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ABSTRACT 

Software systems evolve and change with time due to change in business needs. At 

some stage the available architectural description may not best represent the current 

software system. Accurate understanding of software architecture is very important 

because it helps in estimating where and how much change is required in the software 

system to fulfill changing business needs. It also helps in making decisions related to 

reusability of software components. The understanding of software architecture also 

plays vital role in estimating cost and risk of change in software system. In some 

cases, especially for legacy systems such a description does not readily exist. For such 

cases, we can use source code to extract architecture of the software system. Software 

Clustering is an approach to decompose large software system into smaller 

manageable sub systems to get system architecture. Software clustering, however, is 

an NP-hard problem. Search Based Software Engineering (SBSE) provides 

optimization algorithms which are search based and can be applied to Software 

Engineering problems. Particle Swarm Optimization (PSO) is a metaheuristic search 

technique based on biological behaviors and can be used to solve NP-hard problems. 

This thesis provides a framework for solving software clustering problem with PSO. 

Experimental results show fast convergence and stable results. 

In this thesis, software clustering process is presented in detail. Different Search 

Based Software Engineering (SBSE) techniques are discussed but focus is on Particle 

Swarm Optimization (PSO). The thesis focuses on design, implementation and 

analysis of PSO algorithm applied to software clustering problem. The objective of 

this paper is to solve software clustering problem using PSO and examine the 

effectiveness of PSO comparative to Genetic Algorithms (GA). Simulation results 

show that the PSO approach has stable results and it requires smaller computational 

effort as compared to GA. 
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Chapter 1 

INTRODUCTION 

 

Architecture of a software system is defined as “the fundamental organization of a 

system embodied in its components, their relationships to each other, and to the 

environment, and the principles guiding its design and evolution” [1]. Software 

architecture encapsulates higher level design of software, defining its various sub-

systems and their relationships. Knowledge of software architecture is needed in 

various phases of software lifecycle e.g. maintenance, evolution, and reuse [2], [3]. 

However, for many systems this architectural knowledge is not so readily available 

and the software managers have to incur extra efforts in recovering the underlying 

architecture from source code. Manual methods can be considered as last resort 

measure for architecture recovery, but in the face of large size and complexity of 

today’s legacy software these measures prove costly and time-consuming. It is now 

generally recognized that in order for software architecture recovery to be viable, it 

must be handled by automatic or semi-automatic tools [4], [5]. 

 

Software systems become complex due to the complexity of application domain and 

changing business rules [6]. It also happens that the software developers are not 

familiar with many concepts of the application domain. Other reasons for the 

complexity of software systems are development methods, tools, and people involved 

in the software development process [7]. Over the life time, software applications 

demand changes to fit in the changed business processes. The timely modification in 

the software system is very important which sometimes becomes very difficult due to 
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unavailability of the persons who actually developed the system. Changes weaken the 

architecture of the system if done without enough understanding. Deteriorated 

software systems are difficult to understand by the software developers and designers 

[6], [8].  

 

According to Len Bass [9], “The software architecture of a program or computing 

system is the structure or structures of the system which comprise software elements, 

externally visible properties of those elements and the relationships among them”. 

Understand ability of the software system is highly influenced by the architecture of 

the software system. 

 

1.1 PROBLEM OVERVIEW 
 

Software clustering is an NP-Hard problem therefore it is very difficult to solve it in 

real time. Search Based Software Engineering (SBSE) provides optimization 

algorithms which are search based and can be applied to Software Engineering 

problems. Particle Swarm Optimization (PSO) is a metaheuristic search technique 

based on biological behaviours and can be used to solve NP-Hard problems. This 

thesis provides a framework for solving software clustering problem with PSO. 

 

1.2 PROJECT OBJECTIVES 
 

In this thesis, software clustering process is presented in detail. Different Search 

Based Software Engineering (SBSE) techniques are discussed but focus is on Particle 

Swarm Optimization (PSO). The thesis focuses on design, implementation and 

analysis of PSO algorithm applied to software clustering problem. The objective of 



 
 

3

this thesis is to solve software clustering problem using PSO and examine the 

effectiveness of PSO comparative to Genetic Algorithms (GA).  

 

1.3 THESIS OUTLINE 

 
The thesis is logically broken down so that each chapter builds on the learning’s from 

the previous chapters. Chapter 2 provides fundamentals of software clustering, 

research contributions, and literature review on search based optimization techniques. 

This includes hill climbing, simulated annealing, tabu search, genetic algorithms, 

evolutionary strategies, and genetic programming, particle swarm optimization, and 

ant colony optimization. Chapter 3 presents architecture of the software clustering 

system. The architecture discusses in details the system architecture, class diagram, 

format of relationships file, and formula to compute fitness values. Chapter 4 

analyzes the results of PSO with relation to GA. The results are elaborated with the 

help of graphs. Chapter 5 provides conclusion and future work. 
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Chapter 2 

LITERATURE REVIEW 

 

INTRODUCTION 

 

The chapter starts with the explanation of software clustering is and its process. Then 

different categories of software clustering algorithms are presented. Later in the 

chapter, Particle Swarm Optimization (PSO) is explained with all its constraints and 

variations. 

 

2.1 SOFTWARE CLUSTERING 
 

Clustering is the process of decomposing large system into smaller manageable 

subsystems in such a way that entities within the subsystem are similar to one another 

and different from those in other subsystems. The similarity and difference is 

measured based on presence and absence of some features [11] in entities. The terms 

entities and features are commonly used. Entities include files, classes, and global 

functions whereas features are the attributes such as number of function calls of one 

class within another class. 

   

The clustering produced by a clustering technique is also known as partition. Software 

clustering process is described as [10]. 

 

• Identification of entities and features – Entities are files, classes, and 

functions that are grouped together. Features may include number function 
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calls by the entity, global variables referred, type of data maintained by a 

class, etc. 

• Measuring similarity – Different metrics are used to calculate the similarity 

between entities. Those metrics include association coefficients, correlation 

measures and distance metrics. 

• Applying clustering algorithm – Optimization techniques are available which 

lead us to sub-optimal solution. Those techniques include classical techniques 

and metaheuristic search [13]. 

• Evaluation of partition – No definite quantitative measures exist to evaluate 

partitions. Expert decompositions are used which are mostly done by designer 

of the system. The test clustering is compared with these expert 

decompositions. 

 

Clustering algorithms are mainly divided into two categories [11]: 

 

• Partitional – They produce flat decompositions. Clustering process starts with 

the initial partition with some number of clusters. On each iteration, clustering 

criteria is optimized that result in the modification in the partition. Number of 

clusters must be known in advance for the application of partitional 

algorithms. 

 

• Hierarchical – These algorithms decompose software system in natural 

hierarchy which better helps in understanding large software systems. 

Hierarchical algorithms represent both detailed and high level views of 
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software system. Hierarchical clustering is further divided into divisive and 

agglomerative [15]. 

 

 

2.2 SOURCE CODE ELEMENTS 

 

Source code elements are mainly divided into two groups; entities and relationships.  

  

2.2.1 Entities 

 

Entities are further divided into primary entities and secondary entities [15]. Primary 

entities are part of the clustering process and they become members of clusters. 

Secondary entities help indirectly in the clustering process i.e., they help to define 

relationships among primary entities. These secondary entities do not become 

members of clusters in the final outcome of the clustering process. Classes, structures, 

and unions are primary entities while files, folders, global data, global functions, and 

macros are secondary entities. 

 

2.2.2 Relationships 

 

Relationships between entities are meaningful in the context of clustering. Entities are 

grouped into clusters based on relationships between those entities. Some of the 

relationships are inheritance depth, inheritance hierarchy, inheritance type, 

containment as object, containment as pointer, containment as reference, containment 

at method parameter level, Containment at local method declaration level, both 

classes exist in the same file or in the same folder. 
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2.3 SEARCH BASED SOFTWARE ENGINEERING 
 

Search Based Software Engineering (SBSE) is an approach to software engineering in 

which search based optimization algorithms are used to identify acceptable or sub-

optimal solution [12]. 

 

Most widely used optimization techniques are [13]: 

 

• Classical Techniques – These techniques include linear programming, integer 

programming, quadratic programming, non-linear programming, stochastic 

programming, dynamic programming, combinatorial optimization, infinite-

dimensional optimization, constraint satisfaction. 

 

• Metaheuristic Search – Most commonly search techniques are; hill climbing, 

simulated annealing, tabu search, genetic algorithms, evolutionary strategies, 

and genetic programming. 

 

2.3.1 Classical Techniques 

 

2.3.1.1 Linear Programming 

 

Linear programming (LP) can be used as mathematical optimization technique to find 

out optimum solution. The inputs are n real numbers which are called decision 

variables. Here the goal is to maximize the value of linear expression in these decision 

variables with the set constraint [13]. 
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2.3.1.2 Integer Programming 

 

Integer programming (IP) is a type of linear programming in which all variables 

contain integer values only [28]. IP problems can be classified into Pure Integer IP 

Problem, Mixed Integer IP Problem, and Zero-One IP Problem [28]. Integer 

programming allows depicting discontinuous decision variables. It is used to model 

fixed cost, logical conditions, and discrete level of resources.  

 

2.3.1.3 Quadratic Programming 

 

Quadratic programming (QP) is also a type of mathematical optimization problem in 

which quadratic function of several variables is optimized (minimized or maximized) 

where there are linear constraints on these variables. An optimization problem which 

is linearly constrained and objective function is quadratic, is called a quadratic 

program [29]. 

 

2.3.1.4 Non-Linear Programming 

 

The objective function of some real-world problems may not be linear or some of the 

constraints may be non-linear. Such problems are called non linear programming 

(NLP) problems. Applications of non-linear programming include resource allocation, 

production planning, computer-aided design, modeling human or organizational 

behavior, or data networks. 
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2.3.2 Metaheuristic Search Techniques 

 

2.3.2.1 Hill Climbing 

 

The search starts from a randomly chosen point by considering the neighbourhood. 

Every neighbour is checked for fitness. A move is made if it improves fitness and 

neighbour is selected if there is increase in fitness [13]. Search terminates if no 

neighbour qualifies for fitness [14]. Each variable is changed one a time to get better 

results. The process ends if all the possible combinations of variables are checked and 

results are worse or same as the current one. 

 

There is a problem with hill climbing approach that is, the hill located may be local 

maxima which may not meet fitness criteria than the global maxima in search space 

[13]. A local maximum is a small hill on the surface whose peak is lower than the 

main peak. If local maximum is found, we're stuck in it because any small move in 

any direction degrades fitness. 

 

 
Figure 2.1: Hill Climbing Terminology. 
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A move defines the neighbourhood function, in which new solution is generated by 

changing one or more attributes of a given solution. 

 

Algorithm: 

 

1. Pick an initial state. 

2. Consider all the neighbours of the current state. 

3. Choose the neighbour with the best quality and move to that state. 

4. Repeat 2 thru 4 until all the neighbouring states are of lower quality. 

5. Return the current state as the solution state. 

 

Hill climbing approach can be used in two ways [14]; In simple hill climbing, the first 

optimum neighbour is selected. In steepest ascent hill climbing all neighbours are 

compared and the individual with the best fitness is selected. Both forms fail if search 

space contains local maxima which are not the solutions.  

 

2.3.2.2 Simulated Annealing (SA) 

 

It uses method of local search for optimization. It considers s' as neighbouring value 

of s and its cost is evaluated. Minimizing the objective function becomes cost function 

and maximizing the objective function becomes fitness function [14]. Simulated 

annealing reduces the probability of making undesirable moves. SA heuristic 

probabilistically decides whether move the system to the state s' or keep staying in 

state s. This is repeated until the desired state is reached, or a complete iteration 

produces no change to current state, or given computational budget has been 

consumed [14]. 
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SA is based on physical process of annealing a metal to get the best state. If a metal is 

cooled slowly, this reduces the probability of unfavourable moves of molecules hence 

it forms into a smooth piece [13]. If a metal is cooled too fast, the metal will form a 

shape having bumps and jagged edges representing the local minimums and 

maximums. 

 

New solutions are only accepted if they are better than or equal to current solution. On 

reducing the cost function of s', the search moves to s' and the process is repeated. 

However, if the cost function increases, the move to s' is not necessarily rejected; 

there is a small probability p that the search will move to s' and continue [14]. 

 
 

where ∆E represents energy and T represents temperature [14]. The probability 

depends on the values of energy and temperature. The negative change in cost 

function means it is improvement. In this case probability is considered as 1 and move 

is made. If ∆E is positive, it is considered as unfavorable and the move is considered 

as accepted with the probability given in the above equation [14]. 

 

Algorithm: 

 

1. Start by generating initial solution. Initialize a very high temperature. 

2. Select a neighbour. 

3. Calculate the change in the score due to the move. 

4. Depending on the change in fitness, accept or reject the move. 

5. Update the temperature value by lowering the temperature. 

6. Repeat 2 thru 5 until freezing point is reached. 

7. Return the current state as the solution state. 
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2.3.2.3 Tabu Search (TS) 

 

Tabu search is also a method of local search. In TS, all solution space is searched to 

obtain global optimal solution. Some of the moves are declared as forbidden and some 

are aspirant [14]. Aspirant moves might lead to global optimal solution unlike 

forbidden moves. Set of forbidden moves is also called as tabu set [14]. Tabu set also 

helps in performing more extensive exploration by moving search to the new portions 

of the search space. 

 

Recording complete solutions requires a lot of storage hence expensive to check 

whether a potential move is tabu or not. The common practice is to record the last few 

transformations performed on the current solution in order to prevent reverse 

transformations.  

 

Algorithm [14]: 

 

1. Generate initial candidate s. 

2. Determine neighbourhood set N. 

3. Identify tabu set from neighbour. 

4. Identify aspirant set from neighbour. 

5. Choose the move with best improving solution s' in N. 

6. Set s=s'. 

7. Repeat steps 2 thru 6 until terminating condition is met. 
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2.3.2.4 Genetic algorithms (GA) 

 

Genetic Algorithms move around the concept of population and recombination. A set 

of candidate solutions constitute the population whereas recombination is the process 

of combining and mutating the candidates to generate new solutions [14]. Some fitter 

function is used for recombination. The population is chosen randomly and iterative 

process is started. In GA, iterations are named as generations and the term 

chromosomes, is used to represent members of population [13]. The optimization 

process terminates if some pre-set criteria is satisfied or number of iterations are 

completed. Members of population are recombined on every generation to generate 

new population by using the fitness function. The candidates with best fitness values 

are likely to be selected for recombination [13]. 

 

Algorithm [23]: 

 

1. Represent the problem variable domain as a chromosome of fixed length; 

choose the size of the chromosome population N, the crossover probability Pc 

and the mutation probability Pm. 

2. Define a fitness function to measure the performance of an individual 

chromosome in the problem domain. The fitness function establishes the basis 

for selecting chromosomes that will be mated during reproduction. 

3. Randomly generate an initial population of size N: x1, x2,..., xN. 

4. Calculate the fitness of each individual chromosome: f(x1), f(x2),..., f(xN). 

5. Select a pair of chromosomes for mating from the current population. Parent 

chromosomes are selected with a probability related to their fitness. High fit 

chromosomes have a higher probability of being selected for mating than less 

fit chromosomes. 

6. Create a pair of offspring chromosomes by applying the genetic operators. 

7. Place the created offspring chromosomes in the new population. 
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8. Repeat Step 5 until the size of the new population equals that of initial 

population N. 

9. Replace the initial (parent) chromosome population with the new (offspring) 

population. 

10. Go to Step 4, and repeat the process until the termination criterion is satisfied. 

 

A cost function is applied on input variables (a chromosome) to generate an output. 

The cost function may be some mathematical function [16]. The objective is to 

modify the output in some desirable fashion by finding the appropriate values for the 

input variables. The term fitness is extensively used to designate the output of the 

objective function [16]. 

 

 

2.3.2.5 Evolutionary Strategies (ES) 

 

This is an alternative form of GA and not widely applied on SBSE [13]. Iteration is 

named as generation [17]. Best individuals are used to create new population during 

each generation. [17]. 

 

The objective function describes the fitness value of each member in the population. 

The individual or solution having higher fitness value is considered as best solution. 

ES uses selection operator, mutation operator and recombination operator to evolve 

solutions [17]. In ES, individuals with best fitness values are involved in 

reproduction. New generation is produced by selecting individuals with best fitness 

values from the previous generation [18]. Mutation prevents falling GA into local 

maxima. If the change is beneficial to the general population then that individual will 

tend to survive and participate in the future generation processes. If the change causes 

a weakness then it is likely the individual will be discarded [18]. 



 
 

15

Best individuals are recombined to produce new offspring which shares many of the 

characteristics of their parents [18]. Again new parents are selected for each new 

child, and this process continues until a desired fitness value is achieved. 

 

Algorithm [18]: 

 

1. Collect an initial population of N individuals randomly. 

2. Generate K offspring, where each offspring is generated as: 

• Select P parents from N 

• Recombine the P parents to form a new individual I. 

• Apply mutation operator to the strategy parameter to adapt it. 

• Apply the mutation operator to the individual I using the updated 

strategy parameter. 

3. Select new parent population consisting of N best individuals from the pool of 

N and K. 

4. Go to step 2 until termination condition occurs. 

 

 

2.3.2.6 Genetic Programming (GP) 

 

This is a variation of GA. In genetic programming, chromosome is like a tree instead 

of list [12], [13]. Genetic programming is used in SBSE to formulate predictive 

models of software projects [13]. The idea is to develop a program to solve the 

particular problem.  

 

The main difference between genetic algorithms and genetic programming is how the 

solution is represented. Genetic algorithms create a list of numbers that represent the 

solution [13]. Genetic programming creates computer programs as the solution. The 
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individuals in genetic programming are the programs developed in LISP or in some 

other artificial intelligence language [16], [26]. 

 

Algorithm [26]: 

 

1. Generate an initial population of random created computer programs. 

2. Execute each program in the population and assign it a fitness value according 

to how well it solves the problem. 

3. Create a new population of computer programs. 

• Copy the best existing programs. 

• Create new computer programs by mutation or crossover. 

4. The best computer program that appeared in any generation, the best-so-far 

solution, is designated as the result of genetic programming. 

 

 

2.3.2.7 Ant Colony Optimization (ACO) 

 

The Ant Colony Optimization (ACO) metaheuristic proposed by M. Dorigo is based 

on the cooperating behaviour of real ants to solve optimization problems [33]. Some 

of the applications of ACO are combinatorial optimization, scheduling, networking 

and communication, and assignment [22], [33]. An ant colony is able to find the 

shortest path to the food sources by using a very simple communication method. The 

ant colony has access to the food source though different paths from the colony’s nest. 

During the trips, a chemical trail (pheromone) is left on the ground. The role of this 

trail is to guide the other ants toward the target point [33]. The larger the amount of 

pheromone on a particular path, the larger is the probability that the ants will select 

the path [33]. This chemical substance has a decreasing action over time. This 

decrease over time can is called as evaporation process [33]. 
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Figure 2.2 [33]: Ant colony searching an optimal path between the food and the nest. 

 

Algorithm [33]: 

 
 

 

2.3.2.8 Particle Swarm Optimization (PSO) 

 

Particle Swarm Optimization (PSO) is a nature inspired optimization algorithm 

introduced by Eberhart and Dr. Kennedy in 1995 [30]. It is a probabilistic 

metheuristic search technique based on social behavior of bird flocking and fish 

schooling [21], [33]. In PSO, particles are called potential solutions. These particles 

fly through the problem space by following the best positions found by neighbour 

particles and by themselves. Every particle keeps the record of its best position 

achieved so far. This is particle’s personal best value and called as pbest [21]. There is 

another value gbest or lbest. gbest (global best) is the best position obtained so far by 

any particle in the swarm [21] whereas lbest (local best) is the position for a given 
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subset of the swarm [33]. Swarm is similar to population as in Genetic Algorithms 

and particle is analogous to an individual [31]. PSO is considered as collective and 

iterative method due to its emphasis on cooperation [20]. 

 

 
Figure 2.3 [33]: Particle swarm with their positions and velocities. 

 

PSO can be mapped to continuous as well as discrete search space values.  In PSO, 

each particle has position and velocity. Initially positions and velocities of all the 

particles are randomly initialized [23]. On each iteration, first velocity of the particle 

is updated and then its position. The PSO algorithm use pbest and gbest (or lbest) for 

adjusting the velocity of the particle. This process continues until desired fitness level 

is achieved. In other words, PSO algorithm is mainly composed of three steps; 

velocity update, position update, and fitness calculation until desired convergence 

level is achieved. 

 

Traditionally there are two methods to define particles neighbourhood [21], [33]. In 

gbest method, the neighbourhood is defined as the whole swarm of particles. On the 

other hand, in the lbest method, the neighbourhood of a particle is defined by several 

fixed particles. In other words we can say there are multiple lbest in the swarm. The 
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gbest offers faster rate of convergence but it is not robust [19]. The gbest particle 

attracts all the particles towards itself. Using only the gbest in velocity update process, 

may lead to premature convergence of swarm. The lbest prevents premature 

convergence because many lbest positions are kept. In other words there are many 

attractors [19]. 

 

According to the neighbourhood, a leader (lbest or gbest) represents the particle that 

is used to guide the search of a particle toward better regions of the search space [33]. 

 

Equations 1 and 2 are used to update velocity and position of the particle [22], [23], 

[24] as described in Figure 1. 

 

 

v(t + 1) = vt + (c1r1(pbest - xt)) + (c2r2(gbest - xt)) (1)

x(t + 1) = xt + v(t + 1) (2)

 

Where c1 and c2 are self confidence factor and swarm confidence factor respectively 

[25]. c1 and c2 are also called acceleration coefficients [19]. The parameter c1 is the 

cognitive learning factor that represents the attraction that a particle has toward it own 

process [34]. The parameter c2 is the social learning factor that represents the 

attraction that a particle has toward the success of its neighbours [34]. r1 and r2 are 

uniform random numbers in the range [0,1]. 
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Figure 2.4 [25]: Depiction of the velocity and position updates. 

 

Equation 2 is used to update position in continuous PSO. This version of PSO is also 

called as real-valued PSO [24] because velocities and positions are represented using 

real values. The other version is the discrete version also proposed by Kennedy and 

Eberhart [24], [32] in which velocity is used to make Boolean decision. This is called 

Binary PSO and used to solve binary problems. In binary version of PSO, new 

position of the particle is decided using sigmoid function [24].  

 

1   if   r < sig(v(t+1)) 
x(t+1) = 

0   otherwise 
(3)

 

Where r is uniform random number in the range [0,1]. 

 

sig(v(t+1)) = 1 / (1+exp(-v(t+1))) (4)
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Algorithm [23]: 

 

1. Randomly initialize velocities and positions of all particles. 

2. On each iteration, update velocities of all the particles according to equation 1. 

3. Update positions of all the particles using equations 2 and 3 for Continuous 

PSO and Binary PSO respectively. 

4. Update pbest and gbest when condition is met. 

pbest = x(t+1)  if   x(t+1) > pbest 

gbest = x(t+1)  if   x(t+1) > gbest 

5. Repeat steps 2 to 4 until certain termination conditions are met, such as a pre-

defined number of iterations, desired fitness value is achieved, or failure to 

make progress for a certain number of iterations. 
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Figure 2.5: PSO Flowchart. 
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2.4 COMPARISON BETWEEN GA AND PSO 

 
PSO is analogous to GA in many aspects. Both starts with the randomly generated 

population and there is some fitness function to evaluation the population [23]. In 

contrary to GA, PSO does not support crossover and mutation. On iteration in PSO, 

velocity of the particle is updated and thus particle occupy some memory to hold best 

position [22]. Information sharing mechanism is also different in PSO. In PSO, only 

gbest and lbest share information with others whereas in GA, chromosomes share 

information with each other [23]. The advantages of PSO include easy to implement 

and small number of parameters to adjust [23]. 
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2.5 SUMMARY 

 
In this chapter a background study on software clustering was presented. The 

presented concepts form the foundations of the project. Details regarding PSO have 

been discussed in detail. The “Application of SBSE Techniques for Hierarchical 

Software Clustering” project has been studied for its dedications towards providing 

solution to software clustering problem. Algorithms, techniques and various 

directions that have been discussed form the foundation of the research work in the 

project. 
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Chapter 3 

DESIGN & IMPLEMENTATION 

 

INTRODUCTION 

 

This chapter presents the architectural design and implementation details of the PSO 

on software clustering problem. This system has been designed to meet the highest 

levels of usability. All the required information such as fitness values, the iteration 

numbers, and the time span are shown on the screen. The solution is presented in the 

form of MOJO files. 

 

3.1 CLASS DIAGRAM 
 

The following figure represents the class diagram of proposed system. 

 

Figure 3.1: Class Diagram. 
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3.1.1 CDialog 

The MFC class used as base class to display dialog boxes on screen. 

 

3.1.2 CSCPSODlg 

This class is derived from CDialog class and is used to provide user interface 

functionality. Operations of this class include facts file selection, accept cluster size, 

start software clustering process, and display fitness value with iteration no. and time. 

 

3.1.3 CPersistence 

This class handles all the file related operations. File operation includes reading facts 

file and writing solution file. 

 

3.1.4 CParticleSwarm 

This acts as manager class. It creates population of particles and updates their 

velocities and positions on each iteration. It also keeps global best solution obtained 

during position update process. 

 

3.1.5 CParticle 

This class represents a particle. Collection of this class is used to represent all 

particles in the population. Operations of this class include particle initialization, 

update velocity and position, Binarize position, and fitness value calculation on new 

position. 
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3.1.6 CBSVector 

CBSVector is a template class of sequence containers that arrange elements of a given 

type in a linear arrangement and allow fast random access to any element. 

 

3.1.7 CBSMatrix 

A collection class derived from CBSVector to store facts file, velocities and positions 

of the particles. This class is also used to store local and global best position for each 

particle. 
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3.2 USER INTERFACE 

 

 
Figure 3.2: User Interface. 

 

3.2.1 Description of User Interface Items 

 

Facts File Input is matrix of size n х n. Where n is the number of classes. 
This vector contains relationship strengths between classes and the 
file is stored in text format. 

Classes No. of classes in the Test System 

Clusters No. of clusters to be created or no. of sub-systems to be formed.  

Swarm Size No. of particles. 

Iterations This is termination criteria. If no improvement since last n 
iterations, the process is terminated. Where n is the no. of 
iterations to be performed. 

List (Fitness Value, 
Iteration No., Time 
Span) 

During optimization, It shows best fitness value along with the 
iteration no. and time. 

Start Time Start time of the optimization process. 

End Time End time of the optimization process. 

Time Span Difference between End Time and Start Time. 
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Iterations Total no. of iterations performed. 

Best Fitness Value Best fitness values on process completion. 

Start button Used to start software clustering process. 

Cancel button Used to cancel software clustering process. 

Table 3.1: Description of UI Items. 

 

3.3 INPUT FILE DESCRIPTION 

 

Input is the Facts file which is a matrix of size n х n. Where n is the number of 

classes. Facts file contains relationship strengths between classes. 

 

 
Figure 3.3: Tabular Representation of Facts File. 

 

Suppose there are seven classes in the test system. Names are A, B, C, D, E, F, and G. 

They are represented with numeric ids in the range 0 ~ 6. 

 
Figure 3.4: Class Ids. 
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3.4 OUTPUT FILE DESCRIPTION 
 

Output is the Solution file. The Solution file is a text file with “mjo” file extension. 

The file contains the list of clusters or sub-systems and the classes contained in them. 

 

The structure of the Solution file is, 

 

 

ss1 represents sub-system 1 and cls01 represents class 1. 

 

The classes which are more related to each other are placed in the same sub-system. 

Graphically we can represent solution as: 

 

 
Figure 3.5: Graphical representation of the solution. 
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Class 1, 2, and 4 are placed in one sub-system because they are strongly related to 

each other. Similarly class 3 and 5 are placed on one sub-system. Class 2 may have 

some relationships with class 5 but those relationships are not as much strong as it 

relationships with class 1 and class 4. 
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3.5 PSO ALGORITHM 

 
The Standard Binary version of PSO is implemented using gbest neighbourhood 

method. 

 

 



 
 

33

 

Figure 3.6: Implemented PSO Algorithm. 
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3.6 MAPPING SOFTWARE CLUSTERING PROBLEM ON PSO 

3.6.1 Problem Formulation 

A particle in a swarm is represented by n х m matrix where n is the number of clusters 

to be formed and m is the number of classes in test system. Each particle is a 

candidate solution to the clustering problem. The collection of particle is called a 

swarm which is analogous to population in genetic algorithms. Following swarm size 

is used. 

Swarm Size = Number of classes х 10 

 

3.6.2 Fitness Calculation 

Every new position of the particle indicates a possible solution. The quality of the 

solution is evaluated using Modularization Quality (MQ) [8]. The MQ is designed 

based on the assumption that sub-systems in a good software system are highly 

cohesive [8]. The modularization quality differentiates between good and bad 

decompositions. 

 

 
(5)

 

Where CFi is Component Factor for ith cluster; it is computed from cohesion and 

coupling among classes in the clusters [15].  
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(6)

 

µ represents intra-clusters relationships. In other words, µi is the cohesion of ith 

cluster. ε represents inter-cluster relationships. εi,j and εj,i denote coupling between ith 

cluster and any other cluster j.  

 

TurboMQ is the normalized form of MQ [15]. It is achieved by dividing MQ by total 

number of clusters to keep values in the range 0 and 1. 

 

TurboMQ = MQ / k (7)

 

Where k is the total number of clusters. 

 

Let us consider the following example to calculate sum of intra-edges (µ) and sum of 

inter-edges (ε). 

 

 
 

Here S0, S1, and S2 are the 3 clusters or we can call them sub-systems. Cluster S0 

contains classes 0, 1, and 3. Cluster S1 contain classes 2 and 4. Class 5 and 6 belongs 

to cluster S2. 
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To compute values of µ and ε, we have to read relationships strengths from Facts file. 

 

 
 

Graphically we can represent classes and the relationship strengths between them as: 

 

 
Figure 3.7: Intra Edges and Inter Edges. 
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3.6.3 Termination Criteria 

The optimization process terminates if there is no improvement in the fitness value 

since last 1000 (one thousand) iterations OR the fitness value reached to 1. 

 
3.6.4 Test Environment 

Tests are performed on the following environment. 

 

• Windows 7 Professional 32-bit 

• 2.26GHz Intel Core i3 

• 3 GB RAM 
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3.7 SUMMARY 

In this chapter the architecture and implementation of the newly proposed system 

have been described in detail. Complete Parallel Binary PSO algorithm is presented. 

Mapping software clustering on PSO, fitness value calculation, and termination 

criteria are also described. 
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Chapter 4 

TESTING & EVALUATION 

 

INTRODUCTION 

 

Parallel Binary PSO is tested using three test systems. Firstly, since the solution is 

proposed for efficient computation of results therefore it has to be evaluated for 

computational time. Secondly, the improvement in fitness value is checked. The 

proposed system cannot be tested and evaluated in total isolation. It has to be tested 

and evaluated in comparison with GA. 

 

4.1 DESCRIPTION OF TEST SYSTEMS 

 
4.1.1 Power Economic Dispatch System (PEDS) 

This system is related to electrical power systems. It solves economic power dispatch 

problem using conventional and evolutionary computing techniques [15]. It uses MFC 

document viewer architecture and implements conventional and genetic algorithms. 

 
S. No. Entity Related Information Count 
1 Lines of source code 16360
2 Header files 31
3 Implementation files 27
4 Classes 41

Figure 4.1: Entities in PEDS Test System. 
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S. No. Relationships Count 
Inheritance: 
1 Inheritance Depth 13
2 Same Inheritance Hierarchy 70
3 Virtual Method Overridden Count 6
Containment: 
4 Containment as Object 12
5 Containment as Pointer 9
6 Containment as Reference 0
7 Containment at Method Parameter Level 22
8 Containment at Method Local Declaration Level 29
9 Two Classes using Same Class at Class Level 12
10 Two Classes using Same Class at Method Level 76
Member Access: 
11 Data Member Access Count in Inheritance 43
12 Data Member Access Count in Containment 20
13 Method Access Count in Inheritance 35
14 Method Access Count in Containment 17
15 Both Classes Access Same Global Data 0
16 Both Classes Access Same Global Function 0
Files & Folders 
17 Both Contained in Same Source File   36
18 Both Source Files are in the Same Folder 0

Figure 4.2: Relationships in PEDS Test System. 

 

4.1.2 Statistical Analysis Visualization Tool (SAVT) 

This application helps statistical analysts in analysis and visualization of statistical 

data. It provides complete support of user interface for input and visualize along with 

the saving and loading data files. 

 
S. No. Entity Related Information Count 
1 Lines of source code 27311
2 Header files 70
3 Implementation files 76
4 Classes 97

Figure 4.3: Entities in SAVT Test System. 
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S. No. Relationships Count 
Inheritance: 
1 Inheritance Depth 26
2 Same Inheritance Hierarchy 986
3 Virtual Method Overridden Count 21
Containment: 
4 Containment as Object 41
5 Containment as Pointer 41
6 Containment as Reference 0
7 Containment at Method Parameter Level 77
8 Containment at Method Local Declaration Level 153
9 Two Classes using Same Class at Class Level 1032
10 Two Classes using Same Class at Method Level 1900
Member Access: 
11 Data Member Access Count in Inheritance 100
12 Data Member Access Count in Containment 49
13 Method Access Count in Inheritance 83
14 Method Access Count in Containment 77
15 Both Classes Access Same Global Data 0
16 Both Classes Access Same Global Function 0
Files & Folders 
17 Both Contained in Same Source File   264
18 Both Source Files are in the Same Folder 0

Figure 4.4: Relationships in SAVT System. 

 

4.1.3 Print Language Converter (PLC) 

This application is a sub-system of a large software system. It provides conversion 

support from intermediate data structures to a well known printer language. 

 
S. No. Entity Related Information Count 
1 Lines of source code 51768
2 Header files 27
3 Implementation files 27
4 Classes 69

Figure 4.5: Entities in PLC Test System. 
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S. No. Relationships Count 
Inheritance: 
1 Inheritance Depth 99
2 Same Inheritance Hierarchy 26
3 Virtual Method Overridden Count 26
Containment: 
4 Containment as Object 24
5 Containment as Pointer 12
6 Containment as Reference 0
7 Containment at Method Parameter Level 25
8 Containment at Method Local Declaration Level 69
9 Two Classes using Same Class at Class Level 58
10 Two Classes using Same Class at Method Level 162
Member Access: 
11 Data Member Access Count in Inheritance 87
12 Data Member Access Count in Containment 41
13 Method Access Count in Inheritance 92
14 Method Access Count in Containment 34
15 Both Classes Access Same Global Data 0
16 Both Classes Access Same Global Function 0
Files & Folders 
17 Both Contained in Same Source File   1812
18 Both Source Files are in the Same Folder 0

Figure 4.6: Relationships in PLC Test System. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

43

4.2 EXPERIMENTAL SETUP 

For each test system, we applied PSO and GA and performed comparison between 

decompositions of each algorithm. The comparisons are based on fitness values, rate 

of convergence, and computation time. Fitness values are in the range 0 ~ 1. Zero 

specifies the worst decomposition and while 1 indicates best decomposition [15]. 

Classes and clusters to be formed are listed in the following table: 

 

4.2.1 Swarm Size 

In this implementation of PSO, swarm size is taken as 

 

Swarm Size = Number of classes х 10 

 

Same is the population size in GA. 

 

4.2.2 Number of Clusters 

Same numbers of clusters as used in GA are used in PSO for comparison. The value 

for number of clusters is the mean of expert decompositions. 

 
Test System Alias Classes Clusters 

1 PEDS 41 4 
2 SAVT 97 8 
3 PLC 69 4 

Table 4.7: No. of Clusters. 
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4.2.3 Experimental Results 

 

For each of three test systems, total ten readings are taken. Five readings using PSO 

and five are using GA. On the basis of these readings, comparative analysis is 

performed. Time is shown in “HH:mm:ss” format. 

 

4.2.3.1 PEDS 

 
PSO GA # Fitness Value Time Fitness Value Time 

1 0.805339 0:02:15 0.773470 0:09:55 
2 0.805339 0:02:12 0.770880 0:09:50 
3 0.824819 0:03:24 0.858480 0:09:45 
4 0.824819 0:03:00 0.773470 0:09:50 
5 0.805339 0:02:11 0.858480 0:09:39 

Table 4.8: Experimental Results of PEDS. 
 

4.2.3.2 SAVT 

 
PSO GA # Fitness Value Time Fitness Value Time 

1 0.505032 1:04:17 0.474990 2:05:43 
2 0.505032 1:03:11 0.434460 2:05:40 
3 0.505032 1:03:14 0.461820 2:04:46 
4 0.506467 1:04:56 0.435390 2:05:29 
5 0.505032 1:04:51 0.492440 2:04:37 

Table 4.9: Experimental Results of SAVT. 
 

4.2.3.3 PLC 

 
PSO GA # Fitness Value Time Fitness Value Time 

1 0.688900 0:10:43 0.640430 0:42:21 
2 0.688900 0:10:01 0.652140 0:43:24 
3 0.688900 0:09:28 0.640430 0:43:22 
4 0.688900 0:09:58 0.652140 0:44:42 
5 0.688900 0:09:47 0.652140 0:45:39 

Table 4.10: Experimental Results of PLC. 
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4.3 EVALUATION 

 
4.3.1 Fitness Values 

 

4.3.1.1 PEDS 

There is 0.76% improvement in fitness value. 

 

 
Table 4.11: Fitness Values of PEDS. 

 

 

 
Figure 4.1: Graphical Representation of Solution Quality of PEDS. 
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4.3.1.2 SAVT 

There is 9.89% improvement in fitness value. 

 

 
Table 4.12: Fitness Values of SAVT. 

 

 

 
Figure 4.2: Graphical Representation of Solution Quality of SAVT. 
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4.3.1.3 PLC 

There is 6.4% improvement in fitness value. 

 

 
Table 4.13: Fitness Values of PLC. 

 

 
Figure 4.3: Graphical Representation of Solution Quality of PLC. 

 

PSO quickly converged to maximum fitness value within first 500 iterations. 

Analyzing fitness values revealed that results of PSO are more stable and consistent 

because of the minimum variations in the fitness values. The reason behind is, in GA 



 
 

48

only best individuals are selected for reproduction whereas in PSO all the particles in 

swarm participate in velocity process and position update process. Reproduction can 

eliminate good solutions in GA while good solutions always survive into the next 

generation in PSO. 
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4.3.2 Computational Time 

 

4.3.2.1 PEDS 

There is 73.47% decrease in computational time. 

 

 
Table 4.14: Computational Time of PEDS. 

 

 

 
Figure 4.4: Graphical Representation of Computational Time of PEDS. 
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4.3.2.2 SAVT 

There is 49.04% decrease in computational time. 

 

 
Table 4.15: Computational Time of SAVT. 

 

 

 
Figure 4.5: Graphical Representation of Computational Time of SAVT. 
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4.3.2.3 PLC 

There is 77.26% decrease in computational time. 

 

 
Table 4.16: Computational Time of PLC. 

 

 
Figure 4.6: Graphical Representation of Computational Time of PLC. 

 

It appears that PSO offers more computational savings because PSO do not have 

genetic operators such as crossover and mutation. PSO has few parameters to adjust. 

According to test results, computational time is reduced by 49% ~ 77%. 
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4.4 SUMMARY 

To fully test PSO it has been evaluated from various aspects like fitness values, 

computational time, and rate of convergence. The results have been obtained on three 

test systems for both PSO and GA under the same environment variables. Analysis of 

results shows that PSO is very stable and requires little computational time to operate. 
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Chapter 5 

CONCLUSIONS & FUTURE WORK 

Software clustering is an NP-Hard problem. It cannot be solved in real time. Search 

Based Software Engineering (SBSE) is an approach to Software Engineering in which 

search based optimization algorithms are applied to Software Engineering problems. 

Particle Swarm Optimization (PSO) is an evolutionary heuristic search method based 

on biological behaviours and can be used to solve NP-hard problems. This thesis 

provides a framework for solving software clustering problem using PSO. 

 

5.1 CONCLUSIONS 

 

In this thesis, PSO approach is used to solve software clustering problem. Results of 

Particle Swarm Optimization and Genetic Algorithms are compared. Simulation 

results show that the PSO approach requires small computational time as compared to 

GA. Binary version of PSO is applied due to discrete nature of software clustering 

problem. Solution Quality of PSO is better than GA. In GA, reproduction can 

eliminate good solutions while good solutions always survive into the next iteration in 

PSO. PSO does offer a less expensive approach than the GA in general. It appears that 

PSO offers more computational savings because PSO do not have genetic operators 

such as crossover and mutation. According to test results, computational time is 

reduced by 49% ~ 77%. 
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5.2 FUTURE WORK 

 

Although the PSO has been tested on three test software systems with different sizes, 

but there is still room for testing on much bigger test systems. The Binary PSO can be 

enhanced by applying inertia weight [25] and meta-optimization [27] while updating 

velocities. A novel PSO approach [24] can also be applied in which two new 

probability vectors are introduced to change bits of the particle. 
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Appendix A 
 

SNAPSHOTS 
 

 
A.1 SCPSO SCREEN 
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A.2 FACTS FILE LOADED 
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A.3 PSO EXECUTION 
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A.4 PSO GOING TO TERMINATE  
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A.5 RESULTS ON PROCESS COMPLETION 
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A.6 CONFIRMATION BEFORE CANCEL 
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