
 

Chapter 1 

INTRODUCTION 

This research has been carried out to implement a flexible and efficient and 

generic processor to perform digital signal processing tasks on the field programmable 

gate array (FPGA). The architecture of the proposed processor is designed for various 

digital signal processing algorithms. FPGA is a concurrent device and keeping in mind 

that there is bulk of data that needs to be processed in any digital signal processing (DSP) 

task to get the results. For example, in Fourier Transform (FT), if we want to get FT of a 

signal then we need to process thousands of samples (input data) to get the result. So 

almost all signal processing tasks are very computational intensive. So, to carry out these 

tasks efficiently, a very efficient and powerful processor was required. The proposed 

solution is entirely generic and can perform any of the digital signal processing tasks.  

A question arises that why a processor was needed even though we have DSP kits 

available to perform DSP tasks? The answer is that, those DSP kits are sequential in 

nature i.e. they perform every task sequentially and there is no concept of parallel 

processing in these devices and we cannot perform parallel/concurrent processing in 

these devices so during this research work it has been observed that much of operations 

other than actual processing such as data input/output put extra burden on the processing 

if they are not done in parallel to the processing of data. 

The VLSI design cycle has three main components namely: designing, 

implementation and verification.  This project emphasizes on the design of a special 

family of circuits called synchronous circuits. Most of the designs nowadays 

implemented belong to this family. Synchronous digital circuits are those where a digital 

clock clicks and makes all components synchronously operate to implement the design 

functionality. These circuits can be implemented easily in both Verilog and VHDL by 

any proficient hardware programmer but resource management of the target device and 

efficient utilization of clock ticks is where engineering comes in. Not every engineer is 
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capable enough and makes the successful design in market easily. Both a stroke of genius 

and sense of creativity are required, especially when design is complex for which 

verification requires testing millions of gates. This is indeed the most challenging part of 

the DSP design project. Project managers of the DSP design project first have to finalize 

the requirements and specifications (R&S) which along with the functionality of the 

product, includes the power consumptions, input sampling rate, noise tolerance and other 

application specific parameters, for example bit error rate (BER) and baud rate in 

communication system. 

The R&S are explored are explored to try to get many solutions and best among 

them is chosen. After testing of algorithm on high level languages, it comes the task of 

implementation. The implementation is first tested on FPGA before fabrication. 

All circuits, implemented in hardware are designed in Register Transfer Language 

(RTL) logic which consists of register arrays separated by computational clouds. These 

clouds basically implement arithmetic operations involved in the logic design. Ninety 

percent of the critical path delay is caused by combinational cloud. Rest is due to the 

reading from and writing into the registers. The longest path between two consecutive 

register arrays is called the critical path, draws limitation on the maximum clock 

frequency.  

 

1.1 PROBLEM STATEMENT 
“To design a generic processor that facilitates digital signal processing 

applications in a fast and efficient way” 

 

1.2 RESEARCH AIM 
To facilitate the DSP designers to analyze and decompose 1-D and 2-D signals to 

get finer details, in terms of high frequency and low frequency components etc., to be 

used in more complex applications of digital signal processing with higher throughput. 

 

1.3 PROPOSED SOLUTION  
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To achieve the goal of this research work, a very flexible methodology has been 

adopted to accomplish the task. A Generic processor has been implemented based on the 

Reduced Instruction Set Computer (RISC) architecture. The architecture is fully 

pipelined and hence gives higher throughput. An instruction set is designed to facilitate 

the programmer to use the system easily. Based on the instruction set, all operations of 

the proposed processor are carried out. Due to pipelined design, the achieved cycle per 

instruction (CPI) is 1 that has a very significant impact on the throughput of overall 

system. 

 

1.4 MOTIVATION 
The field of digital signal processing (DSP) has been always a very challenging 

and innovative field for engineering applications. Also digital design of signal processing 

systems gives a new way of thinking to implement digital signal processing algorithms 

embedded devices such as FPGAs and DSPs. To reduce the cost of end user devices, the 

system design in double precision floating point format are converted to its fixed point 

equivalent. The fixed point implementation is them mapped on fixed-point DSPs, FPGAs 

and ASIC.  

Taking into account the need to develop the wavelet processing system onto off 

the shelf components such as FPGA the proposed system has been developed to facilitate 

the DSP designers. 
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1.5 REPORT STRUCTURE 

This document throws light on all the aspects of the project, including the 

techniques implemented and details of the developed system. This document is divided 

into following chapters: 

 Chapter 2: Literature Review and background. This chapter contains a glimpse of 

all the literature gone through for the completion of the project. 

 Chapter 3: Methodology. This chapter explains the approach used for 

development of the algorithm, system architecture and design of the project. 

 Chapter 4: Results and Discussions. This chapter includes the steps followed and 

the final results obtained. 

 Chapter 5: Conclusions and Recommendations. This chapter summarizes the 

whole project report and contains proposed methodologies, which could further 

affect improvements in the project and the research carried out during the 

execution of this project, and finally formulates recommendations for future work. 
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Chapter 2 

Literature Review and Background 

 The literature review has been carried out to figure out the perfect understanding 

of different aspects of the work and also to understand the working of tools that are to be 

used to complete the project. Appraisal of the literature is categorized in modules as 

under. 

1)       Digital System Design Process 

2)       Digital System Design Considerations 

3)       Design Based on Finite State Machines 

4)       Design of Data path Controllers 

5)       Digital Signal Processing Review 

2.1 DIGITAL SYSTEM DESIGN PROCESS 
Main points of the digital system design process that are necessary of the 

understanding of the subject are discussed in this section. Following shows the complete 

digital system design process: 

 
 

Figure 2.1:    Digital System Design Process [3] 
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The cycle starts with the requirements specification, followed by the design of an 

algorithm using tools like MATLAB. To facilitate partitioning of the algorithm into 

hardware (HW) and software (SW), and its subsequent mapping on different platforms, 

algorithm design and coding techniques in MATLAB are described. The MATLAB code 

has to be structured so that the algorithm developers, SW designers and HW engineers 

can correlate various components and can seamlessly integrate, test and verify the design 

and can return to the original MATLAB implementation if there are any discrepancies in 

the results. 
 

2.1.1     System Design 
 

It is a level of abstraction where the digital designer specifies all the registers and 

elaborates how data will flow through these registers. The combinational logic between 

two sets of registers is usually described using high level mathematical operations, and is 

drawn as a cloud. 

The design process is done at behavioral modeling level of abstraction which is the 

highest level, and then mapped into gate level net list for implementation. The design 

typically means description and flow of data through the registers of the architecture.  

 

2.1.2  System Implementation 
 

After describing the entire architectural design in RTL logic, it is implemented in 

some hardware description language (HDL), Verilog in our case, which in general is a 

straight forward translation. The translated code is tested and synthesized to be 

programmed on a Field Programmable Gate Array (FPGA) or Application Specific 

Integrated Circuit (ASIC). 

2.1.3       System Verification 
Usually any digital design is tested and verified by checking its output for all 

possible combinations of inputs. But as number of gates on single silicon device is 

increasing, this makes the job of testing and verification job a very critical and 

challenging one.  
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2.2  DIGITAL SYSTEM DESIGN CONSIDERATIONS 

A digital designer is always confronted with finding the best design options in 

area-power time tradeoffs. Following are some design objectives [3]: 

1) Area of the design 

2) Critical path delay of the design 

3) Testability of the design 

4) Power dissipation of the circuit 

By considering all the four mentioned factors the efficiency of a product can be 

measured. 

Power is increasingly becoming the key limitation in processor performance. In 

the embedded market, where many processors go into environments that rely solely on 

passive cooling or on battery power, power consumption is often a constraint that is as 

important as performance and cost. 

No doubt, many readers will have encountered power limitations when using their 

laptops. Indeed, between the challenges of removing excess heat and the limitations of 

battery life, power consumption has become a critical factor in the design of processors 

of laptops. Battery capacity has improved only slightly over time, with the major 

improvements coming from new materials. Hence, the ability of the processor to operator 

efficiently and conserve power is crucial. To save power, techniques ranging from putting 

parts of the computer to sleep, to reducing clock rate and voltage, have all been used. In 

fact, power consumption is so important that Intel has designed a line of processor, the 

Pentium M series, specifically for mobile, battery-powered applications. 

For CMOS technology, we can reduce power by reducing frequency. Hence, 

recent processors intended for laptop use all have the ability to adapt frequency to reduce 

power consumption, simultaneously, of course, reducing performance. Thus, adequately 

evaluating the energy efficiency of a processor requires examining its performance at 

maximum power, at an intermediate level that conserves battery life, and at a level that 

maximizes battery life. In the Intel Mobile Pentium and Pentium M lines, there are two 



8 
 

 

available clock rates: maximum and a reduced clock rate. The best performance is 

obtained by running at maximum speed, the best battery life by running always at the 

reduced rate. 

Figure 2.2 shows the performance of three Intel Pentium processors designed for 

use in mobile applications. As we can see the newest processor, the Pentium M, has the 

best performance when run a full clock speed, as well as with the adaptive clock rate 

mode. The Pentium M’s 600 MHz clock makes it slower when run in minimum power 

mode than the Pentium 4-M, but still faste than the older Pentium III-M design. 

Figure 2.2 shows the relative energy efficiency or these processors running the 

SPEC2000 benchmarks. In all three modes, it has a significant advantage in energy that 

the Pentium 4-M has only a slight efficiency advantage over the Pentium III-M. this data 

clearly shows the advantage of a processor like the Pentium M, which is designed for 

reduced power usage from the start, as opposed to a design like the Pentium III-M or 

Pentium-M, which are modified versions of the standard processors, of course, 

adequately measuring energy efficiency also requires the use of additional benchmarks 

designed t reflect how users employ battery-powered computers. Both PC review 

magazines and Intel’s technical journal regularly undertake such studies.  
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Figure 2.2 : Relative performance of Intel processors 

2.3  DESIGN BASED ON FINITE STATE MACHINES 
Partitioning a sequential machine into a data path and a controller clarifies the 

architecture and simplifies the design of the system. The sequence of steps in an 

application-driven design process is shown in Figure 2.3. If the architecture of the data 

path unit has been selected to support the instruction set of an application, sequences of 

operations (control states) that support the instruction set can be identified. The control 

states are used to schedule assertions of the signals that control the movement and 

manipulation of data as the machine executes instructions. 
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Figure 2.3: State machine controller for a datapath 

 

Then an FSM can be designed to generate the control signals. In this section we 

will illustrate the design of datapath controllers for some simple functional units, to 

prepare for the design of a stored-program reduced instruction-set computer in the next 

section. In synchronous machines, a common clock synchronizes the activities of the 

controller and data path functional units.  

Note that the control unit in Figure 2.3 is implemented as an FSM, and is itself 

controlled by external input signals and by status signals from the data path unit. The 

FSM produces the signals that control the operation of the data path unit. Data path units 

are commonly described by dataflow graphs; control units are commonly modeled by 

state transition graphs and/or algorithmic-state machine (ASM) charts for FSMs. 

Partitioned sequential machines can be modeled by an FSM and datapath (FSMD), a 

combined control-dataflow graph, which expresses datapath operations in the context of a 

state-transition graph (STG). We favor using an ASM and datapath (ASMD) chart, which 

likewise links an ASM chart for a control unit to the operations of the data path that it 

controls. 

2.4  DESIGN OF DATAPATH CONTROLLERS 
  Digital systems range from those that are control-dominated to those that are data-  
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dominated. Sequential machines are commonly classified and partitioned into data path 

units and control units.  

 

 

 

 

 

Figure 2.4: Components of time shared architectures [3] 

 

In general, a time shared architecture consists of a datapath and a control unit. The data 

path is the computational engine and consists of registers, multiplexers, de multiplexers, 

ALUs, multipliers, shifters, combinational circuits and buses. These HW resources are 

shared across different computations of the algorithm. This sharing requires a controller 

to schedule operations on sets of operands. The controller generates control signals for 

the selection of these operands in a predefined sequence. The sequence is determined by 

the dataflow graph or flow of the algorithm. Some of the operations in the sequence may 

depend on results from earlier computations, so status signals are fed back to the control 

unit. The sequence of operations may also depend on input signals from other modules in 

the system.  

 

 
Figure 2.5: Combinational and sequential components of FSM [3] 
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Most data paths include arithmetic units, such as arithmetic and logic units 

(ALUs), adders, multipliers, shifters, and digital signal processors, but some do not, such 

as graphics coprocessors. The data path unit is controlled by a finite-state machine (FSM) 

that coordinates the execution of instructions that perform operations on the data path. 

Architectures that are dominated by control units will generally have a significant amount 

of random (irregular) logic, together with some regular structures, like multiplexers for 

steering signals, and comparators[10].  

 

2.5  DIGITAL SIGNAL PROCESSING REVIEW   
As the proposed processor has been designed specifically for digital signal 

processing applications, so a comprehensive study of signal processing algorithms has 

been carried out. Following is the brief description of the some digital signal processing 

transform and their comparison. 

2.5.1  Fourier Transform  
  Fourier Transform (FT) is used to compute which frequency components 

exist in the signal. So Fourier Transform gives the frequency spectrum of the signals. 

Frequency spectrum shows the frequency components that are also called spectral 

components of the signal. As  we know that frequency is rate of change something. If 

something changes abruptly then its frequency is high and if something changes slowly 

then its frequency is low. If there is no change in any signal then its frequency is zero.  

The mathematical formulations of the Fourier Transform are as under: 

F(ω) = [ ]∫ − dttjtf )exp()( ω  

f(t) = 1/2π ∫ ωωω dtjF )exp()(  

 Mostly in our daily life the signals we encounter are time domain signals. There 

are two types of signals  

 Stationary signals. 

 Non-stationary signals. 
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The stationary signals are those that have fixed frequency over all times as shown 

in figure 2.6 below shows a signals that has four 

frequency components and those four frequency components exist in this signal at all  

 

 

 

 

 

 

 

 

    

 Figure 2.6:    A time domain stationary signal 

times that’s why this signal is called stationary signal. 

Figure 2.7 shows a non-stationary signal i.e. it has different frequencies and different at 

different time. By looking at the figure below it can be seen that the signal has different 

frequencies at 200, 400, 600 intervals and so on. 

 

 

 

 

 

 

Figure 2.7:    Non-Stationary signal 

The Fourier Transform of the signals only gives information about the frequency 

components that exist in the signal. So, for those application Fourier Transform is not a 
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suitable then people sit together and come with a transform that gives both time and 

frequency information simultaneously i.e.  

2.5.2  Wavelet Transform 

 

Here is the description of the working of the Wavelet Transform. Suppose we 

have a signal that has frequency components from 0 to 100. First we will break the into 

low frequency and high frequency components i.e. the two portions of the signal, one 

containing the frequency components from 0 to 50 and the other from 51 to hundred. 

Now we have to different signals that have different frequency components but they both 

belong to the same signal. If we want to further split the signals then we will take any one 

of them, normally low pass portion is taken again because most signal information is in 

lower frequency components. So we take the signal with frequencies from 0 to 50, again 

break this signal into low and high frequency components i.e. from 0-25 and from 26-50. 

And in the same way keeping on breaking any portion into low and high frequency 

components and reach the desired level of decomposition. If we plot these bunch of 

signal on the same 3-D graph i.e. one axis giving time information, 2nd axis giving 

frequency information and the 3rd axis giving amplitude then this graph will look like 

figure 2.8. Note that frequency axis is labeled as scale and scale is inverse of frequency. 
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Figure 2.8:  Wavelet Transform 

There are two types of Wavelet Transform: 

• Discrete Wavelet Transform 

• Continuous Wavelet Transform 

Our focus will mainly be on Discrete Wavelet Transform. 

  

 

2.5.3  LIFTING SCHEME 

Lifting scheme is a very efficient approach to perform the discrete 

wavelet transform. Lifting schemes reduces the number of computation of 

the wavelet transform to almost half. Figure 2.12 shows how the lifting 

scheme works. 

 
  

Figure 2.9:     Lifting Scheme Forward Transform 

In lifting scheme three steps are performed i.e. 

• Split  
• Predict 
• Update  

After performing these steps the input signal is split into a high pass and a low pass 

component. S corresponds to high-pass and D corresponds to low pass component. 
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In the same way as in forward transform, the inverse transform using lifting scheme also 

exists. Figure 2.13 shows the inverse transform using lifting scheme. After performing 

the inverse transform we get the original signal back.
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Figure 2.10:     Lifting Scheme Inverse Transform 
 

2.5.4    FAST LIFTING WAVELET TRANSFORM FILTERS 
 

As noted earlier the lifting scheme presents an efficient way to perform Wavelet 

Transform. There are number of fast lifting wavelet transform filters that performs the 

wavelet transform by using lifting scheme. Some of them are listed in the following 

diagram: 

 

 

Figure 2.11:   Difference Equations of the various Fast Lifting Wavelet Transform Filters 
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The working of all of these filters is pity simple and the following shows the data flow in the 5/3 

filter. 

 

 

 

 

 

 

 

  

 

Figure 2.12: Signal Flow diagram of 5/3 filter [2] 

 

The working of this is as an input signal x is first splitted into two data sets i.e. 

even indexed elements and odd indexed elements, then current element of odd data set is 

added to product of -1/2 and sum of current value of even and one advanced value of the 

even dataset which results into a high frequency component i.e. shown as gamma in the 

diagram. The same procedure is repeatedly until we reach the end of data sets. On the 

other side the operation is same but now the coefficient is 1/4 instead of -1/2 and previous 

value of odd data set is used rather than the advanced one. The result of this operation 

gives the low frequencies values that are shown here as lambda. 
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Chapter 3 

Methodology 

3.1 INTRODUCTION 
 Normally, while designing a general purpose processor an instruction set is 

designed. This instruction set consists of a different class of instructions, by class I mean 

different instruction types, which include: 

 The memory reference instructions 

 The arithmetic-logical instructions 

 The branch or jump instruction 

 Compound instruction 

Many of the key design principles are introduced by looking at the 

implementation. The instruction cycle of every instruction includes the following phases: 

 Instruction fetch 

 Instruction decode 

 Instruction execute 

In addition, more concepts used to implement the Reduced Instruction Set 

Architecture (RISC) are discussed. A very special instruction called compound 

instruction is also added in the architecture whose instructions cycle is same as the other 

instructions but it has the capability of performing multiple arithmetic operations only in 

one cycle. 

   3.2  System Design Flow 
Figure 3.1 shows a design diagram. This section only highlights that a signal 

processing application is usually divided into software and hardware components. The 

hardware design is implemented in Verilog. The design is then mapped either on custom 

ASICs or FPGAs. This design needs to work with the rest of the software application. 



20 
 

 

There are usually standard interfaces that enable the SW and HW components to transfer 

data and messages. Architecture is designed to implement the hardware part of the 

application. The design contains all the requisite interfaces for communicating with the 

part implemented in software. The HW design and the interfaces are coded in Verilog. 

This chapter focuses on RTL coding of the design and its verification for correct 

functionality. The verified design is synthesized on a target technology. The designer, 

while synthesizing the design, also constrains the synthesis tool either for timing or area. 

The tool generates a gate level netlist of the design. The tool also reports if there are paths 

that are not meeting the timing constraints defined by the designer for running the HW at 

the desired clock speed. If that happens, the designer either makes the tool meet the 

timing by trying different synthesis options, or transforms the design by techniques 

described in this book. The modified design is re coded in RTL and the process of 

synthesis is repeated until the design meets the defined timings. The gate level netlist is 

then sent for a physical layout, and for custom ASICs the design is then ‘taped out’ for 

fabrication. The field programmable gate array tools provide an integrated environment 

for synthesis, layout and implementation of a bit stream to FPGA[3]. 
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Figure 3.1: System level design components[3] 

  

3.3 AN OVERVIEW OF DESIGN 
In this chapter we looked at the core instructions require to build and RISC 

architecture including arithmetic-logical instructions, the memory-reference instructions, 

and the branch instructions.  
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As highlighted earlier the compound is basically the arithmetic instructions that 

perform multiple arithmetic operations simultaneously in one clock cycle. Because of the 

requirement that any signal processing task mainly consists of basic operations such as 

addition, subtraction, multiplication and division so it has become very easy to include 

such an instruction in the instruction set.  

As we know all the signal processing tasks are very computational intensive i.e. 

much of processing needs to be done to complete signal processing tasks. For example, 

when Fourier Transform (FT) of a signal is to be taken then bulk of data samples needs to 

be processed to get the desired transformed signal. Because every sample of input signal 

needs to be processed to get the results so by looking at the equation of FT it can be seen 

that we need to do three to four basic arithmetic operation to get the output sample. If 

each basic operation is done in one clock cycle then it will take four clock cycles to 

produce an output sample in each iteration. This will not harm if the data to be processed 

contain few samples but unfortunately in all signal processing applications the input data 

is usually of thousands of thousands of samples so by considering only the Fourier 

Transform, the execution time of signal will be multiplied by four with the number of 

input samples of the signal. This is a huge difference. So a careful deliberation is done to 

come up with a solution that each output sample should come is each clock cycle. This 

will increase the throughput of the system quite remarkably. So, the compound 

instruction has done the job for us. To perform a bulk of data processing this  compound 

instruction generates control signals for the processing that needs to be performed to 

produce the output sample after every clock cycle. 
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Even across different instruction classes there are some instruction classes. For 

example, all instruction classes, except jump, use the arithmetic-logical unit (ALU) after 

reading operands from the register file. As we can see, the simplicity and regularity of the 

instruction set makes the execution of many instruction classes similar. 
 

3.3.1    Clocking Methodology 
Figure 3.2 shows the tow state elements surrounding a block of combinational 

logic, which operates in a single clock cycle: All signals must propagate from state 

element 1 through the combinational logic, and to state element 2 in the time of on clock 

cycle. The time necessary for the signals to reach state element 2 defines the length of 

clock cycle. 

For simplicity, we do not show a write control signal when a state element is 

written on every active clock edge. Both the clock signal and the write control signal are 

inputs. 

 

     

Figure 3.2 : Combinational logic, state elements and clock are closely related [10] 
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Figure 3.3: Edge triggered methodology eliminates race condition that can cause 

intermediate data values [10]  

 

The figures will indicate buses, which are signals wider than 1 bit, with thicker 

lines. At times we will want to combine several buses to form a wider bus, for example, 

we may want to obtain a 32-bit bus by combining two 16-bit buses. In such cases, labels 

on the bus lines will make it clear that we are concatenating buses to form a wider bus. 

Arrows are also added to help clarify the direction of the flow of data between elements. 

Finally, color indicates the control signal as opposed to a signal that carries data; this 

distinction will become clearer as we proceed through this chapter. 
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3.4 IMPLEMENTATION 
 

     3.4.1 Overview 
Reduced Instruction Set Computers (RISC) are designed to have a small set of 

instructions. In this section we will model a simple RISC based architecture. This 

architecture also serves as a starting point for developing architectural variants and a 

more robust instruction set. 

Designers make high-level tradeoffs in selecting an architecture that serves an 

application. Once architecture has been selected, a circuit that has sufficient performance 

(speed) must be synthesized. Hardware description languages (HDLs) play a key role in 

this process by modeling the system and serving as descriptive medium that can be used 

by a synthesis tool. 

Figure 3.5 shows the block diagram of the proposed design. The whole design is 

pipelined to achieve the higher throughput. Pipelining is described in the next section. 

     3.4.2 Pipelining 
 This section relies heavily on one analogy to give an overview of the pipelining 

terms and issues. If you are interested in just the big picture, you should concentrate on 

this section.  

 The pipelined approach takes much less time, as figure 3.4 shows. Next you have 

your roommate put the first load away, you start folding the second load, the dryer has 

the third load, and you put the fourth load into washer. At this point all steps called stages 

in pipelining, are operating concurrently. As long as we have separate resources for each 

stage, we can pipeline the tasks. 
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 Pipelining improves throughput of our laundry system without improving the time 

to complete one load of laundry. 

Figure 3.4: Laundry analogy to pipelining [10]
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Pipelined laundry is potentially four times faster than non-pipelined, 20 loads 

would take about 5 times as long as 1 load, while 20 loads of sequential laundry takes 20 

times as long as 1 load. It’s only 2.3 times faster than in above figure because we only 

show 4 loads. Notice that at the beginning and end of the work load in the pipelined 

version in above figure, the pipeline is not completely full, this starts up and wind down 

affects performance when the number of tasks is not large compared to the loads is much 

larger than 4, then the stages will be full most of the time and the throughput will increase 

with a factor of 4. 

The same principles apply to processors where we pipeline instruction execution. 

The instructions of proposed processor take five steps: 

1. Fetch instruction from memory 

2. Decode the instruction 

3. Read operands from the register file 

4. Execute the instruction 

5. Write the result back to register file 

These are the five pipeline stages of the proposed processor. 

Following is the pipeline speed up formula 

 

Time between instruction pipelined    =      time between instructions non-pipelined 

             Number of pipeline stages 
 

 

 The formula suggests that a five-stage pipeline should offer nearly a five fold 

improvement over 800 ps non-pipelined time, or a 160 ps clock cycle. The example 

shows, however, that the stages can be imperfectly balanced. In addition, there is some 

overhead involved in pipelining, the source of which will be clearer shortly. Thus, the 

time per instruction in the pipelined processor will exceed the minimum possible. 
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 Of course, this is because the number of instructions is not large what would 

happen if we increased the number of instructions? We could extend the previous figures 

to much more instructions.  
 

 

     3.4.3      Designing Instruction Sets for Pipelining 
 Even with this simple explanation of pipelining, we can get insight into the design 

of the instruction set which is designed for pipelined execution. 
 

 Third, memory operands only appear in load and store instructions. This 

restriction means we can use the execute stage t calculate the memory address and then 

access memory in the following stage.  
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Figure 3.5: Block Diagram of Proposed Processor 
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3.4.4  Building a Data Path 
  Let’s start by looking at which data path elements each instruction needs. When 

we show the data path elements, we will also show their control signals. 
 

  Figure 3.6 shows the adder, which is combinational in nature, is not shown 

explicitly in the above block diagram of the design but shown implicitly that PC is 

incremented whenever inc_PC signal is high.  

 
Figure 3.6: Two elements of data path: instruction memory and PC 

 
 

 

For each data word to be read from the register, we need an input to the register file that 

specifies the register number to be read and an output from the register file that will carry 

the value that has been read from the registers.  
 

  Figure 3.7 shows the ALU, which takes two 32-bit inputs in case of normal 

instructions and three 32-bits inputs in case of compound instruction and produces a 32-bit 

result along with the status signals i.e. zero, carry out, negative etc. The ALU control signal 

is described later in this chapter. 
 

  Thus we need both the register file and ALU (for address calculation) from figure 

3.7. 
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      Figure 3.7 : Register file and ALU of data path 

 3.4.5    Components of Data Path 
   Data path is composed of following components 
 

• Program Counter 

• Instruction Memory 

• Control Unit 

• Memory controller 

• Register File 

• Sign Extension Unit 

• ALU 

• ALU control 

• Forwarding Unit 

• Internal data Memory 

• Bypass Unit 

• Input Memory 

• Output Memory 

 Following is detailed description of each of these components. 
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3.4.5.1       Program Counter (PC): 

                  Following is block diagram of program counter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.8: Program Counter (PC) 

            The program counter (PC), also known as the instruction pointer (IP) and sometimes 

called the instruction address register is a processor register that indicates where 

a computer is in its program sequence. For the purposes of proposed processor it has it has 5 

inputs and one output. 4 of the total inputs are the control inputs i.e. load, increment, clock 

and reset. Because the reset is active low resent so the PC will be reset if the value of reset 

i.e. rst_n is 1 on active clock edge. If the load signal is asserted, it means that the execution 

sequence has to change and now the PC will be loaded to some other address indicated by 

“load addr” into the PC on the next active clock edge. If there is no jump to be taken, then by 

asserting the signal inc the PC will increment on every active clock edge. Clk denotes the 
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clock signal and din and dout simply denotes the input and output to the PC. The length of 

the PC is customizable as the parameter passed to the PC module will decide the length of 

the PC. 
 

3.4.5.2       Instruction Memory: 

Instruction Memory stores the instructions that need to be executed to complete a task. 

Following diagram shows the block level diagram of Instruction Memory of the proposed 

processor. 

 

 

 

 

 

 

 

 

 

    Figure 3.9: Instruction Memory 

             It has two control inputs i.e rd_en (read enable) and clock and one data input and 

one output. The address input of the instruction memory is connected to the output of the 

program counter (PC) described above. 

 

3.4.5.3       Control Unit: 

 The control unit manages all the activities of the processor.  In a way, it 

controls everything happening in the processor.   
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Figure 3.10: Control Unit 

  

 The control unit of the proposed processor is micro-program based. Part of the 

instruction called op-code (operation code) decides what signals to generate for the data 

path. Based on the instruction op-code all the control signals of the rest of the data path 

are generated. There is also a hardwire FSM that only communicates with the memory 

controller described later in this chapter. This FSM is shown in the following diagram: 
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Figure 3.11: Control Unit FSM 

       The state machine shown above consists of two state IDLE state and RUN state. This 

state machine works in a way that the control unit waits for the start signal from memory 

controller. As soon as that memory controller sends this signal the control unit switches 

to the RUN state and control unit starts the required processing by fetching and executing 

instructions. This execution stops as soon as the stop signal asserted and then state 

machine to IDLE state. 

It is useful to review the formats of all the instruction classes’ i.e. 

 The memory reference instructions 

 The arithmetic-logical instructions 

 The branch or jump instruction 

 Compound instruction 

Figure 3.12 shows these formats. 

Each instruction is of 32 bits 

• R-type: 

        31:26                       25:21                      20:16                       15:11                      10:6             5:0 
   

• Load and store instructions:   

        31:26                     25:21                      20:16                                                         15:0  
 

• Compound Instruction: 

 

Op code Rs Rt Rd Shift func 

Op code Rs Rt address 

Op code Rs Rt Rd Shift Rs2 
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• Branch instruction:  

        31:26                     25:21                      20:16                                                         15:0  

• Instructions having immediate operands       

         

                  31:26             25:18                      17:11                          10:6                                             5:0  

         

      31:26             25:18                      17:11                          10:6                                             5:0  
 

3
31:26             25:18                      17:11                          10:6                                             5:0      

Figure 3.12: Instruction Formats 

 

Some of the observation regarding these formats are as under: 

 The op field, also called the opcode, is always contained in 

bits 31:26. 

 The 16-bit offset for branch, load and store is always in 

positions 15:0. 

 The destination register is in one of two places. For a load it is 

in bit positions 20:16 (rt), while for an R-type instruction it is in bit positions 

15:11 (rd). Thus we will need to add a multiplexer to select which field of the 

instruction is used to indicate the register number to be written. 

      Table 3.1 shows 12 control signals. It is useful what these 12 control signals do 

informally before we determine how to set these control signals during instruction 

execution.  

Op code Rs Rt address 

Op code Immediate1 Immediate2 rd func 

Op code Immediate1 rs rd func 

Op code rs Immediate2 rd func 

Signal Name Function 

regdst The register file is to be written with the rd field of instruction 

alusrc The 2nd ALU operand is the sign extended lower 16 bits of instruction 
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Table 3.1: Control signals generate by control unit 

Now that we have looked at the function of each of the control signals, we can look at 

how to set them. With the information contained in table x we can design the control unit 

logic, but before we do that.  

Following are the steps that how an R-type instruction is executed, the pipeline stage at 

which these steps occur are also indicated. 

• The instruction is fetched and PC is incremented (Instruction 

Fetch stage) 

• The address for register file operands and all the required 

control signals are generated during this step (instruction decode stage). 

• Operands are read from the register file (Operands fetch 

Stage). 

memtoreg Indicates data will move from memory to register file 

Regwrite 
The register on the Write register input is written with the value on write 

data input 

Memread Data will be read from memory 

Memwrite 
Internal data memory contents designated by the address input are 

replaced by the value on the write data input of internal data memory 

memtoReg 
The value fed to the register write data input comes from the internal 

data memory. 

Branch Indicates when the branch is to be taken 

Aluop Specifies the which operation ALU should perform 

regFile_rd_en Indicates now register can be read when asserted 

mux_sel_mov_instr Selects line of the MUX for move instruction 

imm_MUX1_sel Select line for the MUX when first ALU operand is immediate operand 

imm_MUX2_sel 
Select line for the MUX when second ALU operand is immediate 

operand 
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lw R1, R2 + offset     (load contents of data memory at location (R2 +offset)  into R1) 

Now that we have seen how the instructions operate in steps, let’s continue with the 

control implementation. The control function can be precisely defined using the contents 

of the following table x. 

 

Instruction 

type 
Regdst Alusrc memtoReg Regwrite Memread 

Mem

write 

Branc

h 

aluOp

0 

aluOp

1 

R-format 1 0 0 1 0 0 0 0 1 

Lw 0 1 1 1 1 0 0 0 0 

Sw 0 1 X 0 0 1 0 0 0 

Branch X 0 X 0 0 0 1 1 0 

compound 1 0 0 1 0 0 0 0 1 

Move x x x 1 x x x x x 
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regFile_rd_en mux_sel_mov_instr imm_MUX1_sel imm_MUX2_sel 

1 X 0 1 

1 X 0 1 

1 X 0 1 

1 X 0 1 

1 X 0 1 

1 1 x x 

 

Table 3.2: Value of control signal depends entirely on the instruction opcode 

        3.4.5.4       Memory Controller: 

       Another very important component of the processor is the Memory controller. It 

allows direct access of memory to CPU registers without intervention of the main CPU. 

By the inclusion of this controller into the design the efficiency of the processor have 

increase increased many time because without memory controller the processor has to 

first fetch data operands from external memory to register file and then process these 

operands and return back the result when the processing completes. So in that way much 

of the CPU time was wasted by fetching data operands from external memory to register 

file and writing the results back from register file to external memory. So as a solution of 

the extra work the CPU had to do to retrieve operand and write back results, now the 

memory controller takes care of the fetching of operand and storing of results to the 

external memory and it fully controls the communication between external memory and 

register file of the processor. After the inclusion of memory controller in the design the 

CPU only does the actual processing i.e. to execute instruction the extra work of transfer 

of data is now transferred to memory controller. Start address and stop addresses are sent 

as parameters to the memory controller. Start address specifies where to start reading the 

memory and stop address specifies where to stop reading the memory. All the memory 

locations between start and stop address are read and written to the register file.  
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Figure 3.13 shows the block diagram of memory controller 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13: Memory Controller 
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The memory controller consists of two state machines 

• Input State Machine 
• Output State Machine 

       Input state machine controls the flow of data from external memory to the register 

file. Figure 3.14 shows the input state machine of memory controller 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: Input FSM of memory controller 

On the first active clock edge after the reset signal is de-asserted; the machine will 

go into the READING state unconditionally. The FSM will remain in the READING 

state until the condition addr != STOP_ADDR remains true, as soon as this condition 

counter != 6'd27

IDLE

READING

PAUSE

STOP

~rst_n

reg_file_wr_addr == 5'd16

addr == STOP_ADDR

addr != STOP_ADDR
~rst_n

~rst_n

~rst_n

counter == 6'd27

~rst_n
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becomes false the FSM switches to PAUSE state. STOP_ADDR is a parameter passed to 

the DMA module. Similarly, the FSM will remain in the PAUSE state until the condition 

counter != 27 remains true and switches to READING state as soon as this condition 

becomes false. There is no transition of FSM from PAUSE state to STOP state. The FSM 

can only come in the STOP state through the READING state. It is understood that 

whenever reset signal asserted, the FSM will switch to IDLE state from any state. 

              Output state machine controls the flow of data from register file to the external 

memory. Figure 3.15 shows the output state machine of DMA controller 

 

Figure 3.15: Complete FSM of Memory Controller 

            On the first active clock edge after the reset signal is de-asserted; the FSM will 

switch to the WAITING state because FSM will wait for the results computation, as soon 
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as the results are available, FSM is asked to switch to the WRITING state and write back 

the results into the external memory. While in waiting state, the FSM waits for the value 

of counter signal to be 27, as soon as the value of counter reaches 27 the FSM switches to 

WRITING and starts writing results into the external memory. The FSM keep on writing 

until the value of the rd_addr signal reaches value 7 and then the machine again switches 

to WAITING state. Meanwhile, whenever the reset signal is asserted the FSM will switch 

to IDLE state. 

        3.4.5.5       Register File: 

             In RISC based architectures, the role of register file is very important in a way 

that the CPU on access the data operands from the Register File. There is no direct access 

of the register file CPU to memory. So, every operand that needs to be processed by CPU 

must reach it through the register file because the CPU can only reach the register file 

only, nothing else. The design of register file is also a very important perspective of the 

overall design. So a very careful deliberation has been made while designing the register 

file of the proposed processor. 

            Figure 3.5 shows the register file, here is detailed description of the design of the 

register file is presented. The register file module basically consists of 3 actual register 

file i.e. register file 1, register file 2 and register file 3. Register file 1 is of size 32x32 and 

remaining two register files are of size 16x32. Register file 1 is dual ported i.e. it has one 

read port and one write port, and it can be read and written on the same active clock edge. 

From the remaining two register files, one register file is used for reading and the other is 

used for writing purposes. 

            At the start of processing, the register file is populated with data from the external 

memory. During the same time the register 2 is also populated with the first 16 samples 

of the data as only 16 samples of data from external memory are input to the register file 

1 and register file 2. The results of the processed samples are stored into the register file 3 

and the DMA controller starts sending data from register file 2 to the external output 

memory. Once reading and writing of data is complete, the read and write enable signals 

of all the register files are de-asserted.  



44 
 

 

Figure 3.16 shows the block diagram of register file module. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.16: Register File Module 

            As seen from the above diagram the register file module consists of three register 

files, the multiple register files are used to increase the efficiency of the processor. With 

the single register this efficiency could not have been achieved.

Register File Module

Register File 1
32x32

Register File 2
16x32

Register File 3
16x32

clock

rd_en_1

rd_addr_1

rd_en_2

rd_addr_2

wr_en_1

wr_data_1

wr_en_3

wr_data_3

rd_en_regFile_2

rd_addr_regFile_2

regFile1_rd_data1

regFile1_rd_data2

regFile2_rd_data
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           3.4.5.6       Sign Extension Unit: 

          The Sign extension unit is needed to implement the load and store instruction. It 

generates the offset that is added with the one register operand indicated by the 

instruction field. Following show the sign extension unit  

 

 

 

 

 

 

 

 

 

 

Figure 3.17: Sign Extension Unit 

 

Sign extension unit takes 16-bit input and generate a 32-bit decimal equivalent of the 
input by replicating the sign bit of the input 16 times. 

Sign
Extension

Unit

16 32
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3.4.5.7       Arithmetic and Logic Unit (ALU): 

Now let’s have discussion on the most important part of the processor called 

Arithmetic and Logic Unit (ALU). This is a part of the processor that performs all the 

arithmetic and logical computations. This is surely the brain of the processor as execution 

of any instruction is not possible without ALU. The ALU carries out all the computations 

of the processor. There are four major blocks in the ALU i.e. adder, subtracter, multiplier 

and shifter. As the length of the operands of these components is customizable and 

parameterized but for our purposes I have kept it 32-bits wide. That is, it takes 32-bit 

inputs and generates an output of 32 bits. For multiplication two 32-bit inputs produces a 

result of 64 bits whose 32 most significant bits are truncated to make it of 32 bits. Figure 

3.18 shows the block diagram of ALU. 
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Figure 3.18: Arithmetic and Logic Unit (ALU) 

Above figure shows the micro components of the ALU. Following is the brief 

description of each of them. 

Computational block i.e. adder, subtracter, multiplier and shifter are shown in the 

above diagram along with their enable signals. For normal instruction, only of of these 

components will be active during each clock cycle and for compound instruction multiple 

block will be active during each clock cycle and the output multiplexer will decide the 

final output.  

MUX unit shows a bunch of multiplexers that generates the required inputs to the 

computational blocks. Based on the multiplexer selects, each input of the computational 

block is forwarded to it through the MUX unit. For each input to each computational 

block there is a multiplexer. Also the output of one computational block (adder, 

subtracter, multiplier, shifter) could be input to the other block so the outputs of these 

computational blocks are also the inputs of the multiplexers. 

Furthermore, the output of the ALU comprises of data output and status flags. 

Status flags include carry out, zero flag and negative flag. Based on these flags several 

actions could be taken and hence these are very important to show and cannot be 

eliminated from the design. For the purposes of the clarity of the diagram the data inputs 

are not explicitly shown, the data inputs signal includes the data operands and the shift 

number which specifies if a shifter is to be used then how much it will shift the desired 

number. 

ALU control signal specifies what operation the ALU has to perform in case of 

normal instruction. Depending upon the value of lower 6-bits of the instruction.
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3.4.5.8       ALU Control: 

Table x shows the operation of the ALU in response to the alu control lines in 
case of normal instruction mode. 

 

ALU Control Line Function 

000 ADD 

001 SHIFT LEFT 

010 SUB 

011 MULTIPLY 

100 AND 

101 SHIFT RIGHT 

110 OR 

111 Ex-OR 
 

Table 3.3: ALU control lines and their function 

ALU control signal specifies what operation the ALU has to perform in case of 

normal instruction. For branch instruction, the ALU must perform subtraction. Figure 

3.19 show the diagram of ALU control, the input to the alu control unit is the 

concatenation of lower 6 bits of instruction and the ALUOp field generated by the main 

control unit depending upon the class of the instruction. 
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Figure 3.19: ALU control unit 

 

For completeness, the relationship between the ALUOp bits and the instruction 

opcode is also shown.  
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Instruction  

opcode 
ALUOp 

Instruction 

Operation  

Func 

Field  

Desired 

ALU action 

ALU 

control 

input 

LW 00 Load word xxxxxx Add 000 

SW 00 Store word xxxxxx Add 000 

Branch 10 Branch xxxxxx Subtract 010 

R-type 01 Add 100000 Add  000 

R-type 01 Subtract 110000 Subtract 010 

R-type 01 Multiply 111000 Multiply 011 

R-type 01 AND 101000 And 101 

R-type 01 OR 110001 OR 110 

 

Table 3.4: Setting of ALU control line depending upon ALUOp and func field 

Because in many instances we do not care about the values of some of the inputs 

and to keep the tables compact, we also include don’t care terms. A don’t care term is 

represented by x, indicates that the output doesn’t depend on the value of input 

corresponding to that bit position. 

3.4.5.9       Forwarding Unit: 

This unit is incorporated to overcome data hazards in result of the pipelining. 

Although the pipelining improves the performance of the system significantly, but if not 

handled properly, it can cause significant malfunctioning of the system. If all the 

instructions of a program are independent i.e. the no instruction uses the result of any 

immediate previous instruction then the pipelining will work fine for you without any 

extra effort, but if the subsequent instructions of a program a dependent upon previous 

ones then this can lead to wrong result as in pipelined design next instruction enters the 

pipeline on every clock edge and results of each instruction are written back few cycles 
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later. So this forwarding unit caters such situation that what if some instruction requires 

the result of the previous instruction but that result is not written on to the specified 

location when the next instruction reads it as an operand. Figure 3.20 shown the block 

diagram of the forwarding unit: 
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Figure 3.20: forwarding unit 

 

Let’s look at a sequence of instructions which are dependent upon each other i.e. 

sub     R2, R1, R3 

and    R12, R2, R5 

or       R13, R6, R2 

add    R14, R2, R2 

sw     R15, 100(R2) 

The last four instructions are all dependent on the result of register R2 of the first 

instruction. If register R2 had the value 10 before the subtract instruction and -20 after 

wards, the programmer intends that -20 will be used in the following instructions that 

refer to register R2. 

How would this sequence perform with the pipeline of the proposed processor? 

Figure 3.20 illustrates the execution of these instructions using a multiple-clock-cycle 

pipeline representation. To demonstrate the execution of this instruction sequence in our 

current pipeline, the top of figure 3.20 shows the value of register R2, which changes 

during the middle of clock cycle 5, when the sub instruction writes its result. 

Figure 3.20 shows that the values read for register R2 would not be the result of 

the sub instruction unless the read occurred during clock cycle 5 or later. Thus the 

instructions that would get the correct value of -20 are add and sw, the and and or 

instructions would get the incorrect value 10! Using this style of drawing such problems 

become apparent when a dependence line goes backwards in time. 

But look carefully at figure 3.20: when is the data from the sub instruction 

actually produced? The result is available at the end of the Execution stage or clock cycle 
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3. When is the data actually needed by the and and or instructions? At the beginning of 

the execution stage, or clock cycles 4 and 5, respectively. Thus, we can execute this 

segment without stalls if we simply forward the data as soon as it is available to any units 

that need it before it is available to read from the register file. 

How does forwarding work? For simplicity in the rest of this section, we consider 

only the challenge of forwarding to an operation in the execution stage, which may be 

either an ALU operation or an effective address calculation.  

Figure 3.21: Pipelined dependencies in a five-instruction sequence using 

simplified data path[10] 

 

The value of register field rs between instruction decode stage and operand read 

stage is denoted by OR/EX.registerRs refers to the number of one register whose value is 

found in the pipeline register after next to register file. Using this notation, the two pairs 

of hazard conditions are. 

a. OR/EX.regsiterRd = ID/OR.registerRs 
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b. OR/EX.registerRd = ID/OR.registerRt 

c. EX/WB.registerRd = ID/OR.registerRs 

d. EX/WB.registerRd = ID/OR.registerRt 

The first hazard in the sequence on the instruction sequence explained above is on 

register R2, between the result of sub R2, R1, R3 and the first read operand of and R12, 

R2, R5. This hazard can be detected when the and instruction is in the execution stage 

and te prior instruction is in the WB stage, so this the hazard a indicated above: 

OR/EX.regsiterRd = ID/OR.registerRs = R2 

  

 Now what we can detect hazards, half of the problem is resolved, but we must 

still forward the proper data. 

Thus the required data exists in time for later instructions, with the pipeline registers 

holding the data to be forwarded. 
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Figure 3.22: Dependences between pipeline registers move forward in time, so it is possible to 
supply the inputs needed by the ALU[10] 

For now, we will assume the only instruction we need to forward the four R-

format instructions: add, sub, and, and or. The forwarding control will be in the execution 

stage because the ALU forwarding multiplexers are fond in that stage. Thus, we must 

pass the operand register numbers from the ID stage via the ID/OR pipeline register to 

determine whether to forward values. We already have the rt field of instruction (bits 

20:16). Before forwarding, the ID/OR register had no need to include space to hold the rs 

field. Hence, rs (bits 25-21) is added to ID/OR. Let’s now write both the conditions for 

detecting hazards and the control signals to resolve them 

i.e.  

if ( (OR/EX.regWrite) && (OR/EX.registerRd == ID/OP.registerRs) ) 
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 forwardA = 01 

and, 

if ( (OR/EX.regWrite) && (OR/EX.registerRd == ID/OP.registerRt) ) 

 forwardB = 01 

 

This case forwards the results from the previous instruction to either input of the 

ALU, the steer the multiplexer to pick the value instead from the pipeline register 

OR/EX. forwardA and forwardB shows the select line of the multiplexers of the 

forwarding unit. 

As mentioned, there is no hazard in the WB stage because we assume that the 

register file supplies the correct result if the instruction in the ID stage reads the same 

register written by the instruction in the WB stage. Such a register file performs another 

form of forwarding, but it occurs within the register file. 

One complication is the potential For example, when summing a vector of 

numbers in a single register, a sequence of instructions will all read and write to the same 

register: 

add R1, R1, R2 

add R1, R1, R3 

add R1, R1, R4 

If ( EX/WB,regWrite && ( OR/EX.registerRd ≠ ID/OR.registerRs) && 
(EX/WB.registerRd == ID/OR.registerRs)) 

ForwardA = 10; 

And, 

If ( EX/WB,regWrite && ( OR/EX.registerRd ≠ ID/OR.registerRt) && 
(EX/WB.registerRd == ID/OR.registerRt)) 
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ForwardB = 10; 

Conclusion: Forwarding can also help with hazards when store instructions are 

dependent on other instructions. Since they use just one data value during the WB stage, 

forwarding is easy. But consider loads immediately followed by stores. We need to add 

more forwarding hardware to make memory-to-memory copies run faster.  
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3.4.5.10       Internal data Memory: 

The internal data memory acts as cache memory for the processor. The role of 

data memory comes into play for load and store instructions. For load instruction, some 

data memory is put into the register file and for store instruction some data from the 

register file is stored into the data memory. The address of the data memory is calculated 

by the ALU. 

 

 

 

 

 

 

 

 

 

 Figure 3.23: Data Memory 

The size of data memory is customizable as it can be set through the parameter. 

Data can only be read from the data memory when the rd_en signal is asserted and same 

is the case with writing data in to the data memory as to write data the wr_en signal must 

be written asserted. 

3.4.5.11       By-Pass Unit: 

By pass unit supplies actual and appropriate inputs to the ALU. It consists of a 

series of multiplexors that forwards the correct operands to the ALU for the processing. 

The by-pass unit along with the forwarding unit discussed above plays a very significant 
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role in the efficiency of the overall system. Figure 3.24 shows the block diagram of the 

by-pass unit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.24: By-pass unit 

By pass unit takes inputs from two blocks i.e. from forwarding unit and from P1 

and generates operands for the ALU.  

 

3.4.5.12       Input/output Memory: 

The proposed processor takes data for processing from input memory and 

generates output to be stored in the output memory. 
  

3.5 SYNTHESIS 
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Synthesis means the transformation of high level description into gate level net 

list. The proposed processor has been synthesized and successfully tested on the Xilinx 

virtex-5 FPGA. Figure 3.25 shows further details of the device.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 Figure 3.25: Synthesis Design Properties 

Following diagram shows some points of the synthesis report  
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 Figure 3.26: Device Utilization Details 

       Following diagram shows the timing summary of the design after synthesis. 

 

 

 

 

 

 

 

 

 Figure 3.27: Timing Summary of Design 

 

3.5.1    Chip Scope Testing 
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Chip Scope pro is the built in Xilinx debugging utility that provides 

flexibility of debugging the design meanwhile the code is running on the FPGA 

device. Chip Scope Pro is very powerful debugging tool and used widely. Figure 

3.28 shows the chip scope result. 

 

 

 

 

 

 
   

 

 

 

 

 

 

 

 

        Figure 3.28: Chip Scope Pro Tool 
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3.6 INTERFACING 
 Interfacing must be done to get data from the PC into the FPGA and vice versa. 

So, for this purpose the Microsoft’s Simple Interface for Reconfigurable Computing 

(SIRC) interface is used. This interface uses ether net for the communication between PC 

and FPGA. Figure 3.28 shows block diagram of this interface. 

 

 

 

  Figure 3.29: Interfacing between PC and FPGA 

 

By using this interface the communication between PC and FPGA is done though 

two important components i.e. software API and hardware API. Software API runs on the 

PC side (in visual studio 2010) and the hardware API runs on FPGA side. PC sends data 

to FPGA through software API and FPGA receives data for processing through hardware 

API. Code for the software API is written in C++ and for the hardware API is written in 

Verilog HDL. Complete description of this interface is available at 

“http://www.drsparrows.com/wp-content/uploads/pdfs/SIRC_README_v1.0.1.pdf”.  

Figure 3.29 shows diagram of the state machine of the logic that how data is retrieved for 

processing and send back result back to PC. 
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Figure 3.30: SIRC user logic state machine 

The machine goes into the IDLE state straight away when reset is asserted. It keeps on 

waiting in IDLE state for the userRunValue signal to be asserted. As soon as this signal is 

asserted the state machine switches to READING state and start reading data from input buffer 

into the local memory. After all reading is done the readDone signal is asserted and the state 

machine switches to RUN state. Then all the processing of the proposed processor is done and 

results are written to local output memory. As soon as all the required processing is done the 

runDone signal isasserted and state machine switches to WRITTIN state. In this state the data 

(results) are written from local output memory to the output buffer from where the interface will 

send data to PC. 
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3.7     ASSEMBLY CODE 
Following is the assembly code for the computation of 5/3 fast lifting wavelet transform 

algorithm 

 

Label 
 load  R1, Ri(base) 
 load  R2, Ri(base) 
  . 
  . 
  . 
 load  R16, Ri(base) 
 cmp  R1, R2, R17                add, shift, subtract 
 cmp  R3, R4, R18 
 cmp  R5, R6, R19 
 cmp  R7, R8, R20 
 cmp  R9, R10, R21 
 cmp  R11, R12, R22 
 cmp  R13, R14, R23 
 cmp  R15, R16, R24 
 store R17, Ri(base) 
 store R18, Ri(base) 
 
                                . 
                                . 
 store  R24, Ri(base)   
Jump label 

 

This assembly code runs basically in a loop. When it reaches the jump label 
instruction it takes jump to the start i.e. on Label and runs in the same fashion until loop 
breaks i.e. when address to read the memory equals stop address. In the same way the 
assembly code for all the fast lifting wavelet transform filters indicated in chapter 3 or 
any other signal processing algorithms can be written 
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Chapter 4 

RESULTS AND DISCUSSIONS 

1.1 OVERVIEW 

Findings and results of the project “Design and Implementation of an Efficient 

Generic RISC Processor on FPGA for Digital Signal Processing Applications” are 

highlighted in this chapter. As proposed processor is meant for the digital signal 

processing applications, so different signals processing algorithms are run on the 

processor and following are results of these algorithms. The results of the proposed 

system has been retrieved and matched with the results of the matlab simulations to make 

comparison between the two. The comparison shows that there no dissimilarity between 

the results of the proposed processor when running the same algorithm as running in the 

matlab. Different signal processing algorithms are implemented for 1-D and 2-D (image) 

signals and following results are obtained. 

As explained in chapter 3, the proposed processor has two modes of instructions 

i.e. normal mode and compound mode. In compound mode all ALU components (adder, 

shifters, multiplier and subtracter) can be used in the same clock cycle which improves 

the performance of the system significantly. Figure 4.1 and Figure 4.2 show comparison 

between normal mode instruction and compound mode instruction,if the 5/3 algorithm is 

run using normal mode then it takes 22 clock cycles to compute 4 output samples shown 

in figure 4.2 and if same task is done through compound instruction then it will take only 

4 clock cycles to computer these 4 output samples of low frequency components shown 

in figure 4.1. It means by only considering 4 output samples we can drop the 

consumption of clock cycles by 18 in this case. As there are millions of input samples 

that need to be processed so by using compound instruction we can perform the 

computation intensive tasks quite efficiently. 
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 Figure 4.1: Compound Instruction waveform for 5/3 filter 

 

Figure 4.2: Normal Mode Instruction waveform for 5/3 filter
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                         Figure 4.3: Compound Instruction results using chip scope pro for 5/3 filter  
 

Both figure 4.1 and figure 4.3 show the results of compound instruction. Figure 

4.1 shows simulation result of Model Sim while figure 4.3 show hardware result while 

code is running on the FPGA.
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1.2 CIRCUIT PERFORMANCE RESULTS 

Table 4.1 and table 4.2 show the results regarding to the efficiency of the circuit 

of the proposed processor. 

Table 4.1 show the comparison of the proposed architecture with the existing 

architectures i.e. 

     

Table 4.1: Performance comparison with existing architectures 

            The description of existing architectures is given in [2].  

Features Liu’s 
architecture 

Chen’s 
architecture 

Wu’s 
architecture 

Lee & Lim’s 
architecture 

The proposed 
architecture 

Frame size 32x32 256x256 1024x1024 1024x1024 1024x1024 

Wavelet filter type 9/7 2 to 20 taps Programmable Programmable Programmable  

Clock frequency 25 MHz 50 MHz 100 MHz 200 MHz 350 MHz 
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                          Table 4.2: Execution time of various wavelet transform algorithms on 2-D signals 
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Figure 4.4 shows the performance comparison between existing architectures and the proposed 

architecture in graphical form 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Performance comparison of existing architectures with proposed architecture 

Cl
oc
k 
fr
eq

ue
nc
y 
in
 M

H
z



72 
 

 

 

4.3 OUTPUT RESULTS 

Following are the results of the design when different images of different sizes given to 
the design: 

Following image of a texture when input to the algorithm gives the low frequency and 
high frequency components of the input image 

 

 

 

 

 

 

 

 

 

Figure 4.5: input image to 5/3 wavelet filter 
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Figure 4.6: Low frequency component of input image 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: High frequency component of input image 

 

Following results are of different wavelet transform algorithms. 
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Figure 4.8: input image to 5/3 wavelet filter 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Level 1 decomposition of 5/3 wavelet filter 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.10: Level 2 decomposition of 5/3 wavelet filter 
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Figure 4.11: Input image to 2/6 wavelet filter 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: Level 1 decomposition of 2/6 wavelet filter 
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Figure 4.13: Level 3 decomposition of 2/6 wavelet filter 
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Chapter 5 

CONCLUSIONS AND RECOMMENDATIONS  

5.1 DESIGN SUMMARY 

The proposed processor is primarily based upon on RISC architecture. Reduced 

Instruction Set Computers (RISC) are designed to have a small set of instructions that 

execute in short clock cycles, with a small number of cycles per instruction. RISC 

machines are optimized to achieve efficient pipelining of their instruction streams. The 

proposed processor is basically a model of RISC based architecture. This architecture 

also serves as a starting point for developing architectural variants and a more robust 

instruction set. 

To achieve the goal of this research work, a very flexible methodology has been 

adopted to accomplish the research work. A Generic processor has been implemented 

based on the Reduced Instruction Set Computer (RISC) architecture. The architecture is 

fully pipelined and hence gives higher throughput. An instruction set is designed to 

facilitate the programmer to use the system easily. Based on the instruction set, all 

operations of the proposed processor are carried out. Due to pipelined design, the 

achieved cycle per instruction (CPI) is 1 that has a very significant impact on the 

throughput of overall system. 

Having discussed all the design parameters, architecture and the results it is 

concluded that a highly flexible, scalable and efficient processing engines as per the 

requirements of the application at hands gives very high design performance. High 

through put of the system is achieved through pipelining. Each instruction of the design 

can be executed in 1 clock cycle.  

As almost all signal processing tasks are very computational intensive i.e. much 

of processing is done on very large number of data samples so to keeping in mind this 
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parameter a compound instruction has been designed that utilized multiple computational 

blocks (adder, subtractor, shifter, and multiplier) to be used in the single clock cycle to 

increase efficiency of the overall system.  

5.2 CONCLUSIONS 

The conclusions drawn from the developments and findings of this research work 

are enumerated below: 

 

1) Algorithm preserves the logic. 

2) Hardware results are well comparable with those reported by simulations. 

3) High throughput is achieved by keeping the cycle per instruction (CPI) 

equal to 1. 

4) Fully pipelined design makes the execution faster and in an efficient way. 

5) There is a significant level of improvement in circuit timing, while area 

remains almost the same, and in some cases it was observed to even 

increase. 

6) Each signal processing algorithm can be implemented using the same 

instruction set of the proposed processor. 

 

5.3 RECOMMENDATIONS 

Fast Lifting Scheme is a novel innovation and is need of the hour, both in 

developed and in developing countries. The future is guiding the mankind toward faster 

possible means of performing all the Digital Signal Processing operations in real times. 

In this scenario it is inevitable that consistent and sustainable efforts remain on 

the right track to implement a continuous process of improvement till an optimum level 

of excellence is achieved in this field.  

Since the completion of the project needed extra efforts to unearth some basic 

facts, many new problems cropped up which are considered to be dealt separately for 

their proper treatment so that they are resolved for the benefit of the whole mankind. 
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With this background, following recommendations have been formulated for 

future search, research, studies and projects: 

 

1) The design of the ALU can be improved. 

2) The external memories and the internal data memory can be merged together to have 

common storage for all instructions.  

3) The ALU block can be reduced in way that subtracted can be omitted from the ALU by 

having subtraction from the adder through 2’s compliment technique 
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