
1

Lossless Image Compression by incorporating

Histogram Processing stage in Burrows Wheeler

Compression Algorithm (BWCA).

By

Muhammad Adnan Yousaf

[2009-NUST-MSPhd-ComE-01]

Submitted to the Department of Computer Engineering

In partial fulfillment of the requirements for the degree of

Master of Science
In

Computer Engineering

Advisor
Dr. Muhammad SaadRehman

College of Electrical & Mechanical Engineering

National University of Sciences and Technology

2011

2

DECLARATION

We hereby declare that no portion of the work referred to in this Project Thesis has been submitted in

support of an application for another degree or qualification of this of any other university or other

institute of learning. If any act of plagiarism found, we are fully responsible for every disciplinary action

taken against us depending upon the seriousness of the proven offence, even the cancellation of our

degree.

COPYRIGHT STATEMENT

 Copyright in text of this thesis rests with the student author. Copies (by any process) either in full, or

of extracts, may be made onlyin accordance with instructions given by the author and lodged in the

Library of NUST College of E&ME. Details may be obtained by the Librarian. This page must form

part of any such copies made. Further copies (by any process) of copies made in accordance with

such instructions may not be made without the permission (in writing) of the author.

 The ownership of any intellectual property rights which may be described in this thesis is vested in

NUST College of E&ME, subject to any prior agreement to the contrary, and may not be made

available for use by third parties without the written permission of the College of E&ME, which will

prescribe the terms and conditions of any such agreement.

 Further information on the conditions under which disclosures and exploitation may take place is

available from the Library of NUST College of E&ME, Rawalpindi.

3

4

This thesis is dedicated to my parents

5

Acknowledgements

All praise to the Almighty Allah, the most Merciful and the most gracious one. Without whose

help and blessings, I would not have been able to complete this research. Many thanks to my

project supervisor, Dr. Muhammad Saad whose constant motivation, unflagging efforts and

uninvolved words of wisdom ever proved a lighthouse for me, it was earnestly felt whenever we

swayed. Despite his never ending assignments of university management, student counseling,

project supervision and teaching, he did never mind whenever we went for an advice, within or

without the time slot allocated for us.

Acknowledgement is also due to my teachers for dedicatedly instilling and imparting

enlightenment to me during the course of studies and afterwards for our project. I am also very

thankful to my parents for their tacit and avowed support, patience and understanding.

I would like to thank my friends who gave me confidence to face the difficulties of life. They all

gave me good company and everlasting memories.

6

ABSTRACT

Lossless Image Compression by incorporating Histogram Processing stage in Burrows Wheeler

Compression Algorithm (BWCA)

Lossless Image compression reduces the amount of data required to represent an image without

losing any information.Burrows-Wheeler compression is a four stage process in which the data is

transformed with the Burrows-Wheeler Transform, and then transformed with Move-To-Front,

and then Run Length Encoding is performed and finally encoded with an entropy coder.BWT is

a reversible context sorting algorithm and compression is achieved because sorting increase the

spatial and temporal redundancy.

In this report a new stage is proposed before BWT to enhance compression ratio i.e. histogram

processing stage and several other improvements have been proposed in each stage of Burrow

wheeler compression algorithm. The proposed scheme is also compared with LZW Lempel Ziv

Welch algorithm which is a universal dictionary based algorithm while BWCA is lexographical

transform .The focus of this report is to improve the compression ratio of BWCA by introducing

histogram processing stage as well as improving GST and RLE stages.

7

Table of Contents

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION TO LOSSLESS IMAGE COMPRESSION 9

1.2 DIGITAL IMAGE AND DIGITAL IMAGE PROCESSING 10

1.3 IMAGE COMPRESSION ... 13
1.3.1 Image and Data Compression fundamentals ...13
1.3.2 Coding Redundancy ..14
1.3.3 Spatial and temporal redundancy ..15

1.4 SUMMARY .. 16

CHAPTER 2

LITERATURE REVIEW

2.1 BURROWS WHEELER TRANSFORM .. 17

2.2 INVERSE BURROWS WHEELER TRANSFORM .. 20

2.3 GLOBAL STRUCTURE TRANSFORM .. 28
2.3.1 MTF Encoding ..29
2.3.2 MTF Decoding ..30

2.4 ZERO RUN-LENGTH ENCODING (RLE-0) .. 31

2.5 ENTROPY CODER... 33
2.5.1 Huffman coding ..33

2.9 SUMMARY .. 35

8

CHAPTER 3

PROPOSED SCHEME

3.1 HISTOGRAM PROCESSING ... 36
3.1.1 Effect of size of block ...43

3.2 IMPROVEMENTS IN MTF ... 45

3.3 IMPROVEMENTS IN RLE………………………………………………….46

3.4 LZW ALGORITHM FOR COMPARISON…………………………………………..49

3.5 FLOW CHART………………………………………………………………………….50

CHAPTER 4:

RESULTS

4.1 IMPLEMENTATION AND EXPERIMENTAL RESULTS 51

4.2 COMPARISON BTWEEN DIFFERENT BLOCK SIZES .. 62

4.3 COMPARISON OF PROPOSED SCHEME WITH LZW ALGORITHM………..63

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 CONCLUSION AND FUTURE WORK……………………………………………….67

REFERENCES………………………………………………………………………………68

9

Chapter 1

Introduction

1.1 Introduction to Lossless Image Compression

Lossless image compression is the technique of compressing the image in such a way that

no information is lost when image is decompressed, unlike the most commonly known image

compression techniques such as JPEG (Joint Photography Experts Group) in which the quality of

the image and the details of the image are compromised in order to save more space and

bandwidth. Lossless image compression is used widely in sensitive data such as the medical

imaging and astronomical imaging.In Lossless compression the digital image is represented with

reduced amounts of data. The basic principle of the reduction process is elimination of the

redundant data.

In many organizations related to the field of astronomy, where most of the information

comes in the form of digital images, it is not feasible to store all the information as is. Similar in

medical databases where records of the patients with their respective scans are stored, it is not

feasible to use lossy compression techniques to reduce the size of images because of loss of vital

information when these images are decompressed for this purpose lossless image compression

techniques are used.

The technique which is improved in this thesis is based on the research of Burrows and

Wheeler in 1994 [1] although this technique was designed for text compression, but many

variants of this technique can be found which were then modified for image compression.

10

Fenwick [3] proposed improvements to increase efficiency of Burrows-Wheeler Transform

(BWT) based compression and to reduce the complexity of overall scheme. Michael Schindler

proposed a variant of BWT which reduces the time taken by BWT by using limited sorting

method[4]. Sadakane introduced an idea of improving the speed of BWT in [5]. Many

improvements on Post-BWT stages are proposed by J. Abel in [2].Before discussing the

technique which is proposed in this thesis, fundamental of the Image compression is discussed

very briefly.

1.2 Digital Image and Digital Image Processing

Digital images are formed when light illuminated on an object is reflected back and is captured

by the camera light sensors which convert the amount of light on the sensing area to finite and

quantized electrical voltages and the resulting voltage arrayform digital image.

 In the process of image generation, the values of the image are directly proportional to the

energy radiation reflected from the target object.

 The values of the function f (x, y) can be characterized by two main components

i. The amount of source luminosity on the object at the time the object is viewed by the

camera.

ii. The amount of reflected light from object, which depends upon mainly the reflectance of

the object and the color of that object.

11

The above two components are usually referred to as Illumination and Reflectance

component and can be denoted by i(x, y) and r(x, y) and the combinational result of the two of

them is the function value of f(x, y) that is,

Where

And

Luminance on the surface of the object from the source can vary from zero to infinity, however

the amount of light reflected by the object can vary from zero to one, this reflectance of the

object can be referred to as multiplying co-efficient which determines the pixel values, the

resultant of both factors is the amplitude value of the function f(x, y).

Figure 1.1 illustrates the process of image acquisition, where the reflectance and luminance

of the light are also shown, the digital image formed by the image acquisition process produce

the amplitude values for the function which are called as pixels, the pixels describe the gray-

levels and can be denoted as,

12

Figure 1.1: Process of image acquisition

The output of the sensor arrays is usually the voltage waveform which reflects the input of the

sensors and is continuous in nature. To create the digital image from the acquired continuous

data two processes are done which are sampling and quantization.

The main principle of the sampling is to convert the continuous signal into discrete

intervals of time. For this purposethe output of the sensor arraysis multiplied with train of

impulses and the output of the sampling is discrete in nature, but the amplitude of the signal or

image is still in continuous domain.

For quantization the amplitude values of the image the sampled signal is passed through the

quantization stage which maps the continuous output of the each sampled value to some finite

values, the process of quantization is not reversible because no information is kept that what

changes are made upon the amplitudes.

13

1.3 Image Compression

1.3.1 Image and Data Compression fundamentals

Lossless compression of data is the removal of redundancies in the data while preserving

the ability to return the data to its original form. Lossy compression involves the discarding of

less useful information from the data which then cannot be recovered

14

The amount of data compression achieved is measured by the term compression ratio, which is,

Where n1 represent the number of bits (or information carrying units) required for

representing in original data and n2 represent the number of bits in compressed data.

And in real life examples the compression ratio of the data depends upon the redundancy of

the original data, the more the redundancy the more the compression ratio and the redundancy is

the feature which we are targeting to exploit and accomplish the additional data compression, the

Redundancy of the data is defined as,

 (Equation: 1.7)

Redundancy of the data and the compression ratio both are related terms, because in the

data set when there is more redundancy then it means that data can be compressed more so that

compression ratio is also increased.

In images there are coding redundancies as well as spatial and temporal redundancies which

can be exploited to compress the images.

1.3.2 Coding Redundancy

A code can be defined as the set of symbols (for digital information symbols are bits) by

which the information can be represented. The coding redundancy can be described as in any

15

image the probability of occurrence of some gray-levels is more than others.Then the amount of

data symbols assigned to that high probability gray level can be reduced, so that the fewer

symbols are used. For example in a gray scale digital image of 512x512 consider that gray-levels

are in range of 0 – 255 and each gray-level is expressed by the single byte in memory (which is

8-Bits).

Variable length coding exploits the probabilities of the gray-levels and the lowest symbol

code are assigned to the gray-level having maximum probability as in Huffman Coding. So

simply by varying the amount of bits to represent the pixels the overall data can be compressed.

1.3.3 Spatial and Temporal Redundancy

In most images the pixels are correlated spatially and pixel intensities can be predicted

reasonably well from neighboring intensities,in images the group of gray-levels can occur in

between the image in many locations. That type of redundancy is known as Interpixel

redundancy which indicate that some sequence of pixels are behaving as a group and that group

can be found repeatedly. So the information carried by a single pixel is small because its value

can be inferred from its neighboring pixels.

The entropy coding technique such as the Huffman coding does not take advantage of such

redundancy.

There are several data compression techniques which take account of spatial redundancy, such as

lossless predictive coding and Lempel-Ziv and Lempel Ziv Welch (LZW)[7]

16

1.4 Summary

In this chapter brief introduction regarding fundamentals of image compression are described

and the idea of lossless image compression is also mentioned briefly, the basic idea of image

data and other types of data are also briefly expressed. The fundamental ideas of compression are

discussed and on what factors the compression ratios increase were also illustrated.

17

Chapter 2

Literature Review

2.1 Burrow wheeler transform.

M. Burrows and D. J. Wheeler in their publication gave the idea of lossless data

compression[1]. The Burrows Wheeler Compression Algorithm is based upon burrow wheeler

transform which is reversible sorting transform.

Figure 2.1 Different stages in BWCA

Burrow wheeler transform is lexographical transform which don’t sort the data exactly in

ascending or descending order exactly, but it sorts in such a way that data contain more runs of

similar data after transformation. And this can be exploited by GST to increase the compression

ratio.

18

Table 2.1 BWT performed on string “ASSASSINATION”

Table 2.2 “ASSASSINATION after transformation by BWT”

A S S A S S I N A T I O N

N A S S A S S I N A T I O

O N A S S A S S I N A T I

I O N A S S A S S I N A T

T I O N A S S A S S I N A

A T I O N A S S A S S I N

N A T I O N A S S A S S I

I N A T I O N A S S A S S

S I N A T I O N A S S A S

S S I N A T I O N A S S A

A S S I N A T I O N A S S

S A S S I N A T I O N A S

S S A S S I N A T I O N A

A S S A S S I N A T I O N

A S S I N A T I O N A S S

A T I O N A S S A S S I N

I N A T I O N A S S A S S

I O N A S S A S S I N A T

N A S S A S S I N A T I O

N A T I O N A S S A S S I

O N A S S A S S I N A T I

S A S S I N A T I O N A S

S I N A T I O N A S S A S

S S A S S I N A T I O N A

S S I N A T I O N A S S A

T I O N A S S A S S I N A

N

 S

 N

 S

 T

 O

 I

 I

 S

 S

 A

 A

 A

N

 S

 N

 S

 T

 O

 I

 I

 S

 S

 A

 A

 A

19

Table 2.3 BWT of string “BANANA”

In Table 2.1“ASSASSINATION” and in Table 2.3“BANANA” both strings are transformed

according to burrow wheeler transform. the first step in BWT is to circularly shift the string by

one step and form a N*N block of circularly shifted strings.

In case of string “ASSASSINATION” n=13 and for “BANANA” n=6.Lets call the circularly

shifted matrix for “ASSASSINATION” and “BANANA” M and N respectively.

The next step is to sort the rows in M and N alphabetically as shown in table 2.1 and 2.3

respectively and call these sorted matrices M_sorted and N_sorted respectively.

Now the last column of M_sorted and N_sorted contains the Burrow wheeler transform for

respective string.

B A N A N A

A B A N A N

N A B A N A

A N A B A N

N A N A B A

A N A N A B

A B A N A N

A N A B A N

A N A N A B

B A N A N A

N A B A N A

N A N A B A

N

N

B

A

A

A

20

The transformed string for “ASSASSINATION” is “NSNSTOIISSAAA” and for “BANANA” it

is “NNBAAA”. It can be clearly seen that the transformed strings contain more repetition of

words than original strings. This can be used by GST stage and RLE stage to compress the data.

2.2 Inverse Burrows wheeler Transform

Inverse Burrow wheeler only requires the transformed string and the index of original string in

sorted N_sorted and M_sorted matrix respectively. So in essence for every block of data to

transform only one byte for determining the index is required.

The index of original string in M_sorted and N_sorted is “1” and “4” respectively.

So now we have two things index and transformed string,

Step 1: The transformed string contains all the characters that are present in the original string so

if we sort the transformed string we will get the first column of M_sorted and N_sorted matrices

because the first column contains the sorted version of original string as shown in Table 2.4.

Table 2.4 transformed string (1) and sorted string (2)

N

S

N

S

T

O

I

I

S

S

A

A

A

A

A

A

I

I

N

N

O

S

S

S

S

T

21

Step 2: Each row of the M_sorted and N_sorted matrix contains the circularly shifted version of

the original string. And in each row the last element and the first element appear consecutively in

original string. so elements in string (2) appear after string (1) of Table 2.4 (“NA”,”SA”,” NA”,

“SI”, “TI”, “ON”, …)

Table 2.5

Step3: Now sort the above matrix as shown in table 2.5.

Table 2.6

N A

S A

N A

S I

T I

O N

I N

I O

S S

S S

A S

A S

A T

A S

A S

A T

I N

I O

N A

N A

O N

S A

S I

S S

S S

T I

22

Step4: Now add the transformed string (1) to the beginning of above table 2.6 and repeat step 3 and 4

Adding transformed string (1) and

sortingAdding transformed string (1) and sorting

Adding transformed string (1) and sortingAdding transformed string (1) and sorting

A S S

A S S

A T I

I N A

I O N

N A S

N A T

O N A

S A S

S I N

S S A

S S I

T I O

A S S A

A S S I

A T I O

I N A T

I O N A

N A S S

N A T I

O N A S

S A S S

S I N A

S S A S

S S I N

T I O N

A S S A S

A S S I N

A T I O N

I N A T I

I O N A S

N A S S A

N A T I O

O N A S S

S A S S I

S I N A T

S S A S S

S S I N A

T I O N A

A S S A S S

A S S I N A

A T I O N A

I N A T I O

I O N A S S

N A S S A S

N A T I O N

O N A S S A

S A S S I N

S I N A T I

S S A S S I

S S I N A T

T I O N A S

23

Adding transformed string (1) and sorting

Adding transformed string (1) and sorting

A S S A S S I

A S S I N A T

A T I O N A S

I N A T I O N

I O N A S S A

N A S S A S S

N A T I O N A

O N A S S A S

S A S S I N A

S I N A T I O

S S A S S I N

S S I N A T I

T I O N A S S

A S S A S S I N

A S S I N A T I

A T I O N A S S

I N A T I O N A

I O N A S S A S

N A S S A S S I

N A T I O N A S

O N A S S A S S

S A S S I N A T

S I N A T I O N

S S A S S I N A

S S I N A T I O

T I O N A S S A

24

Adding transformed string (1) and sorting

Adding transformed string (1) and sorting

A S S A S S I N A

A S S I N A T I O

A T I O N A S S A

I N A T I O N A S

I O N A S S A S S

N A S S A S S I N

N A T I O N A S S

O N A S S A S S I

S A S S I N A T I

S I N A T I O N A

S S A S S I N A T

S S I N A T I O N

T I O N A S S A S

A S S A S S I N A T

A S S I N A T I O N

A T I O N A S S A S

I N A T I O N A S S

I O N A S S A S S I

N A S S A S S I N A

N A T I O N A S S A

O N A S S A S S I N

S A S S I N A T I O

S I N A T I O N A S

S S A S S I N A T I

S S I N A T I O N A

T I O N A S S A S S

A S S A S S I N A T I

A S S I N A T I O N A

A T I O N A S S A S S

I N A T I O N A S S A

I O N A S S A S S I N

N A S S A S S I N A T

N A T I O N A S S A S

O N A S S A S S I N A

S A S S I N A T I O N

S I N A T I O N A S S

S S A S S I N A T I O

S S I N A T I O N A S

T I O N A S S A S S I

25

Adding transformed string (1) and sorting

Table 2.7 read the original string at “0” index. decoding complete

Transformed string Sorted string

A S S A S S I N A T I O

A S S I N A T I O N A S

A T I O N A S S A S S I

I N A T I O N A S S A S

I O N A S S A S S I N A

N A S S A S S I N A T I

N A T I O N A S S A S S

O N A S S A S S I N A T

S A S S I N A T I O N A

S I N A T I O N A S S A

S S A S S I N A T I O N

S S I N A T I O N A S S

T I O N A S S A S S I N

A S S A S S I N A T I O N

A S S I N A T I O N A S S

A T I O N A S S A S S I N

I N A T I O N A S S A S S

I O N A S S A S S I N A T

N A S S A S S I N A T I O

N A T I O N A S S A S S I

O N A S S A S S I N A T I

S A S S I N A T I O N A S

S I N A T I O N A S S A S

S S A S S I N A T I O N A

S S I N A T I O N A S S A

T I O N A S S A S S I N A

N

N

B

A

A

A

A

A

A

B

N

N

26

Adding transformed string sorting

Adding transformed string sorting

Adding transformed string sorting

N A

N A

B A

A B

A N

A N

A B

A N

A N

B A

N A

N A

N A B

N A N

B A N

A B A

A N A

A N A

A B A

A N A

A N A

B A N

N A B

N A N

N A B A

N A N A

B A N A

A B A N

A N A B

A N A N

A B A N

A N A B

A N A N

B A N A

N A B A

N A N A

27

Adding transformed string sorting

Adding transformed string

Sorting and reading the original string at index “4” (decoding process complete)

2.3 Move to front transform:

Burrows wheeler transform compresses textual data by sorting it lexographically and hence

generating sequences of similar characters as shown in above examples. However the data sorted

by BWT is not exactly sorted in ascending or descending order and it contain values which

change abruptly, so to solve this problem move to the front was suggested by Burrow wheeler in

N A B A N

N A N A B

B A N A N

A B A N A

A N A B A

A N A N A

A B A N A

A N A B A

A N A N A

B A N A N

N A B A N

N A N A B

N A B A N A

N A N A B A

B A N A N A

A B A N A N

A N A B A N

A N A N A B

A B A N A N

A N A B A N

A N A N A B

B A N A N A

N A B A N A

N A N A B A

28

their publication [1].MTF transform is called Global Structure transform because it converts the

local data into global context.

2.3.1 MTF encoding:

In mtf encoding first an indexed table is created for all the symbols that are present in the data in

case of English text it will contain all the alphabets.

For encoding data is read character by character(in case of text) so first character is searched in

the index table. The index at which the character is present is stored and then in index table that

character is brought to the front or at zero index.

 String Decoded string Index table

In the above example the string ”NNBAAA” which is BWT of”BANANA” is decoded by mtf.

The first character is “N” and its index (Location) in index table is “13” so we place “13” in

decoded string and secondly we bring “N” to the start of Index table (at location zero). Next

character is again “N” and it is now present at location ”0” so we place the”0” in decoded string.

As “N” is present at zero location so there is no change in index table.

N 13

N 0

B 2

A 2

A 0

A 0

a,b,c,d,e,f,g,h,I,j,k,l,m,n,o,p,….

n,a,b,c,d,e,f,g,h,I,j,k,l,m,o,p,….

n,a,b,c,d,e,f,g,h,I,j,k,l,m,o,p,….

b,n,a,c,d,e,f,g,h,I,j,k,l,m,o,p,….

a,b,n,c,d,e,f,g,h,I,j,k,l,m,o,p,….

a,b,n,c,d,e,f,g,h,I,j,k,l,m,o,p,….

a,b,n,c,d,e,f,g,h,I,j,k,l,m,o,p,….

29

Next character is “B” and it is present at index 2 so we write 2 in decoded string and we bring

the “B” to the zero index .next character is “A” and it is at index “2” so “A” is moved to front

and “2” is written in decoded string. Next two characters are A and in index table it is at location

“0” so “0” is written in decoded string for both “A”. it can be seen that the decoded string has

converted the consecutive similar characters to zeros which can be compressed by RLE0 but

another advantage of MTF transform is that it also shift the values that appear regularly in data to

lower indexes and the probability of lower values will increase and due to this property when

entropy encoders are used in later stage better compression ratio will be achieved.

2.3.2 MTF DECODING.

The string decoded in previous section (“NNBAAA” decoded to”13,0,2,2,0,0”) can be recovered

easily. the only thing that is required for decoding is index table. And in most cases it is

known(in this case it is alphabets in English).

In this case the decoded string is (“13,0,2,2,0,0”), first character is read at the location “13” of

index table which is”N”. So “N” is written in original string, and in index table “N” is shifted to

a,b,c,d,e,f,g,h,I,j,k,l,m,n,o,p,….

N 13 n,a,b,c,d,e,f,g,h,I,j,k,l,m,o,p,….

N 0 n,a,b,c,d,e,f,g,h,I,j,k,l,m,o,p,….

B 2 b,n,a,c,d,e,f,g,h,I,j,k,l,m,o,p,….

A 2 a,b,n,c,d,e,f,g,h,I,j,k,l,m,o,p,….

A 0 a,b,n,c,d,e,f,g,h,I,j,k,l,m,o,p,….

A 0 a,b,n,c,d,e,f,g,h,I,j,k,l,m,o,p,….

30

the zero location. The next character can be read at location “0” which is “N” again. The third

character can be read at location 2 which is “B”. And “B” is shifted to location zero of index

table. The forth character can be read at location 2 which is “A”. And “A” is shifted to location

zero of index table. The next two characters can be read at “0” location and both are “A”.

So by only knowing the symbols table that was used in encoding the original data can be

recovered.

2.4 Zero Run-Length Encoding (RLE-0)

Typical BWCA scheme consists of four basic steps for data compression in which after

GST stage (which is MTF as suggested by M. Burrows and D. J. Wheeler) the Zero Run-Length

encoder (RLE-0) is also suggested, from all the discussion of the MTF and RLE it seems at first

that RLE is the extra step which is not necessary, but this is not the case. MTF is just the encoder

of data and the MTF output data is not yet compressed, by analyzing the output of the MTF it is

clearly visible that occurrences of zeros are very frequent as shown in Figure 2.14 in which the

histogram of the output of the MTF clearly illustrates the high occurrences of zeros.

31

Figure 2.14: Histogram of the MTF transformed data

It is always an option to directly process the MTF output with entropy coders, but the

problem with this procedure is that not only the present zeros are in high probabilities but most

of the time these zeros are in stream, so one special Run-Length Encoder can be used to exploit

this redundancy. Hence the RLE-0 is the run-length encoder which only transforms the zeros so

that streams of the zeros can be reduced and the data can be compressed more.

2.5 Entropy Coder

Entropy coder is the final stage of BWCA, this is the stage in which the data is compressed

in order to reduce its size to represent the information, as we have described all the stages of

BWCA, RLE-0 is the stage in which the stream of 0s are removed, but the zeros are not the only

type of redundancy in data, so an actual data compression algorithm is needed to reduce the

whole data.

32

Entropy coders are used to eliminate the coding redundancy of data, and as described

earlier coding redundancy is usually present in data, even in the binary codes which are used to

represent the values of gray levels. To eliminate coding redundancy a variable length code can

be used which can represent the data instead of original data.

2.5.1 Huffman coding

In order to remove coding redundancy Huffman coding is the most popular and widely

used technique, this technique was proposed by Huffman in 1952 [8] and still is used due to the

significant amount data reduction. Huffman coding works on the individual symbols of

information source and yields the smallest possible code for every symbol. The codes assigned

by Huffman coding are variable length codes, as the optimal fixed codes are generated for

individual source symbol then the original data can be coded at a time by simple look up table

approach.

The brief intro of Huffman encoding is presented here to describe the importance and

working of entropy coder stage, the first step in Huffman coding is to generate the list of

available symbols with respect to their probabilities, when the list of probabilities are available

then the procedure of source reduction is performed, in this process the two lowest probabilities

of the information source are added together and the same process is repeated attain until only

two sources are remained.

The process of the source reduction is illustrated in Figure 2.15 in which the available

symbols are represented in column named as symbols and the probabilities of their respective

occurrences are shown next.

33

Figure 2.15: Process of source reduction in Huffman [6]

The second step of Huffman coding is to assign short codes to reduced sources, in this step

the smallest codes are assigned to the final sources, for the rest of sources the appending of 0s

and 1s is used, and the assignment procedure is performed on all the sources and hence all the

sources have their own unique codes as shown in Figure 2.16.

Figure 2.16: Code assignment process in Huffman [6]

Considering that for the above symbols the minimum amount of data bits required to

represent all the symbols is 3-bits (since total symbols are 8, i.e. a0,a1,…a7 so 2
3
=8) and after

Huffman coding the average code length can be calculated by as follows.

34

Hence the average amount of information with the codes generated by Huffman is lower

than original 3 bits/symbols.

2.5 Summary

In this chapter the original scheme of BWCA is explained in detail, each stage of BWCA with

adequate explanation is illustrated with short but related examples. Related works to lossless

image compression techniques ware also discussed in brief detail; the other fields of BWT are

also discussed momentarily

35

Proposed Scheme

Chapter 3

3.1 Histogram processing.

Histogram in figure 3.1 clearly shows that the pixels are distributed in wide range of intensity

values. If one can redistribute the histogram to make the intensity values lie in smaller range then

the further stages of burrow wheeler compression algorithm will be able to compress the image

to higher compression ratios. There are several ways to shift the histogram of image in a specific

range but for lossless image compression that method has to be reversible so that when we

decode the compressed image it can be retrieved without losing any information.

Fgure 3.1. Histogram of image 16.

This can be achieved by dividing the image into small blocks and finding the minimum value in

each block. The minimum value for each block must be stored because it will be required for

36

decompression. The minimum value for each block is then subtracted from every value of that

block respectively.

What this whole procedure does is that if the block size is quite small then the intensity value in

that block will be similar, and by subtracting the minimum value from them the values will be

shifted to the lower intensity values. Further if two blocks contain different value one contain

smaller value and other contain very large values, after finding local minima and subtracting that

from respective block, both blocks will then contain similar values. Thus this procedure shifts the

histogram of image to lower intensity values. And by storing only the minimum values original

image can be recovered without any loss of information.

37

16x16 block of original image.

Minimum values

220 230

221 229

38

After subtracting minimum values from the image

5 3 6 3 5 7 9 11 1 2 0 3 4 7 3 1

5 3 6 3 5 7 9 11 1 2 0 3 4 7 3 1

5 3 6 3 5 7 9 11 1 2 0 3 4 7 3 1

5 3 6 3 5 7 9 11 1 2 0 3 4 7 3 1

5 3 6 3 5 7 9 11 1 2 0 3 4 7 3 1

2 3 0 0 1 6 11 9 1 0 3 3 5 4 8 7

3 3 4 4 4 11 10 13 0 2 4 8 5 5 7 7

3 3 1 1 6 11 5 11 6 3 5 5 6 6 6 5

2 0 3 4 8 6 10 11 1 6 7 7 9 7 6 8

0 1 5 7 9 9 8 12 4 4 7 8 8 5 6 7

4 1 4 6 6 9 11 11 6 5 7 7 6 8 5 9

4 3 2 6 10 11 11 12 3 6 4 6 3 9 7 9

5 4 6 6 11 11 12 14 3 5 5 6 7 4 6 7

6 9 9 8 12 12 8 10 1 0 1 5 5 5 7 3

8 8 7 8 11 12 12 9 4 0 4 3 5 2 4 3

7 9 7 10 7 11 12 11 3 2 4 6 5 7 3 8

39

40

41

42

In these figure the block size for finding minimum value is taken as 8x8 and after subtraction

histogram of these images is shifted to the lower intensity values, which will ultimately result in

higher compression ratio. For 512x512 image with block size for local minima of 8x8 the

minimum values will require 4096 bytes.

3.1.1 Size of block.

Size of block plays an important role in compression ratio. if the block is very small then though

it will shift the histogram to a very narrow range as shown in figure. But additional overhead to

store the minimum values will effect the compression ratio. For example for grey scale image of

size 512x512 bytes if block size is of 4x4 then bytes required to store minimum values will be

16384 bytes. If block size is 32x32 then bytes required to store minimum values will be 256

bytes. So optimizing the block size can be very important in determining the compression ratio.

43

11.jpg

44

3.2 Improvements in MTF stage.

Burrow wheeler transform is performed on 32x32 or 64x64 blocks of image and then MTF is

performed. What BWT does is that it sorts the data in roughly ascending order so after BWT

each block contains relatively higher values at the end and lower values at the start as shown by

highlighted row in figure below.so if MTF is performed on whole image then at the end of each

block the mtf index table will contain high values and then next block will be processed from

start. And that block will contain lower values in the beginning so this will result in higher

values.

This problem can be solved by refreshing the index list after performing the mtf on one block of

image. This will result in lower values in the index table at start of each block. This will shift the

histogram of overall image to lower values further enhancing the compression ratio.

3 1 8 0 13 1 2 2 2 2 2 2 4 10 9 3

11 11 11 11 11 3 4 3 3 3 3 0 0 11 1 0

1 1 1 1 1 5 1 5 3 0 3 2 3 7 7 7

7 7 11 4 7 7 0 3 0 0 0 0 0 0 4 3

6 14 6 6 6 6 6 5 5 5 5 5 12 4 7 7

6 9 7 9 0 2 3 12 4 6 2 1 5 7 3 3

3 3 3 4 2 3 5 4 6 3 1 1 1 1 8 9

3 1 3 3 5 8 5 8 5 6 5 5 6 1 3 3

3 3 3 8 11 11 3 3 3 3 3 4 3 6 4 11

6 5 4 4 5 5 4 1 7 7 7 6 8 2 1 1

6 4 4 4 4 4 7 8 5 5 6 6 9 7 6 5

5 6 4 8 9 7 3 5 5 5 5 5 5 9 10 6

3 4 8 6 4 4 8 7 3 12 7 9 9 11 12 5

7 7 3 7 9 9 7 6 7 7 7 7 7 6 8 7

6 6 11 9 9 9 9 9 10 12 6 5 11 6 4 9

10 6 11 7 8 11 11 8 12 12 11 8 11 11 10 12

Burrows Wheeler Transform Performed on 16x16 block of lena img

45

3.3 Improvements in RLE (Run Length Encoding).

In this stage of burrow wheeler compression algorithm all the consecutive values that are created

due to histogram processing, BWT and MTF transforms are encoded.

Figure: After performing Histogram processing, BWT, and MTF transform.

4 3 9 4 14 4 6 1 1 1 1 1 7 12 12 9

13 1 1 1 1 2 5 2 1 1 1 9 1 4 8 3

2 1 1 1 1 11 2 2 5 4 2 9 2 13 1 1

1 1 7 8 3 1 6 5 2 1 1 1 1 1 4 3

13 15 2 1 1 1 1 9 1 1 1 1 15 6 8 1

5 12 3 2 9 11 10 8 8 8 5 12 10 10 8 1

1 1 1 7 6 3 5 4 7 4 7 1 1 1 15 11

4 4 2 1 7 5 2 2 2 6 2 1 2 5 5 1

1 1 1 5 13 1 3 1 1 1 1 8 2 6 3 4

3 7 4 1 2 1 2 7 10 1 1 5 8 10 5 1

4 6 1 1 1 1 6 6 7 1 5 1 10 5 3 4

1 2 6 6 6 6 10 7 1 1 1 1 1 4 14 8

5 8 8 4 3 1 3 8 5 12 3 8 1 12 4 10

5 1 6 2 6 1 2 9 2 1 1 1 1 2 8 3

3 1 8 5 1 1 1 1 10 9 5 9 6 3 10 7

7 4 5 8 9 3 1 2 9 1 3 3 2 1 6 4

46

It can be clearly seen that there are consecutive runs of same characters in the sample 16x16 data

block. RLE is implemented by creating new symbols for consecutive runs of data, as the image

does not contain higher intensity values than 255. So for two consecutive 1’s symbol 256 is

assigned and for three consecutive 1’s 257 is assigned and so on.

This might seem counterproductive but when this run length encoded data will be encoded by

entropy coder such as Huffman coding. Huffman will generate code for each symbol according

to its probability so if symbol 256 (2 consecutive 1’s) has high probability then Huffman will

generate small code for it.

So overall by run length encoding higher compression ratios will be achieved.

The histogram shown in figure clearly shows the consecutive runs of 1’s shifted to 256 and

above values

4 3 9 4 14 4 6 260 7 12 12 9 13 259 2 5

2 258 9 1 4 8 3 2 259 11 2 2 5 4 2 9

2 13 259 7 8 3 1 6 5 2 260 4 3 13 15 2

259 9 259 15 6 8 1 5 12 3 2 9 11 10 8 8

8 5 12 10 10 8 259 7 6 3 5 4 7 4 7 258

15 11 4 4 2 1 7 5 2 2 2 6 2 1 2 5

5 259 5 13 1 3 259 8 2 6 3 4 3 7 4 1

2 1 2 7 10 257 5 8 10 5 1 4 6 259 6 6

7 1 5 1 10 5 3 4 1 2 6 6 6 6 10 7

260 4 14 8 5 8 8 4 3 1 3 8 5 12 3 8

1 12 4 10 5 1 6 2 6 1 2 9 2 259 2 8

3 3 1 8 5 259 10 9 5 9 6 3 10 7 7 4

5 8 9 3 1 2 9 1 3 3 2 1 6 4

After performing Proposed run length encoding on 16x16 block of lena img

47

48

3.4 LZW Algorithm

Lempel Ziv Welch (LZW) is a universal lossless data compression algorithm created by Abraham

Lempel, Jacob Ziv, and Terry Welch. It is a dictionary based algorithm and strings of input are

replaced by the dictionary entries. It was published as an improved implementation of the LZ78

algorithm. LZW coding assigns fixed length code word to variable length sequences of source

symbols. The coding is done by creating the dictionary first which contains all the source symbols.

For grey scale images the first 256 locations of dictionary are assigned values from 0 to 255.

As the input is sequentially encoded the input sequences that are not in the dictionary are placed in

the dictionary at locations determined by algorithm. For example if first two pixels that are to be

encoded are “125 130”, this sequence is assigned to location 257(the address following the locations

reserved for intensity levels 0 to 255). Next time whenever sequence “125 130” is encounteredthe

address of the location of sequence is used to represent it. If a nine bit dictionary is implemented then

the two pixels found in dictionary will be replaced by a single 9 bit code word.

 In LZW the size of dictionary and refreshing of dictionary if sufficient compression ratio is not

achieved (if sequences are not detected in dictionary) is very important to achieve good compression.

If dictionary is too small then the matching of sequences will be less likely, but if the dictionary is

too large then the size of code word will reduce compression ratio. Similarly good implementations

also include mechanism that monitors the rate of detection of sequences, if it becomes low the

dictionary is populated again with relevant sequences, thereby increasing the probability of finding a

sequence in dictionary. The results of proposed scheme are compared with LZW algorithm

49

Compression Phase of Proposed Scheme

50

Chapter 4

4.1 Implementation and results

RESULTS

Lenna Image Original Size Original BWCA

R 262144 204340

G 262144 197750

B 262144 196350

Total 786432 598440

CR -- 1.31

Figure 4.1: Preview of images used for compression with proposed and original scheme [9].

Proposed histogram processed

BWCA

184221

179373

178939

542533

1.45

51

Comparison between Compression Ratio of original BWCA and proposed scheme using different

size blocks for finding local minima

4x4 8x8 16x16

1 1.246063 1.275113 1.28195 1.21

2 1.198649 1.231052 1.236668 1.17

3 1.537983 1.62888 1.709544 1.43

4 1.281342 1.311647 1.317523 1.21

5 1.13488 1.167271 1.17067 1.09

6 1.308741 1.33574 1.333408 1.23

7 2.124636 2.250917 2.320456 1.89

8 1.647196 1.692367 1.705823 1.56

9 1.347384 1.363303 1.365428 1.26

10 1.051926 1.075452 1.073801 1.04

11 1.443158 1.484374 1.511931 1.4

12 1.66876 1.733534 1.770745 1.54

13 1.629997 1.695659 1.708377 1.55

14 1.349059 1.382136 1.392523 1.31

15 1.676166 1.747353 1.759576 1.51

16 1.389357 1.417134 1.42298 1.3

1.4397 1.4869 1.50508 1.35

effect of size of local minima

on compression ratio original

BWCA

Image

52

Comparison between Compression Ratio of original Burrow Wheeler Compression Algorithm and

by proposed scheme using different size blocks for finding local minima

53

Histograms of each image after implementing the proposed

scheme

original image

0

1000

2000

3000

4000
histogram original image

0 50 100 150 200 250

after subtracting local minima

0

1000

2000

3000

4000

histogram after subtraction

0 50 100 150 200 250

0

1000

2000

3000

4000

histogram after burrow wheeler

0 50 100 150 200 250

0

2000

4000

histogram after MTF

0 50 100 150 200 250

0 10 20 30 40 50

0

5000

10000
difference in histogram of MTF and burrow wheeler

0 100 200 300
0

2000

4000

6000

8000
Histogram after encoding consecutive ones

250 260 270 280
0

500

1000

1500

2000

2500
Histogram after encoding consecutive ones

original image

0

1000

2000

3000

histogram original image

0 50 100 150 200 250

after subtracting local minima

0

2000

4000

histogram after subtraction

0 50 100 150 200 250

0

2000

4000

histogram after burrow wheeler

0 50 100 150 200 250

0

2000

4000

histogram after MTF

0 50 100 150 200 250

0 10 20 30 40 50

0

5000

10000
difference in histogram of MTF and burrow wheeler

0 100 200 300
0

5000

10000
Histogram after encoding consecutive ones

250 260 270 280
0

500

1000

1500

2000

2500
Histogram after encoding consecutive ones

54

original image

0

5000

10000

histogram original image

0 50 100 150 200 250

after subtracting local minima

0

2000

4000

6000

8000

histogram after subtraction

0 50 100 150 200 250

0

2000

4000

6000

8000

histogram after burrow wheeler

0 50 100 150 200 250

0

5000

10000

histogram after MTF

0 50 100 150 200 250

0 10 20 30 40 50

0

5000

10000
difference in histogram of MTF and burrow wheeler

0 100 200 300
0

1

2

3
x 10

4Histogram after encoding consecutive ones

250 260 270 280
0

500

1000

1500

2000

2500
Histogram after encoding consecutive ones

original image

0

1000

2000

3000

histogram original image

0 50 100 150 200 250

after subtracting local minima

0

2000

4000

histogram after subtraction

0 50 100 150 200 250

0

2000

4000

histogram after burrow wheeler

0 50 100 150 200 250

0

2000

4000

6000

histogram after MTF

0 50 100 150 200 250

0 10 20 30 40 50

0

5000

10000
difference in histogram of MTF and burrow wheeler

0 100 200 300
0

5000

10000

15000
Histogram after encoding consecutive ones

250 260 270 280
0

500

1000

1500

2000

2500
Histogram after encoding consecutive ones

55

original image

0

1000

2000

histogram original image

0 50 100 150 200 250

after subtracting local minima

0

1000

2000

3000

4000

histogram after subtraction

0 50 100 150 200 250

0

1000

2000

3000

4000

histogram after burrow wheeler

0 50 100 150 200 250

0

1000

2000

3000

4000

histogram after MTF

0 50 100 150 200 250

0 10 20 30 40 50

0

5000

10000
difference in histogram of MTF and burrow wheeler

0 100 200 300
0

2000

4000

6000
Histogram after encoding consecutive ones

250 260 270 280
0

500

1000

1500

2000

2500
Histogram after encoding consecutive ones

original image

0

1000

2000

3000

histogram original image

0 50 100 150 200 250

after subtracting local minima

0

2000

4000

6000

histogram after subtraction

0 50 100 150 200 250

0

2000

4000

6000

histogram after burrow wheeler

0 50 100 150 200 250

0

2000

4000

6000

histogram after MTF

0 50 100 150 200 250

0 10 20 30 40 50

0

5000

10000
difference in histogram of MTF and burrow wheeler

0 100 200 300
0

5000

10000

15000
Histogram after encoding consecutive ones

250 260 270 280
0

500

1000

1500

2000

2500
Histogram after encoding consecutive ones

56

original image

0

1000

2000

histogram original image

0 50 100 150 200 250

after subtracting local minima

0

5000

10000

histogram after subtraction

0 50 100 150 200 250

0

5000

10000

histogram after burrow wheeler

0 50 100 150 200 250

0

5000

10000

15000

histogram after MTF

0 50 100 150 200 250

0 10 20 30 40 50

0

5000

10000
difference in histogram of MTF and burrow wheeler

0 100 200 300
0

2

4

6
x 10

4Histogram after encoding consecutive ones

250 260 270 280
0

500

1000

1500

2000

2500
Histogram after encoding consecutive ones

original image

0

1000

2000

histogram original image

0 50 100 150 200 250

after subtracting local minima

0

2000

4000

6000

histogram after subtraction

0 50 100 150 200 250

0

2000

4000

6000

histogram after burrow wheeler

0 50 100 150 200 250

0

5000

10000

histogram after MTF

0 50 100 150 200 250

0 10 20 30 40 50

0

5000

10000
difference in histogram of MTF and burrow wheeler

0 100 200 300
0

1

2

3
x 10

4Histogram after encoding consecutive ones

250 260 270 280
0

500

1000

1500

2000

2500
Histogram after encoding consecutive ones

57

original image

0

1000

2000

3000

histogram original image

0 50 100 150 200 250

after subtracting local minima

0

2000

4000

6000

histogram after subtraction

0 50 100 150 200 250

0

2000

4000

6000

histogram after burrow wheeler

0 50 100 150 200 250

0

2000

4000

6000

histogram after MTF

0 50 100 150 200 250

0 10 20 30 40 50

0

5000

10000
difference in histogram of MTF and burrow wheeler

0 100 200 300
0

5000

10000

15000
Histogram after encoding consecutive ones

250 260 270 280
0

500

1000

1500

2000

2500
Histogram after encoding consecutive ones

original image

0

1000

2000

3000

histogram original image

0 50 100 150 200 250

after subtracting local minima

0

1000

2000

3000

histogram after subtraction

0 50 100 150 200 250

0

1000

2000

3000

histogram after burrow wheeler

0 50 100 150 200 250

0

1000

2000

3000

histogram after MTF

0 50 100 150 200 250

0 10 20 30 40 50

0

5000

10000
difference in histogram of MTF and burrow wheeler

0 100 200 300
0

1000

2000

3000
Histogram after encoding consecutive ones

250 260 270 280
0

500

1000

1500

2000

2500
Histogram after encoding consecutive ones

58

original image

0

1000

2000

3000

histogram original image

0 50 100 150 200 250

after subtracting local minima

0

2000

4000

6000

8000
histogram after subtraction

0 50 100 150 200 250

0

2000

4000

6000

8000
histogram after burrow wheeler

0 50 100 150 200 250

0

2000

4000

6000

8000

histogram after MTF

0 50 100 150 200 250

0 10 20 30 40 50

0

5000

10000
difference in histogram of MTF and burrow wheeler

0 100 200 300
0

1

2

3
x 10

4Histogram after encoding consecutive ones

250 260 270 280
0

500

1000

1500

2000

2500
Histogram after encoding consecutive ones

original image

0

1000

2000

3000

4000

histogram original image

0 50 100 150 200 250

after subtracting local minima

0

2000

4000

6000

8000

histogram after subtraction

0 50 100 150 200 250

0

2000

4000

6000

8000

histogram after burrow wheeler

0 50 100 150 200 250

0

5000

10000

histogram after MTF

0 50 100 150 200 250

0 10 20 30 40 50

0

5000

10000
difference in histogram of MTF and burrow wheeler

0 100 200 300
0

1

2

3

4
x 10

4Histogram after encoding consecutive ones

250 260 270 280
0

500

1000

1500

2000

2500
Histogram after encoding consecutive ones

59

original image

0

1000

2000

3000

4000

histogram original image

0 50 100 150 200 250

after subtracting local minima

0

2000

4000

6000

8000

histogram after subtraction

0 50 100 150 200 250

0

2000

4000

6000

8000

histogram after burrow wheeler

0 50 100 150 200 250

0

5000

10000
histogram after MTF

0 50 100 150 200 250

0 10 20 30 40 50

0

5000

10000
difference in histogram of MTF and burrow wheeler

0 100 200 300
0

1

2

3
x 10

4Histogram after encoding consecutive ones

250 260 270 280
0

500

1000

1500

2000

2500
Histogram after encoding consecutive ones

original image

0

2000

4000

6000

histogram original image

0 50 100 150 200 250

after subtracting local minima

0

2000

4000

6000

histogram after subtraction

0 50 100 150 200 250

0

2000

4000

6000

histogram after burrow wheeler

0 50 100 150 200 250

0

2000

4000

6000

8000

histogram after MTF

0 50 100 150 200 250

0 10 20 30 40 50

0

5000

10000
difference in histogram of MTF and burrow wheeler

0 100 200 300
0

0.5

1

1.5

2
x 10

4Histogram after encoding consecutive ones

250 260 270 280
0

500

1000

1500

2000

2500
Histogram after encoding consecutive ones

60

original image

0

1000

2000

3000

4000

histogram original image

0 50 100 150 200 250

after subtracting local minima

0

2000

4000

6000

histogram after subtraction

0 50 100 150 200 250

0

2000

4000

6000

histogram after burrow wheeler

0 50 100 150 200 250

0

5000

10000

histogram after MTF

0 50 100 150 200 250

0 10 20 30 40 50

0

5000

10000
difference in histogram of MTF and burrow wheeler

0 100 200 300
0

1

2

3
x 10

4Histogram after encoding consecutive ones

250 260 270 280
0

500

1000

1500

2000

2500
Histogram after encoding consecutive ones

original image

0

1000

2000

3000

histogram original image

0 50 100 150 200 250

after subtracting local minima

0

2000

4000

6000

histogram after subtraction

0 50 100 150 200 250

0

2000

4000

6000

histogram after burrow wheeler

0 50 100 150 200 250

0

2000

4000

6000

histogram after MTF

0 50 100 150 200 250

0 10 20 30 40 50

0

5000

10000
difference in histogram of MTF and burrow wheeler

0 100 200 300
0

0.5

1

1.5

2
x 10

4Histogram after encoding consecutive ones

250 260 270 280
0

500

1000

1500

2000

2500
Histogram after encoding consecutive ones

61

4.2 Effect of Burrow Wheeler Transform block size on compression

Image
Compression ratio for

32x32 block for BWT

Bytes required to

represent 1 slice of

image

Compression ratio for

64x64 block for BWT

Bytes required to

represent 1 slice

of image
1 1.281949841 204488.5 1.280352441 204743.625

2 1.236668302 211976 1.235860092 212114.625

3 1.709543731 153341.5 1.661107864 157812.75

4 1.317523361 198967.25 1.323477496 198072.125

5 1.170670494 223926.375 1.173891237 223312

6 1.333407936 196597 1.329304508 197203.875

7 2.320456489 112970.875 2.306004524 113678.875

8 1.70582264 153676 1.722409161 152196.125

9 1.365428451 191986.625 1.360583692 192670.25

10 1.073801201 244127.125 1.083115469 242027.75

11 1.511930553 173383.625 1.512452852 173323.75

12 1.770745221 148041.625 1.7639105 148615.25

13 1.708376712 153446.25 1.709826673 153316.125

14 1.392522887 188251.125 1.417509879 184932.75

15 1.759575652 148981.375 1.770694388 148045.875

16 1.422979763 184221.875 1.421775796 184377.875

AVG 1.505 180523 1.504 180402

62

4.3 Comparison of Proposed scheme with LZW algorithm.

The results of proposed scheme of Burrow Wheeler Compression algorithm are also compared

with LZW algorithm. Lempel Ziv Welch (LZW) is a universal lossless data compression

algorithm created by Abraham Lempel, Jacob Ziv, and Terry Welch. It is a dictionary based

algorithm and strings of input are replaced by the dictionary entries. It was published as an

improved implementation of the LZ78 algorithm. Two implementations of LZW algorithm are

applied on the test images.

 Implementation #1

In Implementation 1 the test images are encoded by LZW algorithm with size of

dictionary taken as 1024 locations and then Huffman encoding is performed on the

encoded data.

 Implementation # 2

In implementation 2 the test images are encoded by LZW algorithm with size of

dictionary taken as 2048 and the dictionary entries are refreshed several times during

encoding of image so that the dictionary contains the most recent sequences in the

dictionary and to enhance the probability of finding sequence in dictionary and then

Huffman encoding is performed on the encoded data.

63

Comparison of proposed BWCA with LZW implementation #1

Image Compression ratio

Bytes Required To

Represent one slice

of image

1 1.145651647 228816.5

2 1.148229079 228302.875

3 1.724820231 151983.375

4 1.103314755 237596.75

5 1.027281482 255182.25

6 1.098130225 238718.5

7 1.120753057 233899.875

8 1.112433581 235649.125

9 1.102565316 237758.25

10 1.075540334 243732.375

11 1.103559181 237544.125

12 1.296380412 202212.25

13 1.159241225 226134.125

14 1.250654205 209605.5

15 1.254346531 208988.5

16 1.098276297 238686.75

AVG 1.1763235 225925.69

64

Comparison of proposed BWCA with LZW implementation #2

Image Compression ratio

Bytes Required To

Represent one slice

of image

1 1.134814528 231001.625

2 1.135980621 230764.5

3 1.71478987 152872.375

4 1.13214225 231546.875

5 1.039416145 252203.125

6 1.112576401 235618.875

7 1.433822635 182828.75

8 1.220634148 214760.5

9 1.123026479 233426.375

10 1.064276743 246311.875

11 1.193448064 219652.625

12 1.409712667 185955.625

13 1.297361234 202059.375

14 1.242722129 210943.375

15 1.359808227 192780.125

16 1.1224098 233554.625

AVG 1.23355 216017.5

65

Comparison of proposed BWCA with LZW.

66

5.1 Conclusion and future work

In this thesis lossless image compression by incorporating histogram processing stage in

Burrows Wheeler Compression Algorithm (BWCA) is presented. Original BWCA scheme was

designed at first for the text based compression, but later on the efficiency of the algorithm

proved its potential in various fields, the proposed scheme is the modified and improved version

of BWCA, in which the improvements has been made to achieve even higher compression ratios

for lossless image compression.

In the proposed scheme maximum compression ratio is achieved by taking the block size of

16x16 pixels for finding local minima in histogram processing stage of algorithm and by taking

the block size of 32x32 pixels for BWTransform. Standard images as well as random images are

chosen to ensure the improvements of proposed method.

The results of proposed scheme are also compared with LZW algorithm which is a universal

dictionary based algorithm.Two variants of LZW (Lempel Ziv Welch) algorithm are

implemented and are applied on test images.The results show that proposed scheme has also

achieved higher compression ratios compared to LZW algorithm.

In order to increase the encoding and decoding speed the proposed scheme can be implemented

on hardware technology. Field Programmable Gate Array (FPGA) based implementation of

proposed method can result in even more faster and robust scheme.

67

References

[1] M. Burrows and D.J. Wheeler, “A Block-sorting lossless data compression”, SRC Research

Report 124, Digital systems research center, Palo Alto, 1994.

[2] J. Abel, “Improvements to the Burrows-Wheeler compression algorithm: after BWT stages”,

ACM Trans. Computer Systems, submitted for publication, 2003.

[3] P. Fenwick, "Block sorting text compression–final report", Technical reports 130, University

of Auckland, New Zealand, Department of Computer Science. 1996.

[4] M. Schindler, “A Fast Block-sorting Algorithm for lossless Data Compression”. In

Proceedings of the IEEE Data Compression Conference 1997, Snowbird, Utah, STORER,

J.A. AND COHN, M. Eds. 469.

[5] K. Sadakane, “A fast algorithm for making suffix arrays and for Burrows-Wheeler

transformation,” in Proc. Data Compression Conf. 1998, pp. 129–138.

[6] Rafeal C. Gonzalez and Richard E. Woods “Digital Image Processing” 3
rd

 Edition,

SBN:013168728X

[7] Jacob Ziv and Abraham Lempel; Compression of Individual Sequences Via Variable-Rate

Coding, IEEE Transactions on Information Theory, September 1978

[8] D.A. Huffman, "A Method for the Construction of Minimum-Redundancy Codes",

Proceedings of the I.R.E., September 1952, pp 1098–1102.

[9] M. Asif Ali , “lossless image compression using kernel based global structure transform

(GST)” 6
th

 international conference on emerging technologies (ICET)

