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Abstract 

 

Mo2TiC2Tx is a part of the ever-growing family of MXenes and lies in the category of double 

transition metal MXenes. The aim of this study was to explore the various properties of this 

MXene such as electronic band structure, density of states, magnetic moment, and optical 

properties. Density functional theory was used to model all of these properties for unmodified 

and modified structure with 4% Niobium (Nb) doping. Both systems under study had 0 eV 

band gap indicating a good conductivity. Pristine system was found to be non-magnetic, but 

the doping resulted in the introduction of magnetic moment into the system up to 4.0 μB. All 

the optical properties of both materials show almost a similar trend. Both systems display an 

ascending trend of absorption, and due to this it can be predicted that both materials can 

potentially have applications in solar cell fabrication. 
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Chapter 1 

Introduction 

 

1.1 MXenes and Their Types 

MXenes are the family of 2D transition metal carbides, nitrides or carbonitrides. They 

have found their applications in energy storage systems, Li-ion batteries, and water 

purification. Due to their flexibility, high conductivity, and ease of processing they are 

extremely desirable in the process of EMI shielding [1]. 

MXenes have the general formula of Mn+1XnTx where Tx represents the functional 

groups attached, and they are etched from MAX phases which have the general formula of 

Mn+1AXn. Here, M is the transition element e.g., Ti, Mo, V etc. A belongs to the group A 

elements e.g., Si, Al, In, etc. and X is Carbon/Nitrogen or both. They are hexagonal in structure 

with P63/mmc symmetry. The results after intercalation of different salts and organic 

compounds with MXenes has shown very promising results for applications in electronic 

devices, sensors, energy storage devices [2]. 

 

By now several different compositions of MXenes have been discovered, and with the 

passage of time more and more of them are being added to this ever-growing family of these 

2D materials. They can be classified into three different types. 

 

1.1.1. Mono Transition Mental MXenes 

After the group A metallic layer is etched out from the MAX phase, we get the MXenes 

with chemical composition of Mn+1Xn. If the M layer is made up of only one type of transition 

element, then the type of MXene can be categorized as Mono Transition. The examples for 

these are Ti3C2, V2C, and Nb2C [3]. 

 

1.1.2 Double Transition Metal MXene 

Unlike the previous one, if there are two different types of transition elements forming 

a layer respectively then we can classify that type of MXene as a double transition MXene. 

Some of the examples for this are Mo2TiC2, Mo2Ti2C3 and Mo4VC4. The general formula for 

this type of MXenes in the solid solution is (M’2−yM”y) C, (M’3−yM”y) C2, (M’4−yM”y) C3, or 

(M’5−yM”y) C4 [4]. This research focuses on different properties of this type of MXenes. 
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1.1.3. Divacancy MXenes 

With the advancement in the study of MXenes, this is the new type which has been 

recently discovered. The experiment for this involved the synthesis of a 3D atomic laminated 

structure of (Mo2/3Sc1/3)2A1C, and the selective etching of the Al and Si atoms [5]. 

 

1.2. Synthesis of MXenes 

The synthesis of MXenes usually requires an etching solution like HF, which helps in 

etching out the metallic layer from the MAX phase. 

 

Etching is a process that utilizes liquid chemicals or etchants to remove materials from the 

wafer by forming soluble by products. Substrate in this process is dipped in etchant. The 

methods involve three main steps [3]: 

 

● Diffusion of liquid etchant towards the material that is required to be removed. 

● The reaction that occurs between the etchant and the element to be removed away. 

Usually at this stage a redox reaction takes place. This reaction involves the oxidation 

of the element which needs to be removed away and then dissolution of the oxides in 

the given etchant. 

● Diffusion of by products from the substrate. The by-products formed are soluble and 

therefore can be taken away during washing. 

 

1.3 Mo2TiC2-Tx MXene 

It also has a layered structure in which the Mo layer occupies the space between 

Titanium and the Carbon layers.  

 

1.3.1 Synthesis 

For the synthesis following steps are followed [3]. 

1. Mo2TiAlC2 powder is slowly added to the 48% to 50% HF solution. 

2. The ratio between MXene and HF solution should be 1:10. 

3. The solution should be kept at 55℃ and continuously stirred for 48hrs. 

4. The solution is then washed with centrifugation at 3500 rpm. 
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1.3.2 Applications 

As they belong to the family of MXenes they possess many of the commonly shared 

properties such as high thermal and electrical conductivity, and remarkable volumetric 

capacitance [5]. Apart from this following are some of the areas for which they have found 

their applications in. 

1. Long life and high power of the Li-ion and Sodium-ion batteries[6]. 

2. Catalyst for electro catalytic synthesis of Ammonia[7]. 

3. Achieving ultra-high ductility and fracture resistance in Mo-alloys [7]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                      

 

 

 

 



 

4 

 

Chapter 2 

Literature Review 

Today computers have found their applications in the study of materials. With the help 

of different computation techniques, we can study various properties of materials without the 

need of hit and trial experiments and this is a very cost-effective approach to the study of 

materials. The computational study incorporates different theories from theoretical condensed 

matter physics for example DFT and DMFT (Dynamic Mean Field Theory). The theoretical 

study of materials does not require prior knowledge of the system. This chapter will be focused 

on Density Functional Theory (DFT).  

 

2.1 Density Functional Theory 

With DFT we can successfully study the properties of materials on a quantum 

mechanical level. The electronic structure properties, optical properties and magnetic 

properties can be successfully calculated with DFT up to close approximation to the 

experimentation. Ground state properties of the materials are measured with the help of ground 

state charge density, which is a function of the ground state electron wave function. For solving 

such many body systems, we need to look beyond the Schrodinger Wave Equation (SWE) 

because with the increase of electrons and different atoms, the number of variables increases 

thereby increasing the complexity of solving SWE. 

 

2.1.1 Schrodinger Wave Equation and Many Body Systems 

SWE was developed by Erwin Schrödinger in 1926 that described the wave function of 

a system, which contained all its information. 

 

[
ℏ2

2𝑚
 +  𝑉𝐾𝑆]𝛹(𝑟) = 𝐸𝛹(𝑟)                                                            (2. 1)                   

 

Here 
ℏ2

2𝑚
 represents the kinetic energy of the system and V(r) represents the potential 

energy. These two combines to give us the Hamiltonian operator. 𝛹(𝑟) is the wavefunction of 

the quantum mechanical system. 
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For many-body system, the above equation gets modified. All possible interactions are 

considered in it and then the Hamiltonian takes the following form. 

 

𝐻 = −
1

2
∑ 𝛻2 − ∑

1

2𝑀𝐴
𝐴𝑖 𝛻2 − ∑

𝑍𝐴

𝑟𝐴𝑖
+ ∑

𝑍𝐴𝑍𝐵

𝑅𝐴𝐵
𝐴>𝐵 + ∑

1

𝑟𝑖𝑗
                      𝑖>𝑗𝐴,𝑖 (2. 2) 

 

𝐻 = 𝑻𝑵(𝑹) + 𝑻𝒆(𝒓) + 𝑽𝒆𝑵(𝒓, 𝑹) + 𝑽𝑵𝑵(𝑹) + 𝑽𝒆𝒆(𝒓)                                  (2. 3) 

 

Here i, j refer to electrons and A,B refer to nuclei. Here we can see the first two terms 

as independent kinetic energies of electrons and nuclei respectively. The third term depicts the 

interaction between nuclei and the electron. In the fourth term nuclei-nuclei interaction is 

represented and the final term is of electron-electron interaction. 

 

To solve this many-body system, Born-Oppenhimer approximation is used where the 

nuclei are considered static compared to the electrons due to larger mass, thus their kinetic 

energies are omitted. 

 

Thus, we have the following expression. 

𝐻 = 𝑻𝒆(𝒓) + 𝑽𝒆𝑵(𝒓;𝑹) + 𝑽𝑵𝑵(𝑹) + 𝑽𝒆𝒆(𝒓)                                        (2. 4) 

 

2.1.2 Hartree-Fock (HF) Theory 

SWE has its limitations when it comes to calculate wave function for many-body 

systems. Thus, after Born-Oppenhimer approximation Hartree Fock is of great importance. The 

HF method is also known as the Self Consistent Field (SCF) because this approach leads us 

to an approximate solution of the Schrodinger Equation and the field computed from a 

particular charge distribution should be consistent with the initially assumed field. 

In this approach the electrons experience an average electrostatic field and can move freely. 

This method makes the use of vibrational principle to calculate the ground state wave function 

and the ground state energy. From here we can find different properties of the system under 

consideration. 

 

                         Eground   ≤    < Ψ| 𝐇 |Ψ >                                                              (2.5)   
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The first step is to guess the wave function and calculate the respective ground state 

energy. Then the process is repeated until the approximate energy and wavefunction are found 

which are consistent with the guessed wave function. Through this iterative procedure we can 

reach self-consistency. Although the SCF method provides us an easy solution for the many-

body systems problems, the results obtained from this method are very impractical, because 

there is no account for the electron’s spin. Due to this we can’t accurately predict many 

different properties. 

 

2.1.3 Electron Density 

As the name suggests, electron density is the main variable for DFT, and it plays a 

fundamental role. Therefore, it is necessary to explain it. 

 

 ρ(r) = N ∫ … ∫|Ψ(x1, x2, … , xN)|2 ds1dx2 … dxN                           (2.6)   

  ρ(r) = 𝑁 ∑𝑠1 … ∑𝑠𝑁 ∫ 𝑑𝑟2 … ∫ 𝑑𝑟𝑁 |Ψ(𝑟1, 𝑠1, 𝑟2𝑠2, … , 𝑟𝑁𝑠𝑁)        (2.7)    

  ρ(r) = ⟨Ψ|�̂�(𝑟)|Ψ⟩                                         (2.8) 

 

where the operator is:   

 

                                         ρ̂(r) =  ∑ ∑ 𝛿(𝑟 − 𝑟𝑖)𝑠𝑖
𝑁
𝑖=1                                         (2.9) 

 

  

Here r and s represent the position and spin respectively. After taking the integral over 

the wavefunction we will have the probability density of an electron for a specific volume 

element. 

 

2.1.4 Thomas Fermi Model 

DFT was initially proposed in 1927 by Thomas and Fermi. This approach assumed 

electrons around the nucleus to form homogeneous electron gas. The electron gas followed the 

fermi-Dirac statistics, and the potential used for electron-electron interaction was the classic 

coulomb potential. Local density approximation (LDA) was used to determine the kinetic 

energy of the system. The energy of the system is a function of the electron density and takes 

the following form. 
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𝐸𝑇𝐹[ρ̂(𝑟)] =  𝐴1∫ ρ̂(𝑟)
5/3𝑑𝑟 + ∫ ρ̂(𝑟)𝑉𝑒𝑥𝑡(𝑟)𝑑𝑟 + ∫∫

ρ̂(𝑟)ρ̂(𝑟′)𝑑𝑟𝑑𝑟′

|𝑟 − 𝑟′|
                (2.10) 

 

This is the energy of the system under the external potential, where the first term 

represents the kinetic energy with A1 being the constant value as A1 = 310(𝟑𝝅𝟐)𝟐/𝟑. The 

second term represents the interaction between the electrons and the nuclei. The last term 

represents the electron-electron coulomb interaction. 

 

Although this was the first step towards the advancements in DFT, the theory had many 

complications due to which it wasn’t applicable. The model doesn’t give any kind of 

explanation about the bonding between the atoms; thus, the molecular formation is not possible. 

It does not incorporate the exchange potential, furthermore the total spin of homogeneous 

electron gas may or may not be zero, because the number of spins up and spin down electrons 

are unclear. 

 

2.1.5 Kohn-Sham Equations 

In this system, the electron density of interacting system is generated for the fictitious 

system of non-interacting electrons. The problem of many body systems was further reframed 

by Kohn and Sham. The system of interacting electrons was mapped on to a system of non-

interacting electrons with the same ground state density and energy[8]. Although the electrons 

don’t interact explicitly, but they interact by the field generated by other electrons. 

The external potential is represented as VKS, which corresponds to the non-interacting 

electrons. The wave function is in the form off slater determinant which will have the lowest 

energy solution because of no interaction among the particles. In general, the exact Hamiltonian 

of the electron is: 

 

𝐻𝑒𝑙 = ∑−
1

2
∇2 + ∑[∑

−𝑍𝐴
|𝑟𝑖 − 𝑅𝐴|

𝑁𝑎𝑡

𝐴=1

] + ∑ ∑
1

|𝑟𝑖 − 𝑟𝑗|
                 (2.11)

𝑁𝑒𝑙

𝑗=𝑖+1

𝑁𝑒𝑙

𝑖=1

𝑁𝑒𝑙

𝑖=1

𝑁𝑒𝑙

𝑖=1

 

= ∑−
1

2

𝑁𝑒𝑙

𝑖=1

∇2 + ∑𝑉𝑒𝑥𝑡 + ∑ ∑
1

|𝑟𝑖 − 𝑟𝑗|
                             (2.12)

𝑁𝑒𝑙

𝑗=𝑖+1

𝑁𝑒𝑙

𝑖=1

𝑁𝑒𝑙

𝑖=1

 

 

Here we can see that due to the coulomb interaction the equation can’t be separated into 

independent ri and rj terms. Contrary to this, the equation for the KS system will be as follows. 
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𝐻𝐾𝑆Ψ𝑖(𝑟) = {
−ℎ2

2𝑚
∇2 + 𝑉𝐾𝑆(𝑟)}Ψ𝑖(𝑟)                                 (2.13) 

= ε𝑖Ψ𝑖(𝑟)                                                                  (2.14) 

 

Vks exists uniquely at the ground state density (𝑟). The orbital energy is represented by 

ϵ. The density of this N-particle system will be represented as follows. 

 

ρ̂(𝑟) =  ∑|Ψ𝑖(𝑟)|
2

𝑁

𝑖

                                                          (2.14) 

 

The total energy can be written as: 

 

𝐸[ρ(r)] =  𝑇𝐾𝑆[ρ(r)] + 𝑈[ρ(r)] + 𝐸𝑥𝑐 + ∫ρ(r)𝑉𝐾𝑆𝑑𝑟                      (2.15) 

 

Where  𝑇𝐾𝑆[ρ(r)] is the kinetic energy functional of the non-interacting system such that,  

 

𝑇𝐾𝑆[ρ(r)] =  ⟨ψi(r)|𝑇|ψi(r)⟩                                                     (2.16) 

 

 Furthermore, the density remains the same that is ∫ 𝜌(𝑟)𝑑𝑟 = 𝑁. 

[(𝑟)] is called as the exchange correlation function, this is responsible for the 

compensation of the missing energy due to our approximation of non-interacting electrons. The 

ground state of the system can be obtained by minimizing the energy functional using the 

vibrational principle. 

 

𝛿

𝛿ρ(r)
[𝐸[ρ(r)] −  𝜇 ∫ρ(r)dr] = 0                                    (2.17) 

 

Were 𝜇 is the Lagrange multiplier, which then takes the value: 

 

𝛿𝐸[ρ(r)]

𝛿ρ(r)
= 0                                                              (2.18) 
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Thus, 

 

𝛿𝑇𝑘𝑠[ρ(r)]

𝛿ρ(r)
=  𝑉𝐾𝑆(𝑟) =  𝜇                                                  (2.19) 

 

KS potential will become as following: 

 

𝑉𝐾𝑆(𝑟) = 𝑉(𝑟) + 
𝛿𝑈[ρ]

𝛿ρ
+
𝛿𝐸𝑥𝑐[ρ]

δρ
                                        (2.20) 

 

𝑉𝑘𝑠 =  𝑉(𝑟) + 𝑉𝐻(𝑟) + 𝑉𝑥𝑐(𝑟)                                            (2.21) 

VH is the Hartree potential. 

 

𝑉𝐻 = ∫
ρ(r′)

𝑟 − 𝑟′
𝑑𝑟                                                         (2.22) 

 

And Vxc is the exchange correlation potential. 

 

𝑉𝑥𝑐(𝑟) =  
𝛿𝐸𝑥𝑐[ρ]

𝛿ρ
                                                       (2.23) 

 

2.1.6 Summary of Kohn-Sham DFT 

1. Initially, electron density ((𝑟)) needs to be assumed. 

2. VKS is computed for this electron density. 

3. Then the non-interacting Schrodinger equation is computed to get the wavefunction of 

the system. 

4. Then the density is computed with the help of this wavefunction. 

5. We repeat this process until the results converge i.e., the computed charge density is 

equal to the assumed charge density then we have. 
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Figure 2.1: Schematic Diagram of a Self-Consistent Field cycle[9] . 

 

2.2 Exchange-Correlation Potential 

A system of electrons has an antisymmetric wave function, thus the exchange of the 

position of electrons can result in the change of the system i.e., with a negative sign[10]. This 

gives rise to the exchange energy in the system which can be represented as. 

 

𝐸𝑋 = −∫∫Ψ𝑖(𝑟1)Ψ𝑗(𝑟𝑗)
1

𝑟12
Ψ𝑖(𝑟2)Ψ𝑗(𝑟1) 𝑑𝑟1𝑑𝑟2                     (2.24) 
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  This correlation comprises all the unknown parts of the energy of the original many 

body systems. 

 

The most used exchange correlation functionals are Local Density Approximation 

(LDA), Local Spin Density Approximation (LDSA), and Generalized Gradient Approximation 

(GGA). 

 

𝐸𝑥𝑐 = ∫ρ(r)𝜀𝑥𝑐(ρ(r))                                                    (2.25) 

𝐸𝑥𝑐 = 𝐸𝑥 + 𝐸𝑐                                                              (2.26) 

𝐸𝑥 = ∫ρ(r)𝜀𝑥(ρ(r))                                                       (2.27) 

𝐸𝑐 = ∫ρ(r)𝜀𝑐(ρ(r))                                                         (2.28) 

 

2.2.1 Local Density Approximation 

It is one of the earliest approaches towards the xc functionals [13]. The system is 

considered to have homogeneous electron gas (HEG).  The exchange functional has been 

computed analytically. 

 

𝐸𝑥
𝐿𝐷𝐴[𝑛] =  

3

4
(
3

𝜋
)
1/3

∫𝑛(𝑟)4/3 𝑑𝑟                                         (2.29) 

 

The correlation energy functional is then defined with the help of quantum monte Carlo 

simulations. On the other hand, Local Spin Density Approximation (LSDA) also incorporates 

the spin of electrons [12]. 

 

2.2.2 Generalized Gradient Approximation 

LDA has its limitations. The free electron gas might give better results regarding 

properties of metals, but it is not a suitable approximation for semiconductors and 

insulators[11]. Thus, in GGA the electron cloud is assumed to be spread in the form of a 

gradient[12]. 

 

𝐸𝑥𝑐
𝐺𝐺𝐴 = ∫𝑓𝑥𝑐

𝐺𝐺𝐴 (ρα, ρβ, ∇ρα, ∇ρβ)𝑑𝑟                                  (2.30) 



 

12 

 

 

To get better results compared to LDA approximation, we need to make the xc 

functional depend on the density of the electron as well as the gradient of the density of 

electrons. There are many approaches towards GGA functionals which include PBE, P86, B88, 

and LYP. 

 

The results that are obtained by solving KS equations using GGA are usually better 

than the ones obtained through LDA. Some of the GGA’s that are derived by different scientists 

and revised as well are mentioned [12]. 

 

2.2.3 Exchange-Correlation Beyond LDA and GGA 

The approximations towards exchange correlation functional are not only till GGA and 

LDA but beyond this we have the hybrid functionals and Hubbard potential as well. Hybrid 

functional are combination of two functional e.g., B3LYP is a combination of BP and LYP 

GA functional, and PBE0 is a combination of Hartree exchange energy, PBE-GGA exchange 

energy and PBE-GGA correlation energy. 

 

Hubbard potential had been introduced after the failure of GGA and LDA functionals 

to calculate some properties of compounds like Mott insulators and magnetism in compounds 

with d and f orbitals. This led to the use of Hubbard potential in DFT, which includes the 

missing measures of the columbic on-site interaction. In 1963, Hubbard introduced the 

interaction to explain the ferromagnetism for a compound in Hartree theory. According to 

Hubbard, considering ferromagnetism of an atom for its ground state, the anti-parallel state of 

an electron exists, which is not possible under Fermi-Dirac statistics as electron are fermions 

and two electrons cannot have the same spin. Hence, the Hubbard potential was introduced to 

KS-DFT later by Anisimov et al. in 1991[13]. They had bridged the gap between DFT and 

Hubbard potential to be able to calculate magnetism and other properties correctly. This gave 

the functional the form LDA+U, GGA+U etc. where U indicates the Hubbard potential. There 

have been various studies for the value of U when calculating properties, as its value changes 

according to the number of electrons in the compounds, usually U has value between 1 eV to 

10 eV, 10 eV being the highest value.  
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Chapter 3 

Wien2k 

 

In this thesis for DFT calculations, computer program WIEN2k is used written in 

FORTRAN. The original developers of WIEN2k are Peter Blaha and Karlheinz Schwarz of the 

institute of Materials Chemistry, Vienna University of Technology [17]. The first release of the 

program was in 1990’s and was updated over the years i.e. WIEN93, WIEN97, and then 

WIEN2k. WIEN2k allows us to compute many properties of a structure using the full potential 

linearized augmented plane wave method for the basis set. The choice of basis set and plane 

wave method is discussed in the subsection. While the simulation method and the different 

properties that can be calculated through WIEN2k are also mentioned.  It can also be used for 

best calculation of band structure.  In WIEN2k programs are linked through c-shell scripts, so 

it should operate in the Linux environment. 

 

3.1 Choice of Basis Set and Wave function 

  For solving DFT, there are many different codes depending on different wave 

functions and basis sets. The most used method for solving the structures is the linear 

combination of atomic orbitals (LCAO) while the orbital is used in Gaussian or Slater 

formulation. Furthermore, muffin tin approximation (MTA) is also used, where the potential 

and charge density inside the atomic sphere are spherically symmetric and for outside the 

sphere has a constant value for atoms in the crystal. Properties that are dependent more on the 

calculations of density near the nucleus of an atom are to be explained through an all-electron 

wave function. All electron functions contain the complete information of the wave function 

[14]. There are three basic schemes that has been suggested for the plane wave functions i.e., 

Augmented Plane Wave (APW), Linear Augmented Plane Wave (LAPW) and Augmented 

Plane Wave with local orbitals (APW+LO). 

 

3.1.1 Augmented Plane Wave Method  

  In 1937, Slater developed the APW method, in which MTA is used, such that the near 

a nucleus the potential and wave function is the same as the one inside the atom but for the 

interstitial positions the potential and wave functions are consistent and level [15]. Based on 

this analysis the space in a compound is studied in two regions i.e., the non-overlapping 
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spheres that make up the muffin tin and the overlapping spherical area is considered as the 

interstitial region shown as region I and II in figure 3.1. Where for the expansion of muffin tin 

region the radial solutions for the SWE are considered.  

 

Ψ(r) =

{
 
 

 
 {

1

√Ω
∑𝑐𝐺𝑟

𝑖(𝐺+𝑘).𝑟

𝐺

, 𝑟 𝜖 𝐼                                          (3.1)

∑𝐴𝑙𝑚𝑢𝑙(𝑟)𝑌𝑙𝑚(𝑟)

𝑙𝑚

, 𝑟 𝜖 𝑆
 

   

where wavefunction 𝜓, Ω the cell volume, and 𝑢𝑙 is the regular solution of equation. 

 

[
𝑑2

𝑑𝑟2
+ 
𝑙(𝑙 + 1)

𝑟2
+ 𝑉(𝑟) − 𝐸𝑙] 𝑟𝑢𝑙(𝑟) = 0                                   (3.2) 

 

Here, 𝑐𝐺 and 𝐴𝑙𝑚 are coefficients for expanding the wave function, 𝐸𝑙 is a parameter, 

V is the spherical component of the potential in the region I.   

 

 

Figure 3. 1:  Atomic muffin tin region I and interstitial region II [16] 

 

 

However, the problem with APW method is that the energies are not the same on the 

bounties as (𝑟) is zero on the boundary which will be a problem in general for elements with 

d and f orbitals. [15]. An additional problem while using APW is its extension to a general 

crystal potential and removing the limitation of MTA [15, 16]. For the purpose of avoiding 

the APW method and its problems with the energy, Anderson and Abraham et al [17, 18] gave 
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the linearized plane wave methods called as Linear Augmented Plane Wave method (LAPW) 

.  This is the LAPW method, for which inside the spheres, linear combinations of radial 

functions, (𝑟)(𝑟 ̂)and their derivatives with respect to the linearization parameters are used as 

basic functions, 𝐸𝑙. The (𝑟) is the same as used in the APW method in with a fixed 𝐸𝑙, where 

the equation is modified and given as   

 

  ψ(r) =  {

1

√Ω
∑ 𝑐𝐺𝑒

𝑖(𝐺+𝑘).𝑟
𝐺 , 𝑟 𝜖 𝐼                      (3.3)

∑ [𝐴𝑙𝑚𝑢𝑙(𝑟) + 𝐵𝑙𝑚𝑢𝑙(𝑟)𝑌𝑙𝑚(𝑟)]𝑙𝑚 , 𝑟 𝜖 𝑆
 

 

  In equation B is the coefficient for the energy derivative and similar in meaning to 

A𝑙𝑚. For the interstitial region of LAPW, the wave function is the same as APW while 

correction is done mainly to inside the sphere wave function.   

 

This correction solves the issue in the APW method along with giving a PW method 

with increased accuracy for obtaining band structure and other properties while MTA was still 

used [16]. 

 

3.1.2 APW+LO and LAPW+LO 

  Besides APW and LAPW method, there is one more extension of adding the correction 

to semi core states for better computation. This addition is completely for the localized orbitals 

inside the muffin tin spheres such that their values become zero at the boundary of muffin tin 

spheres. Hence, no other boundary condition dependent wave function is introduced [17]. The 

three functions (𝑟), �̇�(𝑟) and 𝑢𝑙𝑜(𝑟) are all present together for the muffin tin sphere part of 

the wave function, while making sure that the derivative of local orbital is zero at the boundary. 

Moreover, though LO was introduced for treatment of semi-core electrons, the LAPW+LO 

scheme introduces correction to the electrons present in the higher states as well i.e., that are 

much above the range of energy parameters 𝐸𝑙 of LAPW.  These are difficult to be described 

with decent accuracy and hence the extended LAPW+LO method is used which is also 

discussed by Krasovskii and Schattke[17,18] in the extended LAPW method. The LAPW+LO 

basis functions are: 

 

ψ𝑙(𝑟) = ∑𝐴𝑙𝑚
𝑙𝑜 𝑢𝑙(𝑟) + 𝐵𝑙𝑚

𝑙𝑜 𝑢𝑙𝑌𝑙𝑚(𝑟)                                                    (3.4)

𝑚
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  In this equation the coefficients 𝐴𝑙𝑚
𝑙𝑜  and 𝐵𝑙𝑚

𝑙𝑜  are picked such that the boundary 

condition for local orbitals in MTA is satisfied.  

 

  While MTA is good considering structure with high periodicity and closely packed 

ones, they become unlikely to be used for 2D structure or layered compounds and 

semiconductors. To avoid these approximations for better calculations the full potential (FP) 

scheme is used in which charge density and potential density are expanded using the Fourier 

Series and lattice harmonics for interstitial and inside sphere calculations respectively which 

is further explained in the following subsection[15].   

 

3.1.3 The Full-Potential – LAPW  

The combination of full potential scheme with the LAPW method gives us the FP-

LAPW method, where FP is used in LAPW method instead of MTA which treats the structure 

without giving it any specific shape i.e., spherical [21, 22]. This simplification is attained by 

relaxing the constant interstitial potential 𝑉𝐼𝑜and the spherical MTA potential 𝑉𝑀𝑇
𝐿 by the 

inclusion of interstitial potential  ∑ 𝑉𝐺
𝐼

𝐺 𝑒𝑖𝐺𝑟 and the other terms inside the mufn-tin spheres:  

 

𝑉(𝑟) =  𝑓(𝑥) =

{
 
 

 
 ∑𝑉𝐺

𝐼

𝐺

𝑒𝑖𝐺𝑟 , 𝑟 ∈ 𝐼                                        (3.5)

∑𝑉𝑀𝑇
𝐿

𝐿

(𝑟), 𝑟 ∈ 𝑆
 

 

This technique used for arriving to this method is the derivation of such a coulomb 

potential that gives the general charge density without assuming any shape approximations 

and he charge density is written in a similar manner as in equation 4.31 by replacing V with 

(𝑟).   

 

FP-LAPW is considered as one of the most accurate and precise methods for 

determining electronic structures for crystals by solving the equations (Kohn-Sham) of DFT.  

FP-LAPW is employed in the computer code for example in WIEN2k to study crystal 

properties on the atomic scale[19].  

 



 

17 

 

3.2 Simulations and Properties  

  To run simulations on WIEN2k program one should make sure that WIEN2k software 

has been successfully installed on Linux operating system. So now different structures and 

materials can be simulated. However, a graphical user interface (GUI) is also available for 

new users. The first step is to simulate a structure using the space group and atomic constants 

then proceed towards initialization which generates the input files. Afterwards according to 

the property need to calculate, different commands can be given, and the output files are 

analyzed for the results. 

 

Currently Kohn-Sham Density functional theory is the most favorable and effective 

method for computing the electronic structure of matter and its properties by employing 

quantum mechanics. The fields on which DFT can be applied is a wide range, including simple 

atomic structures, bulk structure, 2D surfaces, slabs etc. A few of the applications of DFT are: 

• An easy way of theoretically verifying and justifying the lattice parameters of a 

certain material by using different approximations according to the material.  

• For studying the electron density, to observe the amount of charge transferred 

between the atoms in the material  

• The band structure of the most complex materials can even be obtained by using 

DFT and then the direct and indirect bandgaps can be calculated for further study.  

• The density of states(DOS) of any material can be observed, including the partial 

DOS due to any orbital i.e. s, p, d, f, and, depending on the k-mesh and the 

approximation used finer DOS can be studied  

• The optical properties of a material can be studied by calculating the optical 

parameters of a material i.e., refractive index, optical conductivity, optical 

reflectivity, optical dielectric constant.  

• DFT can be used to study the phonon-electron interactions of a molecule.  

• For studying the piezoelectric properties of a material, the spontaneous polarization, 

piezoelectric tensors, piezoelectric constants, and born effective charges can be 

calculated by the use of DFT  

• The X-Ray spectroscopy can be done for any material using DFT simulations.  

• The magnetic properties of different samples can be determined and calculated i.e.  

magnetic moment, the spin up/down density. 
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Chapter 4 

Results and Discussions 

 

This chapter discusses the results obtained for the theoretical calculations of MXene,  

 

4.1 Structure 

Mo2TiC2-Tx has a special group of P63/mmc. First pristine system was generated and 

optimized at 1000k points. Due to the presence of transition elements and their correlation 

DFT+U approach has been made. The lattice parameters of the pristine unit cell are a = 2.98Å, 

b = 2.98Å, c = 36.1Å [20s]. The ground state was achieved by fully relaxing the internal 

coordinates. Electronic band structure, density of states and the optical properties were then 

calculated. 

 

Figure 4.1:  Structure of Pristine Mo2TiC2 – Tx. 

 

 

To study the effects of doping, Nb-doped MXene was simulated using the GGA+U 

correlations. 4x2x1 super cell was used to study the optical effects of doping of Nb, where it 

replaces Mo on its Wyckoff sites. The spin polarized calculations were carried out, U indicates 

the Hubbard potential where U=4eV [22]. U has been applied to the transition elements in the 

structures i.e., Nb, Ti and Mo. After replacing Molybdenum, the structures internal 
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coordinates are relaxed and a decrease of the c parameter has been observed compared to the 

pristine system. With 4% doping of Niobium (Nb) the c parameter shrinks up to 25 Å. 

 

Figure 4.2: Structure of Nb doped MXene 

 

4.2 Density of State 

Density of states explains the number of states that are available for the energy (eV) in 

the compound. The DOS per eV and the PDOS for each atom in the structures are shown below. 

 

4.2.1 Pristine System 

The DOS for the pristine system are available throughout the region of interest but 

mostly they are observed between the regions -7.8eV to -3eV, -1ev to 4eV and 5eV to 7eV. 

This indicates a metallic behavior since there is no energy gap observed. 

 

Figure 4. 3:  Total DOS of Pristine Molybdenum MXene[20]. 
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4.2.2 Nb Doped System 

With the introduction of 4% Nb, slight shifting is observed between the spin up and 

spin down DOS peaks which indicates an introduction of magnetism in the system. 

Furthermore, the doping also increases the density of states per eV.  

 

Figure 4. 4:  Total DOS of MoNbTiC2Tx, i.e Nb doped MXene. 

 

The respective PDOS contributions from each atom have been plotted below in figure 4.5 and 

slight shifting of the graph can be observed in the PDOS contribution from Nb and Mo. 



 

21 

 

 

Figure 4. 5:  Partial DOS contribution of each atom. 

 

4.3 Magnetic Moment 

MXenes, including M3C2, have not been extensively researched for their magnetism, 

both experimentally and theoretically. However, the M2C phase of compounds like Cr2C and 

Ta2C has been studied and has been found to exhibit various forms of magnetism, including 

ferromagnetism, anti-ferromagnetism, and ferrimagnetism. This study sheds light on the 

magnetic behavior of double transition MXenes particularly Mo2TiC2-Tx. The overall 

magnetic moment in Mo2TiC2-Tx is 0.0009μB while in the interstitial sites 0.0005μB was 

observed. 
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Table 4. 1:  Magnetic contribution from each atom in the unit cell of pristine system 

  

  

  

  

 

It has been observed that the introduction of Nb to the pristine system causes rise of 

magnetic behavior in the lattice. Although Niobium doesn’t show a magnetic behavior 

independently, but after doping into MXene, it gives rise to the magnetic moment. This effect 

might be arising due to the exchange interactions between Nb and Mo that align the valence 

shell electrons in a particular direction. The total magnetic moment observed is 4.23819 μB 

while the interstitial sites show a magnetism of 1.26056 μB. 

 

Table 4. 2:  Magnetic contribution from each atom in the unit cell of the Nb doped MXene. 

 

Atom Mo1 

(μB) 

Mo2 

(μB) 

Nb1  

(μB) 

Nb2 

(μB) 

Ti1  

(μB) 

Ti2  

(μB) 

C     

(μB) 

Magnetic-

Moment 

0.58860 0.53991 0.08912 0.06931 0.02157 0.01082 0.02883 

 

From these results, it can be observed that the correlation between Mo and Nb results 

in the greatest atomic contribution towards the net magnetism of the crystal. Here Mo1 and 

Mo2 are those atoms which form a bonding with the two Niobium atoms. 

 

4.4 Band structure 

Band structure diagrams depict the quantum mechanical behavior of the electrons 

inside the solids. The bandgap for both doped and un-doped system was 0 eV, which depicts 

a conductive behavior. The number of electron energy orbitals available close to the Fermi 

Energy lever increase with the doping of Nb, which implies of an increase in the conductive 

behavior of the material. 

 

Atom Mo 

(μB) 

Ti   

(μB) 

C     

(μB) 

Magnetic-

Moment 

0.00103 0.00021 0.00020 
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Figure 4. 6:  Band structure of Mo2TiC2-Tx  

 

 

 

Figure 4. 7:  Bandstructure of MoNbTiC-Tx 
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4.5 Optical Properties  

Light interacts with matter in a variety of ways. Optical characteristics refer to a 

substance's response to electromagnetic radiation, and optical materials are substances that 

can be affected by the flow of light. Every substance has its own unique optical properties; 

some absorb certain colors of light while others reflect or scatter light in different ways. For 

example, metals tend to have a shiny appearance, while glass is transparent. Metals typically 

reflect all wavelengths of light up to ultraviolet, while insulators are dielectrics that are 

transparent to visible light and semiconductors are often opaque to visible light but transparent 

to ultraviolet light. The optical properties of a substance are determined by its structural 

properties and chemical composition, which can vary from one material to another. The optical 

characteristics of solids can be used to study energy band structure, impurities, defects, and 

lattice vibrations. In this section, we will briefly review the concepts of absorption, reflection, 

and transmission. When light hits a medium, it can be reflected, transmitted, or propagate 

through it. We will first discuss the relationship between optical absorption and absorption 

coefficient, followed by complex dielectric functions and optical conductivity, and the 

relationship between the energy band structures of solids. 

 

4.5.1 Optical Absorption 

Optical absorption is the process by which a material absorbs electromagnetic 

radiation, or light. The ability of a material to absorb light is influenced by its characteristics 

and occurs when the frequency of the light matches the natural resonance frequency of the 

material's dipole oscillators. When this happens, the dipole oscillators absorb a portion of the 

energy from the incoming light, while the remainder is released as heat. In the following 

illustration, the energy of the valence band is represented by Ev, the energy of the conduction 

band is represented by Ec, and the energy of the bandgap is represented by Eg. When a photon 

with an energy of hf encounters the substance, two processes can occur:  

1. If the energy of the photon, hf, is greater than the energy of the bandgap, Eg, the electron 

in the valence shell absorbs energy and becomes excited. This causes the electron to move 

from a lower energy level to a higher one, creating an electron-hole pair in the valence and 

conduction bands. However, due to scattering, the excited electron loses energy to the lattice 

and returns to the valence band, where it recombines with the hole.  
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2. If the energy of the photon, hf, is less than the energy of the bandgap, Eg, the excitation 

process does not occur. This can make certain materials transparent within a specific range of 

wavelengths. 

 

4.5.2 The Complex Dielectric Function and Complex Optical Conductivity 

The complex dielectric function is a mathematical function that characterizes how a 

material responds to an applied electric field. It is usually represented by the symbol ε(ω), 

where ω is the angular frequency of the applied field. The complex dielectric function can be 

expressed as a complex number with a real and imaginary component. The real part of the 

complex dielectric function, denoted by ε'(ω), describes the material's ability to absorb or 

reflect light, while the imaginary part, denoted by ε''(ω), describes the material's ability to 

scatter-light.  

This can be derived from the Maxwell’s equations as following: 

 

𝛻2𝐸 =
𝜀µ

𝑐2
 
𝜕2𝐸

𝜕𝑡2
+
4𝜋𝜎µ

𝑐2
 
𝜕𝐸

𝜕𝑡
                                                (4.1) 

 

𝛻2𝐻 =
𝜀µ

𝑐2
 
𝜕2𝐻

𝜕𝑡2
+
4𝜋𝜎µ

𝑐2
 
𝜕𝐻

𝜕𝑡
                                              (4.2) 

  

The quantity in the previous equations introduces the notion of the complex dielectric 

function. 

To solve equations above, we need a sinusoidal solution.  

 

𝐸 = 𝐸𝑂𝑒
−𝑖(𝐾.𝑟−𝜔𝑡)                                                         (4.3) 

 

The complex propagation constant, K, and the angular frequency of the light, ω, can be used 

to find the wave solution for H. The real component of K represents the wave vector, while the 

imaginary component represents wave attenuation in solids. Substituting the wave solution into 

the given equation using the value of the wave vector yields the following expression: 

 

−𝐾2 =
−𝜀µ𝜔2

𝑐2
−  
4𝜋𝑖𝜎µ𝜔

𝑐2
                                                 (4.4) 
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  The second expression of equation above vanishes if there is no attenuation in solids, 

then the equation above becomes:  

 

                                              𝐾0 =
𝜔

𝑐
  √(𝜀𝑐𝑜𝑚𝑝𝑙𝑒𝑥 µ)                                               (4.5) 

 

ε is however a real function of K, it also contains a loss factor, therefore the dielectric 

function may be represented as follows in terms of real and complex parts:  

 

𝜀𝑐𝑜𝑚𝑝𝑙𝑒𝑥 = 𝜀 +
4𝜋𝑖𝜎

𝜔
= 𝜀1 + 𝑖𝜀2                                          (4.6) 

 

𝜀𝑐𝑜𝑚𝑝𝑙𝑒𝑥 =
4𝜋𝑖𝜎

𝜔
+
𝜀𝜔

4𝜋𝑖
                                                       (4.7) 

 

We may define complex conductivity using equation above:  

 

𝜎𝑐𝑜𝑚𝑝𝑙𝑒𝑥 = 𝜎 +
𝜀𝜔

4𝜋𝑖
                                                        (4.8) 

 

For the matter-light interaction in the quantum regime, the perturbation is incorporated.  

Into the system and the expression for the dielectric function takes the following form: 

 

𝜀(ω) =  𝜀1(ω) + 𝑖𝜀2(ω)                                                    (4.9) 

 

First the imaginary part is determined and then using the Krammers-Krong relationship 

which is given in[21]. 

 

𝜀2(ω) =  
𝑉𝑒2

2𝜋ħ𝑚2ω2
∫𝑑3𝑘 ∑|< 𝑘𝑛| 𝑝 |𝑘𝑛 >|2

𝑛,𝑚

𝑓(𝑘𝑛) 

× [1 − 𝑓(𝑘𝑛)] ∂(𝐸𝑘𝑛 − 𝐸𝑛 −  ħω)                                                                   (4.10) 

 

𝜀1(ω) = 1 +
2

𝜋
∫

𝜀2(ω)ωdω

ω − ω′

∞

0

                                         (4.11) 
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4.5.3 Refractive Index 

The refractive index is a measure of the material's ability to bend light and is dependent 

on the wavelength of the light. It is a combination of both real and imaginary parts and can be 

represented as follows: 

 

                                   𝑁𝑐𝑜𝑚𝑝𝑙𝑒𝑥 = √𝜇𝜀𝑐𝑜𝑚𝑝𝑙𝑒𝑥                                        (4.12) 

 

The relationship between the K and N complex may be described as follows [22]:  

 

                            𝐾 =
𝜔

𝑐
𝑁𝑐𝑜𝑚𝑝𝑙𝑒𝑥                                                        (4.13) 

 

Now we will write N complex in terms of real and complex function.  

 

    𝑁𝑐𝑜𝑚𝑝𝑙𝑒𝑥 = 𝑛 + 𝑖𝑘                                                     (4.14) 

 

Due to the changing dynamics at the nanoscale, the Krammers-Krong relationship is 

used to compute the dielectric functions thus both components of the refractive index take the 

following form [22]. 

 

𝑛(ω) =  
1

√2
 [√𝜀1(ω)2 + 𝜀2(ω)2  + 𝜀1(ω)]

1/2                           (4.15) 

 

4.5.4 Absorption Coefficient 

The absorption coefficient, α, is a measure of how much light is absorbed by an optical 

material. It is defined as the percentage of energy absorbed per unit length of the medium. 

When incident light from a monochromatic source hits an optical medium, a portion of the 

photon's energy is absorbed if the energy of the photon, hf, is greater than the energy of the 

bandgap, Eg. The remainder of the energy is transmitted through the medium. If the beam is 

traveling in the x-direction and the intensity at a position ‘x’, is I(x), the intensity will decrease 

by an incremental slice of thickness dx due to absorption as follows: 

 

𝐼(𝑥) ∝ −(
𝑑𝐼(𝑥)

𝑑(𝑥)
)                                                    (4.16) 
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                              𝐼(𝑥) = −𝛼
𝑑𝐼(𝑥)

𝑑(𝑥)
                                                  (4.17) 

 

Equation has the following solution:  

 

𝐼(𝑥) = 𝐼𝑜𝑒−𝛼𝑥                                                       (4.18) 

             

The intensity of the light hitting on the substance is measured in Io. Similarly, the residual 

intensity of the transmitted light after incident light passes through the medium may be stated 

as: 

 

𝐼𝑡(𝑥) = 𝐼𝑜𝑒
−𝛼𝑥                                                            (4.19) 

 

𝐼𝑡(𝑥)𝐼𝑜 = 𝑒−𝛼𝑥                                                            (4.20) 

 

With the graph below, we can observe how the optical absorption coefficient (𝛼) 

changes as a function of photon energy.  

 

 

Figure 4. 8: Energy vs Absorption. 

 

In the quantum realm the expression for absorption takes the following form 

 

𝛂 =  √𝟐𝜔 [√𝜀1(ω)2 + 𝜀2(ω)2  −  𝜀1(ω)]
1/2

                          (4.21) 
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4.5.5 Reflectivity 

Reflectivity is a characteristic of a material that describes how much light is reflected 

off its surface when compared to the amount of incident light. The diagram in Figure 4.8 shows 

a schematic of an optical system. It is assumed that the material in the figure is thick enough 

to absorb light. If we disregard the reflection from the back of the material, the one-

dimensional propagating wave can be expressed as follows: 

 

𝐸𝑥 = 𝐸𝑜𝑒
−𝑖(𝐾.𝑟−𝜔𝑡)                                                                      (4.21) 

  

In equation above, K is the complex propagation constant, which has previously been 

determined. 

 

Both incident and reflected waves exist in free space:  

 

𝐸𝑥 = 𝐸1𝑒
−𝑖(𝜔𝑧𝑐−𝜔𝑡) + 𝐸2𝑒

−𝑖(−𝜔𝑧𝑐−𝜔𝑡)                                     (4.22) 

 

The continuity of Ex may be connected to the following equation using equations given above 

 

𝐸0 = 𝐸1 + 𝐸2                                                                              (4.23) 

  

We may get the following relationship from the Maxwell relation:  

 

𝜕𝐸𝑥

𝜕𝑧
=
𝑖𝜇𝜔

𝑐
𝐻𝑦                                                                                (4.24) 

 

Using equations above, we get  

 

𝐸0𝐾 =  
𝐸1𝜔

𝑐
− 
𝐸2
𝑐
=  
𝐸0𝜔

𝑐
 𝑁𝑐𝑜𝑚𝑝𝑙𝑒𝑥                                                   (4.25) 

  𝐸1 − 𝐸2 = 𝐸0𝑁𝑐𝑜𝑚𝑝𝑙𝑒𝑥                                                                             (4.26)  

 

 

R is now defined as the perpendicular incident reflectivity.  
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𝑅 =
𝐸2
𝐸1
                                                                      (4.27) 

 

We are now familiarizing with reflection coefficient r given by  

 

𝑟 =
𝐸2
𝐸1
                                                                           (4.28) 

  

The following are the outcomes of above equations. 

 

𝐸2 =
1

2
𝐸0 (1 − 𝑁𝑐𝑜𝑚𝑝𝑙𝑒𝑥)                                                  (4.29) 

 

𝐸1 =
1

2
𝐸0 (1 + 𝑁𝑐𝑜𝑚𝑝𝑙𝑒𝑥)                                                    (4.29) 

 

The perpendicular incident reflectivity has now obtained the form. 

 

𝑅 =
1 − 𝑁𝑐𝑜𝑚𝑝𝑙𝑒𝑥

2

1 + 𝑁𝑐𝑜𝑚𝑝𝑙𝑒𝑥

.

=
((1 − 𝑛)2 + 𝑘2 )

(1 + 𝑛)2 + 𝑘2
                                   (4.31) 

 

A property called reflectivity R, which is important in optics, has been added. The 

power transmitted or absorbed by a material when light is incident on it at a right angle can be 

determined using the relationship mentioned. 

 

1 = 𝐴 + 𝑅 + 𝑇                                                                             (4.32) 

 

At the quantum mechanical scale, the expressions change as following [22]. 

 

𝑅(ω) = (
√𝜀12 + 𝑗𝜀12 − 1

√𝜀12 + 𝑗𝜀12 + 1
)

2

                                                                  (4.33) 
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4.5.6 Optical Loss  

 

Optical loss is a reduction in the intensity of light as it enters a medium.  

𝐿(𝜔) =  
𝜀2(ω)

𝜀2(ω)2 + 𝜀1(ω)2
                                                          (4.34) 

The occurrence of optical losses happens when light, which has the potential to create an 

electron hole pair, does not generate any because it gets reflected from the front surface. 

 

4.5.7 Optical Conductivity 

 

Optical conductivity is a measure of how well a material allows light to pass through 

it. Materials with high optical conductivity are transparent or translucent, while materials with 

low optical conductivity are opaquer. The optical conductivity of a material can be affected by 

factors such as its type, purity, and the presence of impurities or defects. It is used in various 

fields such as telecommunications, solar cells, and display technology. 

σ =  
ω

4π
𝜀2(ω)                                                                              (4.35) 
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4.6 Optical Properties of Mo2TiC2-Tx and MoNbTiC2-Tx 

To study the effects of interaction of field with our systems, 4x2x1 supercell was 

created and all of the optical properties were calculated.  

 

 

Figure 4.9: Comparison of the Optical conductivity (a), Optical loss (b) and both dielectric 

components of both (c), (d) of the materials under study.          
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Figure 4.10: Comparison of Refractive Index (e), Absorption (f), Reflectivity(g) and Extinction 

Coefficient (h). 

 

 

From the calculations, the optical behavior of both materials is found to be very similar. 

 In both systems, high optical absorption has been reported especially in the regions of 

higher frequency of the electromagnetic wave. It can be seen in 4.10 (h), the absorption 

increases along with the increase in the electromagnetic frequency, and due to this there 

is a potential of these materials to find their applications in solar cell fabrication. 

 In the visible region i.e., till 3eV, the optical conductivity has an ascending trend in 

the figure 4.10(a). This is another feature which indicates that this material shows 

promising characteristics for applications in solar cells. After entering the UV region, 

the conductivity has a downward trend after 6.5 eV. 

 Optical loss indicates an ascending trend. From figure 4.10 (b) it can be observed that 

optical loss increases across IR, Visible and the UV region. Loss peaks at 12.7 eV 

energy of the incident wave this means that both systems can carry the light waves up  

to 12.7 eV intensity with least distortion. 
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 The figure 4.10 (g) indicates that the Reflectivity of the system shows a downward 

trend and hits the bottom at 5eV, after that it increases again and shows some stability. 

At 14eV the reflectivity peaks again. One explanation for such a behavior is that, due 

to the rise in the lattice vibrations, the momentum from the incident EM wave scatters 

inside the lattice, giving rise to a greater number of phonons, which result in the higher 

absorption of light, causing a decrease in the ability of the material to reflect. 

 The real component of the refractive index indicates the change in wavelength or 

velocity of a wave as it transitions from vacuum to medium, whereas the imaginary part 

depicts the wave's attenuation in the medium.  

N = n + ik 

From the figure 4.10 (e) and 4.10 (f) it can be seen that the system under consideration 

experiences decreases in the real and imaginary component of the refractive index 

(Extinction Coefficient). 

 

 From the figure 4.10 (c) and 4.10 (d), it is observed that the both components of the 

dielectric function are decaying with the increase of the energy of the light wave. 
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Chapter 5 

Conclusion 

 

In this study, density functional theory has been incorporated for the computational study of 

Mo2TiC2–Tx and MoNbTiC2-Tx. The study shows that both of the systems are electrically 

conductive in nature. With the 4% doping in the pure MXene, magnetic effects have been 

observed. Furthermore, optical properties have also been studied, which were observed to be 

very similar for both systems under study and it has been predicted that both materials have a 

potential to find their application in the solar cell fabrication. 

 

5.1 Future Directions 

Even though this thesis may contain digressions, it still offers some areas for 

exploration and examination through experimentation. For instance, there is a need to optimize 

the fabrication approach for creating solar cells from both systems. Additionally, since doping 

of Nb in the system predicts magnetism, there is potential for applications in magnetism and 

spintronics, and further testing is needed to assess its potential in those areas. 
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