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Abstract

Mathematical modeling is an essential feature for the analysis and design of a dynamical

system. Generally, large and complex models are obtained from physical systems. Some ex-

amples are robotic, telecommunications, network, mechanical and many other complex sys-

tems. These systems are governed by the partial differential, Laplace and integro-differential

equations etc. For the analysis and design of such systems, reduced order models are desir-

able that provide a good approximation of the original systems.

In last few decades, notable research work has been done on different aspects of model

reduction. Existing techniques of model order reduction mostly suffer from the limitation

of absence of original system key properties in reduced order system like passivity, stability,

large approximation error and lack of a priori error bounds etc.

This thesis investigates frequency weighted balanced model order reduction problem for

standard and generalized (singular and non-singular), continuous and discrete linear time

invariant systems.

Firstly the frequency weighted model reduction problem is formulated. New frequency

weighted model order reduction techniques are proposed for standard continuous and dis-

crete time systems. Frequency interval Gramians based model order reduction techniques

(where weights are not explicitly predefined) are also presented for standard continuous and

discrete time systems. The proposed techniques guarantee stability even for the case where

double sided weightings are employed. A priori frequency response error bounds are also de-

rived. The proposed techniques yield mostly low frequency response error when compared

to well known existing frequency weighted model reduction techniques.

A generalization of existing frequency interval Gramians based model reduction tech-

niques for Generalized non-singular discrete and continuous time systems is also presented.

Moreover, a frequency limited model reduction technique for Generalized descriptor system

is also presented. Simple algorithms are also given for preserving the stability of reduced-

order models. The work also extends Poor Man’s truncated balanced realization for fre-

quency limited case. Numerical examples are also presented for comparison of generalized

techniques.

Finally, new techniques to address time interval Gramians based model reduction are also

presented for standard continuous time systems. The proposed techniques yield easily com-

putable error bounds and comparable frequency response error.
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Chapter 1

Introduction

1.1 Overview

The derivation of a reasonable mathematical model is fundamental to obtain a good un-

derstanding of the dynamical behavior of a physical system in question or to control

its behavior in order to achieve desired performance specifications. In practice, mod-

elling of complex systems (such as chip design, fluid flow, mechanical systems simula-

tion) yields very large scale systems. Despite the advancement of technology and the

ever increasing computational speed, the analysis, control and optimization of large scale

systems is challenging (if not impossible) due to expensive computations and storage re-

quirements. Therefore, process of generating a low-dimensional or reduced-order mod-

els (ROMs) that provides a good estimate of the original full order system is known as

model order reduction (MOR). In general, the aim of MOR is to find ROMs which ap-

proximate the input output behaviour of the original systems. This is achieved with a

lower storage requirement as well as evaluation time. MOR has played a significant

role in modern control system design and caught lot of attention in the last few decades

[1, 2, 5, 19, 24, 26, 28, 32, 33, 50, 56, 57, 60, 71, 76, 77, 89, 92, 93, 94, 95, 96, 97].

One of the significant factors in MOR is the reduction error which is obtained from the

difference between the original and ROMs frequency response. In addition system properties

like stability, input output behaviour are also equally important to be preserved in MOR. Nu-

merical properties such as computational speed and accuracy, storage requirements etc. play

a vital role in computational efficiency of the MOR techniques. The error bound formula

for MOR technique gives some idea of the approximation error. It will assist the designer to

choose MOR technique for the concerned application.

1.1.1 Balanced truncation

Given a full order continuous time original stable system be G(s) = C(sI − A)−1B + D

where {A,B,C,D} is its nth order minimal realization. The objective of MOR is to find

1



a ROM Gr(s) = C1(sI − A11)−1B1 + D, where {A11, B1, C1, D} is an rth order (r < n)

minimal realization such that the approximation error ‖G(s)−Gr(s)‖∞ is minimized.

Balanced truncation (BT) [1] (please see Appendix A) is most commonly used MOR

technique which preserves stability in ROMs and yields a priori frequency response error

bounds [5]. In BT, the controllability and observability Gramians are transformed into an

internally balanced system. An internally balanced realization has equal controllable and

observable states. The ROMs are obtained by truncating the least controllable and least

observable states. Hence, using BT [1] technique, the error obtained is considerably smaller,

which indicates good performance of ROMs. Besides BT, other schemes such as Hankel

optimal approximation [2], Pade approximation [3], Krylov technique [4] etc. are also useful

for solving MOR problem.

BT performs well at higher frequencies, therefore for better performance at lower frequen-

cies, balanced singular perturbation approximation (BSPA) is used (please see Appendix B).

The ROMs obtained via the BSPA [33, 34] are also stable and balanced. Moreover, the er-

ror bound for the BT also holds for BSPA [33, 34]. However, the ROMs obtained via the

BSPA [33, 34] may be proper even for the strictly proper original systems.

1.1.2 Frequency weighted model reduction

In MOR, it is important to have small reduction error between the original system and ROM

for all the frequencies. However, sometimes the error is more critical over a certain band of

frequency rather than other frequencies. This is true for the case, when ROMs are used in

feedback control design [5, 73]. This leads the concept of using frequency weights in MOR

procedure, also known as frequency weighted model reduction (FWMR) problem. Note that,

controller order reduction problem can be reformulated as FWMR (please see Appendix C).

Given the original full order stable system G(s) = C(sI − A)−1B + D, the stable in-

put weighting system Vi(s) = CV (sI − AV )−1BV + DV and a stable output weighting

system Wo(s) = CW (sI − AW )−1BW + DW , where {A,B,C,D}, AV , BV , CV , DV and

AW , BW , CW , DW are nth, pth and qth order minimal realization respectively, the main ob-

jective is to find a stable ROMGr(s) = Cr(sI−Ar)−1Br+Dr where {Ar, Br, Cr, Dr} is an

rth order (r < n) minimal realization, such that ‖Wo(s)(G(s) − Gr(s))Vi(s)‖∞ is made as

small as possible. This is known as two sided FWMR problem as shown in Fig. 1.1. If one
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of the weights is identity, the problem is known as one sided FWMR, where the objective is

to find a ROM Gr(s), such that ‖(G(s) − Gr(s))Vi(s)‖∞ (in case of input weighting) and

‖Wo(s)(G(s) − Gr(s))‖∞ (in case of output weighting) is made as small as possible. Fig.

1.2 and Fig. 1.3 represent the input and output FWMR error systems respectively. Enns [5]

was the first to formulate this problem by introducing frequency weightings to the BT [1]

technique.

Figure 1.1: Input-output FWMR error system

Figure 1.2: Input FWMR error system

Enns [5] technique was an extension of BT [1] to incorporate frequency weights. These

weights are useful for the frequency shaping of the MOR error. Enns technique [5] may

use input weighting, output weighting or both. However, for one sided weighting, stability

of ROMs is guaranteed but for double sided weighting case, stability is not guaranteed. To

overcome this instability problem of double sided weighting, several modifications to Enns

technique have been proposed [7, 19, 22, 23, 25, 26, 72, 73, 75, 80, 81, 83, 84].

3



Figure 1.3: Output FWMR error system

To overcome Enns drawbacks, Lin and Chiu [19] has proposed a different technique that

guarantees stability when double sided weightings are present. However, their technique can

work only when the weighing function used is strictly proper and no pole zero cancellation

occurs when forming the augmented system. These limitations of Lin and Chiu technique

were later modified by Sreeram et al [23] and Varga and Anderson [25], where [23] gen-

eralized [19] to include proper weights, while [25] retains the stability of the system even

when pole zero cancellation occur. However, Varga and Anderson technique [25] produces

the same results as Enns [5] especially in controller reduction applications. So far controller

reduction problem, if Enns technique [5] yields unstable ROMs, so does by Varga and An-

derson [25] technique.

Wang et al’s technique [26] has also addressed instability problem of Enns [5], which

not only provide stable ROMs in the presence of double sided weightings but also derived

error bounds. The approximation error of Wang et al technique [26] was later improved

by Varga and Anderson [25]. As pointed out by Sreeram [22], this technique ( [26] and its

modification by Varga and Anderson [25]) are realization dependent. This means that for

same original system, different models can be obtained from different realizations.

Another group of techniques based on partial fraction was originally proposed by Latham

and Anderson [83]. A number of FWMR techniques based on partial fraction expansion idea

have followed [7,23,73,75,80,81,84]. Error bounds exist for some special type of weighting

functions [7, 23, 80, 81]. Sreeram and Ghafoor [7] technique provides lower approximation

error, but this technique is adhoc with no theocratical justification [82]. Sahlan and Sreeram
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[81], although provides lower error as compared to Enns technique [5], and other well-known

FWMR techniques [19,25,26], but this technique is realization dependent. Moreover, finding

general transformation matrices for the weights to reduce the weighted approximation error

remains a challenging open problem [81].

1.1.3 Frequency limited model reduction problem

The objective of FWMR technique is to make the weighted error ‖Wo(s)(G(s) −

Gr(s))Vi(s)‖∞ as small as possible, where Vi(s) is some input weighting and Wo(s) is

some output weighting given to the system. These input and output weightings are often

fictitious (until unless specified by the user) and results may vary by changing these weight-

ings. In many cases, the problem is to approximate original system G(s) over a certain

frequency band [ω1, ω2] and no input and output weightings are given. Using FWMR for

such cases, the designer need to construct weights to reflect this frequency band. Choosing

weightings is also itself a problem [30].

Gawronski and Juang [29] proposed frequency limited model reduction (FLMR) tech-

nique where the frequency weights are not explicitly predefined, but approximation is con-

sidered in certain frequency intervals [ω1, ω2] without construction of input and output

weightings by frequency domain representation of Gramians. In this technique, Gramians

are defined for a desired frequency intervals. However, it can also yield unstable ROMs for

stable original system (like Enns technique [5]). Moreover, there are no error bounds. Mo-

tivated by [26], Gugercin and Antoulas [30] has modified Gawronski and Juang technique

to provide ROMs. Motivated from (Varga and Anderson [25] modification to Wang et al’s

technique [26]), Ghafoor and Sreeram [8] proposed another modification to Gawronski and

Juang [29] technique to provide stable ROMs. Both techniques [30, 87] carry frequency re-

sponse error bounds subject to fulfilment of certain rank conditions. However, like [25, 26],

these techniques are also realization dependant.

The problem of FWMR with given weightings and FLMR without predefined weightings

becomes equivalent as shown in [30] (please see Appendix D).

Gawronski and Juang has also introduced a concept of time limited Gramians based model

reduction (TLMR). Unfortunately, TLMR also lacks the stability of ROMs and also does not

carry frequency response error bounds.
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Generalized descriptor systems are also useful and find their presence in a number of

applications which include semidiscretization of partial differential equations, multi-body

dynamics with constraints, electrical circuit simulation and micro-electro-mechanical system

[44,45,46,47,48,49]. Many techniques for MOR of such systems appear in [3,55,56,57,58].

However, there is no work in literature that is linked with limited frequency Gramians for

generalized systems.

1.1.4 Problem summary

Existing FWMR, FLMR and TLMR techniques may yield unstable ROMs, have no or poor

error bounds and yield more approximation error.

1.1.5 Summary of contributions

Various FWMR, FLMR and TLMR techniques [10]- [18] for standard and generalized state

space systems for both continuous and discrete time are proposed which always yield stable

ROMs, have easily computable error bounds and mostly yield less approximation error.

1.2 Thesis outline

The thesis is divided into seven chapters. A brief description of each chapter is outlined here.

Chapter 2 (partially published in [10,12]) presents a new FWMR technique. The proposed

technique guarantees stability of the ROMs in the presence of double sided weightings for

continuous and discrete time systems. The proposed technique also yields frequency re-

sponse a priori error bounds. Computational aspects of existing and proposed techniques

are also given. Several numerical examples are given to show the effectiveness of the pro-

posed technique in reducing the approximation error in the selected frequency band.

Chapter 3 (partially published in [11, 16]) presents a new FLMR technique (without ex-

plicitly pre-defined weights) for continuous and discrete time systems. ROMs are guaranteed

to be stable and error bounds are also available. The proposed technique mostly produces

better approximation error as compared to Gugercin and Antoulas [30] and Ghafoor and

Sreeram [8, 87] techniques, in the desired frequency interval.

Chapter 4 (partially published in [13, 14, 18]) presents FLMR technique for generalized

non-singular continuous and discrete time systems. The numerical simulations and compar-

ison of frequency response error for the proposed generalized techniques are also included.
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Chapter 5 (partially published in [15]) presents FLMR technique for Generalized descrip-

tor (singular) system. The proposed technique generalizes the results of Gawronski and

Juang [29] technique for large-scale Generalized descriptor systems using frequency inter-

val Gramians. Simple algorithms are also given for preserving the stability of ROMs. The

work also extends Poor Man’s truncated balanced realization (PMTBR) technique [61] to

include frequency limited Gramians for Generalized descriptor systems. A numerical com-

parison of proposed techniques is also included.

Chapter 6 (partially appear in [17]) proposes TLMR techniques. The proposed techniques

extend the results of time limited Gawronski and Juang [29] and Gugercin and Antoulas [69]

techniques. The proposed techniques also yield error bounds. Numerical examples are given

to show the effectiveness of the proposed techniques in reducing the approximation error in

the selected time interval.

Finally, chapter 7 concludes the thesis with some suggestions for future research.
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Chapter 2

FWMR: A New Technique

2.1 Introduction

MOR is an essential feature for the analysis and design of modern control systems. The

ROM should possess the properties of original system. Moreover, it is desired that the ap-

proximation error between the original system and ROM is small for whole frequency range.

BT [1] (for standard state space system) is a popular scheme for this purpose, since it pre-

serves stability and has frequency response a priori error bounds. It is desired that reduction

algorithm minimizes the error for whole frequency range. However, for certain scenarios

the approximation error is more critical in certain frequency intervals rather than whole fre-

quency range.

Enns [5] FWMR has extended the BT method to include frequency weightings in the

reduction procedure. This technique may include input, output and double sided weightings.

Enns technique ensures stability of ROMs for single sided case only. For double sided

weighting case, this technique may yield unstable ROMs [23]. To rectify the instability

issue of Enns technique, various modifications exist in literature including [7,19,25,26] etc.

Lin and Chiu [19] technique is only applicable when weightings are strictly proper. It was

improved to include more general proper weightings in [23]. Varga and Anderson [25] tech-

nique also yields proper models for strictly proper original systems. Ghafoor and Sreeram [7]

technique although provides alternate solution to Enns instability problem but it is a pa-

rameterized technique. Wang et al’s [26] technique is relatively useful, since other tech-

niques [19,25] are not applicable for controller reduction problem. Moreover, besides stabil-

ity solution to Enns [5] technique, Wang et al’s [26] technique also yields easily computable

expression for a priori error bounds. However, Wang et al’s technique involves square root

of eigenvalue decomposition (EVD) of some matrices, therefore may yield large error.

In this chapter (partially published in [10,12]), a new technique is proposed for FWMR for

both continuous and discrete time systems. The stability is guaranteed even for double sided
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weighting and a large change in some of eigenvalues is circumvented by pursuing similar

effect on all eigenvalues. The proposed technique provides comparable frequency response

error and yields easily computable a priori error bounds. Numerical examples are given to

show the usefulness of the proposed technique. The results are compared with the existing

FWMR techniques.

2.2 Preliminaries

Here we review some of the existing FWMR techniques, namely Enns [5], Wang et al [26]

and Varga and Anderson [25] etc.

2.2.1 Enns technique

Let G(s) and G(z) be the transfer function of a stable original continuous and discrete time

systems respectively with the following minimal realization, {A,B,C,D}. Similarly, let

Vi(s), Wo(s), Vi(z), Wo(z) be the transfer functions of stable input and output weights of

continuous and discrete time with the following minimal realizations: {Ai, Bi, Ci, Di} and

{Ao, Bo, Co, Do} respectively. The augmented systems are given by

G(s)Vi(s) = Ci(sI − Ai)−1Bi +Di (2.1)

Wo(s)G(s) = Co(sI − Ao)−1Bo +Do (2.2)

G(z)Vi(z) = Ci(zI − Ai)−1Bi +Di (2.3)

Wo(z)G(z) = Co(zI − Ao)−1Bo +Do (2.4)

where

 Ai Bi

Ci Di

 =


A BCV BDV

0 AV BV

C DCV DDV

 (2.5)

 Ao Bo

Co Do

 =


AW BWC BWD

0 A B

CW DWC DWD

 (2.6)
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Let the Gramians

Pi =

 PE P12

P T
12 PV

 , Qo =

 QW QT
12

Q12 QE


satisfy the following Lyapunov equations:

AiPi + PiA
T
i +BiB

T
i = 0 (2.7)

AToQo +QoAo + CT
o Co = 0 (2.8)

For discrete time systems above Lyapunov equations are:

AiPiA
T
i − Pi +BiB

T
i = 0 (2.9)

AToQoAo −Qo + CT
o Co = 0 (2.10)

By expanding the (1,1) and (2,2) blocks of equations (2.7) and (2.8) respectively, we have:

APE + PEA
T +XE = 0 (2.11)

ATQE +QEA+ YE = 0 (2.12)

where

XE = BCV P
T
12 + P12C

T
VB

T +BDVD
T
VB

T (2.13)

YE = CTBT
WQ

T
12 +Q12BoC + CTDT

WDWC (2.14)

Similarly, expansion of (1,1) and (2,2) blocks of equations (2.9) and (2.10) respectively,

yield

APEA
T − PE +XE = 0 (2.15)

ATQEA−QE + YE = 0 (2.16)

where

XE = AP12C
T
VB

T +BCV P
T
12A

T +BCV PVCV
TBT +BDVD

T
VB

T (2.17)

YE = CTBT
WQ

T
12A+ ATQ12BWC + CTBT

WQWBWC + CTDT
WDWC (2.18)
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Let T be contragredient matrix (used to transform the original system realization) obtained

as

T TQET = T−1PET
−T =


σ1 0 · · · 0

0 σ2 · · · 0

· · · · · · . . . · · ·

0 0 · · · σn


(2.19)

where σj ≥ σj+1, j = 1, 2, . . . , n − 1 and σr > σr+1. By partitioning the transformed

realization, we have

Â = T−1AT =

 A11 A12

A21 A22

 , B̂ = T−1B =

 B1

B2

 ,
Ĉ = CT =

[
C1 C2

]
, D̂ = D, Σ =

 Σ1 0

0 Σ2


where A11 ∈ Rr×r. The ROM is obtained as:

Gr(s) = C1(sI − A11)−1B1 +D

Gr(z) = C1(zI − A11)−1B1 +D

Remark 2.2.1 For input weighting only, PE and Q are used for calculating the balancing

(contragredient) transformation T in (2.19). Likewise for the case of output weighting only,

the matrices P and QE are used for calculating the balancing (contragredient) transforma-

tion T in (2.19), where P and Q are unweighted Gramians computed as:

AP + PAT +BBT = 0

ATQ+QA+ CTC = 0

APAT − P +BBT = 0

ATQA−Q+ CTC = 0

Remark 2.2.2 Since in Enns technique, it is not guaranteed to ensure XE ≥ 0 and YE ≥ 0,

the ROMs may not remain stable in the case of double-sided weightings.
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2.2.2 Wang et al’s technique

The limitation of Enns technique that it may provide unstable ROMs in the presence of

both input and output weightings was overcome by [26] technique. This technique [26]

guarantees the positive semi-definiteness of symmetric matrices XE (2.13) and YE (2.14). A

discrete time version of [26]) technique is proposed by Campbell et al’s [85]. Let the new

controllability PWS and observability QWS Gramians (calculated by solving the following

Lyapunov equations) respectively

APWS + PWSA
T +BWSB

T
WS = 0 (2.20)

ATQWS +QWSA+ CT
WSCWS = 0 (2.21)

Similarly, for discrete time case, the Lyapunov equations are

APWSA
T − PWS +BWSB

T
WS = 0 (2.22)

ATQWSA−QWS + CT
WSCWS = 0 (2.23)

are used to obtain contragredient matrix T as

T TQWST = T−1PWST
−T =


σ1 0 · · · 0

0 σ2 · · · 0

· · · · · · . . . · · ·

0 0 · · · σn


where σj ≥ σj+1, j = 1, 2, . . . , n− 1 and σr > σr+1.

The fictitious input BWS and output CWS matrices shown in the above Lyapunov equa-

tions are defined as, BWS = UWS|SWS|1/2 and CWS = |RWS|1/2V T
WS , respectively.

Since the expressions UWS, SWS, VWS, and RWS are calculated by orthogonal EVD

XE = UWSSWSU
T
WS and YE = VWSRWSV

T
WS , where SWS = diag(s1, s2, · · · , sn),

RWS = diag(r1, r2, · · · , rn), |s1| ≥ |s2| ≥ · · · ≥ |sn| ≥ 0 and |r1| ≥ |r2| ≥ · · · ≥ |rn| ≥ 0.

The ROMs are calculated by partitioning the transformed realization.

Remark 2.2.3 Since XE ≤ BWSB
T
WS ≥ 0, YE ≤ CT

WSCWS ≥ 0, PWS > 0 and QWS > 0,

the minimality of {A,BWS, CWS} is guaranteed. Thus the stability of ROMs in the case of

double-sided weighting follows immediately from the stability of unweighted BT.
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Theorem 2.2.1 [26] The following expression for error bounds holds (subject to fulfillment

of rank
[
BWS B

]
= rank

[
BWS

]
and rank

 CWS

C

 = rank
[
CWS

]
):

‖Wo(s)(G(s)−Gr(s))Vi(s)‖∞ ≤ 2‖Wo(s)L|∞‖KVi(s)‖∞
n∑

j=r+1

σj

‖Wo(s)(G(z)−Gr(z))Vi(s)‖∞ ≤ 2‖Wo(z)L|∞‖KVi(z)‖∞
n∑

j=r+1

σj

where

L = CVWSdiag(|r1|−
1
2 , |r2|−

1
2 , · · · , |rli|−

1
2 , 0, · · · , 0)

K = diag(|s1|−
1
2 , |s2|−

1
2 , · · · , |sko|−

1
2 , 0, · · · , 0)UT

WSB

li = rank [XE] and ko = rank [YE].

2.2.3 Varga and Anderson modification to Wang et al’s technique

Varga and Anderson [25] proposed a modification to Wang et al’s technique [26] by reducing

the Gramians distance to Enns choice (i.e, the size of PWS − PE and QWS − QE). The

proposed transformation simultaneously diagonalized the Gramians ṔV A and Q́V A

T−1ṔV AT
−T = T T Q́V AT =


σ1 0 · · · 0

0 σ2 · · · 0

· · · · · · . . . · · ·

0 0 · · · σn


where σj ≥ σj+1, j = 1, 2, . . . , n−1 and σr > σr+1 and the Gramians ṔV A and Q́V A satisfy

the following Lyapunov equations:

AṔV A + ṔV AA
T +BV AB

T
V A = 0 (2.24)

AT Q́V A + Q́V AA+ CT
V ACV A = 0 (2.25)

Similarly, for discrete time case, the Lyapunov equations become

AṔV AA
T − ṔV A +BV AB

T
V A = 0 (2.26)

AT Q́V AA− Q́V A + CT
V ACV A = 0 (2.27)
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The new fictitious matrices BV A and CV A are defined as BV A = UV A1S
1/2
V A1

and CV A =

R
1/2
V A1

V T
V A1

, respectively. The terms UV A1 , SV A1 , RV A1 and VV A1 are obtained from the or-

thogonal EVD of symmetric matrices

XE =
[
UV A1 UV A2

] SV A1 0

0 SV A2

 UV A1

T

UV A2

T

 (2.28)

YE =
[
VV A1 VV A2

] RV A1 0

0 RV A2

 VV A1

T

VV A2

T

 (2.29)

where

 SV A1 0

0 SV A2

 = diag{s1, s2, . . . , sn},

 RV A1 0

0 RV A2

 = diag{r1, r2, . . . , rn},

SV A1 > 0, SV A2 ≤ 0, RV A1 > 0 and RV A2 ≤ 0. The ROMs are calculated by partitioning

the transformed realization. Since

XE ≤ BV AB
T
V A ≤ BWSB

T
WS ≥ 0

YE ≤ CT
V ACV A ≤ CT

WSCWS ≥ 0

and the realization {A,BV A, CV A} is minimal, the stability of ROM in the case of double

sided weightings is guaranteed.

Remark 2.2.4 An error bound for this technique [25] also exists, similar to one in [26],

subject to fulfillment of rank
[
BV A B

]
= rank

[
BV A

]
and rank

 CV A

C

 =

rank
[
CV A

]
.

2.3 Proposed technique

In Wang et al’s [26] technique, the symmetric (generally indefinite) matrices XE and YE are

made positive definite (or positive semidefinite) by taking the absolute values of the eigen-

values obtained by EVD ofXE and YE . This may lead to a large change in some eigenvalues

and may not effect other eigenvalues. To pursue a similar effect on all eigenvalues, a new

technique (partially published in [10, 12]) is proposed which not only provides stability but

also yields comparable frequency response error and error bound. Let a new controllability

PIG and observability QIG Gramians respectively, are calculated by solving the following
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Lyapunov equations:

APIG + PIGA
T +BIGB

T
IG = 0 (2.30)

ATQIG +QIGA+ CT
IGCIG = 0 (2.31)

Similarly, for discrete time case, Lyapunov equations become

APIGA
T − PIG +BIGB

T
IG = 0 (2.32)

ATQIGA−QIG + CT
IGCIG = 0 (2.33)

The matrices BIG and CIG are the new fictitious input and output matrices respectively

and are defined as:

BIG =

 U(S − snI)1/2 for sn < 0

US1/2 for sn ≥ 0
(2.34)

CIG =

 (R− rnI)1/2V T for rn < 0

R1/2V T for rn ≥ 0.
(2.35)

The terms U, S, V, and R are calculated by the orthogonal EVD of symmetric matrices

XE = USUT and YE = V RV T , where S = diag(s1, s2, · · · , sn),R = diag(r1, r2, · · · , rn),

s1 ≥ s2 ≥ · · · ≥ sn, and r1 ≥ r2 ≥ · · · ≥ rn. Note that, the matrices BIG and CIG are

constructed by pursuing similar effect on all eigenvalues of symmetric matrices XE and YE .

A contragredient transformation matrix T (used to transform the original system realiza-

tion) is obtained as

T TQIGT = T−1PIGT
−T =


σ1 0 · · · 0

0 σ2 · · · 0

· · · · · · . . . · · ·

0 0 · · · σn


where σj ≥ σj+1, j = 1, 2, . . . , n− 1, σr > σr+1. The ROMs are calculated by partitioning

the transformed realization as

Gr(s) = C1(sI − A11)−1B1 +D

Gr(z) = C1(zI − A11)−1B1 +D
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Remark 2.3.1 Since XE ≤ BIGB
T
IG ≥ 0, YE ≤ CT

IGCIG ≥ 0, PIG > 0 and QIG > 0.

Therefore, the realization (A,BIG, CIG, D) is minimal. Moreover, the ROMs are stable. The

stability of ROM follows from the stability of unweighted BT [20].

Remark 2.3.2 Let

LIG =

 CV (R− rnI)−1/2 for rn < 0

CV R−1/2 for rn ≥ 0
(2.36)

KIG =

 (S − snI)−1/2UTB for sn < 0

S−1/2UTB for sn ≥ 0.
(2.37)

a. If rank [BIG B] = rank [BIG], then B = BIGKIG.

b. If rank

 CIG

C

 = rank [CIG], then C = LIGCIG.

The existence of these rank conditions can be shown in a similar way as in [26]. It is also

shown in [26] that conditions given in a. and b. are almost always true.

Theorem 2.3.1 The following error bound for the proposed technique holds

(i) ‖Wo(s)(G(s)−Gr(s))Vi(s)‖∞ ≤ 2‖Wo(s)LIG‖∞‖KIGVi(s)‖∞
n∑

j=r+1

σj

(ii) ‖(G(s)−Gr(s))Vi(s)‖∞ ≤ 2‖KIGVi(s)‖∞
n∑

j=r+1

σj

(iii) ‖Wo(s)(G(s)−Gr(s))‖∞ ≤ 2‖Wo(s)LIG‖∞
n∑

j=r+1

σj

Proof: For brevity, we show only the proof of (i) here, proofs of (ii) and (iii) can be obtained

similarly. By partitioningBIG =

 BIG1

BIG2

 , CIG =
[
CIG1 CIG2

]
and substitutingB1 =

BIG1KIG, C1 = LIGCIG1 respectively yields

‖Wo(s)(G(s)−Gr(s))Vi(s)‖∞

= ‖Wo(s)(C(sI − A)−1B − C1(sI − A11)−1B1)Vi(s)‖∞

= ‖Wo(s)(LIGCIG(sI − A)−1BIGKIG − LIGCIG1(sI − A11)−1BIG1KIG)Vi(s)‖∞

= ‖Wo(s)LIG(CIG(sI − A)−1BIG − CIG1(sI − A11)−1BIG1)KIGVi(s)‖∞

≤ ‖Wo(s)LIG‖∞‖CIG(sI − A)−1BIG − CIG1(sI − A11)−1BIG1‖∞‖KIGVi(s)‖∞
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If {A11, BIG1 , CIG1 , D} is a ROM obtained by partitioning the balanced realization

{A,BIG, CIG, D}, we have from [5]

‖CIG(sI − A)−1BIG − CIG1(sI − A11)−1BIG1‖∞ ≤ 2
n∑

j=r+1

σj

the results follows.

Remark 2.3.3 A similar error bound holds for the discrete time case also as:

(i) ‖Wo(z)(G(z)−Gr(z))Vi(z)‖∞ ≤ 2‖Wo(z)LIG‖∞‖KIGVi(z)‖∞
n∑

j=r+1

σj

(ii) ‖(G(z)−Gr(z))Vi(z)‖∞ ≤ 2‖KIGVi(z)‖∞
n∑

j=r+1

σj

(iii) ‖Wo(z)(G(z)−Gr(z))‖∞ ≤ 2‖Wo(z)LIG‖∞
n∑

j=r+1

σj

Following example provides insight into the construction of BIG and CIG for the case

when sn < 0 and rn < 0.

Example 2.3.1 Consider the 3rd order system [6] G(s) = (s+ 2)/(s3 + 2s2 + 3s+ 1) with

the weights Vi(s) = Wo(s) = 1/(s2 + 4s + 2), respectively. Eigenvalues of matrices XE

and YE are {0.0292, 0.0000,−0.0190} and {0.9296,−0.0000,−0.0274} respectively, which

yields sn = −0.0190, rn = −0.0274, |SWS| = diag{0.0292, 0.0000, 0.0190}, |RWS| =

diag{0.09296, 0.0000, 0.0274}, (S−snI) = diag{0.0482, 0.0190, 0.0000}, and (R−rnI) =

diag{0.1204, 0.0274, 0.0000}. Equations (2.34) and (2.35) are used to construct BIG and

CIG. The Hankel singular values (HSV) obtained by [26] and proposed techniques are

{0.2082, 0.204, 0.0129} and {0.2443, 0.0323, 0.0227} respectively. The norm of L,K,LIG

and KIG are 2.2859, 4.5564, 2.2529, 3.5450 respectively.

Example 2.3.2 LetG(s) = (4s2+6s+2)/(s3+5s2+4s+2), with weights Vi(s) = 1/(s+1)

and Wo(s) = 1/(s + 4), respectively. HSV obtained by [26] and proposed techniques are

{0.1474, 0.1176, 0.0136} and {0.1389, 0.1312, 0.0153} respectively.

Remark 2.3.4 For the case when symmetric matrices XE ≥ 0 and YE ≥ 0, then PE =

PWS = PIG and QE = QWS = QIG. Consequently, the ROMs obtained using Enns [5],

Wang et al’s [26] and proposed technique are the same. Otherwise PE < PIG, QE < QIG
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and (λj[PEQE])1/2 ≤ (λj[PIGQIG])1/2. However (as can be seen from above examples), a

direct relationship among Gramians and HSV of proposed and Wang et al’s [26] techniques

cannot be given (when XE � 0 and YE � 0).

Remark 2.3.5 For the case when input Vi(s), Vi(z) weights are co-inner and output Wo(s),

Wo(z) weights are inner [21], then P = PE = PWS = PIG and Q = QE = QWS = QIG.

2.3.1 Computational aspects

The balancing procedure involves computation of transformation matrix using controllabil-

ity and observability Gramians. Sometimes these matrices become numerically low rank

especially in large scale systems (possibly) due to rapid decay of their eigenvalues [27]. Due

to this reason, the balancing procedure becomes inefficient. Accuracy enhancing techniques

for different FWMR techniques appear in [6, 25].

For the unweighted case, Hammarling [9] technique is used to obtain Cholesky factors of

Gramian matrices from original system realization without actually computing controllabil-

ity and observability Gramian matrices respectively.

In the FWMR techniques, the Cholesky factors of the Gramian matrices are obtained from

the augmented system realizations. Let S̄ and R̄ be the Cholesky factors of the augmented

system Gramians matrices Pi and Qo of equations (2.7) and (2.8) respectively,

Pi = S̄S̄T =

 S11 S12

0 S22

 ST11 0

ST12 ST22


=

 S11S
T
11 + S12S

T
12 S12S

T
22

S22S
T
12 S22S

T
22

 =

 PE P12

P T
12 PV


and

Qo = R̄T R̄ =

 RT
11 0

RT
12 RT

22

 R11 R12

0 R22


=

 RT
11R11 RT

11R12

RT
12R11 RT

22R22 +RT
12R12

=

 QW QT
12

Q12 QE


By making use of the Cholesky factors S̄ and R̄ calculated above, the Cholesky factors

corresponding to Gramians in FWMR techniques namely [5,26] and proposed technique can

be obtained as follows:
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1. Enns technique [5]: The Cholesky factors

SE = [S11 S12] and RE =

 R12

R22

 satisfy [25]

PE = SES
T
E = S11S

T
11 + S12S

T
12 =

[
S11 S12

] ST11

ST22


QE = RT

ERE = RT
22R22 +RT

12R12 =
[
RT

22 RT
12

] R22

R12



2. Wang et al’s technique [26]: The Cholesky factors S̄WS and R̄WS satisfy PWS =

S̄WSS̄
T
WS and QWS = R̄T

WSR̄WS , where PWS (2.20) and QWS (2.21) [6].

3. Proposed technique: The Cholesky factors S̄IG and R̄IG satisfy PIG = S̄IGS̄
T
IG and

QIG = R̄T
IGR̄IG, where PIG (2.30) and QIG (2.31).

Next we establish a relationship between Cholesky factors and Gramian matrices of

Enns and proposed technique. Equation (2.30) and (2.31) can be expressed as:

A(PE + Pad) + (PE + Pad)A
T + (XE − snI) = 0, for sn < 0

APE + PEA
T +XE = 0, for sn ≥ 0

AT (QE +Qad) + (QE +Qad)A+ (YE − rnI) = 0, for rn < 0

ATQE +QEA+ YE = 0, for rn ≥ 0

APad + PadA
T−snI = 0, for sn < 0

ATQad +QadA−rnI = 0, for rn < 0

Similarly, for discrete time case equations (2.32) and (2.33) can be expressed as:

A(PE + Pad)A
T − (PE + Pad) + (XE − snI) = 0, for sn < 0

APEA
T − PE +XE = 0, for sn ≥ 0

AT (QE +Qad)A− (QE +Qad) + (YE−rnI) = 0, for rn < 0

ATQEA−QE + YE = 0, for rn ≥ 0

APadA
T − Pad − snI = 0, for sn < 0

ATQadA−Qad − rnI = 0, for rn < 0
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Since

XIG = U(S − snI)1/2(S − snI)1/2UT = XE − snI, for sn < 0

XIG = U(S)1/2(S)1/2UT = XE, for sn ≥ 0

YIG = V T (R− rnI)1/2(R− rnI)1/2V = YE − rnI, for rn < 0

YIG = V T (R)1/2(R)1/2V = YE, for rn ≥ 0

By using Hammarling technique to calculate the Cholesky factors of the Gramians Pad

andQad from the realization {A,
√
−snI,

√
−rnI,D}, we can write Pad = S̄adS̄

T
ad and

Qad = R̄T
adR̄ad. Therefore, PIG (2.30) and QIG (2.31) can be expressed as:

PIG= S̄IGS̄
T
IG=PE+Pad=S11S

T
11+S12S

T
12+SadS

T
ad=

[
S11 S12 Sad

]
ST11

ST12

STad



QIG=R̄T
IGR̄IG=QE+Qad=RT

22R22+RT
12R12+RT

adRad=
[
RT

22 RT
12 RT

ad

]
R22

R12

Rad



Remark 2.3.6 Note that, the Cholesky factors for the Enns and the proposed technique re-

spectively, are computed directly from the augmented system realization using Hammarling

technique without calculating the augmented system realization Gramian matrices Pi and

Qo. However, Cholesky factorization for Wang et al’s [26] technique is computed directly

from the corresponding frequency weighted realization using Hammarling technique without

calculating the associated frequency weighted Gramians [8].

2.4 Numerical examples

Here numerical results of both continuous and discrete time linear state space systems are

presented.

2.4.1 Continuous time case

Example 2.4.1 Consider the fourth order system used in [6, 19, 23, 25, 26]
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Table 2.1: Frequency weighted errors and error bounds comparison for ROMs

Enns [5] Technique Wang et al’s [26] Technique Proposed Technique
Weighting Order Error Error Error Bound Error Error Bound

Input
1 1.1310 1.1270 2.4488 1.1270 1.7861
2 0.1342 0.1367 0.4573 0.1240 0.4502
3 0.0654 0.0658 0.1155 0.0678 0.0900

Output
1 1.1244 1.1182 2.0463 1.1193 1.9866
2 0.1553 0.1552 0.3616 0.1552 0.3540
3 0.0593 0.0593 0.0921 0.0592 0.0901

Two Sided
1 2.1291 2.1213 7.2898 2.1234 4.9323
2 0.2260 0.2720 1.4895 0.2424 1.2789
3 0.1131 0.1151 0.3228 0.1075 0.2446

A =


−1 0 0 0

0 −2 0 0

0 0 −3 0

0 0 0 −4


, B =


0 5

1/2 −3/2

1 −5

−1/2 1/6


, C =

 1 0 1 0

4/15 1 0 1



with following 2nd order input and output weightings

Ai = Ao = 4.5I2, Bi = Bo = 3I2, Ci = Co = 1.5I2, Di = Do = I2

respectively. Table 2.1 gives the corresponding results.

Example 2.4.2 Consider a stable 6th order system (Example 3.1 of [6])

A =



−13 1 0 0 0 0

−75 0 1 0 0 0

−210 0 0 1 0 0

−320 0 0 0 1 0

−600 0 0 0 0 1

−80 0 0 0 0 0


, B =



0 1

1 0.6

2 0.9

5 0.3

1 0.6

0.5 1


C =

 1 0 1 0 1 0

1 0.2 0.3 0.4 0.5 0.6

 , D =

 0 0

0 0


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Table 2.2: Frequency weighted errors and error bounds comparison for ROMs

Enns [5] Technique Wang et al’s [26] Technique Proposed Technique
Weighting Order Error Error Error Bound Error Error Bound

Input

1 139.6132 136.5005 361.3248 134.4076 411.4761
2 18.3129 18.3316 92.4481 18.7287 95.7778
3 21.1996 21.2479 44.8325 20.2999 48.7198
4 9.1666 9.1205 19.8312 8.9602 21.7747
5 2.6430 2.4827 5.5316 2.3935 6.6900

Output

1 131.4251 108.5365 356.2655 108.2467 171.4624
2 16.5652 15.4991 86.6817 15.6764 40.3546
3 16.6552 14.7750 40.9833 15.2463 20.8452
4 8.0065 8.2056 17.7719 7.2529 9.8677
5 2.4785 4.4455 5.7643 1.8129 2.6186

Two Sided

1 131.5077 99.4405 667.2325 99.2950 365.7043
2 16.3252 15.2951 168.6104 15.7326 80.9650
3 16.5315 14.6251 78.0990 14.5335 42.8066
4 7.7922 7.8043 32.8717 7.0779 20.3537
5 2.1083 3.5243 10.1790 2.4644 5.6365

with following 2nd order input and output weights

Ai =

 −10 0

0 −4.5

 , Bi =

 5 0

0 3

 , Ci =

 −2.7333 0

0 −3

 ,
Ao=

 −4.1 0

0 −4.5

 , Bo=

 −5.4667 0

0 −6

 , Co=

 0.5 0

0 1.5

 ,
Do = Di = I2

respectively. Table 2.2 gives the corresponding results.

Table (2.1 and 2.2) shows the frequency weighted errors obtained by Enns [5], Wang et

al’s [26] and the proposed technique for input, output and double sided weighting cases. It

is observed that the proposed technique compares well (mostly produces lower error and

tighter error bounds) with existing FWMR techniques. Moreover, Enns technique may yield

unstable model and has no a priori error bound.
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2.4.2 Discrete time case

Example 2.4.3 Consider (example C appeared in [23]) a 4th order stable discrete time sys-

tem

G(z) =
z3

z4 + 1.1z3 − 0.01z2 − 0.275z − 0.06

with the following weightings

Vi(z) = Wo(z) =
z + 0.9

z + 0.1

The first order ROM obtained by Enns [5] technique is unstable while ROM obtained by

Varga and Anderson’s, Campbell et al’s and proposed techniques are stable yielding fre-

quency response errors 112.9338, 100.8739 and 94.116 respectively. Note that, proposed

technique provides stability with relatively lower error when compared to other techniques.

Example 2.4.4 Consider a 6th order stable low pass digital elliptic filter with 0.2 dB of

peak-to-peak ripple and a minimum stopband attenuation of 20 dB represented by

G(z) =
0.1054z6 − 0.1944z5 + 0.1187z4 − 0.1187z2 + 0.1944z − 0.1054

z6 − 2.9621z5 + 4.8325z4 − 4.9819z3 + 3.5245z2 − 1.5262z + 0.3657

with the following input and output weightings respectively,

Vi(z) =
z3 + 3.0081z2 + 1.9944z + 1.0325

z3 + 0.2z2 + 0.75z + 0.2

Wo(z) =
z3 + 2.97z2 + 2.9403z + 0.9703

z3 + 1.1619z2 + 0.6959z + 0.1378

Table 2.3 gives the comparison of error and error bounds for ROMs obtained by Enns,

Varga and Anderson’s, Campbell et al’s and proposed techniques for the input and two sided

weighting cases. Note that, the proposed technique mostly yields lower error as compared

to other techniques.

Example 2.4.5 Consider a 4th order stable discrete time system [87]

G(z) =
10−3(3.315z3 − 4.9695z2 + 2.1668z − 0.24002)

z4 − 3.7035z3 + 5.1957z2 − 3.2718z + 0.77986
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Table 2.3: Frequency weighted errors and error bounds comparison for ROMs

Campbell et al’s Technique [85] Varga and Anderson’s Technique [86] Proposed Technique
Weighting Order Enns Technique [5] Error Error Bound Error Error Bound Error Error Bound

Two Sided

1 21.1254 20.5953 1634.2 21.6491 725.7718 15.6065 2549.0
2 31.9647 32.8319 978.34 32.8863 433.8123 18.4571 1623.9
3 35.0441 32.3860 590.48 33.9063 255.7017 26.1274 998.92
4 28.7611 31.4710 236.41 30.4331 102.7518 30.7929 427.13
5 12.7538 29.5760 117.81 12.7660 50.4647 25.6547 203.36

Input

1 7.0257 7.1275 145.811 7.2356 92.6748 7.0140 242.5983
2 10.4643 10.7354 87.9789 10.7694 55.8603 10.6714 149.7017
3 11.2055 10.3852 53.0816 10.8477 32.9346 9.9857 90.8656
4 8.9654 10.0342 21.8067 9.6079 13.5877 8.4277 41.1182
5 2.4435 3.1720 10.4718 2.8446 6.3761 3.2061 16.5445

Table 2.4: Frequency weighted errors and error bounds comparison for ROMs

Campbell et al’s Technique [85] Varga and Anderson’s Technique [86] Proposed Technique
Weighting Order Enns Technique [5] Error Error Bound Error Error Bound Error Error Bound

Input
1 0.0216 0.0245 0.6024 0.0241 0.3321 0.0240 0.6783
2 0.0021 0.0027 0.2582 0.0026 0.1403 0.0025 0.2853
3 0.0015 0.0025 0.0453 0.0023 0.0247 0.0021 0.0508

with the following input weighting

Vi(z) =
z2 − 0.1z − 0.05

z2 − 0.9z + 0.75

Table 2.4 gives the comparison of error and error bounds for ROMs obtained by Enns,

Varga and Anderson’s, Campbell et al’s and proposed techniques for the input weighting

case. Note that, the proposed technique compares well and yields relatively lower error as

compared to other techniques.

Example 2.4.6 Consider a 4th order stable low pass digital Chebyshev type 1 filter with

Table 2.5: Frequency weighted errors and error bounds comparison for ROMs

Campbell et al’s Technique [85] Varga and Anderson’s Technique [86] Proposed Technique
Weighting Order Enns Technique [5] Error Error Bound Error Error Bound Error Error Bound

Output
1 1.7905 1.7898 8.2727 1.7900 5.6369 1.7867 6.2509
2 0.8967 0.8126 2.9832 0.8520 1.9243 0.7296 2.5083
3 0.5098 0.4868 1.4488 0.4979 0.9219 0.4740 0.9543
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0.1dB of peak-to-peak ripples in the passband represented by:

G(z) =
0.49z4 − 0.9799z2 + 0.49

z4 − 0.2893z3 − 0.6629z2 + 0.0246z + 0.2904

with the following output weighting

Wo(z) =
z − 0.2

z2 − 0.4z + 0.5

Table 2.5 gives the comparison of error and error bounds for ROMs obtained by Enns, Varga

and Anderson’s, Campbell et al’s and proposed techniques for output weighting. Note that,

the proposed technique compares well and yields relatively lower error as compared to other

techniques.

2.5 Conclusion

In this chapter, a new FWMR technique for continuous and discrete time systems is proposed

based on pursuing similar effect on the eigenvalues of weighted augmented input and output

realization matrices. Unlike the Enns, the proposed technique yields not only stable ROMs

for the case of double-sided weighting but also gives easily computable a priori frequency

response error bounds. Computational aspects of existing and proposed FWMR techniques

are also given. The numerical examples show that the proposed technique compares well

with other well-known techniques generally yielding lower error and tighter error bounds

for ROMs of different order.

The next chapter considers FLMR problem.
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Chapter 3

FLMR: A New Technique

3.1 Introduction

Previous chapter considers FWMR, here we consider FLMR for continuous and discrete

time systems.

Gawronski and Juang [29] proposed a FLMR technique, where weights are not explicitly

predefined, but approximation is considered in certain frequency intervals for linear contin-

uous and discrete time systems. The Gramians are defined for a desired frequency intervals.

However, it can also yield unstable ROMs for stable original system and there are no error

bounds. To overcome instability problem of Gawronski and Juang, some FLMR techniques

have been proposed in literature including Wang and Zilouchian [90], Gugercin and An-

toulas [30], Ghafoor and Sreeram [8].

Gawronski and Juang technique [29] was modified by Gugercin and Antoulas [30] to

provide stable models and error bounds. This technique ensures stability by taking absolute

values of eigenvalues. This causes a large change in some of the eigenvalues and little

effect on rest of eigenvalues. Ghafoor and Sreeram [8] technique tends to minimize the

approximation error and yields stable ROMs and has error bound expression also. This

technique ensures stability by retaining only positive eigenvalues and truncating negative

eigenvalues. Like Gugercin and Antoulas [30], this technique does not have a similar effect

on all eigenvalues.

In this chapter (partially published in [11,16]), a FLMR technique is proposed which pro-

vides stable ROMs by pursuing similar effect on all eigenvalues for both continuous and dis-

crete time systems. The proposed technique provides comparable frequency response error

and yields easily computable a priori error bounds. Numerical examples are given to show

the usefulness and comparison of proposed technique with the existing FLMR techniques.
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3.2 Preliminaries

Consider a linear time invariant continuous and discrete time systems respectively

G(s) = C(sI − A)−1B +D (3.1)

G(z) = C(zI − A)−1B +D (3.2)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m and {A,B,C,D} is its nth order

minimal realization with m inputs and p outputs. The problem of MOR is to to find a ROM

with

Gr(s) = C1(sI − A11)−1B1 +D (3.3)

Gr(z) = C1(zI − A11)−1B1 +D (3.4)

which approximates the original system (in the desired frequency band [ω1, ω2] where ω2 >

ω1), where A11 ∈ Rr×r, B1 ∈ Rr×m, C1 ∈ Rp×r, D ∈ Rp×m with r < n.

Let P and Q be the frequency domain controllability and observability Gramians

Continuous time

 P = 1
2π

∫∞
−∞(jωI − A)−1BBT (−jωI − AT )−1dω

Q = 1
2π

∫∞
−∞(−jωI − AT )−1CTC(jωI − A)−1dω

Discrete time

 P = 1
2π

∫ π
−π(ejωI − A)−1BBT (e−jωI − AT )−1dω

Q = 1
2π

∫ π
−π(e−jωI − AT )−1CTC(ejωI − A)−1dω

are the solution of following Lyapunov equations:

Continuous time

 AP + PAT +BBT = 0

ATQ+QA+ CTC = 0

Discrete time

 APAT − P +BBT = 0

ATQA−Q+ CTC = 0

3.2.1 Gawronski and Juang’s technique

The discrete time version of Gawronski and Juang’s technique [29] also appears in Wang

and Zilouchian [90]. The controllability and observability Gramians for limited frequency
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domain are defined as

Continuous time

 APGJ + PGJA
T +XGJ = 0

ATQGJ +QGJA+ YGJ = 0
(3.5)

Discrete time

 APGJA
T − PGJ +XGJ = 0

ATQGJA−QGJ + YGJ = 0
(3.6)

where

Continuous time


XGJ = (S(ω2)− S(ω1))BBT +BBT

(
SH(ω2)−SH(ω1)

)
YGJ =

(
SH(ω2)− SH(ω1)

)
CTC + CTC (S(ω2)− S(ω1))

S(ω) = j
2π

ln
(
(jωI + A) (−jωI + A)−1)

Discrete time


XGJ = BBTFH + FBBT

YGJ = CTCF + FHCTC

F = −ω2−ω1

4π
I + 1

2π

∫
δω

(ejωI − A)−1dω

SH(ω) and FH are Hermitian of S(ω) and F respectively. Let

T TQGJT = T−1PGJT
−T =


σ1 0 · · · 0

0 σ2 · · · 0

· · · · · · . . . · · ·

0 0 · · · σn


where σj ≥ σj+1, j = 1, 2, . . . , n − 1, σr > σr+1 and T is a contragredient matrix used

to transform the original system realization. ROMs are obtained by partitioning the trans-

formed realization.

Remark 3.2.1 One can consider the multiple frequency intervals for approximation. For

example, for two intervals [ω1, ω2] and [ω3, ω4], ω1 < ω2, ω3 < ω4.

Remark 3.2.2 Since the symmetric matrices XGJ and YGJ may not be positive semidefinite,

the ROMs obtained by Gawronski and Juang [29] and Wang and Zilouchian’s [90] tech-

niques may not be stable. This issue was solved by [30] and [87] and error bounds were

also derived.
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3.2.2 Gugercin and Antoulas’s technique

The instability problem of Gawronski and Juang [29] was solved by Gugercin and An-

toulas [30]. The discrete time version of [30] was proposed by Ghafoor and Sreeram [87]

Algorithm 1. Let the controllability PGA and observability QGA Gramians respectively, ob-

tained as the solutions to Lyapunov equations

APGA + PGAA
T +BGAB

T
GA = 0 (3.7)

ATQGA +QGAA+ CT
GACGA = 0 (3.8)

Similarly, for discrete time systems above Lyapunov equations become

APGAA
T − PGA +BGAB

T
GA = 0 (3.9)

ATQGAA−QGA + CT
GACGA = 0 (3.10)

Equations (3.7) and (3.8) are used to find a contragredient matrix T as:

T TQGAT = T−1PGAT
−T =


σ1 0 · · · 0

0 σ2 · · · 0

· · · · · · . . . · · ·

0 0 · · · σn


where σi ≥ σj+1, j = 1, 2, . . . , n − 1, σr > σr+1, BGA = UGA|SGA|1/2, CGA =

|RGA|1/2V T
GA. The terms UGA, SGA, VGA, and RGA are obtained as XGJ = UGASGAU

T
GA

and YGJ = VGARGAV
T
GA, where

SGA =


s1 0 · · · 0

0 s2 · · · 0

· · · · · · . . . · · ·

0 0 · · · sn


, RGA =


r1 0 · · · 0

0 r2 · · · 0

· · · · · · . . . · · ·

0 0 · · · rn


|s1| ≥ |s2| ≥ · · · ≥ |sn| ≥ 0 and |r1| ≥ |r2| ≥ · · · ≥ |rn| ≥ 0. The ROMs are calculated by

partitioning the transformed realization.

Remark 3.2.3 Since XGJ ≤ BGAB
T
GA, YGJ ≤ CT

GACGA and the realization (A,BGA, CGA)

is minimal and the stability of ROMs is also guaranteed. This technique also yields frequency
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response error bounds.

3.2.3 Ghafoor and Sreeram’s technique

Ghafoor and Sreeram [8] also addresses the instability problem of Gawronski and Juang

[29] technique. The discrete time version of this technique appears in [87] Algorithm 2.

Ghafoor and Sreeram [8] defined the controllability PGS and observability QGS Gramians

respectively, as the solutions to Lyapunov equations

APGS + PGSA
T +BGSB

T
GS = 0 (3.11)

ATQGS +QGSA+ CT
GSCGS = 0 (3.12)

Similarly, for discrete time systems above Lyapunov equations become

APGSA
T − PGS +BGSB

T
GS = 0 (3.13)

ATQGSA−QGS + CT
GSCGS = 0 (3.14)

The equations (3.11) and (3.12)to find a contragredient matrix T as:

T TQGST = T−1PGST
−T =


σ1 0 · · · 0

0 σ2 · · · 0

· · · · · · . . . · · ·

0 0 · · · σn


where σi ≥ σi+1, i = 1, 2, . . . , n− 1, σr > σr+1, BGS = UGS1S

1/2
GS1

, CGS = R
1/2
GS1

V T
GS1

. The

terms UGS1 , SGS1 , VGS1 , and RGS1 are obtained as

XGJ =
[
UGS1 UGS2

] SGS1 0

0 SGS2

 UT
GS1

UT
GS2


YGJ =

[
VGS1 VGS2

] RGS1 0

0 RGS2

 V T
GS1

V T
GS2



where

 SGS1 0

0 SGS2

 = diag(s1, s2, · · · , sn),

 RGS1 0

0 RGS2

 = diag(r1, r2, · · · , rn),

s1 ≥ s2 ≥ · · · ≥ sn, r1 ≥ r2 ≥ · · · ≥ rn, SGS1 = diag(s1, s2, · · · , sl), RGS1 =

diag(r1, r2, · · · , rl), s1 ≥ s2 ≥ · · · ≥ sl > 0, r1 ≥ r2 ≥ · · · ≥ rl > 0. The ROMs
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are calculated by partitioning the transformed realization.

Remark 3.2.4 Since XGJ ≤ BGSB
T
GS ≤ BGAB

T
GA, YGJ ≤ CT

GSCGS ≤ CT
GACGA and the

realization {A,BGS, CGS} is minimal, and the stability of the ROMs is also guaranteed.

Moreover, an error bound (similar to [30]) also exists.

3.3 Proposed technique

In Gugercin and Antoulas [30] technique (and its discrete time version [87]), the symmet-

ric matrices XGJ and YGJ are ensured positive /semipositive definite by taking the square

root of absolute values of the eigenvalues obtained by EVD of symmetric matrices XGJ

and YGJ . This sometimes leads to a large change in some eigenvalues and may not effect

other eigenvalues. On the other end, Ghafoor and Sreeram [8] ensures positive definiteness

of the matrices XGJ and YGJ by taking only positive eigenvalues and truncating negative

eigenvalues. This technique also does not have similar effect on all eigenvalues.

In the following, a technique (partially published in [11, 16]) is proposed where effort is

to have a similar effect on all eigenvalues of indefinite matrices XGJ and YGJ . The ROMs

obtained are guaranteed to be stable. Moreover, it yields frequency response error bound

and improved frequency response error. Let new controllability PIG and observability QIG

Gramians, respectively, be calculated by solving the following Lyapunov equations:

APIG + PIGA
T +BIGB

T
IG = 0 (3.15)

ATQIG +QIGA+ CT
IGCIG = 0 (3.16)

Similarly, for discrete time case, Lyapunov equation becomes

APIGA
T − PIG +BIGB

T
IG = 0 (3.17)

ATQIGA−QIG + CT
IGCIG = 0 (3.18)

The matrices BIG and CIG are the new fictitious input and output matrices respectively
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defined as:

BIG =

 UIG(SIG − snI)1/2 for sn < 0

UIGS
1/2
IG for sn ≥ 0

(3.19)

CIG =

 (RIG − rnI)1/2V T
IG for rn < 0

R
1/2
IG V

T
IG for rn ≥ 0.

(3.20)

The terms UIG, SIG, VIG, and RIG are calculated as XGJ = UIGSIGU
T
IG and YGJ =

VIGRIGV
T
IG, where SIG = diag(s1, s2, · · · , sn), RIG = diag(r1, r2, · · · , rn), s1 ≥ s2 ≥

· · · ≥ sn, and r1 ≥ r2 ≥ · · · ≥ rn.

Consider a contragredient transformation matrix T (used to transform the original system)

is obtained as

T TQIGT = T−1PIGT
−T =


σ1 0 · · · 0

0 σ2 · · · 0

· · · · · · . . . · · ·

0 0 · · · σn


where σj ≥ σj+1, j = 1, 2, . . . , n − 1, σr > σr+1. The ROMs are obtained by partitioning

the transformed realization.

Remark 3.3.1 Since XGJ ≤ BIGB
T
IG, YGJ ≤ CT

IGCIG, BIGB
T
IG ≥ 0, CT

IGCIG ≥ 0, PIG >

0 and QIG > 0. Therefore, the realization (A,BIG, CIG) is minimal. Moreover, the ROMs

are guaranteed to be stable.

Theorem 3.3.1 The following error bound for the proposed technique hold if the rank con-

ditions rank [BIG B] = rank [BIG] and rank

 CIG

C

 = rank [CIG] (which follows

from [8, 26, 30]) are satisfied

‖G(s)−Gr(s)‖∞ ≤ 2‖LIG‖‖KIG‖
n∑

j=r+1

σj

‖G(z)−Gr(z)‖∞ ≤ 2‖LIG‖‖KIG‖
n∑

j=r+1

σj
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where

LIG =

 CVIG(RIG − rnI)−1/2 for rn < 0

CVIGR
−1/2
IG for rn ≥ 0.

(3.21)

KIG =

 (SIG − snI)−1/2UT
IGB for sn < 0

S
−1/2
IG UT

IGB for sn ≥ 0
(3.22)

Proof: Since rank [BIG B] = rank [BIG] and rank

 CIG

C

 = rank [CIG], the rela-

tionships B = BIGKIG and C = LIGCIG hold. By partitioning BIG =

 BIG1

BIG2

 , CIG =

[
CIG1 CIG2

]
and substituting B1 = BIG1KIG, C1 = LIGCIG1 respectively yields

‖G(s)−Gr(s)‖∞ = ‖C(sI − A)−1B − C1(sI − A11)−1B1‖∞

= ‖LIGCIG(sI − A)−1BIGKIG − LIGCIG1(sI − A11)−1BIG1KIG‖∞

= ‖LIG(CIG(sI − A)−1BIG − CIG1(sI − A11)−1BIG1)KIG‖∞

≤ ‖LIG‖‖CIG(sI − A)−1BIG − CIG1(sI − A11)−1BIG1‖∞‖KIG‖

If {A11, BIG1 , CIG1} is ROM obtained by partitioning a balanced realization {A,BIG, CIG},

we have [5]

‖CIG(sI − A)−1BIG − CIG1(sI − A11)−1BIG1‖∞ ≤ 2
n∑

j=r+1

σj.

Therefore,

‖G(s)−Gr(s)‖∞ ≤ 2‖LIG‖‖KIG‖
n∑

j=r+1

σj

The proof of discrete time version follows similarly.

Remark 3.3.2 When XGJ � 0 and YGJ � 0, then

XIG = BIGB
T
IG = XGJ − snI, YIG = CT

IGCIG = YGJ − rnI

PIG = PGJ + Pad, QIG = QGJ +Qad,
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where

Continuous time



A(PGJ + Pad) + (PGJ + Pad)A
T + (XGJ − snI) = 0, for sn < 0

AT (QGJ +Qad) + (QGJ +Qad)A+ (YGJ−rnI) = 0, for rn < 0

APad + PadA
T − snI = 0, for sn < 0

ATQad +QadA− rnI = 0, for rn < 0

Discrete time



A(PGJ + Pad)A
T − (PGJ+Pad) + (XGJ − snI) = 0, for sn < 0

AT (QGJ +Qad)A− (QGJ +Qad) + (YGJ − rnI) = 0, for rn < 0

APadA
T − Pad − snI = 0, for sn < 0

ATQadA−Qad − rnI = 0, for rn < 0

Remark 3.3.3 For the case when symmetric matrices XGJ ≥ 0 and YGJ ≥ 0, then PGJ =

PGA = PGS = PIG and QGJ = QGA = QGS = QIG. Otherwise PGJ < PIG and QGJ <

QIG. Moreover, frequency limited HSV satisfies: (λj[PGJQGJ ])1/2 ≤ (λj[PIGQIG])1/2.

3.4 Numerical examples

Numerical results of both continuous and discrete time standard systems are presented.

3.4.1 Continuous time case

Example 3.4.1 Consider a linear time invariant stable 6th order system with the following

state space representations

A =



−9 −29 −100 −82 −19 −2

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0


B =

[
1 0 0 0 0 0

]T
C =

[
0 0 0 0 −1 1

]
D = 0

The ROMs are obtained using Gawronski and Juang [29], Gugercin and Antoulas [30],

Ghafoor and Sreeram [8] and proposed techniques for limited frequency intervals [ω1, ω2]. It
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is observed that 4th order ROM obtained by Gawronski and Juang technique [29] is unstable

with poles −1.2229 ± 3.4602i, 0.1322 ± 2.7913i respectively, while ROMs calculated by

proposed and Gugercin and Antoulas [30], Ghafoor and Sreeram [8] techniques are stable

for the frequency interval [ω1, ω2] = [5, 8] rad/s.

Figure 3.1: σ [G(s)−Gr(s)] in the desired frequency range [ω1, ω2] = [2, 7] rad/sec.

Figure 3.1 compares the singular value plots for the error function, σ [G(s)−Gr(s)],

where Gr(s) are the 2nd order ROMs obtained using Gawronski and Juang [29], Gugercin

and Antoulas [30], Ghafoor and Sreeram [8] and proposed techniques for the frequency

range [ω1, ω2] = [2, 7] rad/sec. Figure 3.2 represents close up view of the error plot in the

desired frequency range.

Example 3.4.2 Consider the 6th order stable three mass mechanical system shown in Fig.

3.3, also studied in [8, 29]. The masses are m1 = 11, m2 = 5 and m3 = 10. The stiffnesses

k1 = k4 = 10, k2 = 50 k3 = 55 and dampings di = 0.01ki, i = 1, 2, 3, 4. The single input

u is applied giving f1 = u, f2 = 2u, f3 = 5u; the output is y = 2q1 − 2q2 + 3q3, where

qi is displacement of the ith mass, and fi is the force applied to that mass. The state space

representation of the system is
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Figure 3.2: Close up view of σ [G(s)−Gr(s)] in the desired frequency range [ω1, ω2] =
[2, 7] rad/sec.

Figure 3.3: Simple three mass mechanical system
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A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−5.4545 4.5455 0 −0.0545 0.0455 0

10 −21 11 0.1000 −0.2100 0.1100

0 5.5000 −6.5000 0 0.0550 −0.0650


B =

[
0 0 0 0.0909 0.4000 −0.5000

]T
C =

[
2 −2 3 0 0 0

]
D = 0

Figure 3.4: σ [G(s)−Gr(s)] in the desired frequency range [ω1, ω2] = [1, 5] rad/sec.

Figure 3.4 compares the σ [G(s)−Gr(s)], where Gr(s) are the 1st order ROMs obtained

using Gawronski and Juang [29], Gugercin and Antoulas [30], Ghafoor and Sreeram [8] and

proposed techniques for the frequency range [ω1, ω2] = [1, 5] rad/sec. Figure 3.5 represents

close up view of the error plot in the desired frequency range.

Example 3.4.3 Consider an 8th order stable analog Chebyshev type 1 bandpass filter with

20 dB of peak-to-peak ripple in the passband with following state space representation
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Figure 3.5: Close up view of σ [G(s)−Gr(s)] in the desired frequency range [ω1, ω2] =
[1, 5] rad/sec.

A =



−0.6490 −5.3691 0 0 3.8730 0 0 0

5.3691 0 0 0 0 3.8730 0 0

0 36.5054 −0.2688 −12.9391 0 0 3.8730 0

0 0 12.9391 0 0 0 0 3.8730

−3.8730 0 0 0 0 0 0 0

0 −3.8730 0 0 0 0 0 0

0 0 −3.8730 0 0 0 0 0

0 0 0 −3.8730 0 0 0 0


B =

[
14 0 0 0 0 0 0 0

]T
C =

[
0 0 0 0.0136 0 0 0 0

]
D = 0

Figure 3.6 compares the singular value plots for the error function, σ [G(s)−Gr(s)],

where Gr(s) are the 4th order ROMs obtained using Gawronski and Juang [29], Gugercin
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Figure 3.6: σ [G(s)−Gr(s)] in the desired frequency range [ω1, ω2] = [1, 10] rad/sec.

Figure 3.7: Close up view of σ [G(s)−Gr(s)] in the desired frequency range [ω1, ω2] =
[1, 10] rad/sec.

and Antoulas [30], Ghafoor and Sreeram [8] and proposed techniques for the frequency

range [ω1, ω2] = [1, 10] rad/sec. Figure 3.7 represents close up view of the error plot in the
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desired frequency range.

Example 3.4.4 Consider a 6th order stable analog Chebyshev type 2 highpass filter with

stopband ripple of 11 dB and stopband edge frequency of 11.3 Hz with following state space

representation

A =



0 7.2396 0 0 0 0

−7.2396 −10.9901 0 0 0 0

0 0 0 13.4910 0 0

−21.7779 −53.5399 −13.4910 −8.0453 0 0

0 0 0 0 0 17.6523

−34.6578 −85.2046 −3.8176 −12.8035 −17.6523 −2.9448


B =

[
0 7.2396 0 35.2689 0 56.1278

]T
C =

[
−0.6175 −1.5180 −0.0680 −0.2281 −0.0327 −0.0525

]
D = 0

Figure 3.8: σ [G(s)−Gr(s)] in the desired frequency range [ω1, ω2] = [10, 15] rad/sec.
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Figure 3.9: Close up view of σ [G(s)−Gr(s)] in the desired frequency range [ω1, ω2] =
[10, 15] rad/sec.

Figure 3.8 compares the singular value plots for the error function, σ [G(s)−Gr(s)], where

Gr(s) are the 3rd order ROMs obtained using Gawronski and Juang [29], Gugercin and

Antoulas [30], Ghafoor and Sreeram [8] and proposed techniques for the frequency range

[ω1, ω2] = [10, 15] rad/sec. Figure 3.9 represents close up view of the error plot in the desired

frequency range.

Discussion: It is observed from examples (3.4.1 - 3.4.4) that in the desired frequency in-

terval Gawronski and Juang technique mostly gives better approximation error, but it some-

times yields unstable ROMs as given in example 3.4.1. The proposed technique provides

comparatively good approximation as compared to Gugercin and Antoulas and Ghafoor and

Sreeram technqiues in the desired frequency interval. Gugercin and Antoulas and Ghafoor

and Sreeram and proposed techniques have the advantage of providing stable ROMs and

carry error bounds also.

3.4.2 Discrete time case

Example 3.4.5 Consider a 4th order stable discrete time system [23] represented by

G(z) =
z3

z4 + 1.1z3 − 0.01z2 − 0.275z − 0.06
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Table 3.1: The ROMs in the frequency range 0.3π to 0.5π

Techniques Order 1 Order 2

Wang and
Zilouch-
ian’s [90]

(0.9324)
(z + 1.5654)

(1.2281z − 1.2082)
(z + 1.7747)(z − 1.1679)

Algorithm
1 [87]

(1.2887)
(z + 0.8797)

(0.9793z + 0.2416)
(z + 0.7531)(z + 0.6818)

Algorithm
2 [87]

(1.1276)
(z + 0.9238)

(0.9785z + 0.2614)
(z + 0.7264 + 0.0502i)(z + 0.7264− 0.0502i)

Proposed (1.0677)
(z + 0.9315)

(0.9820z + 0.4569)
(z + 0.7962 + 0.1282i)(z + 0.7962− 0.1282i)

Table 3.1 shows the ROMs obtained by using Wang and Zilouchian’s [90], Ghafoor and

Sreeram’s algorithms (1 and 2) [87] and proposed techniques in the frequency range 0.3π to

0.5π respectively. Note that, the ROMs obtained for the first and second order are unstable

for Wang and Zilouchian’s [90] technique, whereas the Ghafoor and Sreeram’s algorithms

(1 and 2) [87] and proposed technique yields stable ROMs. The third order ROM (not shown

in table 3.1) obtained by these techniques is stable.

Example 3.4.6 Consider a 6th order stable discrete time system represented by

G(z) =

0.011z6 + 0.0635z5 + 0.1653z4 + 0.2169z3

+0.1565z2 + 0.7124z + 0.0882

z6 − 1.5z5 + 2.3z4 − 2.1z3 + 1.5z2 − 0.69z + 0.2

Fig. 3.10 represents the frequency response errors, σ[G(z) − Gr(z)], where Hr(z) is the

fourth order ROM produced by BT [1], Wang and Zilouchian’s [90], Ghafoor and Sreeram’s

algorithms (1 and 2) [87] and proposed techniques respectively. The frequency interval for

computing error response is 0.35π to 0.45π. Fig. 3.11 represents closeup view of frequency

response error.
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Figure 3.10: Frequency response error comparison of the ROMs

Figure 3.11: Frequency response error comparison - a closeup view
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Example 3.4.7 Consider a 6th order stable discrete time system represented by

G(z) =
z5 + 5z4 + 7z3 + 8z2 + 10z + 1

4z6 + 3.5z5 + 3z4 + 2z3 + 1.2z2 + z + 0.4

Figure 3.12: Frequency response error comparison of the ROMs

Figure 3.13: Frequency response error comparison - a closeup view

Fig. 3.12 represents the frequency response errors, σ[G(z) − Gr(z)], where Hr(z) is the

second order ROM produced by BT [1], Wang and Zilouchian’s [90], Ghafoor and Sreeram’s

algorithms (1 and 2) [87] and proposed techniques respectively. The frequency interval for
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computing error response is 0.5π to 0.7π. Fig. 3.13 represents closeup view of frequency

response error, where the unweighted BT plot is not shown because of its large value.

Example 3.4.8 Consider a 6th order stable discrete time system represented by

G(z) =

0.0107z6 + 0.0642z5 + 0.1595z4 + 0.2168z3

+0.1525z2 + 0.0704z + 0.0009

z6 − 1.4637z5 + 2.2838z4 − 2.0587z3

+1.4467z2 − 0.6746 + 0.1825

Figure 3.14: Frequency response with magnitude and phase error comparison of the ROMs

Fig. 3.14 represents the magnitude and phase of the frequency response errors, σ[G(z) −

Gr(z)], where Hr(z) is the fourth order ROM produced by using Wang and Zilouchian’s

[90], Ghafoor and Sreeram’s algorithms (1 and 2) [87] and proposed techniques respectively.

The frequency interval for computing error response is 0.37π to 0.42π. Fig. 3.15 represents

closeup view of the magnitude and phase of frequency response errors. It is observed that

the proposed technique compares well with other existing techniques when both magnitude

and phase of frequency response error are considered in the desired frequency interval. Note
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Figure 3.15: Frequency response with magnitude and phase error comparison - a closeup
view

that, the ROM obtained using Wang and Zilouchian’s technique is unstable having a pole at

z = 1.5699.

Discussion: It is observed (from examples 3.4.5 - 3.4.8) that in the desired frequency in-

terval Wang and Zilouchian’s technique gives better approximation error, but it sometimes

yields unstable ROMs as given in example 3.4.5. The proposed technique provides compar-

atively good approximation as compared to Ghafoor and Sreeram’s algorithms (1 and 2) in

the desired frequency interval. Ghafoor and Sreeram’s technique algorithms (1 and 2) and

proposed techniques have the advantage of providing stable ROMs and carry error bounds

also.

3.5 Conclusion

In this chapter, a FLMR technique for continuous and discrete time systems is proposed. The

ROMs obtained are guaranteed to be stable and error bounds are also available. The proposed

technique compares well with other existing FLMR techniques (including Gawronski and

Juang [29], Gugercin and Antoulas [30] and Ghafoor and Sreeram [8] for continuous time

case and Wang and Zilouchian’s [90], Ghafoor and Sreeram’s algorithms (1 and 2) [87] for

discrete time case) in the desired frequency interval.

In the next chapter, we extend FLMR results for generalized non-singular systems.
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Chapter 4

FLMR: Generalized Non-Singular Systems

4.1 Introduction

In this chapter we propose FLMR for generalized non-singular continuous and discrete time

systems.

Generalized descriptor systems find application in a variety of disciplines including elec-

trical circuits, power systems, multibody systems etc. [41, 56, 57]. Such systems are ex-

pressed in generalized state space representation with non-identity E matrix (please see eq.

4.1) instead of standard state space system where matrix E is identity. A generalized de-

scriptor systems may have singular or nonsingular matrix E.

Different techniques for the model reduction of generalized descriptor systems (with sin-

gular matrix E) exist in literature including BT technique [56, 57, 64], Krylov projection

techniques [58] etc. Likewise, techniques for different versions of generalized descriptor

systems for periodic, time varying systems, etc. also exist in literature [35, 91] and refer-

ences therein. However, there is no work in literature to the best of author’s knowledge

linked with limited frequency Gramians for generalized systems with nonsingular matrix E.

In this chapter (partially published in [13,14,18]), generalization of (Gawronski and Juang

[29], Gugercin and Antoulas [30], Ghafoor and Sreeram [8] limited frequency techniques

for continuous time and Wang and Zilouchian [90] and Ghafoor and Sreeram [87] limited

frequency techniques for discrete time) systems for generalized nonsingular systems are

proposed. Error bounds and numerical examples are also given.

4.2 Preliminaries

Consider a linear time invariant generalized stable continuous and discrete time system re-

spectively with following state space representation

Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(4.1)
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Ex(k + 1) = Ax(k) +Bu(k),

y(k) = Cx(k)+Du(k),
(4.2)

G(s) = C(sE − A)−1B +D (4.3)

G(z) = C(zE − A)−1B +D (4.4)

where E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m and {E,A,B,C,D} is its nth

order minimal realization. The system (4.1) is called the standard state space system if

E = I (where I is identity matrix). Otherwise, the system (4.1) is in generalized form and

is known as generalized state space system. A descriptor system is a special form of the

generalized state space system if E is singular. In this chapter, we consider a special case of

the generalized form of the system (4.1) with nonsingular matrix E.

MOR problem for the generalized system (with nonsingular E matrix) (4.1) is to find

a ROM

Continuous time

Erẋr(t) = Arxr(t) +Bru(t)

yr(t) = Crxr(t) +Dru(t)

Discrete time

Erxr(k + 1) = Arxr(k) +Bru(k)

yr(k) = Crxr(k) +Dru(k)

where Er, Ar ∈ Rr,r, Br ∈ Rr,m, Cr ∈ Rp,r Dr ∈ Rp,m and r < n. It is assumed that the

pencil λE − A is regular, i.e., det(λE − A) 6= 0 for some λ ∈ C.

One can easily convert system (4.1) into the standard state space system as following

Continuous time

 ẋ(t) = E−1Ax(t) + E−1Bu(t)

y(t) = Cx(t) +Du(t)

Discrete time

x(k + 1) = E−1Ax(k) + E−1Bu(k)

y(k) = Cx(k) +Du(k)

However, in the MOR scenario, this transformation is not feasible due to: (i) in transfor-

mation based model reduction, transformation is applied to the original system state space

realization, to balance the system, and for truncation. (ii) for practical system models, guar-

anteeing E = I is not easy unless we transform. In case of transformation, the structure

of the original system realization is not maintainable. (iii) converting generalized form of

system (4.1) with nonsingular matrix to a standard state space E = I , may cause large errors
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at an early stage of computation possibly due to ill-conditioning of E [31] (iv) for large scale

systems computation of E−1 is expensive, hence not feasible.

Following examples somehow elaborate few of above limitations.

Example 4.2.1 Consider a third order stable generalized system satisfying eq. (4.1)

E=


1 0 5

2 4 1

1 0 6

 , A=


−20 4 2

3 −4 2

2 2 −7

 , B=


2

0

1

 , C=
[

1 0 0
]
, D=0

with regular pencil and magnitude of eigenvalues are −144.4727,−0.3668 and −1.6605

respectively.

Since with matrix E is non-singular, we can convert it into standard state space system

like

Â=E−1A=


−130 14 47

60.25 −7.50 −20.75

22 −2 −9

 , B̂=E−1B=


7

−3.25

−1

 , C=
[

1 0 0
]
, D=0

The transformation matrix obtained for original realization is

T =


−0.3291 −0.2381 −2.8789

0.0236 −0.5737 1.1638

−0.3425 −0.4831 0.5374


while transformation matrix obtained by standard state space system is

T̂ =


−1.9623 1.7712 −0.1096

0.9189 −0.9049 −1.4244

−0.2273 −0.7878 0.4631

 .
When these two different transformations obtained are applied to the original realization,

we will get two different ROMs. Moreover, transformation matrix obtained by standard state

space system in present scenario when applied to original realization will not give us ROM

in generalized form. Hence, structure of original system realization is not maintainable in

ROMs.
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Example 4.2.2 Consider the example 4.2.1 with following non-singular matrix E

E =


1 0 5

2 4 1

1 0 4.98


The condition number for matrix E is 2909. Although, matrix E is non-singular but it is ill

conditioned and may cause large round off errors.

4.3 Gramians of generalized non-singular system

For a system of eq. (4.1), let PG and QG be the generalized Gramians for continuous time

systems are as follows:

PG =
1

2π

∫ +∞

−∞
(jωE − A)−1BBT (−jωET − AT )−1dω (4.5)

QG =
1

2π

∫ +∞

−∞
ET(−jωET − AT )−1CTC(jωE − A)−1Edω

= ET Q̂GE (4.6)

where

Q̂G =
1

2π

∫ +∞

−∞
(−jωET − AT )−1CTC(jωE − A)−1dω

which satisfy the following generalized Lyapunov equations:

APGE
T + EPGA

T = −BBT (4.7)

ATE−TQG +QGE
−1A = −CTC (4.8)

AT E−TQGE
−1︸ ︷︷ ︸

Q̂G

E + ET E−TQGE
−1︸ ︷︷ ︸

Q̂G

A = −CTC (4.9)

where QG = ET Q̂GE.

Similarly, let PG and QG be the generalized Gramians for discrete time systems, are given

by
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PG =
1

2π

∫ π

−π
(ejωE − A)−1BBT (e−jωET − AT )−1dω (4.10)

QG =
1

2π

∫ π

−π
ET (e−jωET − AT )−1CTC(ejωI − A)−1Edω (4.11)

= ET Q̂GE

where

Q̂G =
1

2π

∫ π

−π
(e−jωET − AT )−1CTC(ejωI − A)−1dω

The Gramians PG and QG satisfies the following Lyapunov equations

APGA
T − EPGET = −BBT (4.12)

ATE−TQGE
−1A− ETE−TQGE

−1E = −CTC

AT E−TQGE
−1︸ ︷︷ ︸

Q̂G

A− ET E−TQGE
−1︸ ︷︷ ︸

Q̂G

E = −CTC (4.13)

Note that, we do not require to compute E−1. It has been shown in [36, 37, 38, 39], that

for a stable generalized system with regular pencil, the Gramians PG and QG have unique

Hermitian, positive semidefinite solutions of generalized Lyapunov equations (4.7) and (4.9).

4.4 Generalized balanced truncation technique

The following section presents the generalized BT technique [31]. BT for the generalized

nonsingular system is related to generalized controllability and observability Gramians (4.5)

and (4.6). These Gramians are the solution of generalized Lyapunov equations (4.7) and

(4.8). As the pencil λE−A is assumed to be stable, PG andQG are positive semi definite and

there exists factorization PG = MTM and QG = NTN . Matrices M and N are cholesky

factors of the Gramians.

By considering the singular value decomposition (SVD) of the product MNT as

MNT = UΣV T =
[
U1 U2

] Σ1 0

0 Σ2

 V T
1

V T
2


where the matrices U , Σ and V T are partitioned at a given reduced dimension r such that

Σ1 = diag(σ1, ..., σr), Σ2 = diag(σr+1, ..., σn), σi ≥ 0 for all i and σr > σr+1. Notice that
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σ1, σ2, ..., σn are the HSV of the system.

Now in order to find the ROM of a given system, we use balancing free square root

BT algorithm because it provides more accurate ROMs in the presence of rounding errors

[42, 43]. After SVD calculation of MNT , QR factorization are computed.

MTU1 =
[
K1 K2

] R̃

0

 , NTV1 =
[
L1 L2

] R̄

0


whereK1, L1 ∈ <n×r have orthonormal columns and R̃, R̄ ∈ <r×r are upper triangular. The

ROM in generalized state space form is obtained as

(Er, Ar, Br, Cr, Dr) = (LT1K1, L
T
1E
−1AK1, L

T
1E
−1B,CK1, D)

The realization obtained by above algorithm satisfies [31, 40]

‖G(s)−Gr(s)‖∞ ≤ 2
n∑

j=r+1

σj

4.5 A generalization of Gawronski and Juang’s FLMR technique

Gawronski and Juang [29] (its discrete time version Wang and Zilouchian [90]) proposed

FLMR technique for the standard state space system. Here, we generalize the Gawronski

and Juang [29] FLMR technique.

4.5.1 Continuous time systems

Let us define the generalized frequency domain controllability interval Gramian PGGJ and

observability interval Gramian QGGJ respectively as

PGGJ =
1

2π

∫
δω

(jωE − A)−1BBT (−jωET − AT )−1dω (4.14)

QGGJ =
1

2π

∫
δω

ET (−jωET − AT )−1CTC(jωE − A)−1Edω (4.15)

where δω is the integration interval [−ω2 −→ −ω1] and [ω1 −→ ω2] and ω2 > ω1. These

Gramians satisfy the following generalized Lyapunov equations
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APGGJE
T + EPGGJA

T = −BBTF ∗ET − EFBBT = −XGGJ (4.16)

AT E−TQGGJE
−1︸ ︷︷ ︸

ˆQGGJ

E + ET E−TQGGJE
−1︸ ︷︷ ︸

ˆQGGJ

A = −CTCFE − ETF ∗CTC = −YGGJ

(4.17)

where QGGJ = ET ˆQGGJE and

F =
1

2π

∫
δω

(jωE − A)−1dω (4.18)

The Gramians PGGJ and QGGJ obtained by above Lyapunov equations are used in calcula-

tion of matrices M and N , which are further used to obtain ROM as elaborated in section

4.4.

Next, we elaborate the process of computing Gramians PGGJ and QGGJ of equations

(4.16), (4.17) respectively.

For controllability Gramian eq. (4.7), can be written as

(jωE − A)PGE
T + EPG(−jωET − AT ) = BBT

Pre-multiplying by (jωE −A)−1, post-multiplying by (−jωET −AT )−1 and integrating

both sides yields

1

2π

∫
δω

PGE
T (−jωET − AT )−1dω +

1

2π

∫
δω

(jωE − A)−1EPGdω =

1

2π

∫
δω

(jωE − A)−1BBT (−jωET − AT )−1dω (4.19)

Substituting eq. (4.18) and eq. (4.14) in eq. (4.19) yields

PGE
TF ∗ + FEPG = PGGJ (4.20)

where F ∗ is conjugate transpose of F . Note that, AFE = EFA, which is shown as follow-
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ing:

AFE =
1

2π

∫
δω

A(jωE − A)−1Edω

=
1

2π

∫
δω

(
E−1 (jωE − A)A−1

)−1
dω

=
1

2π

∫
δω

(
jωA−1 − E−1

)−1
dω

=
1

2π

∫
δω

(
A−1 (jωE − A)E−1

)−1
dω

=
1

2π

∫
δω

E(jωE − A)−1Adω

= EFA

Now using eq. (4.12) and substituting eq. (4.32) in left hand side of eq. (4.24) yields right

hand side of eq. (4.24) as follows:

APGGJE
T + EPGGJA

T = A
(
PGE

TF ∗ + FEPG
)
ET + E

(
PGE

TF ∗ + FEPG
)
AT

= APGE
TF ∗ET + EPGE

TF ∗AT + AFEPGE
T + EFEPGA

T

= APGE
TF ∗ET + EPGA

TF ∗ET + EFAPGE
T + EFEPGA

T

= (APGE
T + EPGA

T )F ∗ET + EF (APGE
T + EPGA

T )

= −BBTF ∗ET − EFBBT

Similarly for observability Gramian, from eq. (4.9) we have,

(
−jωET − AT

)
E−TQGE

−1E + ETE−TQGE
−1 (jωE − A) = CTC

Pre-multiplying byET (−jωET−AT )−1, post-multiplying by (jωE−A)−1E and integrating

both sides yields

1

2π

∫
δω

QGE
−1E(jωE − A)−1Edω +

1

2π

∫
δω

(−jωET − AT )−1ETE−TQMdω =

1

2π

∫
δω

ET (−jωET − AT )−1CTC(jωE − A)−1Edω

QGFE + ETF ∗QG = QGGJ (4.21)

Now by substituting value of eq. (4.21) in left hand side of eq. (4.17) yields right hand

side of eq. (4.17).
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Remark 4.5.1 Multiple frequency intervals can be considered for approximation. For ex-

ample, for two intervals [ωa, ωb] and [ωc, ωd], ωa < ωb < ωc < ωd, the integration range δω

involve integration from [−ωd −→ −ωc], [−ωb −→ −ωa], [ωa −→ ωb] and [ωc −→ ωd].

Remark 4.5.2 The symmetric matrices XGGJ and YGGJ are not guaranteed to be positive

semidefinite, therefore the ROMs obtained by generalized Gawronski & Juang technique are

not guaranteed to be stable.

4.5.2 Discrete time systems

In order to derive generalized Wang and Zilouchian’s technique (a discrete time counter part

of Gawronski and Junag [29]) for nonsingular discrete time system, let us define the gener-

alized frequency domain controllability interval Gramian PGWZ and observability interval

Gramian QGWZ respectively as

PGWZ =
1

2π

∫
δω

(ejωE − A)−1BBT (e−jωET − AT )−1dω

=
1

2π

∫
δω

(E− Ae−jω)−1BBT (ET −AT ejω)−1dω (4.22)

QGWZ =
1

2π

∫
δω

ET(e−jωET − AT )−1CTC(ejωE − A)−1Edω

=
1

2π

∫
δω

ET (ET − AT ejω)−1CTC(E − Ae−jω)−1Edω (4.23)

where δω is the integration interval [ω1, ω2] and 0 ≤ ω1 ≤ ω2 ≤ π. These Gramians PGWZ

and QGWZ are the solution of following Lyapunov equations

APGWZA
T − EPGWZE

T = −XGWZ (4.24)

AT E−TQGWZE
−1︸ ︷︷ ︸

Q̂GWZ

A− ET E−TQGWZE
−1︸ ︷︷ ︸

Q̂GWZ

E = −YGWZ (4.25)

where QGWZ = ET Q̂GWZE and

XGWZ = BBTF ∗ + FBBT (4.26)

YGWZ = CTCF + F ∗CTC (4.27)

F = −∆ω

4π
I + EF1 (4.28)
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and

F1 =
1

2π

∫
δω

(E − Ae−jω)−1dω (4.29)

Let

T TQGWZT = T−1PGWZT
−T =


σ1 0 · · · 0

0 σ2 · · · 0

· · · · · · . . . · · ·

0 0 · · · σn


where σj ≥ σj+1, j = 1, 2, . . . , n − 1, σr > σr+1 and T is a contragredient matrix. The

ROMs are calculated by partitioning the transformed original system realization. Next, we

elaborate the process of computing Gramians (4.24) and (4.25) respectively. From eq. (4.12),

we can write

APG(e
−jωET −AT ) + (ejωE −A)PGET e−jω = −(ejωE −A)PG(e−jωET −AT ) +

EPG(e
−jωET −AT )ejω + (ejωE −A)PGe−jωET = BBT (4.30)

Pre-multiplying by (e−jωE − A)−1, post-multiplying by (e−jωET − AT )−1 and integrating

both sides of equation (4.30) yields

− 1

2π

∫
δω
PGdω +

1

2π

∫
δω
(ejωE −A)−1EPGe

jωdω +
1

2π

∫
δω
PGE

T (e−jωET −AT )−1e−jωdω

=
1

2π

∫
δω
(ejωE−A)−1BBT (e−jωET−AT )−1dω

− 1

2π

∫
δω
PGdω +

1

2π

∫
δω
(E −Ae−jω)−1EPGdω +

1

2π

∫
δω
PGE

T (ET −AT ejω)−1dω

=
1

2π

∫
δω
(ejωE−A)−1BBT (e−jωET−AT )−1dω (4.31)

Substituting eq. (4.29) and eq. (4.22) in eq. (4.31)

− ∆ω

2π
PG + F1EPG + PGE

TF1
∗ = PGWZ (4.32)
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where F1
∗ is conjugate transpose of F1. Now substituting the value of eq. (4.32) in eq. (4.24)

yields

APGWZA
T − EPGWZE

T = A

(
−∆ω

2π
PG + F1EPG + PGE

TF1
∗
)
AT −

E

(
−∆ω

2π
PG + F1EPG + PGE

TF1
∗
)
ET

= −∆ω

2π
{APGAT − EPGET}+ AF1EPGA

T −

E(F1EPG)ET + APGE
TF1

∗AT − E(PGE
TF1

∗)ET

= −∆ω

2π
{APGAT − EPGET}+ EF1APGA

T −

E(F1EPG)ET + APGA
TF1

∗ET − E(PGE
TF1

∗)ET

= −∆ω

2π
{APGAT − EPGET}+ EF1{APGAT −

EPGE
T}+ {APGAT − EPGET}F1

∗ET

=
∆ω

2π
BBT − EF1BB

T −BBTF1
∗ET

=
∆ω

4π
BBT +BBT ∆ω

4π
− EF1BB

T −BBTF1
∗ET

= −(−∆ω

4π
I + EF1)BBT −BBT (−∆ω

4π
I + F1

∗ET )

= −FBBT −BBTF ∗

Note that, AF1E = EF1A, which can be shown as follows:

AF1E =
1

2π

∫
δω

A(E − Ae−jω)−1Edω

=
1

2π

∫
δω

(
E−1

(
E − Ae−jω

)
A−1

)−1
dω

=
1

2π

∫
δω

(
A−1 − E−1e−jω

)−1
dω

=
1

2π

∫
δω

(
A−1

(
E − Ae−jω

)
E−1

)−1
dω

=
1

2π

∫
δω

E(E − Ae−jω)−1Adω

= EF1A

Similar process can be followed for computing observability Gramian of eq. (4.25).

Remark 4.5.3 The symmetric matrices XGWZ and YGWZ obtained by the above procedure

may not gurantee positive semidefiniteness, hence the ROMs calculated by generalized Wang

and Zilouchian method may not be stable. This limitation of XGWZ and YGWZ sometimes
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causes hinderence in the balancing process. This is due to the fact that the controllability

PGWZ and observability QGWZ Gramians are not guaranteed to be positive definite (when

XGWZ � 0 and YGWZ � 0). Some more discussion on this topic is included in numerical

examples section.

4.6 A generalization of Gugercin and Antoulas’s FLMR technique

The stability problem of Gawronski and Juang [29] technique (that the ROMs stability is not

always guaranteed) was solved by Gugercin and Antoulas [30] for standard systems. The

discrete time version of [30] was proposed by Ghafoor and Sreeram [87] Algorithm 1. In

the following, we generalize Gugercin and Antoulas [30] FLMR technique (and its discrete

time version [87]) to address stability problem of generalized Gawronski and Juang [29]

technique. Let the new controllability Gramian PGGA and observability Gramian QGGA be

obtained as solutions to the generalized Lyapunov equations

APGGAE
T + EPGGAA

T +BGGAB
T
GGA = 0 (4.33)

ET E−TQGGAE
−1︸ ︷︷ ︸

Q̂GGA

A+ AT E−TQGGAE
−1︸ ︷︷ ︸

Q̂GGA

E+ CT
GGACGGA = 0 (4.34)

are used to obtain matrices M and N , which are further used to obtain ROM as elaborated

in section 4.4.

Similarly, for generalized discrete time case, the Lyapunov equations become

APGGAA
T − EPGGAET +BGGAB

T
GGA = 0 (4.35)

AT E−TQGGAE
−1︸ ︷︷ ︸

QGGA

A− ET E−TQGGAE
−1︸ ︷︷ ︸

QGGA

E + CT
GGACGGA = 0 (4.36)

The matrices BGGA and CGGA in the above generalized Lyapunov equations are input

and output matrices obtained as BGGA = UGGA|SGGA|1/2 and CGGA = |RGGA|1/2V T
GA,

respectively. The terms UGGA, SGGA, VGGA, and RGGA are acquired from the EVD

of matrices XGGJ = UGGASGGAU
T
GGA and YGGJ = VGGARGGAV

T
GGA, where SGGA =

diag(s1, s2, . . . , sn), RGGA = diag(r1, r2, . . . , rn), |s1| ≥ |s2| ≥ · · · ≥ |sn−1| ≥ |sn| ≥ 0

and |r1| ≥ |r2| ≥ . . . |rn−1| ≥ |rn| ≥ 0. The ROMs are calculated by partitioning the

transformed realization. Since XGGJ ≤ BGGAB
T
GGA ≥ 0, YGGJ ≤ CT

GGACGGA ≥ 0 and

the minimal realization (E,A,BGGA, CGGA) is obtained, hence the ROM is guaranteed to be
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stable.

Remark 4.6.1 Let

LGGA = CVGGAdiag(|r1|−
1
2 , |r2|−

1
2 , · · · , |rni|−

1
2 , 0, · · · , 0) (4.37)

KGGA = diag(|s1|−
1
2 , |s2|−

1
2 , · · · , |sno|−

1
2 , 0, · · · , 0)UT

GGAB (4.38)

where ni = rank [XGGJ ] and no = rank [YGGJ ].

a. If rank [BGGA B] = rank [BGGA], then B = BGGAKGGA.

b. If rank

 CGGA

C

 = rank [CGGA], then C = LGGACGGA.

The existence of these rank conditions can be shown in a similar way as in [26]. It is also

shown in [26] that conditions given in a. and b. are almost always true.

Theorem 4.6.1 The following error bounds holds

‖G(s)−Gr(s)‖∞ ≤ 2‖LGGA‖‖KGGA‖
n∑

j=r+1

σi

‖G(z)−Gr(z)‖∞ ≤ 2‖LGGA‖‖KGGA‖
n∑

j=r+1

σi

Proof: By partitioning BGGA =

 BGGA1

BGGA2

 , CGGA =
[
CGGA1 CGGA2

]
and substi-

tuting Br = BGGA1KGGA, Cr = LGGACGGA1 respectively yields

‖G(s)−Gr(s)‖∞

= ‖C(sE−A)−1B−Cr(sE−Ar)−1Br‖∞

= ‖LGGACGGA(sE − A)−1BGGAKGGA − LGGACGGA1(sE − Ar)−1BGGA1KGGA‖∞

= ‖LGGA(CGGA(sE − A)−1BGGA − CGGA1(sE − Ar)−1BGGA1)KGGA‖∞

≤ ‖LGGA‖‖CGGA(sE − A)−1BGGA − CGGA1(sE − Ar)−1BGGA1‖∞‖KGGA‖

If {Ar, BGGA1 , CGGA1} is ROM obtained by partitioning a balanced realization

{A,BGGA, CGGA}, we have from [31, 40]

‖CGGA(sE − A)−1BGGA − CGGA1(sE − Ar)−1BGGA1‖∞ ≤ 2
n∑

i=r+1

σi.
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The result follows. The proof of discrete time version follows similarly.

4.7 A generalization of Ghafoor and Sreeram’s FLMR technique

Inspired by Ghafoor and Sreeram [8] modification to Gugercin and Antoulas [30] technique

(a discrete time version of [8] appears in [87] Algorithm 2), we propose a modification

to the generalized Gugercin and Antoulas technique by reducing the distance between the

Gramians, PGGA − PGGJ and QGGA − QGGJ . Let PGGS be the new controllability and

and QGGS be the observability Gramians respectively, are calculated as the solutions to the

following Lyapunov equations:

APGGSE
T + EPGGSA

T +BGGSB
T
GGS = 0 (4.39)

ET E−TQGGSE
−1︸ ︷︷ ︸

Q̂GGS

A+ AT E−TQGGSE
−1︸ ︷︷ ︸

Q̂GGS

E + CT
GGSCGGS = 0 (4.40)

are used to obtain matrices M and N , which are further used to obtain ROM as elaborated

in section 4.4. Similarly, for generalized discrete time case, the Lyapunov equation becomes

APGGSA
T − EPGGSET +BGGSB

T
GGS = 0 (4.41)

AT E−TQGGSE
−1︸ ︷︷ ︸

QGGS

A− ET E−TQGGSE
−1︸ ︷︷ ︸

QGGS

E + CT
GGSCGGS = 0 (4.42)

The new fictitious matrices BGGS and CGGS shown in eq. (4.39) and (4.40) are de-

fined as BGGS = UGGS1S
1/2
GGS1

and CGGS = R
1/2
GGS1

V T
GGS1

, respectively. The terms

UGGS1 , SGGS1 , VGGS1 , and RGGS1 are calculated by the orthogonal EVD of matrices

XGGJ =
[
UGGS1 UGGS2

] SGGS1 0

0 SGGS2

 UT
GGS1

UT
GGS2


YGGJ =

[
VGGS1 VGGS2

] RGGS1 0

0 RGGS2

 V T
GGS1

V T
GGS2



where

 SGGS1 0

0 SGGS2

 = diag(s1, s2, · · · , sn),

 RGGS1 0

0 RGGS2

 = diag(r1, r2, · · · , rn), s1 ≥ s2 ≥ · · · ≥ sn, r1 ≥ r2 ≥ · · · ≥ rn,

SGGS1 = diag(s1, s2, · · · , sl), RGGS1 = diag(r1, r2, · · · , rl), s1 ≥ s2 ≥ · · · ≥ sl > 0, r1 ≥
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r2 ≥ · · · ≥ rl > 0. The ROMs are calculated by partitioning the transformed realization.

Since XGGJ ≤ BGGSB
T
GGS ≤ BGGAB

T
GGA ≥ 0, YGGJ ≤ CT

GGSCGGS ≤ CT
GGACGGA ≥ 0

and the realization {E,A,BGGS, CGGS} is minimal, the stability of the ROM is guaranteed.

Remark 4.7.1 Let

LGGS = CVGGS1R
− 1

2
GGS1

(4.43)

KGGS = S
− 1

2
GGS1

UT
GGS1

B. (4.44)

a. If rank [BGGS B] = rank [BGGS], then B = BGGSKGGS .

b. If rank

 CGGS

C

 = rank [CGGS], then C = LGGSCGGS .

The existence of these rank conditions can be shown in a similar way as in [26].

Theorem 4.7.1 The following error bound holds

‖G(s)−Gr(s)‖∞ ≤ 2‖LGGS‖‖KGGS‖
n∑

j=r+1

σi

‖G(z)−Gr(z)‖∞ ≤ 2‖LGGS‖‖KGGS‖
n∑

j=r+1

σi

Proof: By partitioningBGGS =

 BGGS1

BGGS2

 , CGGS =
[
CGGS1 CGGS2

]
and substituting

Br = BGGS1KGGS , Cr = LGGSCGGS1 respectively yields

‖G(s)−Gr(s)‖∞

= ‖C(sE−A)−1B−Cr(sE−Ar)−1Br‖∞

= ‖LGGSCGGS(sE − A)−1BGGSKGGS − LGGSCGGS1(sE − Ar)−1BGGS1KGGS‖∞

= ‖LGGS(CGGS(sE − A)−1BGGS − CGGS1(sE − Ar)−1BGGS1)KGGS‖∞

≤ ‖LGGS‖‖CGGS(sE − A)−1BGGS − CGGS1(sE − Ar)−1BGGS1‖∞‖KGGS‖

If {Ar, BGGS1 , CGGS1} is ROM obtained by partitioning a balanced realization

{A,BGGS, CGGS}, we have from [31, 40]

‖CGGS(sE − A)−1BGGS − CGGS1(sE − Ar)−1BGGS1‖∞ ≤ 2
n∑

i=r+1

σi.
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Table 4.1: The errors and error bounds for the ROMs.

Techniques
r Generalized

Gawronski &
Juang

Generalized
Gugercin &
Antoulas

Generalized
Ghafoor &
Sreeram

Error Error Bound Error Bound
1 0.0038 0.0037 0.0105 0.0038 0.0045
2 Unstable 0.0011 0.0032 0.0010 0.0012

The result follows. The proof of discrete time version follows similarly.

4.8 Numerical examples

Numerical results for both continuous and discrete time generalized non-singular systems

are presented.

4.8.1 Continuous time case

Example 4.8.1 Consider a third order stable generalized system satisfying eq. (4.1)

E =


4 0 0

0.5 2 0

0 0 1

 , A =


−4 1 2

1 −8 1

2 1 −20

 , B =


1

0

1

 , C =
[

1 0 0
]
, D = 0

with regular pencil and magnitude of eigenvalues are −20.0741,−0.8788 and −4.1096 re-

spectively.

Table 4.1 shows error and error bounds for ROMs obtained by using generalized Gugercin

and Antoulas and Ghafoor and Sreeram techniques for the frequency range [ω1, ω2] =

[22, 25] rad/s. Moreover, table 4.1 also shows errors obtained by using generalized Gawron-

ski and Juang technique.

Table 4.2 shows the ROMs obtained by using generalized Gawronski and Juang, gen-

eralized Gugercin and Antoulas and generalized Ghafoor and Sreeram techniques for the

frequency range [ω1, ω2] = [22, 25] rad/s. Note that the ROM obtained for second order is

unstable for generalized Gawronski and Juang technique whereas the generalized Gugercin

and Antoulas and generalized Ghafoor & Sreeram techniques yield stable ROMs.

Fig. 4.1 shows the comparison of the singular values plot for the error function

σ[G(s) − Gr(s)], where Gr(s) is the second order ROM obtained using different general-
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Table 4.2: The ROMs obtained for generalized Gawronski and Juang , generalized Gugercin
and Antoulas and generalized Ghafoor and Sreeram techniques in the desired frequency
range [ω1, ω2] = [22, 25] rad/sec

Techniques Order 1 (reduced model) Order 2 (reduced model)

Generalized
Gawronski &
Juang

0.268
(s+ 0.8943)

0.2681s− 0.015
(s− 0.057)(s+ 0.8828)

Generalized
Gugercin &
Antoulas

0.2681
(s+ 0.8947)

0.2684s+ 0.2846
(s+ 0.8551)(s+ 1.0933)

Generalized
Ghafoor &
Sreeram

0.2861
(s+ 1.018)

0.2861s+ 0.1989
(s+ 0.7271)(s+ 1.0212)

Figure 4.1: Singular values plot for the error function σ[G(s) − Gr(s)] in the desired fre-
quency interval [ω1, ω2] = [0.1, 10]rad/s.
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Figure 4.2: Closeup view of singular values plot for the error function σ[G(s) − Gr(s)] in
the desired frequency interval [ω1, ω2] = [0.1, 10]rad/s.

Figure 4.3: Closeup view of singular values plot for the error function σ[G(s) − Gr(s)] in
the desired frequency interval [ω1, ω2] = [20, 25]rad/s.
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ized schemes e.g. generalized BT, generalized Gawronski and Juang, generalized Gugercin

and Antoulas and generalized Ghafoor and Sreeram techniques for the frequency interval

[ω1, ω2] = [0.1, 10] rad/s. Fig. 4.2 and Fig. 4.3 show the closeup view of error plots in the

desired frequency range for the second and first order ROM respectively. Note that in the

desired frequency range generalized Gawronski and Juang technique yields better approxi-

mation as compared to other techniques, however it can yield unstable ROMs.

Example 4.8.2 For error bound calculation, we have considered a sixth order stable gener-

alized system satisfying eq. (4.1)

E =



4 0 1 0 0 0

0 3 0 0 0 0

1 0 1 0 0 0

0 0 0 4 0 1

0 0 0 0 2 0

0 0 0 1 0 1


,

A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−5.4545 4.5455 0 −0.0545 0.0455 0

10 −21 11 0.1000 −0.2100 0.1100

0 5.5000 −6.5000 0 0.0550 −0.0650


BT =

[
0 0 0 0.0909 0.4000 −0.5000

]
C =

[
2 −2 3 0 0 0

]
, D = 0

with regular pencil and magnitude of eigenvalues are −0.0632 + 3.7631i,−0.0632 −

3.7631i,−0.0405+1.6629i,−0.0405−1.6629i,−0.0012+0.2372i and−0.0012−0.2372i

respectively.

Table 4.3 shows errors and error bounds for the ROMs obtained using generalized

Gugercin and Antoulas and Ghafoor and Sreeram techniques for the frequency range

[ω1, ω2] = [1, 5] rad/s. Moreover, table 4.3 also shows errors obtained by using the gen-

eralized Gawronski and Juang technique.
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Table 4.3: The errors and error bounds for the ROMs.

Generalized
r Gawronski &

Juang
Gugercin &
Antoulas

Ghafoor &
Sreeram

Error Error Bound Error Bound
1 21.3363 21.4377 235.551 21.4718 47.080
2 5.3301 5.3305 28.2643 5.3306 8.9963
3 5.2505 5.2758 20.8997 5.2444 6.3184
4 0.2008 5.1884 13.6711 3.1392 3.6980
5 0.1963 4.9643 6.7526 1.5995 1.8107

Discussion: Note that in the above examples (4.8.1 - 4.8.2) ROMs obtained by generalized

Gawronski and Juang technique provide better approximation error in the desired frequency

band, but it may not guarantee stability of ROMs. Although, generalized Gugercin and An-

toulas technique may provide large approximation error in the desired frequency range, but

it has the advantage of providing stable ROMs. Generalized Ghafoor and Sreeram tech-

nique provides stable ROMs that gives better approximation error as compared to general-

ized Gugercin and Antoulas technique.

4.8.2 Discrete time case

Example 4.8.3 Consider a 4th order original stable generalized nonsingular discrete time

system with state space representation [E,A,B,C,D] where

E =


1 0 0.5 0

0.6 1 0 0

0.2 0 2 0.2

0.2 0 0 2



A =


0.2650 −.6974 0.2011 −0.2819

1 0 0 0

0 1 0 0

0 0 1 0


, B =


1

0

0

0


C =

[
2.1463 −0.3652 0.1734 −0.2591

]
, D = 1
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Table 4.4: The ROMs obtained for generalized Wang and Zilouchian’s, generalized Ghafoor
and Sreeram’s methods Algorithm (1 and 2) in the desired frequency range 0.2π to 0.8π

Methods Reduced system of order 1 Reduced system of order 2

Generalized
Wang &
Zilouch-
ian’s

(z + 1.9465)
(z + 1.4042)

(z + 7.9251)(z + 0.5523)
(z − 0.1766 + 0.6620i)(z − 0.1766− 0.6620i)

Generalized
Ghafoor &
Sreeram’s
Algorithm
1

(z + 1.6898)
(z + 0.9265)

(z + 2.9635)(z + 0.4140)
(z − 0.3080 + 0.7434i)(z − 0.3080− 0.7434i)

Generalized
Ghafoor &
Sreeram’s
Algorithm
2

(z + 0.7480)
(z + 0.7380)

(z + 10.2877)(z + 0.6855)
(z − 0.0989 + 0.3859i)(z − 0.0989− 0.3859i)

Table 4.4 shows ROMs obtained by using generalized Wang and Zilouchian’s method,

generalized Ghafoor and Sreeram’s method Algorithms (1 and 2) in the frequency range 0.2

π to 0.8 π respectively. Note that ROM obtained for first order is unstable for generalized

Wang and Zilouchian’s method whereas the generalized Ghafoor and Sreeram’s method Al-

gorithms (1 and 2) yield stable ROMs. The reduced 3rd order ROM (not shown in table 4.4)

obtained by each method is stable.

Example 4.8.4 Consider the same system used for example 4.8.3 with following matrix E

with following state space representation [E,A,B,C,D] where

E =


2 0.25 0 0

0 1 0.5 0

0 0 1 0.5

0 0 0 2


Fig. 4.4 and Fig. 4.6 represent the frequency response G(z) and Fig. 4.5 and Fig. 4.7

represents frequency response errors (σ[G(z)−Gr(z)]), for the second and third order ROMs

obtained by proposed generalized methods in the frequency range 0.5 π to 0.9 π respectively.
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Figure 4.4: Frequency response comparison of original and the ROMs

Figure 4.5: Frequency response error comparison of the ROMs
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Figure 4.6: Frequency response comparison of original and the ROMs

Figure 4.7: Frequency response error comparison of the ROMs
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Moreover, original system frequency response in the frequency range 0 to π is also included

in Fig. 4.4 and Fig. 4.6.

Example 4.8.5 Consider an 8th order original stable generalized nonsingular discrete time

system with state space representation [E,A,B,C,D] where

E =



6 1 0 4 0 0 1 0

0 5 0 0 2 0 1 0

0 0 4 0 0 1 0 0

0 1 0 3 0 1 0 1

0 1 0 0 2 0 1 0

0 0 0 1 0 2 0 0

0 1 0 2 1 0 3 0

1 0 0 1 0 0 0 2



,

A =



1.0025 −0.9479 0.8402 −1.2326 0.7154 −0.5542 0.2343 −0.1642

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0



,

B =
[

1 0 0 0 0 0 0 0
]T

C =
[

0.0675 −0.3329 0.0565 0.3208 0.0481 −0.3064 0.0158 0.0562
]
,

D = 0.0673

Fig. 4.8 represents the frequency responses for second order ROMs obtained by gener-

alized Wang and Zilouchian method and generalized Ghafoor and Sreeram’s method Algo-

rithms (1 and 2) in the frequency range 0.3 π to 0.6 π. Moreover, Fig. 4.8 also includes

original system frequency response in the frequency range 0 to π. Fig. 4.9 and Fig. 4.10

represent the frequency response errors for the second and fourth order ROMs produced
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Figure 4.8: Frequency response comparison of original and the ROMs

Figure 4.9: Frequency response error comparison of the ROMs
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Figure 4.10: Frequency response error comparison of the ROMs

by generalized Wang and Zilouchian’s method, generalized Ghafoor and Sreeram method

Algorithms (1 and 2) respectively, in the frequency range 0.3 π to 0.6 π.

Example 4.8.6 Consider a 20th order original stable generalized nonsingular discrete time

system with state space representation [E,A,B,C,D] where

E =

 E1 E2

ET
2 E3

 ,where E1 =



10 7 4 2 1

0 8 5 1 1

1 5 7 0 2

1 2 3 6 1

1 0 0 0 4


, E2 = 05×15, E3 = I15×15

A =

 A1

A2

 ,where

A1 = [−2.8156 − 1.9564 0.1688 − 2.8071 − 6.7556 − 4.3113 − 1.7602 − 4.4958

−6.0439− 4.0588 − 3.0452 − 3.3386 − 2.8658 − 2.0864 − 1.5842 − 1.0681

−0.6456 − 0.4648− 0.2843 − 0.0829]

A2 =
[
I19×19 019×1

]
B =

[
1 01×19

]T
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C = [−0.0346 − 0.1470 0.0021 0.5189 − 0.0831 − 1.5288 − 0.0216 2.5273

−0.0743 − 3.149− 0.0374 2.5415 − 0.0352 − 1.5014 − 0.0195 0.5403

−0.0079 − 0.1287 − 0.0035 0.0113]

D = 0.0123

Figure 4.11: Frequency response comparison of original and the ROMs

Figure 4.12: Frequency response comparison of original and the ROMs
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Fig. 4.11 and Fig. 4.12 represent frequency response and frequency response errors for the

seventh order ROMs obtained by generalized Ghafoor and Sreeram’s method Algorithms (1

and 2) in the frequency interval 0.5 π to 0.7 π respectively. Moreover, Fig. 4.12 also includes

original system frequency response in the frequency range 0 to π.

Discussion: It is observed that in the desired frequency interval generalized Wang and

Zilouchian’s method yields lower approximation error but it may give unstable ROMs. Gen-

eralized Ghafoor and Sreeram’s method Algorithms (1 and 2) provide comparable results

and have the advantage of providing stable ROMs. The numerical comparison of general-

ized Wang and Zilouchian method is not shown in example 4.8.6 because of limitation of

symmetric matrices XGWZ and YGWZ which become indefinite and thereby cause hinder-

ance in the balancing procedure. Due to this limitation, the controllability Gramian PGWZ is

not positive definite e.g. some eigenvalues of PGWZ in example 4.8.6 are−0.0404,−0.0038,

−0.0016, −0.0013, −0.0003, −0.0001. Likewise observability Gramian QGWZ is also not

positive definite e.g. some eigenvalues of QGWZ in example 4.8.6 are −0.0384, −0.0030,

−0.0012, −0.0010, −0.0004, −0.0004, −0.0001. So balancing using generalized Wang and

Zilouchian method in example 4.8.6 is not possible.

4.9 Conclusion

In this chapter, three existing FLMR techniques including Gawronski and Juang [29],

Gugercin and Antoulas [30] and Ghafoor and Sreeram [8] for continuous time systems and

the following three discrete time (Wang and Zilouchian’s [90], Ghafoor and Sreeram’s al-

gorithms (1 and 2) [87]) FLMR techniques (previously proposed for standard state space

systems) are modified for generalized nonsingular systems, are presented. The comparison

of results shows that although generalized Gawronski and Juang technique may sometimes

yield unstable ROMs, but it gives a better approximation as compared to other two tech-

niques. Generalized Gugercin and Antoulas and generalized Ghafoor and Sreeram tech-

niques provide stable ROMs and have error bounds. Moreover, the generalized Wang and

Zilouchian method may produce unstable ROMs but generalized Ghafoor and Sreeram’s

method Algorithms (1 and 2) always yield stable ROMs for discrete time systems.

In the next chapter, we further generalize the results for descriptor (singular) systems.
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Chapter 5

FLMR: Generalized Descriptor Systems

5.1 Introduction

Descriptor systems find their presence in a number of applications which include semidis-

cretization of partial differential equations, multi-body dynamics with constraints, electrical

circuit simulation and micro-electro-mechanical system [44, 45, 46, 47, 48, 49]. The deriva-

tion of a reasonable mathematical model is fundamental to obtain a good understanding of

the dynamical behavior of a physical system in question or to control its behavior in order

to achieve desired performance specifications. In practice, modelling of complex systems

(such as chip design, fluid flow, mechanical systems simulation) yield very large scale de-

scriptor systems. Despite the advancement of technology and the ever increasing compu-

tational speed, the analysis, control and optimization of large scale systems is challenging

(if not impossible) due to expensive computations and storing requirements. Therefore,

generating low-dimensional or ROMs that provide a good estimate of the original full or-

der system has caught a lot of attention in both mathematical and engineering communi-

ties [10, 51, 52, 53, 54, 88].

Currently, there exist many methods for model reduction of descriptor systems [56,57,58].

Some of these methods are based on Krylov subspaces [3,55]. Although, these methods have

been applied successfully for several different applications of microsystem design and circuit

simulations, however, these methods yield good local estimates, but do not provide global

error bounds.

BT (a popular technique which has been previously proposed for standard state space sys-

tems [1]) has also been extended to descriptor systems [56]. This extension is based on the

analysis of improper and proper Gramians defined as solutions of the projected generalized

Lyapunov equations [56, 57]. Some important properties of the BT model reduction tech-

nique include preservation of stability and existence of an a priori error bound for the ROM.

The frequency response error tend towards zero at very high frequencies, but it is generally
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non-zero at very low frequencies. A reverse statement is true in the BSPA case [59].

Ideally, one would like to have the small reduction error for all frequencies. Since, in many

practical scenarios, it is desirable that in certain frequency intervals the ROMs have small

frequency response errors. Gawronski and Juang [29] introduced a scheme for standard state

space systems, where the frequency weights are explicitly not predefined and approximation

is considered in a given frequency interval.

To the best of authors knowledge, FLMR for descriptor systems has never been considered

in literature. In this chapter, we present FLMR scheme (partially published in [15]) for gen-

eral descriptor systems. The method generalizes the results by [29] for large-scale descriptor

systems using frequency interval Gramians. Simple algorithms are also given for preserving

the stability of ROMs. The work also extends Poor Man’s truncated balanced realization

(PMTBR) scheme [61] to incorporate FLMR (proposed EPMTBR) for descriptor systems.

Note that (as also pointed out in [62]), PMTBR method uses only controllability Gramian,

therefore it works well for symmetric systems where controllability and observability ma-

trices are same. But it may not work well for general (unsymmetrical systems like RLC

interconnect systems) descriptor systems. However, since EPMTBR considers both control-

lability and observability Gramians, therefore, it works even for non-symmetrical systems.

Practical numerical examples are also incorporated to show the successful application of the

proposed method in the desired frequency range.

5.2 Preliminaries

Let nth order continuous-time linear time-invariant system with transfer function

G(s) = C(sE − A)−1B +D (5.1)

where E,A ∈ <n,n, B ∈ <n,m, C ∈ <p,n, D ∈ <p,m. Here, n is the order of system

(5.1), m is the number of inputs and p is the number of outputs. If E = I , then (5.1)

is a standard state space system, else, system (5.1) is called a generalized state space

system or a descriptor system. This may include a singular or non-singular matrix E. Some

work linked with model reduction of small scale systems having non-singular E matrix

appears in [18]. However, this paper deals with the model reduction of generalized large

scale descriptor systems, irrespective of E is singular or non-singular.
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A MOR problem for the system (5.1) consists in finding a ROM

Gr(s) = C̃r(sẼr − Ãr)−1B̃r + D̃ (5.2)

where r is the dimension of ROM such that r � n. Assume that the pencil λE − A is

regular, i.e., det(λE − A) 6= 0 for some λ ∈ C. Then there exist nonsingular matrices Tl

and Tr such that

E = Tl

 Inf
0

0 N

Tr, A = Tl

 Af 0

0 In∞

Tr, (5.3)

where N and Af are in Jordan canonical form matrices, where N is a nilpotent matrix of

nilpotency index ν, see [63]. Af contains finite eigenvalues of λE − A and N contains

eigenvalue at infinity. Since n∞ and nf are the dimensions of infinite and finite eigenvalues

associated with the deflating subspaces of pencil λE −A respectively, and ν be the index of

the pencil λE − A. The matrices

Pr = T−1
r

 Inf
0

0 0

Tr, Pl = Tl

 Inf
0

0 0

T−1
l (5.4)

are the spectral projectors against the left and right deflating subspaces of the pencil λE−A

associated with the finite eigenvalues along the left and right deflating subspaces correspond-

ing to the eigenvalues at infinity [57]. Furthermore, Qr = I − Pr and Ql = I − Pl are

complementary projectors.

Consider the descriptor system (5.1) with the regular matrix pencil λE − A. A trans-

fer function shown in (5.1) maps the input-output relation in the frequency domain. The

transfer function G(s) is said to be proper if lims→∞G(s) < ∞, and it is strictly proper if

lims→∞G(s) = 0. Let the matrices

B = Tl

 Bf

B∞

 , C = [Cf , C∞ ]Tr (5.5)

be partitioned accordingly to E and A in (5.3). Then the transfer function G(s) can be

separated as G(s) = Gsp(s) + P(s), where Gsp(s) = Cf (sI − Af )−1Bf and

P(s) = C∞(sN − I)−1B∞ +D = −
ν−1∑
i=0

C∞N
iB∞s

i +D
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are, correspondingly, the strictly proper part and the polynomial part of G(s). Clearly, G(s)

is said to be proper if and only ifC∞N iB∞ = 0 for i ≥ 1. It is strictly proper, if, additionally,

−C∞B∞ +D = 0.

Consider the proper observability Gpo and controllability Gpc Gramians (of the system

(5.1)

Gpo =
1

2π

∫ ∞
−∞

(−ιωE − A)−TP T
r C

TCPr(ιωE − A)−1dω, (5.6)

Gpc =
1

2π

∫ ∞
−∞

(ιωE − A)−1PlBB
TP T

l (−ιωE − A)−Tdω, (5.7)

are the symmetric, unique, positive semidefinite solutions of the projected continuous-time

algebraic Lyapunov equations (PCALEs) [56]

ETGpoA+ ATGpoE = −P T
r C

TCPr, Gpo = P T
l GpoPl, (5.8)

E GpcAT + AGpcET = −PlBBTP T
l , Gpc = PrGpcP T

r , (5.9)

Moreover, the improper observability Gio and controllability Gic Gramians

Gio =
1

2π

∫ 2π

0

(e−ιωE−A)−TQT
r C

TCQr(e
ιωE−A)−1dω. (5.10)

Gic =
1

2π

∫ 2π

0

(eιωE−A)−1QlBB
TQT

l (e−ιωE−A)−Tdω, (5.11)

are symmetric, unique, positive semidefinite solutions of the projected discrete-time alge-

braic Lyapunov equations

ATGioA− ETGioE = QT
r C

TCQr, Gio = QT
l GioQl. (5.12)

AGicAT − E GicET = QlBB
TQT

l , Gic = QrGicQT
r , (5.13)

From the improper and proper Gramians, we can define the improper and proper HSV of

the descriptor system (5.1) that are of great interest in BT model reduction. The improper

HSV θj are defined as the square roots of the largest n∞ eigenvalues of GicATGioA, while

the proper HSV σj the square roots of the largest nf eigenvalues of the matrix GpcETGpoE.

The BT approach for the model reduction of the descriptor system (5.1) is to transform given
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system into a balanced form such that

Gpc = Gpo = diag(σ1, . . . , σnf
, 0, . . . , 0),

Gic = Gio = diag( 0, . . . , 0, θ1, . . . , θn∞)

and to truncate the states associated with zero improper and small proper HSV. Note that the

equations that represent the improper HSV define a manifold in which the solution dynamics

take place. Thus, a truncation of the states associated with the small nonzero improper HSV

may cause an inaccurate approximation [64].

5.3 Proposed technique

5.3.1 Frequency limited proper Gramians

Let Gpcf and Gpof be the frequency limited proper controllability and observability Gramians

of the system (5.1) defined via

Gpcf =
1

2π

∫
δω

(ιωE − A)−1PlBB
TP T

l (−ιωE − A)−Tdω, (5.14)

Gpof =
1

2π

∫
δω

(−ιωE − A)−TP T
r C

TCPr(ιωE − A)−1dω, (5.15)

where

δω =

q⋃
j=1

([−βj,−αj] ∪ [αj, βj])

is the frequency range of operation with 0 ≤ α1 < β1 < α2 < β2 < · · · < αq < βq. For

simplicity, we will consider the frequency interval δω = [−β,−α] ∪ [α, β] only. Note that

the integration interval should be symmetric with respect to zero. This will guarantee that the

Gramians Gpcf and Gpof are real, symmetric and positive semidefinite. In the special case,

when α1 = 0 and β1 = ∞, the Gramians Gpcf and Gpof coincide with the proper Gramians

Gpc and Gpo, respectively. For E = I , the Gramians in (5.14) and (5.15) are the frequency

limited Gramians for standard state space systems considered in [29].

The following proposition shows that the frequency limited Gramians are the solutions of

certain projected Lyapunov equations.

Proposition 5.3.1 The frequency limited proper Gramians Gpcf and Gpof defined as in (5.14)
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and (5.15), respectively, satisfy the PCALEs

E GpcfAT + AGpcfET = −E FPlBBTP T
l − PlBBTP T

l F
TET , Gpcf = PrGpcfP T

r , (5.16)

ET GpofA+ ATGpofE = −ETF TP T
r C

TCPr − P T
r C

TCPrFE, Gpof = P T
l GpofPl, (5.17)

where

F =
1

2π

∫
δω

(ιωE − A )−1 dω. (5.18)

Proof First of all note that the matrix F in (5.18) is real. Indeed,

F̄ =
1

2π

∫ −α
−β

(−ιωE − A )−1 dω +
1

2π

∫ β

α

(−ιωE − A )−1 dω

=
1

2π

∫ β

α

(ιωE − A )−1 dω +
1

2π

∫ −α
−β

(ιωE − A )−1 dω= F.

We now show the following relations

Gpcf = FE Gpc + GpcETF T , (5.19)

Gpof = F TET Gpo + GpoEF, (5.20)

between the frequency limited proper Gramians Gpcf and Gpof and the proper Gramians Gpc

and Gpo. From the PCALE (5.9) we have

PlBB
TP T

l = −E GpcAT − AGpcET

= E Gpc(−ιωET − AT ) + (ιωE − A)GpcET .

Pre-multiplying and post-multiplying the both sides of this equation by (ιωE − A)−1 and

(−ιωET − AT )−1, respectively, and integrating on δω, we obtain (5.19). The equation

(5.20) can be derived analogously from the PCALE (5.8).

Further, we obtain from (5.19) that

E GpcfAT + AGpcfET = EFE GpcAT + EGpcETF TAT + AFE GpcET +AGpcETF TET .

(5.21)
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Next we show that AFE = EFA. Indeed, using Weierstrass canonical form (5.3) we get

EFA =
1

2π

∫
δω

E(ιωE − A)−1Adω

=
1

2π

∫
δω

Tl

(ιωI − Af )−1Af 0

0 N(ιωN − I)−1

Tr dω
=

1

2π

∫
δω

Tl

Af (ιωI − Af )−1 0

0 (ιωN − I)−1N

Tr dω
=

1

2π

∫
δω

A(ιωE − A)−1Edω = AFE.

Hence, we can continue (5.21) as

E GpcfAT + AGpcfET = EF
(
E GpcAT + AGpcET

)
+
(
EGpcAT + AGpcET

)
F TET

= −EFPlBBTP T
l − PlBBTP T

l F
TET .

Equation Gpcf = PrGpcfP T
r can be verified using the Weierstrass canonical form (5.3), (5.4)

and (5.14). Thus, Gpcf satisfies the PCALE (5.16). Equation (5.17) follows similarly from

(5.20).

An energy interpretation of the frequency limited Gramians of standard state space sys-

tems appears in [60]. The result can be extended for descriptor systems in a straightforward

way.

5.3.2 Proposed algorithms

Similar to [56], the proper frequency limited singular values ξj of the descriptor system

(5.1) are calculated by taking square roots of the largest nf eigenvalues of the matrix

GpcfETGpofE. The FLMR method for (5.1) is to transform given system into a balancing

form such that
Gpcf = Gpof = diag(ξ1, . . . , ξnf

, 0, . . . , 0),

Gic = Gio = diag( 0, . . . , 0, θ1, . . . , θn∞)

and truncation the states associated with the small ξj and zero θj . Consider the following

algorithm.

Algorithm 1 FLMR.

Given the original full order stable system [E, A, B, C, D ] such that λE − A is regular,

i.e., det(λE − A) 6= 0 for some λ ∈ C and a frequency range δω
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1. Calculate Rp and Lp by the Cholesky factorization of the frequency limited proper

Gramians

Gpcf = RpR
T
p and Gpof = LpL

T
p .

2. Calculate Ri and Li by the Cholesky factorization of improper Gramians Gic = RiR
T
i

and Gio = LiL
T
i which satisfies (5.13) and (5.12), respectively.

3. Calculate the SVD for proper part

LTpERp = [Up1, Up2 ]

 Σp1 0

0 Σp2

 [Vp1, Vp2 ]T , (5.22)

where the matrices [Up1, Up2 ] and [Vp1, Vp2 ] consist of orthonormal columns, Σp1 =

diag(ξ1, . . . , ξ`f ) and Σp2 = diag(ξ`f+1, . . . , ξrp) with rp = rank(LTpERp).

4. Calculate SVD for improper part

LTi ARi = Ui3Θi3V
T
i3 ,

where Vi3 and Ui3 consists of orthonormal columns, also Θi3 = diag(θ1, . . . , θ`∞)

with `∞ = rank(LTi ARi).

5. Calculate the ROM

[ Ẽr, Ãr, B̃r, C̃r, D̃ ] = [W T
1 ET, W

T
1 AT, W

T
1 B, CT, D ]

with the projection matrices

W1 = [LpUp1Σ
−1/2
p1 , LiUi3Θ

−1/2
i3 ],

T =[RpVp1Σ
−1/2
p1 , RiVi3Θ

−1/2
i3 ].

Since the ROM has the system matrices of the form

Ẽ =

 I`f 0

0 Ẽ∞

 , Ã =

 Ãf 0

0 I`∞

 , B̃ =

 Σ
−1/2
p1 UT

p1L
T
pB

Θ
−1/2
i3 UT

i3L
T
i B

 =

 B̃f

B̃∞

 ,
C̃ =

[
CRpVp1Σ

−1/2
p1 , CRiVi3Θ

−1/2
i3

]
=
[
C̃f , C̃∞

]
,
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where
Ãf = Σ

−1/2
p1 UT

p1L
T
pARpVp1Σ

−1/2
p1 ,

Ẽ∞ = Θ
−1/2
i3 UT

i3L
T
i ERiVi3Θ

−1/2
i3 .

By making use of Weierstrass canonical form (5.3) and (5.4), (5.5), the Cholesky factoriza-

tion of the improper Gramians is determined as

Ri = T−1
r

 0 0 · · · 0

−B∞ −NB∞ · · · −Nν−1B∞

 ,
Li = T−Tl

 0 0 · · · 0

−CT
∞ −NTCT

∞ · · · −(N ν−1)TCT
∞

 .
Then the matrix LTi ERi can be written as

LTi ERi =


C∞NB∞ · · · C∞N

ν−1B∞ 0

... 0
...

C∞N
ν−1B∞ 0 · · · ...

0 · · · · · · 0


.

Thus, if the system (5.1) is proper, then LTi ERi = 0 and, hence, Ẽ∞ = 0. Here, the ROM

transfer function takes the form

G̃(s) = C̃f (sI − Ãf )−1B̃f − C̃∞B̃∞ +D.

Since the matrixE FPlBB
TP T

l +PlBB
TP T

l F
TET in (5.16) and the matrixETF TP T

r C
TCPr+

P T
r C

TCPrFE in (5.17) may not fulfill the condition of positive semidefiniteness, hence the

stability of the ROM calculated via Algorithm 1 is not guaranteed. In order to guarantee

the stability of the ROM, we combine the proper Gramians Gpc and Gpo with the frequency

limited Gramians Gpof and Gpcf , respectively, as presented in the following algorithms.

Algorithm 2 Stability-preserving FLMR.

Given the original stable full order system [E, A, B, C, D ] such that λE − A is regular,

i.e., det(λE − A) 6= 0 for some λ ∈ C and a frequency range δω

1. Calculate Rp and Lp by the Cholesky factorization of the Gramians Gpo = LpL
T
p . and

Gpcf = RpR
T
p respectively.

2)-5) The same as in Algorithm 1.
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Algorithm 3 Stability-preserving FLMR.

Given the original stable full order system [E, A, B, C, D ] such that λE − A is regular,

i.e., det(λE − A) 6= 0 for some λ ∈ C and a frequency range δω

1. Calculate Rp and Lp by the Cholesky factorization of the Gramians Gpof = LpL
T
p and

Gpc = RpR
T
p respectively.

2)-5) The same as in Algorithm 1.

Proposition 5.3.2 The ROMs calculated by using Algorithms 2 and 3 are asymptotically

stable.

proof The proof follows similarly to one given in [5] for one-sided FWMR case.

In case of a symmetric descriptor system (5.1) with E = ET , A = AT and B = CT ,

Algorithms 2 and 3 yield the same result. Moreover, for any general descriptor system (5.1),

when δω = (−∞,∞), the proposed algorithms yield the same results as in [57].

5.3.3 Computation of frequency limited Gramians

In the following section we elaborate the process for calculation of the Cholesky factors of

the frequency limited Gramians Gpcf and Gpof .

Since the right-hand sides in the projected Lyapunov equations (5.16) and (5.17) are pos-

sibly indefinite, we cannot use these equations to compute the required Cholesky factors

directly without actually computing the frequency limited Gramians as it is done in clas-

sical BT [57, 65]. Moreover, the representations (5.19) and (5.20) are also useless since it

involves computation of Gramians Gpc and Gpo which are not preferred in large-scale system

case. Moreover, the matrix F involves the computation of the integral over the desired fre-

quency range. Further research/investigation is necessary for computing Cholesky factors

of frequency limited Gramians Gpcf and Gpof obtained using equations (5.16) and (5.17) or

(5.19) and (5.20).

Therefore, we determine the Cholesky factors of Gpcf and Gpof by evaluating the integrals

(5.14) and (5.15) using a quadrature formula with nodes ωj and weights γj .
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So for application of quadrature rules, the Gramian Gpcf in (5.14) can be approximated as

Gpcf ≈
1

2π

k∑
j=1

γj
{

(ιωjE − A)−1PlBB
TP T

l (−ιωjE − A)−T

+(−ιωjE − A)−1PlBB
TP T

l (ιωjE − A)−T
}
. (5.23)

Assuming that all γj are positive, we rewrite (5.23) as

Gpcf ≈ 1
2

[
B1, B̄1, . . . , Bi, B̄i

] [
B1, B̄1, . . . , Bi, B̄i

]∗
, (5.24)

where Bj =
√
γj/π(ιωjE − A)−1PlB. Since the number of columns of B and the num-

ber of nodes ωj are typically less as compared to the state-space order n [65] the ma-

trix in the right-hand side in (5.24) is referred as a low-rank approximation of Gpcf and

1/
√

2
[
B1, B̄1, . . . , Bi, B̄i

]
is its low-rank Cholesky factor. Note that this factor is com-

plex. However, taking into account

[
Bj, B̄j

] [
Bj, B̄j

]∗
= 2
[
Re(Bj), Im(Bj)

][
Re(Bj), Im(Bj)

]T
,

we obtain Gpcf ≈ R̃pR̃
T
p with a real low-rank Cholesky factor

R̃p =
[
Re(B1), . . . , Re(Bi), Im(B1), . . . , Im(Bi)

]
. (5.25)

Similarly, the Gramian Gpof can be approximated as Gpof ≈ L̃pL̃
T
p , where

L̃p =
[
Re(C1), . . . , Re(Ci), Im(C1), · · · , Im(Ci)

]
(5.26)

with Cj =
√
γj/π(−ιωjE − A)−TP T

r C
T .

A major difficulty in the computation of the frequency limited proper Gramians is that

the spectral projectors Pl and Pr are needed. However, in several applications including,

multibody systems with constraints, electrical circuits and computational fluid dynamics,

due to the special form of the matrices E and A, this form can be exploited to obtain the

projectors Pl and Pr in explicit form, see [65]. Hence, in the following section it is assumed

that these projectors are given.

5.4 Proposed extended version of PMTBR method (EPMTBR)

In this section we propose extended version of PMTBR method [61] and compare it with the

FLMR technique.
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The proposed EPMTBR method is based on balancing the symmetric, positive semidefi-

nite matrices

GPMc =
1

2π

∫
δω

(ιωE − A)−1BBT (−ιωE − A)−Tdω,

GPMo =
1

2π

∫
δω

(−ιωE − A)−TCTC(ιωE − A)−1dω.

Note that these matrices are related to the frequency limited Gramians as

Gpcf = PrGPMc P T
r , Gpof = P T

l GPMo Pl.

Using the same approach as in Section 5.3.3, GPMc and GPMo can be approximated by low-

rank matrices GPMc ≈ RRT and GPMo ≈ LLT , where

R =
[
Re(B̂1), . . . , Re(B̂i), Im(B̂1), . . . , Im(B̂i)

]
,

L =
[
Re(Ĉ1), . . . , Re(Ĉi), Im(Ĉ1), · · · , Im(Ĉi)

]
with the matrices B̂j =

√
γj/π(ιωE−A)−1B and Ĉj =

√
γj/π(−ιωE − A)−TCT . There-

fore,

LTER = LT (Pl +Ql)E(Pr +Qr)R

= LTPlEPrR + LTQlEQrR

= LTpERp + LTQlEQrR.

Using (5.3), (5.4) and (5.5), we obtain that the matrix LTQlEQrR has the form

LTQlEQrR =
1

π

[
√
γjγq

ν−1∑
i=0

αjq,iC∞N
i+1B∞

]2i,2i

j,q=1

,

where αjq,i are real scalars depending on ωj and ωq.

If the system (5.1) transfer function G(s) is proper, then LTQlEQrR = 0 and LTER has

the same SVD as LTpERp. Here the proposed EPMTBR provides the ROM

ẼPM = W T
PMETPM, ÃPM = W T

PMATPM,

B̃PM = W T
PMB, C̃PM = CTPM, D̃PM = D,

where WPM = LUp1Σ
−1/2
p1 and TPM = RVp1Σ

−1/2
p1 . We obtain

ẼPM = I, ÃPM = Ãf + Âf , B̃PM = B̃f + B̂f , C̃PM = C̃f + Ĉf ,
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where
Âf =

1

π
Σ
−1/2
p1 UT

p1

[√
γjγq C∞B∞

]2i,2i
j,q=1

Vp1Σ
−1/2
p1 ,

B̂f =
1

π
Σ
−1/2
p1 UT

p1 [
√
γ1 I, . . . ,

√
γi I, 0, . . . , 0 ]T C∞B∞,

Ĉf =
1

π
C∞B∞ [

√
γ1 I, . . . ,

√
γi I, 0, . . . , 0 ]Vp1Σ

−1/2
p1 .

Thus, if G(s) is strictly proper then the FLMR and EPMTBR methods provide the same

ROM. However, if G(s) is the proper system but not strictly proper then the result may be

different.

5.5 Numerical examples

In the following section we will demonstrate some numerical illustrative examples to show

the usefulness of the suggested model reduction methods for descriptor systems. In order to

apply these methods, we incorporate two separate models: a semidiscretized Stoke’s equa-

tion and inlet flow system.

As elaborated in section 5.3.3, we require to determine the cholesky factors of Gpcf and

Gpof by evaluating the integrals (5.14) and (5.15) using a quadrature formula with nodes ωj

and weights γj . For this purpose, different quadrature rules e.g. Trapezoidal, Boole and

Gauss are explored. Trapezoidal and Boole quadrature rules make use of equal spacing

between the nodes. Gauss quadrature rule has the flexibility of using (optimal) spacing

between nodes [66], and hence gives relatively good results as compared to Trapezoidal and

Boole. The difference between Boole and Gauss is in the process of calculation of weights

and nodes. We have included results using Boole and Gauss quadrature rules. The procedure

for the calculation of weights and nodes for quadrature formulas are shown in [67]. Similarly,

the procedure for calculation of spectral projectors Pl and Pr for the large scale systems used

in following examples has been discussed in [65].

Example 5.5.1 Semidiscretized Stoke’s equation

Consider the system that represents the flow mechanism of an incompressible liquid de-

scribed by semidiscritized Stoke’s equation. The model description for the above system is

given in [57]. By using the finite element method, Stoke’s equations lead to the descriptor
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system (5.1)

E =

 E11 0

0 0

 , A =

 A11 A12

AT12 0

 , B =
[
BT

1 , B
T
2

]T
, C = [C1, C2 ] , D = 0,

where E11 is nonsingular and A12 has full column rank. By making use of given form,

the projectors Pr and Pl for the right and left deflating subspaces of the pencil λE − A

are calculated in [65]. In our experiments, the full order descriptor system is of order

n = 17175. The dimensions of infinite and finite eigenvalues of deflating subspaces are

n∞ = 11550 and nf = 5625, respectively.

For the model reduction of the semidiscretized Stokes equation, we will utilize the FLMR

method described in Algorithm 1, where the desired frequency interval is

δω =
[
−104,−102

]
∪
[
102, 104

]
and Rp and Lp obtained by Cholesky factorization of the frequency limited proper Gramians

are replaced by the low-rank Cholesky factors, R̃p and L̃p as in (5.25) and (5.26), respec-

tively. For computing these factors we use the composite Boole quadrature with 9, 25 and

49 equidistant nodes. Moreover, results are also obtained using Gauss quadrature rule.

Figure 5.1: Approximate low-rank frequency limited HSV of Stoke’s equation.

Fig. 5.1 shows low-rank proper frequency limited HSV ξj using 9, 25 and 49 equidistant
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Figure 5.2: Frequency response plot for the full order and the ROM.

Figure 5.3: Frequency response absolute errors between the full order and the ROM using
Boole quadrature rule.

nodes composite Boole quadrature. Note that Boole quadrature rule approximates integral

function slightly better than the trapezoidal quadrature rule. Moreover, the integral function

approximation slightly improves with more samples as compared to less samples for given

frequency intervals.

Similar results are also obtained using Gauss quadrature rule. Note that, the non-zero
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Figure 5.4: Frequency response absolute errors between the full order and the ROM using
Gauss quadrature rule.

Figure 5.5: Comparison between Boole and Gauss Rule using 49 points [ω1, ω2] =
[102, 104]rad/s.

singular values for a given quadrature are not more than twice the points due to contributions

of positive and negative frequency intervals.

An approximation of the Stoke’s equation by a model of order r = 18 (`f = 17, `∞ =

1) is calculated by using the frequency limited balance truncation method. The frequency

responses of the absolute values of the full order and the ROMs are presented in Fig. 5.2.
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Figure 5.6: Frequency response error between the full order and ROM using the proposed
EPMTBR and proposed FLMR techniques

The results in Fig. 5.2 are difficult to differentiate. Fig. 5.3, represents the absolute errors

‖G(ιω) − G̃(ιω)‖2 for a frequency interval of δω ∈ [ 10−2, 108 ], where the calculation of

ROM G̃(ιω) involves 9, 25 and 49 equidistant nodes composite Boole quadrature rule. Note

that, there is a significant improvement in approximation error in the case of 49 (as compared

to 9 and 25) equidistant nodes composite Boole quadrature rule.

Fig. 5.4 shows the absolute error plot for the reduced system using 9, 25 and 49 points

Gauss rule. In this case there is a slight improvement of approximation error in the case of

49 (as compared to 9 and 25) points Gauss rule.

Fig. 5.5 shows the comparison of the error plot obtained by using 49 points Boole and

Gauss rule. Note that, 49 points Gauss quadrature rule shows improved error performance

in comparison to 49 points Boole quadrature rule. Note that, absolute errors are smaller in

the desired frequency range δω ∈ [ 102, 104 ].

A numerical comparison between proposed EPMTBR and proposed FLMR techniques using

Gauss quadrature rule is shown in Fig. 5.6.

Example 5.5.2 Supersonic inlet flow system

We consider unsteady flow through a supersonic diffuser system as described in [46]. The

model is of order n = 11730 and has 1 input and 2 outputs. The dimensions of the infinite and

finite eigenvalues of the deflating subspaces are n∞ = 407 and nf = 11323, respectively.
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Figure 5.7: Frequency response plot for the full order and the ROM.

Figure 5.8: Frequency response absolute errors between full order and ROM using Boole
quadrature rule.

We approximate the supersonic inlet flow system by a system of order r = 9 (`f = 8, `∞ =

1) calculated by the frequency limited balance truncation method. Frequency responses for

absolute values of the full order and the ROMs are presented in Fig. 5.7. The results in Fig.

5.7 are difficult to differentiate. Fig. 5.8 represents the absolute error plot ‖G(ιω)−G̃(ιω)‖2
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Figure 5.9: Frequency response absolute errors between full order and ROM using Gauss
quadrature rule.

Figure 5.10: Comparison between Boole and Gauss rule using 25 points [ω1, ω2] =
[0.1, 1]rad/s.

for a frequency interval δω ∈ [ 10−2, 101 ], where the calculation of ROM G̃(ιω) involves

9, 25 and 49 equidistant nodes composite Boole quadrature rule. Note that, in this case there

is a significant improvement in approximation error 49 equidistant nodes composite Boole

quadrature rule (as compared to 9 and 25) equidistant nodes composite Boole quadrature

rule.
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Fig. 5.9 shows the absolute error plot for the ROM using 9, 25 and 49 points Gauss rule.

Note that in this case 25 points gives better results as compared to (9 and 49) points Gauss

rule. Fig. 5.10 shows the comparison of the error plot obtained by using 25 points Boole and

Gauss rule.

Note that absolute errors are smaller in the desired frequency range δω ∈ [ 0.1, 1 ]. It is

observed in [68] that by increasing the order of the system, Gauss quadrature weights show

fluctuations and therefore affect the overall results, this can also be inferred from Fig. 5.9.

5.6 Conclusion

In this chapter, for a large-scale descriptor systems, we have presented FLMR method using

generalized results of [29] for frequency interval Gramians. Stability is preserved using

algorithm 2 and 3. Existing PMTBR method is also extended to include frequency limited

Gramians. The effectiveness of the proposed method in the desired frequency range is shown

using practical numerical examples. The frequency response error in the desired frequency

range is reduced.

In the next chapter we propose TLMR techniques.
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Chapter 6

TLMR: New Techniques

6.1 Introduction

In this chapter we propose TLMR techniques for continuous time systems.

Many practical MOR problems are inherently dependent upon time intervals [70, 71].

Sometimes, it is required to approximate the original high-order system better in specified

time interval than over the entire time range. In order to address this problem, Gawronski

and Juang [29] proposed a time limited balanced model order reduction technique, based

on time-limited controllability and observability Gramians. However, the disadvantage of

this technique is it may yield unstable models for stable original systems. Furthermore,

the frequency response error bounds are also not available for this technique. To overcome

the instability problem, Gugercin and Antoulas [69] proposed a modified procedure based

on [26] from which the frequency response error bounds can also be obtained easily.

In this chapter, modifications to Gawronski and Juang [29] TLMR are proposed. These

modified techniques (partially appear in [17]) not only ensure stability of ROMs but also

provide comparable error and frequency response error bounds. Numerical examples are

also given to show the usefulness of the proposed techniques. The results are compared with

the existing TLMR techniques.

6.2 Preliminaries

Consider a linear time invariant continuous time system

G(s) = C(sI − A)−1B +D, (6.1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m and {A,B,C,D} is its nth order

minimal realization with m inputs and p outputs. The problem of MOR is to to find

Gr(s) = C1(sI − A11)−1B1 +D, (6.2)
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which approximates the original system (in the desired time interval [t1, t2] where t2 > t1),

where A11 ∈ Rr×r, B1 ∈ Rr×m, C1 ∈ Rp×r, D ∈ Rp×m with r < n.

Let P and Q be the controllability and observability Gramians

P =

∫ ∞
0

eAτBBT eA
T τdτ (6.3)

Q =

∫ ∞
0

eA
T τCTCeAτdτ (6.4)

are the solution of following Lyapunov equations:

AP + PAT +BBT = 0 (6.5)

ATQ+QA+ CTC = 0 (6.6)

6.2.1 Gawronski and Juang’s TLMR technique

Gawronski and Juang [29] proposed a TLMR technique, where approximation is given in a

finite time interval. The controllability and observability Gramians for a finite time interval

are defined as

PGJ =

∫ t2

t1

eAτBBT eA
T τdτ =

∫ ∞
0

eAτXc(t)e
AT τdτ (6.7)

QGJ =

∫ t2

t1

eA
T τCTCeAτdτ =

∫ ∞
0

eA
T τYo(t)e

Aτdτ (6.8)

where Xc = eAt1BBT eA
T t1 − eAt2BBT eA

T t2 and Yo = eA
T t1CTCeAt1 − eA

T t2CTCeAt2 .

These Gramians are the solution of following Lyapunov equations

APGJ + PGJA
T +Xc = 0 (6.9)

ATQGJ +QGJA+ Yo = 0 (6.10)

Let

T TQGJT = T−1PGJT
−T =


σ1 0 · · · 0

0 σ2 · · · 0

· · · · · · . . . · · ·

0 0 · · · σn


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where σj ≥ σj+1, j = 1, 2, . . . , n − 1, σr > σr+1 and T is a contragredient matrix used

to transform the original system realization. ROMs are obtained by partitioning the trans-

formed realization.

Remark 6.2.1 The matrices Xc and Yo are not guaranteed to be positive semidefinite, the

models obtained by Gawronski and Juang technique may not be stable [69, 71].

6.2.2 Gugercin and Antoulas’s TLMR technique

Let the controllability PGA and observability QGA Gramians respectively, obtained as the

solutions to Lyapunov equations

APGA + PGAGA
T +BGAB

T
GA = 0 (6.11)

GATQGA +QGAA+ CT
GACGA = 0 (6.12)

are used to find a contragredient matrix T as:

T TQGAT = T−1PGAT
−T =


σ1 0 · · · 0

0 σ2 · · · 0

· · · · · · . . . · · ·

0 0 · · · σn


where σi ≥ σj+1, j = 1, 2, . . . , n − 1, σr > σr+1, BGA = UGA|SGA|1/2, CGA =

|RGA|1/2V T
GA. The terms UGA, SGA, VGA, and RGA are obtained as Xc = UGASGAU

T
GA

and Yo = VGARGAV
T
GA, where SGA = diag(s1, s2, . . . , sn), RGA = diag(r1, r2, . . . , rn).

|s1| ≥ |s2| ≥ · · · ≥ |sn| ≥ 0 and |r1| ≥ |r2| ≥ · · · ≥ |rn| ≥ 0. ROMs are calculated by

partitioning the transformed realization.

Remark 6.2.2 Since Xc ≤ BGAB
T
GA, Yo ≤ CT

GACGA and the realization (A,BGA, CGA) is

minimal and the stability of ROMs is also guaranteed this technique also yields frequency

response error bounds.

6.3 Proposed techniques

In this section, we proposed two techniques (partially appear in [17]) to address instability

problem of Gawronski and Juang [29] technique. Moreover, the proposed techniques also

carry frequency response error bounds.
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In Gugercin and Antoulas [69] technique, the symmetric matrices Xc and Yo are ensured

positive /semipositive definite by taking the square root of absolute values of the eigenvalues

obtained by EVD of symmetric matrices Xc and Yo. This sometimes leads to a large change

in some eigenvalues and may not effect other eigenvalues.

6.3.1 Proposed technique 1

Motivated from [8], we modify Gawronski and Juang technique to yield stable ROMs and

frequency response error bounds. This technique guarantees stability of ROMs by perform-

ing EVD of symmetric matrices Xc(t) and Yo(t) and retaining the positive eigenvalues and

truncating the negative eigenvalues. Let the new controllability PG and observability QG

Gramians respectively, be solutions of the following Lyapunov equations

APG + PGA
T +BGB

T
G = 0 (6.13)

ATQG +QGA+ CT
GCG = 0 (6.14)

to find a contragredient matrix T (used to transform the original system realization) as:

T TQGT = T−1PGT
−T =


σ1 0 · · · 0

0 σ2 · · · 0

· · · · · · . . . · · ·

0 0 · · · σn


where σi ≥ σi+1, i = 1, 2, . . . , n−1, σr > σr+1, BG = UG1S

1/2
G1

, CG = R
1/2
G1
V T
G1

. The terms

UG1 , SG1 , VG1 , and RG1 are obtained as

Xc =
[
UG1 UG2

] SG1 0

0 SG2

 UT
G1

UT
G2


Yo =

[
VG1 VG2

] RG1 0

0 RG2

 V T
G1

V T
G2



where

 SG1 0

0 SG2

 = diag(s1, s2, · · · , sn),

 RG1 0

0 RG2

 = diag(r1, r2, · · · , rn), s1 ≥

s2 ≥ · · · ≥ sn, r1 ≥ r2 ≥ · · · ≥ rn, SG1 = diag(s1, s2, · · · , sl), RG1 = diag(r1, r2, · · · , rl),

s1 ≥ s2 ≥ · · · ≥ sl > 0, r1 ≥ r2 ≥ · · · ≥ rl > 0. ROMs are calculated by partitioning the
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transformed realization.

Remark 6.3.1 Since Xc ≤ BGB
T
G ≤ BGAB

T
GA, Yo ≤ CT

GCG ≤ CT
GACGA and the realiza-

tion {A,BG, CG} is minimal, the stability of the ROMs is therefore guaranteed.

Theorem 6.3.1 The following error bound holds (subject to existence of rank [BG B] =

rank [BG] and

 CG

C

 = rank [CG]).

‖G(s)−Gr(s)‖∞ ≤ 2‖LG‖‖KG‖
n∑

j=r+1

σi

where LG = CVG1R
− 1

2
G1

and KG = S
− 1

2
G1
UT
G1
B.

Proof: Since rank [BG B] = rank [BG] and rank

 CG

C

 = rank [CG], the relationships

B = BGKG and C = LGCG hold. By partitioning BG =

 BG1

BG2

 , CG =
[
CG1 CG2

]
and substituting B1 = BG1KG, C1 = LGCG1 respectively yields

‖G(s)−Gr(s)‖∞ = ‖C(sI − A)−1B − C1(sI − A11)−1B1‖∞

= ‖LGCG(sI − A)−1BGKG − LGCG1(sI − A11)−1BG1KG‖∞

= ‖LG(CG(sI − A)−1BG − CG1(sI − A11)−1BG1)KG‖∞

≤ ‖LG‖‖CG(sI − A)−1BG − CG1(sI − A11)−1BG1‖∞‖KG‖

If {A11, BG1 , CG1} is ROM obtained by partitioning a balanced realization {A,BG, CG}, we

have from Enns [5]

‖CG(sI − A)−1BG − CG1(sI − A11)−1BG1‖∞ ≤ 2
n∑

j=r+1

σj.

The result follows.

Remark 6.3.2 The rank [BG B] = rank [BG] and rank

 CG

C

 = rank [CG] is almost

always true [26].
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6.3.2 Proposed technique 2

The proposed technique 1 ensures positive definiteness of the matrices Xc and Yo by taking

only positive eigenvalues and truncating negative eigenvalues. This technique also does not

have similar effect on all eigenvalues.

In the following, (motivated from [10]) another TLMR technique is proposed where effort

is to have a similar effect on all eigenvalues of indefinite matrices Xc and Yo. The ROM

obtained are guaranteed to be stable. Moreover, it yields frequency response error bound

and improved error. Let new controllability PI and observability QI Gramians, respectively,

are calculated by solving the following Lyapunov equations:

API + PIA
T +BIB

T
I = 0 (6.15)

ATQI +QIA+ CT
I CI = 0 (6.16)

where BI and CI are the new fictitious input and output matrices respectively defined as:

BI =

 UI(SI − snI)1/2 for sn < 0

UIS
1/2
I for sn ≥ 0

(6.17)

CI =

 (RI − rnI)1/2V T
I for rn < 0

R
1/2
I V T

I for rn ≥ 0.
(6.18)

The terms UI , SI , VI , and RI are calculated as Xc = UISIU
T
I and Yo = VIRIV

T
I ,

where SI = diag(s1, s2, · · · , sn), RI = diag(r1, r2, · · · , rn), s1 ≥ s2 ≥ · · · ≥ sn, and

r1 ≥ r2 ≥ · · · ≥ rn.

Let a contragredient transformation matrix T (used to transform the original system) is

obtained as

T TQIT = T−1PIT
−T =


σ1 0 · · · 0

0 σ2 · · · 0

· · · · · · . . . · · ·

0 0 · · · σn


where σj ≥ σj+1, j = 1, 2, 3, . . . , n − 1, σr > σr+1. ROMs are calculated by partitioning

the transformed realization.

Remark 6.3.3 SinceXc ≤ BIB
T
I , Yo ≤ CT

I CI ,BIB
T
I ≥ 0,CT

I CI ≥ 0, PI > 0 andQI > 0.
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Therefore, the realization (A,BI , CI) is minimal. Moreover, the ROMs are guaranteed to be

stable.

Theorem 6.3.2 The following error bound for the proposed technique holds if the rank con-

ditions rank [BI B] = rank [BI ] and rank

 CI

C

 = rank [CI ] are satisfied

‖G(s)−Gr(s)‖∞ ≤ 2‖LI‖‖KI‖
n∑

j=r+1

σj

where

LI =

 CVI(RI − rnI)−1/2 for rn < 0

CVIR
−1/2
I for rn ≥ 0.

(6.19)

KI =

 (SI − snI)−1/2UT
I B for sn < 0

S
−1/2
I UT

I B for sn ≥ 0.
(6.20)

Proof: Since rank [BI B] = rank [BI ] and rank

 CI

C

 = rank [CI ], the relationships

B = BIKI and C = LICI hold. By partitioning BI =

 BI1

BI2

 , CI =
[
CI1 CI2

]
and

substituting B1 = BI1KI , C1 = LICI1 respectively yield

‖G(s)−Gr(s)‖∞ = ‖C(sI−A)−1B−C1(sI−A11)−1B1‖∞

= ‖LICI(sI − A)−1BIKI − LICI1(sI − A11)−1BI1KI‖∞

= ‖LI(CI(sI − A)−1BI − CI1(sI − A11)−1BI1)KI‖∞

≤ ‖LI‖‖CI(sI − A)−1BI − CI1(sI − A11)−1BI1‖∞‖KI‖

If {A11, BI1 , CI1} is ROM obtained by partitioning a balanced realization {A,BI , CI}, we

have from [5]

‖CI(sI − A)−1BI − CI1(sI − A11)−1BI1‖∞ ≤ 2
n∑

j=r+1

σj.

The result follows.
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Remark 6.3.4 The rank [BI B] = rank [BI ] and rank

 CI

C

 = rank [CI ] is almost

always true ( [26]).

Remark 6.3.5 For the case when symmetric matricesXc(t) ≥ 0 and Yo(t) ≥ 0, then PGJ =

PG = PS = PI and QGJ = QG = QS = QI . Otherwise PGJ < PI and QGJ < QI .

Moreover, time limited HSV satisfies: (λj[PGJQGJ ])1/2 ≤ (λj[PIQI ])
1/2.

Remark 6.3.6 When Xc � 0 and Yo � 0, then

XI = BIB
T
I = Xc(t)− snI, YI = CT

I CI = Yo(t)− rnI

PI = PGJ + Pad, QI = QGJ +Qad

where

APad + PadA
T − snI = 0, for sn < 0

ATQad +QadA− rnI = 0, for rn < 0

6.4 Numerical examples

Example 6.4.1 Consider a linear time invariant stable 3rd order system with the following

state space representation.

A =


−8.6040 −4.8344 −0.0192

1 0 0

0 1 0


B =

[
1 0 0

]T
C =

[
0 0 1

]
D = 0

The first order ROM obtained by Gawronski and Junag [29] is unstable with pole s =

0.0000313 while Gugercin and Antoulas [69] and proposed techniques (1 and 2) provide

stable ROM within the time interval [t1, t2] = [0, 8] sec.

Example 6.4.2 Consider a linear time invariant stable 6th order system with the following
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state space representations

A =



−9 −29 −100 −82 −19 −2

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0


B =

[
1 0 0 0 0 0

]T
C =

[
0 0 −44 44 38 14

]
D = 0

Figure 6.1: Step response in the desired time interval [0,10] sec.

Fig. 6.1 and Fig. 6.2 represent the step response and step response error for the fourth

order ROMs obtained using Gawronski and Juang [29], Gugercin and Antoulas [69] and

proposed techniques (1 and 2) for the time interval [t1, t2] = [0, 10] sec. Fig. 6.3 represents

the close up view of the error plot for the step response. Fig. 6.4 and Fig. 6.5 represent

the impulse response and impulse response error for the fourth order ROMs obtained using

Gawronski and Juang [29], Gugercin and Antoulas [69] and proposed techniques (1 and 2)
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Figure 6.2: Close up view of step response error in the desired time interval [0,10] sec.

Figure 6.3: Close up view of step response error in the desired time interval [0,10] sec.

for the time interval [t1, t2] = [0, 10] sec. Moreover, Fig. 6.1 and Fig. 6.4 also represent step

and impulse response of original system. It is observed in Fig. 6.3, the proposed techniques

provide comparatively less impulse response error as compared to other techniques.
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Figure 6.4: Impulse response in the desired time interval [0,10] sec.

Figure 6.5: Close up view of impulse response error in the desired time interval [0,10] sec.

Example 6.4.3 Consider a 5th order stable system with following state space representation

A =



−3 −4.3 −3 −1.2 −0.2

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0


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B =
[

1 0 0 0 0
]T

C =
[

0.1 0.1 0.2 0.1 0
]

D = 0

Figure 6.6: Step response in the desired time interval [0,7] sec.

Figure 6.7: Close up view of step response error in the desired time interval [0,7] sec.

Fig. 6.6 and Fig. 6.7 represent the step response and step response error for the third
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Figure 6.8: Close up view of step response error in the desired time interval [0,7] sec.

Figure 6.9: Impulse response in the desired time interval [0,7] sec.

order ROMs obtained using Gawronski and Juang [29], Gugercin and Antoulas [69] and

proposed techniques (1 and 2) for the time interval [t1, t2] = [0, 7] sec. Fig. 6.8 represents

the close up view of the error plot for the step response. Fig. 6.9 and Fig. 6.10 represent

the impulse response and impulse response error for the third order ROMs obtained using

Gawronski and Juang [29], Gugercin and Antoulas [69] and proposed techniques (1 and 2)
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Figure 6.10: Close up view of impulse response error in the desired time interval [0,7] sec.

for the time interval [t1, t2] = [0, 7] sec. Moreover, Fig. 6.6 and Fig. 6.9 also represent step

and impulse response of original system. It is observed in Fig. 6.7, proposed techniques

provide comparable impulse response error as compared to other techniques.

Discussion: It is observed (from examples 6.4.1 - 6.4.3) that in the desired time inter-

val Gawronski and Juang [29], Gugercin and Antoulas [69] and proposed techniques (1

and 2) provide good approximation in the desired time interval. However, Gawronski and

Juang [29] sometimes give unstable ROMs and Gugercin and Antoulas [69] and proposed

techniques yield stable ROMs.

6.5 Conclusion

In this chapter, two new TLMR techniques were proposed. The proposed techniques ex-

tended the results of time limited Gawronski and Juang [29], Gugercin and Antoulas [69].

The ROMs are guaranteed to be stable and error bounds are also available. The proposed

techniques mostly yield better approximation as compared to Gugercin and Antoulas [69]

technique in the desired time interval.

Next chapter concludes the thesis and identifies some future research directions.
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Chapter 7

Conclusions and Future Work

7.1 Overview of the thesis

This thesis proposes the FWMR, FLMR and TLMR techniques for linear continuous and

discrete time for standard and generalized (singular and nonsingular) systems.

In chapter 2, a FWMR technique for both continuous and discrete time systems is pro-

posed which provides stable ROMs for double sided weighting case and also yields a priori

frequency response error bound. The proposed technique provides solution to Enns [5] in-

stability problem for double sided weighting case. The simulation results show that the

proposed technique mostly yields lower frequency response error and stable ROM in the

presence of double sided weighting.

Chapter 3 proposes FLMR technique for linear continuous and discrete time systems. The

proposed technique extends the results of Gawronski and Juang [29], Gugercin and Antoulas

[30] and Ghafoor and Sreeram [8] (for continuous time) and Wang and Zilouchian’s [90],

Ghafoor and Sreeram’s algorithms (1 and 2) [87] (for discrete time) systems. The proposed

technique mostly yields better approximation as compared to Gugercin and Antoulas [30]

and Ghafoor and Sreeram [8,87] in the desired frequency interval. The ROMs are guaranteed

to be stable and error bounds are also available.

Chapter 4 generalizes the FLMR techniques for general (non-singular) linear continuous

and discrete time systems. The error bounds are also given. The numerical simulations rep-

resent the comparison of frequency response error for the proposed generalized techniques.

Chapter 5 further improves FLMR technique for Generalized descriptor (singular) sys-

tems. The technique extends the results of Gawronski and Juang [29] (initially proposed for

standard state space systems) for generalized descriptor system. Moreover, the work also

extends Poor Man’s truncated balanced realization (PMTBR) technique [61] to include fre-

quency limited Gramians for generalized descriptor systems. The numerical comparisons of

proposed techniques are also presented.
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Chapter 6 proposes two new TLMR techniques. The proposed techniques extended the

results of time limited Gawronski and Juang [29], Gugercin and Antoulas [69]. The ROMs

are guaranteed to be stable and error bounds are also available. The proposed techniques

mostly yield better approximation as compared to Gugercin and Antoulas [69] technique in

the desired time interval.

7.2 Future research

Some open research areas from the thesis are summarized below:

• Wang et al’s [26], Varga and Anderson [25], Gugercin and Antoulas [30], Ghafoor and

Sreeram [8] and proposed FWMR techniques (chapter 2) are realization dependent.

Which realization of the original system can produce lower approximation error and

tighter error bounds remains an open problem.

• FLMR techniques (chapter 3) use BT. It is interesting to see using different model re-

duction techniques like Hankel norm, Krylov, Pade approximation techniques instead

of BT yield better results or not.

• There are number of formulas for the fictitious input and output matrices used in re-

duction procedure of different techniques. It is not clear which among these yields the

best result in terms of lower weighted approximation error and needs further investi-

gation.

• Stability of ROMs is not guaranteed in case of Enns [5] double sided weighting case

due to indefiniteness of matrices XE and YE . Similarly, Gawronski and Juang [29]

and Wang and Zilouchian [90] may yield unstable ROMs. This will remain an open

problem for future research work.

• Proposed techniques are only applicable for stable linear time invariant original sys-

tem. It is interesting to see whether these results remain valid for non-linear and time

varying systems.
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Appendix A

A.1 Balanced truncation

Consider the full order continuous time original stable system beG(s) = C(sI−A)−1B+D

where {A,B,C,D} is its nth order minimal realization. Let P > 0 and Q > 0 be the

controllability and observability Gramians satisfying the following Lyapunov equations:

AP + PAT +BBT = 0 (A.1)

QA+ ATQ+ CTC = 0 (A.2)

For discrete time case, let the original stable system be G(z) = C(zI − A)−1B + D, the

Lyapunov equations are:

APAT − P +BBT = 0 (A.3)

ATQA−Q+ CTC = 0 (A.4)

Let T be the transformation obtained via simultaneously diagonalizing the Gramians P

and Q

T−1PT−T = T TQT = Σ =

 Σ1 0

0 Σ2


where Σ1 = diag{σ1, σ2, . . . , σr}, Σ2 = diag{σr+1, . . . , σn}, σj = σj+1, j = 1, 2, . . . , n−1,
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σr > σr+1 and σj are the HSV. Transforming and partitioning the original system:

Â = T−1AT =

 A11 A12

A21 A22

 , B̂ = T−1B =

 B1

B2

 ,
Ĉ = CT =

[
C1 C2

]
, D̂ = D (A.5)

where A11 ∈ <r×r(r < n). The ROM is given as Gr(s) = C1(sI − A11)−1B1 + D and

Gr(z) = C1(zI − A11)−1B1 +D for continuous and discrete time systems respectively.

The error bounds of the technique can be obtained from [2, 5]

‖G(s)−Gr(s)‖∞ ≤ 2
n∑

j=r+1

σj.

for continuous time systems.

‖G(z)−Gr(z)‖∞ ≤ 2
n∑

j=r+1

σj.

for discrete time systems.

Remark A.1.1 A given realization {A,B,C,D} can be transformed to a balanced realiza-

tion {Â, B̂, Ĉ, D̂} if and only if it is asymptotically stable and minimal.

Remark A.1.2 The balanced realization is unique up to the ordering of HSV σj and an

orthogonal transformation that commutes with Σ.

Remark A.1.3 The subsystem Aii is asymptotically stable if Σ1 and Σ2 have no common

diagonal elements. Moreover, the subsystem {Aii, Bi, Ci, D}for(i = 1, 2, ...) is controllable

and observable.
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Appendix B

B.1 Balanced singular perturbation approximation

Let the stable original system have the balanced realization (A.5) and the transfer function

G(s) be written in the form:

G(s) =

[
C1 C2

] sIk − A11 −A12

−A21 sIn−kA22


−1  B1

B2


Decomposing the transfer function G(s) = G1(s) +G2(s) gives

G1(s) = Cspa(s)(sIk − Aspa(s))−1Bspa(s) +D

G2(s) = C2(sIn−k − A22)−1B2

where

Aspa(s) = A11 + A12(sIn−k − A22)−1A21

Bspa(s) = B1 + A12(sIn−k − A22)−1B2

Cspa(s) = C1 + C2(sIn−k − A22)−1A21

(B.1)

If the subsystem G2(s) is stable and its states have very fast transient dynamics in the

neighbourhood of s = σ0, then by ignoring G2(s), the ROM of G(s) can be approxi-

mated by Gspa(σ0) = Cspa(σ0)(sI − Aspa(σ0))−1Bspa(σ0) + Dspa(σ0) where Dspa(σ0) =

D + C2(σ0I − A22)−1B2 and Aspa(σ0), Bspa(σ0), Cspa(σ0) are defined as in B.1 by substi-

tuting s with σ0.

The two extreme cases of the generalized BSPA are:
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1. at σ0 = 0, the ROM is

Gspa(0) = Cspa(0)(sI − Aspa(0))−1Bspa(0) +Dspa(0)

where

Aspa(0) = A11 + A12A
−1
22 A21

Bspa(0) = B1 + A12A
−1
22 B2

Cspa(0) = C1 + C2A
−1
22 A21

Dspa(0) = D + C2A
−1
22 B2

which is the BSPA [33, 34].

2. at σ0 = ∞, the ROM corresponds to the BT [1], as Aspa(∞) → A11, Bspa(∞) →

B1, Cspa(∞)→ C1 and Dspa(∞)→ D.

Remark B.1.1 The BSPA [33, 34] and BT [1], are related via a frequency inversion s →

1/s, as follows:

1. Given G(s) in the balanced realization form, define H(s) = G(1/s).

2. Let Hr(s) be a ROM obtained via BT of H(s).

3. Set Gr(s) = Hr(1/s), where Gr(s) is the ROM obtained via BT of G(s).

Remark B.1.2 The BSPA technique [33,34] yields better approximation at low frequencies

in contrast to BT technique [1].

Remark B.1.3 Almost all the properties of the continuous time system case BSPA [33, 34]

and BT [1] are preserved in discrete time case. However, in the discrete time system case,

the ROM realization obtained by directly truncating the original balanced realization may

not be balanced [6].
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Appendix C

C.1 Controller reduction: FWMR

C.1.1 Stability consideration for FWMR

Let the transfer function matrix of a linear time invariant plant be G(s) with K(s) is a high

order stabilizing controller as shown in Fig. C.1. Defining Kr(s) as the reduced order

controller (ROC) as shown in Fig. C.2, where Fig. C.2(a) and Fig. C.2(b) are equivalent.

The ROC Kr(s) is stabilizing controller under the following sufficient conditions [78, 79]:

1. K(s) and Kr(s) have the same number of poles in the open right half plane and and

no poles on the imaginary axis.

2. Either

‖(K(s)−Kr(s))G(s)(I +K(s)G(s))−1‖∞ < 1

or

‖(I +G(s)K(s))−1G(s)(K(s)−Kr(s))‖∞ < 1

where G(s)(I +K(s)G(s))−1 = (I +G(s)K(s))−1G(s)

Figure C.1: Closed loop system diagram [6]
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Figure C.2: Closed loop system diagram [6]

C.1.2 Closed-loop transfer function consideration for FWMR

The closed loop transfer function matrices with the high order controller K(s) and ROC

Kr(s) for Fig. C.1 be

C(s) = G(s)K(s)(I +G(s)K(s))−1

and closed loop transfer function for Fig. C.2(a) be

Cr(s) = G(s)Kr(s)(I +G(s)Kr(s))
−1

then

C(s)− Cr(s) = G(s)K(s)(I +G(s)K(s))−1 −G(s)Kr(s)(I +G(s)Kr(s))
−1

≈ (I +G(s)K(s))−1G(s)(K(s)−Kr(s))(I +G(s)K(s))−1

which suggests the following approximation problem [79]. Find the ROC such that

1. K(s) and Kr(s) have the same number of poles in the open right half plane, and no

poles on the imaginary axis.

2. The index

‖(I +G(s)K(s))−1G(s)(K(s)−Kr(s))(I +G(s)K(s))−1‖∞
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is minimized.

Relative error of the difference i.e. C(s)−1(C(s)−Cr(s)) can also be used to measure the

closeness of the closed loop transfer function. By assuming G(s) and K(s) are square and

invertible, then the following equation is given:

C(s)−1(C(s)− Cr(s)) ≈ K(s)−1(K(s)−Kr(s))(I +G(s)K(s))−1

Figure C.3: Closed loop system diagram [6]

C.2 H∞ / Modern controller reduction

Consider a feedback control system as shown in Fig. C.3(a) where P (s) the plant with input

w and output z, controlled by full order controller K(s), the ROC Kr(s) can be obtained as

in Fig. C.3(b).

Partitioning P (s) =

 P11(s) P12(s)

P21(s) P22(s)

 ,K(s) andKr(s) can then be expresses in linear

fractional transformation form as in [74]:

Tzw(s) = P11(s) + P12(s)K(s)(I − P22K(s))−1P21(s)

T̄zw(s) = P11(s) + P12(s)Kr(s)(I − P22Kr(s))
−1P21(s)
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C.2.1 Stability consideration for FWMR

Suppose K(s) and Kr(s) have same number of right half plane poles, then the closed loop

system T̄wz(s) is stable if either of the following sufficient conditions is satisfied

‖(I − P22(s)K(s))−1P22(s)(K −Kr(s))‖∞ < 1

‖(K −Kr(s))(I − P22(s)K(s))−1P22(s)‖∞ < 1

C.2.2 Closed-loop transfer function consideration for FWMR

Tzw − T̄zw = P12(s)K(s)(I − P22(s)K(s))−1P21(s)−

P12Kr(s)(I − P22(s)Kr(s))
−1P21(s) (C.1)

≈ P12(s)(I −K(s)P22(s))−1(K(s)−Kr(s))(I − P22(s)K(s))−1P21(s)

Equation (C.1) suggests the following approximation problem. Find ROCKr(s) such that

full order controller K(s) and the ROC Kr(s) have same number of poles in the right half

plane, and the index ‖P12(s)(I −K(s)P22)−1(K(s)−Kr(s))(I − p22(s)K(s))−1P21(s)‖∞

is minimized.

Minimizing ‖P12(s)(I −K(s)P22)−1(K(s)−Kr(s))(I −P22(s)K(s))−1P21(s)‖∞ is the

optimal solution which sometimes may not be found, so we seek a stabilizing ROC Kr(s)

such that

‖P12(s)(I −K(s)P22)−1(K(s)−Kr(s))(I − p22(s)K(s))−1P21(s)‖∞ < γ

where γ is a positive constant.

Note that, in a special case when P (s) =

 0 P12(s)

P21(s) 0

 =

 0 W (s)

V (s) 0

 then

Tzw − T̄zw = P12(s)(K(s)−Kr(s))P21(s).
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Appendix D

D.1 Equivalence between FWMR and FLMR techniques

Consider

G(z) =

 A B

C D

 = C(zI − A)−1B +D

be a given system with state equation ẋ(t) = Ax(t) + Bu(t). Let X(s) , (sI − A)−1B

be the transfer function from input u(t) to the state x(t). The controllability Gramian P̄ in

frequency domain can be defined as:

P̄ =
1

2π

∫ ∞
−∞

X(jω)X(jω)Tdω

=
1

2π

∫ ∞
−∞

(jωI − A)−1BBT (−jωI − AT )−1dω

Suppose there is an input weighting with transfer function Vi(s) with impulse response

vi(t). The new state equation now becomes ˙̃x(t) = Ax̃(t) + B(vi ∗ u)(t), where ∗ is con-

volution operator. Hence the transformed input weighted transfer function X̃(s) is shown

as:

X̃(s) , (sI − A)−1BVi(s)

Now the controllability Gramian P̃ for weighted system can be shown as:

P̄ =
1

2π

∫ ∞
−∞

X̃(jω)X̃(jω)Tdω

=
1

2π

∫ ∞
−∞

(jωI − A)−1BVi(jω)Vi(−jω)TBT (−jωI − AT )−1dω (D.1)

Now by assuming Vi(s) be a bandpass filter over the frequency band [ω1, ω2] with unit
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amplitude. Eq. (D.1) can now becomes

P̄ = P̄Ω =
1

2π

∫ −ω1

−ω2

(jωI − A)−1BBT (−jωI − AT )−1dω +

1

2π

∫ ω1

−ω2

(jωI − A)−1BBT (−jωI − AT )−1dω

Figure D.1: Input/Output augmented systems with bandpass weightings

So FWMR problem becomes FLMR problem [29] by choosing the weights Vi(s) and

Wo(s) as perfect bandpass filter over the desired frequency band as shown in D.1. The

modified weighted error expression becomes ‖(G(s) − Gr(s)‖∞ over the frequency band

[ω1, ω2]. A similar expression can also be shown for TLMR technique.

Remark D.1.1 As pointed out in [30] infinite dimensional realization are needed to obtain

perfect bandpass filters. However, for present scenario, the required bandpass filters are

approximated by low-order bandpass filter. Also as the order of the weighting increases, we

get closer to perfect bandpass filters [30].
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