

Chapter 1

INTRODUCTION

This research has been carried out to implement a flexible and efficient and

generic processor to perform digital signal processing tasks on the field programmable

gate array (FPGA). The architecture of the proposed processor is designed for various

digital signal processing algorithms. FPGA is a concurrent device and keeping in mind

that there is bulk of data that needs to be processed in any digital signal processing (DSP)

task to get the results. For example, in Fourier Transform (FT), if we want to get FT of a

signal then we need to process thousands of samples (input data) to get the result. So

almost all signal processing tasks are very computational intensive. So, to carry out these

tasks efficiently, a very efficient and powerful processor was required. The proposed

solution is entirely generic and can perform any of the digital signal processing tasks.

A question arises that why a processor was needed even though we have DSP kits

available to perform DSP tasks? The answer is that, those DSP kits are sequential in

nature i.e. they perform every task sequentially and there is no concept of parallel

processing in these devices and we cannot perform parallel/concurrent processing in

these devices so during this research work it has been observed that much of operations

other than actual processing such as data input/output put extra burden on the processing

if they are not done in parallel to the processing of data.

The VLSI design cycle has three main components namely: designing,

implementation and verification. This project emphasizes on the design of a special

family of circuits called synchronous circuits. Most of the designs nowadays

implemented belong to this family. Synchronous digital circuits are those where a digital

clock clicks and makes all components synchronously operate to implement the design

functionality. These circuits can be implemented easily in both Verilog and VHDL by

any proficient hardware programmer but resource management of the target device and

efficient utilization of clock ticks is where engineering comes in. Not every engineer is

2

capable enough and makes the successful design in market easily. Both a stroke of genius

and sense of creativity are required, especially when design is complex for which

verification requires testing millions of gates. This is indeed the most challenging part of

the DSP design project. Project managers of the DSP design project first have to finalize

the requirements and specifications (R&S) which along with the functionality of the

product, includes the power consumptions, input sampling rate, noise tolerance and other

application specific parameters, for example bit error rate (BER) and baud rate in

communication system.

The R&S are explored are explored to try to get many solutions and best among

them is chosen. After testing of algorithm on high level languages, it comes the task of

implementation. The implementation is first tested on FPGA before fabrication.

All circuits, implemented in hardware are designed in Register Transfer Language

(RTL) logic which consists of register arrays separated by computational clouds. These

clouds basically implement arithmetic operations involved in the logic design. Ninety

percent of the critical path delay is caused by combinational cloud. Rest is due to the

reading from and writing into the registers. The longest path between two consecutive

register arrays is called the critical path, draws limitation on the maximum clock

frequency.

1.1 PROBLEM STATEMENT
“To design a generic processor that facilitates digital signal processing

applications in a fast and efficient way”

1.2 RESEARCH AIM
To facilitate the DSP designers to analyze and decompose 1-D and 2-D signals to

get finer details, in terms of high frequency and low frequency components etc., to be

used in more complex applications of digital signal processing with higher throughput.

1.3 PROPOSED SOLUTION

3

To achieve the goal of this research work, a very flexible methodology has been

adopted to accomplish the task. A Generic processor has been implemented based on the

Reduced Instruction Set Computer (RISC) architecture. The architecture is fully

pipelined and hence gives higher throughput. An instruction set is designed to facilitate

the programmer to use the system easily. Based on the instruction set, all operations of

the proposed processor are carried out. Due to pipelined design, the achieved cycle per

instruction (CPI) is 1 that has a very significant impact on the throughput of overall

system.

1.4 MOTIVATION
The field of digital signal processing (DSP) has been always a very challenging

and innovative field for engineering applications. Also digital design of signal processing

systems gives a new way of thinking to implement digital signal processing algorithms

embedded devices such as FPGAs and DSPs. To reduce the cost of end user devices, the

system design in double precision floating point format are converted to its fixed point

equivalent. The fixed point implementation is them mapped on fixed-point DSPs, FPGAs

and ASIC.

Taking into account the need to develop the wavelet processing system onto off

the shelf components such as FPGA the proposed system has been developed to facilitate

the DSP designers.

4

1.5 REPORT STRUCTURE

This document throws light on all the aspects of the project, including the

techniques implemented and details of the developed system. This document is divided

into following chapters:

 Chapter 2: Literature Review and background. This chapter contains a glimpse of

all the literature gone through for the completion of the project.

 Chapter 3: Methodology. This chapter explains the approach used for

development of the algorithm, system architecture and design of the project.

 Chapter 4: Results and Discussions. This chapter includes the steps followed and

the final results obtained.

 Chapter 5: Conclusions and Recommendations. This chapter summarizes the

whole project report and contains proposed methodologies, which could further

affect improvements in the project and the research carried out during the

execution of this project, and finally formulates recommendations for future work.

5

Chapter 2

Literature Review and Background

 The literature review has been carried out to figure out the perfect understanding

of different aspects of the work and also to understand the working of tools that are to be

used to complete the project. Appraisal of the literature is categorized in modules as

under.

1) Digital System Design Process

2) Digital System Design Considerations

3) Design Based on Finite State Machines

4) Design of Data path Controllers

5) Digital Signal Processing Review

2.1 DIGITAL SYSTEM DESIGN PROCESS
Main points of the digital system design process that are necessary of the

understanding of the subject are discussed in this section. Following shows the complete

digital system design process:

Figure 2.1: Digital System Design Process [3]

6

The cycle starts with the requirements specification, followed by the design of an

algorithm using tools like MATLAB. To facilitate partitioning of the algorithm into

hardware (HW) and software (SW), and its subsequent mapping on different platforms,

algorithm design and coding techniques in MATLAB are described. The MATLAB code

has to be structured so that the algorithm developers, SW designers and HW engineers

can correlate various components and can seamlessly integrate, test and verify the design

and can return to the original MATLAB implementation if there are any discrepancies in

the results.

2.1.1 System Design

It is a level of abstraction where the digital designer specifies all the registers and

elaborates how data will flow through these registers. The combinational logic between

two sets of registers is usually described using high level mathematical operations, and is

drawn as a cloud.

The design process is done at behavioral modeling level of abstraction which is the

highest level, and then mapped into gate level net list for implementation. The design

typically means description and flow of data through the registers of the architecture.

2.1.2 System Implementation

After describing the entire architectural design in RTL logic, it is implemented in

some hardware description language (HDL), Verilog in our case, which in general is a

straight forward translation. The translated code is tested and synthesized to be

programmed on a Field Programmable Gate Array (FPGA) or Application Specific

Integrated Circuit (ASIC).

2.1.3 System Verification
Usually any digital design is tested and verified by checking its output for all

possible combinations of inputs. But as number of gates on single silicon device is

increasing, this makes the job of testing and verification job a very critical and

challenging one.

7

2.2 DIGITAL SYSTEM DESIGN CONSIDERATIONS

A digital designer is always confronted with finding the best design options in

area-power time tradeoffs. Following are some design objectives [3]:

1) Area of the design

2) Critical path delay of the design

3) Testability of the design

4) Power dissipation of the circuit

By considering all the four mentioned factors the efficiency of a product can be

measured.

Power is increasingly becoming the key limitation in processor performance. In

the embedded market, where many processors go into environments that rely solely on

passive cooling or on battery power, power consumption is often a constraint that is as

important as performance and cost.

No doubt, many readers will have encountered power limitations when using their

laptops. Indeed, between the challenges of removing excess heat and the limitations of

battery life, power consumption has become a critical factor in the design of processors

of laptops. Battery capacity has improved only slightly over time, with the major

improvements coming from new materials. Hence, the ability of the processor to operator

efficiently and conserve power is crucial. To save power, techniques ranging from putting

parts of the computer to sleep, to reducing clock rate and voltage, have all been used. In

fact, power consumption is so important that Intel has designed a line of processor, the

Pentium M series, specifically for mobile, battery-powered applications.

For CMOS technology, we can reduce power by reducing frequency. Hence,

recent processors intended for laptop use all have the ability to adapt frequency to reduce

power consumption, simultaneously, of course, reducing performance. Thus, adequately

evaluating the energy efficiency of a processor requires examining its performance at

maximum power, at an intermediate level that conserves battery life, and at a level that

maximizes battery life. In the Intel Mobile Pentium and Pentium M lines, there are two

8

available clock rates: maximum and a reduced clock rate. The best performance is

obtained by running at maximum speed, the best battery life by running always at the

reduced rate.

Figure 2.2 shows the performance of three Intel Pentium processors designed for

use in mobile applications. As we can see the newest processor, the Pentium M, has the

best performance when run a full clock speed, as well as with the adaptive clock rate

mode. The Pentium M’s 600 MHz clock makes it slower when run in minimum power

mode than the Pentium 4-M, but still faste than the older Pentium III-M design.

Figure 2.2 shows the relative energy efficiency or these processors running the

SPEC2000 benchmarks. In all three modes, it has a significant advantage in energy that

the Pentium 4-M has only a slight efficiency advantage over the Pentium III-M. this data

clearly shows the advantage of a processor like the Pentium M, which is designed for

reduced power usage from the start, as opposed to a design like the Pentium III-M or

Pentium-M, which are modified versions of the standard processors, of course,

adequately measuring energy efficiency also requires the use of additional benchmarks

designed t reflect how users employ battery-powered computers. Both PC review

magazines and Intel’s technical journal regularly undertake such studies.

9

Figure 2.2 : Relative performance of Intel processors

2.3 DESIGN BASED ON FINITE STATE MACHINES
Partitioning a sequential machine into a data path and a controller clarifies the

architecture and simplifies the design of the system. The sequence of steps in an

application-driven design process is shown in Figure 2.3. If the architecture of the data

path unit has been selected to support the instruction set of an application, sequences of

operations (control states) that support the instruction set can be identified. The control

states are used to schedule assertions of the signals that control the movement and

manipulation of data as the machine executes instructions.

10

Figure 2.3: State machine controller for a datapath

Then an FSM can be designed to generate the control signals. In this section we

will illustrate the design of datapath controllers for some simple functional units, to

prepare for the design of a stored-program reduced instruction-set computer in the next

section. In synchronous machines, a common clock synchronizes the activities of the

controller and data path functional units.

Note that the control unit in Figure 2.3 is implemented as an FSM, and is itself

controlled by external input signals and by status signals from the data path unit. The

FSM produces the signals that control the operation of the data path unit. Data path units

are commonly described by dataflow graphs; control units are commonly modeled by

state transition graphs and/or algorithmic-state machine (ASM) charts for FSMs.

Partitioned sequential machines can be modeled by an FSM and datapath (FSMD), a

combined control-dataflow graph, which expresses datapath operations in the context of a

state-transition graph (STG). We favor using an ASM and datapath (ASMD) chart, which

likewise links an ASM chart for a control unit to the operations of the data path that it

controls.

2.4 DESIGN OF DATAPATH CONTROLLERS
 Digital systems range from those that are control-dominated to those that are data-

textFSM

clock

External control inputs

control unit

textData path

Data path unit

clock

11

dominated. Sequential machines are commonly classified and partitioned into data path

units and control units.

Figure 2.4: Components of time shared architectures [3]

In general, a time shared architecture consists of a datapath and a control unit. The data

path is the computational engine and consists of registers, multiplexers, de multiplexers,

ALUs, multipliers, shifters, combinational circuits and buses. These HW resources are

shared across different computations of the algorithm. This sharing requires a controller

to schedule operations on sets of operands. The controller generates control signals for

the selection of these operands in a predefined sequence. The sequence is determined by

the dataflow graph or flow of the algorithm. Some of the operations in the sequence may

depend on results from earlier computations, so status signals are fed back to the control

unit. The sequence of operations may also depend on input signals from other modules in

the system.

Figure 2.5: Combinational and sequential components of FSM [3]

12

Most data paths include arithmetic units, such as arithmetic and logic units

(ALUs), adders, multipliers, shifters, and digital signal processors, but some do not, such

as graphics coprocessors. The data path unit is controlled by a finite-state machine (FSM)

that coordinates the execution of instructions that perform operations on the data path.

Architectures that are dominated by control units will generally have a significant amount

of random (irregular) logic, together with some regular structures, like multiplexers for

steering signals, and comparators[10].

2.5 DIGITAL SIGNAL PROCESSING REVIEW
As the proposed processor has been designed specifically for digital signal

processing applications, so a comprehensive study of signal processing algorithms has

been carried out. Following is the brief description of the some digital signal processing

transform and their comparison.

2.5.1 Fourier Transform
 Fourier Transform (FT) is used to compute which frequency components

exist in the signal. So Fourier Transform gives the frequency spectrum of the signals.

Frequency spectrum shows the frequency components that are also called spectral

components of the signal. As we know that frequency is rate of change something. If

something changes abruptly then its frequency is high and if something changes slowly

then its frequency is low. If there is no change in any signal then its frequency is zero.

The mathematical formulations of the Fourier Transform are as under:

F(ω) = []∫ − dttjtf)exp()(ω

f(t) = 1/2π ∫ ωωω dtjF)exp()(

 Mostly in our daily life the signals we encounter are time domain signals. There

are two types of signals

 Stationary signals.

 Non-stationary signals.

13

The stationary signals are those that have fixed frequency over all times as shown

in figure 2.6 below shows a signals that has four

frequency components and those four frequency components exist in this signal at all

 Figure 2.6: A time domain stationary signal

times that’s why this signal is called stationary signal.

Figure 2.7 shows a non-stationary signal i.e. it has different frequencies and different at

different time. By looking at the figure below it can be seen that the signal has different

frequencies at 200, 400, 600 intervals and so on.

Figure 2.7: Non-Stationary signal

The Fourier Transform of the signals only gives information about the frequency

components that exist in the signal. So, for those application Fourier Transform is not a

14

suitable then people sit together and come with a transform that gives both time and

frequency information simultaneously i.e.

2.5.2 Wavelet Transform

Here is the description of the working of the Wavelet Transform. Suppose we

have a signal that has frequency components from 0 to 100. First we will break the into

low frequency and high frequency components i.e. the two portions of the signal, one

containing the frequency components from 0 to 50 and the other from 51 to hundred.

Now we have to different signals that have different frequency components but they both

belong to the same signal. If we want to further split the signals then we will take any one

of them, normally low pass portion is taken again because most signal information is in

lower frequency components. So we take the signal with frequencies from 0 to 50, again

break this signal into low and high frequency components i.e. from 0-25 and from 26-50.

And in the same way keeping on breaking any portion into low and high frequency

components and reach the desired level of decomposition. If we plot these bunch of

signal on the same 3-D graph i.e. one axis giving time information, 2nd axis giving

frequency information and the 3rd axis giving amplitude then this graph will look like

figure 2.8. Note that frequency axis is labeled as scale and scale is inverse of frequency.

15

Figure 2.8: Wavelet Transform

There are two types of Wavelet Transform:

• Discrete Wavelet Transform

• Continuous Wavelet Transform

Our focus will mainly be on Discrete Wavelet Transform.

2.5.3 LIFTING SCHEME

Lifting scheme is a very efficient approach to perform the discrete

wavelet transform. Lifting schemes reduces the number of computation of

the wavelet transform to almost half. Figure 2.12 shows how the lifting

scheme works.

Figure 2.9: Lifting Scheme Forward Transform

In lifting scheme three steps are performed i.e.

• Split
• Predict
• Update

After performing these steps the input signal is split into a high pass and a low pass

component. S corresponds to high-pass and D corresponds to low pass component.

16

In the same way as in forward transform, the inverse transform using lifting scheme also

exists. Figure 2.13 shows the inverse transform using lifting scheme. After performing

the inverse transform we get the original signal back.

17

Figure 2.10: Lifting Scheme Inverse Transform

2.5.4 FAST LIFTING WAVELET TRANSFORM FILTERS

As noted earlier the lifting scheme presents an efficient way to perform Wavelet

Transform. There are number of fast lifting wavelet transform filters that performs the

wavelet transform by using lifting scheme. Some of them are listed in the following

diagram:

Figure 2.11: Difference Equations of the various Fast Lifting Wavelet Transform Filters

18

The working of all of these filters is pity simple and the following shows the data flow in the 5/3

filter.

Figure 2.12: Signal Flow diagram of 5/3 filter [2]

The working of this is as an input signal x is first splitted into two data sets i.e.

even indexed elements and odd indexed elements, then current element of odd data set is

added to product of -1/2 and sum of current value of even and one advanced value of the

even dataset which results into a high frequency component i.e. shown as gamma in the

diagram. The same procedure is repeatedly until we reach the end of data sets. On the

other side the operation is same but now the coefficient is 1/4 instead of -1/2 and previous

value of odd data set is used rather than the advanced one. The result of this operation

gives the low frequencies values that are shown here as lambda.

19

Chapter 3

Methodology

3.1 INTRODUCTION
 Normally, while designing a general purpose processor an instruction set is

designed. This instruction set consists of a different class of instructions, by class I mean

different instruction types, which include:

 The memory reference instructions

 The arithmetic-logical instructions

 The branch or jump instruction

 Compound instruction

Many of the key design principles are introduced by looking at the

implementation. The instruction cycle of every instruction includes the following phases:

 Instruction fetch

 Instruction decode

 Instruction execute

In addition, more concepts used to implement the Reduced Instruction Set

Architecture (RISC) are discussed. A very special instruction called compound

instruction is also added in the architecture whose instructions cycle is same as the other

instructions but it has the capability of performing multiple arithmetic operations only in

one cycle.

 3.2 System Design Flow
Figure 3.1 shows a design diagram. This section only highlights that a signal

processing application is usually divided into software and hardware components. The

hardware design is implemented in Verilog. The design is then mapped either on custom

ASICs or FPGAs. This design needs to work with the rest of the software application.

20

There are usually standard interfaces that enable the SW and HW components to transfer

data and messages. Architecture is designed to implement the hardware part of the

application. The design contains all the requisite interfaces for communicating with the

part implemented in software. The HW design and the interfaces are coded in Verilog.

This chapter focuses on RTL coding of the design and its verification for correct

functionality. The verified design is synthesized on a target technology. The designer,

while synthesizing the design, also constrains the synthesis tool either for timing or area.

The tool generates a gate level netlist of the design. The tool also reports if there are paths

that are not meeting the timing constraints defined by the designer for running the HW at

the desired clock speed. If that happens, the designer either makes the tool meet the

timing by trying different synthesis options, or transforms the design by techniques

described in this book. The modified design is re coded in RTL and the process of

synthesis is repeated until the design meets the defined timings. The gate level netlist is

then sent for a physical layout, and for custom ASICs the design is then ‘taped out’ for

fabrication. The field programmable gate array tools provide an integrated environment

for synthesis, layout and implementation of a bit stream to FPGA[3].

21

Figure 3.1: System level design components[3]

3.3 AN OVERVIEW OF DESIGN
In this chapter we looked at the core instructions require to build and RISC

architecture including arithmetic-logical instructions, the memory-reference instructions,

and the branch instructions.

22

As highlighted earlier the compound is basically the arithmetic instructions that

perform multiple arithmetic operations simultaneously in one clock cycle. Because of the

requirement that any signal processing task mainly consists of basic operations such as

addition, subtraction, multiplication and division so it has become very easy to include

such an instruction in the instruction set.

As we know all the signal processing tasks are very computational intensive i.e.

much of processing needs to be done to complete signal processing tasks. For example,

when Fourier Transform (FT) of a signal is to be taken then bulk of data samples needs to

be processed to get the desired transformed signal. Because every sample of input signal

needs to be processed to get the results so by looking at the equation of FT it can be seen

that we need to do three to four basic arithmetic operation to get the output sample. If

each basic operation is done in one clock cycle then it will take four clock cycles to

produce an output sample in each iteration. This will not harm if the data to be processed

contain few samples but unfortunately in all signal processing applications the input data

is usually of thousands of thousands of samples so by considering only the Fourier

Transform, the execution time of signal will be multiplied by four with the number of

input samples of the signal. This is a huge difference. So a careful deliberation is done to

come up with a solution that each output sample should come is each clock cycle. This

will increase the throughput of the system quite remarkably. So, the compound

instruction has done the job for us. To perform a bulk of data processing this compound

instruction generates control signals for the processing that needs to be performed to

produce the output sample after every clock cycle.

23

Even across different instruction classes there are some instruction classes. For

example, all instruction classes, except jump, use the arithmetic-logical unit (ALU) after

reading operands from the register file. As we can see, the simplicity and regularity of the

instruction set makes the execution of many instruction classes similar.

3.3.1 Clocking Methodology
Figure 3.2 shows the tow state elements surrounding a block of combinational

logic, which operates in a single clock cycle: All signals must propagate from state

element 1 through the combinational logic, and to state element 2 in the time of on clock

cycle. The time necessary for the signals to reach state element 2 defines the length of

clock cycle.

For simplicity, we do not show a write control signal when a state element is

written on every active clock edge. Both the clock signal and the write control signal are

inputs.

Figure 3.2 : Combinational logic, state elements and clock are closely related [10]

24

Figure 3.3: Edge triggered methodology eliminates race condition that can cause

intermediate data values [10]

The figures will indicate buses, which are signals wider than 1 bit, with thicker

lines. At times we will want to combine several buses to form a wider bus, for example,

we may want to obtain a 32-bit bus by combining two 16-bit buses. In such cases, labels

on the bus lines will make it clear that we are concatenating buses to form a wider bus.

Arrows are also added to help clarify the direction of the flow of data between elements.

Finally, color indicates the control signal as opposed to a signal that carries data; this

distinction will become clearer as we proceed through this chapter.

25

3.4 IMPLEMENTATION

 3.4.1 Overview
Reduced Instruction Set Computers (RISC) are designed to have a small set of

instructions. In this section we will model a simple RISC based architecture. This

architecture also serves as a starting point for developing architectural variants and a

more robust instruction set.

Designers make high-level tradeoffs in selecting an architecture that serves an

application. Once architecture has been selected, a circuit that has sufficient performance

(speed) must be synthesized. Hardware description languages (HDLs) play a key role in

this process by modeling the system and serving as descriptive medium that can be used

by a synthesis tool.

Figure 3.5 shows the block diagram of the proposed design. The whole design is

pipelined to achieve the higher throughput. Pipelining is described in the next section.

 3.4.2 Pipelining
 This section relies heavily on one analogy to give an overview of the pipelining

terms and issues. If you are interested in just the big picture, you should concentrate on

this section.

 The pipelined approach takes much less time, as figure 3.4 shows. Next you have

your roommate put the first load away, you start folding the second load, the dryer has

the third load, and you put the fourth load into washer. At this point all steps called stages

in pipelining, are operating concurrently. As long as we have separate resources for each

stage, we can pipeline the tasks.

26

 Pipelining improves throughput of our laundry system without improving the time

to complete one load of laundry.

Figure 3.4: Laundry analogy to pipelining [10]

27

Pipelined laundry is potentially four times faster than non-pipelined, 20 loads

would take about 5 times as long as 1 load, while 20 loads of sequential laundry takes 20

times as long as 1 load. It’s only 2.3 times faster than in above figure because we only

show 4 loads. Notice that at the beginning and end of the work load in the pipelined

version in above figure, the pipeline is not completely full, this starts up and wind down

affects performance when the number of tasks is not large compared to the loads is much

larger than 4, then the stages will be full most of the time and the throughput will increase

with a factor of 4.

The same principles apply to processors where we pipeline instruction execution.

The instructions of proposed processor take five steps:

1. Fetch instruction from memory

2. Decode the instruction

3. Read operands from the register file

4. Execute the instruction

5. Write the result back to register file

These are the five pipeline stages of the proposed processor.

Following is the pipeline speed up formula

Time between instruction pipelined = time between instructions non-pipelined

 Number of pipeline stages

 The formula suggests that a five-stage pipeline should offer nearly a five fold

improvement over 800 ps non-pipelined time, or a 160 ps clock cycle. The example

shows, however, that the stages can be imperfectly balanced. In addition, there is some

overhead involved in pipelining, the source of which will be clearer shortly. Thus, the

time per instruction in the pipelined processor will exceed the minimum possible.

28

 Of course, this is because the number of instructions is not large what would

happen if we increased the number of instructions? We could extend the previous figures

to much more instructions.

 3.4.3 Designing Instruction Sets for Pipelining
 Even with this simple explanation of pipelining, we can get insight into the design

of the instruction set which is designed for pipelined execution.

 Third, memory operands only appear in load and store instructions. This

restriction means we can use the execute stage t calculate the memory address and then

access memory in the following stage.

29

Figure 3.5: Block Diagram of Proposed Processor

30

3.4.4 Building a Data Path
 Let’s start by looking at which data path elements each instruction needs. When

we show the data path elements, we will also show their control signals.

 Figure 3.6 shows the adder, which is combinational in nature, is not shown

explicitly in the above block diagram of the design but shown implicitly that PC is

incremented whenever inc_PC signal is high.

Figure 3.6: Two elements of data path: instruction memory and PC

For each data word to be read from the register, we need an input to the register file that

specifies the register number to be read and an output from the register file that will carry

the value that has been read from the registers.

 Figure 3.7 shows the ALU, which takes two 32-bit inputs in case of normal

instructions and three 32-bits inputs in case of compound instruction and produces a 32-bit

result along with the status signals i.e. zero, carry out, negative etc. The ALU control signal

is described later in this chapter.

 Thus we need both the register file and ALU (for address calculation) from figure

3.7.

31

 Figure 3.7 : Register file and ALU of data path

 3.4.5 Components of Data Path
 Data path is composed of following components

• Program Counter

• Instruction Memory

• Control Unit

• Memory controller

• Register File

• Sign Extension Unit

• ALU

• ALU control

• Forwarding Unit

• Internal data Memory

• Bypass Unit

• Input Memory

• Output Memory

 Following is detailed description of each of these components.

32

3.4.5.1 Program Counter (PC):

 Following is block diagram of program counter.

Figure 3.8: Program Counter (PC)

 The program counter (PC), also known as the instruction pointer (IP) and sometimes

called the instruction address register is a processor register that indicates where

a computer is in its program sequence. For the purposes of proposed processor it has it has 5

inputs and one output. 4 of the total inputs are the control inputs i.e. load, increment, clock

and reset. Because the reset is active low resent so the PC will be reset if the value of reset

i.e. rst_n is 1 on active clock edge. If the load signal is asserted, it means that the execution

sequence has to change and now the PC will be loaded to some other address indicated by

“load addr” into the PC on the next active clock edge. If there is no jump to be taken, then by

asserting the signal inc the PC will increment on every active clock edge. Clk denotes the

33

clock signal and din and dout simply denotes the input and output to the PC. The length of

the PC is customizable as the parameter passed to the PC module will decide the length of

the PC.

3.4.5.2 Instruction Memory:

Instruction Memory stores the instructions that need to be executed to complete a task.

Following diagram shows the block level diagram of Instruction Memory of the proposed

processor.

 Figure 3.9: Instruction Memory

 It has two control inputs i.e rd_en (read enable) and clock and one data input and

one output. The address input of the instruction memory is connected to the output of the

program counter (PC) described above.

3.4.5.3 Control Unit:

 The control unit manages all the activities of the processor. In a way, it

controls everything happening in the processor.

34

Figure 3.10: Control Unit

 The control unit of the proposed processor is micro-program based. Part of the

instruction called op-code (operation code) decides what signals to generate for the data

path. Based on the instruction op-code all the control signals of the rest of the data path

are generated. There is also a hardwire FSM that only communicates with the memory

controller described later in this chapter. This FSM is shown in the following diagram:

35

Figure 3.11: Control Unit FSM

 The state machine shown above consists of two state IDLE state and RUN state. This

state machine works in a way that the control unit waits for the start signal from memory

controller. As soon as that memory controller sends this signal the control unit switches

to the RUN state and control unit starts the required processing by fetching and executing

instructions. This execution stops as soon as the stop signal asserted and then state

machine to IDLE state.

It is useful to review the formats of all the instruction classes’ i.e.

 The memory reference instructions

 The arithmetic-logical instructions

 The branch or jump instruction

 Compound instruction

Figure 3.12 shows these formats.

Each instruction is of 32 bits

• R-type:

 31:26 25:21 20:16 15:11 10:6 5:0

• Load and store instructions:

 31:26 25:21 20:16 15:0

• Compound Instruction:

Op code Rs Rt Rd Shift func

Op code Rs Rt address

Op code Rs Rt Rd Shift Rs2

36

• Branch instruction:

 31:26 25:21 20:16 15:0

• Instructions having immediate operands

 31:26 25:18 17:11 10:6 5:0

 31:26 25:18 17:11 10:6 5:0

3
31:26 25:18 17:11 10:6 5:0

Figure 3.12: Instruction Formats

Some of the observation regarding these formats are as under:

 The op field, also called the opcode, is always contained in

bits 31:26.

 The 16-bit offset for branch, load and store is always in

positions 15:0.

 The destination register is in one of two places. For a load it is

in bit positions 20:16 (rt), while for an R-type instruction it is in bit positions

15:11 (rd). Thus we will need to add a multiplexer to select which field of the

instruction is used to indicate the register number to be written.

 Table 3.1 shows 12 control signals. It is useful what these 12 control signals do

informally before we determine how to set these control signals during instruction

execution.

Op code Rs Rt address

Op code Immediate1 Immediate2 rd func

Op code Immediate1 rs rd func

Op code rs Immediate2 rd func

Signal Name Function

regdst The register file is to be written with the rd field of instruction

alusrc The 2nd ALU operand is the sign extended lower 16 bits of instruction

37

Table 3.1: Control signals generate by control unit

Now that we have looked at the function of each of the control signals, we can look at

how to set them. With the information contained in table x we can design the control unit

logic, but before we do that.

Following are the steps that how an R-type instruction is executed, the pipeline stage at

which these steps occur are also indicated.

• The instruction is fetched and PC is incremented (Instruction

Fetch stage)

• The address for register file operands and all the required

control signals are generated during this step (instruction decode stage).

• Operands are read from the register file (Operands fetch

Stage).

memtoreg Indicates data will move from memory to register file

Regwrite
The register on the Write register input is written with the value on write

data input

Memread Data will be read from memory

Memwrite
Internal data memory contents designated by the address input are

replaced by the value on the write data input of internal data memory

memtoReg
The value fed to the register write data input comes from the internal

data memory.

Branch Indicates when the branch is to be taken

Aluop Specifies the which operation ALU should perform

regFile_rd_en Indicates now register can be read when asserted

mux_sel_mov_instr Selects line of the MUX for move instruction

imm_MUX1_sel Select line for the MUX when first ALU operand is immediate operand

imm_MUX2_sel
Select line for the MUX when second ALU operand is immediate

operand

38

lw R1, R2 + offset (load contents of data memory at location (R2 +offset) into R1)

Now that we have seen how the instructions operate in steps, let’s continue with the

control implementation. The control function can be precisely defined using the contents

of the following table x.

Instruction

type
Regdst Alusrc memtoReg Regwrite Memread

Mem

write

Branc

h

aluOp

0

aluOp

1

R-format 1 0 0 1 0 0 0 0 1

Lw 0 1 1 1 1 0 0 0 0

Sw 0 1 X 0 0 1 0 0 0

Branch X 0 X 0 0 0 1 1 0

compound 1 0 0 1 0 0 0 0 1

Move x x x 1 x x x x x

39

regFile_rd_en mux_sel_mov_instr imm_MUX1_sel imm_MUX2_sel

1 X 0 1

1 X 0 1

1 X 0 1

1 X 0 1

1 X 0 1

1 1 x x

Table 3.2: Value of control signal depends entirely on the instruction opcode

 3.4.5.4 Memory Controller:

 Another very important component of the processor is the Memory controller. It

allows direct access of memory to CPU registers without intervention of the main CPU.

By the inclusion of this controller into the design the efficiency of the processor have

increase increased many time because without memory controller the processor has to

first fetch data operands from external memory to register file and then process these

operands and return back the result when the processing completes. So in that way much

of the CPU time was wasted by fetching data operands from external memory to register

file and writing the results back from register file to external memory. So as a solution of

the extra work the CPU had to do to retrieve operand and write back results, now the

memory controller takes care of the fetching of operand and storing of results to the

external memory and it fully controls the communication between external memory and

register file of the processor. After the inclusion of memory controller in the design the

CPU only does the actual processing i.e. to execute instruction the extra work of transfer

of data is now transferred to memory controller. Start address and stop addresses are sent

as parameters to the memory controller. Start address specifies where to start reading the

memory and stop address specifies where to stop reading the memory. All the memory

locations between start and stop address are read and written to the register file.

40

Figure 3.13 shows the block diagram of memory controller

Figure 3.13: Memory Controller

41

The memory controller consists of two state machines

• Input State Machine
• Output State Machine

 Input state machine controls the flow of data from external memory to the register

file. Figure 3.14 shows the input state machine of memory controller

Figure 3.14: Input FSM of memory controller

On the first active clock edge after the reset signal is de-asserted; the machine will

go into the READING state unconditionally. The FSM will remain in the READING

state until the condition addr != STOP_ADDR remains true, as soon as this condition

counter != 6'd27

IDLE

READING

PAUSE

STOP

~rst_n

reg_file_wr_addr == 5'd16

addr == STOP_ADDR

addr != STOP_ADDR
~rst_n

~rst_n

~rst_n

counter == 6'd27

~rst_n

42

becomes false the FSM switches to PAUSE state. STOP_ADDR is a parameter passed to

the DMA module. Similarly, the FSM will remain in the PAUSE state until the condition

counter != 27 remains true and switches to READING state as soon as this condition

becomes false. There is no transition of FSM from PAUSE state to STOP state. The FSM

can only come in the STOP state through the READING state. It is understood that

whenever reset signal asserted, the FSM will switch to IDLE state from any state.

 Output state machine controls the flow of data from register file to the external

memory. Figure 3.15 shows the output state machine of DMA controller

Figure 3.15: Complete FSM of Memory Controller

 On the first active clock edge after the reset signal is de-asserted; the FSM will

switch to the WAITING state because FSM will wait for the results computation, as soon

43

as the results are available, FSM is asked to switch to the WRITING state and write back

the results into the external memory. While in waiting state, the FSM waits for the value

of counter signal to be 27, as soon as the value of counter reaches 27 the FSM switches to

WRITING and starts writing results into the external memory. The FSM keep on writing

until the value of the rd_addr signal reaches value 7 and then the machine again switches

to WAITING state. Meanwhile, whenever the reset signal is asserted the FSM will switch

to IDLE state.

 3.4.5.5 Register File:

 In RISC based architectures, the role of register file is very important in a way

that the CPU on access the data operands from the Register File. There is no direct access

of the register file CPU to memory. So, every operand that needs to be processed by CPU

must reach it through the register file because the CPU can only reach the register file

only, nothing else. The design of register file is also a very important perspective of the

overall design. So a very careful deliberation has been made while designing the register

file of the proposed processor.

 Figure 3.5 shows the register file, here is detailed description of the design of the

register file is presented. The register file module basically consists of 3 actual register

file i.e. register file 1, register file 2 and register file 3. Register file 1 is of size 32x32 and

remaining two register files are of size 16x32. Register file 1 is dual ported i.e. it has one

read port and one write port, and it can be read and written on the same active clock edge.

From the remaining two register files, one register file is used for reading and the other is

used for writing purposes.

 At the start of processing, the register file is populated with data from the external

memory. During the same time the register 2 is also populated with the first 16 samples

of the data as only 16 samples of data from external memory are input to the register file

1 and register file 2. The results of the processed samples are stored into the register file 3

and the DMA controller starts sending data from register file 2 to the external output

memory. Once reading and writing of data is complete, the read and write enable signals

of all the register files are de-asserted.

44

Figure 3.16 shows the block diagram of register file module.

Figure 3.16: Register File Module

 As seen from the above diagram the register file module consists of three register

files, the multiple register files are used to increase the efficiency of the processor. With

the single register this efficiency could not have been achieved.

Register File Module

Register File 1
32x32

Register File 2
16x32

Register File 3
16x32

clock

rd_en_1

rd_addr_1

rd_en_2

rd_addr_2

wr_en_1

wr_data_1

wr_en_3

wr_data_3

rd_en_regFile_2

rd_addr_regFile_2

regFile1_rd_data1

regFile1_rd_data2

regFile2_rd_data

45

 3.4.5.6 Sign Extension Unit:

 The Sign extension unit is needed to implement the load and store instruction. It

generates the offset that is added with the one register operand indicated by the

instruction field. Following show the sign extension unit

Figure 3.17: Sign Extension Unit

Sign extension unit takes 16-bit input and generate a 32-bit decimal equivalent of the
input by replicating the sign bit of the input 16 times.

Sign
Extension

Unit

16 32

46

3.4.5.7 Arithmetic and Logic Unit (ALU):

Now let’s have discussion on the most important part of the processor called

Arithmetic and Logic Unit (ALU). This is a part of the processor that performs all the

arithmetic and logical computations. This is surely the brain of the processor as execution

of any instruction is not possible without ALU. The ALU carries out all the computations

of the processor. There are four major blocks in the ALU i.e. adder, subtracter, multiplier

and shifter. As the length of the operands of these components is customizable and

parameterized but for our purposes I have kept it 32-bits wide. That is, it takes 32-bit

inputs and generates an output of 32 bits. For multiplication two 32-bit inputs produces a

result of 64 bits whose 32 most significant bits are truncated to make it of 32 bits. Figure

3.18 shows the block diagram of ALU.

47

Figure 3.18: Arithmetic and Logic Unit (ALU)

Above figure shows the micro components of the ALU. Following is the brief

description of each of them.

Computational block i.e. adder, subtracter, multiplier and shifter are shown in the

above diagram along with their enable signals. For normal instruction, only of of these

components will be active during each clock cycle and for compound instruction multiple

block will be active during each clock cycle and the output multiplexer will decide the

final output.

MUX unit shows a bunch of multiplexers that generates the required inputs to the

computational blocks. Based on the multiplexer selects, each input of the computational

block is forwarded to it through the MUX unit. For each input to each computational

block there is a multiplexer. Also the output of one computational block (adder,

subtracter, multiplier, shifter) could be input to the other block so the outputs of these

computational blocks are also the inputs of the multiplexers.

Furthermore, the output of the ALU comprises of data output and status flags.

Status flags include carry out, zero flag and negative flag. Based on these flags several

actions could be taken and hence these are very important to show and cannot be

eliminated from the design. For the purposes of the clarity of the diagram the data inputs

are not explicitly shown, the data inputs signal includes the data operands and the shift

number which specifies if a shifter is to be used then how much it will shift the desired

number.

ALU control signal specifies what operation the ALU has to perform in case of

normal instruction. Depending upon the value of lower 6-bits of the instruction.

48

3.4.5.8 ALU Control:

Table x shows the operation of the ALU in response to the alu control lines in
case of normal instruction mode.

ALU Control Line Function

000 ADD

001 SHIFT LEFT

010 SUB

011 MULTIPLY

100 AND

101 SHIFT RIGHT

110 OR

111 Ex-OR

Table 3.3: ALU control lines and their function

ALU control signal specifies what operation the ALU has to perform in case of

normal instruction. For branch instruction, the ALU must perform subtraction. Figure

3.19 show the diagram of ALU control, the input to the alu control unit is the

concatenation of lower 6 bits of instruction and the ALUOp field generated by the main

control unit depending upon the class of the instruction.

49

Figure 3.19: ALU control unit

For completeness, the relationship between the ALUOp bits and the instruction

opcode is also shown.

50

Instruction

opcode
ALUOp

Instruction

Operation

Func

Field

Desired

ALU action

ALU

control

input

LW 00 Load word xxxxxx Add 000

SW 00 Store word xxxxxx Add 000

Branch 10 Branch xxxxxx Subtract 010

R-type 01 Add 100000 Add 000

R-type 01 Subtract 110000 Subtract 010

R-type 01 Multiply 111000 Multiply 011

R-type 01 AND 101000 And 101

R-type 01 OR 110001 OR 110

Table 3.4: Setting of ALU control line depending upon ALUOp and func field

Because in many instances we do not care about the values of some of the inputs

and to keep the tables compact, we also include don’t care terms. A don’t care term is

represented by x, indicates that the output doesn’t depend on the value of input

corresponding to that bit position.

3.4.5.9 Forwarding Unit:

This unit is incorporated to overcome data hazards in result of the pipelining.

Although the pipelining improves the performance of the system significantly, but if not

handled properly, it can cause significant malfunctioning of the system. If all the

instructions of a program are independent i.e. the no instruction uses the result of any

immediate previous instruction then the pipelining will work fine for you without any

extra effort, but if the subsequent instructions of a program a dependent upon previous

ones then this can lead to wrong result as in pipelined design next instruction enters the

pipeline on every clock edge and results of each instruction are written back few cycles

51

later. So this forwarding unit caters such situation that what if some instruction requires

the result of the previous instruction but that result is not written on to the specified

location when the next instruction reads it as an operand. Figure 3.20 shown the block

diagram of the forwarding unit:

52

Figure 3.20: forwarding unit

Let’s look at a sequence of instructions which are dependent upon each other i.e.

sub R2, R1, R3

and R12, R2, R5

or R13, R6, R2

add R14, R2, R2

sw R15, 100(R2)

The last four instructions are all dependent on the result of register R2 of the first

instruction. If register R2 had the value 10 before the subtract instruction and -20 after

wards, the programmer intends that -20 will be used in the following instructions that

refer to register R2.

How would this sequence perform with the pipeline of the proposed processor?

Figure 3.20 illustrates the execution of these instructions using a multiple-clock-cycle

pipeline representation. To demonstrate the execution of this instruction sequence in our

current pipeline, the top of figure 3.20 shows the value of register R2, which changes

during the middle of clock cycle 5, when the sub instruction writes its result.

Figure 3.20 shows that the values read for register R2 would not be the result of

the sub instruction unless the read occurred during clock cycle 5 or later. Thus the

instructions that would get the correct value of -20 are add and sw, the and and or

instructions would get the incorrect value 10! Using this style of drawing such problems

become apparent when a dependence line goes backwards in time.

But look carefully at figure 3.20: when is the data from the sub instruction

actually produced? The result is available at the end of the Execution stage or clock cycle

53

3. When is the data actually needed by the and and or instructions? At the beginning of

the execution stage, or clock cycles 4 and 5, respectively. Thus, we can execute this

segment without stalls if we simply forward the data as soon as it is available to any units

that need it before it is available to read from the register file.

How does forwarding work? For simplicity in the rest of this section, we consider

only the challenge of forwarding to an operation in the execution stage, which may be

either an ALU operation or an effective address calculation.

Figure 3.21: Pipelined dependencies in a five-instruction sequence using

simplified data path[10]

The value of register field rs between instruction decode stage and operand read

stage is denoted by OR/EX.registerRs refers to the number of one register whose value is

found in the pipeline register after next to register file. Using this notation, the two pairs

of hazard conditions are.

a. OR/EX.regsiterRd = ID/OR.registerRs

54

b. OR/EX.registerRd = ID/OR.registerRt

c. EX/WB.registerRd = ID/OR.registerRs

d. EX/WB.registerRd = ID/OR.registerRt

The first hazard in the sequence on the instruction sequence explained above is on

register R2, between the result of sub R2, R1, R3 and the first read operand of and R12,

R2, R5. This hazard can be detected when the and instruction is in the execution stage

and te prior instruction is in the WB stage, so this the hazard a indicated above:

OR/EX.regsiterRd = ID/OR.registerRs = R2

 Now what we can detect hazards, half of the problem is resolved, but we must

still forward the proper data.

Thus the required data exists in time for later instructions, with the pipeline registers

holding the data to be forwarded.

55

Figure 3.22: Dependences between pipeline registers move forward in time, so it is possible to
supply the inputs needed by the ALU[10]

For now, we will assume the only instruction we need to forward the four R-

format instructions: add, sub, and, and or. The forwarding control will be in the execution

stage because the ALU forwarding multiplexers are fond in that stage. Thus, we must

pass the operand register numbers from the ID stage via the ID/OR pipeline register to

determine whether to forward values. We already have the rt field of instruction (bits

20:16). Before forwarding, the ID/OR register had no need to include space to hold the rs

field. Hence, rs (bits 25-21) is added to ID/OR. Let’s now write both the conditions for

detecting hazards and the control signals to resolve them

i.e.

if ((OR/EX.regWrite) && (OR/EX.registerRd == ID/OP.registerRs))

56

 forwardA = 01

and,

if ((OR/EX.regWrite) && (OR/EX.registerRd == ID/OP.registerRt))

 forwardB = 01

This case forwards the results from the previous instruction to either input of the

ALU, the steer the multiplexer to pick the value instead from the pipeline register

OR/EX. forwardA and forwardB shows the select line of the multiplexers of the

forwarding unit.

As mentioned, there is no hazard in the WB stage because we assume that the

register file supplies the correct result if the instruction in the ID stage reads the same

register written by the instruction in the WB stage. Such a register file performs another

form of forwarding, but it occurs within the register file.

One complication is the potential For example, when summing a vector of

numbers in a single register, a sequence of instructions will all read and write to the same

register:

add R1, R1, R2

add R1, R1, R3

add R1, R1, R4

If (EX/WB,regWrite && (OR/EX.registerRd ≠ ID/OR.registerRs) &&
(EX/WB.registerRd == ID/OR.registerRs))

ForwardA = 10;

And,

If (EX/WB,regWrite && (OR/EX.registerRd ≠ ID/OR.registerRt) &&
(EX/WB.registerRd == ID/OR.registerRt))

57

ForwardB = 10;

Conclusion: Forwarding can also help with hazards when store instructions are

dependent on other instructions. Since they use just one data value during the WB stage,

forwarding is easy. But consider loads immediately followed by stores. We need to add

more forwarding hardware to make memory-to-memory copies run faster.

58

3.4.5.10 Internal data Memory:

The internal data memory acts as cache memory for the processor. The role of

data memory comes into play for load and store instructions. For load instruction, some

data memory is put into the register file and for store instruction some data from the

register file is stored into the data memory. The address of the data memory is calculated

by the ALU.

 Figure 3.23: Data Memory

The size of data memory is customizable as it can be set through the parameter.

Data can only be read from the data memory when the rd_en signal is asserted and same

is the case with writing data in to the data memory as to write data the wr_en signal must

be written asserted.

3.4.5.11 By-Pass Unit:

By pass unit supplies actual and appropriate inputs to the ALU. It consists of a

series of multiplexors that forwards the correct operands to the ALU for the processing.

The by-pass unit along with the forwarding unit discussed above plays a very significant

59

role in the efficiency of the overall system. Figure 3.24 shows the block diagram of the

by-pass unit.

 Figure 3.24: By-pass unit

By pass unit takes inputs from two blocks i.e. from forwarding unit and from P1

and generates operands for the ALU.

3.4.5.12 Input/output Memory:

The proposed processor takes data for processing from input memory and

generates output to be stored in the output memory.

3.5 SYNTHESIS

60

Synthesis means the transformation of high level description into gate level net

list. The proposed processor has been synthesized and successfully tested on the Xilinx

virtex-5 FPGA. Figure 3.25 shows further details of the device.

 Figure 3.25: Synthesis Design Properties

Following diagram shows some points of the synthesis report

61

 Figure 3.26: Device Utilization Details

 Following diagram shows the timing summary of the design after synthesis.

 Figure 3.27: Timing Summary of Design

3.5.1 Chip Scope Testing

62

Chip Scope pro is the built in Xilinx debugging utility that provides

flexibility of debugging the design meanwhile the code is running on the FPGA

device. Chip Scope Pro is very powerful debugging tool and used widely. Figure

3.28 shows the chip scope result.

 Figure 3.28: Chip Scope Pro Tool

63

3.6 INTERFACING
 Interfacing must be done to get data from the PC into the FPGA and vice versa.

So, for this purpose the Microsoft’s Simple Interface for Reconfigurable Computing

(SIRC) interface is used. This interface uses ether net for the communication between PC

and FPGA. Figure 3.28 shows block diagram of this interface.

 Figure 3.29: Interfacing between PC and FPGA

By using this interface the communication between PC and FPGA is done though

two important components i.e. software API and hardware API. Software API runs on the

PC side (in visual studio 2010) and the hardware API runs on FPGA side. PC sends data

to FPGA through software API and FPGA receives data for processing through hardware

API. Code for the software API is written in C++ and for the hardware API is written in

Verilog HDL. Complete description of this interface is available at

“http://www.drsparrows.com/wp-content/uploads/pdfs/SIRC_README_v1.0.1.pdf”.

Figure 3.29 shows diagram of the state machine of the logic that how data is retrieved for

processing and send back result back to PC.

64

Figure 3.30: SIRC user logic state machine

The machine goes into the IDLE state straight away when reset is asserted. It keeps on

waiting in IDLE state for the userRunValue signal to be asserted. As soon as this signal is

asserted the state machine switches to READING state and start reading data from input buffer

into the local memory. After all reading is done the readDone signal is asserted and the state

machine switches to RUN state. Then all the processing of the proposed processor is done and

results are written to local output memory. As soon as all the required processing is done the

runDone signal isasserted and state machine switches to WRITTIN state. In this state the data

(results) are written from local output memory to the output buffer from where the interface will

send data to PC.

65

3.7 ASSEMBLY CODE
Following is the assembly code for the computation of 5/3 fast lifting wavelet transform

algorithm

Label
 load R1, Ri(base)
 load R2, Ri(base)
 .
 .
 .
 load R16, Ri(base)
 cmp R1, R2, R17 add, shift, subtract
 cmp R3, R4, R18
 cmp R5, R6, R19
 cmp R7, R8, R20
 cmp R9, R10, R21
 cmp R11, R12, R22
 cmp R13, R14, R23
 cmp R15, R16, R24
 store R17, Ri(base)
 store R18, Ri(base)

 .
 .
 store R24, Ri(base)
Jump label

This assembly code runs basically in a loop. When it reaches the jump label
instruction it takes jump to the start i.e. on Label and runs in the same fashion until loop
breaks i.e. when address to read the memory equals stop address. In the same way the
assembly code for all the fast lifting wavelet transform filters indicated in chapter 3 or
any other signal processing algorithms can be written

66

Chapter 4

RESULTS AND DISCUSSIONS

1.1 OVERVIEW

Findings and results of the project “Design and Implementation of an Efficient

Generic RISC Processor on FPGA for Digital Signal Processing Applications” are

highlighted in this chapter. As proposed processor is meant for the digital signal

processing applications, so different signals processing algorithms are run on the

processor and following are results of these algorithms. The results of the proposed

system has been retrieved and matched with the results of the matlab simulations to make

comparison between the two. The comparison shows that there no dissimilarity between

the results of the proposed processor when running the same algorithm as running in the

matlab. Different signal processing algorithms are implemented for 1-D and 2-D (image)

signals and following results are obtained.

As explained in chapter 3, the proposed processor has two modes of instructions

i.e. normal mode and compound mode. In compound mode all ALU components (adder,

shifters, multiplier and subtracter) can be used in the same clock cycle which improves

the performance of the system significantly. Figure 4.1 and Figure 4.2 show comparison

between normal mode instruction and compound mode instruction,if the 5/3 algorithm is

run using normal mode then it takes 22 clock cycles to compute 4 output samples shown

in figure 4.2 and if same task is done through compound instruction then it will take only

4 clock cycles to computer these 4 output samples of low frequency components shown

in figure 4.1. It means by only considering 4 output samples we can drop the

consumption of clock cycles by 18 in this case. As there are millions of input samples

that need to be processed so by using compound instruction we can perform the

computation intensive tasks quite efficiently.

67

 Figure 4.1: Compound Instruction waveform for 5/3 filter

Figure 4.2: Normal Mode Instruction waveform for 5/3 filter

68

 Figure 4.3: Compound Instruction results using chip scope pro for 5/3 filter

Both figure 4.1 and figure 4.3 show the results of compound instruction. Figure

4.1 shows simulation result of Model Sim while figure 4.3 show hardware result while

code is running on the FPGA.

69

1.2 CIRCUIT PERFORMANCE RESULTS

Table 4.1 and table 4.2 show the results regarding to the efficiency of the circuit

of the proposed processor.

Table 4.1 show the comparison of the proposed architecture with the existing

architectures i.e.

Table 4.1: Performance comparison with existing architectures

 The description of existing architectures is given in [2].

Features Liu’s
architecture

Chen’s
architecture

Wu’s
architecture

Lee & Lim’s
architecture

The proposed
architecture

Frame size 32x32 256x256 1024x1024 1024x1024 1024x1024

Wavelet filter type 9/7 2 to 20 taps Programmable Programmable Programmable

Clock frequency 25 MHz 50 MHz 100 MHz 200 MHz 350 MHz

70

 Table 4.2: Execution time of various wavelet transform algorithms on 2-D signals

71

Figure 4.4 shows the performance comparison between existing architectures and the proposed

architecture in graphical form

Figure 4.4: Performance comparison of existing architectures with proposed architecture

Cl
oc
k
fr
eq

ue
nc
y
in
 M

H
z

72

4.3 OUTPUT RESULTS

Following are the results of the design when different images of different sizes given to
the design:

Following image of a texture when input to the algorithm gives the low frequency and
high frequency components of the input image

Figure 4.5: input image to 5/3 wavelet filter

73

Figure 4.6: Low frequency component of input image

Figure 4.7: High frequency component of input image

Following results are of different wavelet transform algorithms.

74

Figure 4.8: input image to 5/3 wavelet filter

Figure 4.9: Level 1 decomposition of 5/3 wavelet filter

 Figure 4.10: Level 2 decomposition of 5/3 wavelet filter

75

Figure 4.11: Input image to 2/6 wavelet filter

Figure 4.12: Level 1 decomposition of 2/6 wavelet filter

76

Figure 4.13: Level 3 decomposition of 2/6 wavelet filter

77

Chapter 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 DESIGN SUMMARY

The proposed processor is primarily based upon on RISC architecture. Reduced

Instruction Set Computers (RISC) are designed to have a small set of instructions that

execute in short clock cycles, with a small number of cycles per instruction. RISC

machines are optimized to achieve efficient pipelining of their instruction streams. The

proposed processor is basically a model of RISC based architecture. This architecture

also serves as a starting point for developing architectural variants and a more robust

instruction set.

To achieve the goal of this research work, a very flexible methodology has been

adopted to accomplish the research work. A Generic processor has been implemented

based on the Reduced Instruction Set Computer (RISC) architecture. The architecture is

fully pipelined and hence gives higher throughput. An instruction set is designed to

facilitate the programmer to use the system easily. Based on the instruction set, all

operations of the proposed processor are carried out. Due to pipelined design, the

achieved cycle per instruction (CPI) is 1 that has a very significant impact on the

throughput of overall system.

Having discussed all the design parameters, architecture and the results it is

concluded that a highly flexible, scalable and efficient processing engines as per the

requirements of the application at hands gives very high design performance. High

through put of the system is achieved through pipelining. Each instruction of the design

can be executed in 1 clock cycle.

As almost all signal processing tasks are very computational intensive i.e. much

of processing is done on very large number of data samples so to keeping in mind this

78

parameter a compound instruction has been designed that utilized multiple computational

blocks (adder, subtractor, shifter, and multiplier) to be used in the single clock cycle to

increase efficiency of the overall system.

5.2 CONCLUSIONS

The conclusions drawn from the developments and findings of this research work

are enumerated below:

1) Algorithm preserves the logic.

2) Hardware results are well comparable with those reported by simulations.

3) High throughput is achieved by keeping the cycle per instruction (CPI)

equal to 1.

4) Fully pipelined design makes the execution faster and in an efficient way.

5) There is a significant level of improvement in circuit timing, while area

remains almost the same, and in some cases it was observed to even

increase.

6) Each signal processing algorithm can be implemented using the same

instruction set of the proposed processor.

5.3 RECOMMENDATIONS

Fast Lifting Scheme is a novel innovation and is need of the hour, both in

developed and in developing countries. The future is guiding the mankind toward faster

possible means of performing all the Digital Signal Processing operations in real times.

In this scenario it is inevitable that consistent and sustainable efforts remain on

the right track to implement a continuous process of improvement till an optimum level

of excellence is achieved in this field.

Since the completion of the project needed extra efforts to unearth some basic

facts, many new problems cropped up which are considered to be dealt separately for

their proper treatment so that they are resolved for the benefit of the whole mankind.

79

With this background, following recommendations have been formulated for

future search, research, studies and projects:

1) The design of the ALU can be improved.

2) The external memories and the internal data memory can be merged together to have

common storage for all instructions.

3) The ALU block can be reduced in way that subtracted can be omitted from the ALU by

having subtraction from the adder through 2’s compliment technique

80

