Dynamic Web Service Composition Using Google API Crawling

A dissertation Presented by
Maria Allauddin

(2009-NUST-MS PhD-CSE(E)-02)

Submitted to the Department of Computer Engineering in partial fulfillment of the
requirements for the degree of

Master of Science
in
Computer Software Engineering

Advisor
Dr. Farooque Azam

College of Electrical & Mechanical Engineering

National University of Sciences and Technology
2012

THE COMMITTEE

Dynamic Web Service Composition Using Google API Crawling

A dissertation Presented by

Maria Allauddin

Approved as to style and content by:

Dr. Farooque Azam , Supervisor
Dr. Aasia Khanam, Member
Dr. Arsalan Shaukat, Member

Dr. Usman Qamar, Member

I
Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

DEDICATION

Dedicated to ?ny Darents, Teachers, Friends and ‘Fam@

i
Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

ACKNOWLEDGEMENTS

This thesis would not have been conceived without the help of many, whom | owe
a great deal.

First and foremost is Allah Almighty, The Most Gracious and Most Merciful who
has given me the strength to read and write. Truly, we plan and He plans. And
Allah is the Best of All Planners.

I would like to record my sincere gratitude to my supervisor Dr. Farooque Azam,
whose guidance, careful analysis and productive comments were valuable. | am
grateful that he allowed me to work with him for this thesis.

| would like to thank my committee members Dr. Aasia Khanam, Dr. Arsalan
Shaukat and Dr. Usman gamar for providing me the due guidance.

| thank my parents for their lots of prayers, for allowing me to follow my

ambitions and for being patient with my endless years of study.

v
Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

ABSTRACT

Dynamic Web Service Composition Using Google API Crawling

Service Oriented applications are becoming very popular due to ease of Web services Usage.
The area of Web Service Discovery (WSD) is a primary area of research today. It has
fundamental importance in web services utilization for personal or organizational needs.
However the users of web service are yet facing challenges to find the desired web service due to
rapid growth of web services available on internet. There is a need of a strategy to locate web
services with issues covering like performance, flexibility and reliability across multiple
heterogeneous registries, which is a challenging task yet. Our proposed framework covers these
issues; it actively obtains user required web service by crawling among different repositories.
Google Custom Search API is used for this purpose. Verification and validation checks are

performed to confirm that the retrieved document is a web service and is currently available.

One use of Web Services in computer applications is its automated Composition. Our framework
presents a Service Composition through user interaction. To resolve compositional complexity
parameters matchmaking is performed. Overall the framework provides a reliable and trust-

worthy composition.

Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

TABLE OF CONTENTS

Dynamic Web Service Composition Using Google AP Crawling....cccceceeceerrcsreresrcssnesseesseeessessenessens i
THE COMMITTEE ettt sssasne st s ssssass s ssssass e s sase s s s sss e s sessss e s sssssss e sssssanesssssans i
Dynamic Web Service Composition Using Google APl Crawling.....ccceeccvericsiriniinnnnnnnensnesiessnennns ii
)] 10 L I] S ifi
ACKNOWLEDGEMENTS .ottt iinnnntrerinsessrece s ssssssses s ssssse s s s s s s s ssssse s s s sssssnnns iv
N E 1 v
Dynamic Web Service Composition Using Google APl Crawling.....cccceeeevericsireninsssennnnensnensessnenneas v
(IS o) Y o] o] =L o £] Xi
(01 gF- T o) (-] PSSR SR 1
R N N 2 15 1 I 1 1
1.1 OVErvieW Of WED SEIVICEScooiiiiiieieice s 1
111 DETINITION ..ttt b e e st ebe b e 1
1.1.2 AN o T o (=TSRSS 2

1.2 WeDb Services COMPOSITIONcoviririeieieieriesteste ettt sttt 3
1.3 Dynamic Web Services COMPOSITIONc.ccvieieriirieeierieseeteste ettt sre et re e saesae e esne e e 4
1.4 Problem STAtEMENTcviiiiee et 4
15 CONIDULION .ottt sttt sttt sa e e e 6
1.6 THRESIS SIIUCIUIE ...ttt b bttt b e st s e et benaenes 7
(01 gF- 10 (-] PSRRI 8
2 RELATED WORK .ttt sinis s sssse s sssss s s sas e s s sase s s ssas e s s s sans e ssssanne s 8
2.1 LITErAtUIE REVIBW......eiuiiiiiiiciieieetest ettt st nes 8
2.2 Commercial APIs to Support Service Search and COmMPOSItIONcccevevververieineneneneieiee 18
221 Go0gle CuStomM SEAICH AP ..ot 18
2.2.2 Google Custom SEArCh FEATUIESceeiriririeieieieeiesteste ettt 19
2.2.3 Programmatically Creating Custom Searchc.ccceeveviiiieeeviiiceee e 19

Vi

Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

2.3 JAXRPEC ettt ettt sttt ettt e e bt e bt e bt e bt e beenbeesbeesheeshtenaee een 28
231 SOAP and Other IMESSAGINGcveveureuieririinierieieeete sttt ettt sttt ettt sre b e e e eneens 28
24 WWSDLAJ ...ttt sttt et ettt et e h e a e a e et s ae e st e et e e nteebe e be e be et reeane 28
25 SA A et b bbbt sh et et sat e st ettt et e e nbe e senreereens 29
25.1 OVEIVIEW OF SAAU ...ttt ettt 29
2.5.2 SAAT IMBSSAGES. ... eeeeteeeeeeesieeeteeestte e st esteeesteeesateeabeeeseeessaeessseeaseeeanseesnseesnseeeseeesnseesreen 29
253 The Structure of an XIML DOCUMENTccceveiiiriinieeeieieeseese et 29
254 WhEL IS 1N @ IMESSAGE? ...ttt ettt sttt sttt sa ettt 29
255 Messages With NO AttACHIMENTSc.ooiiiriiieieie e 29
25.6 SAAT ANA DOM ..ottt sttt ettt st b ettt aeeaes 30
25.7 SAAT CONNECLIONS ...ttt sttt b e sa e ebeenes 31
2538 SOAP CONNECLION ODJECES......eviieueeiieiieiertertete ettt 31
2.8 CBSION ..ttt e et h et e e bt e R e r e e e R s he e e re e eneearen 32
2.7 D 6] IR O UURPRRTRRRO 33
P B O -V (=T o] [L4 YRS 33
(O o1 0] =] i ST SRTPTRRRE 34
3 PROPOSED APPROACH .ottt inncnnretsnnnissees s ssssssses s ssssssssssss s sssssssssnsssnes 34
3.1 Problem SEALEMENTcc.ciiirieere ettt ettt eb s 34
3.2 PropoSed FIAMEBWOIKccueuiriiriiriirtiieieiteitste sttt ettt ettt sttt be et eaeenes 35
321 SEIVICE PrOVIGET ...ttt bttt 35
3.2.2 SEIVICE REGUESTETveeteeiteecee sttt e et e s e e s e e s baeseaesre e e st e esseenteeateenbeenseensaenseas 35
3.2.3 WWEID SBIVET ...ttt 36
3.24 THANSIALON ..ttt st 36
3.25 EVAIUALOT ... 36
3.2.6 (070101 010 1= U UP PP RTRRTR 36
3.2.7 MaALChING ENQINEoviiieiee ettt te st et e st e sre s e reenneneas 39
3.2.8 WWVSDIB ..ttt sttt ettt et b e she e b e she e sae e st eat e et e eneen e 39
3.2.9 (@8 LY T To o TS 39
3.3 MEENOUOIOGY ...ttt bbbt ne s 41
Vil

Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

3.4 ChAPLEr SUMIMATY ...eviiiieiieiieieet sttt ettt ettt b ettt b e e bt b e bt s b et et et e e enenbeenes 42

(O gT- T o) (-] ST PUR SRRt 43
4 SYSTEM DESIGN ittt sssasse s e s sssss s sssssss e s sessss e s sssssss s sssssanessenns 43
4.1 Data FIOW DIagramM:....cccveiieeie ettt erteeseese e ee s e saeseteesteete e teesteesteessaesseesssesseesseesssesnsenns 43
A - To (1T g (T T DT To T o o SR 44
4.3 USE CASES ...ttt et ettt e et sh et st b et e e s et s bt e s Rt b et R e e he et Rt ea e n e R e e ae e ne R e neen e nrs 45
43.1 General Use Cases fOr INTErTaCE.c..eviiriririeieieesesee st 45
4.3.2 Extended Use €ases fOr INEITACEcoveiriririeieieeerereeee et 46

4.4 ChapPter SUMMAIYeeciiiieeeietecieeeerte sttt et e ste et esteste e e e bestesssessesbeeseessesseassessesseessensesteessensessenssenes 54

L =T 0 T 55
5 IMPLEMENTATION ..ttt snssssssees s sssssssssses s s ssassse s s s s s s s s ssasssess s sssssssssnsnenns 55
51 Accessing G00gle CUSIOM SEAICKcc.evuirieiiiririerieieiee ettt 55
511 JSON/ALOM CUStOM SEAICH AP ..ottt 55
5.1.2 JAVE AACCESS ...ttt e 56
5.1.3 SBAICN TESUILS ...ttt s 56

5.2 FUNCtions USEd TOr CraWIINGcoovereieeieieeieeiesie sttt ettt sttt e te e eesneeneenee e 57
5.2.1 public void CrawlS(iNt D)ooeeiie e 57
522 PUBIIC VOId SPIIEFUNC() ..ttt 57
523 PUBIC VOIA VAIIA() vevveeeeieeeiee ettt sttt ettt re e aeas 58

5.3 SIMPIE WS CHIENT ...ttt ettt st s te b et e e re e b e steesnentesseeneenes 59
53.1 WSDL Parsing and ANAIYSIS.......uccvieiieiieiieieesieeieesee e e seeseeseeseeesreesraesneessseesaeessesnseenns 60
5.3.2 Finding the Services and OPEratioNS..........c.eereeverierieieininestesieeee et 60
533 FINAING the PAITS ..ottt nae s 61
534 Creating SAmPIe XML INPUL.....cc.ooiiieieireeeee et 61
535 SOAP TNVOCALION ..ottt sttt 62

54 Functions used for WSDL Analysis and INVOCALION..........ccccveveevieerieeseeciesrece e eee e 63
54.1 private void analyzeWsdI(String PUFT)c.oooveeieee e 63
54.2 private void showServicelnfo(Servicelnfo Servicelnfo)ccceceveveveiieininencncceeen 64
543 private void showOperationInfo(OperationInfo operationInfo)ccceeevvvevereneniennne. 65

viii

Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

544 public String[] sendRequest(OperationInfo operationInfol)ccoceeeevvveecenveeeeeene. 65

5.5 COMPOSITION c..cutiieetirteetestet ettt sttt et b e st ettt be bt b et et et e bt e bt be st e nn et enee s 66
5.6 Functions used for COMPOSITIONccveeeriirieeeriere ettt sre s eaesreese s e 67
56.1 public void countparam(String PAramM)ccceeeeevereseeriere e et e e e sre e se e eeeenes 67
5.6.2 public String matchmake (iNt COUNICO2)ccuvviiriiieiieeeeeeeeeree e 67

T A O -V | (=T G TN 11 1 1Y/ 68
CRAPTEE Baiiceeeeicereericrnre e sssssrressssnressessnresssssanasssessnnessessanessssssnsessessanessessanaesssssnnesssssansansassans 69
LG | U I 69
8.1 DEFINITIONS. ...ttt e 69
6.1.1 PrECISION ..ttt s e s e e s e e e 69
6.1.2 o | 1[0 U | PP 69
6.1.3) Lo Lol o= o1 o] £ TP P PRSP 69
6.1.4 (DY =10 0| Toll o Tot o] PP UPPPPPPP PPNt 70

6.2 DALASEL.... .ottt e s e s 70
6.3 Performance EVAIUBLIONcc.ccciiiiiiiiiiciicc et 71
6.3.1 F ANV Vo T o =T ot 1] o] U 71
6.3.2 AVEIAGE Fall-0UL ...ttt 74
6.3.3 Evaluation Time OF SEIVICESccerueieiririsec ettt 77
6.3.4 Execution Time for Web Service COmPOSItioNccccecvvirieririniere e 81

6.4 Comparison With Other FrameWOIKc.ocveviiiiieececeee et 82
6.5 Static Dynamic and Statistical FaCIOrS.........cccvevieiieiiirece e 83
I A O -V | (=1 G TN 11 1 Y/ 85
CNAPIEE 7 ettt rrssnre s sr e e s sssnr e s sessnresssssanaessessnnessessanassssssnnesssssanassessantesessnnesssssansensassans 86
T SUMMARY ettt ess e ssasss e et s s saass s e s s s s s s s aasss e e s e s e s s s sannseessssssssssnnsnens 86
7.1 OVErVIEW OF RESEAICH ..ottt 86
7.2 ACRIBVEIMENTS. ...ttt ettt sttt b e e s e eaeene e 86
7.3 LIMITALIONS ..ttt et st a et e 88
T4 FULUIE WOTK .ttt sttt 88

ST N e e NI 5 90

IX

Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

REFERENCES ...ttt sssssssssessssssssssssssssesssssessssnsssssssssnns

Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

List of Abbreviations

Al Artificial Intelligence

API Application Programming Interface

BPEL4WS Business Process Execution Language for Web Services
CSP Constraint Satisfaction Problem

DNS Domain Name System

ebXML Electronic based XML

HTML Hyper Text Markup Language

HTTP Hyper Text Transfer Protocol

JAXR Java API for XML based Registries

JAX-RPC Java API for XML-based RPC

OWL-S Ontology Web Language Semantic

QoS Quality of Service

SAAJ SOAP with Attachments API for Java

SOAP Simple Object Access Protocol

uDDI Universal Description Discovery and Integration
URI Uniform Resource Identifier

WS Web Service

WSCI Web Service Choreography Interface

Xi

Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

WSDB

Web Service DataBase

WSDL Web Service Description Language
WSDL4J Web Service Description Language for Java
XSLT EXtensible Stylesheet Language Transformations
XSRL XML Service Request Language

Xil

Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

Chapter 1

INTRODUCTION

1.1 Overview of Web Services

Services are small components present on internet that can cooperatively make a complete
application environment. Web services are made to be served on internet, so the basic
requirement is that they should be platform independent. They are flexible enough to be
integrated with other services as well as can function in total isolation. Each web service as a

whole is responsible for its own operation. [1]

Web Services are applications that can be found on internet, identified by a URI which is then
invoked to give result of the operation defined in it. Some relevant examples are

e Finding Currency Exchange Rates.

e Getting Weather News of certain area.

e Booking for a Flight Ticket

1.1.1 Definition

An official definition by WebServices.org is:
“Web Services are encapsulated, loosely coupled contracted functions offered via standard
protocols” where:
e Encapsulated is a term used for such implementation of a function which can never
be perceived by an external program.
e Loosely coupled means functions are not inter-dependent.
e Contracted means that it is already defined how to make use of function what will be

its behavior and what will be its input and output parameters. [2]

1 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

1.1.2 Architecture

Usually in internet world, there is a client and a server, the server offers a functionality, the client

IS supposed to use it via some agent.

Web services are same as distributed applications so they have almost the same components.
e A service broker that searches a service provider for the client
e A service provider that publishes its services to the service broker.

e A service requester that asks the service broker to find the required service and use it.

Following is diagram of web service components

inquire publish

. o { Service Provider
Service Requester . -
@ bind C)

Figure 1-1 Web Service Components

Web services consist of the following:
e XML (Extensible Markup Language).
e SOAP (Simple Object Access Protocol).
e WSDL (Web Services Definition Language).

Web Services use XML on top of HTTP. For exchange of data XML is widely accepted format.
For communication messages between service providers and clients, Web Service Description
Language (WSDL) is used. There is no typical Graphical User Interface of a web service. This is

also a reason for application independence. On client side it can be added to GUI e.g. web page.

2 I Dynamic Web Service Composition Using Google APl Crawling (MS Dissertation)

A Web service can be an application component like: currency convertor, weather reports, or
even dictionary as service. They also solve interoperability problems by providing a way to
exchange data between different applications with different platforms. At present, most
organizations and business companies prefer to implement only basic structure and use rest of
functional components from web service. So the capability to efficiently find and add services to
core components has turned on the importance of web service. It happens sometimes that a single
service cannot fulfill the requirements of the organization. At that time there is a need to find out
more than one service and integrate them in a proper way to get the final results as required.

1.2 Web Services Composition

To accomplish certain required functionality which can’t be fulfilled by single web service there
is a need to combine more than one service. In this case there is a need to use services together.
The procedure of combining different services is called service composition. It can either be
performed by composing elementary or composite services. A lot of work has been done to find
out different efficient and effective ways of service composition. Composition of services has

reduced the time of new application development.

Regardless of all struggles for better composition, it is still an extremely difficult task. With time
numerous web services are available on internet and the figure is increasing day by day. So while
searching for required web service there is a need to find it in huge repository. As web services
can be created and updated very often and fast, so during composition there is a need to find out

updated information to make different decisions.
Web services can be composed in following two ways:
1) Static Web Service Composition
2) Dynamic/ Automated Web Service Composition

In static web service composition, services are invoked one by one to achieve the required result.
In automated service composition integration of web services is done by agents such that user is

not fully involved in getting the results one by one and calling the other service. Further, in static

3 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

composition the sequence of web service composition is defined at start. In Dynamic

composition the sequence of composition can be specified by user at run time.

1.3 Dynamic Web Services Composition

In automated/ dynamic web service composition the services are executed sequentially without
much user involvement. In Dynamic service composition the request is given to the agent who
performs the composition steps. First the translator component performs translation for the
system, then the service is selected from database/ repository and then process generator
generates the services. If multiple services of same functionality are selected Evaluator evaluates

and the Execution Engine returns the results to clients.

A Generalized dynamic web services composition framework is shown in Fig 1.2

nternal qperiﬂrmicnﬁ PFOFF‘H

oty Translator |
: Generator

Processes

Service requester

FProcesses

%0%
Execution
Engine “Aprocess

Service

Evaluator Service

— Sewioé provider

Figure 1-2 Generalized framework for dynamic web services composition

1.4 Problem Statement
Current approaches for web service discovery have some of the following limitations:-

a) Querying Heterogeneous registries at a time i.e., for service search, the user can query

only one UDDI at a time.

4 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

b)

d)

9)

h)

Retrieving up to date information on user’s request.

In case of searching from web there is a need of in time response.

One time consuming task is that the users have to search whole registry each time
they need a service. It requires a lot of effort.

Majority of current approaches lack a reliable stable and trust-worthy discovery.
Services are themselves heterogeneous i.e. they have different formats for exchanging
data.

The published web services are tagged with a lots of information that makes it difficult
for a program to find the required web service on given attribute.[2]

Keywords are used to discover web services in UDDI. Ranking services and filtering
them is the main advantage of UDDI. Main drawback is that search can only be made
on basis of metadata so it limits the search criteria.

Few problems faced in composition are given below:-

a)

b)

Dynamic composition needs very little user involvement which makes it difficult to
find out an exact required service on huge repository of internet.

Not all the services on internet are public. So there is a need to select service of user
interest.

Transactional support can be very small in fully automated composition as different
service providers may have different conceptual models. (transactional support means
support for exchange of data between different services)

Compositional correctness cannot be guaranteed as automation cannot verify middle
stages of composition.

Full automation is possible for specific infrastructures. If there is need of a general
application in which requirements change every time. A little user intervention is

helpful.

5 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

1.5 Contribution

We have proposed a framework to overcome following web service discovery and composition
problems: - It provides the flexibility to search the user query on more than one heterogeneous
registry at a time using Google Custom Search APIl. We have programmed to retrieve only
relevant WSDL files that are valid and available. The limitation of UDDI search has also been
overcome as whole web is searched for the user query word, so there is no more search
specification of service name/category. It takes less time as compared to a usual open source
crawler which reads every word of each child link one by one in desktop application. It provides
a reliable and trust-worthy service discovery. And further it provides up to date information.

By using simple xml messaging, we have provided a flexible communication for integration.
Also it’s helpful for complex type services where most frameworks fail to integrate services.
There is no need to worry about data types and hence complex data types. It provides a reliable
and trust-worthy composition. User can select service of his own interest and hence overcomes
the problem of availability and updates. Compositional correctness is guaranteed by

matchmaking and final input decision by user.

This thesis proposed a solution for researchers who are facing the problems of web service
composition due to constant changes in input/output parameters and independent nature of
different web services. We have given generic implementation of proposed model to prove the

correctness of algorithm.

For service search and composition our frameworks are accepted and published by 1JCA

Foundation of computer sciences New York.

e Maria Allauddin, Faroogue Azam “Service Crawling using Google Custom Search API”,
International Journal of Computer Applications, Volume 34 - Number 7 , 2011
(Published).

e Maria Allauddin, Farooque Azam “Dynamic Web Service Composition and Parameters
Matchmaking™ International Journal of Computer Applications, Volume 36 - Number 9,
2011 (Published).

6 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

Another paper is accepted in IACSIT conference

e Maria Allauddin, Farooque Azam “QOS Based Service Search and Composition

Algorithm” 2012 International Conference on Network and Computer Science,
IACSIT(Accepted)

1.6 Thesis Structure

Chapter 1

Chapter 2

Chapter 3
Chapter 4
Chapter 5

Chapter 6

This chapter comprises of an overview of Web Services and Dynamic Web
Services composition with brief explanation. Also the Problem statement and
contributions to our work are briefly stated.

This chapter describes the related research work and commercially available APIs
and techniques.

This chapter presents the proposed Methodology.
This chapter presents the implementation of proposed methodology.
This chapter is concerned with Analysis and Results.

This chapter includes the summary and conclusion.

7 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

Chapter 2

RELATED WORK

2.1 Literature Review
Holger Lausen and Thomas Haselwanter [3] described that centrally maintained repositories are
not enough for service search and does not provide full matching requirements for user query.
They have considered the information provided in WSDL documentation. In a next step they
have refined the results on user’s explicit feedback from users. They used HeritrixWeb crawler
by adding some rules to crawl only relevant pages. Subsequently, they removed duplicate results.

However they could not achieve a relative accuracy in the retrieval.

Mydhili K Nair Dr. VV.Gopalakrishna [4] stated different methods of service discovery. As today
WSDLs are abundant and scattered across the WWW so the count of Web Services already
deployed with similar functionality are large in number. There is an increasing need to develop
Service Discovery Methods that help the Consumer to find the right kind of services for their

requirements.

They have put forth survey results of the work conducted by researchers across the globe on the
WS Discovery techniques based on User Requirements as their input. They concluded that the
functional requirements of the WS are more or less handled by the WSDL. There is an analysis
of the various techniques used by search engines such as Google, Yahoo AlltheWeb and Web
Crawlers such as WebSPHINX to fish-out the relevant WSDLSs.

They have given the list of problems which need to be looked into and investigated. They
declared open-ended unresolved issues in a novel way by providing its Cause-Effect Analysis. In

Figure 2.1

8 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

MWSDI Problem

Cause / Reason of the Problem Effect of the Problem

WSDL is mherently designed to give

descriptions detailing its functional aspects

like Service Type, Implementation

interface details such as the port to bind to,

the type of parameters ete. It is not
designed to publish the non-functional

WSDL 15 nor designed to take
the “semantic descriptions” of
the service_ It is used to Publish
a WS 1n terms of its porrs, porr
nypes and bindings[2,4,7.8,9].

This makes it difficult to store the non-
functional aspects of the service such as its
Quality of Service (QoS). Parameters such as
reliability, availability, response tume,
throughput, mean time before failure, price, etc.
Several techniques have been formulated to

aspects[2.4,7.8,9].

solve this problem[23,25,32,33,14.35,34]

UDDI Problem

Current UDDI implementations
are limuted in scope. It 1s not
innately designed to publish
and store the QoS requirements
and other non-functional
requirements of a
service[31,18,19].

UDDI allows search on limited
attributes of a service, namely,
Service Name (selected by the Service
Provider), keyReference (unique for a
service), or on a cafegeryBag (listing
all the business categories[31,18,19]

This problem makes it difficult to store within the
UDDL the run-time performance parameters of the
service capturing its QoS parameters.

It is also difficult to capture the Customer Feedback
about the service and store it to analyze and improve
on these valuable metrics[31.18.19,20,15.16].

E3
I
[|
3

Public UDDI registries, that
were run by IBM, Microsoft,
SAP and NTT Com. have been
shut down in the beginning of

There was ne consensus regarding
ownership of the root UDDI
rsegistries. UBRs used to contain
listings of businesses that no longer

There 1s ne Universal Registry where all Web
Services are published. This makes it difficult to
check the performance, scalability and statistical
gathering of data. An earlier work carried out by Su

2006[15]. Myeon Kim and Marcel-Catalin Rosu[19] reports that
only one-third of the 1200 registered services

referenced a valid WSDL.

existed and sites that were no longer
acrive [19.15]

Figure 2-1 Cause Affect Analysis[4]

Woogle [5] is a web service search engine. It does extraction of information about WSDL
functionality descriptions, inputs and outputs. They used clustering of parameters, matching of
inputs outputs and operations, and stored the results in a database. They compared their method
with Func and Comb. Comparison of words with operation names is done by Func method.
Whereas in Comb method web service names, parameters names and descriptions are also used

for matching; in contrast to Woogle, both of the mentioned keywords are used.

In multi-registry environments [6] provides foundation for web service discovery. It also
provides reliability to some extent. A responsibility of crawler is that it actively seeks Web
services; they made a registry monitor to track any changes of the provided registries. Further
there is a Term Probing (TB) component which is responsible to extract words from WSDL
descriptions, at end they provide web service storage to enable web service search. However
there is no semantic support for service UDDI. They have used the specific registries such as
MUBR, MUTR, SUBR and SUTR and they go around among them. So the framework is not

flexible to be scaled.

The architecture in [7] extends SOA with Quality of service support for web services. In
addition, it verifies, certifies, confirms, and monitors QoS properties. The architecture contains
these major roles: - UDDI with QoS Information, Verifier and Certifier, Discovery Agent, QoS

9 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

Matching, Ranking and Selection Algorithm. The discovery agent discovers functionally similar

web service from provided UDDI registry when it receives request from the user.

In [8] the researchers described main features required for a QoS based agent. Response Time,
Availability, Throughput and Price are considered. Their approach is dynamic which keep cover
on actual systems complexity. However their architecture is theoretical so there is no
performance test. They argue that their framework will enable a more flexible, and trustable

architecture.

Web services are presented as XML based software components in [9], that can be discovered on
the basis of signature and interface matching. So the search process completely depends on
actual components of the service. WSDL is an XML based format which not only defines it’s
functionality but also abstract operations and network bindings.

In [10], keyword matching is used for service discovery using UDDI. This work matches XML
schema with various comparisons using intelligent algorithms. Suffix, prefix and infix can be

used for string matching.

Liang-Jie Zhang, Qun Zhou’s [11] framework solves the problem of linked documents. WSIL is
used to search the chain services and results are returned to the users after aggregation. So they
solved the problem of manual links document search. The chains of the documents are retrieved
by re exploring the links in history using some calculations and caching.

Paul Palathingal [12] gave an agent based approach. The agent acts dynamically to discover,
invoke and then execute the web services. Using agents it is possible that the sender never knows
the receivers address. The agent who sends request for the service gets results from then the next

agent; composition agent composes the web service.

Schahram Dustdar and Wolfgang Schreiner in [13] performed composition frameworks analysis,
modules and supporting features are given by them for composition design and development.
They say that the current web service technology is quite limited as seen from results of different
research papers. This is due to dependency of this technology on standards as SOAP, WSDL or

UDDI. They compared different composition strategies by finding similar features. Finally they

10 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

concluded that interactions among services with different specifications have to be considered

with more attention.

Freddy L’ecu’el, Eduardo Silva, and Lu’is Ferreira Pires[14] have given a framework for
automated composition. They used SPICE ACE for automated composition. In their framework
web services and their requests are distinguish by their functional and non-functional properties.
Composition Factory is a part that figure out the non-functional properties of service
compositions each time a new service is added. They used a causal link matrix, to guarantee that
the obtained compositions have valid semantic connections. Finally, if a composition does not
match the non-functional properties of the service request, it is neglected.

Faisal Mustafa, T. L. McCluskey [15] made a sketch of major challenges tackled by automated
web services composition. The problems are associated with distributed, dynamic and unsure
disposition of web service. Their model is semi-automatic but fixes few problems of fully
automated service composition. They pointed out that internet has huge repository of services it
is not possible to automatically analyze them. And hence integration is difficult. They said that
second difficulty for automated service composition is that web services are updated frequently.
So there is a need to have current information and decision of composition should be based on
that. Their technique has few drawbacks. If server is not working input output problems occur.
Also their repository does not contain updated information. The given model is semi-automatic
static composition model and fixes some issues as: - Repository has huge collection of web
services and it is almost impossible to analyze them from repository. Second when there is a
need to complete a task most recent information is required. Input/output issue arises if the server
goes down in the proposed technique. Also updated information is not present in the database as

it does not update its contents. The framework is shown in Fig.2-2

11 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

WSDE I]

+
N A

I =

a3

R
|

E = Evaluator W5 =Web Server

C = Composer 5F. = Service Rapository
ME = Matching Engine T = Translator

EEG= Service Begistration FEQ=CService Faquest

Figure 2-2 Composition framework by Faisal & McClusky [15]

Pat. P. W. Chan and Michael R. Lyu in [16] presented Dynamic Web Service Composition using
Nversion programming. This method expands the reliability for planning among web services. If
a server fails, there is another to provide the required service. Their composed service is free of
deadlock consumes less time for composition. Since the frame work is dynamic it uses updated
versions without the need of rewriting the specifications. To verify the correctness of algorithm

experimental evaluation and results are given at the end. The framework is shown in Fig 2.3

12 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

—_ — [
e
_ T] age Checkpari
— | A Beww |, v -~
.-1_'\-.'/,."' ! L~
e \ AP Erwet [
L. \
- l'l i
E ".. |I P T
: \)
Inksmet
i Serd | J
: =npns | L N
i \
! / ".I e lom
I | - - / 2]} |
D [— WTR f sandabne | ———,
N e | ogan
¥ [/j'/ Bowor
s ™
Oan = KGF I

Figure 2-3 Best Route finding system architecture [16]

LIU AnFeng et al. [17] proposed a technique that supports web services interface. They used
peer to peer ontology with overlay network to provide composition. The composition uses
domain ontology and DHT Distributed Hash Table for composition and discovery. Their analysis
shows that separation of details of interface from underlying details makes it easy to understand.

The composition is fast and fault tolerant and hence provides QoS Based execution.

Kazuto Nakamura, Mikio Aoyama in [18] presents a structure for dynamic web service
composition. They used value based composition and provided QoS. A Meta model is used
together with the VSDL. To compose the services Value added service broker architecture is
used and to define relationship among values the value-meta model is employed. This paper
provides dynamic web services composition framework which is automated and fault tolerant.

The framework is shown in Fig 2.4

13 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

[alus Reguest |
Valus Frovids Card[Class=\Isa Valus Requask

Card[Clags=VISA

Valus Requast Valus Fovida
OVD{Cost<=3000 DD Cirate300

Figure 2-4 Value based dynamic composition [18]

R. Jaya prakash, R. Vimal [19] evaluated different web service composition methods using
Business Application. They considered basic perspectives like QoS, scalability, and correctness
to analyze different methods. They performed the analysis by making an online book shop. The
Web service composition approaches are compared with each other based on connectivity,
exception handling and compensations. They indicated the results as good, average and low.
They describe that different methods provide different automation level and that they cannot
conclude that higher automation is better due to high complexity of web service environment. So
full automation cannot be provided. Though highly automated methods are appropriate for
making implementation structures that are requirement specific it is almost impossible to

implement in highly fluctuating environments.

Freddy L ecu’e, Alain L™ in [20] outlined major challenges of Semantic Web Services. They
used XCLM for automated service composition which provides formal model to face the
challenges. They described that advantage of functional level composition is use of OWL-S.
They analyzed different proposals and concluded that no formal model is helpful for automation
of composition. Their framework is robust, secure and verifiable. Matchmaking of input output
parameter is performed at functional level. Matchmaking functions summary is provided that
gives details of how different comparisons are made. Overall the Service composition is viewed

as fundamental link composition.

14 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

Fila Pt ore, pr;-sz
. b

™ / Iﬂ.&:wf
= i &
o | OO

et
x 8 —— Tinjerse(s,}
Of’ \O O O
fve Ml {
¥ r%,
/O Matching Service Matclung

Figure 2-5 Problems Mapping [20]

Different matching functions are defined they do not allow only to value similarity between Web
services but also to value a composition. There is still a need to take into account non functional
properties of Web services in order to solve a problem of multi-objective (e.g., Semantic

connection, QoS...) optimization.

San-Yih Hwang, Ee-Peng Lim, Chien-Hsiang Lee, and Cheng-Hung Chen in [21] formulated the
dynamic WS selection procedure in a dynamic environment that is failure prone. They proposed
FSM usage to invoke operations of service in an order. They defined parameter to find a
probability of execution of services weather they will terminate successfully or not. They used
Eigen vector to show aggregated reliabilities. The approach can be used only in industrial

applications and hence is environment specific.

Liping Liu , Anfeng Liu , Ya Gao [22] used Particle Swarm Optimization for Service
Composition. PSO is meaningful for the composition of complex services spread on internet. If
there is requirement of multiobjective composition only PSO can do so. A non inferior pareto
solution is provided by PSO group search. The solution meets all the required constraints. They
used general service overlay model. They say that full automation of service composition is
complex rather unachievable task that is why most of algorithms are semi automated. They said

that their algorithm can be applied to specific compositions.

15 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

Zhang Hai-tao, Gu Qing-rui [23] presented a dynamic process of domain ontology-based
method. Their method considered semantics of service for composition. They verified their work
by experimental examples. Their module for service composition makes a portfolio as soon as a
service request is received. When all services are determined for integration it starts calling webs
services. An OWL-Agent is used to mark functions of the service by forming OWL-S documents
that call the services. Shortcomings of this approach is it must have a fixed field of experts in the
field service portfolio template firstly, and then selected the user needs to match the template in
the service of specific Web services. The limitation of the method is the construction of the field
of service composition templates requires human intervention, so degree of automation is

reduced.

Yujie Yao, Haopeng Chen [24] solved the rule based web service composition problem. They
gave a framework in which selection engine executes business rules. Pereto optimal solution is
obtained by an algorithm called NSGA-II. This is a selection algorithm. They said that the work
can be extended by a large scale implementation. There is still a space to research about the

communication between selection engine and composition engine.

Farhan Hassan Khan, M.Younus Javed, Saba Bashir [25] presented a framework for dyamic web
service composition and execution. At first they discussed major problems of dynamic
composition, then proposed an algorithm for dynamic web service composition. They mentioned
composition issues like reliability, availability, data distribution. They introduced the concept of
multiple repositories for system reliability. Availability is also guaranteed by this concept. An
aging factor is used to retrieve up-to-date information. They claim that their system is reliable,
fault tolerant and performs fats data retrieval. They said that due to limitations of UDDI there is a
need to extend this framework to service crawling. It is also essential to look into more details of

every component of the framework to ensure better and efficient composition.

Kaouthar Boumhamdi and Zahi Jarir [26] research contains a contribution in dynamic
composition of Web services. First they stated some approaches of Dynamic Web Service
Composition which are of vital importance. They made a comparison of those approaches and on

bases of final analyses they proposed a new architecture. They argue that the architecture is

16 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

flexible and modular. They gave the idea of dynamic service adaption. The adaptation is
according to user requirements and sometimes according to the availability of resources. They

used a BPEL selection manager and hence their approach can be applied to specific scenario.

Jinghai Rao and Xiaomeng Su et al. [27] presented different web service composition methods
which include workflow and Al planning. They proposed a five step composition model. Five
layers are Presentation, Translation, Process generation, Evaluation and Execution. The author
also concludes that although different automatic web services composition techniques are
available, it is not true that more automation is better. Service composition environment is
highly complex its not feasible to generate every thing automatically. Highly automated methods
are only suitable for generating the implementation of formal specification skeletons. The

framework is shown in Fig 2.6

Internal specificatiorn Process

f ~External specifications) Translator |

Genearator

Frocesses

Service requestar o

A g
> &

Sy,
— _ o)
Exacution . Servi —
Engine <A process Evaluatar Service ::.e_rrwce_
gine epositor specification
g

—_— Servioé pravider

Figure 2-6 A framework of service composition system [27]

Biplav Srivastava, Jana Koehler et al. [28] explored problems of web service composition and
analyzed two other approaches and compared them. The industrial approach and Semantic web
approach, with each other. The industrial approach is primarily syntactical and is based on XML
standards which are used for web services specification. This approach is used for several
Businesses to Business and Enterprise applications integration. On the other hand Semantic web
approach is based on semantic description of preconditions and effects by focusing on reasoning
about web resources. Several sub problems are identified related to Al planning perspective. It is

concluded that it is not possible to directly apply Al planning technology to them.

17 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

2.2 Commercial APIs to Support Service Search and Composition

2.2.1 Google Custom Search API

Google Custom Search facilitates us to generate a search engine for website, blog, or application.
Google Custom search provides us the facility to create and engine that focuses on a particular
topic. Certain web sites can be added to be searched, prioritized or ignored. In simple the search

engine can be tailored to our interest.

As Google SOAP Search API has been depreciated, Custom Search can be used and adapted for
Service search. While using Google Custom Search API and searching for WSDL documents, it
can be seen that the working looks like a crawler. As a crawler application takes some certain
URL and searches the user query on different links of that parent URL, custom search API does
same. But it is flexible and scalable enough that user can add more than one parent links at a
time. An example, search for an “add wsdl” document on Google Custom search, while some

parent links are already added on the search engine. The search results are shown in figure 2-7.

28 Geagie Cuntomn Searc

L C D www.google.com, g # w . 1 & o A
D- - [dsearen- @@ GlobalNiegg) Music Games -

Google custom search adgewsa [Seach

Sendrax - WebcenaceX NET
out preceding zern(s)] to your fax numbenWithout hyphen)
s 0091435416353 please enter fax ...

automatically, Force you to wrile vahd XML .. SOAF
oditor, XBRL validation ...

CES Soltion P
Aschitecture, Web Seraces, XML, SOAP, WSDL. UDDI, lnosely coupled
ted. web sendces. SOA. web senice security, W35 Security ...

WSDL Tutorial
WSDL (Web Serdces Description Language) is an XML-based language for describing Web ...
This chapter explsns the

main pants of an WSDL document. _..
‘wadldefault asp

document. It contains set of definitions to ... A
sing these magoe sloments ..

ervices, Additonally. cross plattorm
SOAP, known as XML ..

Figure 2-7 Results returned by Google Custom Search API

18 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

2.2.2 Google Custom Search Features

With Google Custom Search, the power of Google can be used to create a tailored engine for
searching WSDL documents. It: -

. Include one or more websites/ parent links, or specific WebPages.
. Crawils all child links of given link to find out user query word.

. Provides its API to be used in desktop application.

. Provide fast and relevant search results.

. Contains rich results formats.

. Provides facility to use wild card patterns for parent URL.

. User query single word or combination of words.

. User and Programmer Documentation are provided.

2.2.3 Programmatically Creating Custom Search

Creating an engine programmatically needs requests such as: GET, POST, and DELETE. All of
them need a header which is for authorization. The header contains and authentication token.
Custom Search server sends an HTTP status code in response of that request. The response
reflects the result of each request. Any programming language can be used that enables to issue
HTTP requests and parse XML documents in response. Following are some steps for

programmatically creating search engine.
2.2.3.1 Authentication:

Like every other Google service, custom search is protected. It needs a Google account. The
account provides an authentication token in order to interact. Once authentication token acquired

it can be used to create Authorization header for each request. i.e.
“Authorization: GoogleLogin auth=yourAuthToken”

Here is an example of an authenticated GET request:

19 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

GET http://www.google.com/cse/api/default/cse/ Authorization: GoogleLogin

auth=IM6F7Cx2fo0TAiwlhNVdJSE8Ov8hw6aHV

2.2.3.2 Request Methods

Following are tables that describe different operations and corresponding URLS

1) Creating updating and Deleting Search Engine

If you want to... Send this To this URL....
HTTP
request
method...
Create a new search engine or POST http://www.google com/cse/api/default/cse/<CSE_ID>

madify an existing one (by
submitting a context XML)

Create or modify the list of POST http:/fwww.google com/cse/api/default/annotations/
sites to search (by sending a

message with annotations

XML). You can add or delete

individual annotations.

Create or modify the list of POST http:/fwww.google com/cse/api/default/promotions/<C3E_I1D>
promations (by sending a

message with promotions

XML). You can add or delete

individual promotions.

Create or modify the list of POST http:/fwww.google com/cse/api/default/synonyms/<CSE_10>
synonyms (by sending a

message with synonyms XML).

You can add or delete

individual synonyms.

Delete a search engine ELETE http/fwww google com/cse/api/default/cse/<CsE_TD>

For more information about
the method and the
required message body, see
the section on....

Creating and Updating the
Search Engine Specification
Creating and Updating

Annotations

Creating and Updating
Promotions

Creating and Updating
Synonyms

Deleting a Search Engine

Figure 2-8 Creating updating and Deleting Search Engine

2) Retrieving Search Engines, Promotions, Synonyms, and Search Results

If you want to... Send this To this URL....
HTTP
request
methed...
Retrieve a list of search GET http:/fwww.google.com/csefapi/default/cse/

engines under an account

Retrieve the context file of a GET httpr/fwww google com/cse/api/default/cse/<CSE_TD>
specific search engine

Retrieve all annotations for all GET http:/fwww google com/csefapi/default/annotations/
search engines

Retrieve promotions GET http:/fwww.google.com/cse/api/default/prometions/<CSE_IDx

Retrieve synonyms GET httpc/fwww.google.com/csefapi/default/synonyms/<CSE_ID>

For more information,
See....

Retrieving a List of Search
Engines

Retrieving the Specifications
of a Search Engine

Retrieving All Annotations

Retrieving Promotions

Retrieving Synonyms

Figure 2-9 Retrieving Search Engines, Promotions, Synonyms, and Search Results

20 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

2.2.3.3 JSON

JSON is used for data exchange. It is a lightweight format. It is in human readable form. Also
machines can understand it easily to parse. It is language independent but uses standard
conventions. For example programmers of C, C#, Java, Perl and Python can easily understand
JSON format.

JSON has two structures:

. Name/value pairs. As in other languages there is an object, record, struct or an associative array.

. Array, vector or list; an orders list.

2.2.3.4 JSON Object in java

A JSONObiject is an unordered collection of name/value pairs. Its external form is a
string wrapped in curly braces with colons between the names and values, and
commas between values and names. The internal form is an object having get() and
opt methods for accessing the values by name, an put() methods for adding or
replacing values by name. the values can be any of these types: Boolean, JSONArray,
JSONObject,Number and String, or the JSONObject.NULL object

Figure 2-10 JSON Object Java

External form JSON needs to be converted to internal form for this purpose JSON Object
constructor is used. Value is returned if found by get method, if it is not found and exception is
thrown. If an opt method is used instead of get method it returns default value in case no result if
found. It never throws an exception. Put and toString Methods are used to convert values into
JSON text.

2.2.3.5 Custom Search concepts

The JSON/Atom Custom Search API permits to add the power of Google Custom Search to
desktop application.

21 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

22351 API data model
Custom Search Engine API query result is a JSON or Atom object that includes three types of
data:

. Metadata describing the requested search (and, possibly, related search requests)

. Metadata describing the custom search engine

o Search results

The JSON/Atom Custom Search API defines three custom properties and two custom query

roles:
. Custom properties
= cX: The identifier of the custom search engine.
= cref: A URL pointing to the definition of a custom search engine.
= safe: A description of the safe search level for filtering the returned results.
. Custom query roles
= nextPage: A role that indicates the query can be used to access the next logical
page of results, if any.
= previousPage: A role that indicates the query can be used to access the previous
logical page of results, if any.
2.2.35.2 Calling styles
To invoke the API there is more than one way:
Using REST directly
Using REST from JavaScript (no server-side code required)
2.2.3.6 REST

JSON/Atom REST is different from traditional REST, i.e. it provides access to service rather providing

access to resources. So the API provides one URI which is a service endpoint.

JSON/Atom APl URI format is

22 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

“https://www.googleapis.com/customsearch/v1?parameters”

This is specific for Single JSON/Atom APl URI. Where parameters are specific to single query.

Here is a working example of JSON/Atom Custom Search API, which searches a test Custom Search

Engine for lectures:

GET https://www.googleapis.com/customsearch/v1?key=INSERT-YOUR-
KEY&cx=017576662512468239146:0muauf_Ifve&qg=lectures

2.2.3.7 Using REST to Invoke the API
2.2.3.7.1 Working with Search Results

To put a query and Get results back HTTP GET is used. The format for the request URI is:-
“https://www.googleapis.com/customsearch/v1?parameters”
Each request has three query parameters:-

. API key. Used to identify an entity. i.e. user application

. Custom search engine identifier. To specify the custom search engine an identifier is used.
= Use cx identifier for a search engine created with the Google Custom Search page.
= Use cref for a linked custom search engine.
= If both are specified, cx is used.

o Search query. q Query parameter is used to specify the query.
Search request example is:

“GET https://www.googleapis.com/customsearch/v1?key=INSERT-YOUR-
KEY &cx=013036536707430787589:_pgjad5hrla&q=Fflowers&alt=json”

If requested query is succeeded the server sends response data along with 200 OK HTTP status

code.

23 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

2.2.3.7.2 Response data

The response data, which is output of JSON query has three classes:

. Search metadata
. Custom search engine metadata

. Search results
These are described below

2.2.3.7.3 Search metadata

It describes characteristics of searches that are possible. These characteristics are in the form of
array of objects. Usually and array contains a single element because each query role object is a

separate array.

Below are possible query objects:

. Request: it describes set of current results.
. NextPage: query for next page of results.

. PreviousPage: query for the previous page of results.

2.2.3.7.4 Custom Search Engine Metadata

The metadata describes a specific search engine. This description is in context property. The

information includes engine’s name and any public object for refinement of search query.

2.2.3.8 Standard Query Parameters

Query parameters for JSON/Atom Custom Search API operations are shown in the table below.

All parameters are optional.

Table 2-1 Query Parameters

Parameter Meaning Notes

alt Data format for the Valid values: json, atom

24 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

response. Default value: json

callback Callback function. Name of the JavaScript callback
function that handles the response.

Used in JavaScript JSON-P
requests.

fields Selector specifying a Use for better performance.
subset of fields to include
in the response.

key APl key. (REQUIRED*) | *Required unless you provide an
OAuth 2.0 token.

Your API key identifies your
project and provides you with API
access, quota, and reports.

Obtain your project's API key from
the APIs Console.

access_token | OAuth 2.0 token for the One possible way to provide an

current user. OAuth 2.0 token.

prettyPrint | Returns response with Returns the response in a human-
indentations and line readable format if true.
breaks.

Default value: true.

When this is false, it can reduce the
response payload size, which might
lead to better performance in some

environments.

userlp IP address of the site Use this if you want to enforce per-
where the request user limits.
originates.

2.2.3.9 API-Specific Query Parameters

Request parameters that apply specifically to the JSON/Atom Custom Search API are

summarized in the following table.

Table 2-2 Request Parameters JSON/Atom

Parameter Meaning Notes

cr Country restrict(s) The cr parameter restricts search results to
documents originating in a particular
country. You may use Boolean operators in

25 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

the cr parameter's value.

Google WebSearch determines the country
of a document by analyzing:

the top-level domain (TLD) of the
document's URL

the geographic location of the Web server's
IP address

cref

The URL of a linked
custom search engine

The url of a linked custom search engine
specification to use for this request (e.g.,
cref=http%3A%2F%2Fwww.google.com%?2
Fcse%2Fsamples%2Fvegetarian.xml).

If both cx and cref are specified, the cx value
is used.

CX

The custom search engine
ID to scope this search

query

The unigue 1D for the custom search engine
to use for this request (e.g.,
cx=000455696194071821846:reviews).

If both cx and cref are supplied, the cx value
is used.

filter

Controls turning on or off
the duplicate content filter

The filter parameter activates or deactivates
the automatic filtering of Google search
results.

\Valid values for the parameter are:

filter=0 - Turns off the duplicate content
filter

filter=1 - Turns on the duplicate content filter|
(default)

By default, Google applies filtering to all
search results to improve the quality of those
results.

ol

Geolocation of end user

The gl parameter value is a two-letter
country code. The gl parameter boosts search
results whose country of origin matches the
parameter value.

26 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

Specifying a gl parameter value should lead
to increased relevance of results. This is
particularly true for international customers
and, even more specifically, for customers in
English-speaking countries other than the
United States.

The language restriction for
the search results

'You can restrict the search to documents
written in a particular language (e.g.,

Ir=lang_ja).

This list contains the permissible set of
\values.

to return

num Number of search results to [You can specify the how many results to
return return for the current search.
\Valid values are integers between 1 and 10,
inclusive.
If num is not used, a value of 10 is assumed.
q Query The search expression.

safe Search safety level You can specify the search safety level.
Possible values are:
high - enables highest level of safe search
filtering.
medium - enables moderate safe search
filtering.
off - disables safe search filtering.
If safe is not specified, a value of off is
assumed.

start The index of the first result [You can set the start index of the first search

result returned.

\Valid values are integers between 1 and (101
- num).

If start is not used, a value of 1 is assumed.

27 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

2.3 JAX-RPC
It is Java API for XML-based RPC. It provides many benefits to Java developers, including:

. Support for open standards: XML, SOAP, WSDL

. Processing model of SOAP message and extensions.

. Web services Security
JAX-RPC has built-in feature of mapping between Java and WSDL. No other environment
provides such functionality within single tool. JAX-RPC client has different programming
models, such as dynamic invocation interface, dynamic proxy and stub-based. Any of these can

be used to invoke a heterogeneous web service endpoint.

2.3.1 SOAP and Other Messaging

SOAP is required by JAX-RPC for interoperability. The requirement is over HTTP. SAAJ API
provides this support for message handling. Construction and manipulation of SOAP messages

with attachments is provides by SAAJ standard Java API.

Document based messaging service is also provided by JAX-RPC. A MIME-encoded content
can be part of SOAP message using JAX-RPC. SSL-based security mechanisms and HTTP-level

session management is supported by JAX-RPC for security needs.

2.4 WSDL4J

WSDL documents creation, representation and manipulation are done by Java Toolkit Web
Service Description Language (WSDL4J). JSR110 ‘JWSDL’ provides reference implementation
for WSDL4J.

The IBM reference implementation of JSR-110 (Java APIs for WSDL), Web Services
Description Language for Java Toolkit (WSDL4J) allows the creation, representation, and

manipulation of WSDL documents.

28 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

25 SAAJ

2.5.1 Overview of SAAJ

The section below gives a brief view of SAAJ messaging. Working mechanism and concepts
explanation are stated.

Two main perspectives are kept in notice for overview. These are i) messages ii) connections.
25.2 SAAJ Messages

SOAP standard give format for messages, SAAJ follows this standard. SOAP also specifies
things that are required, optional or not allowed at all. SOAP 1.1 and 1.2 specifications messages
can be created with SAAJ API. These are XML messages. The message also conforms to WS-I

Profile 1.1 specification. All these are done my making Java API calls.
2.5.3 The Structure of an XML Document

The structure of XML document is hierarchical such that it has elements than sub elements than
elements inside sub elements which are called sub sub elements and the hierarchy goes on.
Almost all SAAJ classes and their interfaces are represented by SOAP messages and XML
elements they have word element or SOAP or both in their names. A single element is a node.

There is an interface node in SAAJ API. This node is base class for other classes and interfaces.

254 What Is in a Message?
There are two types of messages. One is with attachments, other is without attachments.

2.5.5 Messages with No Attachments
Structure of SOAP message with no attachments is shown below.
I. SOAP message A. SOAP part 1. SOAP envelope a. SOAP header (optional) b. SOAP body

29 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

Figure 2-11 illustrates the structure of a SOAP message with no attachments.

SOAPMessage (an XML document)
SOAPPart
SOAPEnvelope
SOAPHeader (optional)

Header

SOAPBody

XML Content
or SOAPFault

Figure 2-11 SOAPMessage Object with No Attachments

When SOAPMessage object is created it contains parts that are required to be in a SOAP
message automatically. Which means a new SOAPMessage object contains an object of
SOAPPart which has SOAPEnvelope Object. SOAPHeader object and SOAPBody object
are already in SOAPEnve lope object. The SOAPBody object is empty at start. SOAPHeader

object can be deleted if not required.

There can be one or more than one headers in a SOAPHeader. They contain metadata of the
actual message. For example they may contain information of who is receiving party.

SOAPBody object contains the actual SOAP message. Also it contains SOAPFault object.
25.6 SAAJand DOM

SAAJ APIs counterparts are below:

30 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

s MNodeinterface extends the org wic. dom MNode interface.

o The S0APElement interface extends both the MNode interface and the
org. wac.dom. Element interface.

s The ZOATFPart class implements the org w3c. dom Document interface.

s The Text interface extends the org w3c. dom. Text interface.

Figure 2-10 API Counter Parts

SOAPPart of a SOAPMessage, can be manipulated by applications, tools and libraries that

use DOM, as it is also a DOM Level 2 Document.
2.5.7 SAAJ Connections

If there is a connection than SOAP message can be sent or received. In SAAJ,
SOAPConnection object represents a connection. The connection is direct from sender to
destination. The connection is between two endpoints so it is called point-to-point connection.

Messages through these are called request response messages.
2.5.8 SOAP Connection Objects

SOAPConnection Object is given in following code fragment. Call method is used to send

SOAP connection messages. When the message is sent it is blocked until a response is received.

The request parameter is the message being sent; endpoint represents where it is being sent.

SOAPConnectionFactory factory = SOAPConnectionFactory.newlnstance();
SOAPConnection connection = factory.createConnection();

. .// create a request message and give it content
jJava.net_URL endpoint = new URL("http://fabulous.com/gizmo/order');

SOAPMessage response = connection.call(request, endpoint);

31 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

The second argument to the call method identifies where message is sent it can be URL or

String. So the last two lines of above code can be:-

String endp = "http://fablous.com/order";

SOAPMessage respo = connection.call(request, endpoint);

Web service returns a response for the request sent. This response is actual SOAPMessage
object. Some requests may not require any response message at all. Still some response is

required to confirm that service has been successfully called.

2.6 Castor

Castor XML helps binding java classes to XML document by mapping. Data in java object
model is transformed into/from XML.

Castor can marshal and unmarshal Java objects by default. However sometimes there may be
need to have control over this. An example is that: - Suppose Java object exists already, Castor

Mapping need to be used as a bridge between Java and XML.

Mapping file is used to specify marshalling/unmarshalling behavior of Castor. Basic information

of how and XML document and Java Objects relate is provided by this file explicitly.

XML document is written from point of view of Java and gives mapping information. It
describes the properties of Java Objects which are to be translated. It describes field of each

object so that there is information of each field to be mapped.

Property of object is represented by field. Field is theoretical correspondence of public class
variable or property, where public class variable has direct and property has indirect accessor
method. When Castor cannot find mapping file information and needs to handle an XML object
it requires conjunction of mapping and Castor default behavior. Java Reflection API utilizes Java

Obijects to identify what to do. This is how Castor conjunction works.

32 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

In rare cases Castor cannot perform all mappings. Then it is essential to employ combination of
XSL transformation and Castor. Due to this XML document is transformed in an understandable

format.

2.7 XSLT

XSLT is a language which converts XML documents in to other XML documents. XSL includes
XML and XSLT. XML terms are included for format specification. XSLT used these formatting

terms for document conversion.

XSLT-defined elements are distinguished by namespaces of XML, so they are called XSLT
namespace. To generate text and for conditional processing, XSLT uses expression language.

The language is defined by XPath and is used for elements selection for processing.

2.8 Chapter Summary

In this chapter we have discussed related work to analyze how much work has been done in the
field of Web Service Discovery and Composition. After that we gave information about
Commercial APIs that are available to Support Service Search and Composition. We have used
Google Custom Search API for Service Search and WSDL4J, SAAJ, Castor, XSLT for service

invocation and composition.

33 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

Chapter 3

PROPOSED APPROACH

3.1 Problem Statement

Current approaches for service discovery have some of the following limitations: -

a) Querying heterogeneous registries at a time i.e. user can query only one registry at a time.

b) Retrieving up to date information on user’s request.

c) Incase of searching from web timely response is needed.

d) One time consuming task is that the users have to search whole registry each time whenever
they need a service.

e) Majority of current approaches, lack a reliable, stable and trust-worthy discovery.

f) Services are themselves heterogeneous i.e. they have different formats for exchanging data.

g) The published web services are tagged with a lots of information that makes it difficult for a
program to find the required web service on given attribute.[2]

h) Keywords are used to discover web services in UDDI. Ranking services and filtering them is
the main advantage of UDDI. The most important drawback is that search can only be made

on basis of metadata so it limits the search criteria.

Primary purpose of service composition is to enhance the functionality of web services and to get
automated results. Also there should be flexibility as well as agility. Few problems faced in

composition are given below:-

a) Dynamic composition needs very little user involvement which makes it difficult to find
out an exact required service on huge repository of internet.

b) Secondly, all the services on internet are not public. So, there is a need to select service of
user interest. Not only to functionality but also its accessibility, .i.e., if a service provides required

functionality, whether it is available to be called publically or not.

34 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

C) Transactional support can be very small in fully automated composition as different service
providers may have different conceptual models. (transactional support means support for
exchange of data between different services)

d) Compositional correctness cannot be guaranteed as automation cannot verify middle stages
of composition.

e) Full automation is possible for static infrastructures. If there is need of an application in

which requirements change too often (i.e dynamic needs), a little user intervention is helpful.

3.2 Proposed Framework
Proposed framework of web services composition includes the following components:-

3.2.1 Service Provider

Main purpose of a web service is to provide user’s required functionality. This functionality is
provided by some individual or organization. Service providers register their services in registries
to make them accessible to clients. There are many registries provided by different companies

which are synchronized after regular period.

3.2.2 Service Requester

Client wants to use web service provided, and is called requestor. Clients that need a particular
service send request through service request module. Service requester requests the service from
registry and if desired service is found, it accesses that service through its service provider. The

requestor initiates the message exchange most of the time.

35 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

Crawling through
1 | Google API

Composition Module

Figure 3-1 Proposed Framework for Dynamic Web Services Composition

3.23 Web Server
A place where service is actually hosted and performs its functionality.

3.2.4 Translator

It translates the user’s request in order to search for a particular service. It translates the external

form used by requester/provider into form used by system.

3.25 Evaluator

Evaluator evaluates weather the service is valid and is available at current time.
3.2.6 Composer

Composer composes the selected web services.

36 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

3.2.6.1 Framework of Composition
The framework shown in Fig 3.1 is self explanatory. It involves following workflow.

1. User queries the system for required service.
2. Service is selected.
3. Information of selected service is retrieved.
4. User enters required input parameters for first service.
5. User adds the service to composition module and selects next service.
6. On basis of information of service matchmaking is performed.
7. If number of parameters match.
i) Composition is performed.
ii) Results are displayed.
8. If number of parameters do not match. User is prompted to take action.
9. Composition is performed after user’s action.

10. Results are displayed.

All communication with web server is done by XML messaging.

37 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

Dynamic Web Service Composition and Parameters Matchmaking
Elsl of i
Services Database
ect xtract
Service | |_Information
g
]
z = Input data No of |
& g Methods
i =
£ 13
E .
8 MatchMaking TAput
Message
Y ﬁﬁ:ﬂt‘;ﬂ ’—-| Results ‘
User Enters
| Prompt User H Parameters |
User

Figure 3-2 Workflow for Dynamic Web Service Composition and Parameters Matchmaking

The algorithm of Composition process is given as:

Algorithm: Weab Service Composition

Input: Request for Web zervice

Output: Composed Service Results
Userrequests a desired service from Database;
Uzars=zlzcts a sarice from hst;

For each Selecied Service

Informafion aboutservice is retrieved.

The information inclodes mmber of methods and input

message.

For Fistzelected service user enters input data in 0L mesage.
For remaining services selected Machmaling & erformed.

If mumber of parameters match compo s ion isperformed
and resulfz are disdayed

If mmber of putput parameters are lessthan the numberof
required inpuf parameters user enters the remaining parameers.

If he number of output parameters are greater than the
required input parameters. User selects some from previcusresult
and'or enters other parameers.

Compesition is performedand results are retmed D interface.

Figure 3.3 Algorithm for Dynamic Web Service Composition and Parameters Matchmaking

38 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

During composition user selects more than one service at a time, only additional step is that

matchmaking is performed and output of first service is sent as input to other.

In matchmaking number of input output parameters are matched. If the number of input and output
parameters are same. The composition is performed without any interruption. If number of output
parameters of first service is more than the number of required input parameters for second, user is
prompted to enter the required parameters. While if number of parameters of first are more than
the required input parameters for second user is again prompted to select some from the
intermediate output and/or enter from text box. Final result is displayed to the user when response

of all services invocation is successful.

3.2.7 Matching Engine

It performs matchmaking during composition. The numbers of input and output parameters are

matched.

328 WSDB

A database of around 5000 WSDL links is maintained. User can query database if no other option

is available.

3.2.9 Crawling Process

1. User queries the system. The input can be any word in users mind. System matches the query

word not only with service interface but also with its methods.
2. The request goes to Google Custom Search Engine through Google Custom Search API.

3. The engine has been scaled to the desired links to crawl. It can be scaled any time by adding

more links on the engine’s control panel.

4. Engine crawls on all the available links and produces the results.

39 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

5. Results produced are in a format infeasible for —manual-processing. So the system parses the
results produced.

6. System Extracts the WSDL files from the set of results.

7. Results are displayed to the Client.

8. To ensure that the service is available at given time, validity check is performed.
9. Results are displayed and sent to local database.

10. A backup database is maintained to ensure reliability.

Service Crawling
Using Google Custom Search API

A
Parse

Extract WS

Initial Display Valid Display
Scale to
desired Links

e ——

Y
User Query

Validity

Google Custom Search API

y

Client Provider

Figure 3.4 Framework for Service Crawling using Google Custom search API

The algorithm of crawling portion is given as below:

40 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

Algorithm: Web Service Cravnling
Input: Fequest for Web srvics
Output: Desirad Service
Crawling linl= are added © Google Custom Search
Engine;
Userenters input request for web service;
For each input
Input goes to Google Custom Search Engine
through Google Cusiom Search APL
Engine produces results.
Bemlts are parsed to Imman readable format.
Only w=d link and related information ars
extracted from the results
Bemlts are displayed to user.
WValiditycheck & performed
Walid results atpresent are displayved
Ifre=ult isnot already in database
Resmlts are stored in database.
Rezlts are stored in baclupdatabase.
If o result Dund foruser queryword
Message dialogue is displayed to enter synomym
queryword, Or to scale the engine b more inks

Figure 3.5 Algorithm for Service Crawling using Google Custom search API

Since more parent links can be added to Google Custom engine, the user has more chances of
getting the required service which is updated and exact. So our framework is scalable and flexible.
Crawling procedure is same as compared to other open source crawlers. The user query is matched
on all the available child links of the provided link. But the engine response is much efficient than

the application crawlers.

Further those crawlers can crawl only one domain at a time. The custom search engine crawls all

the provided links at once.

3.3 Methodology
The methodology used is as under: -
1. Services are registered in service repositories on internet.

2. User queries the system and translator converts it into language used by internal system.

41 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

3. The request arrives, application searches for the requested service from its Database. If it gets
the required service it sends results back to requester. Moreover, multiple databases are
introduced, so that there is a backup if one goes down. If required service is not found from
database the user then requests to crawl through Google Custom Search API.

4. Evaluator checks validity of the service and user selects the desired service.

5. In composition module matching engine matches the number of parameters. After resolution it

sends selected services to composition module. Composer integrates these services.

6. Services are composed via web server request, and application returns the results back to

client.

3.4 Chapter Summary

In this chapter we first defined the problem statement then proposed a framework to overcome
current problems faced during Web Service Discovery and Composition. Next we discussed all
the components needed for web service discovery and composition. Two sub-parts, framework
of composition and framework for service search are described in detail. They are discussed
along their workflow and complete algorithm. At the end we gave complete methodology to

implement this framework.

42 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

Chapter 4

SYSTEM DESIGN
4.1 Data Flow Diagram:

Figure 4-1 shows the flow of data for web services composition. The flow begins by entering the user
request and then searching the desired services. To fulfill the user request the desired service is

discovered and composed. The composed service is returned to service requestor through translator.

Senice requestor
Requests for
SR

J

Translatar
Translate= the
Fequest

J

i atching Engine
Searches for the

Service
L))
alu%
\Fnuru:l/v
T
Cranl uzing
Google APl ea——

FRetriewve Listfrom
TN =] [atabaze

Lddta \WEDR H Fui =l ate Wabid Senrines

43 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

Mdd te Servies

Composition
lcor W andles Fromot b ato b drireqy A Translator Tr anelates
R STEL P _\":'"W“"'““"ujr
Feosulke
¥

Composer '::':"T' poses Service Requatnr Gek
Service Response
Exevulivn Engine
PesultF-:-ml
B acutes results ‘

Figure 4-1 Dynamic Web services Composition Using Google APl Crawling DFD

4.2 Sequence Diagram

The sequence diagram in figure 4-2 shows different processes and objects that work
simultaneously. Processes and objects are shown as parallel vertical lines. Message exchanges
are shown by the horizontal arrows. The diagram shows the complete sequence of steps starting
from service request to web service composition. Matching engine matches the requested service
and Execution engine executes the discovered service. Finally composer composes and returns

the desired result to user.

44 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

Return Services

e QAL Matching
Crawler WSDB Evaluator Composer Enaine
| | ; e

|

| | |

Top Package ! | |

|

— | } }

Service | ! |

Requestor ! } !

sends 1 n }

Request Search In Db N |

|

|

|

|

|

|

|

|

|

| Retun Senviceq | _Retum Senvoee ___
Check validity
Check validity
Return Valid
e vaia__| |- RV ST '

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1

Select And Add to Cpmposition

N

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
L

MatchMaking
Ll

Perform Composition

Return Result

Return Result Return Result

Return Result Cmmmmm oo
< __________

Figure 4-2 Sequence diagram of proposed framework

4.3 Use Cases

4.3.1 General Use cases for Interface
Use Case:

This use case diagram illustrates a set of use cases for the system, the actor APPLICATION
USER and the relationship between actor and the use cases. In this use case diagram, following
use cases have been shown: Search DB, Crawl, Validity, Add to Composition, Invocation and

Composition.

45 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

DYN WS COMP Use Case Diagram

seS”” Show
Search Pl '
DB
i -

WSDL
443{%%-37—?‘“' Validity
Available
““““““ Existence . Services
Validity \ﬁe‘;
Add to
composition
Ses>
440‘5 ~(Method to
Invoke
Applicaton User g <<uses>> | Request
------------- Message

Compose

Figure 4-3 Dynamic Web Services Composition Using APl Crawling Use Case Diagram

4.3.2 Extended Use cases for Interface
4.3.2.1 Search Database:

Use case: Search Database

Actors: APPLICATION USER

Pre Condition: APPLICATION USER request for service.

46 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

Post Condition: Services are listed.

Description: APPLICATION USER queries for service by clicking Database Button.

Typical Course of Events

ACTIONS: SYSTEM RESPONSE:

1. This use case begins
when APPLICATION
USER clicks on
Database button.

2. System shows the available services and its
related information.

Alternative courses

Line 2: No Service is available, indicate an error.

4.3.2.2 Crawl:

Use case: Crawl

Actors: APPLICATION USER

Pre Condition: APPLICATION USER requests for Crawl.
Post Condition: List the search Result.

Description: APPLICATION USER searches for service by clicking on crawl button.

Typical Course of Events

ACTIONS: SYSTEM RESPONSE:

1. This use case begins when
APPLICATION USER
requests for service search.

2. System shows results returned.

47 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

Alternative courses

Line 2: Service not found, indicate an error.

4.3.2.3 Validity:

Use case: Validity

Actors: APPLICATION USER

Pre Condition: APPLICATION USER enters Valid Tab.
Post Condition: Valid links displayed.

Description: APPLICATION USER enters into Valid Tab. Validity checks are performed.

Typical Course of Events

ACTIONS: SYSTEM RESPONSE:

1. This use case begins when
APPLICATION USER clicks
on Valid Tab.

2. System shows the Valid Links.

Alternative courses

Line 2: No Valid Link found, indicate an error.

4.3.2.4 Add to Composition:
Use case: Add to Composition
Actors: APPLICATION USER

Pre Condition: APPLICATION USER adds service to Composition Tab.

Post Condition: Service Added.

48 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

Description: APPLICATION USER adds service from application interface by selecting the

particular Service and clicking on Add to composition button.

Typical Course of Events

ACTIONS: SYSTEM RESPONSE:

1. This use case begins when
APPLICATION USER selects
a service.

2. USER than clicks on Add to
Composition button.

3. Service Added to Composition.

4.3.2.5 Invocation:

Use case: Invocation

Actors: APPLICATION USER

Pre Condition: APPLICATION USER enters Invocation Tab.

Post Condition: Service Invoked.

Description: APPLICATION USER selects a service from Valid tab and enters into Invoke tab.

Typical Course of Events

ACTIONS: SYSTEM
RESPONSE:

1. This use case begins when User
Selects service from Valid Tab
and enters into Invoke Tab.

2. User than clicks get info button

3. List of available Services and
Methods are shown.

49 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

4. User Selects Required Method

5. Request Message Structure is
shown.

6. User edits input parameters

7. User clicks invoke Button

8. Results are shown in Table

Alternative courses

Line 2: No Result Found, indicate an error.

4.3.2.6 Compose Services:
Use case: Get Info

Actors: APPLICATION USER
Pre Condition: APPLICATION USER enters composition tab.
Post Condition: Information of selected service is displayed.

Description: APPLICATION USER views all the Services listed in composition tab and selects
one.

Typical Course of Events

ACTIONS: SYSTEM RESPONSE:

1. This use case begins when
USER selects a service from
list.

2. User clicks Get Info button

3. Information of service is displayed

50 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

Alternative courses

Line 2: No Service is selected from composition list, indicate an error.

4.3.2.7 Compose Services:

Use case: Add

Actors: APPLICATION USER

Pre Condition: APPLICATION USER Adds the Services.
Post Condition: Services added to be composed.

Description: APPLICATION USER adds all the services to be composed and gives required
input.

Typical Course of Events

ACTIONS: SYSTEM
RESPONSE:

1. This use case begins when USER
gives first input parameters.

2. User then Clicks on Add button.

3. User then Selects next service to be
added

4. Services are added to be composed.

Alternative courses
Line 2: No first input given by user, indicate an error.
4.3.2.8 Compose Services:

Use case: Matchmaking

51 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

Actors: APPLICATION USER
Pre Condition: APPLICATION USER clicks Add button.
Post Condition: Matchmaking is performed.

Description: APPLICATION USER adds different services to be composed matchmaking is

performed.

Typical Course of Events

ACTIONS: SYSTEM
RESPONSE:

1. This use case begins when USER
clicks on Add button.

2. System performs Matchmaking
for input output parameters.

3. System Prompts user if numbers
of parameters are not same.

4. User gives the required input.

5. System shows the complete
detail of selected service.

Alternative courses

Line 2: No Service is added composition list, indicate an error.

4.3.2.9 Compose Services:

Use case: Compose service

Actors: APPLICATION USER

Pre Condition: APPLICATION USER clicks Compose button.

Post Condition: Services are composed.

52 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

Description: APPLICATION USER wants the composed service and systems returns final
result after composition.

Typical Course of Events

ACTIONS: SYSTEM RESPONSE:

1. This use case begins when
USER clicks on compose
web services button.

2. System shows the required result

Alternative courses

Line 2: No Service Result found, indicate an error.

4.3.2.10 Clear All:

Use case: Clear All

Actors: APPLICATION USER

Pre Condition: APPLICATION USER clears composition information.
Post Condition: All information cleared.

Description: APPLICATION USER wants to clear and composition steps by clicking on clear
all button.

Typical Course of Events

ACTIONS: SYSTEM RESPONSE:

1. This use case begins when
USER clicks on clear all
button on main screen.

2. System removes all Composition
detail and log is cleared.

53 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

4.4 Chapter Summary

In this chapter we illustrated working of framework with the help of dataflow diagram and
sequence diagram. Then we have given a generic use case diagram to make it more
understandable which includes Search DB, Crawl, Validity, and Add to Composition, Invocation
and Composition. Individual use cases include Actors, Pre Condition, Post Condition,

Description, Typical Course of Events and Alternative course where required.

54 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

Chapter 5

IMPLEMENTATION

5.1 Accessing Google Custom Search
5.1.1 JSON/Atom Custom Search API

To retrieve and display results programmatically from Google Custom Search, JSON/Atom

Custom Search API is used. Requests are made to get the results in either JSON or Atom format.

An API key is required for using JSON/Atom Custom Search. This key is available at Google
APIs console. There is a limitation that one can query only 100 times per day. However if one
needs to query more than 100 times billing option is available.

Following steps are required for setting up a Google custom search engine.
1) Get a Google account
A Google account is created to use Google Custom Search API.

2) Set up a custom search engine

There is a need to setup the engine first. To set up and customize the engine selected sites are
included in the search and other options are configured. By Clicking on "control panel™ one can
note the Search engine’s unique ID. This is the cx parameter used by the API.

Our cx is “cx=001389246465683457042:0cadwlz3xgu”

3) Identifying application to Google

Application needs to identify itself every time it uses API to send request to JSON/Atom. An
API Key is included with each request.

4) Acquiring and using an API key

55 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

In the API consoles Services pane, activate the JSON/Atom Custom Search API; the section
“Simple API Access” contains particular API key.

The query parameter key=yourAPIKey can be appended to all requests.

Our key is “key=AlzaSyDL9RdFrNh-x4fXVdwGCV{fN98QxkJolIBw”

5.1.2 Java Access

Following code reveals the request to API request from java. JSON library is used. In the
example below the users own key has to be given. The request also includes the parameter
userip. The userip parameter tells the server from which IP this request came from.

Here is Example Code Snippet:-

URL url = new URL(

" https://www.googleapis.com/customsearch/v1?&key=AlzaSyDL9RdFrNh-
x4fXVdwGCVTN9I8QxkJolIBw&cx=001389246465683457042:0cadwlz3xgu&callback=proces
sResults&filter=1&0g="+value+");

URLConnection connection = url.openConnection();
connection.addRequestProperty("Referer"”, /* Enter the URL of your site here */);

String line;

StringBuilder builder = new StringBuilder();
BufferedReader reader = new BufferedReader(new
InputStreamReader(connection.getinputStream()));
while((line = reader.readLine()) '= null) {
builder.append(line);

}

Figure 5-1 Request to Google API from Java

5.1.3 Search results

The actual search results are contained in an items array. The results contain URL, main title and

actual text snippet. If results are on more than one page they also contain page map information.

56 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

5.2 Functions used for Crawling

Following functions are used for crawling:

5.2.1 public void crawls(int ab)

This function actually calls the Google API and returns the search results.

Sample Code Snippet :-

public void crawls(int ab)

{

URL pagelrl = new
URL{"https:/fwww.googleapis.com/customsearch/v1?&key=AlzaSyDLIRdFrNh-
x4V dw GCVINS BOxkJolIBw&cx=00138524646568345704 2:0cadwlz3xgu&callback=
processResults&filter=1&start="+sta+"&q="+value+"asmx?wsdl"};

URLConnection getConn = pageUrl.openConnection();
getConn.connect();

BufferedReader dis = new BufferedReaderinew
InputStreamReader(getConn.getinputStream(}));

while {{urlData = dis.readLine(}} = null} {
System.out.printin{urlData);

I

b

Figure 5-2 Function call Google API

The above code takes input variable “value” to search web service in given links. Buffered reader variable reads

the result returned by the google search query.
5.2.2 public void splitfunc()

This function is used to parse the results to user friendly format. The match () and split()

functions are used to parse the returned data into the desired form.

57 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

Sample Code Snippet:-

if(urlData.matches(".*totalResults.*"))

tri=urlData.split(":")[1];
tri=trl.split(" ")[1];
tri=trl.split(",")[0];
tri=trl.split("\"")[1];
tr=Integer.parselnt(trl);

}

[1to split the required data

if (urlData.matches(".*items.*")) {
i=1;

¥
if(i==1&&
urlData.matches(".*title.*")) {
infol = urlData;
infol = infol.split(":")[1];
infol = infol.split("\"")[1];
infol=infol.split("-")[O];
Il System.out.printin(infol);
}

Figure 5-3 Function to Parse Search Results

5.2.3 public void valid()

This function checks weather the returned result is a valid wsdl or not.

Sample Code Snippet:-

public void valid()

{
if((infolink.matches(".*/?wsdl.*"))||(infolink.matches(*".*/?WS

DL.*")))
{

countv++;

by

else

try {

infolink= vc.parvalid(infolink);
if (Yinfolink.equals("'0"))

{

countv++;

¥
¥

Figure 5-4 Function to Validate Search Results

58 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

This function checks the extension of the returned links, whether they are wsdl links or not. It also uses

the parvalid function for returned links that are in different format.

Where parvalid function is:

public String parvalid(String infolink)
{

if(infolink.matches(".*asmx"))
infolink=infolink+"?wsdl";

if(infolink.matches(".*op.*"))

{
infolink=infolink.split("op")[0];
infolink=infolink+"wsdI";

}

else
if(infolink.matches(".*CATID.*"))

Figure 5-5 Function to Validate Search Results of Different Format

5.3 Simple WS Client

Before going for composition of web services there is a need to make a simple client to invoke a
web service. The client is general such that any sort of service with parameters of any number or

type can be invoked.

User has to select one most suitable service out of search results, provide required input and
invoke the service to view results. The application uses industry standard tools and Java APls
which are readily available e.g. WSDL4J, SAAJ, Castor, JDOM, and XSLT.

When the user selects a WSDL file, it is loaded such that all operations associated with it are
displayed. Operations can be for example GetQuote, GetHistoricalQuote etc. Again when user

selects a single operation application displays dummy message of corresponding input in XML

59 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

format. User can fill in the input values in that message and click invoke button to run the
service. Original SOAP message will be sent to retrieve results. Result message can contain an
actual service result or SOAP fault which portrays failure.

The procedure from loading WSDL file to service response is described below:-

5.3.1 WSDL Parsing and Analysis

Web Service Description Language describes an XML grammar to define Web Services. Concrete data

formats and deployments are separated from definitions of messages and endpoints by WSDL.

WSDL provides details of the communication requirements of Web service. This description is necessary
for service invocation by client. WSDL provides messages to be exchanged between client and service

provider. These messages are in XML model.

TABLE 1: Defining a Web Service

WSOL Element [What the Element Describes

Types Descrbes the dats types used by & Web
senvice using a bype syslem such as XML schema.

Mezzage The absiract formal of a pardicular message that aWeb
senvice sends of receives

Operation The abstract descriplion of an action supported by a
Wb service,

Port Type A named abstract collection of operations.

Binding Concretely defines the protocol and data format
specification for & specific port type.

Port A zingle endpoint defined by a combination of a binding
and a network locaSion

Service A collection of ports that a Web service provides

Figure 5-6 A WSDL document uses the elements shown for defining a Web service.

All elements shown in above diagram supply Web Service invocation information. Our
Application uses WSDL4J to analyze the structure of the WSDL programmatically and to
identify the operations available for consumption.

5.3.2 Finding the Services and Operations

ComponentBui lder is a class in our application. It uses WSDL4J, the Castor Schema Object

Model and JDOM. Together they all make local model of web service and analyze it. To load

60 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

the WSDL definition our class creates an instance of WSDL4J. This is the instance of
WSDLReader and it loads the WSDL definition. User sends URI of WSDL document to

readWSDL () method that returns instance of Definition interface.

Due to definition interface user is able to know the methods needed. These methods include how
to analyze the WSDL definition, how to programmatically discover the defined services,
operations of services, their data types and URI of service’s endpoint. At this point we have
definition of WSDL document in systems memory. We can call the services that are defined. A

method named getServices() returns Service instances.
5.3.3 Finding the Parts

To retrieve parts of SOAP defined for current message, a method getParts() is defined by
Message interface. An instance of the Part interface is message part. To retrieve part’s element’s
and data type’s names methods are defined by Part interface. This information is used to obtain
related schema for individual message part. This enables us to define a request message. This

message is sent to Web service to process the result generated by invocation.

5.34 Creating Sample XML Input

To invoke a Web service we need to create XML message. This message is used as request data.
The message is created on basis of information of message parts. In case of complex message
part, XML message will be passed as part of SOAP. If a complex type response is expected a

reference to schema is required to process the result.

A method buildMessageText() takes input as an instance of WSDL4J message.
ComponentBui lder class defines this method. List of parts defining a message is obtained
from the Message object. A sample input text is built after iteration of message parts. There is a
need to check whether a complex type is defined for each part processed. This complex type

must be defined in Castor Schema Object Model.

XML initial instance is generated for each message part to invoke Web service. An example

input message is shown below:-

61 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

<GetQuotesHistorical xm Ins="http://www.xignite.com/services/"=
<Symbol>SUNW<=/Symbaol=

<Month>12</Month>

<Year>2002</Y ear>

</GetQuoresHistorical>

Figure 5-7 Input Message Schema

The message above is saved to an instance named Operationlnfo. Then this is used to be

sent as initial message to invoke service.
5.3.5 SOAP Invocation

To invoke a Web service our application uses Java SAAJ API. SAAJ provides straightforward
and flexible way to consume a service. The elements necessary to invoke Web Service using
SAAJ are:

. Create a connection

. Create the message

. Add message content

o Send the message to the destination
. Process the response

5.3.5.1 Creating a Connection and Message

A connection IS created by calling newlnstance() method of
SOAPConnectionFactory. A class of SAAJ named MessageFactory is used to create
new SOAPMessage instance. This SOAPMessage instance comes with SOAPEnvelope
which is contained in SOAPPart. Further SOAPEnvelope comes with SOAPHeader and
SOAPBody. Both of them are empty at start. SOAPHeader part is not mandatory. It can be

removed if not needed.

62 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

5.3.5.2 Adding Content

Actual content is added to SOAPBody using instances of SOAPElement. We add the name of
the service we are calling to SOAPElement. Input message parts are then added as
SOAPElements childs.

5.3.5.3 Invoking the Web Service

The sample input message gives the request content. This message was built during analysis of
WSDL. This content is only an initial value. It must be edited by user. GUI is used to fill out the
request message. We can invoke the web service when we have added the input content to the

initial request message. The response is a SOAPMessage in XML.
5.3.5.4 Making Sense Out of the Response

Responses of a web service can be long and confusing. They contain data that is irrelevant to the
client of the service. Our tool generates structure for particular web service. The structure each
time knows the specifications how to traverse the WSDL and extract the actual response.
Common XML schema elements are of no difficulty for example ComplexType and Sequence.

So it can infer where to display the result element and when to create table.

5.4 Functions used for WSDL Analysis and Invocation

5.4.1 private void analyzeWsdlI(String purl)

This uses showServicelnfo and showOperationlnfo to analyze wsdl. This function
returns name of the service and its all methods. Also it returns the dummy input message which

is used for sending actual input later.

63 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

private void analyzeWsdl(String purl)
{

// Create the in memory model of services and operations

// defined in the current WSDL

ComponentBuilder builder = new ComponentBuilder();

List services = builder.buildComponents(url);

// List all the services defined in the current WSDL

Iterator iter = services.iterator();

while(iter.hasNext())

{
// Load each service into the services combobox model
Servicelnfo servicelnfo = (Servicelnfo)iter.next();
serviceModel.addElement(servicelnfo);

Figure 5-8 Analyze WSDL Function

5.4.2 private void showServicelnfo(Servicelnfo servicelnfo)

It is used to show information of service. Information of service is actual name of the service on provided link.

private void showServicelnfo(Servicelnfo servicelnfo)
{
// Clear Ul components
operationModel.removeAllElements();
if(servicelnfo == null)

{

return;

}

// Load the operations model with operations defined for this service

Iterator iter = servicelnfo.getOperations();

while(iter.hasNext())

{
// Load each service into the appropriate combo box model
Operationinfo operinfo = (Operationinfo)iter.next();
operationModel.addElement(operinfo);

}

}

Figure 5-9 Service Info Function

64 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

5.4.3 private void showOperationInfo(OperationInfo operationinfo)

It is used to show operations of the service, total number of methods and their names. It also

displays the input dummy message.

private void showOperationinfo(Operationinfo operationinfo)

{

if(operationinfo != null)

{
outputpar[ioc]= operationinfo.getOutputMessageText();

inputpar= operationinfo.getinputMessageText();

if(checkc==1)

{

opinc=operationinfo.getinputMessageText();

System.out.println(opinc);

}

else
messageText.setText(operationinfo.getinputMessageText());

}

else
{
messageText.setText("");
}
}

Figure 5-10 Operation Info Function
5.4.4 public String[] sendRequest(Operationinfo operationinfol)

It is used to send input request message to the service. This function creates Object of WSClient
class to invoke operation of the selected service. It takes Operationinfol variable as input.
Operationinfol contains the information of selected method to be invoked. Function sends the

input message and gets the response. Further it also parses the result to human readable format.

65 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

public String[] sendRequest(Operationinfo operationinfol)
{
check1=0;
// Send the request and get the response
WSClient_1 ab= new WSClient_1();
String response = ab.invokeOperation(operationinfol);
while(cot<MyStringArray.length)

{
if(newarray[cot].matches(".*Table.*"))
{
head[cotl]=newarray[cot].split("&It;")[1];
head[cot1]=head[cot1].split(">")[0];
checkonly[cot1]=0;
if(newarray[cot].matches(".*/.*"))

{
}
else
if(!(newarray[cot].matches(".*xml version.*")))
{

checkonly[cot1]=0;

if(newarray[cot].matches(".*/.*"))

{
result[count2]=newarray|[cot].split(">")[1];
result[count2]=result[count2].split("&It;")[0];

head[cotl]=head[cotl];
checkonly[cot1]=1;

{ if(MyStringArray[cot].matches(".*It.*")| | MyStringArray[0].matches(".*gt.*"))

Figure 5-11 Send Request Function

55 Composition

We have used all the above procedure for integrating Web services. User can select more than

one service for composition. We have configured the input XML message to take input for first

service. Also we have parsed the output to get results in required format. During composition

user selects more service, only additional step is matchmaking is performed and output of first

service is sent as input to other. In matchmaking only number of input output parameters are

66 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

matched. If these are same composition is performed without any interruption. If number of
output parameters of first service is more than the number of required input parameters for
second. User is prompted to enter the required parameters. While if number of parameters of first
are more than the required input parameters for second user is again prompted to select some
from the intermediate output and/or enter from text box. At the end of all services invocation

response final result is displayed to the user.

5.6 Functions used for Composition
For invocation during composition all functions of 5.4 are used.

5.6.1 public void countparam(String param)

It is used to perform parameters match making. It counts the number of parameters of service.

public void countparam(String param)

{
String [] myarray = new String[100];
StringTokenizer tokens = new StringTokenizer(param,"\n");
i=0;
while(tokens.hasMoreTokens()) {
myarrayl[i] = tokens.nextToken();
myarray[il=myarray[i].trim();
if (myarrayl[i].matches(".*0.*"))
{

countpar++;
}
i++;
}

System.out.printin("out"+countpar);

}

Figure 5-12 Count Parameter Function
5.6.2 public String matchmake (int countco?2)
It is used to display the matchmaking decision. This function actually checks whether the

number of output parameters of first service and number of input parameters of next matches or

not.

67 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

public String matchmake(int countco2)

{

if (countpar==countinpar)

{
System.out.printIn("matched");
return "matched";

}

else if(countpar>countinpar)

{
System.out.printIn("greator");
return "greator";

}

else if(countpar<countinpar)

{

System.out.printin("less");
abe=mdob.coux;
if(abe==0| | countco2==2)
{
mdob.show();

}

return "less";

}

return "null";

}

Figure 5-13 Parameter Matchmake Function
5.7 Chapter Summary

In this chapter we have briefly described the actual implementation of the framework. We
explained how we have done web service discovery by Accessing Google Custom Search via
JSON/Atom Custom Search API and Java Access. The Search results are parsed in readable
format. Then we discussed Functions used for Crawling along with sample code snippet.
Complete procedure of service analysis and invocation is discussed in Simple WS Client.
Functions used for WSDL Analysis and Invocation also contain description with sample code
snippet. Composition is performed by number of parameters matchmaking. Functions used for

Composition gave details of composition.

68 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

Chapter 6
RESULTS

Measuring the performance of web service composition framework is non-trivial. Generally a
framework is evaluated by implementing the framework and then using a dataset to test the web
services discovery, composition and execution based on calculating Precision and Fallout. Static
Dynamic and Statistical factors are fundamental for evaluation of quality of Web Service Discovery
and Composition. Static factors remain constant dynamic factors changes according to certain
situation and statistical factors are calculated by actual statistical data of the web service. The
hardware environment used is Intel Core i5 CPU with 4GB RAM and Windows 7 Ultimate

operating system.

6.1 Definitions

6.1.1 Precision

Precision is the proportion of services that satisfies users’ request in all the discovered services.

|[{Relevant Web Services} N {Retrieved Web Services}|
|[{Retrieved Web Services}|

Precision =

6.1.2 Fallout

It is the proportion of all non-relevant services retrieved out of all retrieved services.

6.1.3 Static Factors
Following constant factors are considered.

Table 6-1Static Evaluation Factors for Web Service

Factor Description
Regulatory What is the standard that the web service follows?
Security Does the service abide by security factors such as WS-Security?

69 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

6.1.4 Dynamic Factors
Following dynamic factors are taken in account

Table 6-2 Dynamic Factors for Evaluation of Web Service

Factor Description
Service Availability Is the service working properly?
Network)))
- How fast is the service dynamic network speed?
Availability
Execution . .) .
Durati How long does it take to receive a reply after requesting the service?
uration

6.1.5 Statistical Factors

Statistical factors are stated in table.

Table 6-3Statistical Factors for Evaluation of Web Service

Factor Description
Service Reliability How stable is the operation of the service?
Network .
. How stable was the service network?

Reliability

Execution How frequentlyis the reply sent back within a standard period of
Reliability time?

) How good is the reputation of the service compared with other
Reputation .
services ofthe same type?
6.2 Dataset

The framework is implemented in Java 6 using Netbeans 6.9 integrated development environment.
WSDL4J (Web Service Description Language for Java) is used to parse the WSDL files. For the
evaluation of our framework, we have setup Database with a total of around 5000 web services WSDL

references present. The actual services are hosted by the service providers on their web servers.

70 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

6.3 Performance Evaluation

The performance of the proposed approach is evaluated using all of the factors discussed
above. We test the framework for web service discovery and log the values for Precision. Also,
we compare these values with the existing frameworks and show where our framework has
improved the discovery, composition and execution. After discovery, the services are available
for evaluation. We log the timings for different type of services having various number of
methods exposed. Later, we log the composition time depending on the number of services
being composed and the size of the service space. At the end, we present comparison with an
existing technique to present the improvements of our framework.

6.3.1 Average Precision

We took various sets of services and for each set we made 25 readings and then compute an
average for that set. Following is the average precision of our framework.

Average Precision

N W bR O N

[E

0% 10% 20% 30% 40% 50% 60% 70% 80%

B Our Frame Work 70% 72% 50% 75% 68% 55% 61%

Figure 6-1Average Precision

71 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

We compared our framework with couple of other techniques. First technique is proposed by
Farhan Hassan et al [25], second one is proposed by Fu Zhi Zhang et al. [29] and third one
proposed by Lei Li and lan Horricks [30]. Figure 6-2a shows the results. The graph shows
better performance throughout the test results. At start the local database was populated. The
range from 1-5 shows 5 datasets with gradual increase in database e.g. 1000, 1500, up to 3000
web services information in database. It can be seen that with increase in dataset precision of
our framework is decreased as compared to framework by Farhan et al [25]. Still it lies at
better percentage as compared to other two frameworks. Better results were achieved because
of exact string matching in the search results listed. This may reduce the number of results

being found but the precision percentage is high.

Average Precision
80%
70% ra sl \ A
60%
X \/ TN
X 50% /.> P
o
e 40%
o
o 30% 1\./
a.
20% / /
10% /
0%
1 2 3 4 5
=——Service Profile Algorithm 6% 30% 12% 11% 21%
== Proposed by Fu Zi Zhang 20% 52% 38% 29% 49%
Proposed by Farhan 63% 68% 53% 74% 66%
== OUr 70% 72% 50% 68% 55%

Figure 6-2a Average Precision Comparison

72 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

Average Precision
80%
X 60%
c
o
@ 40%
(%]
g
a 20%
0%
1 2 3 4 5
1 2 3 4 5
M Service Profile Algorithm 6% 30% 12% 11% 21%
B Proposed by Fu Zi Zhang 20% 52% 38% 29% 49%
® Proposed by Farhan 63% 68% 53% 74% 66%
Hour 70% 72% 50% 68% 55%

Figure 6-3b Average Precision Comparison

Also we performed comparison of Top-K Precision with “Woogle” by Xin Dong et al[5] . The

formula we used is:-

Where k is total number of results retrieved and retriverel,is total number of relevant results.

In 6-3 Top K Precision is shown. Top 2 precision means out of all retrieved results only top two are
considered to find precision. Similarly Top 5 means out of all retrieved results only first five are
considered to find out the precision. From the graph we can clearly see that at Top 2 we have got
precision=1, which means top 2 results are relevant all time. Out of Top 5 results we got less precision
because few retrieved results out of Top 5 are not relevant all time. The graph descends as Top k is

increased; still it shows better precision as compared to other frameworks shown in graph.

73 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

Top K Precision

1
0.9 %

0.8 — —
0.7 \
0.6
0.5
0.4
03

0.2
0.1

Top 2 Top 5 Top 10

—¢—Func —@—=Comb —#A—Woogle ==3¢=Our Framework Crawling

Figure 6-4 Comparison of Top K Precision with Other Techniques
6.3.2 Average Fall-out
Fallout is the proportion of all non-relevant services retrieved out of all retrieved services. We

took various sets of services and for each set we made 25 readings and then computed an average

for that set. Figure 6.4 shows results for Average Fallout.

74 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

Average Fallout

0%

10%

20%

30%

40%

50%

60%

B Our FrameWork

30%

28%

50%

32%

45%

We also compared these values with the other techniques. The graphs 6-5a and 6-5b show that
proposed framework has a low fallout rate as compared to the other techniques. Low fall-out rate
verified that the proposed framework discovered lesser services that were not relevant to the

desired services. With increase in dataset the fall out is little increased but still its better as

Figure 6-5Average Fall-out

compared to the framework by Fu Zi Zhang [29] and Service Profile Algorithm [30].

75 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

Average Fall-out
100% <
90%
80% A\\ ~ SN
o 70% \/
X o N
5 60%
° 50%
t=B 40%
(1 30% =
20%
10%
0%
1 2 3 4 5
== Our Framework 30% 28% 50% 32% 45%
== Proposed by Farhan 37% 32% 47% 26% 44%
== Proposed by Fu Zi Zhang 80% 48% 62% 71% 51%
=>é=Service Profile Algorithm 94% 70% 88% 89% 69%
Figure 6-6a Comparison of Average Fall-out with Other Techniques
Average Fall-out
100%
X 80%
ofd
3 60%
()
= 40%
©
W 20%
0%
1 2 3 4 5
1 2 3 4 5
M Our Framework 30% 28% 50% 32% 45%
M Proposed by Farhan 37% 32% 47% 26% 44%
" Proposed by Fu Zi Zhang 80% 48% 62% 71% 51%
H Service Profile Algorithm 94% 70% 88% 89% 69%

Figure 6-7b Comparison of Average Fall-out with Other Techniques

76 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

6.3.3 Evaluation Time of Services

WSDLA4J is used to parse the WSDL file of the web service. Once a service is selected the
method it provides must be known. The evaluation time of web service was noted for various
methods exposed by the web service. The web services were randomly evaluated and the

timings were noted.

Figure 6-6 shows evaluation time of different services having 1 to 5 numbers of methods. This
graph is at 100 kbps internet connection. From graph we can see that time is not dependent on
increasing number of methods of web services. For example when number of methods of sample
services is 1 the average time recorded is 1000 ms where as when this number was increased to 4

methods it took an average time of about 900 ms.

Evaluation Time of Web Service
1600

1400

1200 /\
1000 >~ / \V/

800

Time(ms)

600 ——Services
400

200

1 2 3 4 5

Number of Methods

Figure 6-8Evaluation Time of Web Service

The comparison in 6-7 uses web services with number of methods from 1 to 5. It can be seen that

evaluation of services doesn’t depend on number of methods it contain. Time consumed by our

77 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

frameworks is very close to Farhans [25] framework. More over when the service is evaluated first time it

will span more time than second time evaluation due to local cache information storage.

Evaluation Time of Web Service
Comparison
1600
1400
1200
= 1000 / %
.Tz{ 800
- 600
400
200
0
1 2 3 4 5
== 0ur 1013 999 1346 929 1142
== Farhans 1030 1182 1403 846 1139

Figure 6-9Evaluation Time of Web Service Comparison

After getting basic information different web services were invoked in isolation to find out
how much time an Xml message and SAAJ takes to invoke an individual service. We found
that service invocation time is less than the time utilized for basic information capturing. Also
using SAAJ it takes less time as compared to other methods used for service invocation. Figure
6.8 to 6.11 shows a bar graph for invocation of single web service at a time using SAAJ API at
different rates of connection of internet.

78 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

Invocation Time of Web Service
3000
2500
__ 2000
g
@ 1500
£
= 1000 M Services
500
0
1 2 3 4 5
Number of Methods
Figure 6-10Invocation Time of Web Service at 30kbps
Invocation Time of Web Service
1200
1000
__ 800
£
@ 600
£
= 400 M Services
200
0
1 2 3 4 5
Number of Methods

Figure 6-11Invocation Time of Web Service at 100kbps

79 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

Invocation Time of Web Service
1000
900
800
700
é’ 600
‘g’ 500

= :gg W Services

200
100
0

1 2 3 4 5

Number of Methods

Figure 6-12Invocation Time of Web Service at 300kbps

In 6-11 comparison clearly shows that invocation time span is dependent on connection speed not on
increasing number of methods in a service, when connection speed is good less time is taken by the
application to invoke the service. For example a service with five methods took 2521 ms at internet

connection of 30kbps while the same service took 888 ms when at connection of 300kbps.

80 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

Invocation Time At different Connection
Rates
3000
2500 /
- 2000 e
g w
p 1500
€
£]
- 1000
[= N —
500
0
1 2 3 4 5
=—¢—30kbps 2088 1504 1929 1856 2521
== 100kbps 1006 804 984 968 1121
300kbps 703 698 864 561 888

Figure 6-13 Invocation Time of Web Services Differet Connection Rates

6.3.4 Execution Time for Web Service Composition

The web services were randomly composed to get fruitful output. The time for the execution of
composite web service was logged to make graphical analysis. This was repeated for web
services composed of 2, 3, 4 and 5 services. The graphical analysis of execution time of web
service composition is shown in Figure 6-12. The graph shows that time increases when
number of composition services is increased. This time may also vary on different internet

connection but gradual increase with increasing number of services will remain same.

81 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

Composition Time of WebServices
3500

3000

2500

2000
1500
M Services
1000
500
0
2 3 4 5

Number of Services Composed

Time(ms)

Figure 6-14 Execution Time for Web Service Composition

6.4 Comparison with other Framework

We compare our framework results with those of the framework described by Farhan Hassan
Khan et, al. [5] From graph of evaluation of services it can be noticed that the information
retrieval is not dependent on number of methods exposed. The time shown includes the
information retrieval of methods that service provides and creating a dummy message that
includes input parameters. Once the message is created and input is entered by the user. Less

time is consumed for invocation of single service.

Composition time of services rises with increasing the number of services to be integrated.
Though the individual service takes less time we added all the times consumed to find out final
time span. Time taken by user for input after matchmaking decision is not included in the
composition time graph. When we compared our composition time with another framework
[25] we saw results shown in Figure 6-13. Our framework took less time for composition as
compared to [25] this is due to use of SAAJ for exchange of message that made easy exchange

of message for service invocation and hence composition.

82 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

Comparison of Composition
3500
3000
2500
2 2000
o
£ 1500 M Farhans
'—
1000 B Our
500
0 .
2 3 4 5
Number of services composed
Figure 6-15 Composition Time Comparison with Other Technique
6.5 Static Dynamic and Statistical Factors
We used static, dynamic and statistical factors to make a detailed comparison.
Table 6.4 Comparison of Static Factors
Factor Our Framework Proposed by Farhan et al. Proposed by Faisal et al.
JAX-RPC ,WSDL4J, SAAJ, UDDIv2, UDDIv3, SOAP, AXIS UDDI v2, SOAP
Regulatory Castor, XSLT, Google
Custom Search
Security Yes Yes Yes
Table 6-5 Comparison of Dynamic Factors
Factor Our Framework Proposed by Farhan et al. Proposed by Faisal et al.

83 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

Service may be hosted . .
. . Service may be hosted on Service may be hosted on
Service on multiple servers to
o)] multiple servers to improve | multiple servers to improve
Availability improve service) o) o
o service reliability service reliability
availability
. Multiple paths available Only one path available. If
Network Multiple paths) . L
. . which allows efficient this is congested, then the
Availability available o i
network utilization system fails.
Execution
) Normal Normal Normal
Duration
Table 6-6 Comparison of Statistical Factors
Factor Our Framework Proposed by Farhan et al. Proposed by Faisal et al.
Service may be hosted .)
.) Service may be hosted on Service may be hosted on
Service on multiple servers to
o)) multiple servers to improve | multiple servers to improve
Reliability improve service . o . o
L service reliability service reliability
reliability
Execution
o Normal Normal Normal
Reliability
Reputation Average Average Average

Tables 6-4, 6-5 and 6-6 show different static dynamic and statistical factors. The tables show that our
framework has similar factors as in Farhan’s framework [25]. It can be observed that the framework

provides average or normal quality in terms of reliability availability and execution. Also there are

84 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

multiple paths available to connect to internet and services used can be hosted on different service

providers.
6.7 Chapter Summary

In this chapter we narrated different statistical and dynamic factors for web service discovery and
composition comparisons. We evaluated the performance by formula for precision and fallout.
We have made comparisons of service discovery precision, service evaluation time, service
invocation time and composition time with other frameworks. Service invocation time is logged

at different internet connections speeds. All comparisons are shown with help of line and column

graphs.

85 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

Chapter 7

SUMMARY

7.1 Overview of Research

The area of Web Service Discovery (WSD) is a primary area of research today. It has pivotal
importance for utilizing web services for personal or organizational needs. However the users of
web service are yet facing a challenge to find the desired web service due to rapid growth of web
services available on internet. There is a need of a mechanism to locate web services with issues
covering performance, flexibility and reliability across multiple heterogeneous registries, which
is a challenging task yet. Our proposed framework actively obtains user required web service by
crawling among different repositories. One use of Web Services in computer applications is its
automated Composition. We have tried to fix main dynamic composition problems. In previous
chapters, we have provided the implementation of proposed algorithm and compared the
performance with existing approaches and presented the results. The analysis shows that
proposed approach has better results to some extent, than existing ones.

7.2 Achievements

The framework for service crawling using Google Custom Search API is flexible, scalable,
efficient and reliable. In our approach the requester always gets up to date services, the retrieval
is fast and efficient. Also the client is able to add more repositories from where the services can
be crawled. Our framework covered the limitations of formal UDDI search by searching the

whole page for user query. So user is not limited to give only the service name or category.

Also it covers the limitation of usual crawlers in which the crawling for service can be done on
only one domain at a time. Though there are many web service crawlers available online but our
framework is for those clients who want to crawl and invoke services from a desktop
applications. To provide reliability we have made a database to store the crawled services. To
prevent duplication the system only adds those services which are not already present in the

86 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

database. The updated information retrieval means the system checks weather the service is
available at present or not. Also the results give better precision as compared to online engines

for service search. Thus the proposed algorithm fix current issues of web services discovery.

We discussed main problems faced by dynamic service composition. Among which are
transactional support and compositional correctness. We made the system to be flexible in terms
of automation hence we include user involvement at few steps for example selection of service
and matchmaking decision. We have used SAAJ APl and XML messaging that helps invoke
complex services without hectic job of finding data types of any input output parameter. The
values are passed as XML messages and hence consume less space for data type’s inspection and
declaration. Matchmaking of input and output parameters guarantees compositional correctness
and transactional support. Although at this stage we have only performed matchmaking of

number of parameters latter we will try to find match of type of input and output parameters.

Due to matchmaking step we are able to provide compositional correctness and transactional
support also little user intervention of service selection guarantees the reliability of required
services to be composed and the framework shows flexibility towards general varying

requirements of service composition.

e Maria Allauddin, Farooque Azam “Service Crawling using Google Custom Search API”,
International Journal of Computer Applications, Volume 34 - Number 7 , 2011 (Published).

* Maria Allauddin, Farooque Azam ““Dynamic Web Service Composition and Parameters
Matchmaking™, International Journal of Computer Applications, Volume 36 - Number 9,
2011 (Published).

e Maria Allauddin, Faroogue Azam “QOS Based Service Search and Composition Algorithm”,
is accepted in 2012 International Conference on Network and Computer Science, sponsored
by IACSIT (Accepted)

87 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

7.3 Limitations

In this thesis our discussion is around service search, execute-ability issues, data distribution, and
matchmaking and QoS issues. Currently automated dynamic web service composition
development process is still under development, although some automated tools and proposals

are available. The full automation of this dynamic process is still an ongoing research activity.
7.4 Future Work

Nothing is perfect in this world and no work is ever perfect, there is always room for
improvement. Similarly, in this, although we did a lot of work but still it can be further optimized

and improved providing more functionality.

For example, in future the framework can be extended by making use of Al algorithms for
discovery process. An Indexer discovery algorithm [31] can be merged with our framework. For
example indexer enhances the search capability. Services stored in the database can be indexed
or categorized as: Value Manipulation, Convertors, and Commerce etc. These categories will
enhance the query results returned from local database. Indexer can also be used for Google API
search results, as few links provide only specific services, results from those links can be
categorized at initial search results returned. So that the user will have information of each result
category and query will find the results based on the indexed structure. The returned results will

be more accurate and enhance the search capability.

Ranking mechanism [32] can be added to index the links such that more trusted ones can be
prioritized. According to [32] “http://ws.strikeiron.com/” has Page Rank=6 and Trust Score
29.92%, http://www.webservicex.com/ has Page Rank=5 and Trust Score=23.16% and

http://ws.cdyne.com/ has Page Rank=2 and Trust Score=27.61% etc. The higher Page Rank and

more Trust Score gives better Services. This information can be used to rank the results returned
by Google API. This Ranking will provide more trustworthy Service Search and hence reliable

composition.

88 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

Although at this stage we have only performed matchmaking of number of parameters for
composition, latter type of parameters can also be matched to make an accurate composition.
When type of input output parameters will be known along with number of parameters more
exact matchmaking will be performed and hence compositional correctness will be guaranteed at
higher rate. At Matchmaking step an additional action will be needed that is to parse the type of

first service’s output according to next input parameter type.

89 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

User Manual

Main Screen

Double click the executable jar file to run the application. The main page of the application
appears as seen below. Menu tabs are used to partition working steps. First tab is used for service

APPENDIX A

search by crawling or from database.

E
f Search r\falid r Service Invocation r Compose Services |

‘weather | | Database | | Clear | | Crawl

ar.... Title Link Parent
1 global weather wsdl http:fwww websenicex net/globalweather asmx?WsDL |www. webservicex.net
2 WeatherForecastasm.... |httpihwww websenicexnetiweatherforecastasmx?wsdl jwww.websenvicexrnet
3 GlobalWeather Web Serv... |httpiiwww webservicex net/globalweather. asmx?wsdl www.websenicexnet
4 WeatherForecast Web S... |hitpdiwww websenicex netiweatherforecast.asmx?wsdl |www.webservicex.net
5 Global Weather hitp:ihwrww webs ervicex netiwsiwsdetails. aspx?catid=12... j\www.websenicexnet
i] LISA Weather Forecast http:ihwrww webs ervicex netWeatherForecast asmx?Ws ... jwww.websenicexnet
7 Currency Convertor http:ifwww webs envicex netiwsiwsdetails. aspx®wsid=10 |www.websenvicexnet
a 17 http:fwww websenvicex netusweather. asmx?WSsDL www.websenicexnet
9 Web Service Example http:ihwrww w3schools.comiwebservicesiws_example.asp www.w3schools.com
10 |Stock Quote http:ifwww websenvicex net/stockgquote asmx?WSDL www.websenicexnet
11 |US Weather hitp:fwww.websenvicex.netiusweather. asmx?WsDL www.websenvicexnet
12 |[GeolPSenice hitp:ihwrww webs ervicex.netiwsWSDetails. aspx?WSID=64 (www.websenicexnet
13 [Send3MSWorld hitp:ihwrww webs ervicex net’'sendsmsworld.asmx www.websenicexnet
14 |airport Web Service http:ifwww webs envicex. net/airport asmx?wsdl Www.websenicex.net
15 |WebseniceX NET http:fwww websenvicex net/ www.websenicexnet
16 |[Country Details hitp:ihwrww we bs ervicex net/country. asmx?WaDL wWww. websenicex.net
17 |Periodic Table httpifwww websenvicex net/periodictable. asmx?WSDL www.websenicexnet
18 |WebseniceX. NET http:fwww.websenvicex.netiwsiffag.aspx www.websenvicexnet
19 [Metric Weight Unit Conve... |hitpihwww websenvicex neticonvertMetricéWeight. asmx?... [www.websenicexnet
20 (Translation Engine http:ihwrww webs ervicex netiwsiwsdetails. aspx?wsid=63 |www.websenicexrnet
4] Il [»

20 Results found in 5975 ms

90 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

Valid Services

Valid panel performs availability check of the service. And checks weather the resulting

document is a service or not.

£

f Search r‘.falid r Service Invocation r Compose Services
Sr.No File Mame Link

1 global weather ... [hitp:liwww. webservicex.net/globalweather. asmx?WsDL

2 WeatherForeca... |hitp:iiwww.websenicex.netiweatherforecast asmx?wsdl

3 GlobalWeather ... |hitp:iiwww websenicex net/globalweather asmx?wsdl

4 WeatherForeca... |hitp:iwww. websenvicex.netiweatherforecast. asmx?wsdl

5 USA Weather F... |hitp:iiwww websernvicex.netWeatherForecast asmx?WSDL
i 17 hitp:/fwww.webservicex.netiusweather.asmx?WsDL

7 Stock Quote hitp:hwww. websernvicex.net/stockquote. asmx?WSDL

kS US Weather hitp:ifwww websenvicex netiusweather. asmx?WsDL

9 SendSMSWorld | hitp:iwww websenvicex.net/sendsmswaorld. asmx?wsdl

10 airport Web Ser... |hitp:iiwww websenicex.netairport asmx?wsdl

11 Country Details | hitp:iwww.webservicex.net/country.asmx?WsDL

12 Periodic Table hitp:ihwww webservicex net/periodictable asmx?WSDL

13 Metric Weight U... |hitp:ifwww webservicex.net/converthetricWWeight. asmx?W3sDL

q] Il [|»

http:/iwww.webservicex.net/globalweather.asmx ?WSDL
http:hwww.webservicex.netweatherforecast.asmx ?wsdl
hitp:/hwww.webservicex.netiglobalweather.asmx?wsdl
http:/iwenw.webservicex.netiweatherforecast.asmx ?wsdl
http:/iwanw.webservicex.net\WeatherForecast.asmx W SDOL
http:iwere. webservicex.netlusweather.asmx?WSDL
http:/iwww.webservicex.net/stockquote.asmx2WSDL

[»

1]

13 results evaluated16910 ms Add to Composition

91 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

Service Invocation

We can dynamically invoke a web service by providing its WSDL address. We specify the
WSDL URL and then press Get Info button which displays the methods exposed by the web
service. We can select any method and then provide arguments and click Invoke button. The web

service is invoked and executed and the results are displayed in the Result section.

r [B=5 Eol =™
Search | Valid | Service Invocation rCompose Services
WSDL URL Result
|J'SewicestaIcuIatorNersi0n1fCaIcuIat0r.asmx‘?wsdl Infa Yalue
AddResult 1356

Available Services

|Ca|cu|ator |V|

Method to Invoke
|Add v

Request Message

=Add=
=a=T89=/a=
=b=BE7</b=
=/Add=

4 i I [»

Time Spent Service Invocation 796ms

| Add to Compaosition |

92 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

Compose Services

List of services available for composition are displayed. We can add the services to
be composed by pressing Add button. When Compose button is pressed the services

are executed in the order specified and the results are displayed in the results section.

& =R

[search | Vvalid | Service Invocation | Compose Services

Composition List - Services Available for Composition

WSDL URL Available Services

hitp:iiwww.htmi2xml.nliSenvices/Calculator/Version /...
hitp:/iwww.w3schools.comiwebsenicesftempconvert... TempConvert |v|

Method to Invoke

FahrenheitToCelsius
CelsiusToFahrenheit

Input Arguments (Comma Separated)

s |
Results

CelsiusToFahrenheitResult 2138

Time Spent Service Composition 1778ms

03 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

REFERENCES

Introduction to Web services technologies,
http://ptgmedia.pearsoncmg.com/images/0131428985/samplechapter/0131428985_ch0
3.pdf

Introduction to Web Services by Hartwig Gunzer, March 2002,

http://www.daimi.au.dk/~thomasr/Wearable/intro to web services wp.pdf

Holger Lausen and Thomas Haselwanter, “Finding Web Services” 2007.

Mydhili K Nair, Dr. V.Gopalakrishna, “Look Before You Leap: A Survey of Web
Service Discovery” International Journal of Computer Applications (0975 — 8887)
Volume 7- No.5, September 2010

Xin Dong Alon Halevy Jayant Madhavan Ema Nemes Jun Zhang, “Similarity Search
for Web Services” Proceedings of the 30th VLDB Conference, Toronto, Canada, 2004

Eyhab Al-Masri and Qusay H. Mahmoud, “ Framework for Efficient Discovery of
WebServices across Heterogeneous Registries”, (NSERC), 2007

T. Rajendran, Dr.P. Balasubramanie “An Optimal Agent-Based Architecture for
Dynamic Web Service Discovery with QoS”, 2010 Second International conference on

Computing, Communication and Networking Technologies

Eyhab Al-Masri and Qusay H. Mahmoud, “WSCE: A Crawler Engine for Large-Scale
Discovery of Web Services” (ICWS 2007)

Karastoyanova and A. Buchmann, "Components, Middleware and Web Services,"
Technische Universitat Darmstadt, 2003

E. Christensen, F. Curbera, G. Meredith, and S.Weerawarana, "Web Services
Description Language (WSDL) 1.1," 2001.

Liang-Jie Zhang, Qun Zhou, Tian Chao “A Dynamic Services Discovery Framework
for Traversing Web Services Representation Chain”, Proceedings of the IEEE

International Conference on Web Services

94 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Paul Palathingal “Agent Approach for Service Discovery and Utilization”,

Proceedings of the 37th Hawaii International Conference —2004.

Schahram Dustdar and Wolfgang Schreiner “A survey on web services composition”,
Int. J. Web and Grid Services, Vol. 1, No. 1, 2005

Freddy L’ecu’e, Eduardo Silva, and Lu’is Ferreira Pires, “A Framework for Dynamic

Web Services Composition”.

Faisal Mustafa, T. L. McCluskey “Dynamic Web Service Composition” 2009

International Conference on Computer Engineering and Technology

Pat. P. W. Chan and Michael R. Lyu “Dynamic Web Service Composition: A -new
Approach in Building Reliable WebService” 22nd International Conference on

Advanced Information Networking and Applications

LIU AnFeng, CHEN ZhiGang, HE Hui, GUI WeiHua “Treenet:A Web Services
Composition Model Based on Spanning tree” IEEE 2007

Kazuto Nakamura Mikio Aoyama “Value-Based Dynamic Composition of Web

Services” xiii asia pacific software engineering conference (APSEC'06)

R. Jaya prakash, r. Vimal raja “evaluating web service composition methods with the
help of a business application” R. JayaPrakash et. al. / International Journal of
Engineering Science and Technology Vol. 2(7), 2010, 2931-2935

Freddy L’ecu’e, Alain L’eger “Semantic Web Service Composition through

Matchmaking of Domain”.

San-Yih Hwang, Ee-Peng Lim, Chien-Hsiang Lee, and Cheng-Hung Chen ,“Dynamic
Web Service Selection for Reliable Web Service Composition” leee Transactions On

Services Computing, VVol. 1, No. 2, April-June 2008

Liping Liu , Anfeng Liu , Ya Gao , “Improved Algorithm for Dynamic Web Services

Composition”, The 9th International Conference for Young Computer Scientists

Zhang Hai-tao, Gu Qing-rui, “A Dynamic Web Services Composition and Realization
on the Base of Semantic”, 2010 IEEE

05 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

[24] Yujie Yao, Haopeng Chen, “A Rule-based Web Service Composition Approach”,2010

Sixth International Conference on Autonomic and Autonomous Systems

[25] Farhan Hassan Khan, M.Younus Javed, Saba Bashir, “QoS Based Dynamic Web
Services Composition & Execution”, (IJCSIS) International Journal of Computer

Science and Information Security,Vol. 7, No. 2, February 2010

[26] Kaouthar Boumhamdi, Zahi Jarir , “A Flexible Approach to Compose Web Services in
Dynamic Environment”, International Journal of Digital Society (1JDS), Volume 1,
Issue 2, June 2010

[27] Jinghai Rao and Xiaomeng Su et al. “A Survey of Automated Web Services
Composition Methods”
[28] Biplav Srivastava, Jana Koehler “Web Service Composition - Current Solutions and
Open Problems™, ICAPS 2003
[29] Fu zhi Zhang, Yan Wang, Lin Wang “A Web service discovery algorithm based on
dynamic composition” , SNPD '07 Proceedings of the Eighth ACIS International
Conference on Software Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing - Volume 02 IEEE Computer Society Washington, DC,
USA ©2007
[30] Lei Li, lan Horrocks “A software framework for matchmaking based on semantic web
technology” WWW '03 Proceedings of the 12th international conference on World Wide
WebACM New York, NY, USA ©2003
[31] Saba Bashir, Farhan Hassan Khan, M.Younus Javed, “Indexer Based Dynamic Web
Services Discovery”, 1JCSIS, Vol. 7 No. 2, February 2010, USA
[32] Gopinath Ganapathy and Chellammal Surianarayanan “ldentification of Candidate
Services for Optimization of Web Service Composition”, Proceedings of the World
Congress on Engineering 2010 Vol | WCE 2010, June 30 - July 2, 2010, London, U.K.

96 I Dynamic Web Service Composition Using Google API Crawling (MS Dissertation)

