
EMPIRICAL ANALYSIS OF QUALITY ASSURANCE

IN CMMI LEVEL 2 FOR COMPLIANCE

by

Qurat-ul-Ain

2009-NUST-MSPHD- CSE(E)-08

MS-09 (SE)

Submitted to the Department of Computer Engineering in fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

in

SOFTWARE ENGINEERING

Thesis Supervisor

Dr. Shoab A. Khan

College of Electrical & Mechanical Engineering

National University of Sciences & Technology

2012

DECLARATION

I hereby declare that I have written this thesis wholly on the basis of my own efforts under the

supervision of my supervisor Dr. Shoab A. Khan. All the sources used have been cited and by no

mean the contents of this thesis have been plagiarized. No fraction of the work presented has

been submitted in support of any application for any other degree of qualification to this or any

other university or institute of learning.

 Qurat-ul-Ain

ACKNOWLEDGMENTS

First and foremost, I am thankful to Allah Almighty for His blessings. It would have been

impossible to achieve this milestone without His consent.

I am heartily thankful to my Supervisor, Dr. Shoab Ahmed Khan, whose encouragement,

supervision, and unwavering dedication, right from the preliminary to the concluding level,

facilitated me to accomplish this work.

I am highly obliged to Mr. Farrukh Hashmi, who burnt midnight oil with me, and was a true

support in all hard times. Have my gratitude. My heartiest thanks to Mr. Asad Waqar Malik, for

the constant reminders, help and inspiration. Also I owe Thank you to the faculty and staff

members of Department of Computer Engineering, EME, NUST, for their assistance.

I am eternally grateful to the Director at my work place, Mrs. Shaista Shahid, for understanding

and flexibility she showed during the office hours and ultimately motivating me to achieve my

goal.

I am indebted to my Father, M.Hanif and my Mother, Nasira Perveen for having faith in me and

encouraging me all the way through, my twin brothers M. Arsalan Naz and M. Melhan Naz, who

always stand by my side in all my endeavors, all elders of my Family who constantly send their

prayers my way and my dear friends Usman Ghani, Muhammad Waqas, Bushra Shareef, Nazish

Asad, Saddaf Rubab, Zeeshan Shafqat, Nazish Shafqat, Sehrish Shafqat, Sharjeel Butt, Junaid

Anwar, Saima Ch, Hassan Ilyas, and Sumera Ch, who supported me either morally or practically

during this long and eventful journey.

Last but not the least, a very special thank you to my loving fiancé Hassan for the care and

support, during every odyssey of my life.

To my loving Parents, Brothers and Fiancé…

Who always keep me grounded…

ABSTRACT

The cost of software errors or problems as a result of quality lapse is a major difficulty to the

software industry at large, to the developers of the Software as well its clients. The task of

improving quality is therefore vital.

This thesis stands as a guideline for defining a model supporting Quality assurance program for

CMMI level 2 certified company projects, by doing the empirical analysis of a CMMI Level 2

software project. In this maneuver, proposing a model for the assurance of quality, facilitating

organizational strategy toward process and project improvement and achieving the quality

objectives is the main focus. The whole model, after a complete fulfillment, would provide the

organization with a guideline to achieve the organizational quality assurance objectives. It is vital

to mention that this template itself does not improve the processes. It only shows the status of the

chosen project/process after having the filled template executed. What this template generates is

to provide the stakeholders with necessary information and basis to make informed decision

afterwards in order to improve the chosen processes/projects. Since the processes in “Maturity

Level 2 of CMMI” are project based, it is important that the status of processes quality be

assured. This procedure plays a crucial role in creating a platform for moving to the next

maturity level.

This research is dual process; firstly an empirical study of the projects is done and then based on

the analysis of that empirical study a model is defined to make quality assurance better in an

organization. Based on the approach of Empirical study and proposed model a Tool, one of its

kind, Quality Assurance Gap Analyzer (QAGA) is developed, which takes Requirements, Test

cases and their status as Input and generates a Report telling the user about the Gaps that exist in

each requirement and an overall Gap Analysis of the whole project. It also generates a graph

plotting Requirements on the basis of their criticality against the percentages of Gap that exists in

them.

Results are helpful for the organizations to know the status of their Software Processes, Testing

coverage of Requirements and thus a better understanding of Quality Assurance of the product.

LIST OF TABLES

Table 1 Organization of SQA [8] .. 7

Table 2 The Interest Areas of CMMI ... 10

Table 3 CMMI Core Process Areas [12] ... 18

Table 4 Requirements and their Criticality ... 54

Table of Contents
Chapter 1 ... 1

INTRODUCTION ... 1

1.1. PROBLEM OVERVIEW .. 1

1.2. PROJECT OBJECTIVES .. 2

1.3. THESIS OUTLINE .. 2

Chapter 2 ... 4

BACKGROUND ... 4

2.1. INTRODUCTION ... 4

2.2. QUALITY .. 4

2.3. SOFTWARE QUALITY ... 4

2.4. QUALITY ASSURANCE .. 6

2.5. SOFTWARE QUALITY ASSURANCE ... 7

2.6. SOFTWARE QUALITY STANDARDS .. 7

2.7. CMMI... 8

2.7.1. Presentations of CMMI ... 10

2.7.2. Levels of CMMI.. 12

2.7.2.1. Capability Levels .. 13

2.7.2.2. Maturity Levels.. 14

2.8. CMMI Model Framework .. 16

2.8.1. Why CMMI .. 20

2.8.1.1. Business Success ... 20

2.8.1.2. Cost Effective .. 20

2.8.1.3. Compatible .. 20

2.8.1.4. Excellent Track Record .. 20

2.9. CMMI LEVEL 2 (PPQA) ... 21

2.9.1. Purpose ... 21

2.9.2. Specific Practices by Goal .. 21

2.10. SUMMARY ... 22

Chapter 3 ... 23

RELATED WORK ... 23

3.1. INTRODUCTION ... 23

3.2. RELATED WORK ... 23

3.3. SUMMARY ... 29

Chapter 4 ... 30

PROPOSED APPROACH .. 30

4.1. INTRODUCTION ... 30

4.2. LITERATURE REVIEW OF CMMI KEY PROCESS AREAS ... 32

4.3. EMPIRICAL STUDY OF CMMI LEVEL 2 SOFTWARE PROJECT ... 32

4.3.1. Requirement Analysis ... 33

4.3.1.1. Studying each Requirement clause ... 33

4.3.1.2. Categorizing the requirement ... 34

4.3.1.3. Assigning a Unique ID.. 35

4.3.1.4. Defining the Criticality... 36

4.3.1.5. Defining the Dependency ... 37

4.3.2. Test Cases Analysis .. 38

4.3.2.1. Studying the Test Case Document .. 38

4.3.2.2. Assigning a unique Test case ID .. 39

4.3.3. Mapping Requirements and Test Cases .. 39

4.3.4. Assigning weights to the Test Cases ... 40

4.3.5. Calculating the Missing gaps ... 41

4.3.6. Gap Analysis Results.. 41

4.4. DESIGNING THE MODEL .. 43

4.5. DEVELOPING THE TOOL .. 44

4.6. SUMMARY ... 44

Chapter 5 ... 45

IMPLEMENTATION and RESULTS .. 45

5.1. INTRODUCTION ... 45

5.2. QAGA (QUALITY ASSURANCE GAP ANALYZER) ... 45

5.3. REQUIREMENT As INPUT .. 46

5.4. TEST CASES As INPUT .. 47

5.5. MAPPING OF REQUIREMENTS and TEST CASES .. 48

5.6. GAP ANALYSIS RESULTS .. 49

5.6.1. Scenario 01 .. 49

5.6.2. Scenario 02 .. 50

5.6.3. Scenario 03 .. 50

5.6.4. Scenario 04 .. 53

5.7. SUMMARY ... 57

Chapter 6 ... 58

CONLUSIONS AND FUTURE WORK.. 58

6.1. CONCLUSIONS ... 58

6.2. FUTURE WORK .. 59

Appendix A .. 60

SNAPSHOTS ... 60

A.1 GUI of QAGA ... 60

A.2 GUI of Requirement Input... 61

A.3 GUI of Test Case Input .. 62

A.4 GUI of Mapping between Requirements and Test Cases ... 63

A.5 GUI of Report .. 64

List of Figures

Figure 1 SQA Family Tree [10] ... 8

Figure 2 CMMI Continuous Presentation.. 11

Figure 3 CMMI Staged Presentation ... 12

Figure 4 CMMI Capability levels [12] .. 14

Figure 5 CMMI Maturity Levels [12] ... 15

Figure 6 CMMI Framework [12] .. 17

Figure 7 Software Quality Assurance Standards Family Tree ... 24

Figure 8 TSP Launch Structure [16] ... 25

Figure 9 TSP Main passes and activities in the proposed Gap Analysis methodology [17] 26

Figure 10 TSP Conceptual Framework [18] ... 27

Figure 11 Generic Process Framework [19] .. 28

Figure 12 Research Methodology ... 31

Figure 13 Requirement Clauses in a GSR Document .. 34

Figure 14 Requirement distributed in categories ... 35

Figure 15 Requirements assigned unique IDs ... 36

Figure 16 Requirement and their Criticalities ... 37

Figure 17 Test cases with Unique IDs ... 39

Figure 18 Mapping Requirements against test Cases ... 40

Figure 19 Assigning weights to Test Cases .. 41

Figure 20 Calculating Missing Gaps... 41

Figure 21 Total Gap Analysis ... 42

Figure 22 The Model ... 43

Figure 23 Requirement as Input ... 46

Figure 24 Test cases as Input .. 47

Figure 25 Mapping of Requirements and Test Cases ... 48

Figure 26 Scenario 01: GAP is 100% .. 49

Figure 27 Scenario 02: GAP is 0% .. 50

Figure 28 The GAP Analysis Report ... 52

Figure 29 The Gap Analysis Graph .. 53

Figure 30 Gap Analysis w.r.t Criticality ... 54

Figure 31 Report generated by Tool (QAGA) in order of Criticality of Requirements 56

LIST OF ABBREVIATIONS

QA

Quality Assurance

SQA

Software Quality Assurance

PPQA

Process and Product Quality Assurance

CMMI Capability Maturity Model Integration

SEI

Software Engineering Institute

TSP

Team Software Process

QAGA Quality Assurance Gap Analyzer

1

Chapter 1

INTRODUCTION

For the last many years immense effort has been spent on gathering knowledge about software

processes. There are Software Quality standards (such as CMMI, IEEE 12207, and ISO/IEC

90003 etc.) and some more verified literature. All these were extremely helpful in aiding

developers deal with the complex problems of software processes, and ultimately the production

of efficient and reliable software products. Quality improvements have a great impact on the

performance of any operation in many aspects including improving productivity, growing

revenue and minimizing costs.

There is limited research about CMMI quality assurance process area. One such effort has been

put forward, presenting a tool, based on the design of a generic model evolved from the

empirical study of a CMMI Level 2 Software Project, aiding in the assurance of the compliance

of the CMMI Level 2 software projects based on of Gap analysis.

1.1. PROBLEM OVERVIEW

Quality Assurance is a heavily studied domain and researchers have been successful in proposing

models and frameworks to address the issues that exist and achieve quality in a better and

efficient way. But when it comes to CMMI Level 2 Process and Product Quality Assurance

2

Process area, no model has been yet proposed which may help the organizations in achieving

CMMI level 2 in a faster and efficient manner.

Therefore, a model needed to be designed that can help organization to satisfy the goals of

Process and product Quality Assurance Process Area and hence move towards the next level of

CMMI.

1.2. PROJECT OBJECTIVES

The focus of this thesis is on the empirical study and thus improvement of the testing & quality

assurance task in CMMI level 2 companies with software quality problems. Testing practices and

quality assurance methods will be outlined in the thesis, explaining what to be used during the

software quality improvement process in the company. Following the quality improvement

process in the company a framework for improving software quality is produced.

1.3. THESIS OUTLINE

This thesis is a multi step process; firstly an empirical study of the CMMI Level 2 Software

Project is done and after analyzing the empirical study, a generic model is defined, then a tool

(QAGA) is developed and finally the results generated by QAGA are presented.

Adopting a qualitative research approach, firstly thorough study of literature regarding Software

Process Improvement and CMMI is done. Then, a CMMI level 2 software project is taken from a

Software Development Organization and that software project is empirically analyzed. With the

help of this knowledge a generic model is evolved defining its components at attribute level.

Third, a tool has been coded to examine the effectiveness of Model.

3

A case study approach is adopted, testing of projects is done with the help of that tool and the

gaps in the Quality of Software is identified resulting in better understanding of the quality

assurance of the software project.

In Chapter 2, description about quality, quality assurance and CMMI has been presented.

Chapter 3 encompasses the related work that has been carried out in the same field. Chapter 4

covers the methodology of research, and finally in Chapter 5 Implementation and results are

presented.

4

Chapter 2

BACKGROUND

2.1. INTRODUCTION

This chapter is detailed description of the concepts related to Quality and CMMI. The chapter

begins with the presentation of standard definitions of Quality, Software Quality and Software

Quality Assurance, followed by the description of Software Quality Assurance Standards. Then

detail about CMMI and its Levels is discussed. Then, its key Process areas are presented. Then, a

brief text on why CMMI is best reputed among all the Quality standards. Then description about

the process area under consideration, which is “Process and Product Quality Assurance”, is

elaborated. In the end Generic Goals and Generic practices of CMMI Level 2 are discussed.

2.2. QUALITY

The term “Quality” is defined as: The entirety of functions and characteristics of a product that

has to fulfill the requirements which are given. [1]

2.3. SOFTWARE QUALITY

In the field of Software Engineering, the definition of Software Quality is based on the two

closely related philosophies.

5

a) Software Functional quality tells us how well it has fulfilled the functional requirements

specified. Also called Fitness for Purpose.

b) How well it fulfills the non functional requirements. Also determine to what extent of

correctness, software has been developed [2].

Quality of software can also be defined as the degree to which it conforms to the given criteria.

Quality Criteria includes, but is definitely not limited to [3]:

i. Economy

ii. Correctness

iii. Resilience

iv. Integrity

v. Reliability

vi. Usability

vii. Documentation

viii. Modifiability

ix. Clarity

x. Understandability

xi. Validity

xii. Maintainability

6

xiii. Flexibility

xiv. Generality

xv. Portability

xvi. Interoperability

xvii. Testability

xviii. Efficiency

xix. Modularity

xx. Reusability

2.4. QUALITY ASSURANCE

To fulfill a product's quality requirements, activities are first planned and then implemented in a

Quality System. These systematic activities are referred as Quality Assurance [4].

It is believed that Quality Assurance is different from Quality Control. In Quality Control, the

main focus is the outputs of the processes. On the other hand, Quality Assurance is the name of

comparison with the standards, orderly measurement and a feedback loop that takes care of error

prevention [5].

Two main objectives of the Quality Assurance are:

i. Product should fulfill the intended purposes.

ii. Mistakes which are encountered or highlighted during testing should be removed.

7

Quality is determined by the users of the products and it has got nothing to do with the Cost and

the descriptions of the products [6].

2.5. SOFTWARE QUALITY ASSURANCE

Software Quality Assurance is defined as the activities carried out to scrutinize the methods that

are used in determining the assurance of Quality. There are several Models and Methods which

are developed for the cause [7].

SQA assures that some check has been performed to guarantee that the product will work as it is

required but it is applied to the code or non code artifacts. Software Quality Assurance covers the

whole Software Development Process [9]

The organization of SQA is done as follows:

1. Goals

2. Commitments

3. Abilities

4. Activities

5. Measurements

6. Verifications
Table 1 Organization of SQA [8]

2.6. SOFTWARE QUALITY STANDARDS

Many Software Quality Assurance (SQA) standards have been written for various industries.

Software organizations have to take care of the expectations of all type of customer. All these

standards focus on developing an SQA standard practices that developers may adopt either

willingly or keeping in view the demands of the customers. [10].

8

MIL-S-52779

SQA Program

Specifications

DOD – STD 1679

Software

Development

ANSII/IEEE STD

730

SQA Plans

AQAP – 13

NATO Software

Quality Control

System

Requirements

RTCA-DO-178

Software

Consideration in

Equipment

Certification

AS 3563

Software Quality

management

System

CAN/CSA-Q396

Quality Assurance

Program for

Software

DOD-STD-2168

Defense System Software

Quality Program

DOD – STD – 2167

Defense System

Software

Development

SQA STANDARD FAMILY TREE

Figure 1 SQA Family Tree [10]

The first SQA standard extensively used was MIL-S-52779 [11], prepared in the mid- 1970s and

has been updated only one time after that (i.e. MIL-S-52779A). Definite advances and

improvements can be found in subsequent standards; in many cases, understandability and

organization are greatly improved.

2.7. CMMI

Capability Maturity Model is an improvement model that aids organizations in improving their

processes. It tells the organizations what features are most effective in making their performance

better. It also identifies the strengths and weaknesses of the processes being carried out in an

9

organization. Moreover it helps in turning the weaknesses of an organizations process into its

strengths [12].

CMMI was a maneuver of a group of professionals from different areas of industry and the SEI

at Carnegie Mellon University [23]. CMMI is a U.S. Patent registered model and copyrighted

under Carnegie Mellon University. According to the standard definition of CMMI given by

Software Engineering Institute (SEI), "Combining already separated organizational functions,

Which helps in making progress in the priorities and goals, provisioning of guidelines for quality

assurance processes, and also providing standards for the process going on" [24].

CMM is a predecessor of CMMI. Inception of CMM took place in 1987 which kept on evolving

till 1997. The first version of CMMI which is “CMMI version 1.1” was developed in 2001,

following the release of second version which is “CMMI Version 1.2” in 2006, and then the third

version of CMMI which is “CMMI Version 1.3” was developed in 2010. The main modifications

in CMMI V1.3 [25] are:

i. Agile Software Development [26]

ii. expansions to high maturity practices [27]

iii. Staged and Continuous presentations [28]

The areas addressed by CMMI are:

i. CMMI for Development (CMMI-DEV)

ii. CMMI for Services (CMMI-SVC)

iii. CMMI for Acquisition (CMMI-ACQ)

10

Name Specification

CMMI for Development (CMMI-DEV) Product and service development

CMMI for Services (CMMI-SVC) Service establishment, management, and delivery

CMMI for Acquisition (CMMI-ACQ). Product and service acquisition

Table 2 The Interest Areas of CMMI

2.7.1. Presentations of CMMI

CMMI exists in two representations:

i. Continuous

ii. Staged [23]

In Continuous representation, user concentrates only on those exact processes which are vital for

organization’s immediate business objectives and those with which a high Risk factor is

associated.

11

PA

PA
PA

PA

PA

PA

PA
PA

PA

PA

PA

0

For an single process area or a set of process areas

1

2

3

4

5

P
ro

ce
ss

 A
re

a
C

ap
ab

ili
ty

Figure 2 CMMI Continuous Presentation

The staged representation gives a standard series of improvements, and provides a foundation for

the comparison the maturity of various organizations, and can serve as a basis for comparing the

maturity of different projects and organizations. It is helpful in moving from CMM to CMMI

[23].

12

PA

PA
PA

PA

PA

PA

PA

PA

PA

PA

PA

ML 1

ML 2

ML 3

ML 4

ML 5

For an established set of process areas of an organization

Figure 3 CMMI Staged Presentation

2.7.2. Levels of CMMI

The model can be applied to Development teams, Software projects, work group and the whole

organizations all over the world. CMMI solutions use levels to recommend the desired

evolutionary paths to the organizations that want to bring process improvement in developing

and delivering the services. Both capability levels and maturity levels are supported by CMMI

for Acquisition, development and services [12].

13

2.7.2.1. Capability Levels

A Capability level is a definite evolutionary level which illustrates an organization’s capability

related to a process area. A capability level constitutes specific and generic practices for a

process area that can improve the organization's processes associated with that process area [12].

Continuous representation of CMMI process areas, there are six capability levels from 0 to 5:

Level 0 Incomplete

Level 1 Performed

Level 2 Managed

Level 3 Defined

Level 4 Quantitatively Managed

Level 5 Optimizing

14

CL 2

CL 1

CL 0

CL 1

CL 0

PA PA PA

CL 2

CL 1

CL 0

CL 3

P
R

O
C

ES
S

A
R

EA
 C

A
P

A
B

IL
IT

Y

Figure 4 CMMI Capability levels [12]

2.7.2.2. Maturity Levels

CMMI is divided in 5 maturity levels that define the maturity of the organization:

Level 1 Initial

Level 2 Managed

Level 3 Defined

Level 4 Quantitatively managed

Level 5 Optimizing [12]

15

LEVEL 5
OPTIMIZING

LEVEL 4
QUANTITAVELY

MANAGED

LEVEL 3
DEFINED

LEVEL 2
MANAGED

LEVEL 1
INITIAL

CHARACTERISTICS OF MATURITY LEVELS

Process
unpredictable,

poorly controlled
and reactive

Process
characterized for
project and often

reactive

Process
characterized for
organization and
often proactive

Process measured
and controlled

Focus on
process

improvement

Figure 5 CMMI Maturity Levels [12]

CMMI model is composed of the best practices that help organizations in improving their

efficiency and quality.

All CMMI models share the same:

i. Architecture. All CMMI models possess three parts:

a) Introduction

b) Process areas and generic goals and practices

c) Appendices.

16

CMMI models contain many process areas; every process area has a unique introduction,

specific goals and practices.

ii. Core process areas. All CMMI models share 16 core process areas. These process areas

are tailored for each model, but contain essentially the same information in each [12].

2.8. CMMI Model Framework

Because of the various versions and frameworks of CMMI for development, acquisition and

service areas, SEI has introduced one framework that shares all the commonalities either of

process areas or specific practices [12].

Some Process Areas, Specific Practices and generic Practices are common in Model for

development, Model for Acquisition and Model for Services. And theses three models have their

own dedicated process areas and amplifications [12].

17

DEVELOPMENT SPECIFIC
MATERIAL

ACQUISITION SPECIFIC
MATERIAL

SERVICES SPECIFIC MATERIAL

· Development
Amplifications

· Development Additions
· PA XX
· PA YY
· PA DEV

· Service Amplifications
· Service Additions

· PA XX
· PA YY

· PA SRV

· Acquisition
Amplifications

· Acquisition Additions
· PA XX
· PA YY

· PA ACQ

CMMI MODEL FOUNDATION
COMMON PROCESS AREAS, SPECIFIC PRACTICES, GENERIC PRACTICES

SHARED CMMI MATERIAL
SPECIFIC PRACTICES, ADDITIONS, AMPLIFICATIONS

Figure 6 CMMI Framework [12]

CMMI Model Foundation contains 16 Core Process Areas, CMMI models define a “process

area” as a group of associated practices which are when carried out together, satisfies the criteria

important for that area’s improvement [12].

Process areas are:

18

ABBREVIATION NAME AREA MATURITY LEVEL

CAR Causal Analysis and Resolution Support 5

CM Configuration Management Support 2

DAR Decision Analysis and Resolution Support 3

IPM Integrated Project Management Project
Management

3

MA Measurement and Analysis Support 2

OPD Organizational Process Definition Process
Management

3

OPF Organizational Process Focus Process
Management

3

OPM Organizational Performance
Management

Process
Management

5

OPP Organizational Process Performance Process
Management

4

OT Organizational Training Process
Management

3

PMC Project Monitoring and Control Project
Management

2

PP Project Planning Project
Management

2

PPQA Process and Product Quality Assurance Support 2

QPM Quantitative Project Management Project
Management

4

REQM Requirements Management Project
Management

2

RSKM Risk Management Project
Management

3

Table 3 CMMI Core Process Areas [12]

Process areas found only in CMMI for Acquisition [25]:

1) Acquisition Requirements Development (ARD)

2) Solicitation and Supplier Agreement Development (SSAD)

3) Agreement Management (AM)

4) Acquisition Technical Management (ATM)

19

5) Acquisition Verification (AVER)

6) Acquisition Validation (AVAL)

Process found only in CMMI for Development [25]:

1) Product Integration (PI)

2) Requirements Development (RD)

3) Requirements Management (REQM)

4) Supplier Agreement Management (SAM)

5) Technical Solution (TS)

6) Validation (VAL)

7) Verification (VER)

Process areas found only in CMMI for Service [25]:

1) Capacity and Availability Management (CAM)

2) Incident Resolution and Prevention (IRP)

3) Supplier Agreement Management (SAM)

4) Service Continuity (SCON)

5) Service Delivery (SD)

6) Service System Development (SSD)

20

7) Service System Transition (SST)

8) Strategic Service Management (STSM)

2.8.1. Why CMMI

One problem being faced by Software industries is the selection of one Quality standard among

all a number of SQA Standards that has been written and approved [12].

Why CMMI to be chosen, there are a number of reasons:

2.8.1.1. Business Success

CMMI had been beneficial for many business projects and Success stories have been shared by

many business projects. The improvement has been witnessed in various areas like cost

effectiveness, scheduling, return of investment, accuracy etc.

2.8.1.2. Cost Effective

CMMI is cost effective. All the benefits mentioned above can be acquired with return of

investment.

2.8.1.3. Compatible

CMMI is compatible with all the other technologies such as Agile, Sigma, Scrum, ISO

Standards, TSP etc.

2.8.1.4. Excellent Track Record

21

As mentioned already, many users have shared their success stories happened as a result of using

CMMI. That’s why CMMI has an excellent track record. Since its initiation in 1995, there is a

large group of users who have been following CMMI. It is always improving. And at present too

extensive research is ongoing.

2.9. CMMI LEVEL 2 (PPQA)

Process and product quality assurance is a Level 2 Process Area (PA) of Capability Maturity

Model Integration (CMMI). Process and product quality assurance process area comprises of

practices which make sure that the implementation of the planned processes has been done.

Satisfying this PA is a major step towards achieving Level 2 of CMMI. This PA requires a

written process for process and product quality assurance.

A Support process area at Maturity Level 2.

2.9.1. Purpose

The purpose of Process and Product Quality Assurance (PPQA) is to provide staff and

management with objective insight into processes and associated work products.

2.9.2. Specific Practices by Goal

 SG 1 Objectively Evaluate Processes and Work Products

 SP 1.1 Objectively Evaluate Processes

 SP 1.2 Objectively Evaluate Work Products and Services

22

 SG 2 Provide Objective Insight

 SP 2.1 Communicate and Ensure Resolution of Noncompliance Issues

 SP 2.2 Establish Records [29]

Noncompliance issue is the mainly focused objective and one of the sub practices of "Establish

records" are:

Subpractice 1: Activities of Process and product quality assurance should be recorded making

sure that result and status of the project is clear.

2.10. SUMMARY

In this chapter, standard definitions of the terminologies related to Quality, Software Quality,

Software Quality standards and CMMI have been presented. The background study on CMMI

and its process areas was discussed. These details will help reader in better understanding of the

proposed approach in the following chapter.

23

Chapter 3

RELATED WORK

3.1. INTRODUCTION

This chapter provides an insight to the existing research that is done to either Quality Assurance

or CMMI. It illustrates different methods, frameworks, techniques and models proposed by

researcher to enhance efficiency and accuracy of CMMI framework.

3.2. RELATED WORK

In [14], Rubey and Brewer has described the various Software Quality Assurance standards that

exist, along with the comparisons among them. All the standards described are then combined

forming one generic Quality Assurance Standard. This Generic standard may help the

organizations in achieving Quality Assurance based on all the Quality Assurance standards of the

World.

24

MIL-S-52779

SQA Program

Specifications

DOD – STD 1679

Software

Development

ANSII/IEEE STD

730

SQA Plans

AQAP – 13

NATO Software

Quality Control

System

Requirements

RTCA-DO-178

Software

Consideration in

Equipment

Certification

AS 3563

Software Quality

management

System

CAN/CSA-Q396

Quality Assurance

Program for

Software

DOD-STD-2168

Defense System Software

Quality Program

DOD – STD – 2167

Defense System

Software

Development

SQA STANDARD FAMILY TREE

Figure 7 Software Quality Assurance Standards Family Tree

In [15], Wells, Brand and Markosian described a new approach presenting a toolset used for

measuring source code compliance with design and coding standards and also performing quality

assurance for new applications.

In [16], Serrano, Carlos and Cedillo shared the experience of using a software process for

implementing Software Process Improvement in a software development company.

25

1. Define product and business goals

3. Produce the development strategy

2. Assign roles and define team goals

4. Build top-down and next-phase plans

5. Develop the quality plan

6. Build bottom-up and consolidated plans

7. Conduct risk assessment

8. Prepare management briefing and launch report

9. Hold management review

Launch Postmortem

La
u

n
ch

 M
ee

ti
n

gs

Figure 8 TSP Launch Structure [16]

The proposal of implementing a software improvement process based on family of products,

including a model (CMM), an implementation model (IDEAL), and assessment methodm(CBA-

IP) and specific processes (TSP and PSP), turns out to be a success clearing that TSP helps in

adapting the process oriented culture.

In [17], Amaral and Faria proposed a methodology for assessing the effectiveness of Team

Software Process that was created by SEI (Software Engineering Institute). Thismethodology is

26

helpful in the assessment of future gains that an organization will confer during and after the TSP

is implemented.

Following research methodology was adapted:

· Study Company profile with avalaible market information
· Perform an explanatory session about TSP to company management
· Perform an initial exploratory meeting to gather initial information

· Collect and Analyze data from the Organization Quality
management System

· Interview representative elements of the organization in order to
get further information, validate the real procedures and to
clearify any existing doubts.

·

· Consolidate information in a document for comparison between
practices and with first evaluation of degree of the impact gap

· Identify undergoing activities of the organization and the
synergies between them and the implementation of TSP

PREPARE

· Produce a report that shows the final results
· Deliver, present and discuss the report

GATHER
INFORMATION

CONFIRM
INFORMATION

PRODUCE AND
PRESENT
REPORT

Figure 9 TSP Main passes and activities in the proposed Gap Analysis methodology [17]

27

The proposed methodology gives the status of Gap before the project begins. Its appliaction

gives an organization more distributed internal effort because of its traits i.e cost effective and

faster performance.

In [18], Karg, Grottke and Beckhaus has broadened the limited work done on empirical

knowledge in software quality cost research area.

They have modulated the function as:

PROJECT PERFORMANCE FAILURE COST

CONTROL VARIABLES

CONFORMANCE
QUALITY

FAILURE PROCESSING
AND FAULT CORRECTION

FUNCTIONAL SIZE

TEAM SIZE

AGE

Figure 10 TSP Conceptual Framework [18]

In [19], Otte, Moreton, Knoell developed a QA framework which is capable of suggesting

product quality targets and QA processes. The requirements of the developed framework are

28

balanced Human interaction factors, feasible environment to achieve software quality and

managerial skills.

The generic process framework of the developed framework is as follows:

OBJECTIVES CHARACTERISTICS EVALUATION

PRACTICES

RESOURCE

CRITERIA

MANAGEMENT

ORGANIZATION

DEVELOPMENT

MANAGEMENTACTIVITIES

focuses designs proposes

Consists of enables

Figure 11 Generic Process Framework [19]

The framework is formed as a reference model which can be tailored and it put together all those

process areas together that play important role in Software Quality Assurance.

29

In [20], Alsultanny and Wohaishi have suggested a model with the help of which the factors

affecting the software quality and software productivity can be tested. The proposed model

helps in reaching Quality standard 9126 by taking all factors affecting Software quality.

In [21], Niazi and Babar presented an empirical study with the aim of finding the CMMI Level 2

Specific practices' "perceived value" keeping the experiences of developers of small sized

companies. The main focus is to find out the level to which a CMMI practice makes its

contribution in the development of finer grained framework.

3.3. SUMMARY

This chapter presented the previous related work about Quality Assurance and CMMI. The

presented concepts stand a reason for this thesis. It described several models, methodologies and

frameworks that are proposed by researches that help in achieving Quality assurance in a better

way. Nevertheless, No model was still proposed that may help CMMI Level 2 Process and

Product Quality Area to be implemented in a better and effective way.

30

Chapter 4

PROPOSED APPROACH

4.1. INTRODUCTION

To propose a Model for CMMI level 2 Process and Product Quality Assurance Process area

which may support in Quality related objectives of CMMI Level 2 Software project for

compliance, an empirical study of a CMMI level 2 Software project is carried out. Based on the

knowledge gained from the study, a Model is evaluated. The proposed model stands as a

guideline for defining a Quality assurance program for a CMMI level 2 certified company

projects.

Designing a process for quality assurance will facilitate organizational strategy toward process

and project improvements. For the sake of implementation, based on the design of the model, a

tool named QAGA (Quality Assurance Gap Analyzer) has been developed. QAGA works on the

approach of the proposed models. It takes requirements and test cases as inputs and generates a

report giving information about the Gap that exists in the coverage of the Test cases which is no

doubt an aiding step towards the Quality Assurance of the Software product.

The sequence of the research methodology is as follows:

i. Literature review of CMMI Key Process Areas

ii. Empirical study of CMMI level 2 Software Project

31

iii. Designing the Model

iv. Developing the tool (QAGA)

v. Results and Analysis

Figure 12 Research Methodology

This chapter presents the details of the each step that is carried out mentioned above.

32

4.2. LITERATURE REVIEW OF CMMI KEY PROCESS AREAS

Literature Review of the CMMI and its Process areas is done firstly. The Quality standards

proposed till time has been studied. Different quality frameworks developed by various

researchers are also reviewed.

4.3. EMPIRICAL STUDY OF CMMI LEVEL 2 SOFTWARE PROJECT

The CMMI Level 2 Software Project for empirical study was taken from a Private Software

Development Organization which deals in Software Development focusing on Communication

Systems and Information Technology and its one of the core competences is software design.

Organization is CMMI Level 2 certified. The Software project was empirically studied in a series

of steps which are as follows:

i. Requirement Analysis

ii. Test case Analysis

iii. Mapping Requirements and Test Cases

iv. Calculating the Missing Gaps

v. Gap Analysis Results

33

4.3.1. Requirement Analysis

First phase of empirical study is “Requirement Analysis”. The requirements of the software

project are studied thoroughly and thus analyzed accordingly.

The Requirement Analysis is done in the following series of steps:

i. Studying each Requirement clause stated in the GSR document

ii. Categorizing the requirement i.e. General, Technical, environmental or Auxiliary.

iii. Assigning a Unique ID to each Requirement

iv. Defining the Criticality of each Requirement

v. Defining the Dependency of each Requirement

4.3.1.1. Studying each Requirement clause

GSR (General Staff requirement) is the document containing all the requirement clauses that are

specified by the client to the developer. GSR document of the CMMI level 2 software project is

obtained from the organization. The GSR document contains different requirement clauses and

each requirement clause is studied thoroughly.

34

Figure 13 Requirement Clauses in a GSR Document

4.3.1.2. Categorizing the requirement

Once requirements are studied, all are listed down naming the categories they fall in. Categories

include:

i. General Requirements

ii. Technical Specifications

iii. Power Specifications

iv. Special features Specifications

v. Environmental Specifications

vi. Auxiliaries

35

Figure 14 Requirement distributed in categories

4.3.1.3. Assigning a Unique ID

For the unique identification, a unique ID is given to each requirement.

36

Figure 15 Requirements assigned unique IDs

4.3.1.4. Defining the Criticality

The criticality of the requirement by the following characteristics:

i. Address several test cases

ii. Has a high level of control

iii. Is complex or error prone

iv. Has definite performance specifications [22]

37

The criticality range is from 0 to 5, where “0” is the least critical and “5” is the most critical

Requirement.

Figure 16 Requirement and their Criticalities

4.3.1.5. Defining the Dependency

The dependency among requirements also exists. A Requirement is dependent on the other if a

test case dedicated to that requirement cannot be fulfilled because the same test case is being

used in some other requirement and working as an input in the second one.

38

4.3.2. Test Cases Analysis

For the purpose of Test case analysis, Test cases Document of the same CMMI Level 2 Software

project is studied. Test case Analysis is done in the following steps:

i. Studying the Test case Document thoroughly

ii. Assigning a unique ID to each Test case

4.3.2.1. Studying the Test Case Document

Test Case Document contains all the Test cases that are performed for the complete testing of a

Software Project. Test Case Document list down all the following salient information about

testing the project.

i. Introduction

ii. Scope

iii. Test and measurement Principles

iv. Test Equipment List

v. Inspection and Test Procedures

vi. Specification tests

vii. Specification Test Procedures

viii. Test Record tables

ix. Change Records

39

Test case Document, with respect to this very project contains the test cases addressing all of its

requirements like:

i. Compatibility tests

ii. General specification tests

iii. Electrical tests

iv. Environmental Test

4.3.2.2. Assigning a unique Test case ID

Each Test Case in the Test case document is assigned a unique ID.

Figure 17 Test cases with Unique IDs

4.3.3. Mapping Requirements and Test Cases

Once all the Requirements are categorized assigning unique IDs to each Requirement, and also

all the Test Cases are given unique IDs. The next step is to make a metric plotting all the

Requirements along with the Test Cases.

Following is the view of the Metric developed by plotting all Requirements of CMMI Level 2

Software project against all the Test Cases.

40

Figure 18 Mapping Requirements against test Cases

4.3.4. Assigning weights to the Test Cases

Each test case is assigned a particular weight according to its contribution in testing of that very

requirement. The total weight age of the test cases for a requirement adds upto 100%.

Suppose R1T1 and R1T2 are the two Test cases contributes in the testing of Requirement R1. So

the weights of the Test Cases are assigned as:

R1T1 + R1T2 = 100% (i)

So Weight of Test Case R1T1 = 50

And Weight of Test Case R1T2= 50

41

Figure 19 Assigning weights to Test Cases

4.3.5. Calculating the Missing gaps

Once all the test cases are assigned the weights according to their contribution in testing a

requirement, the missing Test cases are highlighted.

Figure 20 Calculating Missing Gaps

4.3.6. Gap Analysis Results

Once all the missing and completed Test cases are listed down. There comes the stage of

calculating the Gap in testing each requirement. After calculating Gap of each requirement, an

overall Average Gap of the Software Project is calculated. This is achieved by taking the average

of the Gaps of all the Requirements of the Project.

42

Figure 21 Total Gap Analysis

43

4.4. DESIGNING THE MODEL

Assign Requirement
ID

Define Priority

Define Criticality

Assign Test Case ID

Map the Test Cases
against each
requirement

Assign weight to
each test case

Dependency

Show gaps

Sum the weights of
the test case shared

by different
requirements

Yes No

Figure 22 The Model

44

4.5. DEVELOPING THE TOOL

Based on the knowledge gained from the Empirical Study and the Proposed Model, a tool has

been generated using C sharp and MS Access which is responsible for calculating Gaps of the

Requirements of the Software Project and an overall Average Gap of the whole Software. The

complete description of the Tool development along with its Results in discussed in chapter 5.

4.6. SUMMARY

In this chapter the research methodology is discussed in detail. The detail of the literature review

of the area was presented. Then the steps taken to carry out the empirical study are elaborated.

Then, the proposed Model on the knowledge acquired from empirical study has been discussed.

Finally, the tool developed taking the Model design as base, is presented.

45

Chapter 5

IMPLEMENTATION and RESULTS

5.1. INTRODUCTION

Quality Assurance Gap Analyzer (QAGA) is a comprehensive tool that addresses the coverage

of Test Cases built for testing the Requirements of a Software project so that the results can be

evaluated for the measurement of Quality Assurance of the Project. It is developed on the idea of

the proposed Model in Chapter 4.

The QAGA tool takes Software Requirements and Test Cases as Inputs and gives an output of

the average calculated Gap in the Quality of the Software Project, hence standing as a guideline

in achieving CMMI level 2 (Process and Product Quality Assurance).

5.2. QAGA (QUALITY ASSURANCE GAP ANALYZER)

Implementation of the proposed model is done in the form of developing a tool, QAGA (Quality

Assurance Gap Analyzer). The language used in its development is C sharp, and the Database

tool used is MS Access.

46

5.3. REQUIREMENT As INPUT

QAGA takes requirements as input one at a time. Following is the interface for the requirement

input.

i. Title of the Requirement is entered.

ii. Next, ID of the Requirement is entered.

iii. Next, the criticality of the Requirement is entered.

iv. Finally, the number of Test cases that fulfill the very requirement is entered.

Figure 23 Requirement as Input

47

5.4. TEST CASES As INPUT

Once the requirement is entered, next step is to enter the test cases that are related to that

requirement.

Figure 24 Test cases as Input

48

5.5. MAPPING OF REQUIREMENTS and TEST CASES

Status of each test case is against a particular requirement is entered. The status of the Test Case

is either Completed or Missed. Based on the knowledge of the status, QAGA has the ability to

calculate the weight of the missing Gaps in the Testing Phase.

Figure 25 Mapping of Requirements and Test Cases

49

5.6. GAP ANALYSIS RESULTS

QAGA takes the Requirement and all Test cases related to that requirement as Input and generate

a Report giving complete information of Requirement Titles, Requirement IDs, its criticality,

number of associated Test cases, Test Case Titles and Test Case IDs along with the Individual

GAP in a particular requirement and an overall GAP in the whole Software Project taking the

average of all individual Gaps. Also it plots a graph about the status of Gap of each requirement

of the Software Project. This information is helpful in knowing that how far is the completion of

testing of whole software project.

5.6.1. Scenario 01

Talking of a requirement named “Voice Transmission”. None of the associated Test case is

executed or in simple words all the Test cases are missed. The Result generated by QAGA for

such a requirement is as follows:

Figure 26 Scenario 01: GAP is 100%

50

The GAP of the Requirement “Voice Transmission” is 100% as no Testing of the requirement

has been performed.

5.6.2. Scenario 02

If the same Requirement as described in Scenario 01 is taken again and all the test cases

associated to it are performed successfully. Then QAGA shows the output as:

Figure 27 Scenario 02: GAP is 0%

As all the Test Cases related to the Requirement have been performed successfully, so the total

Gap of the requirement appears to be “0”.

5.6.3. Scenario 03

Now, a number of Requirements and Test cases have been taken as Inputs.

Requirements are:

51

i. Voice Transmission

ii. Transmission Mode (Voice)

iii. Transmission Mode (Data)

iv. Frequency Range

v. Data Transmission

The report generated is as follows:

52

Figure 28 The GAP Analysis Report

53

The graph plotted for the abovementioned Report is as follows:

Figure 29 The Gap Analysis Graph

The Report and Graph shows the same results. Requirement “Data Transmission” has a Gap of

72%, “Frequency range” has a Gap of 0%, “Transmission Mode (Data)” has a Gap of 0%,

“Transmission Mode (Voice)” has a Gap of 50%, “Voice Transmission” has a Gap of 32%.

Thus, the overall Gap of the Software is 46%.

5.6.4. Scenario 04

In another Scenario, Requirements with the name Data Transmission, Voice Transmission,

Transmission Mode (Data), Transmission Mode (Voice), Frequency Range and test cases of each

requirement is taken as Input with the Criticalities as follows:

54

Requirement Name Criticality

Data Transmission 4

Voice Transmission 5

Transmission Mode (Data) 4

Transmission Mode (Voice) 3

Frequency Range 1

Table 4 Requirements and their Criticality

So, the requirement must be plotted in order of the Criticality i.e the requirement with the highest

criticality should be plotted on the top and then the other requirements in order of descending

criticality.

Hence, the resulting Graph plotted by the tool looks like:

Figure 30 Gap Analysis w.r.t Criticality

This graph will help Quality Assurance department in knowing the Gap Analysis of the

individual requirements with respect to their criticality, so that the requirements with a higher

criticality and a larger Gap should be looked after at priority.

55

As in this particular case, the requirement Voice Transmission has a criticality of 5 and it is

plotted on the top, then comes the requirement Data Transmission with criticality 4, and

requirement Transmission Mode (Data) has criticality of 4, requirement with the name

Transmission Mode (Voice) has a criticality of 3 and finally Frequency Range has a criticality of

1.

So, all these requirements are plotted in the following order which is:

i. Voice Transmission

ii. Data Transmission

iii. Transmission Mode (Data)

iv. Transmission Mode (Voice)

v. Frequency Range

Following is the Report generated by the tool (QAGA) against the same Graph. The Reports

depicts the Gap Analysis of each requirement individually including complete detail about every

Requirement, Requirement ID, its Criticality and associated Test cases, their Test IDs and Test

Weights. Finally an Overall Gap Analysis of the whole Software Project is also presented in the

Report.

56

Figure 31 Report generated by Tool (QAGA) in order of Criticality of Requirements

57

5.7. SUMMARY

To fully test the QAGA tool, it has been executed against different Requirement and Test Cases.

The reports of the Gap Analysis of the individual requirements as well as for the whole Software

projects have been generated along with the charts plotted for every requirement. Extensive

testing shows that the proposed Model and its implementation can play an effective role in

helping organization to know the status of the Quality Assurance of their products.

58

Chapter 6

CONLUSIONS AND FUTURE WORK

All the software companies in Pakistan are still not CMMI certified which is being a great hurdle

for in and off shore clients’ attraction. Developing a Model which can assist software companies

in developing their projects according to the SEI standards can make our software industry far

more progressive and advanced.

6.1. CONCLUSIONS

Checking the compliance of a software project for a predefined project-specific process is

helpful to quality assurance. In addition, compliance checking of actual performed processes is

also supportive in process improvement.

In this thesis an attempt has been made to propose a new Model which helps organization in

attaining CMMI level 2 Process and Product Quality Assurance.

The primary contributions of the research effort are:

A generic model and a tool:

i. That would provide the organization with a guideline to achieve the

organizational quality assurance objectives.

59

ii. That will present the status of the chosen project/process after having the

execution of tool.

iii. To provide the stakeholders with necessary information and basis to make

informed decision afterwards in order to improve the chosen processes/projects.

iv. Helping the organization in achieving next CMMI level.

6.2. FUTURE WORK

The proposed model when implemented showed fruitful result in measuring the Gaps in the

Quality of a Software Project but there is still room for improvement. Future work can be carried

out in designing a model for Automatic Quality Assurance Gap Analysis in CMMI Level 2 for

Compliance. The tool presented can be tweaked for reading the inputs from the file automatically

and then generate the results.

Another possibility is the proposal of more efficient and effective models to cover the Quality

Assurance Process Area of CMMI.

60

Appendix A

SNAPSHOTS

A.1 GUI of QAGA

61

A.2 GUI of Requirement Input

62

A.3 GUI of Test Case Input

63

A.4 GUI of Mapping between Requirements and Test Cases

64

A.5 GUI of Report

65

REFERENCES

[1] ANSI/ASQC A3-1978.

[2] Pressman, Scott (2005), Software Engineering: A Practitioner's Approach (Sixth,

International ed.), McGraw-Hill Education Pressman, p. 388.

[3] ANSI/IEEE Std. 730-1981, IEEE Standard for Software Quality Assurance Plans, 345

East 47th Street, New York, NY 10017, Nov.13, 1981

[4] http://asq.org/learn-about-quality/quality-assurance-quality

control/overview/overview.html

[5] ANSI N 45.2.10-1973.

[6] R. Fairley, Software Quality Engineering Course Notes. 16. April 1997.

[7] ISO/IEC 12207, Systems and Software Engineering – Software life cycle processes. ISO,

Geneva, 2007, p.6.

[8] Nielsen, David, “CMM and Project Quality Management”.

[9] Jeffrey Voas, Cigital, "Assuring Software Quality Assurance"

[10] Raymond J. Rubey Audrey C. Brewer, Software Quality Assurance Standards -- A

Comparison and an Integration] The first SQA standard to be widely distributed and used

was MIL-S-52779 [MIL-S-52779A. Military Spec@carion, Sofnvare Quality Assurance

Program Requirements, 1 August 1979.

[11] MIL-S-52779A. Military Spec@carion, Sofnvare Quality Assurance Program

Requirements, 1 August 1979.

[12] http://www.sei.cmu.edu/cmmi/

[13] http://www.tutorialspoint.com/cmmi/cmmi-process-areas.htm.

[14] Raymond J. Rubey, Audrey C. Brewer, "Software Quality Assurance Standards -- A

Comparison and Integration".

[15] Charles H. Wells, Russell Brand and Lawrence Markosian, "Customized Tools for

Software Quality Assurance and Reengineering".

[16] Miguel A. Serrano, Carlos Montes de Oca, Karina Cedillo, "An Experience on using the

Team Software Process for Implementing the Capability Maturity Model for Software in

a Small Organization”.

[17] Luis Manuel Gonzalez Amaral, João Pascoal Faria, "A Gap Analysis Methodology for

the Team Software Process".

[18] Lars M. Karg, Michael Grottke, Arne Beckhaus, "Conformance Quality and Failure Costs

in the Software Industry: An Empirical Analysis of Open Source Software".

[19] Tobias Otte, Robert Moreton, Heinz D. Knoell, "Development of a Quality Assurance

Framework for the Open Source Development Model".

[20] Yas A. Alsultanny, Ahmed M. Wohaishi, "Requirements of Software Quality Assurance

Model".

http://asq.org/learn-about-quality/quality-assurance-quality%20control/overview/overview.html
http://asq.org/learn-about-quality/quality-assurance-quality%20control/overview/overview.html
http://www.sei.cmu.edu/cmmi/
http://www.tutorialspoint.com/cmmi/cmmi-process-areas.htm

66

[21] Mahmood Niazi, Muhammad Ali Babar, "Identifying high perceived value practices of

CMMI level 2: An empirical study"

[22] Roger S. Pressman, “Software Engineer – A practitioner’s approach”.

[23] CMMI-ACQ (Version 1.3, November 2010). Carnegie Mellon University Software

Engineering Institute. 2010. Retrieved 16 February 2011.

[24] "Appraisal Requirements for CMMI, Version 1.2 (ARC, V1.2)" Carnegie Mellon

University Software Engineering Institute. 2006. Retrieved 16 February 2011.

[25] http://www.benlinders.com/2011/cmmi-v1-3-summing-up/

[26] http://www.benlinders.com/2010/cmmi-v1-3-agile/

[27] http://www.benlinders.com/2010/cmmi-v1-3-released-high-maturity-clarified

[28] http://www.benlinders.com/2010/cmmi-v1-3-deploying-the-cmmi

[29] http://www.tutorialspoint.com/cmmi/cmmi-process-areas.htm

http://www.benlinders.com/2010/cmmi-v1-3-released-high-maturity-clarified
http://www.benlinders.com/2010/cmmi-v1-3-deploying-the-cmmi

