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ABSTRACT 

Clustering is one of the important data mining tasks. It is the process of partitioning dataset into 

clusters so that similar objects are placed into the same cluster while dissimilar objects are placed into 

different clusters. Many clustering techniques have been developed and studied. Based on different 

theories and methodologies, their types include partitional, hierarchical, density-based, grid-based and 

model-based clustering algorithms. 

A partitional clustering algorithm Fuzzy c-means is a well-known and widely used algorithm for data 

clustering. Fuzzy c-means uses a fuzzy membership matrix U to represent the degree of membership 

for data points with the clusters. In this thesis, a new step is introduced to Fuzzy c-means clustering 

algorithm. In this new step, the fuzzy membership matrix is biased through a suggested multiplying 

factor to improve its accuracy. Experimental results on both synthetic and real data have shown the 

better performance attained by improved Fuzzy c-means in comparison to classical Fuzzy c-means 

algorithm. 
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CHAPTER 01 INTRODUCTION TO CLUSTERING 

Clustering, also known as unsupervised classification is the process of categorizing a 

collection of objects into different categories or clusters; objects inside the same cluster are 

similar to each other as compared to objects that are contained in a different cluster. 

Clustering is employed in many areas some application areas are Data Mining, Image 

Segmentation etc. 

1.1 Definition of Cluster 

Over the last 50 years, thousands of clustering algorithms have been developed [1]. However, 

there is still no formal uniform definition of the term cluster. In fact, formally defining cluster 

is difficult and may be misplaced [2]. 

Although no formal definition of cluster exists, there are several operational definitions of 

cluster. For example, Bock [3] suggested that a cluster is a group of data points satisfying 

various plausible criteria such as 

a) Share the same or closely related properties; 

b) Show small mutual distances; 

c) Have ―contacts‖ or ―relations‖ with at least one other data point in the group; 

d) Can be clearly distinguishable from the rest of the data points in the dataset. 

Carmichael [4] suggested that a set of data points forms a cluster if the distribution of the set 

of data points satisfies the following conditions: 

a) Continuous and relatively dense regions exist in the data space; and 

b) Continuous and relatively empty regions exist in the data space. 

Everitt [5] also summarized several operational definitions of cluster. For example, one 

definition of cluster is that a cluster is a set of data points that are alike and data points from 

different clusters are not alike. Another definition of cluster is that a cluster is a set of data 

points such that the distance between any two points in the cluster is less than the distance 

between any point in the cluster and any point not in it. 
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1.2 Data Clustering 

Data clustering is a process of assigning a set of records into subsets, called clusters, such that 

records in the same cluster are similar and records in different clusters are quite distinct [6]. 

Data clustering is also known as cluster analysis, segmentation analysis, taxonomy analysis, 

or unsupervised classification. 

The term record is also referred to as data point, pattern, observation, object, individual, item, 

and tuple [7]. A record in a multidimensional space is characterized by a set of attributes, 

variables, or features. 

A typical clustering process involves the following five steps [6]: 

a) Pattern representation; 

b) Dissimilarity measure definition; 

c) Clustering; 

d) Data abstraction; 

e) Assessment of output. 

In the pattern representation step, the number and type of the attributes are determined. 

Feature selection, the process of identifying the most effective subset of the original attributes 

to use in clustering, and feature extraction, the process of transforming the original attributes 

to new attributes, are also done in this step if needed. 

In the dissimilarity measure definition step, a distance measure appropriate to the data 

domain is defined. Various distance measures have been developed and used in data 

clustering [7]. The most common one among them, for example, is the Euclidean distance. 

In the clustering step, a clustering algorithm is used to group a set of records into a number of 

meaningful clusters. The clustering can be hard clustering, where each record belongs to one 

and only one cluster, or fuzzy clustering, where a record can belong to two or more clusters 

with probabilities. The clustering algorithm can be hierarchical, where a nested series of 

partitions is produced, or partitional, where a single partition is identified. 

In the data abstraction step, one or more prototypes (i.e., representative records) of a cluster 

are extracted so that the clustering results are easy to comprehend. For example, a cluster can 

be represented by a centroid. 
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In the final step, the output of a clustering algorithm is assessed. There are three types of 

assessments: external, internal, and relative [8]. In an external assessment, the recovered 

structure of the data is compared to a priori structure. In an internal assessment, one tries to 

determine whether the structure is intrinsically appropriate to the data. In a relative 

assessment, a test is performed to compare two structures and measure their relative merits. 

1.3 Dissimilarity and Similarity Measures 

Dissimilarity or distance is an important part of clustering, as majority of the clustering 

algorithms rely on some distance measure to define the clustering criteria. Since records 

might have different types of attributes, the appropriate distance measures are also different. 

The choice of distances is important for applications, and the best choice is often achieved via 

a combination of experience, skill, knowledge, and luck. Here, some of the commonly used 

distances for measurement of numerical data are discussed. 

1.3.1 Euclidean Distance 

The most common distance measure for continuous data is the Euclidean distance. Given two 

data points x and y in a d-dimensional space, the Euclidean distance between the two data 

points is defined as 

    (   )  √∑ (     )
  

      (1.1) 

where xi and yi are the ith components of x and y, respectively. 

The Euclidean distance measure is a metric [9]. 

Clustering algorithms that use the Euclidean distance tend to produce hyper spherical 

clusters. Clusters produced by clustering algorithms that use the Euclidean distance are 

invariant to translations and rotations in the data space [10]. One disadvantage of the 

Euclidean distance is that attributes with large values and variances dominate other attributes 

with small values and variances. However, this problem can be alleviated by normalizing the 

data so that each attribute contributes equally to the distance. 

The squared Euclidean distance between two data points is defined as 

    (   )  ∑ (     )
  

      (1.2) 
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1.3.2 Manhattan Distance  

Manhattan distance is also called ―city block distance‖ and is defined to be the sum of the 

distances of all attributes. That is, for two data points x and y in d-dimensional space, the 

Manhattan distance between them is 

    (   )  ∑ |     |
 
      (1.3) 

1.3.3 Minkowski distance 

The Euclidean distance and the Manhattan distance are special cases of the Minkowski 

distance, which is defined as 

    (   )  (∑ |     |
  

   )
 

   (1.4) 

Where p ≥1. 

1.3.4 Mahalanobis Distance  

Mahalanobis distance [8, 11] can alleviate the distance distortion caused by linear 

combinations of attributes. It is defined by 

    (   )  √(   )∑
  (   )   (1.5) 

Where ∑ is the covariance matrix of the data set. Therefore, this distance applies a weight 

scheme to the data. 

1.4 Types of Clustering Algorithms 

1.4.1 Hierarchical Clustering Algorithms 

Hierarchical clustering builds a cluster hierarchy or, in other words, a tree of clusters, also 

known as a dendrogram. Every cluster node contains child clusters; sibling clusters partition 

the points covered by their common parent. Such an approach allows exploring data on 

different levels of granularity. Hierarchical clustering methods are categorized into 

agglomerative (bottom-up) and divisive (top-down) [8, 12]. An agglomerative clustering 

starts with one-point (singleton) clusters and recursively merges two or more most 

appropriate clusters. A divisive clustering starts with one cluster of all data points and 
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recursively splits the most appropriate cluster. The process continues until a stopping 

criterion (frequently, the requested number k of clusters) is achieved. 

Examples of these algorithms are LEGCLUST, BRICH (Balance Iterative Reducing and 

Clustering using Hierarchies), CURE (Cluster Using Representatives), and Chemeleon. 

Advantages of hierarchical clustering include: 

a) Embedded flexibility regarding the level of granularity 

b) Ease of handling any forms of similarity or distance 

c) Consequently, applicability to any attribute types 

Disadvantages of hierarchical clustering are related to: 

a) Vagueness of termination criteria 

b) The fact that most hierarchical algorithms do not revisit once 

constructed(intermediate) clusters with the purpose of their improvement 

1.4.2 Partitional Clustering Algorithms 

In contrast to hierarchical clustering, which yields a successive level of clusters by iterative 

fusions or divisions, partitional clustering assigns a set of data points into K clusters without 

any hierarchical structure. This process usually accompanies the optimization of a criterion 

function. 

A partitional clustering algorithm is a clustering algorithm that divides a dataset into a single 

partition. Partitional clustering algorithms can be further classified into two categories: hard 

clustering algorithms and fuzzy clustering algorithms. 

1.4.2.1 Hard Clustering Algorithms 

In hard clustering, algorithms assign a class label li∈ {1, 2, . . . , k} to each object xi to 

identify its cluster class, where k is the number of clusters. In other words, in hard clustering, 

each object is assumed to belong to one and only one cluster. 

Mathematically, the result of hard clustering algorithms can be represented by a k×n matrix 

  (

       
   
       

)    (1.6) 

where n denotes the number of records in the data set, k denotes the number of clusters, and 

uji satisfies 

   ∈ *   +             
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∑            

 

   

 

∑            

 

   

 

First constraint implies that each object either belongs to a cluster or not. Second constraint 

implies that each object belongs to only one cluster. And the last one implies that each cluster 

contains at least one object, i.e., no empty clusters are allowed.  

K-means algorithm is an example of hard clustering algorithms. 

1.4.2.2 Fuzzy Clustering Algorithms 

In fuzzy clustering, the assumption is relaxed so that an object can belong to one or more 

clusters with probabilities. The result of fuzzy clustering algorithms can also be represented 

by a k × n matrix U defined in equation (1.6) with the following relaxed constraints: 

   ∈ ,   -             

∑            

 

   

 

∑            

 

   

 

Fuzzy c-means is an example of fuzzy clustering algorithms. 

1.4.3 Grid-Based Clustering Algorithms 

Grid-based clustering algorithms are very efficient for clustering very large datasets since 

these algorithms perform clustering on the grid cells rather than the individual data points. A 

typical grid-based clustering algorithm consists of the following basic steps [13]: 

a) Construct a grid structure by dividing the data space into a finite number of cells; 

b) Calculate the density for each cell; 

c) Sort the cells based on their densities; 

d) Identify cluster centers; 

e) Traverse neighbor cells. 

Grid based algorithm quantize the object space into a finite number of cells that forms a grid 

structure. Operations are done on these grids. The advantage of this method is lower 

processing time. Clustering complexity is based on the number of populated grid cells and 
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does not depend on the number of objects in the dataset. The major features of this algorithm 

are: 

a) No distance computations. 

b) Clustering is performed on summarized data points. 

c) Shapes are limited to union of grid-cells. 

d) The complexity of the algorithm is usually O(Number of populated grid-cells) 

STING is an example of grid based clustering algorithm. 

1.4.4 Density-Based Clustering Algorithms 

Density-based clustering algorithms are clustering algorithms that are capable of finding 

arbitrarily shaped clusters. In density-based clustering, a cluster is defined as a dense region 

surrounded by low-density regions. Usually, density-based clustering algorithms do not 

require specifying the number of clusters since these algorithms can automatically detect 

clusters and the number of clusters [14]. A limitation of some density based clustering 

algorithms is that it is hard to determine certain parameters, such as the density threshold. 

Density based algorithm continue to grow the given cluster as long as the density in the 

neighborhood exceeds certain threshold. This algorithm is suitable for handling noise in the 

dataset. The following points are enumerated as the features of these algorithms. 

a) Handle clusters of arbitrary shape 

b) Handle noise 

c) Needs only one scan of the input dataset. 

d) Needs density parameters to be initialized. 

DBSCAN, DENCLUE and OPTICS are examples for density based clustering algorithm. 

1.4.5 Subspace Clustering Algorithms 

Almost all conventional clustering algorithms do not work well for high dimensional datasets 

due to the following two problems associated with high dimensional data. First, the distance 

between any two data points in a high dimensional space becomes almost the same [15]. 

Second, clusters of high dimensional data are embedded in the subspaces of the data space 

and different clusters may exist in different subspaces [16].Subspace clustering algorithms 

are clustering algorithms that are capable of finding clusters embedded in subspaces of the 

original data space. 

Most subspace clustering algorithms can be classified into two major categories [17]: top-

down algorithms and bottom-up algorithms. In top-down subspace clustering, a conventional 

clustering is performed and then the subspace of each cluster is evaluated. In bottom-up 
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subspace clustering, dense regions in low dimensional spaces are identified and then these 

dense regions are combined to form clusters. 

Examples of top-down subspace clustering algorithms include PART [18], PROCLUS, 

ORCLUS [19], and FINDIT, and δ-cluster. Examples of bottom-up subspace clustering 

algorithms include CLIQUE [16], ENCLUS, MAFIA, CLTree, DOC, and CBF. 

1.5 Cluster Validity 

Clustering algorithms tend to find clusters in the data irrespective of the fact whether any 

clusters are present or not. Figure 1.1(a) shows a dataset with no natural clustering; the points 

here were generated uniformly in a unit square. However, when the K-means algorithm is run 

on this data with K = 3, three clusters are identified as shown in Figure 1.1(b). Cluster 

validity refers to formal procedures that evaluate the results of cluster analysis in a 

quantitative and objective fashion [8]. In fact, even before a clustering algorithm is applied to 

the data, the user should determine if the data has any clustering tendency. 

 

(a) (b) 
Figure 1.1: Cluster validity. (a) A dataset with no ―natural‖ clustering; (b) K-means partition with 

K=3. 

 

Cluster validity indices can be defined based on three fundamental criteria: internal criteria, 

relative criteria, and external criteria [8]. Both internal and external criteria are related to 

statistical testing. 
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In the external criteria approach, the results of a clustering algorithm are evaluated based on a 

pre-specified structure imposed on the underlying dataset. Usually, external criteria require 

using the Monte Carlo simulation to do the evaluation [20]. Hence cluster validity based on 

external criteria is computationally expensive. 

In the internal criteria approach, the results of a clustering algorithm are evaluated based on 

quantities and features inherited from the underlying dataset. Cluster validity based on 

internal criteria can be used to assess results of hierarchical clustering algorithms as well as 

partitional clustering algorithms. 

In the relative criteria approach, the results of a clustering algorithm are evaluated with other 

clustering results, which are produced by different clustering algorithms or the same 

algorithm but with different parameters. For example, a relative criterion is used to compare 

the results produced by the k-means algorithm with different parameter k (the number of 

clusters) in order to find the best clustering of the dataset. 

1.6 Clustering Applications 

Clustering has been applied in a wide variety of fields, as illustrated below with a number of 

typical applications [2, 21, 22]. 

a) Engineering (computational intelligence, machine learning, pattern recognition, 

mechanical engineering, electrical engineering): 

Typical applications of clustering in engineering range from biometric and speech 

recognition, to radar signal analysis, information compression, and noise removal. 

b) Computer Sciences: 

There are more and more applications of clustering in web mining, spatial database 

analysis, information retrieval, textual document collection, and image segmentation. 

c) Life and medical sciences: 

These areas consist of the major application fields of clustering in its early stage and 

will continue to be one of the main playing fields for clustering algorithms. Important 

applications include taxonomy definition, gene and protein function identification, 

disease diagnosis and treatment. 

d) Astronomy and earth sciences: 

Clustering can be used to classify stars and planets, investigate land formations, 

partition regions and cities, and study rivers and mountains systems. 
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e) Social Sciences: 

Interesting applications can be found in behavior pattern analysis, relation 

identification among different cultures, construction of evolutionary history of 

languages, analysis of social networks, archeological finding and artifact 

classification, and the study of criminal psychology. 

 

f) Economics (marketing, business): 

Studying customer characteristics and buying patterns recognition, grouping of firms, 

and stock markets trend analysis all benefit from the use of clustering. 



 

 
 

CHAPTER 02 CLUSTERING TECHNIQUES 

In the following chapter, some of the clustering techniques are discussed, mainly partitional 

clustering algorithms (k-means type). The order in which these algorithms are described is 

how improvements were made to these algorithms with the passage of time. And in the last a 

grid based clustering STING and density based clustering approach DBSCAN are discussed. 

2.1 K-Means Clustering 

As the most popular and the simplest partitional clustering algorithm, the k-means algorithm 

has a long history. In fact, the algorithm was independently discovered by several people 

from different scientific fields [1]. Since then many variations of the k-means algorithm have 

been proposed. It partitions the data into K clusters, represented by their centers or means. 

The center of each cluster is the mean of all the objects inside that cluster. 

Let X = {X1, X2,…. Xn} be a collection of n objects where each object Xi is represented as 

[xi,1, xi,2,…. xi,m], where m is the number of numerical attributes. To partition X into k clusters 

represented by C = [c1, c2….ck]T , k × m matrix containing cluster centers, objective function 

of equation (2.1) is used 

 (   )    ∑ ∑     
 
   

 
        (2.1) 

Here, square of Euclidean norm is used as distance measure, i.e, 

      ∑ (         )
  

                (2.2) 

K-means algorithm iteratively optimize the objective function by assigning objects to nearest 

cluster centers and again calculating new cluster center based on that assignment. 

Assign object Xi to cluster center cj such that 

                          (2.3) 

Update cluster centers using 

       
 

  
∑     

   
   

              (2.4) 
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Where nj is number of objects in jth cluster and   
 
 is the ith object inside jth cluster. 

 

The purpose of k-means algorithm is simply to find cluster centers in the given data with 

number of clusters specified in advance. Problem with k-means algorithm is that it is very 

sensitive to initial cluster centers i.e. different variation of initial cluster centers can produce 

different end results. In addition to this another drawback associated with k-means is that the 

number of exact clusters that are present in given the data should be known in advance. 

While in real world datasets the number of cluster existing in the data is usually unknown. 

2.2 Fuzzy K-Means Clustering 

The fuzzy k-means algorithm is also referred to as the fuzzy c-means (FCM) algorithm, 

which was developed by [23] and improved by [24]. Fuzzy k-means clustering algorithm is 

an extension of k-means clustering algorithm with a fuzzy membership matrix embedded in 

its objective function. The end results produced by fuzzy k-means clustering algorithm are 

same as that of k-means clustering but with some improvements in accuracy of determining 

the cluster centers. The objective function for fuzzy c-means clustering algorithm is given in 

the following equation (2.5) 

  (     )    ∑ ∑ (    )
     

 
   

 
           (2.5) 

Subject to the following condition, 

∑               
 
   ∈ (   -        (2.6) 

Where U = [    ] is an n × k partition matrix and      corresponds to the association degree of 

membership that ith object of the given data is having with jth cluster center cj. 

To update the fuzzy membership matrix equation (2.7) is used 

k-means Clustering Algorithm: 

1) Initialize cluster centers. 

2) Repeat 

a. Calculate distances      using equation (2.2) 

b. Assign object Xi to cluster center cj on the bases of equation (2.3) 

c. Re-compute the cluster means of any changed clusters using (2.4); 

3) Until no further changes of cluster membership occur in a complete iteration 

4) Output results 
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∑ 4
    

    
5

 (   )⁄

 
   

                   (2.7) 

And to update cluster centers following equation (2.8) is used 

      
∑ (    )

     
 
   

∑ (    )
  

   

                 (2.8) 

 

Fuzzy c-means clustering algorithm has the same problems as simple k-means clustering 

algorithms i.e. its end results sensitivity to initial cluster centers and the number of clusters in 

given data must be known in advance. 

2.3 Competitive Agglomeration Clustering 

To deal with the problem i.e. exact number of clusters present in the given data is to be 

known in advance, faced by k-means and fuzzy k-means clustering algorithms an approach 

called competitive agglomeration [25] is used. Competitive agglomeration combines the 

advantages of both hierarchal and partitional clustering. This is done by adding another term 

to fuzzy k-means objective function. The additional term used in competitive agglomeration 

controls the number of clusters during the execution of algorithm. Competitive agglomeration 

starts with initial guess, about the clusters present in the data, considerably more than the 

clusters present in the data so that the final result will be the exact number of clusters. 

Starting with more number of initial centers than the original sensitivity to initialization of 

cluster centers is also reduced. The objective function is as follows 

 (     )    ∑ ∑ (    )
     

 
   

 
      ∑ [∑     

 
   ]

  
    (2.9) 

Fuzzy c-means Clustering Algorithm: 

1) Initialize cluster centers 

2) Repeat 

a. Compute U using equation (2.7) 

b. Compute C using equation (2.8) 

3) Until small change in U 

4) Output results. 
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Subject to the following condition 

∑               
 
   ∈ (   -         (2.10) 

Equation (2.11) is used to update the fuzzy membership matrix 

      
[     ⁄ ]

∑ [     ⁄ ] 
   

   
 ( )

    
(∑       

∑ [     ⁄ ] ∑     
 
   

 
   

∑ [     ⁄ ] 
   

 
   ) (2.11) 

Where z is the iteration number and 

 ( )        (   ⁄ )
∑ ∑ (    )

     
 
   

 
   

∑ [∑     
 
   

]
  

   

   (2.12) 

And to update cluster centers equation (2.13) is used 

      
∑ (    )

     
 
   

∑ (    )
  

   

                  (2.13) 

  

 

The Competitive Agglomeration Algorithm: 

1) Fix the maximum number of clusters C = Crnax; 

2) Initialize iteration counter k = 0; 

3) Initialize the fuzzy C partition U(0); 

4) Compute the initial cardinalities Ni for 1 < i < C  

5) Repeat 

a. Compute d2(xj, βi) for 1 < i < C, 1 <j < N. 

b. Update  ( ) by using equation (2.12). 

c. Update the partition matrix U (z) by using equation (2.11). 

d. Compute the cardinality Ni for 1 < i < C. 

e. If (Ni < εl) discard cluster βi. 

f. Update the number of clusters C. 

g. Update the prototype parameters. 

h. z = z +l. 

6) Until (prototype parameters stabilize). 



Chapter 02  Clustering Techniques 15 

 
 

2.4 Agglomerative Fuzzy K-Means Clustering 

Another effort for clustering discussed here. Which is known as agglomerative fuzzy k-

means clustering [26] uses similar method as competitive agglomerative clustering but with 

the modified additional term in objective function. The objective function is as follows 

 (     )    ∑ ∑         
 
   

 
      ∑ ∑             

 
   

 
    (2.14) 

Subject to the condition that 

∑               
 
   ∈ (   -          (2.15) 

 

To update fuzzy membership matrix 

     
    (

     

 
)

∑     
   

(
     

 
)
      (2.16) 

And to update cluster centers 

      
∑         
 
   

∑     
 
   

                  (2.17) 

The value of λ starts from a low value such as 0.1 and increase linearly as iteration 

progresses. 

 

The Agglomerative Fuzzy K-Means Algorithm: 

1) Set the penalty factor λ. randomly choose initial points C(0) = {C1, C2, ..., Ck}.   

Determine U(0) such that J(U(0), C(0)) is minimized by using (2.16). Set t = 0. 

2) Let Z = Zt, solve problem J(U, Z) to obtain Ut+1. 

a. If J(Ut+1, Z) = J(Ut, Z)   output (Ut, Z) and stop, otherwise, go to step (3). 

3) Let U=Ut+1 solve problem P(U, Z) to obtain Zt+1. 

a. IF P(U, Zt+1) = P(U,Zt), output (U, Zt) and stop, otherwise, set t = t + 1 and 

go to step (2). 
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This approach minimizes the objective function (2.14), which is the sum of the objective 

function of the fuzzy k-mean and the entropy function. The initial number of clusters is set to 

be larger than the true number of clusters in a given data set. With the entropy cost function, 

each initial cluster centers will move to the dense centers of the clusters in a data set. These 

initial cluster centers are merged at the same location, and the number of the determined 

clusters is just the number of the merged clusters in the output of the algorithm. 

2.5 The Attributes-Weighting Clustering Algorithm 

The clustering problem has been studied extensively and many algorithms have been 

developed according to the specific domain requirements. Usually, the distance or 

dissimilarity functions of these algorithms involve all attributes of the data set. This is 

applicable if all or most attributes are important to every cluster. However, the clustering 

results become less accurate if a significant number of attributes are not important to some 

clusters. In the literature, the problem of the selection of important attributes is solved by 

feature selection techniques. These techniques derive a set of important features from all the 

attributes for the clustering analysis. The feature selection can be viewed as a preprocessing 

step in the clustering procedure. The limitation of this preprocessing step is that the clustering 

algorithm is still based on the whole set of new features. However, each cluster may have a 

different set of important attributes, and each cluster may contain some unimportant features. 

To tackle the above clustering problem, the weighted dissimilarity measure [27] is defined. In 

addition to finding out the cluster of objects belong to; the weighted dissimilarity measure 

also gives the set of important attributes for each cluster. Here the term ―a set of attributes 

with high weights‖ will be used to describe the set of attributes with the highest power in 

distinguishing the objects of a cluster from other objects. Additional feature selection 

techniques cannot handle these characteristics of clusters. 

Let X is a set of n objects described by m attributes. The attributes-weighting clustering 

algorithm to cluster X into k clusters can be stated as an algorithm which attempts to 

minimize the objective function (2.18) 

 (       )   ∑ ∑ ∑         
 (         )

  
   

 
   

 
    (2.18) 

Subject to the conditions 

∑               
 
   ∈ *   +         (2.19) 
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∑           
 
                    (2.20) 

Where k , n , and m are respectively the number of clusters, objects, and dimensions. xi,l is the 

value of the lth dimension of the ith object. C = [ cj,l ] is a k-by-m matrix, and cj,l is the value of 

the lth dimension of the jth cluster center. U = [ui,j] is a k-by-n matrix, and ui,j is the degree of 

membership of the ith object belonging to the jth cluster. W = [wj,l] is a k-by-m matrix, and wj,l 

is the weight of the lth dimension in the jth cluster. β is a parameter that is greater than 1. 

In (2.18), U, W and C are three unknowns, and each of them is calculated by taking the other 

two constant. They are presented as follows: 
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To evaluate the performance and efficiency of the attributes-weighting algorithm and 

compare it with the standard k-means algorithm (the algorithm without weighting on the 

attributes), several tests were carried out using these algorithms on both real and artificial 

data sets. Experimental results had shown the improvement in the new algorithm 

The Attributes-Weighting Clustering Algorithm: 

1) Initialize C(1) and set W(1) all entries equal to 1/m, set t=1. 

2) Determine U(t+1) using (2.21) 

3) If J(C(t),U(t+1),W(t)) = J(C(t),U(t),W(t)) then stop, otherwise go to step 4. 

4) Determine C(t+1) using (2.22) 

5) If J(C(t+1),U(t+1),W(t)) = J(C(t),U(t+1),W(t)) then stop, otherwise go to step 6. 

6) Determine W(t+1) using (2.23) 

7) If J(C(t+1),U(t+1),W(t+1)) = J(C(t+1),U(t+1),W(t)) then stop, otherwise go to step 2. 
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2.6 Entropy Weighting K-Means Clustering 

2.6.1 Entropy 

Entropy [47] is a measure of uncertainty regarding a discrete random variable. For many 

purposes, the Shannon entropy is the only measure needed. Shannon entropy is defined by 

 ( )   ∑  (   )    ( (   )) 
     (2.24) 

The Shannon entropy is a fundamental measure in information theory. It was introduced by 

Claude E. Shannon, now considered the father of information theory, in [48]. Much can be 

said about its properties, its uniqueness, and its relation with the thermodynamical entropy in 

physics, but we will only scratch a little bit on the surface here. One way of understanding it 

better is to rewrite the definition as 

 ( )   (    (  ( )))    (2.25) 

where PX(X) is the probability ascribed to the value of X that turns out to be correct. This 

makes PX(X) a discrete random variable, but not necessarily with integer values. 

Now it is clear that the Shannon entropy is the expectation value of –log(p) where p is the 

probability assigned to the measured value of the random variable. –log(p) can be interpreted 

as the needed length, in bits, of a message communicating a measurement that had 

probability p, which makes the Shannon entropy a measure of the expected message length 

needed to communicate the measured value of a random variable. The Shannon entropy of a 

uniform random variable with n possible values is 

 (  
 )   .    .

 

 
//      ( )   (2.26) 

which means that we need log(n) bits to communicate one choice from n different equally 

likely states. Without qualifiers, the word entropy and a non-subscripted H normally refers 

only to Shannon entropy. 

2.6.2 Entropy weighting k-means algorithm 

Entropy weighting k-means algorithm is a new k-means type algorithm for soft subspace 

clustering of high-dimensional sparse data [28]. In this algorithm, it is assumed that the 

weight of a dimension in a cluster represents the probability of contribution of that dimension 

in forming the cluster. The entropy of the dimension weights represents the certainty of 
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dimensions in the identification of a cluster. Therefore, the objective function (2.18) is 

modified by adding the weight entropy term to it so that it can simultaneously minimize the 

within cluster dispersion and maximize the negative weight entropy to stimulate more 

dimensions to contribute to the identification of clusters. In this way, it could avoid the 

problem of identifying clusters by few dimensions in sparse data. 

 (       )   ∑ 0∑ ∑         (         )
  

   
 
     ∑            
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   (2.27) 

Subject to the conditions 

∑               
 
   ∈ *   +         (2.28) 

∑           
 
                    (2.29) 

The first term in (2.27) is the sum of the dispersions within a cluster, and the second term the 

negative weight entropy. The positive parameter γ controls the strength of the incentive for 

clustering on more dimensions. Solving (2.27) for minimization C, U and W are determined 

using following equations: 
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Where      ∑     (         )
  

    

The input parameter γ is used to control the size of the weights as follows: 

γ > 0. In this case, according to (2.32), wj,l is inversely proportional to Dj,l. The smaller Dj,l, 

the larger wj,l, the more important the corresponding dimension. 

γ = 0. wj,l is equal to one, indicating that the index l‘ has the smallest value of Dj,l . The other 

weights wj,l for l ≠ l‘ are equal to zero. Each cluster contains only one important dimension. It 

may not be desirable for high-dimensional data sets. 
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γ < 0. In this case, according to (2.32), wj,l is directly proportional to Dj,l. The larger Dj,l, the 

larger wj,l. This is contradictory to the original idea of dimension weighting. Therefore, γ 

cannot be smaller than zero. 

 

This algorithm simultaneously minimizes the dispersion within cluster and maximizes the 

negative weight entropy in the clustering process. Because this clustering process awards 

more dimensions to make contributions to identification of each cluster, the problem of 

identifying clusters by few sparse dimensions can be avoided. As such, the sparsity problem 

of high-dimensional data is tackled. The experimental results on both synthetic and real data 

sets have shown that the new algorithm outperformed other k-means type algorithms, for 

example, Bisecting k-means and FWKM, and subspace clustering methods, for example, 

PROCLUS, HARP, LAC, SCAD1, and COSA, in recovering clusters. Except for clustering 

accuracy, the new algorithm is scalable to large high-dimensional data and easy to use 

because the input parameter γ is not sensitive. The weight values generated in the clustering 

process are also useful for other purposes, for instance, identifying the keywords to represent 

the semantics of text clustering results. 

2.7 Improved Entropy Weighting K-Means Clustering 

The objective of traditional k-means algorithm is to make the distances of objects in the same 

cluster as small as possible, but another objective, the distances among objects from different 

clusters is not taken into account. Here an improved k-means algorithm satisfying both of the 

above objectives is presented. In improved entropy weighted k-means clustering [29] the cost 

function of entropy weighting k-means clustering algorithm is modified by adding a variable 

Entropy Weighting K-Means Clustering Algorithm: 

1) Input the number of clusters k and parameter γ. 

2) Randomly choose k cluster centers and set all initial weights to 1/m. 

3) Repeat 

a. Update the partition matrix U by (2.30). 

b. Update the cluster centers C by (2.31). 

c. Update the dimension weights W by (2.32). 

4) Until (the objective function obtains its local minimum value). 
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that is relevant linearly to the square sum of distances from the mean of all objects and the 

means of all clusters. Improved objective function is given below in (2.33). 
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Subject to the conditions 
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                    (2.35) 

Here,  ̅ is the mean of all objects,  ̅  is the value of lth dimension of  ̅, where   ̅  
 

 
∑     
 
   . 

If n>1 the new algorithm is available, otherwise, ∑ (      ̅ )
  

    is zero and the cost 

function J(X, C, U, W) is not computable. The denominator is a variable and is linear to the 

square sum of the distances from the mean of all objects to the means of all clusters. 

Minimizing the objective function in (2.33) subject to the constraints (2.34) and (2.35), the 

three unknown are calculated as follows 
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The results of experiment on Iris data have shown that the proposed algorithm outperform the 

traditional k-means algorithm and the EWKM algorithm. 

2.8 STING 

Wang [30] proposed a STatistical INformation Grid-based clustering method (STING) to 

cluster spatial databases. The algorithm can be used to facilitate several kinds of spatial 

queries. The spatial area is divided into rectangle cells, which are represented by a 

hierarchical structure. Let the root of the hierarchy be at level 1, its children at level 2, etc. 

The number of layers could be obtained by changing the number of cells that form a higher-

level cell. A cell in level i corresponds to the union of the areas of its children in level i + 1. 

In the STING algorithm, each cell has 4 children and each child corresponds to one quadrant 

of the parent cell. Only two-dimensional spatial space is considered in this algorithm. 

For each cell, the attribute-dependent and attribute-independent parameters are defined as 

follows (used in the STING Algorithm): 

n − number of objects (points) in the cell; 

m − mean of all values in a cell; 

s − standard deviation of all values of the attribute in a cell; 

min − the minimum value of the attribute in a cell; 

max − the maximum value of the attribute in a cell; 

dist − the type of distribution that the attribute value in a cell follows. 

Improved Entropy Weighting K-Means Clustering Algorithm: 

5) Input the number of clusters k and parameter γ. 

6) Randomly choose k cluster centers and set all initial weights to 1/m. 

7) Repeat 

a. Update the partition matrix U by (2.36). 

b. Update the cluster centers C by (2.37). 

c. Update the dimension weights W by (2.38). 

8) Until (the objective function obtains its local minimum value). 
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Given the hierarchical structure of grid cells, we can start with the root to calculate the 

likelihood that a cell is relevant to the query at some confidence level using the parameters of 

a cell. 

 

STING has a run time complexity of O(L), where L is the number of cells at the lowest level. 

Because L is usually much smaller than the number of points in the data set, STING achieves 

better performance in simulation studies than other algorithms, such as BIRCH. STING is 

also extended as STING+ [31] to deal with dynamically evolving spatial data while 

maintaining the similar hierarchical structure. STING+ supports user defined triggers, which 

are decomposed into sub - triggers associated with cells in the hierarchy. STING+ considers 

four categories of triggers based on the absolute or relative condition on certain regions or 

features. 

The STING algorithm 

Construct the grid hierarchical structure according to the database and generate the 

parameters of each cell; 

Determine a layer to begin with; 

For each cell in the layer, compute the confidence interval of the probability that the cell is 

relevant to the query; 

if the layer is not the bottom layer then 

Go to the next level in the hierarchy structure and go to step 3 for the relevant cells 

of the higher- level layer; 

else if the specification of the query is met then 

Find the regions of relevant cells and return those regions that meet the 

requirements of the query; 

else 

Reprocess the data in the relevant cells and return the results that meet the 

requirements of the query; 

end if 
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It has much less computational cost than other approaches. The I/O cost is low since it 

usually keeps the STING data structure in memory. Both of these factors will speed up the 

processing of spatial data query tremendously. In addition, it offers an opportunity for 

parallelism (STING is trivially parallelizable). All these advantages benefit from the 

hierarchical structure of grid cells and the statistical information associated with them. 

2.9 DBSCAN 

Ester [32] proposed a density-based clustering algorithm called DBSCAN (Density-Based 

Spatial Clustering of Applications with Noise) to discover arbitrarily shaped clusters. Only 

one input parameter is required, and the algorithm also supports the user in determining an 

appropriate value for this input parameter. 

To describe the algorithm, start with some definitions and notation. An important concept in 

density-based algorithms is the ε-neighborhood of a point. Let x be a point. Then the ε-

neighborhood of x is denoted by Nε(x) and is defined as follows. 

ε-neighborhood of a point. The ε-neighborhood of a point x is defined as 

  ( )  * ∈    (   )   +   (2.39) 

where D is the data set and d(·, ·) is a certain distance function. 

Directly density-reachable. A point x is said to be directly density reachable from a point y 

(with respect to ε and Nmin) if 

a) x ∈ Nε(y); 

b) |Nε(y)| ≥ Nmin, where |Nε(y)| denotes the number of points in Nε(y). 

Directly density-reachable is symmetric for pairs of core points (points inside a cluster), but it 

is in general not symmetric in case one core point and one border point (a point on the border 

of a cluster) are involved. As an extension of directly density-reachable, density-reachable, 

defined below, is also not symmetric in general. But density-connected is a symmetric 

relation. 

Density-reachable. A point x is said to be density-reachable from a point y if there is a 

sequence of points x = x1, x2, . . . , xi = y such that xl is directly density-reachable from xl+1 

for l = 1, 2, . . . , i − 1. 
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Density-connected. Two points x and y are said to density-connected with respect to ε and 

Nmin if there exists a point z such that both x and y are density-reachable from z with respect 

to ε and Nmin. 

A cluster is then very intuitively defined as a set of density-connected points that is maximal 

with respect to density-reachability. Mathematically, they can be defined as. 

Cluster. Let D be a data set. A cluster C with respect to ε and Nmin is a nonempty subset of D 

satisfying the following conditions: 

a) ∀x, y ∈ D, if x ∈ C and y is density-reachable from x with respect to ε and Nmin, then 

y ∈ C(maximality). 

b) ∀x, y ∈ C, x and y are density-connected with respect to ε and Nmin (connectivity). 

The noise is a set of points in the data set that do not belong to any cluster. It can be seen 

from definition that a cluster contains at least Nmin points. DBSCAN starts with an arbitrary 

point x and finds all points that are density-reachable from x with respect to ε and Nmin. If x is 

a core point, then a cluster with respect to ε and Nmin is formed. If x is a border point, then no 

points are density-reachable from x and DBSCAN visits the next unclassified point. 

DBSCAN may merge two clusters if the two clusters are close to each other. In DBSCAN, 

the distance between two clusters C1 and C2 is defined as d(C1,C2) = minx∈C1,y∈C2 d(x, y). 

DBSCAN tends to merge many slightly connected clusters together. 

DBSCAN requires two parameters, ε and Nmin. These two parameters are used globally in the 

algorithm, i.e., the two parameters are the same for all clusters, so to choose the two 

parameters in advance is not easy. However, a heuristic is developed in DBSCAN to 

determine the parameters ε and Nmin of the ―thinnest‖ cluster in the database. This heuristic is 

called the sorted k-dist graph. Let Fk : D → R be a function defined as 

Fk(x) = distance between x and its kth nearest neighbor. 

Then Fk(D) is sorted in descending order and plotted in a two-dimensional graph. ε is set to 

F4(z0), where z0 is the first point in the first ―valley‖ of the graph of the sorted 4-dist graph, 

since the k-dist graph for k > 4 does not significantly differ from the 4-dist graph [Ester, 

1996]. Hence Nmin is set to 4 for all two-dimensional data. 

DBSCAN has several variations and extensions. DBSCAN to GDBSCAN, which can cluster 

point objects and spatially extended objects with spatial and nonspatial attributes as well. 
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GDBSCAN generalizes DBSCAN in two ways: the notion of a neighborhood and the 

measure in a neighborhood. PDBSCAN is a parallel version of DBSCAN. DBSCAN is also 

extended to incremental clustering. An algorithm called DBCluC (Density-Based Clustering 

with Constraints) based on DBSCAN is developed to cluster spatial data in the presence of 

obstacles. 



 

 
 

CHAPTER 03 DESIGN AND IMPLEMENTATION 

In order to confirm the study carried out, the improvements suggested in the fuzzy c-means 

clustering algorithm are modeled and integrated. This chapter provides a detail discussion 

about the design and implementation of the additional features. 

3.1 Motivation 

The aim of a cluster analysis is to partition a given set of data or objects into clusters (subsets, 

groups, classes). This partition should have the following properties: 

a) Homogeneity within the clusters, i.e. data that belong to the same cluster should be as 

similar as possible. 

b) Heterogeneity between clusters, i.e. data that belong to different clusters should be as 

different as possible. [33] 

From the above definition it is clear that the result of clustering, i.e. resultant clusters, should 

have two properties one is similarity of data in same cluster and other is dissimilarity of data 

w.r.t other clusters. Most of the clustering algorithms designed so far consider only the first 

property to distribute data among different clusters. The reason behind the use of single 

property may be that addressing one property indirectly incorporates the second property of a 

cluster. Addressing single property at a time in clustering may be enough but the fact that 

using both the properties of a cluster exclusively in parallel to partition data in different 

clusters will definitely be having an edge. To incorporate both properties of a cluster in the 

process of data analysis some efforts made by various scientists resulted in a positive 

outcome. Here, another effort is presented towards the said technique in order to analyze its 

effectiveness. 

3.2 Related Work 

The second objective of clustering, which is to make the distance of objects from different 

clusters as significant as possible, is not taken into account in traditional clustering algorithm. 

Taoying Li and Yan Chen [29] proposed an improved algorithm by modifying the cost 

function of entropy weighted k-means clustering algorithm (EWKM algorithm).The 

improved algorithm adjusted the existing cost function by adding a variable relevant to the 
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distances between the mean of all objects and the mean of each cluster. The results of 

experiments on Iris data have shown that their improved algorithm outperformed the 

traditional k-means algorithm and the EWKM algorithm. 

3.3 Improved Fuzzy c-means Clustering Algorithm 

To achieve maximum dissimilarity among objects of different clusters, it is proposed to 

multiply the fuzzy membership matrix by a biasing factor. The biasing factor that will be 

used here is the square of Euclidian distance between the object and the mean of remaining 

cluster centers. 

As the distance between the object and the mean of remaining cluster center increases 

multiplying the membership of that object to its cluster centers with an increased biased 

factor will increase its membership value. On the other hand if the distance is less so it will 

also increase the membership value but the increase here will be less significant as compared 

to the first case. Thus biasing the membership matrix leaves the matrix in a state having 

increased membership values for objects having more distance between them and other 

clusters. 

The objective function for this is same as fuzzy c-means mentioned below 
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Where U = [    ] is an n × k partition matrix and     corresponds to the association degree of 

membership that ith object of the given data is having with jth cluster center cj. 

To update the fuzzy membership matrix equation (3.3) is used 
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And to update cluster centers following equation (3.4) is used 
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And biasing factor used here is mentioned below 
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Where Bi,j is the biasing factor for fuzzy membership matrix value of ith object with jth cluster 

and k ≥ 2. 

 

3.4 Implementation Flow Chart for Improved Fuzzy c-means 

The overall algorithm is implemented in a framework shown in Figure 3.1, which runs the 

improved fuzzy c-means algorithm to discover the best cluster centers. In the implementation 

there are three input parameters, first the data points itself that are to be clustered second the 

number of clusters present in the data, and finally the stopping criteria. The stopping criteria 

defined here is ε, which is the minimum change occurring in the value of objective function 

during successive iterations. Ideally the value of ε is needed to be zero, which is practically 

difficult to attain so we fixed it at a minimum value of 0.0001. Stopping criteria can also be 

defined as a fixed number of iterations for which the proposed algorithm is executed that 

number of times. 

The improved fuzzy c-means like other k-means type algorithm starts with the initialization 

of clusters. Here it is done through initializing fuzzy membership matrix; other already 

developed advanced methods can be used to initialize the clusters to improve more the 

performance of algorithm. 

Improved Fuzzy c-means Clustering Algorithm: 

1) Initialize cluster centers 

2) Repeat 

a. Compute U using equation (3.3) 

b. Compute biasing factor using (3.5) 

c. Multiply calculated biasing factor with U 

d. Normalize U to fulfill condition (3.2) 

e. Compute C using equation (3.4) 

3) Until small change in U 

4) Output results. 
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Next a loop executes until the stopping criteria is met. In the loop iteratively the cluster 

centers and biased fuzzy membership matrix are calculated to reach the true centers of the 

clusters. Upon termination of the loop best results are produced in the output. 

 

Figure 3.1 Implementation Flow Chart for Improved FCM 

Input:  1. Data points to be clustered 

2. ‗k‘ Number of clusters 

3. ‗ε‘ Stopping Criteria 

Randomly initialize cluster centers 

(Initializing membership matrix U) 

Calculate all cluster centers 

(Using Equation 3.4) 

Determine new membership matrix U 

(Using Equation 3.3) 

Compute the biasing factor 

(Using Equation 3.5) 

Multiply membership matrix U and biasing factor to obtain biased U 

Normalize the biased U 

(To satisfy the condition 3.2) 

Compute the value of objective function 

(Using Equation 3.1) 

Change  

in U ≤ 

ε? 

No 

Yes 

Output: Cluster centers 

(Corresponding to minimum value of objective function) 

Start 

End 
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3.5 Working 

To explain the working of proposed improvement an example is presented. Here a dataset of 

nine data points are taken in three clusters with three data points in each cluster. All data 

points with initial cluster centers position are shown in Figure 3.2(a). In this figure nine dots 

represents data points and three starts indicates initial center positions of three clusters C1, 

C2 and C3. Forgy initialization method is used here to initialize clusters centers. 

 
Figure 3.2 (a) Initial cluster centers position   

 
Next three figures i.e. Figure 3.2(b), 3.2(c) and 3.2(d) shows the fuzzy membership values for 

all data points after 1st, 2nd and 3rd iteration respectively before biasing and normalized 

values after biasing. For a fuzzy membership matrix crisp values are desired i.e. the 

membership values should approach to one if it a part of that cluster or should be nearer zero 

in the case that the data point is not a part of that cluster. Looking into Figure 3.2 (b) we can 

see that the first data point seems to be a member of C1 or C3 but more likely C1. So we can 

notice that the change in values is according to the desire i.e. the value for C1 and C3 are 

increased. Increase in the value of C1 is more that that of C3. As the first data point is at 

extreme distance from C2 so sum of membership values added in C1 and C3 is the value 

subtracted from membership value of C2. Similar pattern is seen for all data points in Figures 
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3.2(c) and Figure 3.2(d). All the figures shows that fuzzy membership matrix values are 

biased as desired in an ideal fuzzy membership matrix U.   

 
Figure 3.2 (b) After Iteration 1 of modified FCM 

 

 
Figure 3.2 (c) After Iteration 2 of modified FCM  
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Figure 3.2 (d) After Iteration 3 of modified FCM 

 
 

 
Figure 3.2 (e) Iteration 8 of modified FCM and Iteration 9 of FCM 



Chapter 03 Design and Implementation 34 

 
 

In the last Figure 3.2(e) the final cluster centers position and fuzzy membership values of all 

data points for both FCM and modified FCM algorithms are shown. It is clear from final 

results that biased membership values calculated using modified FCM are more crisp and 

determined in less number of iterations as compared to traditional FCM. 

 

3.6 Implementation in MATLAB 

Clustering is a primary tool in data mining. It has been implemented as packages in many 

software, such SAS, S-PLUS, MATLAB, and other data analysis software. MATLAB 

(MATrix LABoratory) is an integrated environment that provides mathematical computing, 

visualization, and a powerful technical language. Using MATLAB to implement a clustering 

algorithm is convenient and easy. The MATLAB environment enables us to plot clustering 

results on the fly. Some clustering-related toolboxes for MATLAB have been developed, 

such as the SOM toolbox and the Netlab toolbox. To implement and analyze the results of the 

algorithm here MATLAB 7.1 is used as a tool. 

For implementation in MATLAB the execution of algorithm is distributed in three parts. 

First part contains the generation/loading of test data, calling of main algorithm and passing 

that test data as parameter and in the end presenting the results. For each experiment a 

separate version of this part is developed. 

The second part is implemented as a module named fcmmodified containing the source code 

for overall algorithm. That is initialization of clusters, then a loop in which the third 

part/module is iteratively executed and terminated when the stopping criteria is met. Then the 

results obtained are returned to the first part. 

The third part implemented as a module named fcmstepmodified containing the source code 

for iterative part of the algorithm. It determines the cluster centers, calculates the new 

normalized biased fuzzy membership matrix and calculates the value of objective function. 

And finally returns the results. 

The MATLAB source code used is given here. It is self-explanatory by the comments given 

in the source code. Comments are indicated by the ‗%‘ sign describing the step of the 

algorithm implemented by that line of source code. 
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function [center, U, obj_fcn] = fcmmodified(data, cluster_n, options) 

  

if nargin ~= 2 & nargin ~= 3, 
    error('Too many or too few input arguments!'); 

end 
 
% Change the following to set default options 

default_options = [2;   % exponent for the partition matrix U 
        100;    % max. number of iteration 

        1e-5;   % min. amount of improvement in objective function 
        1]; % info display during iteration  
  

if nargin == 2, 
    options = default_options; 

else 
    % If "options" is not fully specified, pad it with default values. 
    if length(options) < 4, 

        tmp = default_options; 
        tmp(1:length(options)) = options; 

        options = tmp; 
    end 
    % If some entries of "options" are nan's, replace them with defaults. 

    nan_index = find(isnan(options)==1); 
    options(nan_index) = default_options(nan_index); 

    if options(1) <= 1, 
        error('The exponent should be greater than 1!'); 
    end 

end 
  

expo = options(1);      % Exponent for U 
max_iter = options(2);      % Max. iteration 
min_impro = options(3);     % Min. improvement 

display = options(4);       % Display info or not 
  

obj_fcn = zeros(max_iter, 1);   % Array for objective function 
U = initfcm(cluster_n, data_n);           % Initial fuzzy partition 
 

% Main loop 
for i = 1:max_iter, 

 
    [U, center, obj_fcn(i)] = stepfcmmodified(data, U, cluster_n, expo); 
 

    if display,  
        fprintf('Iteration count = %d, obj. fcn = %f\n', i, obj_fcn(i)); 

    end 
 
    if i > 1, 

        if abs(obj_fcn(i) - obj_fcn(i-1)) < min_impro 
            break; % Check stopping criteria if met then exit 

        end 
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    end 
end 

  
iter_n = i; % Actual number of iterations  

obj_fcn(iter_n+1:max_iter) = []; 
 

function [U_new, center, obj_fcn] = stepfcmmodified(data, U, cluster_n, expo) 

  

mf = U.^expo;       % MF matrix after exponential modification 
center = mf*data./((ones(size(data, 2), 1)*sum(mf'))'); % new center 

  
dist = distfcm(center, data);       % fill the distance matrix 
  

distcenter = dist; 
for a = 1:size(dist,1) 

    temp_dist = dist; 
    temp_dist(a,:) = []; 
    distcenter(a,:) = mean(temp_dist); 

end 
  

obj_fcn = sum(sum((dist.^2).*mf));  % objective function 
tmp = dist.^(-2/(expo-1));      % calculate new U, suppose expo != 1 
U_new = tmp./(ones(cluster_n, 1)*sum(tmp)); 

%Bias Calculated U obtained by multiplying with Euclidian distance 
U_new = U_new.*distcenter; 
% Normalize Biased U 

col_sum = sum(U_new); 
U_new = U_new./col_sum(ones(cluster_n, 1), :); 

 
 



 

 
 

CHAPTER 04: RESULTS AND DISCUSSIONS 

To support the suggested work and confirm the resulting improvements, the algorithm is 

applied on real and synthetic datasets. In this chapter, first the criterion for evaluating the 

clustering results is described followed by three experiments that are presented to show the 

effectiveness of the proposed algorithm. 

4.1 Evaluation of Clustering Results 

Evaluation of clustering results sometimes referred to as cluster validation. There have been 

several suggestions for a measure of similarity between two clusters. Such a measure can be 

used to compare how well different data clustering algorithms perform on a set of data. These 

measures are usually tied to the type of criterion being considered in assessing the quality of a 

clustering method. 

4.1.1 Internal Evaluation 

When a clustering result is evaluated based on the data that was clustered itself, this is called 

internal evaluation. These methods usually assign the best score to the algorithm that 

produces clusters with high similarity within a cluster and low similarity between clusters. 

One drawback of using internal criteria in cluster evaluation is that high scores on an internal 

measure do not necessarily result in effective information retrieval applications. Additionally, 

this evaluation is biased towards algorithms that use the same cluster model. For example k-

Means clustering naturally optimizes object distances, and a distance-based internal criterion 

will likely overrate the resulting clustering. 

A list of fifteen validation indices used to assess the quality of clustering algorithms based on 

internal criterion are presented in Table 4.1.  
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Table 4.1: Cluster Validity Indices 

 Index Definition Optimal Value 

1 Calinski-Harabasz (CH)[34] 
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4.1.2 External Evaluation 

In external evaluation, clustering results are evaluated based on data that was not used for 

clustering, such as known class labels and external benchmarks. Such benchmarks consist of 

a set of pre-classified items, and these sets are often created by humans (experts). Thus, the 

benchmark sets can be thought of as a gold standard for evaluation. These types of evaluation 

methods measure how close the clustering is to the predetermined benchmark classes. 

However, it has recently been discussed whether this is adequate for real data, or only 

synthetic data sets with a factual ground truth, since classes can contain internal structure, the 

attributes present may not allow separation of clusters or the classes may contain anomalies. 

Additionally, from a knowledge discovery point of view, the reproduction of known 

knowledge may not necessarily be the intended result. 

Some of the measures of quality of a cluster algorithm using external criterion include: 

4.1.2.1 Rand measure (William M. Rand 1971) 

The Rand index computes how similar the clusters (returned by the clustering algorithm) are 

to the benchmark classifications. One can also view the Rand index as a measure of the 

percentage of correct decisions made by the algorithm. It can be computed using the 

following formula: 

   
     

           
 

where TP is the number of true positives, TN is the number of true negatives, FP is the 

number of false positives, and FN is the number of false negatives.  

4.1.2.2 Adjusted Rand measure 

One issue with the Rand index is that false positives and false negatives are equally weighted. 

This may be an undesirable characteristic for some clustering applications. This issue is 

addressed in adjusted rand index 
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4.2 Experiment No. 1 

In this experiment, a dataset containing 1320 synthetic data points from a mixture of four 

Gaussian distribution having uniform densities given below is tested against changing 

variance from Σ to 10 Σ. The experiment is repeated 100 times for all variance values and 

average values are taken to plot the results. Figure 4.1(a) shows an overview of synthetic data 

with variance Σ = 1data here is compact and there is no overlap among cluster data. While in Figure 

4.1(b) data with variance Σ = 10 is shown having sparse and overlapped clusters. So as the variance of 

data is increased from Σ to 10 Σ the clusters get sparse and overlapped from compact and well 

separated clusters. 
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Figure 4.1(a) Outlook of data having uniform density clusters having variance Σ = 1 
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Figure 4.1(b) Outlook of data having uniform density clusters having variance Σ = 10 

 

The results obtained are shown in Figure 4.2 (a) to 4.2 (q). Figure 4.2 (a) and 4.2 (b) shows 

the external validity indices Rand Index and Adjusted Rand Index. The result accuracies of 

both algorithms FCM and modified FCM are almost the same for changing variance of data.  

 

Figure 4.2 (a): Rand index vs Variance of Data 
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Figure 4.2 (b): Adjusted Rand Index vs Variance of Data 
 

Next we observe a set of six internal validity indices shown in Figure 4.2 (c) to Figure 4.2 

(h). For these six indices i.e. CH, DB, DB*, Dunn‘s, Silhoutte and SDbw results obtained 

show no improvement by either of the algorithm over other. This may be due to the 

information used in calculating the validity index. All these indices use either distance from 

data points to its cluster center or distance from one cluster center to other cluster center, and 

in some indices both distances, to measure the suitability of clustering result. While no 

information from fuzzy membership matrix is considered for calculating the index value.  

 

Figure 4.2 (c): CH vs Variance of Data 
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Figure 4.2 (d): DB vs Variance of Data 
 
 
 
 

 

Figure 4.2 (e): DB* vs Variance of Data 
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Figure 4.2 (f): Dunn‘s vs Variance of Data 
 
 
 
 
 

 

Figure 4.2 (g): Silhouette vs Variance of Data 
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Figure 4.2 (h): SDbw vs Variance of Data 
 

Now a group of seven internal validity indices are presented in Figure 4.2 (i) to Figure 4.2 

(o). These seven indices shows a rich improvement in finding crisp clustering results by 

modified FCM in comparison with traditional FCM. The calculation of first two indices PC 

and CE, shown in Figure 4.2 (i) and Figure 4.2 (j), is purely based on fuzzy membership 

matrix U. The proposed modification is also purely based on calculating a desired biased U. 

Hence a clear improvement is shown by modified FCM over FCM using these indices. Three 

more indices S, SC and PCAES consider data to center and center to center distances as well 

as fuzzy membership U for their calculation. So a significant improvement got by modified 

FCM using S, SC and PCAES indices can be seen in Figure 4.2 (m), Figure 4.2 (n) and 

Figure 4.2 (l) respectively. As I and SD indices uses distances and variance for confirming 

clustering results. So the edge got by modified FCM using these two indices is slightly less 

than the edge got using above five indices. Observing the results obtained for the above seven 

indices we can see that the distance between the values of validity index for FCM and 

modified FCM is increased as the data variance is increased. This tendency of graph exhibit 

that with increase in the variance of data, accuracy obtained in finding better clustering 

outcome is increased more by modified FCM over FCM. 
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Figure 4.2 (i): PC vs Variance of Data 
 
 
 
 

 

Figure 4.2 (j): CE vs Variance of Data 
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Figure 4.2 (k): I vs Variance of Data 
 
 
 
 

 

Figure 4.2 (l): PCAES vs Variance of Data 
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Figure 4.2 (m): S vs Variance of Data 
 
 
 
 

 

Figure 4.2 (n): SC vs Variance of Data 
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Figure 4.2 (o): SD vs Variance of Data 
 

And in the last two of the validity indices XB and XB* shown in Figure 4.2 (p) and Figure 4.2 (q) 

indicates the degradation in the performance of modified FCM. Reason behind this is that these two 

indices do not consider fuzzy membership values in calculation. Also because these indices use data 

to center distance and only minimum center to center distance for index calculation. 

 

Figure 4.2 (p): XB vs Variance of Data 
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Figure 4.2 (q): XB* vs Variance of Data 

 

4.3 Experiment No. 2 

Here the first experiment is repeated with a dataset of 1100 synthetic data points having multi 

density clusters given by 
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The outlook of data is shown in Figure 4.3 (a) having variance Σ = 1 and Figure 4.3 (b) 

having variance Σ = 10. It is clear from figures that data spread changes from compact to sparse and 

clusters getting more overlapped with increase in variance. The results from the experiment are 

shown in Figure 4.4 (a) to Figure 4.4(q). 
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Figure 4.3(a) Outlook of data having multi density clusters with variance Σ = 1 

 
 
 

 
Figure 4.3(b) Outlook of data having multi density clusters with variance Σ = 10 
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Figure 4.4 (a): Rand index vs Variance of Data 

 

Figure 4.4 (b): Adjusted Rand Index vs Variance of Data 
 

The above two figures i.e. Figure 4.4 (a) and Figure 4.4 (b) shows the results of external 

validity indices Rand Index and Adjusted Rand Index. In case of multi density clusters the a 

slight improvement is achieved, as the data get sparse, in the accuracy of labeling data points 

in their original clusters by modified FCM. When the clusters are well separated and compact 

accuracy of both algorithms is equal and is 100%. As soon as the clusters get sparse and 

overlapped the accuracy in overall gets down. But accuracy of modified FCM gets prominent 

in comparison to FCM with sparse and overlapped clusters. 
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Figure 4.4 (c): CH vs Variance of Data 
 

Out of fifteen internal validity indices only one index CH showed no improvement by either 

of the algorithm in the above Figure 4.4 (c).  

 

Figure 4.4 (d): DB vs Variance of Data 
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Figure 4.4 (e): DB* vs Variance of Data 
 
 
 
 
 

 

Figure 4.4 (f): Dunn‘s vs Variance of Data 
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Figure 4.4 (g): Silhouette vs Variance of Data 

 

Figure 4.4 (h): SDbw vs Variance of Data 
 

Above in Figure 4.4 (d) to Figure 4.4 (h) we present a group of five validity indices showing similar 

improvement achieved by modified FCM over FCM. For all the five validity indices i.e. DB, DB*, 

Dunn‘s, Silhouette and SDbw a slight improvement is obtained by modified FCM after ∑ get greater 

than six times. In case of uniform density clusters the same validity indices showed no improvement 

of modified FCM over FCM. This determines that for multi density clusters the performance is 

increased further. 
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Figure 4.4 (i): PC vs Variance of Data 
 
 
 
 

 

Figure 4.4 (j): CE vs Variance of Data 
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Figure 4.4 (k): I vs Variance of Data 
 
 
 
 

 

Figure 4.4 (l): S vs Variance of Data 
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Figure 4.4 (m): SC vs Variance of Data 

 

Figure 4.4 (n): SD vs Variance of Data 
 

In the above six validity indices four i.e. PC, CE, S and SC shown in Figure 4.4 (i), Figure 4.4 (j), 

Figure 4.4 (l) and Figure 4.4 (m) clearly indicates a better performance of modified FCM. While two 

indices I and SD shown in Figure 4.4 (k) and Figure 4.4 (n) also shows the better performance but less 

than the other four indices. All six indices also confirm further increased improvement attained by 

modified FCM in case of multi density clusters as compared to the case of uniform density clusters in 

experiment no.1. 
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Figure 4.4 (o): PCAES vs Variance of Data 
 

PCAES in Figure 4.4 (o) indicates the degradation in the performance of modified FCM. This is due 

to the failure of PCAES to measure the fitness of clustering results in case of multi density clusters. In 

contrast to all other validity indices PCAES indicates improvement in the accuracy of results for both 

algorithms as the clusters gets sparse and overlapped. 

 

 

Figure 4.4 (p): XB vs Variance of Data 
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In case of multi density clusters XB is the only one index that shows the better performance of FCM 

over modified FCM as shown in Figure 4.4 (p). But still this supports the better performance of 

modified FCM in case of multi density as compared to uniform density clusters. We can see that the 

degradation in modified FCM results indicated here is lesser than the case of uniform density clusters 

in experiment no.1  

 

Figure 4.4 (q): XB* vs Variance of Data 

 

In last Figure 4.4 (q) results for XB* are shown. In contrast to experiment no.1 here this validity index 

now indicates the better performance of modified FCM over FCM. And the performance of modified 

FCM gets more increased as the clusters becomes spread and overlapped. 

4.4 Experiment No. 3 

The most popular problem in clustering is to find the right number of clusters in data. In this 

experiment the modified FCM is compared with FCM in different aspects of input data for 

finding optimal number of clusters. Results obtained from this experiment are summarized in 

Table 4.2. 

4.4.1 Well Separated Compact Clusters 

First we took synthetic dataset of five well separated clusters as shown in Figure 4.5. Starting 

from initial guess of ten clusters merging down to two clusters, values of fifteen internal 

validity indices were observed for both FCM and modified FCM. The data was well 
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separated and contained compacted clusters so both algorithms FCM and modified FCM 

easily determined the true number of clusters for all fifteen validity indices.  

4.4.2 Well Separated Compact Clusters with Noise 

Another synthetic dataset of five well separated compact clusters but this time with noise is 

shown in Figure 4.6. Here also both algorithms produce same results i.e. out of fifteen 

validity indices thirteen validity indices determines true number of clusters. 

 
Figure 4.5: Well Separated Compact Clusters 

 
Figure 4.6: Well Separated Compact Clusters with Noise 
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4.4.3 Multi Density Clusters 

Here we took a dataset of three multi density clusters shown in Figure 4.7. Results of this 

experiment indicate the improvement of modified FCM of FCM. In this case FCM 

determines true number of clusters for eleven out of fifteen indices while modified FCM 

determines true number of clusters for twelve out fifteen indices i.e. an edge of one validity 

index. 

 

Figure 4.7: Multi Density Clusters 

 

4.4.4 Sub-Clusters 

In this we generate a synthetic dataset of five clusters with four of them as sub-clusters since 

they form two pairs of clusters respectively shown in Figure 4.8. Here both algorithms 

produce same results i.e. six validity indices out of fifteen determines true number of clusters 

(five) while rest of nine validity indices indicates presence of three clusters in the data. 

4.4.5 Skew Distributed Clusters 

In real world problems clusters are not always of same size, he we consider another dataset 

containing three clusters with one of them having much larger size than the other two as 

shown in Figure 4.9. This time results shows a more clear edge got by modified FCM over 
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FCM. For FCM six while for modified FCM eight out of fifteen indices determines true 

number of clusters i.e. an edge of two validity indices. 

 
Figure 4.8: Sub-Clusters 

 
Figure 4.7: Skew Distributed Clusters 

 

4.4.6 Iris Dataset 

Next we apply the algorithm to the real world dataset Iris containing three true clusters of 50 
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indices for FCM while three indices for modified FCM determines true number of clusters. 

Here again modified FCM acquires an improvement of one validity index over FCM. 

4.4.7 Wine Dataset 

Another real world dataset, mostly used for analyzing clustering algorithm is Wine dataset. 

Modified FCM determines the true number of clusters for seven validity indices while FCM 

determine true number of clusters for six indices. Again a lead of one validity index by 

modified FCM.  

For all of the above dataset summarized results are shown in Table 4.2. Table consists of 

dataset name along with true number of clusters indicated in parenthesis. In results the 

determined number of clusters using each validity index is shown in their respective columns 

for both FCM and modified FCM. Numbers in bold shows that correct number of true 

clusters is determined by the respective algorithm is that validity index. The numbers having 

grey color background indicates the improvement attained by modified FCM over FCM. 

From the table we can see that the modified FCM determines the actual number of clusters 

using more validity indices as compared to FCM in case of multi density, skew distributed 

clusters, Iris dataset and Wine dataset. While in the case of well separated compact, well 

separated compact with noise and sub-clusters the results are same for both algorithms. 

It can also be noted from the results that the improvement got by modified FCM in 

determining actual number of clusters is in the case of just two indices PC and I index. For 

rest of validity indices the results are almost same for both algorithms. This is due to the fact 

that determining true number of clusters depends on the combined effort of both clustering 

algorithm and a validity index. 

4.5 Comparison with Projected Rough Fuzzy c-means Clustering 

For further confirming the performance improvement of modified FCM it is compared with 

similar type of work already done. For this, the results from a research paper of Projected 

Rough Fuzzy c-means [46] (PRFCM) clustering are used. In these results comparison of 

PRFCM is done with FCM and Rough FCM (RFCM) on five real world datasets from UCI 

Machine Repository. Now these results are compared with proposed algorithm in Table 4.3. 

It is clear from results that for all five datasets modified FCM outperforms over all three 

algorithms FCM, RFCM and PRFCM. 
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TABLE 4.2: Determining Number of Clusters using FCM and Modified FCM (MFCM) 

 

Dataset 

(True # of Clusters) 
Algorithm I PC CE CH Dunn PCAES Silhouette SD DB DB* S SC XB XB* SDbw 

Well Separated Compact (5) 
FCM 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

MFCM 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

Well Separated Compact with 
Noise (5) 

FCM 5 5 5 5 5 5 5 5 5 5 10 10 5 5 5 

MFCM 5 5 5 5 5 5 5 5 5 5 10 10 5 5 5 

Multi-Density (3) 
FCM 2 2 2 3 3 3 3 3 3 3 3 10 3 3 3 

MFCM 2 3 2 3 3 3 3 3 3 3 3 10 3 3 3 

Sub-Cluster (5) 
FCM 5 3 3 5 3 3 3 5 3 3 5 5 3 3 5 

MFCM 5 3 3 5 3 3 3 5 3 3 5 5 3 3 5 

Skew Distributed (3) 
FCM 2 2 2 6 3 5 3 3 3 3 4 4 3 3 5 

MFCM 3 3 2 6 3 5 3 3 3 3 4 4 3 3 5 

Iris (3) 
FCM 2 2 2 3 2 2 2 3 2 2 2 6 2 2 6 

MFCM 3 2 2 3 2 2 2 3 2 2 2 6 2 2 6 

Wine (3) 
FCM 2 2 2 3 2 3 2 2 3 3 5 5 3 3 2 

MFCM 3 2 2 3 2 3 2 2 3 3 5 8 3 3 2 

 

Table 4.3: Comparison of Modified FCM with FCM, RFCM, PRFCM 

Datasets PRFCM FCM RFCM Modified FCM 

 PC CE PC CE PC CE PC CE 

Breast Cancer 0.5745 0.6153 0.5745 0.6156 0.5399 0.6524 0.6939 0.4783 

Spambase 0.5448 0.6472 0.6238 0.5609 0.6062 0.5765 0.8555 0.2699 

Wine 0.3562 1.0654 0.7912 0.3800 0.3988 1.006 0.8228 0.318665 

Diabetes 0.8242 0.2968 0.8242 0.2968 0.8463 0.2611 0.8966 0.1825 

Magic 0.1524 1.9139 0.2913 1.5159 0.3296 1.4342 0.6807 0.4875 



 

 
 

CHAPTER 05: CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

Clustering is the process of grouping objects with similar properties. Any cluster should 

exhibit two main properties; high intra-class similarity and low inter-class similarity. This 

thesis mainly focuses on the second property of cluster. 

First chapter starts with definition of a cluster then know-how of data clustering and the 

similarity and dissimilarity measure for clustering was introduced. This chapter also included 

an overview of different types of clustering algorithms that are currently used for different 

types of data. In last summary of cluster validity and some of the application of data 

clustering were also discussed.  

In the second chapter, some of the clustering techniques were discussed in detail. The main 

focus was on k-means type clustering techniques. Chapter starts with discussion about 

classical k-means clustering followed by fuzzy k-means, which adds the advantage of 

fuzziness to classical k-means by incorporating the fuzzy membership matrix in its objective 

function. Improvements were made to fuzzy k-means by adding the negative entropy term in 

competitive agglomerative clustering. Additional improvement was made to competitive 

agglomerative clustering by changing negative entropy term in agglomerative fuzzy k-means 

clustering. Another aspect through which improvements are made to classical k-means is by 

entropy weighting. This aspect is discussed in entropy weighting k-means (EWKM) 

clustering and improved EWKM clustering. At the end a grid based clustering technique 

STING and density based clustering algorithms DBSCAN were discussed. 

In third chapter the design and implementation of proposed modification was presented. 

Chapter starts with motivation and work related to proposed modification. The main focus 

was on the contribution of effort toward a method that addresses the low inter-class 

similarity. To fulfill the objective of this thesis, a modification to existing fuzzy c-means was 

suggested i.e. to bias the fuzzy membership matrix with inter-class dissimilarity value 

(Euclidean distance used here). An algorithm and a flow chart describing the working of the 

algorithm were included. And then the implementation of the algorithm in MATLAB was 

explained. 
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Chapter four contains a summary of validation indices used to validate results and three 

comprehensive experiments. In first experiment (validity indices vs. changing data variance 

of uniform density clusters) results showed the improvement in finding crisp clusters by the 

proposed algorithm over fuzzy c-means. Second experiment (validity indices vs. changing 

data variance of uniform density clusters) shows that proposed algorithm performs better in 

case of multi-density clusters than uniform density clusters. These two experiments also 

confirmed that the accuracy of proposed algorithm increase as data variance is increased.  In 

the third experiment a well-known problem of clustering i.e. finding optimal number of 

clusters in data is addressed for different aspects of input data. The results showed that 

proposed algorithm performs better than traditional FCM in case of multi-density and skew 

distributed clusters. Results of real world dataset Iris and Wine also confirms the 

improvement achieved by proposed algorithm over FCM. 

From all the discussions and the results obtained it can be concluded that the suggested 

modification showed the importance of considering both the properties of a cluster i.e. high 

intra-class similarity and high inter-class dissimilarity in designing clustering algorithm. All 

the results showed an improvement of proposed algorithm over the existing fuzzy c-means 

clustering. 

5.2 Future work 

In future more efforts can be added to consider high inter-class dissimilarity among clusters 

in the process of clustering. This effort can be in the form of introducing some new technique 

that can be incorporating the second objective of clustering in the objective function and 

solving the minimization problem or can be in the form of applying the same technique of 

biasing fuzzy membership matrix to other clustering algorithms. Here in this thesis emphasis 

was on numeric type data. This technique can be further extended to other types of data as 

well. Here the effect of proposed improvement has been tested against a limited number of 

aspects of input data. Performance of proposed improvement can be explored further for 

more aspects of data. 
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