
An Automated Approach for Software Bug Classification

By

NEELOFAR

2008-NUST-MS PhD-CSE (E)-21

MS-8 (SE)

Submitted to the Department of Computer Engineering

In fulfillment of the requirements for the degree of

Master of Science

in

Computer Software Engineering

Thesis Advisor

Brig. Dr. Muhammad Younus Javed

College of Electrical & Mechanical Engineering

National University of Sciences & Technology

2012

In the name of Allah, the most
Beneficent and the most Merciful

DECLARATION

I hereby declare that I have developed this thesis entirely on the basis of my personal efforts under

the sincere guidance of my supervisor (Name of Your Supervisor). All the sources used in this

thesis have been cited and the contents of this thesis have not been plagiarized. No portion of the

work presented in this thesis has been submitted in support of any application for any other degree

of qualification to this or any other university or institute of learning.

Signature_________________

Neelofar

ACKNOWLEDGEMENTS

I am very lucky to have met my advisor Dr. Younas Javed. He offered me advice on potential

research topics and helped me through my research. He was kind and always encouraging. His

great talent in understanding my ideas helped direct me along the right path. He provided me with

advice for, not only my research, but personal issues as well. Whenever I had issues in my life, I

didn’t hesitate to bring them to him. Without his guidance, it would not have been possible to

perform my research and finish my M.S.

My Mom has been with me throughout my entire graduate career. She provided me with a

tremendous amount of love and support. Whenever I was downhearted, she encouraged and

provided me with the power to overcome my hardships.

My Friend Hufsa and my sister Huma provided me full support during the entire period of my

research. With the love and cooperation of all these people I am today able to submit this

dissertation of mine.

ABSTRACT

Open source projects for example eclipse and fire fox have open source bug repositories. User

reports bugs to these repositories. Users of these repositories are usually non-technical and cannot

assign correct class to these bugs. Triaging of bugs to developer to fix them is a tedious and time

consuming task. Developers are usually expert in some particular area. For example few

developers are expert in GUI and others are in pure java functionality. Assigning a particular bug

to relevant developer could save time as well as would help to maintain the interest level of

developers by assigning those bugs according to their interest. However Assigning right bug to

right developer is quite difficult for tri-ager without knowing the actual class a bug belongs to. In

this research, I have classified the bugs in different labels on the basis of summary of the bug. I

have used multinomial Naïve Bayes text classifier for Classification purpose. For feature selection

Chi-Square and TFIDF algorithms were used. Using Naïve Bayes and chi- square we get average

of 83 % accuracy.

1

CHAPTER 1: INTRODUCTION TO TEXT MINING 6

1.1 INTRODUCTION 6

1.2 CLASSIFICATION 6

1.3 DIFFERENCE BETWEEN CLASSIFICATION AND CLUSTERING 7

1.4 APPLICATION DOMAINS OF CLASSIFICATION 8

1.5 CLASSIFICATION ALGORITHMS 9

1.5.1 DECISION TREE 9

1.5.2 NAIVE BAYES 10

1.5.3 GENERALIZED LINEAR MODELS 10

1.5.4 SUPPORT VECTOR MACHINE 11

1.6 CLASSIFICATION- A TWO STEP PROCESS 11

1.6.1 MODEL CONSTRUCTION AND TRAINING 11

1.6.2 PREDICTION THROUGH TRAINED MODEL 12

1.7 SUPERVISED VS. UNSUPERVISED CLASSIFICATION 12

CHAPTER 2: INTRODUCTION TO MINING SOFTWARE REPOSITORIES 14

2.1 INTRODUCTION 14

2.2 HISTORY OF MINING SOFTWARE REPOSITORIES 14

2.3 EFFECT OF OPEN SOURCE SOFTWARE 15

2.4 OTHER EARLY USES 16

2.5 MSR WITHIN SOFTWARE ENGINEERING AND PROCESS 17

2.5.1 MSR AND SOFTWARE ENGINEERING 17

2.5.2 SOFTWARE MAINTENANCE: 18

2.5.3 OTHER USES IN SOFTWARE EVOLUTION 18

CHAPTER 3: LITERATURE REVIEW 20

3.1 PREVIOUS RESEARCH 20

3.2 A FRAMEWORK FOR AUTOMATIC ASSIGNMENT OF BUGS 20

3.3 A DYNAMIC APPROACH TO SOFTWARE BUG ESTIMATION 20

3.4 BUG CLASSIFICATION IN WEB BASED APPLICATIONS 21

3.5 AUTOMATED DUPLICATE BUGS DETECTION 21

3.6 SOFTWARE ESCALATION PREDICTION WITH DATA MINING 21

3.7 AUTOMATIC BUG TRIAGE USING TEXT CATEGORIZATION 22

3.8 IF YOUR BUG DATABASE COULD TALK 24

3.9 ADAPTIVE BUG PREDICTION BY ANALYZING PROJECT HISTORY 24

3.10 MINING IN SOFTWARE ARCHIVES TO DETECT HOW DEVELOPERS WORK TOGETHER 25

3.11 FINDING CO-EVOLUTION OF PRODUCTION & TEST CODE USING MSR 25

2

3.12 CHALLENGES IN SOFTWARE EVOLUTION 26

CHAPTER 4: DESIGN AND IMPLEMENTATION 29

4.1 THE LIFECYCLE OF A BUG REPORT 29

4.2 BUG REPORTS 30

4.3 PRE-PROCESSING 32

4.3.1 STOP WORDS REMOVAL 33

4.3.2 STEMMING 33

4.3.3 MANUAL EXTRACTION 33

4.4 FEATURE SELECTION 34

4.4.1 CHI-SQUARE TESTING: 34

4.4.2 TF-IDF: 35

4.5 CLASSIFIER MODELING AND TRAINING 35

4.5.1 NAÏVE BAYES TRAINING 36

4.5.2 TRAINING STEPS 36

4.5.3 MODEL TESTING 38

4.6 DRY RUN 39

4.6.1 PRE-PROCESSING 40

4.6.2 SYSTEM TRAINING 42

CHAPTER 5: TESTING AND EXPERIMENTAL RESULTS 49

5.1 TESTING 49

5.2 TEST CASES 49

5.2.1 TEST CASE1 49

5.2.2 TEST CASE 2 51

5.2.3 TEST CASE 3 53

5.2.4 TEST CASE 4 54

5.2.5 TEST CASE 5 55

5.3 EXPERIMENTAL RESULTS 55

5.3.1 CLASSES HAVING VARYING NUMBER OF RECORDS: 56

5.3.2 CLASSES HAVING SMALL TRAINING SET 58

5.3.3 CLASSES HAVING REFINED DATA OBTAINED BY IMPROVED PRE PROCESSING 59

5.4 COMPARISON WITH OTHER SYSTEMS 63

5.4.1 CLASSIFICATION SYSTEM PROPOSED BY LAI XU 63

5.4.2 COMPARISON WITH JOHN ANVIK, LYNDON HIEW AND GAIL C. MURPHY 65

CHAPTER 6: CONCLUSION AND FUTURE WORK 66

6.1 CONCLUSION 66

3

6.2 FUTURE WORK 67

CHAPTER 7: REFERENCES 68

APPENDIX A 71

4

List Of Figures

Figure 1.1 Decision tree for churn analysis of Cellular Telephony Network __________________ 100

Figure 1.2 Model construction and training __ 111

Figure 1.3 Prediction using trained model ___ 122

Fig. 3.1 Escalation Prediction Solution Architecture ____________________________________ 222

Figure 3.2 Architecture of JDF Tool ___ 288

Figure 4.1 Bug classification system __ 29

Figure 4.2 bug report obtained from Bugzilla bug repository ______________________________ 31

Figure 4.3 Information contained in bug reports __ 32

Figure 4.4 Data preprocessing steps and techniques _____________________________________ 33

Figure 4.5 Feature selection using Chi Square and TFID __________________________________ 35

Figure 4.6 Naïve Bayes Training ___ 38

Figure 4.7 Flow chart for Naïve Bayes Training ___ 39

Figure4.8 Naïve Bayes testing __ 39

Figure 4.9 Flow chart for Naïve Bayes Testing ___ 400

Figure 4.10 Tokens and their frequencies of class “build” ________________________________ __ _42

Figure 4.11 Tokens and their frequencies of class “intro”_____________________________________42

Figure 4.12 frequency of each token of vocabulary V in vocabulary Textc_______________________44

Figure 5.1 Snapshot of Test Case 1 __ 500

Figure 5.2 Snapshot of Test Case 1 __ 511

Figure 5.3 Snapshot of Test Case 2 __ 522

Figure 5.4: Snapshot of Test Case 3 ___ 533

Figure 5.5: Model building by finding probabilities of features against a class ________________ 535

Figure 5.6 Accuracy with change in Training to testing ratio _______________________________ 61

Figure 5.7 Training to testing ratio versus execution time ________________________________ 622

Figure 5.8: Comparison of Chi-Square and TFIDF _______________________________________ 633

Figure 5.9 Accuracy Comparison of proposed system and one proposed by Lian Yu ___________ 644

Figure 5.10 Comparison of Naïve Bayes (2) and SVM (1) on the basis of processing time _______ 655

5

List of Tables

Table 4.1 Bugs and their classes ___39

Table 4.2 Conditional probability of all the tokens belonging to class “build” ________________45

Table 4.3 Conditional probability of all the tokens belonging to class “intro” ___ __________________46

Table 5.1 Classes in training data with number of bugs ______________________________________57

Table 5.2 Experimental results with classes having varying number of data ______________________58

Table 5.3 Training classes with number of bugs __59

Table 5.4 Experimental results with classes having small difference in record set _________________59

Table 5.5 Accuracy with change in training to testing ratio ___________________________________60

6

CHAPTER 1: Introduction to Text Mining

1.1 Introduction

Data mining is the process of extracting useful information through data analysis. It is

also known as knowledge discovery. Useful knowledge obtained as a result of data mining

can be use to cuts costs, increase revenues or both. Target data for mining purpose is

categorical and numerical having data types like integer, decimal, float, char, varchar2 etc.

In case one wants to mine numerical or categorical data then what should be the

technique? Some examples of data other than numerical or categorical are product

specifications, emails, sound files, web documents, document libraries, digital images and

power point presentations etc. How to perform mining if data is descriptive such as comment

fields in reports, product descriptions or call centre notes?

 Data mining techniques cannot be applied to data that is not numerical or categorical.

85% of enterprise data falls in the category of non numerical or non categorical [2]. For the

success of business, knowledge extraction from this unstructured data can be critical.

Unstructured data is processed using text mining techniques so that it can be

processed by data mining algorithms and techniques. Techniques from information

extraction, information retrieval and natural language processing are used by text mining [2].

Text mining is not a separate field from data mining but an extension/specialization of it. The

source of information in data mining is numeric or categorical data which is easy to use for

knowledge extraction. But in text mining, data is in the form of documents/text which

requires a lot of pre-processing to make it analyzable for knowledge extraction algorithms.

1.2 Classification

Classification is a function of data mining to assign classes/categories to items in a

collection. Basic goal of classification is the accurate prediction of target class for each case

in data. For example, loan applications can be classified into high, medium or low risks on

the basis of classification model.

7

For classification a dataset is required in which classes are already known. For

instance, classification model for credit risk prediction would require observed data for loan

applications collected over a long time. Other attributes like employment history, number of

investments, type of investments, home ownership, time of residence etc are also tracked

along with historical credit rating. In this example all the attributes will be the predictors, the

target would be the credit rating and each customer data would be the case.

Classifications apply to discrete data. Order does not get implied in classification.

Floating point, continuous values are numerical rather than categorical. Such models use

regression algorithm rather than classification algorithms for prediction.

Binary classification is simplest type of classification. In this classification there are

only two target values. In loan risk example, for example there are only two target values:

high credit rating and low credit rating. In multiclass classification there is more than one

target value like unknown, high, medium or low credit rating.

During training process (also known as model build process), classification algorithm

finds the relationship between target values and predictors. Different techniques are used by

different classification algorithms for finding relationship. The trained model is then applied

to data set in which class assignments are unknown for classification purpose.

During testing phase, results which are predicted by classification models are

compared with known target values in data set. Classification data is typically divided into

two sets for classification purpose: one for the training purpose (model building) and other

for testing the model.

1.3 Difference between classification and clustering

Usually clustering and classification are considered as same, but actually they are

different analytical approaches. In order to differentiate between the two consider some data

having customer records, where customer‟s attribute is represented by each record. There can

be number of identifiers included like demographic information, name, financial attributes

like revenue spent and income, address, age and gender etc. Clustering techniques are used to

8

group together the related records. The grouping is done on the basis of records having

similar attribute values. Clustering is often used as an exploratory process because for the

analyst/end-user may not necessarily specify ahead of time how records should be related

together. Basic objective of clustering is in fact to discover clusters and then examine the

values and attributes that define segments or clusters. Such analysis can be used to drive

promotion strategies and marketing to target specific types of customers.

There are large number of clustering algorithms available, all of which work on the

process of assigning records to a cluster, calculating similarity and/or distinctiveness

measure, and records reassignment to clusters until measure get stable showing that a stable

segment is obtained by converging the process. Clusters are created by placing similar

records in a same cluster. These records are more similar to each other and more different

from the records of other clusters. Different similarity measures are used for clustering e.g.

statistical variability, spatial distance etc. Overall goal of all these approaches is to converge

to groups of related records.

Although classification is different technique than clustering but still there are some

similarities between the two approaches. Like clustering, classification also segment records

into distinct segments called classes. But unlike clustering, in classification analysis, how

classes are defined is known ahead of time. For example, in customer loan applicants

example discussed above the default classes would be (Yes/No). In classification training

data is mandatory to build model. Training data have already defined classes (already

classified). Classification is not as exploratory as clustering because each record has a value

for the attribute used to define the classes. Main objective of classification is to decide how

new records should be classified instead of explore the data to discover interesting segments

[1].

1.4 Application Domains of Classification

Classification has number of applications in drug and biomedical response modeling,

business modeling, customer segmentation, credit analysis and marketing. In some of these

applications it is used as a function of data mining while in others it‟s used as statistical

modeling. Some of the common applications of classification are:

9

a. Drug discovery and development

1. Quantitative structure-activity relationship

2. Toxicogenomics

b. Computer vision

1. Optical character recognition

2. Medical imaging and medical image analysis

3. Video tracking

c. Handwriting recognition

d. Geostatistics

e. Biometric identification

f. Speech recognition

g. Biological classification

h. Document classification

i. Statistical natural language processing

j. Internet search engines

k. Pattern recognition

l. Credit scoring

1.5 Classification Algorithms

1.5.1 Decision Tree

Decision trees are classification models in which leaves represent dataset

partitions/classes while branches represent classification question. Some known

algorithms of decision tree are ID3, C4.5, Cart. Figure 1.2 shows a decision tree for

churn analysis of a telephonic company.

http://en.wikipedia.org/wiki/Drug_discovery
http://en.wikipedia.org/wiki/Drug_development
http://en.wikipedia.org/wiki/Quantitative_structure-activity_relationship
http://en.wikipedia.org/wiki/Toxicogenomics
http://en.wikipedia.org/wiki/Computer_vision
http://en.wikipedia.org/wiki/Optical_character_recognition
http://en.wikipedia.org/wiki/Medical_imaging
http://en.wikipedia.org/wiki/Video_tracking
http://en.wikipedia.org/wiki/Handwriting_recognition
http://en.wikipedia.org/wiki/Geostatistics
http://en.wikipedia.org/wiki/Biometric
http://en.wikipedia.org/wiki/Speech_recognition
http://en.wikipedia.org/wiki/Biological_classification
http://en.wikipedia.org/wiki/Document_classification
http://en.wikipedia.org/wiki/Statistical_natural_language_processing
http://en.wikipedia.org/wiki/Search_engines
http://en.wikipedia.org/wiki/Pattern_recognition
http://en.wikipedia.org/wiki/Credit_scoring

10

Figure 1.1 Decision tree for churn analysis of Cellular Telephony Network [30]

1.5.2 Naive Bayes

Naïve Bayes classifier is a probabilistic classification model based on Bayesian

theorem with independent assumptions. “Independent feature model” would be the more

descriptive form term for this model.

Independent assumption means the presence or absence of a feature of a class is

independent of presence or absence of another feature. For example, an apple has features

like it is red, about 4” in diameter and round. Naïve bayes classifier marks all these

features to be equally contributed to the probability that this fruit is an apple.

1.5.3 Generalized Linear Models

Generalized linear model is a generalized version of linear regression that generalizes the

linear model by relating it to the response variable through some link function and by

allowing the magnitude of the variance of each measurement to be a function of its

predicted value.

11

1.5.4 Support Vector Machine

Support vector machine (SVM) analyzes data to recognize patterns which are then

use for regression analysis and classification. SVM is a supervised learning method that

takes a set of input data and using this it predicts the possible class against each input.

Standard SVM is a non-probabilistic binary linear classifier. Given training data, in

which each record belong to one of the two categories, an SVM training algorithm builds

a classification model that can categorize the new unclassified records into one of the two

classes.

SVM uses vector representation in which examples are mapped as points in space in

such a way that examples belonging to separate categories are divided by a clear gap that

is as wide as possible. Using the same space new examples are mapped and predicted to

belong to one of the two categories.

1.6 Classification- A two Step Process

1.6.1 Model construction and training

Classifier model is constructed in this step using training data and classification

algorithm.

Figure 1.2 Model construction and training [31]

12

1.6.2 Prediction through trained model

Trained model is applied on data without labels. Labels/classes of data is predicted using the

trained model.

Figure 1.3 Prediction using trained model [31]

1.7 Supervised vs. Unsupervised Classification

Machine learning algorithms are divided into two categories: supervised and

unsupervised. The difference is on the basis on how classification model classifies data. In

supervised learning algorithms, classes are predefined. In other words certain segment of data

will be labeled using such classification models. Machine learner‟s task is pattern searching

and mathematical model construction. Accuracy of model is then measured by evaluating the

prediction accuracy of model. Some examples of supervised learning algorithms are decision

tree, Naïve Bayes etc.

In unsupervised learning labels are not predefined. Basic task of unsupervised

learning is automatic classification labels development. Classification is done on the basis of

13

similarity between records in such a way that they can be assigned in a group. These groups

are knows as clusters.

 Unsupervised learning is also known as cluster analysis. In cluster analysis prediction

model is not told how texts/records are to be grouped. It‟s the task of clustering algorithm to

arrive at some group/cluster. In some unsupervised algorithms (K-means e.g.), number of

clusters to be created is told to machine in advanced.

14

Chapter 2: Introduction to Mining Software Repositories

2.1 Introduction

To understand constantly evolving software systems is a very daunting task. Software

systems have history of how they come to be and this history is maintained in software

repositories. Software repositories are the artifacts that document the evolution of software

systems. Software repositories often contain data from years of development of a software

project. [4]

Examples of software repositories are:

a) Runtime Repositories: Example of runtime repositories are deployment logs that

contain useful information about application usage on deployment sites and its

execution.

b) Historical Repositories: Examples of historical repositories are bug repositories,

source code repositories and archived communication logs.

c) Code Repositories: Examples of code repositories are Google code and codeforge.net

that store source code of various open source projects. [3]

By referring these repositories, one can easily understand a piece of code. Although these

repositories are a huge treasure of information about software system and software project

but to extract useful knowledge from these repositories is a mess. So, the idea behind mining

software repositories is to devise tools to access this wealth of information and to extract

useful knowledge by analyzing them.

MSR is the process of software repositories analysis to discover meaningful and

interesting information hidden in these repositories.

2.2 History of mining software repositories

Meir Lehman‟s studies of IBM operating system software introduced the concept of

software evolution. He discovered that software evolution was largely the result of feedback

system rather than individual management decisions, and that studying the feedback process

could lead to more effective software management. He identified defect reports, advances in

15

technology, changes resulting from installation and operation of the system and changing

user needs as some of the feedback mechanisms [5]. He found that it is important to study

the input and output entities of feedback systems both individually and jointly.

While Lehman‟s studies of IBM sparked interest in investigations of software

repositories, research was limited by lack of access to repositories that contained long-term

rich data worth investigating. Commercial software developers, the most valuable source of

data, were, in most cases, unwilling to make their repositories public. A few commercial

enterprises, however, did allow researchers to access their information. [4].

Basili and Perricone [6] used data from a NASA software project to analyze the

relationship between software development errors and environmental factors such as module

complexity, developer familiarity with software, and whether the module was new or

modified. Mockus, Weiss, and Yang [7] used MSR with version control and problem

tracking repositories from Avaya Labs to predict how much effort would be needed to repair

problems during development or after release of a software project. ATT, Nortel, Nokia, and

Mitel also made their software databases available to MSR researchers. However, it was the

advent of open source software that resulted in access to the large, varied, and long-term

software repositories needed for productive MSR research. [4]

2.3 Effect of Open Source Software

Two of the most popular open source version control systems are CVS (Concurrent

Versioning System) and SVN (Subversion). These two repositories are basically the source

code repositories that track changes in source code and maintain such information as well

like who made this change, when was the change made, at which revision a particular file is

committed etc. Bugzilla and jira are bug repositories. Each bug report contains a summary

description of the bug, when it was reported, its severity and priority, operating system in

which it was reported, its current status etc. Communication repositories include project

emails, chats and other archived communications between developers working on a project.

Runtime repositories containing deployment and execution audit data, source forge and

16

Google code that are centralized repositories are some other open source repositories

available to MSR.

Open source software repositories offer a wealth of information but to extract

meaningful information from them is not easy due to lack of integration. Code of the project

might move to SVN, the developers of the same project discuss this code with other

developers via email and bug tracking tools contain the bug reports of the same project.

Although all the necessary information of the project is stored in these repositories but these

repositories are not integrated to each other and there is no way to retrieve all of developer‟s

activities or to track artifacts across different projects.

The Hipikat tool, developed by Cubranic et al [8], is one attempt to overcome the

problem of non-integrated repositories in MSR research. Cubranic et al addressed the

problem that arises in a situation when a new software developer joins a team that is already

working on any project and new developer must be trained to speed up the project. When

members of the development team are in the same location, a senior developer can explain

the intricacies of the project to the new developer and provide feedback and advice.

However, when the team is a virtual team, this type of support is not available. Hipikat is an

MSR tool that accesses the entire project memory source code, bug tracking,

communications, and project documents by establishing relationships between the artifacts.

Hipikat establishes these relationships by combining information from different sources, or

by inferring relationships based on meta-information contained within the databases. A

major advantage of Hipikat is that it builds the project memory automatically and does not

require any significant changes in existing work practices. [8]

2.4 Other Early Uses

Some other uses of MSR which were worked out in its early life were bug

identification and prediction, and finding the code that can be reused by developers for their

need. CP-Miner is a tool, developed by Li and Lu that can identify copy-paste code and

copy-paste bugs in large software systems. [9] Copy-paste approach is used in large software

applications to reuse code and thus to reduce development effort but this strategy might be

17

the source of bugs in the system because developers forget to modify the identifiers in such

code. Mandelin et al developed the Prospector tool to help developers search repositories to

find specific code for reuse. The user submits a simple query describing the desired input and

output, and Prospector automatically returns a candidate list of code snippets. [10]

Although the early uses of MSR showed valuable contributions of this field but still

the need of the time was further research in this field to create tools and techniques to help

analyzing these repositories and extracting meaningful information from them. A one day

international Workshop on MSR was held in Edinburg, Scotland in 2004. It continued to be

an annual event expanding to a Workshop Conference in 2008.

2.5 MSR within Software Engineering and Process

2.5.1 MSR and Software Engineering

There is a huge Software Engineering data over the course of time. MSR picks

this data, processes and analyzes it, and detects patterns in this data. MSR is an open

field, both in what can be mined and what one can learn from the practice. Any

software repository can be mined not necessarily the code, bug or archived

communication repositories. One prize winning study in MSR analyzed the use of

IRC channels used as a source of meetings between developers developing open

source project. In that project, chat logs were mined to find the information such as

when was the meeting held, which developers attended the meeting, what was

discussed and most important whether the meeting was useful or not.

Another important source of information is archive communication

repositories such as emails which were used as a source of communication between

developers. Similarly, bug repositories can be used along with the source code

repositories having change logs, for instance, comments in CVS and summary given

by the user while reporting bug can be used for source code changes categorization as

an attribute of corrective maintenance activity. Another major repository to be mined

is source code repository. Much creative information can be mined from this

repository, for example, using source code as a communication tool, one analyst

18

conducted a research in which he used the comments (e.g. TODO tag) as a source of

communication. Such comments are termed task comments. Although this is not a

good source of information like communication archives but at least it shows a

company it‟s high time to have a communication tool as code comments are hardly an

ideal way to communicate.

2.5.2 Software Maintenance:

These repositories track software changes by managing software evolution.

Software change is defined as addition, deletion, or modification in software artifacts.

Most important artifact in software life cycle is source code change. All other artifacts

are maintained to manage and track these code changes [11]. These repositories grow

larger and larger with the evolution of software and thus these are the best part where

MSR can be applied. Software maintenance is the most expensive part of software

life cycle and thus MSR techniques prove to be extremely valuable by benefiting this

piece of process. Code cloning is an inexpensive way to reuse existing code.

However, analyzing the software repositories which use this technique, it is found

that using this technique makes the maintenance of these software products quite

complicated and thus too much clone code is a risk.

MSR techniques are very effective in predicting faults. Gall worked on

common semantic dependencies between source code classes due to modification or

addition of a class, on the basis of its version history. Thus, by using the repositories,

one can see the coupling and dependency between classes or other piece of codes and

thus help in maintenance of system by seeing what other components might affect by

changing the particular component. In fact, fault finding and predicting is probably

the largest application of MSR. A number of tools are created for this purpose.

2.5.3 Other Uses in Software Evolution

By using MSR, developers and architects can have an insight into the design

of the system that would be impossible otherwise. To create a software using visual

representation is one of the most confusing and difficult tasks in software

engineering. This is crucial when dealing with legacy systems or during reverse

engineering. Mining repositories can help with this issue in a number of ways.

19

Eclipse repositories were mined to develop author topic models to help

developers find the experts on the given part of the system. Author-Topic modeling

(AT) captures the relationship of author and topic. Of course, general reverse

engineering would be a lofty goal. Some information is not available in software

repositories such as architecture models and designs. They are required to be

reproduced using reverse engineering to support MSR questions. This sort of

information is essential to software evolution as component and subsystem reuse is

seen by many to be the best way to decrease the time required to bring a software

product to completion. By mining the repositories available, one can certainly gain

valuable architectural insights though.

20

Chapter 3: Literature Review

3.1 Previous Research

An extensive research has been conducted to learn the techniques and algorithms

which are already being used in field of MSR. Some of these techniques are mentioned in

this section.

3.2 A framework for automatic assignment of bugs

Manual bugs triaging i.e. bugs assignment to individual developers for fixation is a

time consuming and tedious task. Micheal W. Godfrey, Olga Baysal and Robin Cohen

presented a framework for automatic assignment of bugs to developers for fixation [12]. The

approach presented by them employs preference elicitation to learn developer predilections

in fixing bugs. The knowledge about developer‟s expertise is inferred by analyzing the bugs

history fixed by the developer. When a new bug report arrives, using vector space model,

system automatically assigns it to the appropriate developer considering developer‟s

expertise, preference and workload. He addresses the task allocation problem by proposing a

set of heuristics that support accurate assignment of bug reports to the developers.

3.3 A Dynamic Approach to Software Bug Estimation

Outsourcing is a common trend in today‟s software market. Project development in

globally distributed environment is increasing day by day. However, to manage these

globally distributed projects and their resources is much harder. Hemant Josh, Chuanlei

Zhouang, Oskum Bayrak presented a methodology to predict future bugs using history data.

This information can be used for support management and resource planning in distributed

projects. Their algorithm works in a two step analysis mode: Global and Local. Global

analysis, for each component, finds the counts of bug over time while local analysis analyzes

the past history of a bug. Results were compared by eclipse software data and bug prediction

was very close to the actual bug count [13].

21

3.4 Bug Classification in Web Based Applications

Popularity of web based applications is increasing day by day and they are changing

life styles of people. Dependency of people on web based applications is an increasing trend.

However, web based applications development is still a very challenging task, depicted by

hundreds and thousands of bugs reported daily in bug reporting and tracking tools. Lei Xu,

Lian Yu, Jingtao Zhao, Changzhu Kong, and HuiHui Zhang proposed an algorithm using

data mining techniques that automatically classifies the bugs of web-based applications by

predicting their bug type. They further proposed debug strategy association rules which find

the relationship between bug types and bug fixing solutions. Debug strategy is built based on

what was the bug, and what was the most effective solution given by the developer to fix it

[14].

3.5 Automated Duplicate Bugs Detection

In software evolution, bug tracking tool is very important to record the software

maintenance activities and bugs and problems in a system. However, in open source bug

tracking systems like mentis and bugzilla, a number of duplicates are reported which hamper

the utility of these bug tracking systems. Sometimes, as many as one fourth of all the reports

in a project are duplicates. Triagers and developers identify duplicate bug reports manually

which is a time consuming and high cost process in terms of project management and

maintenance. Nicholas Jalbert and Westley Weimer proposed a system that automatically

indicates whether an arriving bug report is original or duplicate of an already existing report.

It saves developer‟s time. To predict bug duplication, system uses textual semantics, graph

clustering and surface features. In their experiments, they used bug data from Mozilla bug

repository and included almost 29,000 bug reports. Experimental results show that the system

was able to filter out 8% of duplicate bugs and thus reduces the development cost [15].

3.6 Software Escalation Prediction with Data Mining

Defect escalation is a term used for significant impact of a defect on customer‟s

operations. Defect escalation has a very poor impact on software user in terms of software

22

quality. These defects are then tried to be fixed as quickly as possible, at a high cost, outside

the general product release engineering cycle. Even if the defects are reported by software

vendors and customers before they are escalated, to prioritize them quickly and accurately for

resolution is not always possible. Inaccurate prioritization may lead to escalation of defects,

even previously known and reported. Apart from unknown defects, escalation of known

defects amounts to millions of dollars per year, labor cost along with the loss of reputation,

loyalty, satisfaction and repeat revenue due to inaccurate prioritization. Tilmann Bruckhaus

provided a technique for Escalation Prediction (EP) to avoid escalations by predicting the

defects that have high escalation risk and then by resolving them proactively[16].

Fig. 3.1 Escalation Prediction Solution Architecture

3.7 Automatic bug triage using text categorization

For the management of bug reports and resources to fix these bugs, a bug tracking

system is required by large software development projects. One example of such system is

Bugzilla, which was first introduced in the development of Mozilla as an open source bug

23

tracking system but now used in a number of other projects as well. In open sources software

development projects, team members are usually dispersed around the world. Developers,

project managers and other resources rarely see each other. Bug tracking systems are

especially important in management of such open source large software projects. In such

projects, bug tracking system is not just a tool for reporting and tracking bugs but also to

coordinate work among developers.

An important section in bug reports is “Additional Comments”. Most bug tracking

systems provide the facility to add comments to bug reports. This feature is really helpful in

geographically and time dispersed software projects and can help to fill a slot for issue

specific, focused discussion. For implementation details these comments serve as forum. All

the team members like developers who due to their expertise and insight can help in design

deliberations and all the stakeholders whose code will be affected by the modifications which

are proposed are included into discussion through these bug reports. Users having interest in

quick fix of the bug can also join in.

To deal with new bug reports and their fixation as quickly as possible is very

important. If the developers ignore the bugs reported by a user or new features demanded by

customers, it can kill the overall repute and turn the users away. In large open source

software projects triaging bug to developers is a difficult task both due to a very large

number of bugs reported daily and duplicate bugs. One who can best identify the bug-

whether it‟s a real bug or duplicate is the developer. However, it would be too much time

consuming and would be a burden for a developer. Therefore, in large open source projects

such as Eclipse and Mozilla a separate team member is dedicated to triaging. It‟s not an ideal

solution as it would introduce more delays and potential errors in case of wrong decision by

triager of assigning which report to which developer. Davor and Gail presented a technique

using machine learning, and in particular text categorization, to “cut out the triageman” and

automatically assigns bugs to developers based on the description of the bug as entered by

the bug‟s submitter. They used multinomial Naïve Bayes algorithm for the prediction of

duplicate/Real bug. Prediction accuracy was 30% when training to testing ratio was 9:1 [17].

24

3.8 If Your Bug Database Could Talk

Bug databases list all the bugs and problems that arose during software development life

cycle and thus are most consistent sources for failure information. But the bug databases are

not too descriptive to record how the problem arose, what the impact area was and who fixed

it. Code repositories, archived communications, deployment logs etc. contain this

information. Using these entire databases, one can find the relationship between bug and

fixes. Fixes are related to locations. Using this relation Thomas Zimmerman, Adrian

Schroter, Andeas Zmmeller and Rahul Premraj determined the density of defects in a

component by counting the applied fixes. They used Eclipse programming environment code

base and worked on the bugs that were reported in first six months of project development

[18]. The research questions illustrated by them are:

a) Is it possible to use code complexity to predict failure proneness?

b) Is there any relationship between bugs‟ number after release and during testing?

c) Are there more errors in the code of some developers than others?

Using the code repositories and bug repositories one can find the change in the code that

introduces a bug and one that fixes it. Using this information one can predict the future bugs.

3.9 Adaptive bug prediction by analyzing project history

Sunghun Kim presented two bug prediction algorithms to analyze a project‟s change

history: Bug cache and Change classification. Bugs cache approach works on the assumption

that bugs do not occur in isolation rather in a burst of group of related bugs. A developer can

find the more error/bug prone areas of the project by using the bug cache. It would help in

allocating more resources to more error prone areas of a software system. Sunghum Kim

used two machine learning algorithms in his research, Support vector Machine and Naïve

Bayes and used 10% of the code files from seven open source projects.

 The change classification approach classifies bug changes with 65% buggy change

recall and 78% accuracy. Both approaches can be used to find locations of bugs by

25

leveraging project history and learning the unique bug patterns. This information can help to

reduce software development cost and to increase software quality [19].

3.10 Mining in software archives to detect how developers work together

Complete history of open source projects is available in open source software

repositories. SUBVERSION and CVS store all the committed versions of code files that have

existed during software development. It contains the commit revision numbers of files in

addition to information like which developer has committed the file and when. This

information is very important in open source projects as developers and other team members

are locally separated.

Peter Weigerber, Mathias Pohl and Michael Burch examined the artifacts changed by

developers, which developers and when. They searched the following questions in their

research

a. Do files or modules are worked on by just one developer or a number of

developers work on single module or file?

b. What‟s the hierarchy of developers in a big project? Is there a main developer

and other helper developers or rather work is equally distributed among all the

developers?

c. Are there phases during the evolution, when there is a very active

development and ones when there is hardly any development? [20]

3.11 Finding Co-Evolution of Production & Test Code using MSR

Number of artifacts are created and maintained during software systems engineering.

Bart Van Rompaey, Arie Van and Andy Zaidman investigated whether there is some

correlation between test code and production code by using the information contained in

versioning systems, size metrics and code coverage reports. Main purpose of the research

was to create mutual consciousness among managers and developers about testing process.

26

They evaluate their results both with the help of log-messages and the original developers of

the software system [21].

3.12 Challenges in software evolution

Software evolution is necessary and an ongoing activity to keep it up to date

otherwise it becomes ineffective. Most important piece of work that needs to be considered

in evolution is source code but it is not the only thing that matters. Software is

multidimensional and also the development process behind it. To develop quality source

code, other artifacts like tests, specifications, constraints, documentations are needed as well

[22].

Bart Van Rompaey, Arie van Deursen, Andy Zaidman and Serge Demeyer worked on

two dimensions i.e. source code and test. They analyzed the evolution of tests as source code

evolves. To analyze the co-evolution of production and test code, they used the data stored in

versioning control system. But for using VCS for this purpose, it was necessary that source

code and test code must be committed. Therefore, their main focus is the co-evolution of

production code against constant software tests i.e. integration test and unit tests. They

understood that, to get best result, production code and test code should be developed and

maintained side by side, for at least two reasons:

a. New functionality should be tested as soon as soon as it gets completed e.g.

via unit testing [23].

b. When changes or up gradation is applied, the old code preservation (in terms

of its behavior) should be checked.

 Here, Moonen et al. have shown that refactoring itself does not change the behavior of the

system but, they invalidate tests [24]. Elbaum et al. concluded that even very small changes

in source code can have serious effect on test reporting or the fraction of production code

tested by the test suite [25]. These observations support the argue that updated source code

and test code need to co-evolve. This leads to the inconsistent situation where tests are

necessary for the success of the software (and its evolution), while also an important

consideration during maintenance. It is exactly this inconsistency that enforced them to study

27

the co-evolution of test code and production. They proposed to use lightweight techniques

and visualizations, which are common to the field of studying software evolution [26].

For this study, their major concern was: How does testing occur in open-source

software systems? In order to guide their research, they improved this question into other

supplementary questions:

a) Does co-evolution occur phrased of synchronously?

b) When should the test writing effort be increased? Right before release or some other

phase of SDLC?

c) Is it possible to detect test strategies, test-driven development for instance [27]?

d) What is the relation, if any, between test coverage and test writing effort?

 To conclude, they performed an experiment to study the co-evolution of test code and

production of two open source softwares. They evaluated their research internally and

externally, by studying log messages (written during development) and by sharing their

findings with the developers and recording their remarks.

Both users and the developers submit bug report to repository. These reports play

important role in revealing defects and improving software quality. Increase in number of

bug reports in repository will potentially increase the number of duplicate bug reports.

Detecting duplicate reports will reduce effort in fixing that particular bug or defect. However,

it is a big challenge to detect all duplicate bug reports out of a very large number of existing

bug report. Tao Xie, Lu Zhang , Xiaoyin Wang , Yoonki Song and Hong Mei presented „Jazz

Duplicate Finder‟ , a tool that helps to identify duplicate or repeated bug reports on Jazz,

which is a teamwork stage for software development and management. Natural language and

Execution information was used to find duplicates in bug report. [30]

28

Figure 3.2 Architecture of JDF Tool

29

Chapter 4: Design and Implementation

4.1 The Lifecycle of a Bug Report

There are a number of states of bugs before they get fixed. When the report is first

submitted, its state is NEW. The bug is then assigned to developer to fix it. Its status changes

to ASSIGNED. Developer fixes the bug and it is then marked as RESOLVED. There are a

number of ways to resolve a report; if the resolution results in a change in the code, its status

becomes RESOLVED otherwise DUPLICATE. If the developer cannot reproduce the bug, it

is marked as “WORKSFORME”. Report is marked as INVALID or WONTFIX if it‟s not an

actual bug. Report can be reopened that was formerly closed and its status changes to

REOPENED.

When the bug is first reported to repository, it is submitted to our proposed system as

shown in Figure 4.1. System extracts all the terms in these reports using bag of words

approach. The vocabulary is of a very high dimensionality and thus numbers of features are

reduced by using chi-square algorithm. These features are used for training of classification

algorithm which is then used for classification of bug reports. The classification algorithm

used in proposed system is multinomial Naïve Bayes. Details of all these modules and

processes used in proposed classification system are given in sub sections below.

Bug

Repository

Preprocessing

(stop words

removal,

stemming,

manual

extraction)

Vocabulary of

all features

Feature

Extraction

(Chi Square,

TFIDF)

Subset of

featurres

Prediction

Algorithm

Training

(Multinomial

Naïve Bayes Text

Classifier)

Algorithm

Testing and

prediction

(Multinomial

Naïve Bayes Text

Classifier)

Bug Reports

Bug Reports with out label

Figure 4.1 Bug classification system

30

4.2 Bug reports

Eclipse bug repository is used in this research to get bug data. Figure 4.2 shows the

information contained in these bug reports.

a. Bug_id: unique identifier assigned to each bug

b. Component: the component of the product in which this bug is being reported like

ant, CVS etc.

c. Severity: severity of bug like normal, major, enhancement etc.

d. Status: current status of the bug like open, closed, fixed etc.

e. Operating system: operating system in which this bug is reported like windows,

fedora etc.

f. Summary: brief summary of the bug explained by reporter.

The most important attribute of bug report is SUMMARY. Reporter submits the bug by

giving its brief summary. Summary briefly discusses the scenario in which this bug

reproduces. It also describes impact areas of the bug. The data from summary of the bug is

taken and algorithm is trained over it. Whenever a new bug arrives, proposed system

classifies it using this summary field.

The challenge associated with using the summary to classify bugs of open bug

repositories is that the bugs are submitted by ordinary users of products, not the technical

people. For instance, user of Mozilla firefox might be a non technical person who cannot

report the bug using some predefined technical terms to specify the bug. Classifying these

bug reports using summary data is a challenging task that requires data to be thoroughly pre

processed first. Classification algorithms cannot differentiate between “browser”, “firefox”

or “Mozilla firefox”. For this purpose, synonym dictionary might be helpful and could

improve the results but it would increase the scope of this research and thus synonym

dictionary integration in proposed system is one of the proposed future work.

31

Figure 4.2 bug report obtained from Bugzilla bug repository

32

Users

report

bugs

Open Sourcr Bug Repository

Mozilla / Eclipse/ SQL...

Big Id

 Component

Severity

 Status

 Operating

System

 Summary

Figure 4.3 Information contained in bug reports

4.3 Pre-processing

Data pre-processing is the most important step of data mining. Data obtained from

bug repositories is in raw form and cannot be directly used for training the classification

algorithm. The data is first pre-processed to make it useful for training purpose. Data pre-

processing is the most time consuming step of data mining and most important as well. I used

stop-words dictionary and regular expression rules to filter useless words and filter the

punctuations respectively. I applied porter stemming algorithm to stem the vocabulary but

stemming did not prove to be of any worth in case of textual data. It in fact further

deteriorated the results and decreased the accuracy.

33

Stop Words Removal Stemming Manual Extraction
Processed

Bug Reports

Figure 4.4 Data preprocessing steps and techniques

4.3.1 Stop Words Removal

A deep study of the stop words dictionary available on internet revealed that

stop words removal is not generic but it is actually domain specific. Some terms are

considered to be stop words in one domain but they carry useful information in

another domain. In this research, the reporters of bugs are non technical users. Users

report the bug using simple non technical English words. So, the stop words

dictionary used contains language dependent as well as domain dependent stop

words.

List of stop words that are being used in this research is given in appendix A.

4.3.2 Stemming

Stemming is defined as the process of reducing words to their base/stem in

linguistic morphology. Stemming programs are commonly known as

stemmers or stemming algorithms.

In this research, porter stemming algorithm is used. Source code for porter

stemmer is available on its official website. [29]

4.3.3 Manual Extraction

Proposed system uses multinomial Naïve Bayes algorithm for classification.

Naïve Bayes algorithm is based on probability. Final forecasting of a bug class is

34

performed on the basis of product of posterior probability as well as the prior

probability of class. Use of classes having very large data difference (difference on

the basis of number of records) is not feasible for algorithm training. Prediction will

tilt towards class having largest record set. To avoid this condition, manual selection

of classes-not having very large difference in record set- is performed for training

data.

4.4 Feature Selection

 The vocabulary obtained after applying “bag of words” approach on data has very

large dimensionality. Most of these dimensions are not related to text categorization and thus

result in reducing the performance of the classifier. To decrease the dimensionality, the

process of feature selection is used which takes the best k terms out of the whole vocabulary

which contribute to accuracy and efficiency. Feature selection has two main advantages:

a) Algorithm training becomes more efficient due to reduction of dimensionality of

vocabulary.

b) By reduction of rare terms classification accuracy increases.

There are a number of feature selection techniques such as Chi-Square Testing,

Information Gain (IG), Term Frequency Inverse Document Frequency (TFIDF), and

Document Frequency (DF). In this research, chi-square and TFIDF algorithms are used for

feature selection.

4.4.1 Chi-Square Testing:

Chi-Square test for independence is used for feature selection. It is used to

determine the relationship between two variables. “Independence” means that the two

variables are not related to each other. Chi-Square is defined as

 =

Equation 4.1 chi square test for feature extraction

35

In equation 4.1 A, the total number of documents in class c containing term t,

B is the total number of documents not belonging to class c but containing term t, C is

the total number of documents belonging to class c containing term t, D is the number

of documents not in c not containing t.

4.4.2 TF-IDF:

TFIDF-Term Frequency-Inverse Document Frequency is a term weighting

technique that is used to evaluate the importance of word in a collection of corpus. It

assigns the weight to a term in the document given by

Equation 4.2 TF-IDF technique for feature selection

Thus TF-IDF assigns weight to a term in a document. Weight is

1. Highest when term occurs frequently within a small number of documents.

2. Lower when the term occurs fewer times in a small number of document, or

occurs in a lot of documents.

3. Lowest if the term occurs in virtually all documents.

Chi Square/ TFIDFAll Features from

vcabulary

Sub set of

Features

Figure 4.5 Feature selection using Chi Square and TFID

4.5 Classifier Modeling and Training

Text classification is an automated process of finding some metadata about a

document (in this research the term “document” is alternatively used for “bug”). Text

classification is used in various areas like document indexing by suggesting its categories in a

content management system, spam filtering, automatically sorting help desk requests etc.

36

Naïve Bayes text classifier is used in this research for bug classification. Naïve Bayes

classifier is based on Bayes‟ theorem with independent assumption and is a probabilistic

classifier. INDEPENDENCE means the classifier assumes that any feature of a class is

unrelated to the presence or absence of any other feature.

4.5.1 Naïve Bayes Training

The probability of a document d being in class c is computed as

Equation 4.3 Conditional probability of term in given document

P(tk|c) is a measure of how much evidence tk contributes that c is the correct class.

P(tk|c) is the conditional probability of term t occurring in a document of class c. P(c)

is the prior probability of a document occurring in class c.

Equation 4.4 Prior probability of a class

 If a document‟s terms do not provide clear evidence for one class versus another, we

choose the one that has a higher prior probability.

4.5.2 Training steps

a) Features from all the documents are extracted and a vocabulary is created.

b) Count the total number of documents in training set. (Steps c to h are repeated for all

the classes).

c) Count the number of documents in given class.

d) Find the prior probability of a class by dividing documents in a given class to the total

number of documents in the whole training set.

e) Create another vocabulary having the terms of this class only. (Repeat step f to h for

every term in vocabulary).

f) Find the frequency of term in vocabulary created in step e.

37

g) Find the conditional probability of each term using equation 4.3.

h) Return vocabulary obtained in step a, prior probability of class and conditional

probability of term

1 .

2.

3. for each c

4. do

5. prior[c]

6.

7. foreach

8. do

9. foreach

10. do

11. return

Figure 4.6 Naïve Bayes Training

38

Prior probability

calculation of each

class

Vocabulary

creation(class by

class)

Conditional

Probability

calculation(term by

term)

Start

Finish

Vocabulary

creation through

bag of words

approach(all

classes)

Total

Vocabulary,

class Prior

probabilities,

terms conditional

probabilities

Figure 4.7 Flow chart for Naïve Bayes Training

4.5.3 Model testing

In order to predict the class of a bug/ document, following steps are applied during

prediction phase of classifier.

a) Tokens/features from bug are extracted and maintained in a vocabulary.

 (Repeat steps b to d for all the classes).

39

b) Find the log of prior probability of the class.

 (Repeat steps c to d for all terms obtained from document)

c) Find the conditional probability of term to be a part of this class.

d) Score the class on the basis of product of probabilities obtained in step b

and c.

1 .

2. for each c

3. do

4. for each t

5. do

6. return

Figure4.8 Naïve Bayes testing

4.6 Dry Run

Algorithm is trained on two classes having three bug reports each. Bug reports and their

classes are given in table 4.1

Bug Summary Class/label

1. Can‟t cancel build project from progress view. Build

2. Could create build path error in case of invalid external

JAR format.

Build

3. Incremental build involving a resource filter fails to

produce expected subdirectory of the output folder.

Build

4. Intro crashes when uses a custom JAXP parser. Intro

5. Welcome leaks handles. Intro

6. Welcome view shows nothing when opened via ctrl+3 Intro

Table 4.1 bugs and their classes

40

New Bug

Tokens Extraction

Class Score

calculation using

conditional

probability of each

token

Final scoring of

class on the basis

of product of class

prior probability

and all terms’

conditional

probability

Start

Finish

Classify bug on

the basis f highest

class score

Figure 4.9 Flow chart for Naïve Bayes Testing

4.6.1 Pre-Processing

4.6.1.1 Stop Words Removal

Following words are considered as stop words and are removed from vocabulary.

a. Can‟t

41

b. From

c. Could

d. In

e. Of

f. To

g. The

h. Each

i. I

j. When

k. A

l. Via

m. In

4.6.1.2 Stemming

Following words are stemmed to their root using porter stemming algorithm

a. Incremental increment

b. Involving involve

c. Fails fail

d. Crashes crash

e. Leaks leak

f. Handles handle

g. Shows show

4.6.1.3 Tokenization and frequency calculation

Bug summaries belonging to both classes are tokenized and frequency of each

word/token is calculated against each class. List of tokens and their frequencies of bug

summaries belonging to build and intro class are given in figure 4.5 and figure 4.6

Token Cancel build project View create Path

Frequency 1 3 1 1 1 1

Token Error Case Invalid External Jar Format

42

Frequency 1 1 1 1 1 1

Token Increment Involve Resource Filter Fail Produce

Frequency 1 1 1 1 1 1

Token Expected Sub-

directory

Output Folder

Frequency 1 1 1 1

Figure 4.10 Tokens and their frequencies of class “build”

Token Ctrl+3 Intro Crash Custom JAXP Parser

Frequency 1 1 1 1 1 1

Token Welcome Leak Handle View Show Nothing Opened

Frequency 2 1 1 1 1 1 1

Figure 4.11 Tokens and their frequencies of class “build”

4.6.2 System Training

Step by step process of system training is given below.

a. Step 1

V ExtractVocabulary(C,D)

C is the set of classes/labels in training data. In the current example, C has two classes

“build” and “intro”. V is the vocabulary obtained by extracting tokens of all the classes.

V { cancel build project progress view create path error case invalid external JAR

format increment build involving resource filter fail produce expected subdirectory

43

output folder intro crash custom JAXP parser welcome leak handle shows nothing

opened ctrl+3 }

b. Step II

N CountDocs(D)

D is the set of all the documents in training data. In this example, there are three bug

reports belonging to “Build” and three belonging to “intro”. So value of N = 6.

c. Step III

All the sub steps in step III are repeated for all the classes included in training.

Class “build”

i. Nc CountDocsInClass(D,c)

Nc is the number of documents in class c. c is “build” and Nc = 3

ii. Prior[c] Nc / N

Prior[c] is the prior probability of class “build”. Nc = 6 and N = 3. So Prior[c] =

0.5

iii. Textc ConcatenateTextOfAllDocsInClass(D,c)

a. Textc is the subset of vocabulary V and is obtained by concatenating all

the tokens of given class.

b. Textc {intro crash custom JAXP parser welcome leak handle shows

nothing opened ctrl+3}

iv. Tct CountTokensOfTerm(textc, t)

a. For all the tokens in vocabulary V, find the frequency of each token in

vocabulary Textc. Figure 4.7 shows the frequency of each token of

vocabulary V in vocabulary Textc.

Token Cancel build Project View Create Path

Frequency 1 3 1 1 1 1

44

Token Error Case Invalid External Jar Format

Frequency 1 1 1 1 1 1

Token increment Involve Resource Filter Fail Produce

Frequency 1 1 1 1 1 1

Token Ctrl+3 Intro Crash Custom JAXP Parser

Frequency 0 0 0 0 0 0

Token Welcome Leak Handle View Show Nothing Opened

Frequency 0 0 0 1 0 0 0

Token Expected Sub-

directory

Output Folder

Frequency 1 1 1 1

Figure 4.12 frequency of each token of vocabulary V in vocabulary Textc.

v. CondProb[t][c] Tct + 1 / ∑t’ (Tct’ + 1)

For each token from vocabulary V find the conditional probability of this

token to be in class c (build). Table 4.2 shows conditional probability of all the

tokens from vocabulary V.

Token Conditional Token Conditional

45

Probability Probability

cancel 0.0334 ctrl+3 0.0167

build 0.0667 Intro 0.0167

project 0.0334 Crash 0.0167

view 0.0334 Custom 0.0167

create 0.0334 JAXP 0.0167

path 0.0667 Parser 0.0167

error 0.0334 Welcome 0.0167

case 0.0334 Leak 0.0167

invalid 0.0334 Handle 0.0167

external 0.0334 View 0.0334

jar 0.0334 Show 0.0167

format 0.0334 Nothing 0.0167

increment 0.0334 Opened 0.0167

involve 0.0334 Expected 0.0167

resource 0.0334 Subdirectory 0.0334

filter 0.0334 Output 0.0334

fail 0.0334 Folder 0.0334

produce 0.0334

Table 4.2 Conditional probability of all the tokens belonging to class “build”

from vocabulary V

Steps from i to v are repeated for second class “intro” and the conditional probabilities

obtained are given in table 4.3

Token

Conditional

Probability Token

Conditional

Probability

46

cancel 0.0204 ctrl+3 0.0408

build 0.0204 Intro 0.0408

project 0.0204 Crash 0.0408

view 0.0408 Custom 0.0408

create 0.0204 JAXP 0.0408

path 0.0204 Parser 0.0408

error 0.0204 Welcome 0.0612

case 0.0204 Leak 0.0408

invalid 0.0204 Handle 0.0408

external 0.0204 View 0.0408

jar 0.0204 Show 0.0408

format 0.0204 Nothing 0.0408

increment 0.0204 Opened 0.0408

involve 0.0204 Expected 0.0408

resource 0.0204 Subdirectory 0.0204

filter 0.0204 Output 0.0204

fail 0.0204 Folder 0.0204

produce 0.0204

Table 4.3 Conditional probability of all the tokens belonging to class “intro”

from vocabulary V

4.6.3 System Testing/Forecasting

Let there be two bug reports which are submitted to system to predict their

labels. Summaries of these bug reports are

a. Incremental build of jdt.ui each time I start up

b. Hover bug welcome page

47

Let‟s start with the first bug report “Incremental build of jdt.ui each time I

start up”. Algorithm will check the probability of this bug report to be in one of the

classes - “build, intro”- on the basis of product of prior probabilities of classes and

posterior probabilities of all the terms in reported bug.

Let‟s check the probability of given bug to be in class “build”.

Posterior probability of build = 0.5

Conditional probability of increment to be in class build = 0.0334

Conditional probability of build to be in class build = 0.0667

Conditional probability of jdt.ui to be in class build = 0.0167

Conditional probability of time to be in class build = 0.0167

Conditional probability of startup to be in class build = 0.0167

Score[build] = (0.5)(0.0334)(0.0667)(0.0167) (0.0167) (0.0167) = 0.000000005187

Now let‟s find Probability of the given bug to be in class “intro”

Posterior probability of intro = 0.5

Conditional probability of increment to be in class intro = 0.0204

Conditional probability of build to be in class intro = 0.0204

Conditional probability of jdt.ui to be in class intro = 0.0204

Conditional probability of time to be in class intro = 0.0204

Conditional probability of startup to be in class intro = 0.0204

Score[intro] = (0.5)(0.0204)(0.0204)(0.0204) (0.0204) (0.0204) = 0.000000001766

Result: Build has higher score so the bug will be assigned to class “build”

The second bug which is reported is “hover bug in welcome page”

48

Let‟s find the probability of this bug to be in class “build”

Posterior probability of build = 0.5

Conditional probability of hover to be in class build = 0.0167

Conditional probability of bug to be in class build = 0.0167

Conditional probability of welcome to be in class build = 0.0167

Conditional probability of page to be in class build = 0.0167

Score [build] = (0.5) (0.0667)(0.0167) (0.0167) (0.0167) = 0.00000003889

Now let‟s find the probability of the given bug to be in class “intro”

Posterior probability of intro = 0.5

Conditional probability of hover to be in class build = 0.0204

Conditional probability of bug to be in class build = 0.0204

Conditional probability of welcome to be in class build = 0.0612

Conditional probability of page to be in class build = 0.0204

Score [intro] = (0.5)(0.0612) (0.0204) (0.0204) (0.0204) = 0.0000002597

Result: Intro has higher score so the bug will be assigned to class “intro”

49

Chapter 5: Testing and Experimental Results

5.1 Testing

Testing is the process of executing software to verify that it satisfies the specified

requirement. It is the strategy that recovers as many defects as possible. Since no program or

system design is perfect at the final implementation, therefore, testing is an essential

requirement. The proposed system is tested by giving datasets as input to the system. The test

cases for this purpose are discussed below.

5.2 Test Cases

Test cases are the self generated input patterns given to the system to verify the system‟s

output against expected input. A few test cases used for the proposed software are as follows.

5.2.1 Test Case1

Package: preprocess

Class Name: FilterSummary

Input: short_short_desc (column containing summary)

Output: filtered summary

Result: Test succeeded

Original data

50

Figure 5.1 Snapshot of Test Case 1

This test case is designed to check if the summary is filtered for stop words

and punctuations. It takes short_short_desc, column containing summary, as input

(Figure 5.1) and produces filtered summary as shown in Figure 5.2. Summary is

actually the small description of bugs having keywords enclosed in brackets e.g. (UI).

As these bugs are reported in free format English language so it contains lot of

punctuations and stop words and hence is not fit for direct use in bug prediction and

needs some filtering. The output of the filtering step is shown in Figure 4.2 where

each bug is filtered for the stop words and punctuations and the resultant summary is

stored as filtered summary.

51

Figure 5.2 Snapshot of Test Case 1

5.2.2 Test Case 2

Class Name: Tokenizer

Input: filtered Summary

Output: Tokens, frequency (table containing tokens of filtered summary and

frequency)

Result: Test succeeded

Output

52

Figure 5.3 Snapshot of Test Case 2

To check that tokens with their frequency are created, test case 2 is designed

that takes filtered summary- output of test case 1- as input and produces tokens of the

summary and calculates frequency against each token. Results are shown in Figure

5.3. To precede bug prediction, the first step is to read each record of filtered

summary word by word. To accomplish this task, tokens for the whole filtered

summary are produced and stored in the column tokens as shown in Figure 5.3.

Another requirement for bug prediction is to know the number of occurrences of each

token in the bug records, so that the tokens with highest occurrence could decide the

class of a particular bug. Therefore, test case 2 also checks that frequency of each

53

token is obtained successfully. Tokens and frequency are stored in the same table as

shown in Figure 5.3.

5.2.3 Test Case 3

Package: featureextraction

Class Name: FeatureExtraction

Input: token, frequency from each class table

Output: features of each bug

Result: Test succeeded

Output File

Figure 5.4: Snapshot of Test Case 3

54

This test verifies that a bug feature is extracted from each record containing bug. This

feature is extracted using Chi Square feature extraction algorithm. It takes as input, the token

and frequency column of each class and produces a feature as output, shown in Figure 5.4.

5.2.4 Test Case 4

Package: modeltraining

Class Name: ModelTraining

Input: filtered summary, features obtained in test case 3

Output: model trained on examples

Result: Test succeeded

Classification model (Naïve Bayes) is trained on training data that is obtained after

preprocessing and feature selection. Classification model is actually the set of probabilities

that each feature contribute towards a class. Figure 4.5 shows the prior probability and

posterior probability of each feature against a class.

55

Figure 5.5 Model building by finding probabilities of features against a class

5.2.5 Test Case 5

Package: modeltesting

Class Name: ModelTesting

Input: records with unknown classes/labels

Output: records with known classes/labels

Result: A prediction accuracy of 89% is obtained with testing to training ratio of 1:10

5.3 Experimental Results

This section is based on the output and results generated after applying the implemented

system on bug data set obtained from Bugzilla bug repository. Bugzilla maintains the bug

reports of number of projects like Mozilla, Eclipse, SQL etc. For this research bugs reports

from Eclipse bug repository are used.

Results are obtained on the basis of prediction accuracy. Prediction Accuracy is defined as

“Ratio of the number of bug reports with correct types classified to the total number of

bug reports to be classified.”[14]

Prediction accuracy was not good during the first few experiments. In order to improve

accuracy, some processes in preprocessing steps were improved.

a. It was found that still there are some punctuations and stop words in bug summaries

which were decreasing the prediction accuracy. So, these stop words were appended

in stop words dictionary. Stop words dictionary which is used contained almost 450

words.

b. In this research, data of an open bug repository is used in which end users of a

product report the bugs. Users most of the time are not very technical and use the

terminology that confuses the prediction model instead of helping in its training. Such

reports were manually removed from the dataset. Although it‟s a time consuming task

but it increases the accuracy.

56

c. Naïve Bayes is affected by class prior probabilities. If one takes data set having one

class containing a very large number of records and other having very small, model

automatically will twist the prediction towards class having large data. So, classes

having much difference in record set cannot be used.

Experiments are conducted by changing the training to testing ratio, classes/labels and

feature extraction algorithms.

5.3.1 Classes having varying number of records:

In an experiment, algorithm was trained on classes having very large difference in

number of records. Some classes like misc, navigat etc. have a very large number of

records (almost 500 records) while others have a very few e.g. build, marker (less

than 100 records). Forecasting results were deviated towards classes having more

records. Table 5.1 shows the classes included in the training phase and the number of

records in each class.

Class/Label

Number of

records

Build 82

Externaltools 90

Markers 97

Javadoc 151

Mode 194

Launch 198

Intro 257

Navigat 357

Pref 398

Misc 498

Table 5.1 Classes in training data with number of bugs

57

5.3.1.1 Experimental Results

Table 5.2 shows the experimental results obtained by training the

algorithm on classes mentioned in table 5.1. Prediction accuracy was very low

due to the large difference in number of records in classes on which proposed

system was trained. Further more data was not much refined in initial set of

experiments that resulted in low prediction accuracy.

Training to testing ratio that was used in this experiment was 4:1. In

first set of experiments system was trained on data without using any feature

selection algorithm. System was trained on 3725 bug reports and testing was

performed on 914 bug reports. 46.93% Prediction accuracy was obtained.

Accuracy was poor because algorithm was trained on classes having varied

number of records and system forecasted most of the bug reports belonging to

the classes having more data in training.

Same experiment was repeated with TFIDF as feature selection

algorithm. Term Frequency Inverse Document Frequency is usually used as

feature selection in categorization of documents like emails, news, documents

on World Wide Web etc. For bug classification, this algorithm was not very

fruitful because data from Bugzilla is used which is an open source bug

tracking system and unlike formal documents mentioned before, the

terminology used by users to report bugs is not as technical and formal to

apply TFIDF. Accuracy was reduced to 39% using TFIDF.

Another experiment was conducted with same data but now using Chi

Square algorithm for feature selection. Training and testing data was same as

used in experiment without any feature selection algorithm and the prediction

accuracy obtained was 51%.

5.3.1.2 Summary

 Best results were obtained using Chi Square Feature selection

algorithm. Results were further improved in preceding experiments by

increasing training to testing ratio and by refining the training data in

preprocessing step.

58

Feature

Selection

Algorithm

Training

Data

Testing

Data

Training/Tesitng

ratio

Prediction

Accuracy

No 3725 914 4:01 46.93

TFIDF 3725 914 4:01 39

Chi Square 3725 914 4:01 51

Table 5.2 experimental results with classes having varying number of data

5.3.2 Classes having small training set

In another set of experiments, system was trained over very small data. All the

classes used in training have data range from 41 to 56. List of data and number of

bugs in each class is given in table 5.3.

Class

Labels

Number of

bugs

SSH 50

ChangeSet 50

runtime 50

Linked 48

reconciling 51

PDE 45

Workbench 41

Table 5.3 Training classes with number of bugs

5.3.2.1 Experimental Results

As already discovered in the first set of experiments that TFIDF was of no use

in increasing the prediction accuracy. Second set of experiments was

performed using Chi Square feature selection algorithm. Although prediction

accuracy increased as compared to first experiments due to small difference in

a number of bugs in each class but still accuracy was low as data was not well

59

pre-processed. Table 5.4 shows the accuracy obtained as a result of

experiments performed by training algorithm using classes having small

difference in number of bugs.

Training/Testing

Ratio

Total

Data

Training

Data

Testing

Data

Accuracy

(%)

1:01 820 421 399 57

1:05 820 665 155 58

1:07 820 715 105 63

1:10 820 748 72 66

Table 5.4 Experimental results with classes having small difference in

record set

Using same set of data, experiment is repeated by using porter stemmer

algorithm during pre processing. Porter stemmer is used to minimize a word

to its root. The algorithm was not of any worth in increasing the accuracy

because the bugs are reported by non technical users and do not contain

proper terms which can be pre processed by the techniques used in pre

processing of documents like emails, world wide web documents etc. Porter

stemmer decreased the prediction accuracy from 57% to 45% using 1:5 testing

to training ratio.

5.3.2.2 Summary

Prediction accuracy increases by decreasing the difference in number of

records in classes used in system training. Porter stemmer decreased the

prediction accuracy.

5.3.3 Classes having refined data obtained by improved pre processing

Table 5.5 shows the effect of changing the training to testing ratio on prediction

accuracy. Table data is plotted in figure 5.1. Graph clearly shows that prediction

accuracy increases as training to testing ratio increases. Highest accuracy is obtained

when this ratio is 1:11. However, we cannot increase this ratio to a very large extend

as it might over fit the training data and training over a very huge vocabulary is very

60

time consuming and thus decreases the efficiency of algorithm. In figure 5.6,

accuracy starts decreasing if the testing to training ratio increases from 1:11.

testing/training

ratio Accuracy

1:01 61

1:02 66

1:03 68

1:04 69

1:05 70

1:06 76

1:07 80

1:08 82

1:09 83

1:10 84

1:11 89

1:12 88

1:13 86

1:14 86

1:15 86

Table 5.5.Accuracy with change in training to testing ratio

61

Figure 5.6 Accuracy with change in Training to testing ratio

The vocabulary obtained after applying “bag of words” approach was of very

high dimensionality. Model training on such a large vocabulary is very time

consuming. Chi- square algorithm is used for feature selection to reduce the number

of features in vocabulary. Chi-square algorithm although reduces the dimension of

total vocabulary and increases the efficiency of model training, great care must be

taken in selecting the ratio of features to be used in training out of total features.

Increasing features and thus increasing training to testing ratio although increases the

accuracy but execution time of algorithm increases as well. So, increasing the training

vocabulary data beyond a certain limit is not feasible in real time applications.

60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90

1:
01

1:
02

1:
03

1:
04

1:
05

1:
06

1:
07

1:
08

1:
09

1:
10

1:
11

1:
12

1:
13

1:
14

1:
15

A

c

c

u

r

a

c

y

%

Training/Testing ratio

Accuracy with change in training to testing ratio

Accuracy

62

Figure 5.7 Training to testing ratio versus execution time

After observing the results of a number of experiments, it was found that the best

results were obtained when the features having Chi value greater than 0.5 are taken

and used in training. Therefore, 0.5 chi value was used as a threshold in model

training. There were almost 1200 features with chi threshold 0.5

40

50

60

70

80

90

100

110

120

130

140

150

160

421 556 626 665 695 715 729 740 748 756 763 769 769

Execution Time
 Sec.

Number of documents

Execution time with increasing number of training documents

Execution time

63

Figure 5.8: Comparison of Chi-Square and TFIDF

There are a number of feature selection algorithms available. Two of these techniques

are used in this research- Chi Square test and TFIDF. Figure 5.8 shows that Chi

Square algorithm proved to be more effective in this case and the features extracted

through this algorithm gave better prediction accuracy.

5.4 Comparison with Other Systems

5.4.1 Classification system proposed by Lai Xu

Proposed system using Naïve Bayes classifier is a probability based approach

that works on the prior probability of classes and conditional probability of features in

the classes. Another important model for text classification is support vector machine.

Changzhu Kong,, Lian Yu, Lei Xu, HuiHui Zhang and Jingtao Zhao used SVM for

bug classification. Proposed technique using naïve Bayes text classifier has following

advantages over this system:

45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85

1:01 1:02 1:03 1:04 1:05 1:06 1:07 1:08 1:09 1:10

A

c

c

u

r

a

c

y

%

Training/testing ratio

Comparison of chi-square and TFIDF

Chi

TFIDF

64

a) When training data is small, proposed system performs better than SVM based

system of Lei Xu. Training curve for SVM is much greater than Naïve Bayes and

when enough training set is not given it does not perform well.

b) As far as processing time is concerned Lei system is in a disadvantage. Processing

time is much higher from the other proposed technique and it grows quadratically as

the number of documents increases in training set.

Figure 5.9 Accuracy Comparison of proposed system and one proposed by Lian Yu

a) Proposed system starts with an advantage when a small number of documents are

used in the training set, but then as the number of documents increases, the difference

diminishes. As far as processing time is concerned Lian Yu system is in a

disadvantage. Processing time is much higher from the other text classification

63

68

70

74
75

76

80

82
83

84

88
89

65

70

77

84

62

64

66

68

70

72

74

76

78

80

82

84

86

88

1:1 1:2 1:3 1:4 1:5 1:6 1:7 1:8 1:9 1:10 1:11 1:12

A

c

c

u

r

a

c

y

%

Training to testing ratio

Accuracy Comparison of Proposed System and SVM

Proposed System

SVM

65

techniques and it grows quadratically as the number of documents increases in

training set.

Fabrice Colas and Pavel Brazdil gave the comparative analysis of Naïve Bayes and SVM in

their research on the basis of processing time. Figure 5.5 shows that Naïve Bayes out

performs SVM. Processing time of both algorithms is almost the same when the number of

documents/number of features is small. However, if the number of documents in training

data increases, the processing time of SVM increases quadratically.

Figure 5.10 Comparison of Naïve Bayes (2) and SVM (1) on the basis of processing time

5.4.2 Comparison with John Anvik, Lyndon Hiew and Gail C. Murphy

Technique

John Anvik, Lyndon Hiew and Gail C. Murphy presented a bug classification

technique for bug assignment to developers using semi automated technique. The

approached used a supervised machine learning algorithm. 64% of maximum

precision was obtained for firefox and eclipse data.

66

Chapter 6: Conclusion and Future work

6.1 Conclusion

In open source bug repositories, bugs are reported by users. Triaging of these bugs is a

tedious and time consuming task. If some proper class is assigned to these bugs it would be

easier to assign these bugs to relevant developers to fix them. However, as reporters of these

bugs are mostly non-technical it would not be possible for them to assign correct class to

these bugs. In this research an automated system for classifying these bugs is devised, using

multinomial Naïve Bayes text classifier. Chi Square and TFIDF are used for feature

selection.

Data mining is a process of extracting meaningful information from raw data. Data that is

not numerical or categorical is considered unstructured and is not suitable for the purpose of

data mining. Extracting meaningful information from this unstructured data is known as text

mining. Text mining is not a separate field from data mining but an extension/specialization

of it. Text mining is used in applications like analyzing open-ended survey responses,

automatic processing of messages and emails, analyzing warranty or insurance claims and

diagnostic interviews, investing competitors by crawling their web sites and mining software

repositories etc.

Software systems have a history of how they came to be and this history is maintained in

software repositories. Examples of software repositories are archive communication, bug

repositories, code repositories and deployment logs etc. Although these repositories are a

huge treasure of information about software system and software project but to extract useful

knowledge from these repositories is a mess. Idea behind mining software repositories is to

devise tools to access the wealth of information in these software repositories to extract

useful knowledge by analyzing them.

In this research a bug classification system is proposed that takes bugs from open bug

repositories and classifies them in different labels/classes. Any bug report is first

preprocessed. During preprocessing, stop words are removed and stemming is applied to the

67

data. Preprocessing would result in a huge vocabulary of words which is almost infeasible to

use as it is. To decrease the dimensionality of vocabulary, feature selection technique is

applied that reduces the vocabulary size and increases the efficiency of algorithm training.

Chi square and TFIDF are used for feature selection. Chi square gave the best results out of

the algorithms. Naïve Bayes classifier is used for classification and maximum of 89%

accuracy is obtained on training to testing ratio of 1:10.

Lei Xu,, Lian Yu, Jingtao Zhao, Changzhu Kong, and HuiHui Zhang proposed a

classification model based on SVM. Our technique using Naïve Bayes text classifier has

following advantages over SVM.

a) When training data is small, Naïve Bayes performs better than SVM. Training curve

for SVM is much greater than Naïve Bayes and when enough training set is not given

it does not perform well.

b) As far as processing time is concerned SVM is in a disadvantage. Processing time is

much higher than the other text classification techniques and it grows quadratically as

the number of documents increases in training set.

6.2 Future Work

The system can be further improved by applying feature selection techniques other than Chi-

Square and TFIDF.

Synonym dictionary can be used so that system can tackle the issue of understanding the

synonyms of the same words. For instance, if a user reports a bug related to firefox, system

should consider it firefox whether user uses the word browser or Mozilla firefox for it.

Future work can be devoted to the development of an automated triaging system using our

approach that assigns bugs to relevant developers to be fixed. Furthermore, bug repositories

can be used in combination with other repositories like code repositories to find more error

prone areas of a project.

68

Chapter 7: References

1. Ahmed E. Hassan. The Road Ahead for Mining Software Repositories. IEEE Computer

society, 2008.

2. Andreas Hotho . A Brief Survey of Text Mining. University of Kassel. School of Computer

Science Otto-von-Guericke-University Magdeburg, May 13, 2005

3. Stephan Diehl, Harald C. Gall and Ahmed E. Hassan. Special issue on mining software

repositories . Empirical Software Engineering An International Journal © Springer

Science+Business Media, LLC 2009

4. Hassan, A. E. 2008. The road ahead for mining software repositories. In Frontiers of

Software Maintenance. 48–57.

5. Lehman, M. and Fernandez-Ramil, J. C. 2002. Software evolution and feedback: Theory and

practice. In Software Evolution. John Wiley and Sons.

6. Basili, V. R. and Perricone, B. 1984. Software errors and complexity: An empirical

investigation. In Communications of the ACM, 27(1). 42–52.

7. Mockus, A., Weiss, D. M., and Zhang, P. 2003. Understanding and predicting effort in

software projects. In In Proceedings of the 25th International Conference on Software

Engineering. 274– 284.

8. Cubranic, D., Murphy, G. C., Singer, J., and Booth, K. S. 2005. Hipikat: A project memory for

software development. In IEEE Transactions on Software Engineering, 31(6). 446–465.

9. Li, Z., Lu, S., Myagmar, S., and Zhou, Y. 2006. Cp-miner: Finding copy-paste and related bugs

in large-scale software code. In IEEE Transactions on Software Engineering, 32(3). 176–192.

10. Mandelin, D., Xu, L., Bodk, R., and Kimelman, D. 2005. Jungloid mining: Helping to navigate

the api jungle. In V. Sarkar and M. W. Hall, editors, PLDI. 48–61.

11. Kagdi, H., Collard, M. L., and Maletic, J. I. 2007b. A survey and taxonomy of approaches for

mining software repositories in the context of software evolution. J. Softw. Maint. Evol. 19,

77–131.

69

12. Olga Baysal Michael W. Godfrey Robin Cohen. A Bug You Like: A Framework for Automated

Assignment of Bugs. IEEE 17th international conference, 2009.

13. Chuanlei Zhang, Hemant Joshi, Srini Ramaswamy and Coskun Bayrak. A Dynamic Approach

to Software Bug Estimation, SpringerLink, 2008.

14. Lian Yu, Changzhu Kong, Lei Xu, Jingtao Zhao, and HuiHui Zhang. Mining Bug Classifier and

Debug Strategy Association Rules for Web-Based Applications. SpringerLink, 2008.

15. Nicholas Jalbert, Westley Weimer. Automated Duplicate Detection for Bug Tracking

Systems. IEEE computer society ,2008.

16. Tilmann Bruckhaus, Charles X. Ling, Nazim H. Madhavji, Shengli Sheng. Software Escalation

Prediction with Data Mining.

17. Davor Cubranic, Gail C. Murphy. Automatic bug triage using text categorization . In

Proceedings of the Sixteenth International Conference on Software Engineering &

Knowledge Engineering (June 2004), pp. 92-97.

18. 18. Adrian Schröter , Thomas Zimmermann , Rahul Premraj , Andreas Zeller Saarland

University. If Your Bug Database Could Talk. In Proceedings of the 5th International

Symposium on Empirical Software Engineering. 2006.

19. Sunghun Kim. Adaptive bug prediction by analyzing project history. ACM, 2006.

20. Peter Weissgerber, Mathias Pohl , Michael Burch. Visual Data Mining in Software Archives

To Detect How DevelopersWork Together, Proceedings of the Fourth International

Workshop on Mining Software Repositories, 2007.

21. Andy Zaidman, Bart Van Rompaey, Serge Demeyer, and Arie van Deursen. Mining Software

Repositories to Study Co-Evolution of Production & Test Code. In Proceedings of the 2008

International Conference on Software Testing, Verification, and Validation, 2008.

22. T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer, R. Hirschfeld, and M. Jazayeri. Challenges

in software evolution. In Proc. of the Int’l Workshop on Principles of Software Evolution

(IWPSE), pages 13–22. IEEE, 2005.

23. P. Runeson. A survey of unit testing practices. IEEE Software, 25(4):22–29, July/August 2006.

http://www.citeulike.org/user/hurne/author/Cubranic:D
http://www.citeulike.org/user/hurne/author/Murphy:GC
http://portal.acm.org/author_page.cfm?id=81100663944&coll=DL&dl=ACM&trk=0&cfid=9141416&cftoken=36433933
http://portal.acm.org/author_page.cfm?id=81100028997&coll=DL&dl=ACM&trk=0&cfid=9141416&cftoken=36433933
http://portal.acm.org/author_page.cfm?id=81336492049&coll=DL&dl=ACM&trk=0&cfid=9141416&cftoken=36433933
http://portal.acm.org/author_page.cfm?id=81331488994&coll=DL&dl=ACM&trk=0&cfid=9141416&cftoken=36433933

70

24. L. Moonen, A. van Deursen, A. Zaidman, and M. Bruntink. Software Evolution, chapter The

interplay between software testing and software evolution. Springer, 2008. Editors: T.

Mens, and S. Demeyer.

25. S. Elbaum, D. Gable, and G. Rothermel. The impact of software evolution on code coverage

information. In Proc. Int’l Conf. on Soft. Maint. (ICSM), pages 170–179. IEEE, 2001.

26. M.-A. Storey, D. Cˇ ubranic´, and D. German. On the use of visualization to support

awareness of human activities in software development: a survey and a framework. In Proc.

of the Symp. on Soft. Visualization, pages 193–202. ACM, 2005.

27. E. Maximilien and L.Williams. Assessing test-driven development at IBM. In Proc. Int’l Conf.

on Software Engineering(ICSE), pages 564–569. IEEE, 2003.

28. Naïve Bayesian Based on Chi Square to Categorize Arabic Data, International Business

Information Management Conference (11th IBIMA), 2009.

29. http://tartarus.org/~martin/PorterStemmer/

30. http://www.thearling.com/text/dmtechniques/dmtechniques.htm

31. www.cs.uiuc.edu/homes/hanj/cs412/bk3_slides/08ClassBasic.ppt

http://tartarus.org/~martin/PorterStemmer/
http://www.thearling.com/text/dmtechniques/dmtechniques.htm

71

Appendix A

"about", "above", "across", "after", "again", "against", "all", "almost", "alone",

"along", "already", "also", "although", "always", "among", "an", "and", "another",

"any", "anybody", "anyone", "anything", "anywhere", "are", "area", "areas", "around",

"as", "ask", "asked", "asking", "asks", "at", "away", "back", "backed", "backing",

"backs", "be", "became", "because", "become", "becomes", "been", "before", "began",

"behind", "being", "beings", "better", "between", "big", "both", "but", "by", "came",

"can", "cannot", "case", "cases", "certain', 'certainly", "clear", "clearly", "come",

"could", "did", "differ", "different", "differently", "do", "does", "done", "down",

"down", "downed", "downs", "during", "each", "early", "either", "end", "ended",

"ending", "ends", "enough", "even", "evenly", "ever", "every", "everybody",

"everyone", "everything", "everywhere", "face", "faces", "fact", "facts", "far", "felt",

"few", "find", "finds", "irst", "for", "four", "from", "for", "ull", "fully", "further", ",

'urthered", "furthering", "furthers", "gave", "general", "generally", "get", "gets", "ive",

"given", "ives", "go", "going", "good", "got", "great", "greater", "greatest", "roup",

"grouped", "grouping", "groups", "had", "has", "have", "having", "he", "her", "here",

"herself", "high", "high", "high", "highe", "highest", "him", "himself", "his", "how",

"however", "if", "important", "in", "interest", "interested", "interesting", "interests",

"into", "it", "its", "just", "keep", "keeps", "know", "known", "knows", "large",

"largely", "last", "later", "latest", "least", "less", "let", "lets", "like", "likely", "long",

"longer", "longest", "made", "make", "making", "man", "many", "may", "me",

"member", "members", "", "might", "more", "most", "mostly", "mrs", "much",

"must", "my", "myself", "necessary", "need", "needed", "needing", "needs", "never",

"new", "new", "newer", "newest", "next", "no", "nobody", "non", "noone", "not",

"nothing", "now", "nowhere", "number","numbers", "of", "off", "often", "old", "lder",

"oldest", "on", "once", "one", "only", "open", "opened", "opening", "opens", "order",

"ordered", "ordering", "orders", "other", "others", "our", "out", "over", "part",

"parted", "parting", "parts", "per", "perhaps", "place", "places", "point", "pointed",

"pointing", "points", "possible", "resent", "presented", "presenting", "presents",

"problem", "problems", "put", "puts", "quite", "rather", "really", "right", "right",

"room", "rooms", "said", "same", "saw", "say", "says", "second", "seconds", "see",

72

"seem", "seemed", "seeming", "seems", "sees", "several", "shall", "she", "should",

"show", "", "howed", "showing", "shows", "side", "sides", "since", "small", "smaller",

"smallest", "so", "some", "somebody", "someone", "something", "somewhere",

"state", "states", "still", "still", "such", "sure", "take", "taken", "than", "that", "the",

"their", "them", "then", "there", "therefore", "these", "they", "thing", "things", "think",

"thinks", "this", "those", "though", "thought", "thoughts", "three", "through", "thus",

"to", "today", "together", "too", "took", "toward", "turn", "turns", "two", "u", "under",

"until", "up", "upon", "us", "use", "used", "uses", "very", "want", "anted", "wanting",

"wants", "was", "way", "ways", "we", "well", "wells", "went", "were", "what",

"when", "where", "whether", "which", "while", "who", "whole", "whose", "why",

"will", "with", "within", "without", "work", "worked", "working", "works", "would",

"year", "ears", "yet", "you", "young", "younger", "youngest", "your", "yours", "is",

"a", "the", "or", "doesn‟t"

	abstract and acknowledgment.pdf
	Bugs_classification.pdf

