

APPLICATION OF SBSE TECHNIQUES FOR

HIERARCHICAL SOFTWARE CLUSTERING

by

Ibrar Hussain

2009-NUST-MSPhD- CSE(E)-16

MS-09 (SE)

Submitted to the Department of Computer Engineering in fulfillment of the

requirements for the degree of

MASTER OF SCIENCE
in

SOFTWARE ENGINEERING

Thesis Supervisor

Dr. Aasia Khanum

College of Electrical & Mechanical Engineering

National University of Sciences & Technology

2012

i

DECLARATION

I hereby declare that I have developed this thesis entirely on the basis of my personal

efforts under the guidance of my supervisor Dr. Aasia Khanum. All the sources used

in this thesis have been cited and the contents of this thesis have not been plagiarized.

No portion of the work presented in this thesis has been submitted in support of any

application for any other degree of qualification to this or any other university or

institute of learning.

 Ibrar Hussain

ii

ACKNOWLEDGEMENTS

First and foremost I want to thank my advisor Dr. Aasia Khanum. It has been an

honor to study under his supervision. I appreciate all his contributions of time and

ideas to make my MS experience both productive and stimulating.

I would also like to thank the faculty members at the college of E & ME for their

constant support during our studies. For this dissertation I would like to thank my

committee members Brig. Dr. Muhammad Younus Javed, Dr. Shoab Ahmad Khan,

and Dr. Farooque Azam. I would also like to thank Mr. Abdul Qudus Abbasi,

Assistant Professor at Quaid-i-Azam University Islamabad for his guidance in the

field of software clustering, providing me literature on this topic, and providing me

valuable test systems data to compute and evaluate results.

Lastly, I would like to thank my family for all their love and encouragement. For my

parents who raised me and supported me in all my pursuits. And most of all for my

loving, supportive and encouraging brother and sisters whose faithful support during

the final stages of my degree is so appreciated. Thank you it would not have been

possible without you.

iii

To my loving parents, brother and sisters…

iv

ABSTRACT

Software systems evolve and change with time due to change in business needs. At

some stage the available architectural description may not best represent the current

software system. Accurate understanding of software architecture is very important

because it helps in estimating where and how much change is required in the software

system to fulfill changing business needs. It also helps in making decisions related to

reusability of software components. The understanding of software architecture also

plays vital role in estimating cost and risk of change in software system. In some

cases, especially for legacy systems such a description does not readily exist. For such

cases, we can use source code to extract architecture of the software system. Software

Clustering is an approach to decompose large software system into smaller

manageable sub systems to get system architecture. Software clustering, however, is

an NP-hard problem. Search Based Software Engineering (SBSE) provides

optimization algorithms which are search based and can be applied to Software

Engineering problems. Particle Swarm Optimization (PSO) is a metaheuristic search

technique based on biological behaviors and can be used to solve NP-hard problems.

This thesis provides a framework for solving software clustering problem with PSO.

Experimental results show fast convergence and stable results.

In this thesis, software clustering process is presented in detail. Different Search

Based Software Engineering (SBSE) techniques are discussed but focus is on Particle

Swarm Optimization (PSO). The thesis focuses on design, implementation and

analysis of PSO algorithm applied to software clustering problem. The objective of

this paper is to solve software clustering problem using PSO and examine the

effectiveness of PSO comparative to Genetic Algorithms (GA). Simulation results

show that the PSO approach has stable results and it requires smaller computational

effort as compared to GA.

 v

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION 1

1.1 PROBLEM OVERVIEW 2

1.2 PROJECT OBJECTIVES 2

1.3 THESIS OUTLINE 3

CHAPTER 2: LITERATURE REVIEW 4

2.1 SOFTWARE CLUSTERING 4

2.2 SOURCE CODE ELEMENTS 6

 2.2.1 Entities 6

 2.2.2 Relationships 6

2.3 SEARCH BASED SOFTWARE ENGINEERING 7

 2.3.1 Classical Techniques 7

 2.3.1.1 Linear Programming 7

 2.3.1.2 Integer Programming 8

 2.3.1.3 Quadratic Programming 8

 2.3.1.4 Non-Linear Programming 8

 2.3.2 Metaheuristic Search Techniques 9

 2.3.2.1 Hill Climbing 9

 2.3.2.2 Simulated Annealing 10

 2.3.2.3 Tabu Search 12

 2.3.2.4 Genetic Algorithms 13

 2.3.2.5 Evolutionary Strategies 14

 2.3.2.6 Genetic Programming 15

 2.3.2.7 Ant Colony Optimization 16

 2.3.2.8 Particle Swarm Optimization 17

2.4 COMPARISON BETWEEN GA AND PSO 23

2.5 SUMMARY 24

 vi

CHAPTER 3: DESIGN & IMPLEMENTATION 25

3.1 CLASS DIAGRAM 25

3.2 USER INTERFACE 28

 3.2.1 Description of User Interface Items 28

3.3 INPUT FILE DESCRIPTION 29

3.4 OUTPUT FILE DESCRIPTION 30

3.5 PSO ALGORITHM 32

3.6 MAPPING SOFTWARE CLUSTERING PROBLEM ON PSO 34

 3.6.1 Problem Formulation 34

 3.6.2 Fitness Calculation 34

 3.6.3 Termination Criteria 37

 3.6.4 Test Environment 37

3.7 SUMMARY 38

CHAPTER 4: TESTING AND EVALUATION 39

4.1 DESCRIPTION OF TEST SYSTEMS 39

 4.1.1 Power Economic Dispatch System (PEDS) 39

 4.1.2 Statistical Analysis Visualization Tool (SAVT) 40

 4.1.3 Print Language Converter (PLC) 41

4.2 EXPERIMENTAL SETUP 43

 4.2.1 Swarm Size 43

 4.2.2 Number of Clusters 43

 4.2.3 Experimental Results 44

 4.2.3.1 PEDS 44

 4.2.3.2 SAVT 44

 4.2.3.3 PLC 44

4.3 EVALUATION 45

 4.3.1 Fitness Values 45

 4.3.1.1 PEDS 45

 4.3.1.2 SAVT 46

 vii

 4.3.1.3 PLC 47

 4.3.2 Computational Time 49

 4.3.2.1 PEDS 49

 4.3.2.2 SAVT 50

 4.3.2.3 PLC 51

4.4 SUMMARY 52

CHAPTER 5: CONCLUSIONS AND FUTURE WORK 53

5.1 CONCLUSIONS 53

5.2 FUTURE WORK 54

APPENDIX A - SNAPSHOTS 55

REFERENCES 61

 viii

LIST OF TABLES

3.1 Description of UI Items 28

4.1 Entities in PEDS Test System 39

4.2 Relationships in PEDS Test System 40

4.3 Entities in SAVT Test System 40

4.4 Relationships in SAVT Test System 41

4.5 Entities in PLC Test System 41

4.6 Relationships in PLC Test System 42

4.7 No. of Clusters 43

4.8 Experimental Results of PEDS 44

4.9 Experimental Results of SAVT 44

4.10 Experimental Results of PLC 44

4.11 Fitness Values of PEDS 45

4.12 Fitness Values of SAVT 46

4.13 Fitness Values of PLC 47

4.14 Computational Time of PEDS 49

4.15 Computational Time of SAVT 50

4.16 Computational Time of PLC 51

 ix

LIST OF FIGURES

2.1 Hill Climbing Terminology 9

2.2 Ant colony searching an optimal path between the food and the nest 17

2.3 Particle swarm with their positions and velocities 18

2.4 Depiction of the velocity and position updates 20

2.5 PSO Flowchart 22

3.1 Class Diagram 25

3.2 User Interface 28

3.3 Tabular Representation of Facts File 29

3.4 Class Ids 29

3.5 Graphical representation of the solution 30

3.6 Implemented PSO Algorithm 33

3.7 Intra Edges and Inter Edges 36

4.1 Graphical Representation of Solution Quality of PEDS 45

4.2 Graphical Representation of Solution Quality of SAVT 46

4.3 Graphical Representation of Solution Quality of PLC 47

4.4 Graphical Representation of Computational Time of PEDS 49

4.5 Graphical Representation of Computational Time of SAVT 50

4.6 Graphical Representation of Computational Time of PLC 51

 x

LIST OF ABBREVIATIONS

ACO Ant Colony Optimization

CF Component Factor

ES Evolutionary Strategies

GA Genetic Algorithms

GP Genetic Programming

IP Integer Programming

LP Linear Programming

MFC Microsoft Foundation Classes

MOJO MOve and JOin

MQ Modularization Quality

NLP Non-Linear Programming

PSO Particle Swarm Optimization

QP Quadratic Programming

SA Simulated Annealing

SBSE Search Based Software Engineering

SCPSO Software Clustering using Particle Swarm Optimization

TS Tabu Search

UI User Interface

pbest Personal Best

gbest Global Best

lbest Local Best

1

Chapter 1

INTRODUCTION

Architecture of a software system is defined as “the fundamental organization of a

system embodied in its components, their relationships to each other, and to the

environment, and the principles guiding its design and evolution” [1]. Software

architecture encapsulates higher level design of software, defining its various sub-

systems and their relationships. Knowledge of software architecture is needed in

various phases of software lifecycle e.g. maintenance, evolution, and reuse [2], [3].

However, for many systems this architectural knowledge is not so readily available

and the software managers have to incur extra efforts in recovering the underlying

architecture from source code. Manual methods can be considered as last resort

measure for architecture recovery, but in the face of large size and complexity of

today’s legacy software these measures prove costly and time-consuming. It is now

generally recognized that in order for software architecture recovery to be viable, it

must be handled by automatic or semi-automatic tools [4], [5].

Software systems become complex due to the complexity of application domain and

changing business rules [6]. It also happens that the software developers are not

familiar with many concepts of the application domain. Other reasons for the

complexity of software systems are development methods, tools, and people involved

in the software development process [7]. Over the life time, software applications

demand changes to fit in the changed business processes. The timely modification in

the software system is very important which sometimes becomes very difficult due to

2

unavailability of the persons who actually developed the system. Changes weaken the

architecture of the system if done without enough understanding. Deteriorated

software systems are difficult to understand by the software developers and designers

[6], [8].

According to Len Bass [9], “The software architecture of a program or computing

system is the structure or structures of the system which comprise software elements,

externally visible properties of those elements and the relationships among them”.

Understand ability of the software system is highly influenced by the architecture of

the software system.

1.1 PROBLEM OVERVIEW

Software clustering is an NP-Hard problem therefore it is very difficult to solve it in

real time. Search Based Software Engineering (SBSE) provides optimization

algorithms which are search based and can be applied to Software Engineering

problems. Particle Swarm Optimization (PSO) is a metaheuristic search technique

based on biological behaviours and can be used to solve NP-Hard problems. This

thesis provides a framework for solving software clustering problem with PSO.

1.2 PROJECT OBJECTIVES

In this thesis, software clustering process is presented in detail. Different Search

Based Software Engineering (SBSE) techniques are discussed but focus is on Particle

Swarm Optimization (PSO). The thesis focuses on design, implementation and

analysis of PSO algorithm applied to software clustering problem. The objective of

3

this thesis is to solve software clustering problem using PSO and examine the

effectiveness of PSO comparative to Genetic Algorithms (GA).

1.3 THESIS OUTLINE

The thesis is logically broken down so that each chapter builds on the learning’s from

the previous chapters. Chapter 2 provides fundamentals of software clustering,

research contributions, and literature review on search based optimization techniques.

This includes hill climbing, simulated annealing, tabu search, genetic algorithms,

evolutionary strategies, and genetic programming, particle swarm optimization, and

ant colony optimization. Chapter 3 presents architecture of the software clustering

system. The architecture discusses in details the system architecture, class diagram,

format of relationships file, and formula to compute fitness values. Chapter 4

analyzes the results of PSO with relation to GA. The results are elaborated with the

help of graphs. Chapter 5 provides conclusion and future work.

4

Chapter 2

LITERATURE REVIEW

INTRODUCTION

The chapter starts with the explanation of software clustering is and its process. Then

different categories of software clustering algorithms are presented. Later in the

chapter, Particle Swarm Optimization (PSO) is explained with all its constraints and

variations.

2.1 SOFTWARE CLUSTERING

Clustering is the process of decomposing large system into smaller manageable

subsystems in such a way that entities within the subsystem are similar to one another

and different from those in other subsystems. The similarity and difference is

measured based on presence and absence of some features [11] in entities. The terms

entities and features are commonly used. Entities include files, classes, and global

functions whereas features are the attributes such as number of function calls of one

class within another class.

The clustering produced by a clustering technique is also known as partition. Software

clustering process is described as [10].

• Identification of entities and features – Entities are files, classes, and

functions that are grouped together. Features may include number function

5

calls by the entity, global variables referred, type of data maintained by a

class, etc.

• Measuring similarity – Different metrics are used to calculate the similarity

between entities. Those metrics include association coefficients, correlation

measures and distance metrics.

• Applying clustering algorithm – Optimization techniques are available which

lead us to sub-optimal solution. Those techniques include classical techniques

and metaheuristic search [13].

• Evaluation of partition – No definite quantitative measures exist to evaluate

partitions. Expert decompositions are used which are mostly done by designer

of the system. The test clustering is compared with these expert

decompositions.

Clustering algorithms are mainly divided into two categories [11]:

• Partitional – They produce flat decompositions. Clustering process starts with

the initial partition with some number of clusters. On each iteration, clustering

criteria is optimized that result in the modification in the partition. Number of

clusters must be known in advance for the application of partitional

algorithms.

• Hierarchical – These algorithms decompose software system in natural

hierarchy which better helps in understanding large software systems.

Hierarchical algorithms represent both detailed and high level views of

6

software system. Hierarchical clustering is further divided into divisive and

agglomerative [15].

2.2 SOURCE CODE ELEMENTS

Source code elements are mainly divided into two groups; entities and relationships.

2.2.1 Entities

Entities are further divided into primary entities and secondary entities [15]. Primary

entities are part of the clustering process and they become members of clusters.

Secondary entities help indirectly in the clustering process i.e., they help to define

relationships among primary entities. These secondary entities do not become

members of clusters in the final outcome of the clustering process. Classes, structures,

and unions are primary entities while files, folders, global data, global functions, and

macros are secondary entities.

2.2.2 Relationships

Relationships between entities are meaningful in the context of clustering. Entities are

grouped into clusters based on relationships between those entities. Some of the

relationships are inheritance depth, inheritance hierarchy, inheritance type,

containment as object, containment as pointer, containment as reference, containment

at method parameter level, Containment at local method declaration level, both

classes exist in the same file or in the same folder.

7

2.3 SEARCH BASED SOFTWARE ENGINEERING

Search Based Software Engineering (SBSE) is an approach to software engineering in

which search based optimization algorithms are used to identify acceptable or sub-

optimal solution [12].

Most widely used optimization techniques are [13]:

• Classical Techniques – These techniques include linear programming, integer

programming, quadratic programming, non-linear programming, stochastic

programming, dynamic programming, combinatorial optimization, infinite-

dimensional optimization, constraint satisfaction.

• Metaheuristic Search – Most commonly search techniques are; hill climbing,

simulated annealing, tabu search, genetic algorithms, evolutionary strategies,

and genetic programming.

2.3.1 Classical Techniques

2.3.1.1 Linear Programming

Linear programming (LP) can be used as mathematical optimization technique to find

out optimum solution. The inputs are n real numbers which are called decision

variables. Here the goal is to maximize the value of linear expression in these decision

variables with the set constraint [13].

8

2.3.1.2 Integer Programming

Integer programming (IP) is a type of linear programming in which all variables

contain integer values only [28]. IP problems can be classified into Pure Integer IP

Problem, Mixed Integer IP Problem, and Zero-One IP Problem [28]. Integer

programming allows depicting discontinuous decision variables. It is used to model

fixed cost, logical conditions, and discrete level of resources.

2.3.1.3 Quadratic Programming

Quadratic programming (QP) is also a type of mathematical optimization problem in

which quadratic function of several variables is optimized (minimized or maximized)

where there are linear constraints on these variables. An optimization problem which

is linearly constrained and objective function is quadratic, is called a quadratic

program [29].

2.3.1.4 Non-Linear Programming

The objective function of some real-world problems may not be linear or some of the

constraints may be non-linear. Such problems are called non linear programming

(NLP) problems. Applications of non-linear programming include resource allocation,

production planning, computer-aided design, modeling human or organizational

behavior, or data networks.

9

2.3.2 Metaheuristic Search Techniques

2.3.2.1 Hill Climbing

The search starts from a randomly chosen point by considering the neighbourhood.

Every neighbour is checked for fitness. A move is made if it improves fitness and

neighbour is selected if there is increase in fitness [13]. Search terminates if no

neighbour qualifies for fitness [14]. Each variable is changed one a time to get better

results. The process ends if all the possible combinations of variables are checked and

results are worse or same as the current one.

There is a problem with hill climbing approach that is, the hill located may be local

maxima which may not meet fitness criteria than the global maxima in search space

[13]. A local maximum is a small hill on the surface whose peak is lower than the

main peak. If local maximum is found, we're stuck in it because any small move in

any direction degrades fitness.

Figure 2.1: Hill Climbing Terminology.

10

A move defines the neighbourhood function, in which new solution is generated by

changing one or more attributes of a given solution.

Algorithm:

1. Pick an initial state.

2. Consider all the neighbours of the current state.

3. Choose the neighbour with the best quality and move to that state.

4. Repeat 2 thru 4 until all the neighbouring states are of lower quality.

5. Return the current state as the solution state.

Hill climbing approach can be used in two ways [14]; In simple hill climbing, the first

optimum neighbour is selected. In steepest ascent hill climbing all neighbours are

compared and the individual with the best fitness is selected. Both forms fail if search

space contains local maxima which are not the solutions.

2.3.2.2 Simulated Annealing (SA)

It uses method of local search for optimization. It considers s' as neighbouring value

of s and its cost is evaluated. Minimizing the objective function becomes cost function

and maximizing the objective function becomes fitness function [14]. Simulated

annealing reduces the probability of making undesirable moves. SA heuristic

probabilistically decides whether move the system to the state s' or keep staying in

state s. This is repeated until the desired state is reached, or a complete iteration

produces no change to current state, or given computational budget has been

consumed [14].

11

SA is based on physical process of annealing a metal to get the best state. If a metal is

cooled slowly, this reduces the probability of unfavourable moves of molecules hence

it forms into a smooth piece [13]. If a metal is cooled too fast, the metal will form a

shape having bumps and jagged edges representing the local minimums and

maximums.

New solutions are only accepted if they are better than or equal to current solution. On

reducing the cost function of s', the search moves to s' and the process is repeated.

However, if the cost function increases, the move to s' is not necessarily rejected;

there is a small probability p that the search will move to s' and continue [14].

where ∆E represents energy and T represents temperature [14]. The probability

depends on the values of energy and temperature. The negative change in cost

function means it is improvement. In this case probability is considered as 1 and move

is made. If ∆E is positive, it is considered as unfavorable and the move is considered

as accepted with the probability given in the above equation [14].

Algorithm:

1. Start by generating initial solution. Initialize a very high temperature.

2. Select a neighbour.

3. Calculate the change in the score due to the move.

4. Depending on the change in fitness, accept or reject the move.

5. Update the temperature value by lowering the temperature.

6. Repeat 2 thru 5 until freezing point is reached.

7. Return the current state as the solution state.

12

2.3.2.3 Tabu Search (TS)

Tabu search is also a method of local search. In TS, all solution space is searched to

obtain global optimal solution. Some of the moves are declared as forbidden and some

are aspirant [14]. Aspirant moves might lead to global optimal solution unlike

forbidden moves. Set of forbidden moves is also called as tabu set [14]. Tabu set also

helps in performing more extensive exploration by moving search to the new portions

of the search space.

Recording complete solutions requires a lot of storage hence expensive to check

whether a potential move is tabu or not. The common practice is to record the last few

transformations performed on the current solution in order to prevent reverse

transformations.

Algorithm [14]:

1. Generate initial candidate s.

2. Determine neighbourhood set N.

3. Identify tabu set from neighbour.

4. Identify aspirant set from neighbour.

5. Choose the move with best improving solution s' in N.

6. Set s=s'.

7. Repeat steps 2 thru 6 until terminating condition is met.

13

2.3.2.4 Genetic algorithms (GA)

Genetic Algorithms move around the concept of population and recombination. A set

of candidate solutions constitute the population whereas recombination is the process

of combining and mutating the candidates to generate new solutions [14]. Some fitter

function is used for recombination. The population is chosen randomly and iterative

process is started. In GA, iterations are named as generations and the term

chromosomes, is used to represent members of population [13]. The optimization

process terminates if some pre-set criteria is satisfied or number of iterations are

completed. Members of population are recombined on every generation to generate

new population by using the fitness function. The candidates with best fitness values

are likely to be selected for recombination [13].

Algorithm [23]:

1. Represent the problem variable domain as a chromosome of fixed length;

choose the size of the chromosome population N, the crossover probability Pc

and the mutation probability Pm.

2. Define a fitness function to measure the performance of an individual

chromosome in the problem domain. The fitness function establishes the basis

for selecting chromosomes that will be mated during reproduction.

3. Randomly generate an initial population of size N: x1, x2,..., xN.

4. Calculate the fitness of each individual chromosome: f(x1), f(x2),..., f(xN).

5. Select a pair of chromosomes for mating from the current population. Parent

chromosomes are selected with a probability related to their fitness. High fit

chromosomes have a higher probability of being selected for mating than less

fit chromosomes.

6. Create a pair of offspring chromosomes by applying the genetic operators.

7. Place the created offspring chromosomes in the new population.

14

8. Repeat Step 5 until the size of the new population equals that of initial

population N.

9. Replace the initial (parent) chromosome population with the new (offspring)

population.

10. Go to Step 4, and repeat the process until the termination criterion is satisfied.

A cost function is applied on input variables (a chromosome) to generate an output.

The cost function may be some mathematical function [16]. The objective is to

modify the output in some desirable fashion by finding the appropriate values for the

input variables. The term fitness is extensively used to designate the output of the

objective function [16].

2.3.2.5 Evolutionary Strategies (ES)

This is an alternative form of GA and not widely applied on SBSE [13]. Iteration is

named as generation [17]. Best individuals are used to create new population during

each generation. [17].

The objective function describes the fitness value of each member in the population.

The individual or solution having higher fitness value is considered as best solution.

ES uses selection operator, mutation operator and recombination operator to evolve

solutions [17]. In ES, individuals with best fitness values are involved in

reproduction. New generation is produced by selecting individuals with best fitness

values from the previous generation [18]. Mutation prevents falling GA into local

maxima. If the change is beneficial to the general population then that individual will

tend to survive and participate in the future generation processes. If the change causes

a weakness then it is likely the individual will be discarded [18].

15

Best individuals are recombined to produce new offspring which shares many of the

characteristics of their parents [18]. Again new parents are selected for each new

child, and this process continues until a desired fitness value is achieved.

Algorithm [18]:

1. Collect an initial population of N individuals randomly.

2. Generate K offspring, where each offspring is generated as:

• Select P parents from N

• Recombine the P parents to form a new individual I.

• Apply mutation operator to the strategy parameter to adapt it.

• Apply the mutation operator to the individual I using the updated

strategy parameter.

3. Select new parent population consisting of N best individuals from the pool of

N and K.

4. Go to step 2 until termination condition occurs.

2.3.2.6 Genetic Programming (GP)

This is a variation of GA. In genetic programming, chromosome is like a tree instead

of list [12], [13]. Genetic programming is used in SBSE to formulate predictive

models of software projects [13]. The idea is to develop a program to solve the

particular problem.

The main difference between genetic algorithms and genetic programming is how the

solution is represented. Genetic algorithms create a list of numbers that represent the

solution [13]. Genetic programming creates computer programs as the solution. The

16

individuals in genetic programming are the programs developed in LISP or in some

other artificial intelligence language [16], [26].

Algorithm [26]:

1. Generate an initial population of random created computer programs.

2. Execute each program in the population and assign it a fitness value according

to how well it solves the problem.

3. Create a new population of computer programs.

• Copy the best existing programs.

• Create new computer programs by mutation or crossover.

4. The best computer program that appeared in any generation, the best-so-far

solution, is designated as the result of genetic programming.

2.3.2.7 Ant Colony Optimization (ACO)

The Ant Colony Optimization (ACO) metaheuristic proposed by M. Dorigo is based

on the cooperating behaviour of real ants to solve optimization problems [33]. Some

of the applications of ACO are combinatorial optimization, scheduling, networking

and communication, and assignment [22], [33]. An ant colony is able to find the

shortest path to the food sources by using a very simple communication method. The

ant colony has access to the food source though different paths from the colony’s nest.

During the trips, a chemical trail (pheromone) is left on the ground. The role of this

trail is to guide the other ants toward the target point [33]. The larger the amount of

pheromone on a particular path, the larger is the probability that the ants will select

the path [33]. This chemical substance has a decreasing action over time. This

decrease over time can is called as evaporation process [33].

17

Figure 2.2 [33]: Ant colony searching an optimal path between the food and the nest.

Algorithm [33]:

2.3.2.8 Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is a nature inspired optimization algorithm

introduced by Eberhart and Dr. Kennedy in 1995 [30]. It is a probabilistic

metheuristic search technique based on social behavior of bird flocking and fish

schooling [21], [33]. In PSO, particles are called potential solutions. These particles

fly through the problem space by following the best positions found by neighbour

particles and by themselves. Every particle keeps the record of its best position

achieved so far. This is particle’s personal best value and called as pbest [21]. There is

another value gbest or lbest. gbest (global best) is the best position obtained so far by

any particle in the swarm [21] whereas lbest (local best) is the position for a given

18

subset of the swarm [33]. Swarm is similar to population as in Genetic Algorithms

and particle is analogous to an individual [31]. PSO is considered as collective and

iterative method due to its emphasis on cooperation [20].

Figure 2.3 [33]: Particle swarm with their positions and velocities.

PSO can be mapped to continuous as well as discrete search space values. In PSO,

each particle has position and velocity. Initially positions and velocities of all the

particles are randomly initialized [23]. On each iteration, first velocity of the particle

is updated and then its position. The PSO algorithm use pbest and gbest (or lbest) for

adjusting the velocity of the particle. This process continues until desired fitness level

is achieved. In other words, PSO algorithm is mainly composed of three steps;

velocity update, position update, and fitness calculation until desired convergence

level is achieved.

Traditionally there are two methods to define particles neighbourhood [21], [33]. In

gbest method, the neighbourhood is defined as the whole swarm of particles. On the

other hand, in the lbest method, the neighbourhood of a particle is defined by several

fixed particles. In other words we can say there are multiple lbest in the swarm. The

19

gbest offers faster rate of convergence but it is not robust [19]. The gbest particle

attracts all the particles towards itself. Using only the gbest in velocity update process,

may lead to premature convergence of swarm. The lbest prevents premature

convergence because many lbest positions are kept. In other words there are many

attractors [19].

According to the neighbourhood, a leader (lbest or gbest) represents the particle that

is used to guide the search of a particle toward better regions of the search space [33].

Equations 1 and 2 are used to update velocity and position of the particle [22], [23],

[24] as described in Figure 1.

v(t + 1) = vt + (c1r1(pbest - xt)) + (c2r2(gbest - xt)) (1)

x(t + 1) = xt + v(t + 1) (2)

Where c1 and c2 are self confidence factor and swarm confidence factor respectively

[25]. c1 and c2 are also called acceleration coefficients [19]. The parameter c1 is the

cognitive learning factor that represents the attraction that a particle has toward it own

process [34]. The parameter c2 is the social learning factor that represents the

attraction that a particle has toward the success of its neighbours [34]. r1 and r2 are

uniform random numbers in the range [0,1].

20

Figure 2.4 [25]: Depiction of the velocity and position updates.

Equation 2 is used to update position in continuous PSO. This version of PSO is also

called as real-valued PSO [24] because velocities and positions are represented using

real values. The other version is the discrete version also proposed by Kennedy and

Eberhart [24], [32] in which velocity is used to make Boolean decision. This is called

Binary PSO and used to solve binary problems. In binary version of PSO, new

position of the particle is decided using sigmoid function [24].

1 if r < sig(v(t+1))
x(t+1) =

0 otherwise
(3)

Where r is uniform random number in the range [0,1].

sig(v(t+1)) = 1 / (1+exp(-v(t+1))) (4)

21

Algorithm [23]:

1. Randomly initialize velocities and positions of all particles.

2. On each iteration, update velocities of all the particles according to equation 1.

3. Update positions of all the particles using equations 2 and 3 for Continuous

PSO and Binary PSO respectively.

4. Update pbest and gbest when condition is met.

pbest = x(t+1) if x(t+1) > pbest

gbest = x(t+1) if x(t+1) > gbest

5. Repeat steps 2 to 4 until certain termination conditions are met, such as a pre-

defined number of iterations, desired fitness value is achieved, or failure to

make progress for a certain number of iterations.

22

Figure 2.5: PSO Flowchart.

23

2.4 COMPARISON BETWEEN GA AND PSO

PSO is analogous to GA in many aspects. Both starts with the randomly generated

population and there is some fitness function to evaluation the population [23]. In

contrary to GA, PSO does not support crossover and mutation. On iteration in PSO,

velocity of the particle is updated and thus particle occupy some memory to hold best

position [22]. Information sharing mechanism is also different in PSO. In PSO, only

gbest and lbest share information with others whereas in GA, chromosomes share

information with each other [23]. The advantages of PSO include easy to implement

and small number of parameters to adjust [23].

24

2.5 SUMMARY

In this chapter a background study on software clustering was presented. The

presented concepts form the foundations of the project. Details regarding PSO have

been discussed in detail. The “Application of SBSE Techniques for Hierarchical

Software Clustering” project has been studied for its dedications towards providing

solution to software clustering problem. Algorithms, techniques and various

directions that have been discussed form the foundation of the research work in the

project.

25

Chapter 3

DESIGN & IMPLEMENTATION

INTRODUCTION

This chapter presents the architectural design and implementation details of the PSO

on software clustering problem. This system has been designed to meet the highest

levels of usability. All the required information such as fitness values, the iteration

numbers, and the time span are shown on the screen. The solution is presented in the

form of MOJO files.

3.1 CLASS DIAGRAM

The following figure represents the class diagram of proposed system.

Figure 3.1: Class Diagram.

26

3.1.1 CDialog

The MFC class used as base class to display dialog boxes on screen.

3.1.2 CSCPSODlg

This class is derived from CDialog class and is used to provide user interface

functionality. Operations of this class include facts file selection, accept cluster size,

start software clustering process, and display fitness value with iteration no. and time.

3.1.3 CPersistence

This class handles all the file related operations. File operation includes reading facts

file and writing solution file.

3.1.4 CParticleSwarm

This acts as manager class. It creates population of particles and updates their

velocities and positions on each iteration. It also keeps global best solution obtained

during position update process.

3.1.5 CParticle

This class represents a particle. Collection of this class is used to represent all

particles in the population. Operations of this class include particle initialization,

update velocity and position, Binarize position, and fitness value calculation on new

position.

27

3.1.6 CBSVector

CBSVector is a template class of sequence containers that arrange elements of a given

type in a linear arrangement and allow fast random access to any element.

3.1.7 CBSMatrix

A collection class derived from CBSVector to store facts file, velocities and positions

of the particles. This class is also used to store local and global best position for each

particle.

28

3.2 USER INTERFACE

Figure 3.2: User Interface.

3.2.1 Description of User Interface Items

Facts File Input is matrix of size n х n. Where n is the number of classes.
This vector contains relationship strengths between classes and the
file is stored in text format.

Classes No. of classes in the Test System

Clusters No. of clusters to be created or no. of sub-systems to be formed.

Swarm Size No. of particles.

Iterations This is termination criteria. If no improvement since last n
iterations, the process is terminated. Where n is the no. of
iterations to be performed.

List (Fitness Value,
Iteration No., Time
Span)

During optimization, It shows best fitness value along with the
iteration no. and time.

Start Time Start time of the optimization process.

End Time End time of the optimization process.

Time Span Difference between End Time and Start Time.

29

Iterations Total no. of iterations performed.

Best Fitness Value Best fitness values on process completion.

Start button Used to start software clustering process.

Cancel button Used to cancel software clustering process.

Table 3.1: Description of UI Items.

3.3 INPUT FILE DESCRIPTION

Input is the Facts file which is a matrix of size n х n. Where n is the number of

classes. Facts file contains relationship strengths between classes.

Figure 3.3: Tabular Representation of Facts File.

Suppose there are seven classes in the test system. Names are A, B, C, D, E, F, and G.

They are represented with numeric ids in the range 0 ~ 6.

Figure 3.4: Class Ids.

30

3.4 OUTPUT FILE DESCRIPTION

Output is the Solution file. The Solution file is a text file with “mjo” file extension.

The file contains the list of clusters or sub-systems and the classes contained in them.

The structure of the Solution file is,

ss1 represents sub-system 1 and cls01 represents class 1.

The classes which are more related to each other are placed in the same sub-system.

Graphically we can represent solution as:

Figure 3.5: Graphical representation of the solution.

31

Class 1, 2, and 4 are placed in one sub-system because they are strongly related to

each other. Similarly class 3 and 5 are placed on one sub-system. Class 2 may have

some relationships with class 5 but those relationships are not as much strong as it

relationships with class 1 and class 4.

32

3.5 PSO ALGORITHM

The Standard Binary version of PSO is implemented using gbest neighbourhood

method.

33

Figure 3.6: Implemented PSO Algorithm.

34

3.6 MAPPING SOFTWARE CLUSTERING PROBLEM ON PSO

3.6.1 Problem Formulation

A particle in a swarm is represented by n х m matrix where n is the number of clusters

to be formed and m is the number of classes in test system. Each particle is a

candidate solution to the clustering problem. The collection of particle is called a

swarm which is analogous to population in genetic algorithms. Following swarm size

is used.

Swarm Size = Number of classes х 10

3.6.2 Fitness Calculation

Every new position of the particle indicates a possible solution. The quality of the

solution is evaluated using Modularization Quality (MQ) [8]. The MQ is designed

based on the assumption that sub-systems in a good software system are highly

cohesive [8]. The modularization quality differentiates between good and bad

decompositions.

(5)

Where CFi is Component Factor for ith cluster; it is computed from cohesion and

coupling among classes in the clusters [15].

35

(6)

µ represents intra-clusters relationships. In other words, µi is the cohesion of ith

cluster. ε represents inter-cluster relationships. εi,j and εj,i denote coupling between ith

cluster and any other cluster j.

TurboMQ is the normalized form of MQ [15]. It is achieved by dividing MQ by total

number of clusters to keep values in the range 0 and 1.

TurboMQ = MQ / k (7)

Where k is the total number of clusters.

Let us consider the following example to calculate sum of intra-edges (µ) and sum of

inter-edges (ε).

Here S0, S1, and S2 are the 3 clusters or we can call them sub-systems. Cluster S0

contains classes 0, 1, and 3. Cluster S1 contain classes 2 and 4. Class 5 and 6 belongs

to cluster S2.

36

To compute values of µ and ε, we have to read relationships strengths from Facts file.

Graphically we can represent classes and the relationship strengths between them as:

Figure 3.7: Intra Edges and Inter Edges.

37

3.6.3 Termination Criteria

The optimization process terminates if there is no improvement in the fitness value

since last 1000 (one thousand) iterations OR the fitness value reached to 1.

3.6.4 Test Environment

Tests are performed on the following environment.

• Windows 7 Professional 32-bit

• 2.26GHz Intel Core i3

• 3 GB RAM

38

3.7 SUMMARY

In this chapter the architecture and implementation of the newly proposed system

have been described in detail. Complete Parallel Binary PSO algorithm is presented.

Mapping software clustering on PSO, fitness value calculation, and termination

criteria are also described.

39

Chapter 4

TESTING & EVALUATION

INTRODUCTION

Parallel Binary PSO is tested using three test systems. Firstly, since the solution is

proposed for efficient computation of results therefore it has to be evaluated for

computational time. Secondly, the improvement in fitness value is checked. The

proposed system cannot be tested and evaluated in total isolation. It has to be tested

and evaluated in comparison with GA.

4.1 DESCRIPTION OF TEST SYSTEMS

4.1.1 Power Economic Dispatch System (PEDS)

This system is related to electrical power systems. It solves economic power dispatch

problem using conventional and evolutionary computing techniques [15]. It uses MFC

document viewer architecture and implements conventional and genetic algorithms.

S. No. Entity Related Information Count
1 Lines of source code 16360
2 Header files 31
3 Implementation files 27
4 Classes 41

Figure 4.1: Entities in PEDS Test System.

40

S. No. Relationships Count
Inheritance:
1 Inheritance Depth 13
2 Same Inheritance Hierarchy 70
3 Virtual Method Overridden Count 6
Containment:
4 Containment as Object 12
5 Containment as Pointer 9
6 Containment as Reference 0
7 Containment at Method Parameter Level 22
8 Containment at Method Local Declaration Level 29
9 Two Classes using Same Class at Class Level 12
10 Two Classes using Same Class at Method Level 76
Member Access:
11 Data Member Access Count in Inheritance 43
12 Data Member Access Count in Containment 20
13 Method Access Count in Inheritance 35
14 Method Access Count in Containment 17
15 Both Classes Access Same Global Data 0
16 Both Classes Access Same Global Function 0
Files & Folders
17 Both Contained in Same Source File 36
18 Both Source Files are in the Same Folder 0

Figure 4.2: Relationships in PEDS Test System.

4.1.2 Statistical Analysis Visualization Tool (SAVT)

This application helps statistical analysts in analysis and visualization of statistical

data. It provides complete support of user interface for input and visualize along with

the saving and loading data files.

S. No. Entity Related Information Count
1 Lines of source code 27311
2 Header files 70
3 Implementation files 76
4 Classes 97

Figure 4.3: Entities in SAVT Test System.

41

S. No. Relationships Count
Inheritance:
1 Inheritance Depth 26
2 Same Inheritance Hierarchy 986
3 Virtual Method Overridden Count 21
Containment:
4 Containment as Object 41
5 Containment as Pointer 41
6 Containment as Reference 0
7 Containment at Method Parameter Level 77
8 Containment at Method Local Declaration Level 153
9 Two Classes using Same Class at Class Level 1032
10 Two Classes using Same Class at Method Level 1900
Member Access:
11 Data Member Access Count in Inheritance 100
12 Data Member Access Count in Containment 49
13 Method Access Count in Inheritance 83
14 Method Access Count in Containment 77
15 Both Classes Access Same Global Data 0
16 Both Classes Access Same Global Function 0
Files & Folders
17 Both Contained in Same Source File 264
18 Both Source Files are in the Same Folder 0

Figure 4.4: Relationships in SAVT System.

4.1.3 Print Language Converter (PLC)

This application is a sub-system of a large software system. It provides conversion

support from intermediate data structures to a well known printer language.

S. No. Entity Related Information Count
1 Lines of source code 51768
2 Header files 27
3 Implementation files 27
4 Classes 69

Figure 4.5: Entities in PLC Test System.

42

S. No. Relationships Count
Inheritance:
1 Inheritance Depth 99
2 Same Inheritance Hierarchy 26
3 Virtual Method Overridden Count 26
Containment:
4 Containment as Object 24
5 Containment as Pointer 12
6 Containment as Reference 0
7 Containment at Method Parameter Level 25
8 Containment at Method Local Declaration Level 69
9 Two Classes using Same Class at Class Level 58
10 Two Classes using Same Class at Method Level 162
Member Access:
11 Data Member Access Count in Inheritance 87
12 Data Member Access Count in Containment 41
13 Method Access Count in Inheritance 92
14 Method Access Count in Containment 34
15 Both Classes Access Same Global Data 0
16 Both Classes Access Same Global Function 0
Files & Folders
17 Both Contained in Same Source File 1812
18 Both Source Files are in the Same Folder 0

Figure 4.6: Relationships in PLC Test System.

43

4.2 EXPERIMENTAL SETUP

For each test system, we applied PSO and GA and performed comparison between

decompositions of each algorithm. The comparisons are based on fitness values, rate

of convergence, and computation time. Fitness values are in the range 0 ~ 1. Zero

specifies the worst decomposition and while 1 indicates best decomposition [15].

Classes and clusters to be formed are listed in the following table:

4.2.1 Swarm Size

In this implementation of PSO, swarm size is taken as

Swarm Size = Number of classes х 10

Same is the population size in GA.

4.2.2 Number of Clusters

Same numbers of clusters as used in GA are used in PSO for comparison. The value

for number of clusters is the mean of expert decompositions.

Test System Alias Classes Clusters

1 PEDS 41 4
2 SAVT 97 8
3 PLC 69 4

Table 4.7: No. of Clusters.

44

4.2.3 Experimental Results

For each of three test systems, total ten readings are taken. Five readings using PSO

and five are using GA. On the basis of these readings, comparative analysis is

performed. Time is shown in “HH:mm:ss” format.

4.2.3.1 PEDS

PSO GA # Fitness Value Time Fitness Value Time

1 0.805339 0:02:15 0.773470 0:09:55
2 0.805339 0:02:12 0.770880 0:09:50
3 0.824819 0:03:24 0.858480 0:09:45
4 0.824819 0:03:00 0.773470 0:09:50
5 0.805339 0:02:11 0.858480 0:09:39

Table 4.8: Experimental Results of PEDS.

4.2.3.2 SAVT

PSO GA # Fitness Value Time Fitness Value Time

1 0.505032 1:04:17 0.474990 2:05:43
2 0.505032 1:03:11 0.434460 2:05:40
3 0.505032 1:03:14 0.461820 2:04:46
4 0.506467 1:04:56 0.435390 2:05:29
5 0.505032 1:04:51 0.492440 2:04:37

Table 4.9: Experimental Results of SAVT.

4.2.3.3 PLC

PSO GA # Fitness Value Time Fitness Value Time

1 0.688900 0:10:43 0.640430 0:42:21
2 0.688900 0:10:01 0.652140 0:43:24
3 0.688900 0:09:28 0.640430 0:43:22
4 0.688900 0:09:58 0.652140 0:44:42
5 0.688900 0:09:47 0.652140 0:45:39

Table 4.10: Experimental Results of PLC.

45

4.3 EVALUATION

4.3.1 Fitness Values

4.3.1.1 PEDS

There is 0.76% improvement in fitness value.

Table 4.11: Fitness Values of PEDS.

Figure 4.1: Graphical Representation of Solution Quality of PEDS.

46

4.3.1.2 SAVT

There is 9.89% improvement in fitness value.

Table 4.12: Fitness Values of SAVT.

Figure 4.2: Graphical Representation of Solution Quality of SAVT.

47

4.3.1.3 PLC

There is 6.4% improvement in fitness value.

Table 4.13: Fitness Values of PLC.

Figure 4.3: Graphical Representation of Solution Quality of PLC.

PSO quickly converged to maximum fitness value within first 500 iterations.

Analyzing fitness values revealed that results of PSO are more stable and consistent

because of the minimum variations in the fitness values. The reason behind is, in GA

48

only best individuals are selected for reproduction whereas in PSO all the particles in

swarm participate in velocity process and position update process. Reproduction can

eliminate good solutions in GA while good solutions always survive into the next

generation in PSO.

49

4.3.2 Computational Time

4.3.2.1 PEDS

There is 73.47% decrease in computational time.

Table 4.14: Computational Time of PEDS.

Figure 4.4: Graphical Representation of Computational Time of PEDS.

50

4.3.2.2 SAVT

There is 49.04% decrease in computational time.

Table 4.15: Computational Time of SAVT.

Figure 4.5: Graphical Representation of Computational Time of SAVT.

51

4.3.2.3 PLC

There is 77.26% decrease in computational time.

Table 4.16: Computational Time of PLC.

Figure 4.6: Graphical Representation of Computational Time of PLC.

It appears that PSO offers more computational savings because PSO do not have

genetic operators such as crossover and mutation. PSO has few parameters to adjust.

According to test results, computational time is reduced by 49% ~ 77%.

52

4.4 SUMMARY

To fully test PSO it has been evaluated from various aspects like fitness values,

computational time, and rate of convergence. The results have been obtained on three

test systems for both PSO and GA under the same environment variables. Analysis of

results shows that PSO is very stable and requires little computational time to operate.

53

Chapter 5

CONCLUSIONS & FUTURE WORK

Software clustering is an NP-Hard problem. It cannot be solved in real time. Search

Based Software Engineering (SBSE) is an approach to Software Engineering in which

search based optimization algorithms are applied to Software Engineering problems.

Particle Swarm Optimization (PSO) is an evolutionary heuristic search method based

on biological behaviours and can be used to solve NP-hard problems. This thesis

provides a framework for solving software clustering problem using PSO.

5.1 CONCLUSIONS

In this thesis, PSO approach is used to solve software clustering problem. Results of

Particle Swarm Optimization and Genetic Algorithms are compared. Simulation

results show that the PSO approach requires small computational time as compared to

GA. Binary version of PSO is applied due to discrete nature of software clustering

problem. Solution Quality of PSO is better than GA. In GA, reproduction can

eliminate good solutions while good solutions always survive into the next iteration in

PSO. PSO does offer a less expensive approach than the GA in general. It appears that

PSO offers more computational savings because PSO do not have genetic operators

such as crossover and mutation. According to test results, computational time is

reduced by 49% ~ 77%.

54

5.2 FUTURE WORK

Although the PSO has been tested on three test software systems with different sizes,

but there is still room for testing on much bigger test systems. The Binary PSO can be

enhanced by applying inertia weight [25] and meta-optimization [27] while updating

velocities. A novel PSO approach [24] can also be applied in which two new

probability vectors are introduced to change bits of the particle.

 55

Appendix A

SNAPSHOTS

A.1 SCPSO SCREEN

 56

A.2 FACTS FILE LOADED

 57

A.3 PSO EXECUTION

 58

A.4 PSO GOING TO TERMINATE

 59

A.5 RESULTS ON PROCESS COMPLETION

 60

A.6 CONFIRMATION BEFORE CANCEL

 61

REFERENCES

[1] IEEE Std 610.12−1990, IEEE Standard Glossary of Software Engineering

Terminology.

[2] R. Kazman, S.G. Woods, and S.J. Carriere, “Requirements for Integrating

Software Architecture and Reengineering Models: Corum II,” Proc. Fifth

Working Conf. Reverse Eng., pp. 154-163, 1998.

[3] R. Koschke, “Atomic Architectural Component Recovery for Program

Understanding and Evolution,” PhD dissertation, Univ. of Stuttgart, 2000.

[4] D.R. Harris, H.B. Reubenstein, and A.S. Yeh, “Reverse Engineering to the

Architectural Level,” Proc. 17th Int’l Conf. Software Eng., pp. 186-195, 1995.

[5] B.S. Mitchell and S. Mancoridis, “On the Automatic Modularization of

Software Systems Using the Bunch Tool,” IEEE Trans. Software Eng., vol. 32,

no. 3, pp. 193-208, Mar. 2006.

[6] Joel Huselius, “Reverse Engineering of Legacy Real-Time System” Ph.D.

Thesis 2007, Malardalen University Press.

[7] Bernd Bruegge, Allen H. Dutoit, “Object Oriented Software Engineering,

Conquering Complex and Changing Systems". Prentice Hall.

[8] Brian S. Mitchell, Spiros Mancoridis and Martin Traverso, “Search Based

Reverse Engineering”. Department of Mathematics & Computer Science,

Drexel University, Philadelphia, PA, USA, 2002.

[9] Len Bass, Paul Clements, Rick Kazman, “Software Architecture in Practice”.

2003. The SEI Series in Software Engineering.

 62

[10] M. Saeed, O. Maqbool, H.A. Babri, S.Z. Hassan. S.M. Sarwar, “Software

Clustering Techniques and the Use of Combined Algorithm”. Computer Science

Department. Lahore University of Management Sciences, 2003.

[11] Onaiza Maqbool and Haroon A. Babri, “Hierarchical Clustering for Software

Architecture Recovery”, 2007.

[12] Mark Harman, “Search Based Software Engineering for Program

Comprehension”, 2007.

[13] Mark Harman, “The Current State and Future of Search Based Software

Engineering”, 2007.

[14] John Clarke, Jose Javier Dolado, Mark Harman, Robert Hierons, Bryan Jones,

Mary Lumkin, Brian Mitchell, Spiros Mancoridis, Kearton Rees, Marc Roper,

Martin Shepperd, “Reformulating Software Engineering as a Search Problem”,

2003.

[15] Abdul Qudus Abbasi, “Application of Appropriate Machine Learning

Techniques for Automatic Modularization of Software Systems”. M-Phil Thesis

2008, Quaid-i-Azam University Islamabad.

[16] Randy L. Haupt, Sue Ellen Haupt, “Practical Genetic Algorithms”, 2nd Edition,

A John Wiley & Sons Inc., Publication.

[17] Bilal Khan, Shaleeza Sohail, M. Younus Javed, “Evolutionary Strategy Based

Automated Software Clustering Approach”. Department of Computer

Engineering, College of E & ME, National University of Sciences and

Technology, 2008.

[18] Bilal Khan and Shaleeza Sohail, “Using ES Based Automated Software

Clustering Approach to Achieve Consistent Decompositions”. Department of

Computer Engineering, College of E & ME, National University of Sciences

and Technology, 2008.

 63

[19] Frans Van Den Bergh, “An analysis of Particle Swarm Optimizers”,

Doctoral Dissertation, University of Pretoria Pretoria, South Africa, South

Africa © 2002.

[20] Maurice Clerc, © ISTE Ltd, 2006, “Particle Swarm Optimization”.

[21] Changhe Li and Shengxiang Yang, “A Clustering Particle Swarm Optimizer for

Dynamic Optimization”, © 2009 IEEE.

[22] Thomas Wiese, “Global Optimization Algorithms - Theory and Application”,

Second Edition, Chapter 8 & 9, Version 2009-06-26.

[23] Dr. Karl O. Jones, “COMPARISON OF GENETIC ALGORITHM AND

PARTICLE SWARM OPTIMIZATION”, International Conference on

Computer Systems and Technologies – CompSysTech 2005.

[24] Mojtaba Ahmadieh Khanesar, Mohammad Teshnehlab and Mahdi Aliyari

Shoorehdeli, “A Novel Binary Particle Swarm Optimization”. Proceedings of

the 15th Mediterranean Conference on Control & Automation, Athens – Greece,

July 27 – 29, 2007.

[25] Rania Hassan, Babak Cohanim, Olivier de Weck, “A Comparison Of Particle

Swarm Optimization And The Genetic Algorithm”. American Institute of

Aeronautics and Astronautics, 2004.

[26] Koza, John R, “Genetic Programming: On the Programming of Computers by

Means of Natural Selection”. Cambridge, MA: The MIT Press 1992.

[27] Magnus Erik Hvass Pedersen, “Good Parameters for Particle Swarm

Optimization”. Technical Report no. HL1001, 2010.

[28] McCarl B.A. and T. H. Spreen. 1997. “Applied Mathematical Programming

Using Algebraic Systems”. Chapters 15 and 16.

http://agecon2.tamu.edu/people/faculty/mccarl-bruce/books.htm

 64

[29] Paul A. Jensen, Jonathan F. Bard, “Operations Research Models and Methods”,

2002.

[30] Kennedy, J. Eberhart, R., In Proc. IEEE International Conference on Neural

Networks, vol.4, pp. 1942 – 1948, 1995.

[31] Hesam Izakian, Behrouz Tork Ladani, Ajith Abraham, Vaclav Snasel, “A

Discrete Particle Swarm Optimization Approach for Grid Job Scheduling”,

International Journal of Innovative Computing, Information and Control,

Volume 6, Number 9, September 2010.

[32] J. Kennedy and R. Eberhart, “A discrete binary version of the particle swarm

algorithm”. In Proceedings of the 1997 IEEE International Conference on

Systems, Man, and Cybernetics, pages 4104–4108, Piscataway, NJ, USA, 1997.

[33] El-Ghazali Talbi, “METAHEURISTICS From Design to Implementation”,

Copyright © 2009 by John Wiley & Sons, Inc. 2009.

