer‟s 

operations. Defect escalation has a very poor impact on software user in terms of software 
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quality. These defects are then tried to be fixed as quickly as possible, at a high cost, outside 

the general product release engineering cycle. Even if the defects are reported by software 

vendors and customers before they are escalated, to prioritize them quickly and accurately for 

resolution is not always possible. Inaccurate prioritization may lead to escalation of defects, 

even previously known and reported. Apart from unknown defects, escalation of known 

defects amounts to millions of dollars per year, labor cost along with the loss of reputation, 

loyalty, satisfaction and repeat revenue due to inaccurate prioritization. Tilmann Bruckhaus 

provided a technique for Escalation Prediction (EP) to avoid escalations by predicting the 

defects that have high escalation risk and then by resolving them proactively[16]. 

 

 

Fig. 3.1 Escalation Prediction Solution Architecture 

 

3.7  Automatic bug triage using text categorization 

For the management of bug reports and resources to fix these bugs, a bug tracking 

system is required by large software development projects. One example of such system is 

Bugzilla, which was first introduced in the development of Mozilla as an open source bug 
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tracking system but now used in a number of other projects as well. In open sources software 

development projects, team members are usually dispersed around the world. Developers, 

project managers and other resources rarely see each other. Bug tracking systems are 

especially important in management of such open source large software projects. In such 

projects, bug tracking system is not just a tool for reporting and tracking bugs but also to 

coordinate work among developers.  

An important section in bug reports is “Additional Comments”. Most bug tracking 

systems provide the facility to add comments to bug reports. This feature is really helpful in 

geographically and time dispersed software projects and can help to fill a slot for issue 

specific, focused discussion. For implementation details these comments serve as forum. All 

the team members like developers who due to their expertise and insight can help in design 

deliberations and all the stakeholders whose code will be affected by the modifications which 

are proposed are included into discussion through these bug reports. Users having interest in 

quick fix of the bug can also join in.  

To deal with new bug reports and their fixation as quickly as possible is very 

important. If the developers ignore the bugs reported by a user or new features demanded by 

customers, it can kill the overall repute and turn the users away. In large open source 

software projects triaging bug to developers is a difficult task both due to a very large 

number of bugs reported daily and duplicate bugs. One who can best identify the bug- 

whether it‟s a real bug or duplicate is the developer. However, it would be too much time 

consuming and would be a burden for a developer. Therefore, in large open source projects 

such as Eclipse and Mozilla a separate team member is dedicated to triaging.  It‟s not an ideal 

solution as it would introduce more delays and potential errors in case of wrong decision by 

triager of assigning which report to which developer. Davor and Gail presented a technique 

using machine learning, and in particular text categorization, to “cut out the triageman” and 

automatically assigns bugs to developers based on the description of the bug as entered by 

the bug‟s submitter. They used multinomial Naïve Bayes algorithm for the prediction of 

duplicate/Real bug. Prediction accuracy was 30% when training to testing ratio was 9:1 [17].  
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3.8  If Your Bug Database Could Talk 

Bug databases list all the bugs and problems that arose during software development life 

cycle and thus are most consistent sources for failure information. But the bug databases are 

not too descriptive to record how the problem arose, what the impact area was and who fixed 

it. Code repositories, archived communications, deployment logs etc. contain this 

information. Using these entire databases, one can find the relationship between bug and 

fixes. Fixes are related to locations. Using this relation Thomas Zimmerman, Adrian 

Schroter, Andeas Zmmeller and Rahul Premraj determined the density of defects in a 

component by counting the applied fixes. They used Eclipse programming environment code 

base and worked on the bugs that were reported in first six months of project development 

[18]. The research questions illustrated by them are: 

a) Is it possible to use code complexity to predict failure proneness? 

b) Is there any relationship between bugs‟ number after release and during testing? 

c) Are there more errors in the code of some developers than others?  

Using the code repositories and bug repositories one can find the change in the code that 

introduces a bug and one that fixes it. Using this information one can predict the future bugs.   

 

3.9  Adaptive bug prediction by analyzing project history 

Sunghun Kim presented two bug prediction algorithms to analyze a project‟s change 

history: Bug cache and Change classification. Bugs cache approach works on the assumption 

that bugs do not occur in isolation rather in a burst of group of related bugs. A developer can 

find the more error/bug prone areas of the project by using the bug cache. It would help in 

allocating more resources to more error prone areas of a software system.  Sunghum Kim 

used two machine learning algorithms in his research, Support vector Machine and  Naïve 

Bayes and used 10% of the code files from seven open source projects. 

 The change classification approach classifies bug changes with 65% buggy change 

recall and 78% accuracy. Both approaches can be used to find locations of bugs by 
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leveraging project history and learning the unique bug patterns. This information can help to 

reduce software development cost and to increase software quality [19]. 

 

3.10  Mining in software archives to detect how developers work together 

Complete history of open source projects is available in open source software 

repositories. SUBVERSION and CVS store all the committed versions of code files that have 

existed during software development. It contains the commit revision numbers of files in 

addition to information like which developer has committed the file and when. This 

information is very important in open source projects as developers and other team members 

are locally separated. 

Peter Weigerber, Mathias Pohl and Michael Burch examined the artifacts changed by 

developers, which developers and when. They searched the following questions in their 

research 

 

a. Do files or modules are worked on by just one developer or a number of 

developers work on single module or file? 

b. What‟s the hierarchy of developers in a big project? Is there a main developer 

and other helper developers or rather work is equally distributed among all the 

developers? 

c.  Are there phases during the evolution, when there is a very active 

development and ones when there is hardly any development? [20] 

 

3.11  Finding Co-Evolution of Production & Test Code using MSR 

Number of artifacts are created and maintained during software systems engineering. 

Bart Van Rompaey, Arie Van and Andy Zaidman investigated whether there is some 

correlation between test code and production code by using the information contained in 

versioning systems, size metrics and code coverage reports. Main purpose of the research 

was to create mutual consciousness among managers and developers about testing process. 
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They evaluate their results both with the help of log-messages and the original developers of 

the software system [21].  

 

3.12  Challenges in software evolution 

Software evolution is necessary and an ongoing activity to keep it up to date 

otherwise it becomes ineffective. Most important piece of work that needs to be considered 

in evolution is source code but it is not the only thing that matters. Software is 

multidimensional and also the development process behind it. To develop quality source 

code, other artifacts like tests, specifications, constraints, documentations are needed as well 

[22]. 

Bart Van Rompaey, Arie van Deursen, Andy Zaidman and Serge Demeyer worked on 

two dimensions i.e. source code and test. They analyzed the evolution of tests as source code 

evolves. To analyze the co-evolution of production and test code, they used the data stored in 

versioning control system. But for using VCS for this purpose, it was necessary that source 

code and test code must be committed. Therefore, their main focus is the co-evolution of 

production code against constant software tests i.e. integration test and unit tests. They 

understood that, to get best result, production code and test code should be developed and 

maintained side by side, for at least two reasons: 

a. New functionality should be tested as soon as soon as it gets completed e.g. 

via unit testing [23]. 

b. When changes or up gradation is applied, the old code preservation (in terms 

of its behavior) should be checked. 

 Here, Moonen et al. have shown that refactoring itself does not change the behavior of the 

system but, they invalidate tests [24]. Elbaum et al. concluded that even very small changes 

in source code can have serious effect on test reporting or the fraction of production code 

tested by the test suite [25]. These observations support the argue that updated source code 

and test code need to co-evolve. This leads to the inconsistent situation where tests are 

necessary for the success of the software (and its evolution), while also an important 

consideration during maintenance. It is exactly this inconsistency that enforced them to study 
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the co-evolution of test code and production. They proposed to use lightweight techniques 

and visualizations, which are common to the field of studying software evolution [26]. 

For this study, their major concern was: How does testing occur in open-source 

software systems? In order to guide their research, they improved this question into other 

supplementary questions: 

a) Does co-evolution occur phrased of synchronously? 

b) When should the test writing effort be increased? Right before release or some other 

phase of SDLC? 

c) Is it possible to detect test strategies, test-driven development for instance [27]? 

d) What is the relation, if any, between test coverage and test writing effort? 

 

 To conclude, they performed an experiment to study the co-evolution of test code and 

production of two open source softwares. They evaluated their research internally and 

externally, by studying log messages (written during development) and by sharing their 

findings with the developers and recording their remarks. 

Both users and the developers submit bug report to repository. These reports play 

important role in revealing defects and improving software quality. Increase in number of 

bug reports in repository will potentially increase the number of duplicate bug reports. 

Detecting duplicate reports will reduce effort in fixing that particular bug or defect. However, 

it is a big challenge to detect all duplicate bug reports out of a very large number of existing 

bug report. Tao Xie, Lu Zhang , Xiaoyin Wang , Yoonki Song and Hong Mei presented „Jazz 

Duplicate Finder‟ , a tool that helps to identify duplicate or repeated bug reports on Jazz, 

which is a teamwork stage for software development and management. Natural language and 

Execution information was used to find duplicates in bug report. [30] 
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Figure 3.2 Architecture of JDF Tool 
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Chapter 4:  Design and Implementation 

4.1  The Lifecycle of a Bug Report 

There are a number of states of bugs before they get fixed.  When the report is first 

submitted, its state is NEW. The bug is then assigned to developer to fix it. Its status changes 

to ASSIGNED. Developer fixes the bug and it is then marked as RESOLVED. There are a 

number of ways to resolve a report; if the resolution results in a change in the code, its status 

becomes RESOLVED otherwise DUPLICATE. If the developer cannot reproduce the bug, it 

is marked as “WORKSFORME”. Report is marked as INVALID or WONTFIX if it‟s not an 

actual bug. Report can be reopened that was formerly closed and its status changes to 

REOPENED. 

When the bug is first reported to repository, it is submitted to our proposed system as 

shown in Figure 4.1. System extracts all the terms in these reports using bag of words 

approach. The vocabulary is of a very high dimensionality and thus numbers of features are 

reduced by using chi-square algorithm. These features are used for training of classification 

algorithm which is then used for classification of bug reports. The classification algorithm 

used in proposed system is multinomial Naïve Bayes. Details of all these modules and 

processes used in proposed classification system are given in sub sections below. 

Bug 
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stemming, 

manual 

extraction)
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all features
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Bug Reports

Bug Reports with out label

 

Figure 4.1 Bug classification system 
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4.2  Bug reports 

Eclipse bug repository is used in this research to get bug data. Figure 4.2 shows the 

information contained in these bug reports. 

a. Bug_id: unique identifier assigned to each bug 

b. Component: the component of the product in which this bug is being reported like 

ant, CVS etc. 

c. Severity: severity of bug like normal, major, enhancement etc. 

d. Status: current status of the bug like open, closed, fixed etc. 

e. Operating system: operating system in which this bug is reported like windows, 

fedora etc. 

f. Summary: brief summary of the bug explained by reporter. 

The most important attribute of bug report is SUMMARY. Reporter submits the bug by 

giving its brief summary. Summary briefly discusses the scenario in which this bug 

reproduces. It also describes impact areas of the bug. The data from summary of the bug is 

taken and algorithm is trained over it. Whenever a new bug arrives, proposed system 

classifies it using this summary field. 

The challenge associated with using the summary to classify bugs of open bug 

repositories is that the bugs are submitted by ordinary users of products, not the technical 

people. For instance, user of Mozilla firefox might be a non technical person who cannot 

report the bug using some predefined technical terms to specify the bug. Classifying these 

bug reports using summary data is a challenging task that requires data to be thoroughly pre 

processed first. Classification algorithms cannot differentiate between “browser”, “firefox” 

or “Mozilla firefox”. For this purpose, synonym dictionary might be helpful and could 

improve the results but it would increase the scope of this research and thus synonym 

dictionary integration in proposed system is one of the proposed future work. 
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Figure 4.2 bug report obtained from Bugzilla bug repository 
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Figure 4.3 Information contained in bug reports 

4.3  Pre-processing 

Data pre-processing is the most important step of data mining. Data obtained from 

bug repositories is in raw form and cannot be directly used for training the classification 

algorithm. The data is first pre-processed to make it useful for training purpose. Data pre-

processing is the most time consuming step of data mining and most important as well. I used 

stop-words dictionary and regular expression rules to filter useless words and filter the 

punctuations respectively. I applied porter stemming algorithm to stem the vocabulary but 

stemming did not prove to be of any worth in case of textual data. It in fact further 

deteriorated the results and decreased the accuracy. 
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Figure 4.4 Data preprocessing steps and techniques 

4.3.1  Stop Words Removal 

A deep study of the stop words dictionary available on internet revealed that 

stop words removal is not generic but it is actually domain specific. Some terms are 

considered to be stop words in one domain but they carry useful information in 

another domain. In this research, the reporters of bugs are non technical users. Users 

report the bug using simple non technical English words.  So, the stop words 

dictionary used contains language dependent as well as domain dependent stop 

words. 

List of stop words that are being used in this research is given in appendix A. 

4.3.2  Stemming 

Stemming is defined as the process of reducing words to their base/stem in 

linguistic morphology. Stemming programs are commonly known as 

stemmers or stemming algorithms. 

In this research, porter stemming algorithm is used. Source code for porter 

stemmer is available on its official website. [29] 

4.3.3  Manual Extraction 

Proposed system uses multinomial Naïve Bayes algorithm for classification. 

Naïve Bayes algorithm is based on probability. Final forecasting of a bug class is 
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performed on the basis of product of posterior probability as well as the prior 

probability of class. Use of classes having very large data difference (difference on 

the basis of number of records) is not feasible for algorithm training. Prediction will 

tilt towards class having largest record set. To avoid this condition, manual selection 

of classes-not having very large difference in record set- is performed for training 

data.  

4.4 Feature Selection 

              The vocabulary obtained after applying “bag of words” approach on data has very 

large dimensionality.  Most of these dimensions are not related to text categorization and thus 

result in reducing the performance of the classifier. To decrease the dimensionality, the 

process of feature selection is used which takes the best k terms out of the whole vocabulary 

which contribute to accuracy and efficiency. Feature selection has two main advantages: 

a) Algorithm training becomes more efficient due to reduction of dimensionality of 

vocabulary. 

b) By reduction of rare terms classification accuracy increases. 

There are a number of feature selection techniques such as Chi-Square Testing, 

Information Gain (IG), Term Frequency Inverse Document Frequency (TFIDF), and 

Document Frequency (DF). In this research, chi-square and TFIDF algorithms are used for 

feature selection. 

4.4.1  Chi-Square Testing: 

Chi-Square test for independence is used for feature selection. It is used to 

determine the relationship between two variables. “Independence” means that the two 

variables are not related to each other. Chi-Square is defined as  

 

 

       = 
         

                    
 

Equation 4.1 chi square test for feature extraction 
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In equation 4.1 A, the total number of documents in class c containing term t, 

B is the total number of documents not belonging to class c but containing term t, C is 

the total number of documents belonging to class c containing term t, D is the number 

of documents not in c not containing t.  

4.4.2  TF-IDF: 

TFIDF-Term Frequency-Inverse Document Frequency is a term weighting 

technique that is used to evaluate the importance of word in a collection of corpus.  It 

assigns the weight to a term in the document given by 

                        

Equation 4.2 TF-IDF technique for feature selection 

Thus TF-IDF assigns weight to a term in a document. Weight is 

1. Highest when term occurs frequently within a small number of documents.  

2. Lower when the term occurs fewer times in a small number of document, or 

occurs in a lot of documents.  

3. Lowest if the term occurs in virtually all documents.  

 

Chi Square/ TFIDFAll Features from 

vcabulary

Sub set of 

Features  

 

Figure 4.5 Feature selection using Chi Square and TFID 

4.5  Classifier Modeling and Training 

Text classification is an automated process of finding some metadata about a 

document (in this research the term “document” is alternatively used for “bug”). Text 

classification is used in various areas like document indexing by suggesting its categories in a 

content management system, spam filtering, automatically sorting help desk requests etc. 
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Naïve Bayes text classifier is used in this research for bug classification. Naïve Bayes 

classifier is based on Bayes‟ theorem with independent assumption and is a probabilistic 

classifier. INDEPENDENCE means the classifier assumes that any feature of a class is 

unrelated to the presence or absence of any other feature.   

4.5.1  Naïve Bayes Training 

The probability of a document d being in class c is computed as 

 

                     
     

      

Equation 4.3 Conditional probability of term in given document 

 

P(tk|c) is a  measure of how much evidence tk contributes that c is the correct class. 

P(tk|c) is the conditional probability of term t occurring in a document of class c. P(c) 

is the prior probability of a document occurring in class c. 

        

 

   
 

  
 

Equation 4.4 Prior probability of a class 

 

 If a document‟s terms do not provide clear evidence for one class versus another, we 

choose the one that has a higher prior probability. 

4.5.2  Training steps 

a) Features from all the documents are extracted and a vocabulary is created. 

b) Count the total number of documents in training set. (Steps c to h are repeated for all 

the classes). 

c) Count the number of documents in given class. 

d) Find the prior probability of a class by dividing documents in a given class to the total 

number of documents in the whole training set. 

e) Create another vocabulary having the terms of this class only. (Repeat step f to h for 

every term in vocabulary).  

f) Find the frequency of term in vocabulary created in step e. 
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g) Find the conditional probability of each term using equation 4.3. 

h) Return vocabulary obtained in step a, prior probability of class and conditional 

probability of term 

                        

1 .                        

2.                   

3. for each c    

4. do                           

5.     prior[c]           

6.                                                    

7.    foreach         

8.   do                                  

9.    foreach         

10.    do                     
     

         
 

11.    return                      

 

Figure 4.6 Naïve Bayes Training 
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Figure 4.7 Flow chart for Naïve Bayes Training 

4.5.3  Model testing 

In order to predict the class of a bug/ document, following steps are applied during 

prediction phase of classifier. 

 

a) Tokens/features from bug are extracted and maintained in a vocabulary. 

 (Repeat steps b to d for all the classes). 
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b) Find the log of prior probability of the class. 

 (Repeat steps c to d for all terms obtained from document) 

c) Find the conditional probability of term to be a part of this class. 

d) Score the class on the basis of product of probabilities obtained in step b 

and c. 

 

                                         

1 .                             

2. for each c    

3. do                       

4.     for each t    

5.     do                             

6.    return                       

 

Figure4.8 Naïve Bayes testing 

4.6  Dry Run 

Algorithm is trained on two classes having three bug reports each. Bug reports and their 

classes are given in table 4.1 

Bug Summary Class/label 

1. Can‟t cancel build project from progress view. Build 

2. Could create build path error in case of invalid external 

JAR format. 

Build 

3. Incremental build involving a resource filter fails to 

produce expected subdirectory of the output folder. 

Build 

4. Intro crashes when uses a custom JAXP parser. Intro 

5. Welcome leaks handles. Intro 

6. Welcome view shows nothing when opened via ctrl+3 Intro 

 

Table 4.1 bugs and their classes 
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Figure 4.9 Flow chart for Naïve Bayes Testing 

 

4.6.1  Pre-Processing 

4.6.1.1  Stop Words Removal 

Following words are considered as stop words and are removed from vocabulary. 

a. Can‟t 
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b. From 

c. Could 

d. In 

e. Of 

f. To 

g. The 

h. Each 

i. I 

j. When 

k. A 

l. Via 

m. In 

4.6.1.2 Stemming 

Following words are stemmed to their root using porter stemming algorithm 

a. Incremental    increment 

b. Involving   involve 

c. Fails    fail 

d. Crashes    crash 

e. Leaks    leak 

f. Handles    handle 

g. Shows   show 

4.6.1.3 Tokenization and frequency calculation 

Bug summaries belonging to both classes are tokenized and frequency of each 

word/token is calculated against each class. List of tokens and their frequencies of bug 

summaries belonging to build and intro class are given in figure 4.5 and figure 4.6 

Token Cancel build project View create Path 

Frequency 1 3 1 1 1 1 

 

Token Error Case Invalid External Jar Format 
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Frequency 1 1 1 1 1 1 

 

Token Increment Involve Resource Filter Fail Produce 

Frequency 1 1 1 1 1 1 

 

Token Expected Sub-

directory 

Output  Folder 

Frequency 1 1 1 1 

 

Figure 4.10 Tokens and their frequencies of class “build” 

Token Ctrl+3 Intro Crash Custom JAXP Parser 

Frequency 1 1 1 1 1 1 

 

Token Welcome Leak Handle View Show Nothing Opened 

Frequency 2 1 1 1 1 1 1 

 

Figure 4.11 Tokens and their frequencies of class “build” 

4.6.2  System Training 

Step by step process of system training is given below. 

a. Step 1  

V  ExtractVocabulary(C,D) 

C is the set of classes/labels in training data. In the current example, C has two classes 

“build” and “intro”. V is the vocabulary obtained by extracting tokens of all the classes.  

V  { cancel build project progress view create path error case invalid external JAR 

format increment build involving resource filter fail produce expected subdirectory 
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output folder intro crash custom JAXP parser welcome leak handle shows nothing 

opened ctrl+3 } 

b. Step II 

N  CountDocs(D) 

D is the set of all the documents in training data. In this example, there are three bug 

reports belonging to “Build” and three belonging to “intro”. So value of N = 6. 

c. Step III 

All the sub steps in step III are repeated for all the classes included in training. 

Class “build” 

i. Nc  CountDocsInClass(D,c) 

Nc  is the number of documents in class c. c is “build” and Nc  = 3 

ii. Prior[c]  Nc / N 

Prior[c] is the prior probability of class “build”. Nc = 6 and N = 3. So Prior[c] = 

0.5 

iii. Textc  ConcatenateTextOfAllDocsInClass(D,c) 

a. Textc is the subset of vocabulary V and is obtained by concatenating all 

the tokens of given class. 

b. Textc  {intro crash custom JAXP parser welcome leak handle shows 

nothing opened ctrl+3} 

iv. Tct  CountTokensOfTerm(textc, t) 

a. For all the tokens in vocabulary V, find the frequency of each token in 

vocabulary Textc. Figure 4.7 shows the frequency of each token of 

vocabulary V in vocabulary Textc. 

Token Cancel build Project View Create Path 

Frequency 1 3 1 1 1 1 
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Token Error Case Invalid External Jar Format 

Frequency 1 1 1 1 1 1 

 

Token increment Involve Resource Filter Fail Produce 

Frequency 1 1 1 1 1 1 

 

Token Ctrl+3 Intro Crash Custom JAXP Parser 

Frequency 0 0 0 0 0 0 

 

 

Token Welcome Leak Handle View Show Nothing Opened 

Frequency 0 0 0 1 0 0 0 

 

Token Expected Sub-

directory 

Output  Folder 

Frequency 1 1 1 1 

 

Figure 4.12 frequency of each token of vocabulary V in vocabulary Textc. 

 

v. CondProb[t][c]  Tct + 1 / ∑t’ (Tct’ + 1) 

For each token from vocabulary V find the conditional probability of this 

token to be in class c (build). Table 4.2 shows conditional probability of all the 

tokens from vocabulary V. 

 

Token  Conditional Token Conditional 
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Probability Probability 

cancel 0.0334 ctrl+3 0.0167 

build 0.0667 Intro 0.0167 

project 0.0334 Crash 0.0167 

view 0.0334 Custom 0.0167 

create 0.0334 JAXP 0.0167 

path 0.0667 Parser 0.0167 

error 0.0334 Welcome 0.0167 

case 0.0334 Leak 0.0167 

invalid 0.0334 Handle 0.0167 

external 0.0334 View 0.0334 

jar 0.0334 Show 0.0167 

format 0.0334 Nothing 0.0167 

increment 0.0334 Opened 0.0167 

involve 0.0334 Expected 0.0167 

resource 0.0334 Subdirectory 0.0334 

filter 0.0334 Output 0.0334 

fail 0.0334 Folder 0.0334 

produce 0.0334     

 

Table 4.2 Conditional probability of all the tokens belonging to class “build” 

from vocabulary V 

 

 

Steps from i to v are repeated for second class “intro” and the conditional probabilities 

obtained are given in table 4.3 

 

Token  

Conditional 

Probability Token 

Conditional 

Probability 
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cancel 0.0204 ctrl+3 0.0408 

build 0.0204 Intro 0.0408 

project 0.0204 Crash 0.0408 

view 0.0408 Custom 0.0408 

create 0.0204 JAXP 0.0408 

path 0.0204 Parser 0.0408 

error 0.0204 Welcome 0.0612 

case 0.0204 Leak 0.0408 

invalid 0.0204 Handle 0.0408 

external 0.0204 View 0.0408 

jar 0.0204 Show 0.0408 

format 0.0204 Nothing 0.0408 

increment 0.0204 Opened 0.0408 

involve 0.0204 Expected 0.0408 

resource 0.0204 Subdirectory 0.0204 

filter 0.0204 Output 0.0204 

fail 0.0204 Folder 0.0204 

produce 0.0204     

 

Table 4.3 Conditional probability of all the tokens belonging to class “intro” 

from vocabulary V 

 

4.6.3  System Testing/Forecasting 

Let there be two bug reports which are submitted to system to predict their 

labels. Summaries of these bug reports are 

a. Incremental build of jdt.ui each time I start up 

b. Hover bug welcome page 
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Let‟s start with the first bug report “Incremental build of jdt.ui each time I 

start up”. Algorithm will check the probability of this bug report to be in one of the 

classes - “build, intro”- on the basis of product of prior probabilities of classes and 

posterior probabilities of all the terms in reported bug. 

Let‟s check the probability of given bug to be in class “build”. 

Posterior probability of build = 0.5 

Conditional probability of increment to be in class build = 0.0334 

Conditional probability of build to be in class build = 0.0667 

Conditional probability of  jdt.ui to be in class build = 0.0167 

Conditional probability of time to be in class build = 0.0167 

Conditional probability of startup to be in class build = 0.0167  

Score[build] = (0.5)(0.0334)(0.0667)(0.0167) (0.0167) (0.0167) = 0.000000005187  

Now let‟s find Probability of the given bug to be in class “intro” 

Posterior probability of intro = 0.5 

Conditional probability of increment to be in class intro = 0.0204 

Conditional probability of build to be in class intro = 0.0204 

Conditional probability of  jdt.ui to be in class intro = 0.0204 

Conditional probability of time to be in class intro = 0.0204 

Conditional probability of startup to be in class intro = 0.0204  

Score[intro] = (0.5)( 0.0204)( 0.0204)( 0.0204) (0.0204) (0.0204) = 0.000000001766 

Result: Build has higher score so the bug will be assigned to class “build” 

The second bug which is reported is “hover bug in welcome page” 
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Let‟s find the probability of this bug to be in class “build” 

Posterior probability of build = 0.5 

Conditional probability of hover to be in class build = 0.0167 

Conditional probability of bug to be in class build = 0.0167 

Conditional probability of  welcome to be in class build = 0.0167 

Conditional probability of page to be in class build = 0.0167 

Score [build] = (0.5) (0.0667)(0.0167) (0.0167) (0.0167) = 0.00000003889  

Now let‟s find the probability of the given bug to be in class “intro” 

Posterior probability of intro = 0.5 

Conditional probability of hover to be in class build = 0.0204 

Conditional probability of bug to be in class build = 0.0204 

Conditional probability of welcome to be in class build = 0.0612 

Conditional probability of page to be in class build = 0.0204 

Score [intro] = (0.5)( 0.0612) ( 0.0204) (0.0204) (0.0204) = 0.0000002597 

Result: Intro has higher score so the bug will be assigned to class “intro” 
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Chapter 5:   Testing and Experimental Results 

5.1  Testing 

Testing is the process of executing software to verify that it satisfies the specified 

requirement. It is the strategy that recovers as many defects as possible. Since no program or 

system design is perfect at the final implementation, therefore, testing is an essential 

requirement. The proposed system is tested by giving datasets as input to the system. The test 

cases for this purpose are discussed below. 

5.2  Test Cases 

Test cases are the self generated input patterns given to the system to verify the system‟s 

output against expected input. A few test cases used for the proposed software are as follows. 

5.2.1  Test Case1 

Package: preprocess 

Class Name: FilterSummary 

Input: short_short_desc (column containing summary) 

Output: filtered summary 

Result: Test succeeded 

Original data 
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Figure 5.1 Snapshot of Test Case 1 

 

This test case is designed to check if the summary is filtered for stop words 

and punctuations. It takes short_short_desc, column containing summary, as input 

(Figure 5.1) and produces filtered summary as shown in Figure 5.2. Summary is 

actually the small description of bugs having keywords enclosed in brackets e.g. (UI). 

As these bugs are reported in free format English language so it contains lot of 

punctuations and stop words and hence is not fit for direct use in bug prediction and 

needs some filtering. The output of the filtering step is shown in Figure 4.2 where 

each bug is filtered for the stop words and punctuations and the resultant summary is 

stored as filtered summary.   
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Figure 5.2 Snapshot of Test Case 1 

5.2.2  Test Case 2 

Class Name: Tokenizer 

Input: filtered Summary 

Output: Tokens, frequency (table containing tokens of filtered summary and 

frequency) 

Result: Test succeeded 

Output 
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Figure 5.3 Snapshot of Test Case 2 

To check that tokens with their frequency are created, test case 2 is designed 

that takes filtered summary- output of test case 1- as input and produces tokens of the 

summary and calculates frequency against each token. Results are shown in Figure 

5.3. To precede bug prediction, the first step is to read each record of filtered 

summary word by word. To accomplish this task, tokens for the whole filtered 

summary are produced and stored in the column tokens as shown in Figure 5.3.  

Another requirement for bug prediction is to know the number of occurrences of each 

token in the bug records, so that the tokens with highest occurrence could decide the 

class of a particular bug. Therefore, test case 2 also checks that frequency of each 
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token is obtained successfully. Tokens and frequency are stored in the same table as 

shown in Figure 5.3. 

5.2.3  Test Case 3 

Package: featureextraction 

Class Name: FeatureExtraction 

Input: token, frequency from each class table 

Output: features of each bug 

Result: Test succeeded 

Output File 

 

Figure 5.4: Snapshot of Test Case 3 
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This test verifies that a bug feature is extracted from each record containing bug. This 

feature is extracted using Chi Square feature extraction algorithm. It takes as input, the token 

and frequency column of each class and produces a feature as output, shown in Figure 5.4.  

 

5.2.4  Test Case 4 

Package: modeltraining 

Class Name: ModelTraining 

Input: filtered summary, features obtained in test case 3 

Output: model trained on examples 

Result: Test succeeded 

Classification model (Naïve Bayes) is trained on training data that is obtained after 

preprocessing and feature selection. Classification model is actually the set of probabilities 

that each feature contribute towards a class. Figure 4.5 shows the prior probability and 

posterior probability of each feature against a class.  
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Figure 5.5 Model building by finding probabilities of features against a class 

5.2.5  Test Case 5 

Package: modeltesting 

Class Name: ModelTesting 

Input: records with unknown classes/labels 

Output: records with known classes/labels 

Result: A prediction accuracy of 89% is obtained with testing to training ratio of 1:10 

5.3  Experimental Results  

This section is based on the output and results generated after applying the implemented 

system on bug data set obtained from Bugzilla bug repository. Bugzilla maintains the bug 

reports of number of projects like Mozilla, Eclipse, SQL etc. For this research bugs reports 

from Eclipse bug repository are used. 

Results are obtained on the basis of prediction accuracy. Prediction Accuracy is defined as 

“Ratio of the number of bug reports with correct types classified to the total number of 

bug reports to be classified.”[14] 

Prediction accuracy was not good during the first few experiments.  In order to improve 

accuracy, some processes in preprocessing steps were improved.  

a. It was found that still there are some punctuations and stop words in bug summaries 

which were decreasing the prediction accuracy. So, these stop words were appended 

in stop words dictionary. Stop words dictionary which is used contained almost 450 

words. 

b. In this research, data of an open bug repository is used in which end users of a 

product report the bugs. Users most of the time are not very technical and use the 

terminology that confuses the prediction model instead of helping in its training. Such 

reports were manually removed from the dataset. Although it‟s a time consuming task 

but it increases the accuracy. 
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c. Naïve Bayes is affected by class prior probabilities.  If one takes data set having one 

class containing a very large number of records and other having very small, model 

automatically will twist the prediction towards class having large data. So, classes 

having much difference in record set cannot be used. 

 

Experiments are conducted by changing the training to testing ratio, classes/labels and 

feature extraction algorithms. 

5.3.1  Classes having varying number of records: 

In an experiment, algorithm was trained on classes having very large difference in  

number of records. Some classes like misc, navigat etc. have a very large number of 

records (almost 500 records) while others have a very few e.g. build, marker (less 

than 100 records). Forecasting results were deviated towards classes having more 

records. Table 5.1 shows the classes included in the training phase and the number of 

records in each class. 

 

Class/Label 

Number of 

records 

Build 82 

Externaltools 90 

Markers 97 

Javadoc 151 

Mode 194 

Launch 198 

Intro 257 

Navigat 357 

Pref 398 

Misc 498 

 

Table 5.1 Classes in training data with number of bugs 
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5.3.1.1 Experimental Results 

Table 5.2 shows the experimental results obtained by training the 

algorithm on classes mentioned in table 5.1. Prediction accuracy was very low 

due to the large difference in number of records in classes on which proposed 

system was trained. Further more data was not much refined in initial set of 

experiments that resulted in low prediction accuracy.  

Training to testing ratio that was used in this experiment was 4:1. In 

first set of experiments system was trained on data without using any feature 

selection algorithm. System was trained on 3725 bug reports and testing was 

performed on 914 bug reports. 46.93% Prediction accuracy was obtained. 

Accuracy was poor because algorithm was trained on classes having varied 

number of records and system forecasted most of the bug reports belonging to 

the classes having more data in training. 

Same experiment was repeated with TFIDF as feature selection 

algorithm. Term Frequency Inverse Document Frequency is usually used as 

feature selection in categorization of documents like emails, news, documents 

on World Wide Web etc. For bug classification, this algorithm was not very 

fruitful because data from Bugzilla is used which is an open source bug 

tracking system and unlike formal documents mentioned before, the 

terminology used by users to report bugs is not as technical and formal to 

apply TFIDF. Accuracy was reduced to 39% using TFIDF. 

Another experiment was conducted with same data but now using Chi 

Square algorithm for feature selection. Training and testing data was same as 

used in experiment without any feature selection algorithm and the prediction 

accuracy obtained was 51%. 

5.3.1.2 Summary 

 Best results were obtained using Chi Square Feature selection 

algorithm.  Results were further improved in preceding experiments by 

increasing training to testing ratio and by refining the training data in 

preprocessing step. 
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Feature 

Selection 

Algorithm 

Training 

Data 

Testing 

Data 

Training/Tesitng 

ratio 

Prediction 

Accuracy 

No 3725 914 4:01 46.93 

TFIDF 3725 914 4:01 39 

Chi Square 3725 914 4:01 51 

 

Table 5.2 experimental results with classes having varying number of data 

 

5.3.2  Classes having small training set 

In another set of experiments, system was trained over very small data. All the 

classes used in training have data range from 41 to 56. List of data and number of 

bugs in each class is given in table 5.3. 

Class 

Labels 

Number of 

bugs 

SSH  50 

ChangeSet  50 

runtime  50 

Linked  48 

reconciling  51 

PDE  45 

Workbench  41 

 

Table 5.3 Training classes with number of bugs 

5.3.2.1 Experimental Results 

As already discovered in the first set of experiments that TFIDF was of no use 

in increasing the prediction accuracy. Second set of experiments was 

performed using Chi Square feature selection algorithm. Although prediction 

accuracy increased as compared to first experiments due to small difference in 

a number of bugs in each class but still accuracy was low as data was not well 
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pre-processed. Table 5.4 shows the accuracy obtained as a result of 

experiments performed by training algorithm using classes having small 

difference in number of bugs. 

 

Training/Testing 

Ratio 

Total 

Data 

Training 

Data 

Testing 

Data 

Accuracy 

(%) 

1:01 820 421 399 57 

1:05 820 665 155 58 

1:07 820 715 105 63 

1:10 820 748 72 66 

Table 5.4 Experimental results with classes having small difference in 

record set 

 

Using same set of data, experiment is repeated by using porter stemmer 

algorithm during pre processing. Porter stemmer is used to minimize a word 

to its root. The algorithm was not of any worth in increasing the accuracy 

because the bugs are reported by non technical users and do not contain 

proper terms which can be pre processed by the techniques used in pre 

processing of documents like emails, world wide web documents etc. Porter 

stemmer decreased the prediction accuracy from 57% to 45% using 1:5 testing 

to training ratio.  

5.3.2.2 Summary 

Prediction accuracy increases by decreasing the difference in number of 

records in classes used in system training. Porter stemmer decreased the 

prediction accuracy. 

5.3.3  Classes having refined data obtained by improved pre processing  

Table 5.5 shows the effect of changing the training to testing ratio on prediction 

accuracy. Table data is plotted in figure 5.1. Graph clearly shows that prediction 

accuracy increases as training to testing ratio increases. Highest accuracy is obtained 

when this ratio is 1:11. However, we cannot increase this ratio to a very large extend 

as it might over fit the training data and training over a very huge vocabulary is very 
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time consuming and thus decreases the efficiency of algorithm. In figure 5.6, 

accuracy starts decreasing if the testing to training ratio increases from 1:11. 

 

testing/training 

ratio Accuracy 

1:01 61 

1:02 66 

1:03 68 

1:04 69 

1:05 70 

1:06 76 

1:07 80 

1:08 82 

1:09 83 

1:10 84 

1:11 89 

1:12 88 

1:13 86 

1:14 86 

1:15 86 

 

Table 5.5.Accuracy with change in training to testing ratio 
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Figure 5.6 Accuracy with change in Training to testing ratio 

The vocabulary obtained after applying “bag of words” approach was of very 

high dimensionality. Model training on such a large vocabulary is very time 

consuming. Chi- square algorithm is used for feature selection to reduce the number 

of features in vocabulary. Chi-square algorithm although reduces the dimension of 

total vocabulary and increases the efficiency of model training, great care must be 

taken in selecting the ratio of features to be used in training out of total features. 

Increasing features and thus increasing training to testing ratio although increases the 

accuracy but execution time of algorithm increases as well. So, increasing the training 

vocabulary data beyond a certain limit is not feasible in real time applications.  
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Figure 5.7 Training to testing ratio versus execution time 

After observing the results of a number of experiments, it was found that the best 

results were obtained when the features having Chi value greater than 0.5 are taken 

and used in training. Therefore, 0.5 chi value was used as a threshold in model 

training. There were almost 1200 features with chi threshold 0.5 
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Figure 5.8: Comparison of Chi-Square and TFIDF 

 

There are a number of feature selection algorithms available. Two of these techniques 

are used in this research- Chi Square test and TFIDF.  Figure 5.8 shows that Chi 

Square algorithm proved to be more effective in this case and the features extracted 

through this algorithm gave better prediction accuracy.  

5.4  Comparison with Other Systems 

5.4.1  Classification system proposed by Lai Xu 

Proposed system using Naïve Bayes classifier is a probability based approach 

that works on the prior probability of classes and conditional probability of features in 

the classes. Another important model for text classification is support vector machine.  

Changzhu Kong,, Lian Yu, Lei Xu, HuiHui Zhang  and Jingtao Zhao used SVM for 

bug classification. Proposed technique using naïve Bayes text classifier has following 

advantages over this system: 
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a) When training data is small, proposed system performs better than SVM based 

system of Lei Xu. Training curve for SVM is much greater than Naïve Bayes and 

when enough training set is not given it does not perform well.  

b) As far as processing time is concerned Lei system is in a disadvantage. Processing 

time is much higher from the other proposed technique and it grows quadratically as 

the number of documents increases in training set. 

 

 

Figure 5.9 Accuracy Comparison of proposed system and one proposed by Lian Yu  

 

a) Proposed system starts with an advantage when a small number of documents are 

used in the training set, but then as the number of documents increases, the difference 

diminishes. As far as processing time is concerned Lian Yu system is in a 

disadvantage. Processing time is much higher from the other text classification 
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techniques and it grows quadratically as the number of documents increases in 

training set. 

Fabrice Colas and Pavel Brazdil gave the comparative analysis of Naïve Bayes and SVM in 

their research on the basis of processing time. Figure 5.5 shows that Naïve Bayes out 

performs SVM. Processing time of both algorithms is almost the same when the number of 

documents/number of features is small.  However, if the number of documents in training 

data increases, the processing time of SVM increases quadratically. 

 

 

 

Figure 5.10 Comparison of Naïve Bayes (2) and SVM (1) on the basis of processing time 

5.4.2  Comparison with John Anvik, Lyndon Hiew and Gail C. Murphy 

Technique 

John Anvik, Lyndon Hiew and Gail C. Murphy presented a bug classification 

technique for bug assignment to developers using semi automated technique. The 

approached used a supervised machine learning algorithm. 64% of maximum 

precision was obtained for firefox and eclipse data.  
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Chapter 6:  Conclusion and Future work 

6.1  Conclusion 

In open source bug repositories, bugs are reported by users. Triaging of these bugs is a 

tedious and time consuming task. If some proper class is assigned to these bugs it would be 

easier to assign these bugs to relevant developers to fix them. However, as reporters of these 

bugs are mostly non-technical it would not be possible for them to assign correct class to 

these bugs.  In this research an automated system for classifying these bugs is devised, using 

multinomial Naïve Bayes text classifier. Chi Square and TFIDF are used for feature 

selection. 

Data mining is a process of extracting meaningful information from raw data.  Data that is 

not numerical or categorical is considered unstructured and is not suitable for the purpose of 

data mining. Extracting meaningful information from this unstructured data is known as text 

mining. Text mining is not a separate field from data mining but an extension/specialization 

of it.  Text mining is used in applications like analyzing open-ended survey responses, 

automatic processing of messages and emails, analyzing warranty or insurance claims and 

diagnostic interviews, investing competitors by crawling their web sites and mining software 

repositories etc. 

Software systems have a history of how they came to be and this history is maintained in 

software repositories. Examples of software repositories are archive communication, bug 

repositories, code repositories and deployment logs etc. Although these repositories are a 

huge treasure of information about software system and software project but to extract useful 

knowledge from these repositories is a mess. Idea behind mining software repositories is to 

devise tools to access the wealth of information in these software repositories to extract 

useful knowledge by analyzing them. 

In this research a bug classification system is proposed that takes bugs from open bug 

repositories and classifies them in different labels/classes.  Any bug report is first 

preprocessed. During preprocessing, stop words are removed and stemming is applied to the 
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data.  Preprocessing would result in a huge vocabulary of words which is almost infeasible to 

use as it is. To decrease the dimensionality of vocabulary, feature selection technique is 

applied that reduces the vocabulary size and increases the efficiency of algorithm training. 

Chi square and TFIDF are used for feature selection. Chi square gave the best results out of 

the algorithms. Naïve Bayes classifier is used for classification and maximum of 89% 

accuracy is obtained on training to testing ratio of 1:10.  

Lei Xu,, Lian Yu, Jingtao Zhao, Changzhu Kong, and HuiHui Zhang proposed a 

classification model based on SVM. Our technique using Naïve Bayes text classifier has 

following advantages over SVM. 

a) When training data is small, Naïve Bayes performs better than SVM. Training curve 

for SVM is much greater than Naïve Bayes and when enough training set is not given 

it does not perform well.  

b) As far as processing time is concerned SVM is in a disadvantage. Processing time is 

much higher than the other text classification techniques and it grows quadratically as 

the number of documents increases in training set. 

6.2  Future Work 

The system can be further improved by applying feature selection techniques other than Chi-

Square and TFIDF. 

Synonym dictionary can be used so that system can tackle the issue of understanding the 

synonyms of the same words. For instance, if a user reports a bug related to firefox, system 

should consider it firefox whether user uses the word browser or Mozilla firefox for it.  

Future work can be devoted to the development of an automated triaging system using our 

approach that assigns bugs to relevant developers to be fixed. Furthermore, bug repositories 

can be used in combination with other repositories like code repositories to find more error 

prone areas of a project.  
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Appendix A 

"about", "above", "across", "after", "again", "against", "all", "almost", "alone", 

"along", "already", "also", "although", "always", "among", "an", "and", "another", 

"any", "anybody", "anyone", "anything", "anywhere", "are", "area", "areas", "around", 

"as", "ask", "asked", "asking", "asks", "at", "away", "back", "backed", "backing", 

"backs", "be", "became", "because", "become", "becomes", "been", "before", "began", 

"behind", "being", "beings", "better", "between", "big", "both", "but", "by", "came", 

"can", "cannot", "case", "cases", "certain', 'certainly", "clear", "clearly", "come", 

"could", "did", "differ", "different", "differently", "do", "does", "done", "down", 

"down", "downed", "downs", "during", "each", "early", "either", "end", "ended", 

"ending", "ends", "enough", "even", "evenly", "ever", "every", "everybody", 

"everyone", "everything", "everywhere", "face", "faces", "fact", "facts", "far", "felt", 

"few", "find", "finds", "irst", "for", "four", "from", "for", "ull", "fully", "further", ", 

'urthered", "furthering", "furthers", "gave", "general", "generally", "get", "gets", "ive", 

"given", "ives", "go", "going", "good", "got", "great", "greater", "greatest", "roup", 

"grouped", "grouping", "groups", "had", "has", "have", "having", "he", "her", "here", 

"herself", "high", "high", "high", "highe", "highest", "him", "himself", "his", "how", 

"however", "if", "important", "in", "interest", "interested", "interesting", "interests", 

"into", "it", "its", "just", "keep", "keeps", "know",  "known", "knows", "large", 

"largely", "last", "later", "latest", "least", "less", "let", "lets", "like", "likely", "long", 

"longer", "longest", "made", "make", "making", "man", "many", "may", "me", 

"member", "members", "", "might", "more", "most", "mostly", "mrs", "much", 

"must", "my", "myself", "necessary", "need", "needed", "needing", "needs", "never", 

"new", "new", "newer", "newest", "next", "no", "nobody", "non", "noone", "not", 

"nothing", "now", "nowhere", "number","numbers", "of", "off", "often", "old", "lder", 

"oldest", "on", "once", "one", "only", "open", "opened", "opening", "opens", "order", 

"ordered", "ordering", "orders", "other", "others", "our", "out", "over", "part", 

"parted", "parting", "parts", "per", "perhaps", "place", "places", "point", "pointed", 

"pointing", "points", "possible", "resent", "presented",  "presenting", "presents", 

"problem", "problems", "put", "puts", "quite", "rather", "really", "right", "right", 

"room", "rooms", "said", "same", "saw", "say", "says", "second", "seconds", "see", 
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"seem", "seemed", "seeming", "seems", "sees", "several", "shall", "she", "should", 

"show", "", "howed", "showing", "shows", "side", "sides", "since", "small", "smaller", 

"smallest", "so", "some", "somebody", "someone", "something", "somewhere", 

"state", "states", "still", "still", "such", "sure", "take", "taken", "than", "that", "the", 

"their", "them", "then", "there", "therefore", "these", "they", "thing", "things", "think", 

"thinks", "this", "those", "though", "thought", "thoughts", "three", "through", "thus", 

"to", "today", "together", "too", "took", "toward", "turn", "turns", "two", "u", "under", 

"until", "up", "upon", "us", "use", "used", "uses", "very", "want", "anted", "wanting", 

"wants", "was", "way", "ways", "we", "well", "wells", "went", "were", "what", 

"when", "where", "whether", "which", "while", "who", "whole", "whose", "why", 

"will", "with", "within", "without", "work", "worked", "working", "works", "would", 

"year", "ears", "yet", "you", "young", "younger", "youngest", "your", "yours", "is", 

"a", "the", "or", "doesn‟t"  
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