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ABSTRACT

Data mining is the process of knowledge discovery and extraction of useful information and
pattern from raw data gathered from various resources and supervised learning is the process
of data mining for deducing rule from marked training dataset. A broad array of supervised
learning algorithms exists, every one of them with its own advantages and drawbacks. For
supervised learning problems there is still no single algorithm that works ideally. There are
some basic issues that affect the accuracy of classifier while solving a supervised learning
problem like bias-variance tradeoff, dimensionality of input space and noise in the input data
space. All these problems affect the accuracy of classifier and are the reason that there is no
global optimal method for classification. Neither is there any generalized improvement
method that can increase the accuracy of any classifier while addressing all the problems
stated above. The objective of this paper is to create a global optimization ensemble model
for classification methods (GMC) that can improve the overall accuracy for supervised
learning problems. The experimental results on various public datasets showed that the
proposed model improved the accuracy of the classification models from 1% to 30%

depending upon the algorithm and dataset.



TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION. ...ttt st b et b e sbe e 3
1.1 IMEOTIVATTON <.t bRttt b bt b et b et 4
I = T Tod 1o o 10 Lo [ PSSR 4
IR T Y/ L1 T o (o] [T Y PSSR 5
1.4, STruCtUre OF the TRESIS:......cuiiiiici e 5

CHAPTER 2: LITERATURE REVIEW ......ciiii e 7
2.1 BACKGIOUND: ... ettt bbbt b bbbttt b bbbt 7

2.1.1 DIMENSIONAIILY CUISE: ..iiiieieeiteesieestie st te e e te e ste e sre e st e s e s e s e e e e beesbeesteesneesneesneeaneeesneeaneeenes 7
2.1.2 Bias-VarianCe TratdeofT: ..ot 8
2. 1.3 INOISE IN DALA: ..ottt 9
2.2 PIEVIOUS WOTK ...ttt bbbttt bbbt 9

CHAPTER 3: METHODOLOGY ...ttt 19
3.1 Flow Chart of Global Optimization Ensemble Model for Classification Methods (GMC): .......... 19
3.2 Layer 1: Providing antidote for Dimensionality CUISE: .........cccovvevieiviie i 20
3.3 Parameter OPUIMIZALION: ........ccviiieiieeie e e et e te e st e e sre e s e e sneesnee s beeseeenreenrees 22
3.4 Layer 2: X-Fold Cross Validation: ...........ccocuiiiiiiiiiiieeeeee e 23
3.5 Layer 3: Bias-Variance Tradeof: ...t 24
3.6 Layer 4: ClIaSSITICALION ......ceiiitiiiieite et 24

CHAPTER 4: IMPLEMENTATION ...ttt 27

CHAPTER 5: RESULTS AND DISCUSSION ....ooiiiiiitiiieie et 33
5.1 CANCET DALASEL: .......viiviieiiiiiie s 33
5.2 Heart DiSEaSse DataSel:.........ccueiiiiiiiriiiie ittt 34
5.3 WINE DAASEL: ....c.viiiiiiiiciiici et 36
5.4 AdUIL INCOME DALASEL: .......ooviiiieiiiieiei et 37
5.5 SONAN DALASEL: ......eiveetiitiee ettt b r bt b n et 39
5.6: EAUCALIONEAL DALASEL: .......c.eiviiiieiiiieie it 40

CHAPTER 6: CONCLUSION AND FUTURE WORK .....coiiiiiiicititeie e 45
8.1 CONCIUSTON ...ttt b et 45
8.2 FUITNEI WOTK: ...ttt b n et 46

REFERENCGES. ...ttt sttt b e b e b e e e b e e e st e bt e bt e nbeenbeenane e 49



APPENDIX Az DEIINITIONS ...ttt sttt ettt ettt et et seeeneennennens
F N e N[ BT = T o T L= PSP
APPENDIX C: Dataset SAMPIES ......vviiiiiee ettt te e te e re e reennee e



LIST OF FIGURES

Figure 1: Graph: Classification Error and Optimal FEAtUIeS.............ccviiiiiriniiisisre e 7
Figure 2: Bias Variance Trade-off with respect to the model complexity ...........cccoeovviriniiiienininiieine 8
Figure 3: Comparison of best accuracies achieved by various algorithms on hand-pose database ........ 12
Figure 4: Results of Attribute bagging and simple bagging .........ccccoeevveieiieiese e 13
Figure 5: Results of simple OC1 and attribute bagging .........ccccceveiiiiieie i 13
Figure 6: Classification accuracy Of algorithms ..........ccooveiiiiiie i 14
Figure 7: Mean error rates and 95% confidence intervals in speaker recognition experiments on test data
for clean and telephone speech, using the optimal K-feature sets provided by GA, PCA, and LDA, for

k=6, 8, 10, 11, 12, 13, 20 @GN0 30 ..cveeriirieiirieeieiiesiesie ettt sttt saenn et neenenreas 16
Figure 8: Design of Global Optimization Ensemble Model for Classification Methods (GMC) ............ 19
Figure 9: Use of Genetic Algorithm (GA) in GMC MOdel ........ccoveviviiiiiiiiece e 21
Figure 10: Cancer Dataset: Optimized Classification ACCUIACY .........cccvivueereereerieesieesieesiesieesieeseeeseeens 34
Figure 11: Heart Disease Dataset: Optimized Classification ACCUIaCY ..........ccocverererieereneeie e seeie e 35
Figure 12: Wine Dataset : Optimized Classification ACCUIACY.........ccevcvreeierieieeiese e e seeee e 37
Figure 13: Adult Income Dataset: Optimized Classification ACCUIACY ..........cccorerverreieririinineseseeeeeas 38
Figure 14: Sonar Dataset: Optimized ClassifiCation ACCUIACY .........ccerveieiririieniereeeeee e 40
Figure 15: Educational Dataset: Optimized Classification ACCUIACY .........ccccorererieieeinininenieseseeeees 41
Figure 16: Diabetes Dataset: Optimized Classification ACCUIACY ..........coovvririrereiieiisinene e 43



LIST OF TABLES

Table 1: Predictive error (%) of classification algorithms, using SIMPLS Dimensionality Reduction
ST 0T3O PSSR 9
Table 2: Comparison of classification accuracy: LDA with and without forward selection, backward
selection, PCA, Exhaustive enumeration and PSOLDA ........ccoiiiiiciie et 11
Table 3: Number of features selected by each teChNIQUE .........ccoieiiiiiiiii 11

Table 4: The average classification accuracy for each learning algorithm trained with and without

LT ] 1o OSSPSR 15
Table 5: Mean Prediction Accuracy of GA and BOOSIGA .........cccveieiiiieie et 16
Table 6: Parameter VaAlUES IN GA ...ttt 21
Table 7: Parameter optimization using Grid SEArch ..........cccocveveiie i 23
Table 8: Parameter configuration for CIaSSIFIErS ........c.cccviieiieii e 25
Table 9: Data SEt DELAIIS ......cceiieieee ettt et seeereeae 29
Table 10: Data set & Suitable ClaSSITIErS. ........oiiiiieie e 30

Table 11: Results for Cancer Dataset: Comparison of Optimized Classification Accuracy using GMC
Model with Simple Classification using different Classifiers. ........ccccvveiiiiiiiiic s 33
Table 12: Results for Heart Disease Dataset: Comparison of Optimized Classification Accuracy using
GMC Model with Simple Classification using different classifiers...........ccoocovvrieieiciieiene e 35
Table 13: Results of Wine Dataset: Comparison of Optimized Classification Accuracy using GMC
Model with Simple Classification using different Classifiers. ..........ccccooiiiiiniieici e 36
Table 14: Results of Adult Income Dataset: Comparison of Optimized Classification Accuracy using
GMC Model with Simple Classification using different classifiers...........cocooviinineiincicie 38
Table 15: Results of Sonar Dataset: Comparison of Optimized Classification Accuracy using GMC
Model with Simple Classification using different Classifiers. ..........cocooiiiiiiniienc s 39
Table 16: Results of Educational Dataset: Comparison of Optimized Classification Accuracy using
GMC Model with Simple Classification using different classifiers.........cccoocvviiviieii i, 41
Table 17: Results of Diabetes Dataset: Comparison of Optimized Classification Accuracy using GMC

Model with Simple Classification using different ClassSifiers.........c.cccoveviiiiiiei s 42



CHAPTER 1: INTRODUCTION



CHAPTER 1: INTRODUCTION

According to Han and Kamber, “Data mining is known to be a part of knowledge discovery
(KDD) process in which data is analyzed and summarized from different perspectives and
converted into useful information. It helps in extracting the hidden and valid data which has
the potential of being transformed into useful information. The objective of data mining
process is to convert raw data in useful information that is helpful in making future
predictions and informed business decisions. Data mining is carried out using various
techniques, but most important and commonly used technique is Classification.” [1] It is
similar to machine learning process and can also be termed as supervised learning process.
Supervised learning is the process of data mining for deducing rule from marked training
dataset. A broad array of supervised learning algorithms exists, every one of them with its
own advantages and drawbacks. For supervised learning problems there is still no single
algorithm that works ideally. In Classification the first step is to divide the data in two
portions known as training set and testing set [2]. In these datasets, one attribute must be
necessarily defined as class label besides all other attributes. According to Jiawei Han [2],
the two steps of the classification task are model construction and model usage. In this task,
the model is build with the help of trained dataset and then this trained model is used to
allocate The unseen records as precisely as possible. While training data set is used to build
and train the model the testing data set is use to validate and test the model accuracy [3].
Which bring us to some of the basic issues that affect the accuracy of a classifier while
solving a supervised learning problem. For instance, the bias-variance tradeoff, the
dimensionality curse or the noise in the dataset all contribute towards a decreasing
accuracy. Bias arises when the classifier cannot represent the true function — that is, the
classifier under fits the data i.e. when it is training on any data set than for a specific input
value it is methodically inaccurate when predicting the right outcome for that input value.
In contrast to this, variance occurs when the algorithm over fits the data and for a specific
input value in a dataset it gives a different outcome every time the training dataset is
changed. Another problem that can affect the accuracy of a classifier is the dimensionality
or the number of attributes or features in a dataset. If we input a large number of attributes
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in a classification algorithm even for problems where decision depends on subset of all
those attributes, than performance of the classifier will be clouded by high variance due to
high dimension of dataset. Therefore if a dataset with high dimension is being used the
classifier must be tuned to make a tradeoff between high bias and low variance. The
classification results are also altered by the noise in data i.e. redundant records, incorrect
records, missing records, outliers etc. All these problems affect the accuracy of a classifier.
Usually the improvements done in a classifier or ensemble model are limited to a very
narrow spectrum and they cannot be applied to another classifier under same conditions.
Classification accuracy is normally improved through ensemble models like bagging
(Which averages the prediction of a number of classification models), boosting (it uses the
voting scheme over a number of classification models), or a combination of classifiers from

different or same families as discussed in chapter 2.

Therefore, the aim of this research is to propose a global optimization model using the idea
of ensemble models for classification methods and prove through experimental results that
the proposed model improves the classification accuracy of various classifiers on various

different public datasets.

1.1. Motivation

A lot of supervised learning methods have been developed each with its own pros and cons
and classification accuracy rate. And a lot of optimization and improvement techniques and
have been suggested to solve the basic problems in these supervised learning methods.
However so far there is no global model available that can solve all the problems to some
extent and improve the classification accuracy rate

1.2. Background

As it will be discussed in chapter 2 various researchers like Sujata Dash et al, R. Bryll et al
and many others have tried to improve the classification accuracy of different classifiers from
different aspects. Lin et al. focused on feature reduction, while D. W. Abbott, S.Y. Sohn et al.
tried to made a better bias-variance tradeoff. M. R. Smith et al. tried to deal with the problem



of noise and outliers in order to improve classification accuracy rates. However as shown in

chapter 2, there exists no global model to improve the accuracy of a classifier.

1.3. Methodology

In this project we would follow the method used in ensemble models to design a new

global optimized model for classification methods.

1.4. Structure of the Thesis:

Chapter 2 provides background to the current research. It starts by defining the concepts of
Dimensionality, Bias, Variance, Noise etc. This is followed by a discussion on all the latest
work published related to the above mentioned concepts and classification accuracy rate.

Chapter 3 describes the detailed design process for the proposed model. The aim of this

research is to develop a global optimization model for classification methods.

Chapter 4 consists of the complete implementation details of the model t along with the
brief description of the software along with the details of the environment in which the
project was done. (Dataset details and Code were covered in more detail in the appendices.)

Chapter 5 provides the experimental results followed by a discussion of the results.
Chapter 6 summarizes the work done as well as the main results of the thesis and suggests

future work that may be of interest. It also outlines various applications for the global
model presented in this work.
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CHAPTER 2: LITERATURE REVIEW

2.1 Background:

As mentioned earlier that so far no global optimization ensemble model is present which can
help in improving the classification and prediction accuracy for supervised learning
problems which are generally affected by a spectrum of issues like dimensionality, accuracy

rate with respect to bias and variance, data quality etc.

2.1.1 Dimensionality Curse:

Curse of dimensionality can be explained as: with a fixed size of training sample the
prediction accuracy decreases if the dimensionality or number of feature increases. If the
sample size is small and number of feature is large than results will not be accurate. If m is the
sample size and b is the number of features than m must be greater than b? in order for the
prediction to be accurate. Otherwise over fitting will occur; means the model will have high
variance. This means that for a fixed sample size of data there exist a optimal number of
features where the model for classification will perform better. If there are two features and
sample size is 10 than we need 10%= 100 sample size for correctly training the model similarly

for 3 features it would be 10°

classification /
error

AT
1 # features

~optimal # features

Figure 1: Graph: Classification Error and Optimal Features [1]



2.1.2 Bias-Variance Tradeoff:

When discussing the classification and prediction errors in supervised learning problems we
are actually referring to the errors caused by bias and variance. There is always a tradeoff
between these bias and variance and the error value depends on the ability of a model to make
this trade off and avoid the over and under fitting of data. Bias is the difference between the
predicted value for data point by the model and the correct predication. i. e. Bias arises when
the classifier cannot represent the true function — that is, the classifier under fits the data i.e.
when it is training on any data set than for a specific input value it is methodically inaccurate
when predicting the right outcome for that input value. In contrast to this, error due to variance
occurs when a model is predicting variable values for give data point i.e. variance occurs when
the algorithm over fits the data and for a specific input value in a dataset it gives a different
outcome every time the training dataset is changed. Both bias and variance are increased and
decreased with respect to the model complexity, which means that every algorithm builds a
different model with different complexity with respect to the values in dataset hence the bias-
variance trade-off for each algorithm, is different for different dataset. But in general what the
researcher are looking at is the overall error not the decomposition of error in these two
components. The point or level of complexity of a model where the decrease in bias is equal to
increment in variance can be termed as the optimal point for that model. Going over this point
causes over-fitting or high variance and staying under this point causes under-fitting or high
bias.

Total Error

Variance

Error
Optirmum Model Complexity

Bias

¥

&

Model Complexity

Figure 2: Bias Variance Trade-off with respect to the model complexity [2]
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2.1.3 Noise in Data:

Noise cannot be defined properly as its definition varies from data to data, problem to problem
and domain to domain. Noise could be the redundant data, irrelevant data, missing data, outlier

etc. Noise in the data also tends to over fit the model.

2.2 Previous Work

Although, no global solution exists for the problems stated above but some other efforts
have been made to resolve these issue and all of them are either algorithm specific or data
specific. Every approach has tackled the problem of classification accuracy rate from a
different angle and perspective. One such work is [4] where Sujata Dash et al. have proved
through comparison of various classification techniques like Support Vector Machine
(SVM) with polynomial Kernel, Support Vector Machine with RBF Kernel, Radial Basis
Function Network (RBFN), Multi-Layer Perceptron network (MLP); with and without
feature extraction. It was found that for construction of high performance classification
model for microarray dataset, partial least square (PLS) regression method is the suitable
feature selection method instead of hybrid dimensionality reduction scheme and feature
selection combined with various classification techniques can yield better results.

Table 1: Predictive error (%) of classification algorithms, using SIMPLS Dimensionality Reduction Scheme [4]

Dataset ‘ RBFN Polynomial SVM RBF SVM MLP
Leukemia 0 0.45 28.22 0.41
Colon Cancer 10.95 0 23.33 0.31
Lung Cancer 11.55 0 16 0.95

The classification error rate of all the three dataset indicate that all dataset responded
favorably to variable pre-selection for all the classifiers except few exceptions and the
predictive accuracy is extremely high something like 100% for SIMPLS-SVM- Polynomial
model for Colon data set, SIMPLS-RBFN model for Leukemia data set and SIMPLS-SVM-
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Polynomial model for Lung data set. The Leukemia and Colon cancer datasets indicate they
were not largely affected by variable pre-selection for SIMPLS-SVM-RBF model and Colon
and Lung data sets for SIMPLS-RBFN model and achieve predictive accuracy of
approximately72% and 88% respectively

Lin et al. in [5] combined PSO (particle swarm optimization) -based approach with
commonly used classification technique LDA (Linear Discriminant Analysis). This research
also emphasizes the importance of feature selection and its positive effect on classification
accuracy. Author of this study have compared the performance of this combined model
called PSOLDA with many other feature selection techniques like forward selection, back
propagation selection etc and shown through experimental results that for many public
datasets the proposed combined model (PSOLDA) have higher classification accuracy rate.
The results in this research work were obtained by comparing the classification accuracy
rates obtained by LDA without feature selection, LDA with forward feature selection, LDA
with backward feature selection, LDA with PCA-based feature selection, LDA feature
selection by exhaustive enumeration and PSOLDA. The data sets used for testing included
Australian dataset, Bioinformatics Dataset, Boston Housing Dataset, Heart Dataset, Cancer
Dataset etc. and it was found that PSOLDA classification accuracy rate for each dataset was

found to be the most optimal as shown in table 2 below.
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Table 2: Comparison of classification accuracy: LDA with and without forward selection, backward selection, PCA,
Exhaustive enumeration and PSOLDA [5]

LDA . ) LDA with
LDA . LDA with | LDA with
] with feature
without backward | PCA-based .
Dataset forward selection by | PSOLDA
feature feature feature .
. feature ) . exhaustive
selection . selection selection .
selection enumeration
Australian 83.0% 80.4% 84.2% 82.1% 84.5% 84.5% 19.09
Bioinformatics 80.4% 79.3% 81.6% 80.4% - 84.4% 18.23
Boston housing 83.8% 82.8% 84.3% 83.8% 85.2% 85.2% 20.10
Breast Cancer 96.1% 95.4% 95.8% 91.7% 96.5% 96.5% 10.04
Bupa live 63.5% 61.1% 64.3% 60.5% 65.2% 65.2% 3.48
Car Evaluation 79.3% 71.2% 78.0% 81.8% 78.1% 78.1% 29.00
Cleveland Heart 74.2% 78.9% 83.3% 77.6% 84.7% 84.7% 7.29
Dermatology 81.6% 96.5% 97.0% 93.3% - 98.4% 37.09
Ecoli 42.5% 79.7% 79.7% 72.3% 80.1% 80.1% 6.00

Table 3: Number of features selected by each technique [5]

N LDA with LDA with LDA with
0.0
. forward backward PCA-based
Dataset original PSOLDA
feature feature feature
features ] ] )

selection selection selection
Australian 15 5.6 13 13.2 11.4
Bioinformatics 20 9.5 18.2 19.5 15.7
Boston housing 13 5.1 9.9 13.9 7.7
Breast Cancer 10 6.0 6.7 9.7 6.6
Bupa live 6 6.3 4.7 5.6 4.6
Car Evaluation 6 49 5.6 5.3 5.4
Cleveland Heart 13 6.1 11.7 12.7 9.5
Dermatology 34 17.7 26.9 28.4 22.3
Ecoli 7 5.5 5.6 6.2 5.6

R. Bryll et al [6] developed a new wrapper method AB (Attribute Bagging) to improve the
classification accuracy implementing a two stage method in which first a suitable size was
provided for training data and then randomly a subset of attributes were selected for voting

scheme. This method was compared with bagging which was used with some decision tree
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algorithms and some rule induction algorithms, and it was found the AB performs better in
terms of accuracy and constancy. And authors conclude that attribute partitioning is better
than data partitioning for improving the accuracy in an ensemble method. Holdout method
has been used instead of cross-validation. Means in each run the training and test data points
are same only the attributes are randomly selected. The results are shown in figure 1. OC1
(oblique Classifier) is an algorithm for building oblique decision trees. The results show that
OC1 in combination with the attribute bagging gives best accuracy rate as compared to when
OC1 is used with bagging. Also using one single technique with full range of attributes does
not yield best result as far as classification accuracies are concerned. Average results are
recorded after 10 runs of hold out methods for attribute bagging and simple bagging as
shown in figure 2. While average of 5 runs of hold out method is recorded for simple OC1

and attribute bagging; as shown in figure 3.

Algorithm Best
accuracy (%)

HCV 76.1
CN2 87.1
D3 89.5
C4.5 90.1
NewlD 01.0
RIEVL (Exact) 20.6
RIEVL (Flexible) 04.4
OC1 (on all attributes) 0229
OC1 with bagging; 25 voters 96.05
OC1 with bagging; 101 voters 96.13
OC1 with AB; 25 9-attribute voters 06.74
OC1 with AB; 25 13-attribute voters 07.21
OC1 with AB; 101 9-attribute voters 07.19

OC1 with AB; 25 9-attr. voters out of 100 07.40
OC1 with AB; 25 9-attr. voters out of 300 07.51

Figure 3: Comparison of best accuracies achieved by various algorithms on hand-pose database [6]
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Averaged results of 10 holdout runs for bagging and AB

Bagging Std. AB Std.
accuracy (%) dev. (%) accuracy (%) dev. (%)
94.45 .12 95.78 0.56

Figure 4: Results of Attribute bagging and simple bagging [6]

Averaged results of five holdout runs for single OC1 runs and AB

Training ocCl1 Std. AB Std.
set (%) acc. (%) dev. (%) acc. (%) dev. (%)
70 92.18 1.00 96.17 0.30
50 91.12 0.89 95.77 0.76

Figure 5: Results of simple OC1 and attribute bagging [6]

D. W. Abbott [7] compared boosting with an ensemble of models across the algorithm
families. These combined models used voting as the selection scheme and authors report that
boosting performs better because it focus on complicated cases in data and take into account

the confidence value of a particular classification decision.

S.Y. Sohn et al. [8] tried to improve the classification accuracy of algorithms like neural
network and decision trees by applying different approaches including bagging, boosting and
clustering. However for the particular problem of road traffic accident classification
clustering leading to classification was found to be more effective.
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Algorithm Accuracy (%) The number of classifier

Decision Tree 72.30 1
Neural network 70.86 1
Dempster-Shafer 72.79 2
Bayesian 71.23 2
Logistic fusion 72.30 2
Bagging (neural net) 72.70 5
Bagging (Decision tree) 74.78 5
Clustering method( neural net 73.94 3
Clustering method (decision tree) 76.10 3

Figure 6: Classification accuracy of algorithms [8]

M. R. Smith et al. [9] suggested that outliers and noise should be eliminated from the dataset
as it will yield better results in terms of classification accuracy. Because by removing or
filtering these instances the dataset becomes clean of all the cases that could be
misclassified. As there is no general definition or guide available as to what noise is and
what an outlier is therefore the identification of these two elements in any dataset is difficult.
Furthermore PRISM was found to be one of the best algorithms for finding cases that could
be outliers. Dimensionality reduction problem has been an interesting topic for researchers
in a diverse spectrum of fields like image detection, voice detection, microarrays, neural

network patterns etc.
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Table 4: The average classification accuracy for each learning algorithm trained with and without filtering [9]

Orig Dist LOF ‘ ECODB RENN PRISM
C4.5 0.803 0.794 0.802 0.807 0.805 0.809
IB1 0.771 0.773 0.773 0.784 0.809 0.797
IB5 0.791 0.789 0.793 0.802 0.822 0.814
MLP 0.813 0.814 0.814 0.822 0.829 0.831
NB 0.765 0.733 0.767 0.722 0.774 0.776
Percept 0.801 0.803 0.798 0.808 0.811 0.812
RBFNet 0.796 0.791 0.792 0.797 0.807 0.806
RIPPER 0.787 0.787 0.788 0.792 0.790 0.798
SVM 0.805 0.803 0.801 0.810 0.808 0.814
Overall 0.792 0.792 0.792 0.799 0.806 0.806

The increase in accuracy was about 1.3%. However, on data sets where more than 10% of
the instances are ISMs (instances that should be misclassified), the increase on average is
2.8% compared to 1.2% for data sets with less than 10% ISMs. Rather than focusing on
correctly classifying the instances that should be misclassified and arbitrarily adjusting the
classification boundary, removing the ISMs for training allows the learning algorithms to
focus on the instances that can be correctly classified. Removing the 1ISMs allows a more
appropriate decision surface to be discovered since the ISMs do not arbitrarily pull the
decision surface from its more optimal position. This leads to higher classification accuracy.

As discussed by Zamalloayz et al [10], B. Liu et al. [11] and Michael L. Raymer et al. [12]
Genetic Algorithm (GA) is quite a popular method under research and is found to be quite
effective for feature selection and classification accuracy improvement. All these researches
related to GA are data specific or algorithm specific. In [10] the performance of GA is
compared with other feature reduction and extraction techniques like Liner Discriminant
Analysis (LDA), Principle Component Analysis (PCA) for one dataset GA was found to

perform better while for the other dataset LDA and PCA showed promising results.
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K Clean speech Telephone speech
GA PCA LDA GA PCA LDA

6 | 5.71+0.09 | 1437+0.15 | 8.11+0.14 | 34.23+0.16 | 33.23+0.12 | 35.52+0.14
8 1.81+0.09 5.86x0.12 2.64+0.09 | 23.90+0.14 | 24.19=0.13 | 25.06£0.13
10 | 0.94+0.04 | 2.73£0.12 1.21+0.06 | 19.70+0.12 | 20.67x£0.12 | 19.43+0.12
11 | 0.350.04 1.61+0.07 1.12+0.06 | 19.324+0.14 | 20.27+0.13 | 18.10+0.13
12 | 0.30+0.04 | 0.94+0.06 0.79+£0.00 | 19.27x0.14 | 19.75+0.16 | 18.18+0.12
13 | 0.33:0.05 0.560.05 0.88+0.04 | 19.12+0.11 | 19.63x=0.10 | 17.660.10
20 | 0.16=x0.02 0.19+0.02 0.39+0.04 | 19.99+0.11 | 17.61x=0.13 | 17.24+0.11
30 | 0.13+0.02 0.15+0.03 0.33£0.04 | 19.10+0.14 | 15.97+0.15 | 18.17£0.12

Figure 7: Mean error rates and 95% confidence intervals in speaker recognition experiments on test data for clean and
telephone speech, using the optimal K-feature sets provided by GA, PCA, and LDA, for k=6, 8, 10, 11, 12, 13, 20 and
30 [10]

GA outperformed PCA and LDA only when dealing with clean speech, whereas PCA and
LDA outperformed GA in most cases when dealing with telephone speech, probably due to
some kind of noise compensation implicit in linear transforms, which cannot be

accomplished just by selecting a subset of features.

In [11] the Genetic Algorithm is combined with the boosting technique in order to improve
accuracy of classification. The improved version assigns higher weight to the misclassified
instances in order to shift the focus on them in the next iteration. This process tends to
achieve higher accuracy with less number of evaluations than the original GA.

Table 5: Mean Prediction Accuracy of GA and BoostGA [11]

‘ Accuracy Evaluations ‘
Data set GA Boost GA GA BoostGA
Breast Cancer 90.6 1.9% 93.1+2.2% 20,000 7,500
Tic-tac-toe 70.0+1.4% 84.7+1.8% 20,000 7,500

In [12] Genetic Algorithm is implemented in combination with K-nearest neighbor classifier
and feature extraction, reduction and classifier training are all done simultaneously and
results are compared with other industry standard feature extraction and reduction technique
like Liner Discriminant Analysis and Sequential Floating Forward Feature Selection.

Despite all this extensive work on ensemble methods and feature reduction problem and
various classification algorithms for improving the accuracy rate in classification. There still
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not any research that focus on the improvement of an algorithm in more than one aspect or
we can say that mostly the improvement are data and problem specific. There is no global
optimization ensemble model suggested so far that can improve the accuracy of
classification methods with any dataset. Therefore in this thesis we design and implement

such a global optimization model and detail design for this model is given in the section 3.

The data source used in most of the previous research work are public dataset (e.g Cleveland
heart disease dataset, breast cancer dataset, wine dataset, sonar data etc available free of cost
online for use in research work. Therefore in this project we will also be using some of these

datasets for testing.
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CHAPTER 3: METHODOLOGY

The aim of this chapter is to provide the design of Global Optimization Model. The idea was to

implement the concept of ensemble model in order to create global model for optimization.

3.1 Flow Chart of Global Optimization Ensemble Model for Classification

Methods (GMC):

The flow chart of GMC is given below. It consists of four layers.

Layer 1: Providing Antidote for Dimensionality Curse

Layer 2: Cross Validation

Layer 3: Bagging (Bias-variance Trade off)

Layer 4: Classification

Feature Subset

Dataafter
Noise

Original

W

Cross Validation

Training Set

Performance
Evaluation

Model Apply Accuracy
and error
Evaluation

Testing Set
Layer2
Layeri

Figure 8: Design of Global Optimization Ensemble Model for Classification Methods (GMC)
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3.2 Layer 1: Providing antidote for Dimensionality curse:

As discussed in the literature review the dimensionality reduction or feature reduction is
necessary in order to improve the classification accuracy. Therefore in our model the first layer
contains the data set, pre-processing operator and a feature reduction operator. According to
[12] Genetic Algorithm (GA) is better than other feature reduction techniques so therefore we

have implemented GA in our proposed model.
3.2.1 The Use of GA in GMC model:
The process that the GA is following is as under:

1. The initial population of individuals is selected randomly.

2. Than the fitness of each individual in this initial population is evaluated.

3. In this design the Maximal fitness is set to infinity which implies that there is no absolute
maxima for this function and the algorithm will keep on checking the populations for best

of best until the maximum number of generations are executed.
4. Repeat until termination (i.e. maximum number of generations):
e The best-fit individuals are selected for reproduction

e New individuals are bred, first through mutation and then a crossover operation is
performed to give birth to offspring.

e The fitness of individual is evaluated and new individuals are selected through roulette

wheel selection scheme (as maximal fitness is infinity so the process will repeat again)

 Least-fit population is replaced with new individuals
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Figure 9: Use of Genetic Algorithm (GA) in GMC model
Some parameters of the algorithm were optimized using grid search method as shown in Table

7, while others were set as follows:

Table 6: Parameter Values in GA

Parameter Value

Selection Scheme Roulette Wheel
Cross over type Shuffle
Probability of Cross over 0.5
Probability for initial population 0.5
Probability of mutation 1/number of attribute
Maximal Fitness Infinity

21



Maximal fitness is set to infinity as there is no absolute maxima for the fitness function which
means the GA will keep on selecting the best of best until the stop criteria is met which in this
case is the maximum number of generation. Roulette wheel selection scheme was used for
selecting individuals because it has the obvious advantage that it does not ignore or discard any
individuals and each individual is given a chance of being chosen as even the weakest of
individuals might be hiding valuable information. And as we are striving for a global solution
therefore a selection method that preserves diversity and is fast to converge sounds good. Our
experimental results (presented in chapter 5) show that this selection produces good results.

Cross over type was set to shuffle because shuffle crossover is related to uniform crossover. A
single crossover position (as in single-point crossover) is selected. But before the variables are
exchanged, they are randomly shuffled in both parents. After recombination, the variables in
the offspring are un shuffled. This removes positional bias as the variables are randomly

reassigned each time crossover is performed.

3.3 Parameter Optimization:

Parameter optimization for the operators in each layer was done by implementing Global
optimization operator using Grid search. “This methodology involves setting up of grids in the
decision space and evaluating the values of the objective function at each grid point. The point
which corresponds to the best value of the objective function is considered to be the optimum
solution.”[13] In all the layers total 5 parameters were optimized using Grid search
optimizations. From each attribute’s grid 11 combinations were proposed; this means for
optimizing these 5 parameters total 161051 combinations were tested. Table 7 shows all the

parameter and there optimized values.
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Table 7: Parameter optimization using Grid Search

Grid
Parameter Operator Combination Optimal Value
Range
Population 2,3,6,11,18, 27, 37,
) GA-Layer 1 2-100 6
size 50, 65, 81, 100
Maximum
1, 6,11, 16, 21, 26,
no. of GA-Layer 1 1-50 16
) 30, 35, 40, 45, 50
generation
Number of 2,4,6,10, 14, 19, 26,
) ) CV-Layer 2 2-50 10
iterations 33,41, 50
] 0,0.1,0.2,0.3,04,
Sampling _
] Bagging- Layer 3 | 0-1.0 0.5,0.6,0.7,0.8, 0.9, 0.6
Size
1
Number of _ 1,2,5,10, 17, 26, 37,
) ) Bagging- Layer 3 | 1-100 10
iterations 50, 64, 81, 100

3.4 Layer 2: X-Fold Cross Validation:

In Layer 2 Partition of Training and testing Data set was done using X-Fold cross validation.
“The data set is divided into n subsets, and the holdout method is repeated k times. Each time,
one of the n subsets is used as the test set and the other n-1 subsets are put together to form a
training set. Then the average error across all ntrials is computed. The advantage of this
method was that it matters less how the data gets divided. Every data point gets to be in a test
set exactly once, and gets to be in a training set n-1 times. Besides, the variance of the resulting
estimate is also reduced as n is increased.” [14] Stratified sampling scheme was used in CV
with number of iteration set to 10 as shown in Table 7. In stratified sampling the random
subsets are created but the distribution of class in those subsets is same as the whole dataset.
Thus this type of sampling reduces variance. For example we have a data set of 180 employees
and we want a sample set of 40 employees. The first step is to calculate the percentage of male

female in each group. i.e
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e Percentage of male members in full-time category= 90 / 180 = 50%

e Percentage of male members in part-time category = 18 / 180 = 10%
» Percentage of female members in full-time category = 9 /180 = 5%

» Percentage of female members in part-time category= 63 / 180 = 35%

This calculation tell us that of our desired sample of 40 employees, 50 percent should be male
(full time), 10 percent should be male (part-time), 5 percent should be female (full-time), 35
percent should be female (part-time). This means that we need to calculate the 50% of 40 which
is 20. Similarly 10% of 40 is 4, 5% of 40 is 2, 35% of 40 is 14. This is the final ratio of records

in each category in our sample of 40 employees.

3.5 Layer 3: Bias-Variance Tradeoff:

Layer 3 did an optimal Bias-Variance Trade-off. Accuracy improvement is done by
implementing bootstrap aggregation (bagging). Bagging is a machine learning ensemble meta-
algorithm which reduces both bias and variance in order to help avoid over fitting. “Although it
is usually applied to decision tree models, it can be used with any type of model. Bagging is a
special case of the model averaging approach”.[15] Parameter setting for bagging is shown in
Table 7. We are using bagging instead of boosting because Error = Noise error + Bias +
Variance Bagging can reduce both bias and variance but mostly it reduces just variance and it
hardly ever increase error. For high-bias classifiers, it can reduce bias and for high-variance
classifiers, it can reduce variance. While boosting in the early iterations; is primary a bias-
reducing method. In later iterations, it appears to be primarily a variance-reducing method. It
may increase error and margins and is not good with data with noise. That is the reason that we

chose bagging instead of boosting for bias and variance tradeoff.

3.6 Layer 4: Classification

Classifiers were placed in layer 4 with parameters configuration done according to the dataset.
All classifier parameters were set to obtain the optimal model in order to reduce the bias. The

setting used for each classifier is shown in the following table.
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Operator Name

ID 3

Table 8: Parameter configuration for Classifiers

Parameter Configuration ‘

Criterion: Information_gain

Minimal size of split: 4

Minimal leaf size: 2

Minimal gain: 0.1

Decision Tree

Criterion: Information_gain

Minimal size for split; 4

Minimal leaf size: 2

Minimal gain: 0.1

Maximal depth: 20

Confidence: 0.5

Random forest

Number of trees: 10

Criterion: Information_gain

Minimal leaf size: 2

Minimal gain: 0.1

Maximum depth: 20

Confidence:0.5

Rule Induction

Criterion: Information_gain

Sample ratio: 0.7

Pureness:0.6

Minimal prune benefit: 0.6

K nearest neighbors : 11

Weighted Vote : True

K-NN i
Measure Type: NominalMeasures
Nominal Measure: DiceSimilarity
Naive Bayes Laplace Correction : True
W-AODE Frequency for super parents: 1.0
Confidence Threshold: 0.5
W-PART _ i
Minimum Objects Per Leaf: 2.0
Confidence Threshold: 0.5
W-J48

Minimum Objects Per Leaf: 2.0
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CHAPTER 4: IMPLEMENTATION

The aim of this chapter is to provide a detailed view of how GMC was implemented.
Implementation and testing is done using core i3 processor with 4GB RAM, while coding is
done using XML. Pre-processing is performed on every dataset according to requirements of
the classifier used in order to remove noise from data and do type conversations. The model is

implemented and tested in RapidMiner5.

“RapidMiner, formerly YALE (Yet Another Learning Environment), is an environment
for machine learning, data mining, text mining, predictive analytics, and business analytics. It is
used for research, education, training, rapid prototyping, application development, and
industrial applications. In a poll by K Dnuggets, a data-mining newspaper, RapidMiner ranked
second in data mining/analytic tools used for real projects in 2009 and was first in 2010.1t is
distributed under the AGPL open source license and has been hosted by Source Forge since
2004.” [16]

Step 1: Algorithm Selection

As we are optimizing the model for supervised learning problems therefore following liner and

non-liner classifiers were selected and implemented and tested.

e KNN “is a method for classifying objects based on closest training examples in
the feature space. An object is classified by a majority vote of its neighbors, with the
object being assigned to the class most common amongst its k nearest neighbors (k is a
positive integer, typically small). If k = 1, then the object is simply assigned to the class
of its nearest neighbor.” [17, 18]

e Decision Tree “works similar to Quinlan's C4.5 or CART. Roughly speaking, the tree
induction algorithm works as follows. Whenever a new node is created at a certain
stage, an attribute is picked to maximize the discriminative power of that node with
respect to the examples assigned to the particular sub tree. This discriminative power is
measured by a criterion which can be selected by the user (information gain, gain ratio,

gini index, etc.). The algorithm stops in various cases:
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» No attribute reaches a certain threshold (minimum gain).
» The maximal depth is reached.

e There are less than a certain number of examples (minimal_size_for_split) in the

current sub tree.

Finally, the tree is pruned, i.e. leaves that do not add to the discriminative power of the whole

tree are removed”. [19, 20]

e ID3 “It’s a decision tree learner which learns without pruning and works only for
nominal attributes. Its an implementation of Quinlan’s ID 3. The ID3 algorithm can be

summarized as follows:
» Take all unused attributes and count their entropy concerning test samples

* Choose attribute for which entropy is minimum (or, equivalently, information

gain is maximum)
Make node containing that attribute.” [21, 22]

e Random Forest “Learns a set of random trees, i.e. for each split only a random subset
of attributes is available. The resulting model is a voting model of all trees.” [23, 24]

e Logistic Regression “Logistic regression allows one to predict a discrete outcome, such
as group membership, from a set of variables that may be continuous, discrete,
dichotomous, or a mix of any of these. Generally, the dependent or response variable is
dichotomous, such as presence/absence or success/failure”. [25, 26]

e Rule induction “It’s an implementation of algorithm RIPPER which is a rule based
learner. It grows iteratively and prunes the nodes until there are no positive examples
left.” [27]

e W-AODE: “It’'s a WEKA implementation of Naive Bayes learner which is a simple
probabilistic classifier based on applying Bayes'  theorem  with strong
(naive) independence assumptions. Parameter estimation for naive Bayes models uses
the method of maximum likelihood. It cannot handle numerical attributes and missing
values and numeric label.

e W-PART: It classifies using separate and conquer rule and builds a partial C 4.5
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e W-Prism: It’s an implementation of PRISM algorithm and can only deal with nominal
dataset. Prim's algorithm is a greedy algorithm that finds a minimum spanning tree for
a connected weighted undirected graph. This means it finds a subset of the edges that
forms a tree that includes every vertex, where the total weight of all the edges in the tree
IS minimized.

e W-J48 It’s a WEKA implementation of C 4.5 decision tree algorithm. At each node of
the tree, C4.5 chooses one attribute of the data that most effectively splits its set of
samples into subsets enriched in one class or the other. Its criterion is the normalized
information gain (difference in entropy) that results from choosing an attribute for
splitting the data. The attribute with the highest normalized information gain is chosen

to make the decision. The C4.5 algorithm then recourses on the smaller sub lists.” [28].
Step 2: Data Set Selection

For this research public datasets were selected that are usually used in other researches as well
for testing supervised learning methods (see chapter 2). Details related to each dataset along
with meta-data view and description of attributes is given in appendices C. A brief summary is

given here in Table 8.

Table 9: Data set Details

# of # of # of Attribute Missing
cases @ attribute classes = Characteristics Values
Cancer Dataset: 699 9 2 numeric yes
Diabetes Dataset | 768 9 2 Integer, real No
Heart Disease Categorical,
Dataset S s 2 integer, real yes
AL reenne 1000 15 2 Integer, Nominal No
dataset
Wine Dataset 178 13 3 Real , Integer No
Sonar Dataset 208 61 2 Real, nominal yes
Sl 50 9 3 Nominal No
progress Dataset
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Dataset

Suitable classifier for each dataset is as under:

Table 10: Data set & Suitable Classifiers

Classifier

Capabilities

Polynomial, numerical ,binomial

All Datasets K-NN attributes & labels, Can handle missing
values
All Datasets Decision Tree ) ) _ )
i Polynomial, numerical, binomial
Heart, wine,

Educational and

Sonar Dataset

Rule induction

attributes. Cannot handle numeric labels,

Can handle missing values

Cancer, Heart,

Adult Income ID3 Can only handle binomial and
Dataset polynomial labels and attributes, and
All Datasets W-AODE cannot handle missing values
All Datasets W-Prism
Educational

Progress, Sonar

and Adult Income

Random Forest,

Dataset
All Datasets W-PART
All Datasets W-J48

Polynomial, numerical, binomial
attributes. Cannot handle numeric labels,

Cannot handle missing values

Sonar, Diabetes,
Cancer, Adult
Income Dataset

Logistic Regression

Numerical attributes and binomial labels,

cannot handle missing values
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Step 3: Simple Classification using Validation technique

First each dataset is classified using the classifier mentioned for each dataset and the results are
validated using the X-fold cross-validation technique. Where x=10 for all classifiers and
sampling technique used for validation is “Shuffled sampling”. Results consisting of
classification accuracy, classification error and execution time are recorded for each classifier

(as shown in chapter 5).

Step 4: Classification using global optimization ensemble model for classification methods
(GMC)

All the classifiers are now encapsulated in the proposed generic optimization ensemble model
and executed for results. Parameters of all the classifiers are same as in step 3 and as specified
in chapter 3. Now the improved results consisting of optimized classification accuracy,
classification results and execution time is recorded for every classifier and compared with the

previous result in order to calculate the improvement percentage. (as shown in chapter 5).
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CHAPTER 5: RESULTS AND DISCUSSION

This chapter provides the results for each data set and the corresponding accuracy

comparison between simple classification and GMC model are given in this section.

5.1 Cancer Dataset:

Details related to this dataset can be seen in Appendices C. For this particular dataset a
preprocessing operator “Numerical to binomial” was used. This operator converts the
specified columns of the numerical data to binomial data (y/n). We converted the numerical
label of this dataset for further processing because CV operator in RapidMiner cannot handle
numerical labels. As the label only contains two types of values that is “2” or “4” so they
were easily converted to binomial label with “2” set to “N” and “4” set to “Y”. Noise was
present in form of missing values which was removed using the “Replace missing values”
operator. It replaced the missing values in each column with the average value for the
column. First the classification results were recorded using simply each classifier and cross
validating there results. Than these classifiers were place inside the GMC model and results

were recorded as shown in table below.

Table 11: Results for Cancer Dataset: Comparison of Optimized Classification Accuracy using GMC

Model with Simple Classification using different classifiers.

. . . Optimized . .
. Classification Classification ~ Execution T Classification | Execution Improvement
Algorithm . Classification .
Accuracy Error Time Error Time %
Accuracy
K-NN 66.81% 33.19% 0s 96.71% 3.43% 53s 29.9%
Decision
94.42% 5.58% 0s 96.71% 3.29% 6:08s 2.29%
Tree
1D3 66.52% 33.48% 0s 85.27% 14.73% 15:08s 18.52%
W-PART 94.71% 5.29% 0s 97.28% 2.72% 1:00s 2.57%
W-Prism 90.13% 9.87% 0s 96.28% 3.72% 2:36s 6.15%
W-J48 94.71% 5.29% 0s 96.71% 3.29% 1:47s 2%
W-AODE 97.00% 3.00% 0s 100% 0% 11s 3%
Logistic
. 95.01% 4.01% 0s 96.14% 3.86% 3:59s 1.13%
Regression
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Figure 10: Cancer Dataset: Optimized Classification Accuracy
Table 11 shows that using the GMC model for optimization the classification accuracy for
cancer dataset has improved from 1.13% to 29.76% depending on the classifier and the bias-

variance trade off each model makes.

5.2 Heart Disease Dataset:

Details related to this dataset can be seen in Appendices C. For this particular dataset a
preprocessing operator “Numerical to polynomial” was used. This operator converts the
specified columns of the numerical data to polynomial data. We converted the numerical
label of this dataset for further processing because CV operator in RapidMiner cannot handle
numerical labels. First the classification results were recorded using simply each classifier
and cross validating there results. Than these classifiers were place inside the GMC model

and results were recorded as shown in table below.
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Table 12: Results for Heart Disease Dataset: Comparison of Optimized Classification Accuracy using

GMC Model with Simple Classification using different classifiers.

Optimized

. Classification Classification Execution . Classification =~ Execution = Improvement
Algorithm . Classification .
Accuracy Error Time Error Time %
Accuracy
K-NN 50.82% 49.18% 0s 59.75% 40.25% 19s 8.93%
Decision
44.89% 55.11% 0s 59.43% 40.57% 3:27 14.54%
Tree
ID3 47.52% 52.48% 0s 55.48% 44.24% 5:11 8.24%
W-PART 50.52% 49.48% 0s 60.08% 39.92% 2:10 9.56%
W-Prism 47.51% 52.49% 0s 56.09% 43.91% 1:12 8.58%
W-AODE 55.47% 44.53% 0s 61.13% 38.87% 36s 5.66%
W-J48 49.87% 50.13% 0s 61.05% 38.95% 2:12 11.18%
Rule
. 57.72% 42.28% 0s 59.76% 40.24% 20:48 2.4%
Induction

M Classification Accuracy .

Optimized Classification Accuracy RESUItS: Heart Dlsease DataSEt
70.00%
60.00%
50.00% - —
40.00% - —
30.00% - —
20.00% - —
10.00% - |
0.00% - )

K- Decision W-PART  W-Prism  W-AODE W-J48 Rule

Tree Induction

Figure 11: Heart Disease Dataset: Optimized Classification Accuracy
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Table 12 shows that using the GMC model for optimization the classification accuracy for
Heart Disease dataset has improved from 2.4% to 14.54% depending on the classifier and the

bias-variance trade off made by model.

5.3 Wine Dataset:

Details related to this dataset can be seen in Appendices C. For this particular dataset a
preprocessing operator “Numerical to polynomial” was used. This operator converts the
specified columns of the numerical data to polynomial data. We converted the numerical
label of this dataset for further processing because CV operator in RapidMiner cannot handle
numerical labels. First the classification results were recorded using simply each classifier
and cross validating there results. Than these classifiers were place inside the GMC model

and results were recorded as shown in table below.

Table 13: Results of Wine Dataset: Comparison of Optimized Classification Accuracy using GMC Model

with Simple Classification using different classifiers.

Optimized

. Classification | Classification Execution S Classification Execution | Improvement
Algorithm ) Classification )
Accuracy Error Time Error Time %
Accuracy
K-NN 70.75% 29.25% 0s 90.42% 9.58% 11s 19.67%
Decision
91.57% 8.43% 0s 95.49% 4.51% 1:40 3.92%
Tree
W-PART 90.42% 9.58% 0s 96.67% 3.33% 28s 6.25%
W-Prism 52.32% 47.68% 0s 61.27% 38.73% 39s 8.95%
W-AODE 71.34% 28.66% 0s 75.26% 24.74% 2:46s 3.92%
W-J48 90.46% 9.54% 0s 96.63% 3.37% 4:46 6.17%
Rule
. . 86.37% 13.63% 0s 93.27% 6.73% 4:01s 6.9%
induction
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Figure 12: Wine Dataset : Optimized Classification Accuracy

Table 13 shows that using the GMC model for optimization the classification accuracy for
Wine dataset has improved from 3.92% to 19.67% depending on the classifier and the bias-
variance trade off made by the model.

5.4 Adult Income Dataset:

Details related to this dataset can be seen in Appendices C. For this particular dataset no pre-
processing operator was used. The class label is already a binomial column and there was no
noise in the data. Therefore first the classification results were recorded using simply each
classifier and cross validating there results. Than these classifiers were place inside the GMC
model and results were recorded as shown in table below.
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Table 14: Results of Adult Income Dataset: Comparison of Optimized Classification Accuracy using

GMC Model with Simple Classification using different classifiers.

. . . Optimized . .
. Classification  Classification Execution T Classification | Execution Improvement
Algorithm . Classification .
Accuracy Error Time Error Time %
Accuracy
K-NN 76.70% 23.30% 0s 83.20% 16.80% 2:02 6.5%
Decision
80.00% 20.00% 1s 82.20% 17.80% 11:06 2.20%
Tree
D3 75.60% 24.40% 1s 78.60% 21.40% 1:15:23 3%
W-PART 81.00% 19.00% 0s 83.50% 16.50% 5:02s 2.4%
W-Prism 81.10% 18.09% 0s 82.20% 17.80% 9:38s 1.1%
W-AODE 80.80% 19.20% 0s 82.60% 17.40% 9:42s 1.8%
W-J48 81.50% 18.50% 0s 83.00% 17.00% 2:46s 1.5%
Random
76.10% 23.90% 0s 77.30% 22.70% 36:58s 1.2%
Forest
Logistic
. 79.00% 20.40% 1s 80.00% 20.00% 8:56s 1%
Regression
W Classification Accuracy I . d I
- . Results: Adult Income Dataset
Optimized Classification Accuracy
86.00%
84.00%
82.00%
80.00%
78.00% [
76.00% - —
74.00% - —
72.00% - —
70.00% -

Decision W-PART W-Prism W-AODE W-J48 Random Logistic
Tree Forest Regression

Figure 13: Adult Income Dataset: Optimized Classification Accuracy

38




As shown in Table 14, using the GMC model for optimization the classification accuracy for
Adult Income dataset has improved from 1% to 6.5% depending on the classifier and the

bias-variance trade off made by the model.

5.5 Sonar Dataset:

Details related to this dataset can be seen in Appendices C. For this particular dataset no pre-
processing operator was used. The class label is already a binomial column and there was no
noise in the data. Therefore first the classification results were recorded using simply each
classifier and cross validating there results. Than these classifiers were place inside the GMC

model and results were recorded as shown in table below.

Table 15: Results of Sonar Dataset: Comparison of Optimized Classification Accuracy using GMC Model

with Simple Classification using different classifiers.

. . . Optimized . .
. Classification | Classification = Execution R Classification Execution  Improvement
Algorithm . Classification .
Accuracy Error Time Error Time %
Accuracy
K-NN 69.71% 30.92% 0s 74.57% 25.43% 24s 4.86%
Decision
73.57% 26.43% 1s 83.67% 16.33% 17:10s 10.1%
Tree
W-PART 75.48% 24.52% 0s 83.17% 16.83% 3:10s 7.69%
W-Prism 48.02% 51.98% 0s 63.38% 36.62% 2:53 15.36%
W-J48 70.24% 29.76% 0s 82.21% 17.79% 2:56 11.97%
Rule
. . 71.66% 28.40% 0s 76.48% 23.525 2:44 4.82%
induction
Random
68.26% 31.74% 0s 75.36% 21.64% 20:41s 7.1%
Forest
Logistic
. 74.55% 25.45% 0s 80.29% 19.71% 1:45s 5.74%
Regression
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As shown in Table 15, using the GMC model for optimization the classification accuracy for

Sonar dataset

Figure 14: Sonar Dataset: Optimized Classification Accuracy

has improved from 4.82% to 15.36% depending on the classifier and the bias-

variance trade off made by the model.

5.6: Educational Dataset:

Details related to this dataset can be seen in Appendices C. For this particular dataset no pre-
processing operator was used. The class label is already a polynomial column and there was
no noise in the data. Therefore first the classification results were recorded using simply each

classifier and cross validating there results. Than these classifiers were place inside the GMC

model and results were recorded as shown in table below.
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Table 16: Results of Educational Dataset: Comparison of Optimized Classification Accuracy using GMC

Model with Simple Classification using different classifiers.

N I : Optimized I i
. Classification Classification Execution R Classification Execution Improvement
Algorithm . Classification .
Accuracy Error Time Error Time %
Accuracy
K-NN 46% 54% 0s 54% 46% 4s 8%
Decision
42% 58% 0s 56% 44% 13s 14%
Tree
1D3 20% 80% 0s 44% 56% 21s 24%
W-PART 32% 68% 0s 54% 46% 8s 22%
W-Prism 24% 76 1s 50% 50% 5s 26%
W-J48 44% 56% 0s 58% 42% 8s 14%
W-AODE 46% 54% 0s 56% 44% 6s 10%
SVM 60% 40 0s 76% 24% 25s 16%
Random
48% 52% 1s 58% 42% 1:02 12%
Forest
Rule
. 44% 56% 17s 54% 46% 2:07s 10%
Induction

s0% R Optimised classfication Accuracy Results: Educational Dataset

70%

60%

50% —

40% - —

30% - —

20% - —

il |

0% - .

K-NN  Decision W-PART W-Prism W-J48 W-AODE SVM Random Rule

Tree Forest Induction

Figure 15: Educational Dataset: Optimized Classification Accuracy
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As shown in Table 16, using the GMC model for optimization the classification accuracy for
Educational dataset has improved from 8% to 26% depending on the classifier and the bias-

variance trade off made by the model.
5.7 Diabetes Dataset:

Details related to this dataset can be seen in Appendices C. For this particular dataset a
preprocessing operator “Numerical to binomial” was used. This operator converts the
specified columns of the numerical data to binomial data (y/n). We converted the numerical
label of this dataset for further processing because CV operator in RapidMiner cannot handle
numerical labels. As the label only contains two types of values i.e. “0” or “1”; so they were
easily converted to binomial label with “0” set to “N” and “1” set to “Y”. Noise was not
present in this dataset. First the classification results were recorded using simply each
classifier and cross validating there results. Than these classifiers were place inside the GMC

model and results were recorded as shown in table below.

Table 17: Results of Diabetes Dataset: Comparison of Optimized Classification Accuracy using GMC

Model with Simple Classification using different classifiers.

. . . Optimized . .
. Classification | Classification Execution S Classification ~ Execution Improvement
Algorithm . Classification .
Accuracy Error Time Error Time %
Accuracy
K-NN 73.70% 26.30% 0s 77.48% 22.52% 37s 4%
Decision
74.0% 265 0s 75.39% 24.61 2:41 1.39%
tree
W-PART 73.83% 26.17% 0s 77.34% 22.66% 1:13s 3.51%
W-Prism 57.42% 42.58% 0s 67.97% 32.03% 4:21 10.55%
W-J48 74.08% 25.92% 0s 77.22% 22.78% 1:53 3.14%
W-AODE 66.54% 33.46% 0s 69.14% 30.86% 3:13s 2.6%
Logistic
. 76.00% 23.05% 0s 77.95% 22.65% 3:03s 1.95%
Regression
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Figure 16: Diabetes Dataset: Optimized Classification Accuracy
As shown in Table 17, using the GMC model for optimization the classification accuracy for

Diabetes dataset has improved from 1.39% to 10.55% depending on the classifier and the

bias-variance trade off made by the model.
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CHAPTER 6: CONCLUSION AND FUTURE WORK
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CHAPTER 6: CONCLUSION AND FUTURE WORK

6.1 Conclusion

Data mining is the process of extracting useful information and pattern form raw data
gathered from various resources. Supervised learning is a process in data mining which helps
in extracting patterns and information form labeled data. A lot of techniques, methods and
algorithms are available each with its own pros and cos. Each method tries to solve a
different supervised learning problem. In order to solve the basic issues of supervised
learning problems like dimensionality reduction, bias-variance tradeoff and noise; many
researchers have tackled these problems from various aspects as discussed in chapter 2. But
not a single research tackles all these problems at once. Or no single optimization technique
or model is proposed for this purpose. Therefore we used the concept of ensemble models to
design an optimized global ensemble model for classification methods (GMC). The model
was designed in layers with each layer is solving one of the basic issues of supervised
learning. Layer 1 solved the issue of dimensionality curse. We used the genetic algorithm for
this purpose as it was stated to be the best techniques for feature reduction for static
databases in [10, 11, and 12] so therefore in layer one we implemented genetic algorithm;
like all other layers the parameter optimization was done for genetic algorithm. In which the
most discussed parameter in literature like population size, maximum number of generations
and selection scheme were optimized. Grid search method is used for optimization of
parameters. In Layer 2 x- fold cross validation was performed. Cross validation technique
divides the data into testing and training set and for each iteration of the validation process a
different sample set is used for training and the rest of the sample set are used for validation.
The parameters optimized in this layer were the number of iterations and the sampling
scheme type. Stratified sampling was used in order to preserve the ratio of all types of data
records. . In Layer 3 mostly reduction in variance was done by using bagging. Which is a
meta algorithm and a special case of model averaging. Parameter optimization was done for

this layer as well and number of iteration and sample size were optimized. So up till now
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using grid search optimization in total 5 parameters were optimized and in total 161051
combinations were tested. While layer 4 reduced bias by optimizing the parameter of
classifiers selected for the testing. All classifiers were tuned to give best performance as
discussed in chapter 3. We proved through experimentation that if classifiers are enclosed in
our model there accuracy improves form 1%-30% depending upon the data set, model
complexity and it capability of handling bias and variance. Our model yielded better results
than when the classifiers were used alone or in combination. In total 7 different dataset were
used in training and testing of GMC model. All these dataset are public dataset and have been
used in many other data mining researches. The software used for implementation of GMC
model was RapidMiner 5 which is industry standard open source software for data mining. It
contains over 250 different data mining algorithms. RapidMiner comes with various different
extensions related to text mining and web mining etc. One such extension is WEKA and we
have also tested some of the WEKA implementations of different classifiers in this research

work as well.

6.2 Further work:

The model can be further optimized for extremely large data set in real time. In that case the
optimization will focus on the reduction of execution time as well as further improvement in
accuracy. Parallel processing can be introduced into the model for minimizing time. Parallel
processing operators can be implemented using various data mining tools. RapidMiner also
support parallel processing in some cases. So further research can be carried out on the usage
of threads and their impact on the model optimization and classification accuracy rate;
keeping in view the execution time. These parallel processing models can then be tested for
large scale real time dataset. In which data is dynamic and changing with time. The research
carried out in this thesis was for static datasets and all the techniques and methods used were
selected accordingly. For dynamic dataset the techniques, especially the optimization
techniques might vary. There are a lot of optimization techniques available a separate
research and comparison can be carried out between all those techniques and the effect of
those techniques on the global model for optimization. Furthermore, research can be carried
out on this model for unsupervised learning problems with data sets related to more diverse
fields.
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As this model is applicable to all the fields in which supervised learning methods are used
like image processing, medicine, statistics, education, transactional databases, facial
recognition, voice recognition, video recognition etc. Very large scale real time dataset exist
for all these fields therefore further research is required in order to make a better global

optimization ensemble model that can deal with large datasets as well.
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APPENDIX A: Definitions

Support Vector Machine(SVM):

The basic SVM algorithm takes a set of input data and predicts, for each given input,
which of two possible classes forms the output, making it a non-
probabilistic binary linear classifier. Given a set of training examples, each marked as
belonging to one of two categories, an SVM training algorithm builds a model that
assigns new examples into one category or the other. An SVM model is a
representation of the examples as points in space, mapped so that the examples of the
separate categories are divided by a clear gap that is as wide as possible. New
examples are then mapped into that same space and predicted to belong to a category
based on which side of the gap they fall on. SVM can be used for classification or

regression.

Kernel Methods:

It’s another class of algorithm for pattern recognition or analysis. Kernel methods
map the data into higher dimensional spaces in the hope that in this higher-
dimensional space the data could become more easily separated or better structured.
There are also no constraints on the form of this mapping, which could even lead to

infinite-dimensional spaces.

Partial Least Square (PLS):

It’s a statistical method that bears some relation to principal components regression;
instead of finding hyper planes of minimum variance between the response and
independent variables, it finds a linear regression model by projecting the predicted
variables and the observable variables to a new space. The PLS regression model
attempts to find a small number of linear combinations of the original independent
variables which maximize the covariance between the dependent variable and the

PLS components.
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Multi-Layer perceptron Network (MLP):

Error back propagation neural network is a feed forward multilayer perceptron (MLP)
that is applied in many fields due to its powerful and stable learning algorithm. The
neural network learns the training examples by adjusting the synaptic weight
according to the error occurred on the output layer. The back propagation algorithm
has two main advantages: local for updating the synaptic weights and biases, and
efficient for computing all the partial derivatives of the cost function with respect to
these free parameters. A perceptron is a simple pattern classifier.

RBFN:

The radial basis function (RBF) network is a special type of neural networks with
several distinctive features. A RBF network consists of three layers, namely the input
layer, the hidden layer, and the output layer. The input layer broadcasts the
coordinates of the input vector to each of the units in the hidden layer. Each unit in
the hidden layer then produces an activation based on the associated radial basis
function. Finally, each unit in the output layer computes a linear combination of the
activations of the hidden units. How a RBF network reacts to a given input stimulus is
completely determined by the activation functions associated with the hidden units
and the weights associated with the links between the hidden layer and the output

layer.

PSO:

Particle swarm optimizationis a computational method that optimizesa problem
by iteratively trying to improve a candidate solution with regard to a given measure of
quality. PSO optimizes a problem by having a population of candidate solutions, here
dubbed particles, and moving these particles around in the search-space according to
simple mathematical formulae over the particle's position and velocity. PSO is
a meta-heuristic as it makes few or no assumptions about the problem being
optimized and can search very large spaces of candidate solutions. However, meta-
heuristics such as PSO do not guarantee an optimal solution is ever found. PSO can
therefore also be used on optimization problems that are partially irregular, noisy,

change over time, etc.
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LDA:

Linear discriminant analysis is a method wused in statistics, pattern
recognition and machine learningto find alinear combination of features which
characterizes or separates two or more classes of objects or events. The resulting
combination may be used as a linear classifier or, more commonly, for dimensionality

reduction before later classification.

PCA:

It is a way of identifying patterns in data, and expressing the data in such a way as to
highlight their similarities and differences. Since patterns in high dimension data are
hard to find, where the luxury of graphical representation is not available. Once these
patterns are found in the data, it can be compressed i.e. by reducing the number of
dimensions, without much loss of information. This is done by computing the eigen
vectors and covariance matrix, then sorting them according to the corresponding
eigen values, in descending order, and finally building the projection matrix.

Bagging:

Bootstrap aggregating (bagging) is a machine learning ensemble meta-algorithm to
improve machine learning of statistical classification and regression models in terms
of stability and classification accuracy. It also reduces variance and helps to
avoid over fitting. Although it is usually applied to decision tree models, it can be
used with any type of model. Bagging is a special case of the model

averaging approach.

Boosting:
It is a machine learning meta-algorithm for reducing bias in supervised learning. It is

the process of turning a weak learner into a strong learner.

Cross-Validation:
The data set is divided into k subsets, and the holdout method is repeated k times.

Each time, one of the k subsets is used as the test set and the other k-1 subsets are put
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together to form a training set. Then the average error across all k trials is computed.
The advantage of this method is that it matters less how the data gets divided. Every
data point gets to be in a test set exactly once, and gets to be in a training set k-
1 times. The variance of the resulting estimate is reduced as k is increased.

Holdout method:

The simplest kind of cross validation. It has fixed training and testing dataset
partitions. The advantage of this method is that it is usually preferable to the residual
method and takes no longer to compute. However, its evaluation can have a high
variance. The evaluation may depend heavily on which data points end up in the
training set and which end up in the test set, and thus the evaluation may be
significantly different depending on how the division is made.

Meta-heuristic:

Designates a computational method that optimizes a problem by iteratively trying to
improve a candidate solution with regard to a given measure of quality. Meta-
heuristics make few or no assumptions about the problem being optimized and can

search very large spaces of candidate solutions.

Ensemble Methods:
Use multiple models to obtain better predictive performance than could be obtained

from any of the constituent models.

Clustering:
It is the task of grouping a set of objects in such a way that objects in the same group
(called cluster) are more similar (in some sense or another) to each other than to those

in other groups (clusters)

Decision Trees:
Decision Trees are used in statistics, data mining and machine learning, uses

a decision tree as a predictive model which maps observations about an item to
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conclusions about the item's target value. More descriptive names for such tree

models are classification trees or regression trees

Neural Networks:

An artificial neural network (ANN) learning algorithm, usually called "neural
network™ (NN), is a learning algorithm that is inspired by the structure and functional
aspects of biological neural networks. Computations are structured in terms of an
interconnected group of artificial neurons, processing information using
a connectionist approach to computation. Modern neural networks are non-linear
statistical data modeling tools. They are usually used to model complex relationships
between inputs and outputs, to find patterns in data, or to capture the statistical
structure in an unknown joint probability distribution between observed variables.

Genetic Algorithm:

This is the most popular type of EA. One seeks the solution of a problem in the form
of strings of numbers (traditionally binary, although the best representations are
usually those that reflect something about the problem being solved), by applying
operators such as recombination and mutation (sometimes one, sometimes both). This

type of EA is often used in optimization problems.

K-nearest Neighbor:

It is amongst the simplest of all machine learning algorithms: an object is classified
by a majority vote of its neighbors, with the object being assigned to the class most
common amongst its k nearest neighbors (kis a positive integer, typically small).
If k = 1, then the object is simply assigned to the class of its nearest neighbor.
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APPENDIX B: Code

XML code for Global optimization ensemble model for Classification Methods with
KNN Classifier and Cancer Dataset

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="5.2.006">
<context>
<input/>
<output/>
<macros/>
</context>

<operator activated="true" class="process" compatibility="5.2.006" expanded="true"
name="Process">

<process expanded="true" height="404" width="709">

<operator activated="true" class="retrieve" compatibility="5.2.006" expanded="true"
height="60" name="Retrieve" width="90" x="45" y="255">

<parameter key="repository_entry" value="breast-cancer-dataset"/>
</operator>

<operator activated="true" class="numerical_to_binominal™ compatibility="5.2.006"
expanded="true" height="76" name="Numerical to Binominal" width="90" x="112" y="120">

<parameter key="attribute_filter_type" value="single"/>
<parameter key="attribute" value="Class(benign/Malignant)"/>
<parameter key="include_special_attributes" value="true"/>
<parameter key="max" value="2.0"/>

</operator>

<operator activated="true" class="replace_missing_values" compatibility="5.2.006"
expanded="true" height="94" name="Replace Missing Values" width="90" x="246" y="120">

<parameter key="include_special_attributes" value="true"/>
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<list key="columns"/>
</operator>

<operator activated="true" class="optimize_selection_evolutionary" compatibility="5.2.006"
expanded="true" height="94" name="Optimize Selection (Evolutionary)" width="90" x="380"
y=Il75ll>

<parameter key="min_number_of attributes” value="5"/>
<parameter key="population_size" value="6"/>

<parameter key="maximum_number_of_generations" value="16"/>
<parameter key="selection_scheme" value="roulette wheel"/>
<parameter key="crossover_type" value="shuffle"/>

<process expanded="true" height="370" width="660">

<operator activated="true" class="x_validation" compatibility="5.2.006" expanded="true"
height="112" name="Validation" width="90" x="45" y="30">

<process expanded="true" height="388" width="314">

<operator activated="true" class="bagging" compatibility="5.2.006" expanded="true"
height="76" name="Bagging" width="90" x="112" y="30">

<parameter key="sample_ratio" value="0.6"/>
<process expanded="true" height="388" width="678">

<operator activated="true" class="k_nn" compatibility="5.2.006" expanded="true"
height="76" name="k-NN" width="90" x="164" y="139">

<parameter key="k" value="11"/>
</operator>
<connect from_port="training set" to_op="k-NN" to_port="training set"/>
<connect from_op="k-NN" from_port="model" to_port="model"/>
<portSpacing port="source_training set" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
</process>
</operator>
<connect from_port="training" to_op="Bagging" to_port="training set"/>
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<connect from_op="Bagging" from_port="model" to_port="model"/>
<portSpacing port="source_training" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
</process>
<process expanded="true" height="388" width="314">

<operator activated="true" class="apply_model" compatibility="5.2.006" expanded="true"
height="76" name="Apply Model" width="90" x="45" y="30">

<list key="application_parameters"/>
</operator>

<operator activated="true" class="performance_classification” compatibility="5.2.006"
expanded="true" height="76" name="Performance" width="90" x="179" y="30">

<parameter key="main_criterion™ value="accuracy"/>

<parameter key="classification_error" value="true"/>

<list key="class_weights"/>
</operator>
<connect from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>

<connect from_op="Apply Model" from_port="labelled data" to_op="Performance"
to_port="labelled data"/>

<connect from_op="Performance" from_port="performance" to_port="averagable 1"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_averagable 1" spacing="0"/>
<portSpacing port="sink_averagable 2" spacing="0"/>
</process>

</operator>
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<connect from_port="example set" to_op="Validation" to_port="training"/>
<connect from_op="Validation" from_port="averagable 1" to_port="performance"/>
<portSpacing port="source_example set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_performance" spacing="0"/>
</process>
</operator>

<connect from_op="Retrieve" from_port="output” to_op="Numerical to Binominal"
to_port="example set input"/>

<connect from_op="Numerical to Binominal" from_port="example set output" to_op="Replace
Missing Values" to_port="example set input"/>

<connect from_op="Replace Missing Values" from_port="example set output"
to_op="Optimize Selection (Evolutionary)" to_port="example set in"/>

<connect from_op="0Optimize Selection (Evolutionary)" from_port="example set out"
to_port="result 1"/>

<connect from_op="0Optimize Selection (Evolutionary)" from_port="weights" to_port="result
2ll/>

<connect from_op="0Optimize Selection (Evolutionary)" from_port="performance"
to_port="result 3"/>

<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
<portSpacing port="sink_result 3" spacing="0"/>
<portSpacing port="sink_result 4" spacing="0"/>

</process> </operator></process>
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APPENDIX C: Dataset Samples

Cancer Dataset: [30]

Meta-Data View:

Meta Data View Data View Plot View Advanced Chars Annotations

ExampleSet (699 examples, 1 special attribute, 10 regular attributes)

Rale MName Type Statistics Range Missings
label Class(benign/Malignant) integer avg =2.690 +-0.951 [2.000; 4.000] 0
regular Code number integer avg =1071704.099 +- 617095730 [61634.000; 13454352.000] 0
reqular Clump Thickness integer avg=4 418 +H- 2316 [1.000; 10.000] 0
regular Uniformity of Cell Size integer avg =3.134 +-3.051 [1.000; 10.000] 0
regular Uniformity of Cell Shape integer avg = 3207 +- 2972 [1.000; 10.000] 0
regular Marginal Adhesion integer avg =2.807 +-2.855 [1.000; 10.000] 0
regular Single Epithelial Cell size integer avg=3216 +- 2214 [1.000; 10.000] 0
regular Bare Muclei integer avg = 3.545 +- 3.644 [1.000; 10.000] 16
regular Bland Chromatin integer avg=3438 +- 2438 [1.000;10.000] 0
regular Marmal Mucleoli integer avg =2.867 +- 3.054 [1.000; 10.000] 0
regular Mitoses integer avg=1589+-1715 [1.000; 10.000] 0
Data View:
ExampleSet (699 examples, 1 special attribute, 10 regular attributes) View Filter (699 /69

Row Mo. Class(beni.. Code numb... Clump Thic... Uniformity o...Uniformity o... Marginal Ad... Single Epith... Bare Nuclei Bland Chro...Normal Muc..  Mitoses

1 2 1000025 |5 1 1 1 2 1 3 1 1
2 2 1002945 |5 4 4 5 7 10 3 2 1
3 2 1015425 |3 1 1 1 2 2 3 1 1
4 2 1016277 |6 8 8 1 3 4 3 7 1
5 2 1017023 |4 1 1 3 2 1 3 1 1
6 4 1017122 8 10 10 8 7 10 9 7 1
7 2 1018099 1 1 1 1 2 10 3 1 1
8 2 1018561 2 1 2 1 2 1 3 1 1
9 2 1033078 |2 1 1 1 2 1 1 1 5
10 2 1033078 4 2 1 1 2 1 2 1 1
1 2 1035283 1 1 1 1 1 1 3 1 1
12 2 1036172 2 1 1 1 2 1 2 1 1
13 4 1041801 |5 3 3 3 2 3 4 4 1
14 2 1043999 1 1 1 1 2 3 3 1 1
15 4 1044572 |8 7 5 10 7 9 5 5 4
16 4 1047630 7 4 G 4 G 1 4 3 1
17 2 1048672 |4 1 1 1 2 1 2 1 1
18 2 1049815 4 1 1 1 2 1 3 1 1
19 4 1050670 |10 7 7 i 4 10 4 1 2
20 2 1050718 |6 1 1 1 2 1 3 1 1
21 4 1054590 |7 3 2 10 5 10 5 4 4
22 4 1054593 10 5 5 3 6 7 7 10 1
23 2 1056784 |3 1 1 1 2 1 2 1 1
24 4 1057013 |8 4 5 1 2 ? 7 3 1
25 2 1059552 |1 1 1 1 2 1 3 1 1



Heart Disease Dataset: [30]

Meta-Data View:

&) Meta Data View

ExampleSet (203 examples, 1 special attribute, 13 regular attributes)

Role Mame
label num-class variable
regular  Age
regular Sex
regular cp
regular trestbps
regular  chol
regular fbs
regular restecg
regular thalach
regular  exang
regular oldpeak
regular slope
regular ca
regular  thal
Data View:

Drata View

Type
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
numeric
integer
integer
integer

Plot View

Statistics
avg = 0.937 +- 1.229
avg = 54439 +-9.03
avg = 0.680 +- 0.467
avg = 3.158 +~ 0.960
avg =131.690 +-17.
avg = 246.693 +- 51,
avg = 0.149 +- 0.356
avg = 0.990 +~0.995
avg = 149.607 +- 22,
avg = 0.327 +-0.470
avg = 1.040 +- 1.161
avg = 1.601 +-0.616
avg = 0.672 +- 0937
avg = 4.734 +- 1.940

ExampleSet (303 examples, 1 special attribute, 13 regular attributes)

Row Mo. num-clas...

L= B B = T o 1 R o

[ T T L TR O TR S TR . RN S ™ A A U A S A T ]
[ SR S P TR (N T I = T = = BN (= "R & B SO B 5 T o |

0

B 2O O O O O 242 0 O O Moo S D WD o O 24 M

Age  Sex
63
67
67
a7
41
56
g2
57
63
53
57
56
56
44
52
57
43
54
48
49
64
58
58
58
0

cp

N - e - e e s I == I i IR S s I W S 9
B N T I S T e T O S R TS Y O S Y

trestbps
145
160
120
130
130
120
140
120
130
140
140
140
130
120
172
150
110
140
130
130
110
150
120
132
130

chol fbs
233
286
229
250
204
236
268
354
254
203
192
294
256
263
199
168
229
239
275
266
211
283
284
224
206

restecqg

o o o 2 o O o o o o 24 O 4 0O O <4 o O o o o o o o 4
[ T % TR s T % TR e T Y e N e Y o N e Y e TR e T LS Y e Y L Y e Y e Y L TR e T L S T (% R P TR O }

(o))
w

Advanced Charts

9

G00
i

875

thalach
150
108
129
187
172
178
160
163
147
155
148
153
142
173
162
174
168
160
139
171
144
162
160
173
132

Annotations

Range
[0.000 ; 4.000]
[29.000 ; 77.000]
[0.000; 1.000]
[1.000 ; 4.000]
[94.000; 200.000]
[126.000 ; 564.000]
[0.000; 1.000]
[0.000 ; 2.000]
[71.000; 202.000]
[0.000 ; 1.000]
[0.000; 6.200]
[1.000 ; 3.000]
[0.000; 2.000]
[3.000 ; 7.000]

oldpeak

2.300
1.500
2.600
3500
1.400
0.800
3600
0.600
1.400
3.100
0.400
1.300
0.600
0

0.500
1.600
1

1.200
0.200
0.600
1.800
1

1.800
3.200
2.400

exang

- o o o 24 O O O O O O O 4 O O <4 O 4 o o o O 4 a0
[ RS % A X, AT S AR (R % [ O AR % T 5 TN G TR % T (N T R S T T S

Missings

M RO oo oo oo o000

slope
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ca
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Diabetes Dataset: [30]

Meta-Data View:

&) Meta Data View Data View Plot View Advanced Charts Annotations

ExampleSet (768 examples, 1 special attribute, 8 regular atiributes)

Raole Mame Type Statistics Range Missings
label Class variable(diabetic or not) integer avg = 0.349 +- 0.477 [0.000 ; 1.000] 0
regular  Mumber of imes pregnant integer avg = 3.845 +- 3.370 [0.000; 17.000] 0
regular Plasma glucose concentration integer avg = 120,895 +-31.973 [0.000;199.000] |0
regular  Diastolic blood pressure integer avg = 69.105 +- 19356 [0.000;122.000] O
regular  Triceps skin fold thickness integer avg = 20536 +/- 15,952 [0.000; 99.000] 0
regular  2-Hour serum insulin integer avg=79.799 +- 115244  [0.000;846.000] O
regular Body mass index nuUmeric avg=31.993 +-7. 384 [0.000; 67.100] 0
regular Diabetes pedigree function real avg = 0472 +-0.331 [0.078 ; 2.420] 0
regular  Age integer avg = 33.241 +-11.760 [21.000;81.000] |0

Data View:

ExampleSet (768 examples, 1 special attribute, 8 regular atiributes)

Row No. Class varia... Number oft.. Plazma glu... Diastolic bl... Triceps ski... 2-Hour seru..Body mass ... Diabetes p... Age
1 1 B 148 72 35 0 33.600 0.627 50
2 0 1 85 G6 29 0 26.600 0.351 A
3 1 8 183 G4 0 0 23.300 0.672 32
4 0 1 a9 G6 23 24 28.100 0.167 21
5 1 0 137 40 35 168 43.100 2288 33
B 0 5 116 74 0 0 25.600 0.201 30
7 1 3 78 50 32 28 31 0.243 26
8 0 10 115 0 0 0 35.300 0.134 29
9 1 2 197 70 45 543 30.500 0.158 53
10 1 8 125 96 0 0 0 0.232 54
11 0 4 110 92 0 0 37.600 0.191 30
12 1 10 168 74 0 0 38 0.537 34
13 0 10 139 80 0 0 27.100 1441 57
14 1 1 189 &0 23 846 30.100 0.398 59
15 1 5 166 72 14 175 25.800 0587 51
16 1 7 100 0 0 0 30 0.484 32
17 1 0 118 84 47 230 45800 0.551 31
18 1 7 107 74 0 0 29600 0.254 31
19 0 1 103 30 38 83 43.300 0.183 33
20 1 1 115 70 30 96 34.600 0.529 32
21 0 3 126 a8 41 235 39.300 0.704 27
22 0 8 a9 84 0 0 35.400 0.388 50
23 1 7 196 a0 0 0 39.500 0.451 41
24 1 9 119 80 35 0 29 0.263 29
25 1 11 143 94 33 146 36.600 0.254 51
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Sonar Dataset: [30]

Meta-Data View:

&) Meta Data View Data View Plot View Advanced Charts Annotations

ExampleSet (208 examples, 1 special attribute, 60 regular attributes)

Role Mame Type Statistics Range Missings
label class nominal mode = Mine (111), least = Rock (97) Rock (97), Mine (111) 0
regular attribute_1 real avg = 0.029 +-0.023 [0.002; 0.137] 0
regular attribute_2 real avg =0.038 +-0.033 [0.001; 0.234] ]
regular attribute_3 real avg = 0.044 +- 0.038 [0.002 ; 0.306] 0
regular attribute_4 real avg = 0.054 +/- 0.047 [0.006; 0.426] 0
regular attribute_5 real avg = 0.075 +- 0.056 [0.007 ; 0.401] 0
regular attribute_G real avg = 0.105 +- 0.059 [0.010; 0.382] 0
regular attribute_7 real avg = 0122 +- 0.062 [0.003; 0.373] 0
regular attribute_8 real avg =0.135 +- 0.085 [0.006; 0.4549] 0
regular attribute_9 real avg=0178 +-0.118 [0.008 ; 0.683] 0
regular attribute_10 real avg = 0208 +-0.134 [0.011; 0.711] 0
regular attribute_11 real avg=0.236 +-0.133 [0.028 ; 0.734] 0
regular attribute_12 real avg = 0.250 +-0.140 [0.024 ; 0.7086] ]

Data View:

ExampleSet (208 examples, 1 special attribute, 60 reqular attributes)

View Filter (2081 208):| all

Row No. class afiribute_1  affribute_2  aftribute_3  affribute_4  aftribute_5  attribute_6 attribute_7  afiribute_8 affribute 9 attribute_10 attribute_11 atiribute_12
1 Rock 0.020 0.037 0.043 0.021 0.095 0.099 0154 0.160 0311 0211 0181 0138
2 Rock 0.045 0.052 0.084 0.069 0118 0.258 0.218 0.348 0.334 0287 0492 0.655
3 Rock 0.028 0.058 0110 0108 0.097 0228 0243 0377 0560 0619 0633 0.708
4 Rock 0.010 0.017 0.062 0.020 0.020 0.037 0110 0128 0.060 0128 0.088 0.199
5 Rock 0.076 0.067 0.048 0.039 0.059 0.065 0421 0247 0.356 0.446 0415 0.395
] Rock 0.029 0.045 0.028 0.017 0.038 0.099 0120 0.183 0210 0304 0299 0425
7 Raock 0.032 0.096 0132 0141 0167 0171 0073 0.140 0.208 0331 0179 0.066
8 Rock 0.052 0.055 0.084 0.032 0116 0.092 0103 0.061 0.148 0.284 0.280 0.309
9 Rock 0.022 0.038 0.048 0.048 0.085 0.059 0075 0.010 0.068 0149 0118 0.185
10 Rock 0.018 0017 0.035 0.007 0.019 0.067 0108 0.070 0.098 0.025 0.080 0.108
11 Rock 0.004 0.006 0.015 0.034 0.031 0.028 0.040 0.027 0.032 0.045 0.049 0.100
12 Rock 0.012 0.03 0.017 0.031 0.036 0.010 0.018 0.058 0112 0.084 0.055 0.085
13 Raock 0.008 0.009 0.006 0.025 0.034 0.055 0.053 0.098 0101 0.124 0.110 0122
14 Rock 0.009 0.006 0.025 0.049 0120 0.159 0139 0.099 0.096 0.190 0.190 0.255
15 Rock 0.012 0.043 0.060 0.045 0.060 0.038 0.053 0.034 0.105 0212 0164 0.190
16 Rock 0.030 0.062 0.065 0.092 0162 0229 0218 0.203 0.148 0.085 0248 0.364
17 Rock 0.035 0.012 0.019 0.047 0.074 0118 0168 0154 0147 0.291 0233 0224
18 Rock 0.019 0.061 0.038 0.077 0139 0.081 0.057 0.022 0.104 0119 0124 0.160
19 Rock 0.027 0.009 0.014 0.028 0.041 0.076 0103 0114 0.079 0.152 0.168 0137
20 Raock 0.013 0.015 0.064 0173 0.256 0.256 0.295 0.411 0.498 0592 0583 0.542
pal Rock 0.047 0.051 0.082 0125 0178 0307 0.301 0238 0.383 0378 0302 0291
22 Rock 0.068 0.058 0.084 0.037 0.048 0077 0077 0113 0.235 0.184 0267 0413
23 Rock 0.010 0.048 0.030 0.030 0.085 0108 0238 0238 0.008 0188 0148 0.189
24 Rock 0.012 0.015 0.014 0.008 0.021 0106 0102 0.044 0.093 0.073 0.074 0.062
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UCI Adult Income Dataset: [30]

Meta-Data View:

9! Meta Data View

Data View

Plot View

Advanced Charts Annotations

ExampleSet (1000 examples, 1 special attribute, 14 regular attributes)

Role
label
regular
regular
regular
regular
regular
regular
regular
regular
regular
regular
regular
regular
regular
regular

Name
Income
Age
Waorkclass
fnlwgt
education

Type
binominal
integer
polynominal
integer
polynominal

educational-num integer

marital-status
occupation
relationship
race

gender
captial-gain
capitalHoss
hours-per-week
native-country

Data View:

polynominal
polynominal
polynominal
palynominal
binominal
integer
integer
integer
palynominal

Statistics
mode = <=50K (760), least = »50K (240)
avg = 38.088 +-13.712
mode = Private (672), least = Federal-gov (33)
avg = 185524.965 +/- 100130.729
mode = HS-grad (329), least = Preschool (2)
avg = 10.023 +- 2.624

mode = Married-civ-spouse (490), least = Married-AF-spouse (2)

mode = Exec-managerial (144), least = Armed-Forces (1)

mode = Husband (433), least = Other-relative (30)
mode = White (851), least = Other (7)

mode = Male (698), least = Female (304)

avg = 1483.701 +- 9277.776

avg = BB.567 +- 395196

avg = 40.568 +-12.174

mode = United-States (910), least = Peru (1)

ExampleSet (1000 examples, 1 special atribute, 14 raqular aftributes)

Row No.

Income
==hK
<=hK
=50K
=50K
2=50K
2=50K
==hK
=50K
«=h0K
==h0K
=50K
==hK
==hK
<=hK
=50K
=50K
==h0K
==hK
«=hK
=50K
=50K
==50K
2=50K

%
3
2

U
2
63
4
55
il
3
2
3
48
43
20
43
i
40
u
u

Range
==50K (780), >50K (240) 0
[17.000 ; 80.000] 0
Private (672), Local-gov (65), ? (58), Self-emp-not-inc (82), Federal- 0
[20308.000 ; 662450.000] 0
11th (46), HS-grad (329), Assoc-acdm (18), Some-college (218), 10 0
[1.000; 16.000] 0

Mever-married (328), Married-civ-spouse (490), Widowed (22), Divo 0
Machine-op-inspct (82), Farming-fishing (32), Protective-serv (23), 7 0
Own-child (156), Husband (433), Not-infamily (235), Unmarried (1C 0
Black (107), White (851), Asian-Pac-slander (28), Other (7), Amer-Ir 0

Male (596), Female (304) 0
[0.000 ; 89999.000] 0
[0.000 ; 2444.000] 0
[1.000 ; 29.000] 0

United-States (910), ? (15), Peru (1), Guatemala (1), Mexico (21), Dc 0

E S~
H-E

Missings

View Fifter (1000/1000): | all

Age  Worklass  fiwgt  education educational.. marital-stat. occupation relationship  race gender
Private 226802 11th I Never-marri¢ Machine-op- Own-child  Black Male 0 0
Private 89314 HS-grad 9 Married-ci-2 Farming-fish Husband ~ White lale 0 0
Local-gov 336991 Assoc-acdm 12 Wamied-civ-¢ Protective-se Husband  White llale 0 0
Private 160323 Some-colleg 10 Iamied-civ-2 Machine-op- Husband  Black llale 7668 0
? 103497 Some-colleg 10 Never-marit ? Own-child ~ White Female 0 0
Private 193693 10th b Never-marri¢ Other-senvicr Mot-in-family White lale 0 0
? 227026 HS-grad 9 Never-marri ? Unmarried  Black Male 0 0
Self-emp-no 104626 Prof-schoal 15 Wamied-civ-z Prof-speciall Husband ~ White llale 3103 0
Private 369667  Some-calleg 10 Never-marrie Other-senic Unmarried | White Femae 0 0
Private 104986 Tth-8ih 4 Iamied-civ-g Crafi-repair Husband ~ White llale 0 0
Private 184454 HS-grad 9 Married-ci-¢ Machine-op- Husband  White liale 6418 0
Federal-gov 212465  Bachelors 13 Married-civ-2 Adm-clerical Husband ~ White lale 0 0
Private 82091 HS-grad 8 Never-marri¢ Adm-clerical Mot-infamily White Female 0 0
? 299831 HS-grad B Mamied-civ-2 ? Husband ~ White llale 0 0
Private 19724 HS-grad 9 Iamied-civ-& Machine-op- Husband  White liale 3103 0
Private 346189 Masters 14 Married-civ-2 Exec-manag Husband ~ White liale 0 0
State-gov 444554 Some-calleg 10 Never-marrie Other-senvicr Own-child  White Male 0 0
Private 128354 HS-grad 9 Married-ci-2 Adm-clerical Wife White Female 0 0
Private f0548 HS-grad 9 Widowed  Machine-op- Unmarried  White Female 0 0
Private 85018 Doctorate 16 Mamied-civ-2 Prof-speciall Husband  Asian-Pac-lz Male 0 0
Private 107914 Bachelors 13 Iaried-civ-& Tech-suppol Husband  White llale 0 0
Private 233588 Some-calleg 10 Never-marri Other-senvicr Own-child  Black Female 0 0
? 132015 Tth-Bth 4 Divorced 7 Not-in-family White Female 0 0
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Wine Dataset: [30]

Meta-Data View:

#) Meta Data View Data View Plot View Advanced Charts Annotations
ExampleSet (178 examples, 0 special attributes, 14 regular attributes)
Role Mame Type Statistics Range Missings

regular  Alcohol integer avg=1.938 +- 0775 [1.000; 3.000] 0

regular  Malic acid numeric  avg=13.001 +~0.812 [11.030; 14.830] 0

regular  Ash real avg =2 336 +- 1117 [0.740 ; 5.800] 0

regular  Alcalinity of ash numeric  avg =2 367 +- 0274 [1.360 ; 3.230] 0

regular  Magnesium numeric | avg =19.495 +/- 3.340 [10.600 ; 30.000] 0

regular Total phenols integer  avg =99.742 +/- 14 282 [¥0.000: 162.000] 0

regular Flavanoids numeric | avg=2.295 +- 0.626 [0.980; 3.880] 0

regular Monflavanoids phenols numeric  avg=2.029 +-0.999 [0.340 ; 5.080] 0

regular  Proanthocyanins real avg = 0362 +-0124 [0.130; 0.660] 0

regular Color intensity real avg = 1591 +- 0572 [0.410; 3.580] 0

regular Hue numeric | avg =5.058 +-2.318 [1.280;13.000] 0

regular QD280/0D315 of diluted wines numeric  avg =0.857 +-0.229 [0.480;1.710] 0

regular M numeric | avg=2.612 +- 0710 [1.270; 4.000] 0

regular  Proline integer  avg=746.893 +/- 314,907 [278.000 ; 1680.000] 0
Data View:

ExampleSet (178 examples, 0 special attributes, 14 regular attributes) View Filter (178 1
Ro... Alcohol Malicacid  Ash  Alcalinity... Magnesium Total phenols Flavanoids Monflavanoi.. Proanthocy... Colorinten.. Hue ©OD280/. M  Proline
171 14.230 1710 12430 15.600 127 2800 3.060 0.280 2290 5.640 1.040 3920 1065
2 |1 13.200 1780 2140 11.200 100 2650 2760 0.260 1.280 4380 1.050 3400 1050
3 13.160 2360 2670  18.600 101 2.800 3240 0.300 2810 5680 1.030 3170 1185
4 1 14.370 1950 2500  16.800 113 2850 3490 0.240 2180 7.800 0860 3450 1480
501 13.240 2500 2870 21 118 2.800 2,690 0.390 1820 4320 1.040 2930 735
6 1 14.200 1760 2450  15.200 112 3270 3.390 0.340 1970 6750 1.050 2850 1450
71 14.390 1870 2450  14.600 95 2500 2520 0.300 1.980 5250 1.020 3580 1290
g 1 14.060 2150 2610 17.600 121 2,600 2510 0.310 1.250 5.080 1.060 3580 1295
9 1 14.830 1.640 2170 14 97 2.800 2.980 0.290 1.980 5200 1.080 2.850 1045
10 1 13.860 1350 2270 16 98 2980 3.150 0.220 1.850 7220 1.010 3550 1045
11 14.100 2160 12300 18 105 2950 3.320 0.220 2.380 5750 1250 3170 1510
12 1 14120 1480 2320 16.800 95 2200 2430 0.260 1570 5 1170 2820 1280
13 1 13750 1730 2410 16 24 2600 2760 0.290 1.810 5600 1.150 2900 1320
14 1 14.750 1730 2390 11400 | 3100 3.690 0430 2810 5400 1250 2730 1150
15 1 14.380 1870 2380 12 102 2300 3640 0.290 2,960 7500 1200 3 1547
16 1 13.630 1810 2700  17.200 112 2850 2910 0.300 1460 7300 1280 2880 1310
17 1 14.300 1920 2720 20 120 2.800 3140 0.330 1970 6200 1.070 2650 1280
18 1 13.830 1570 2620 20 115 2950 3400 0.400 1720 6600 1130 2570 1130
19 1 14190 1590 2480  16.500 108 3.300 3930 0.320 1.860 8700 1230 2820 1680
20 1 13.640 3100 2560 15.200 116 2700 3.030 0.170 1.660 5100 0.960 3360 845
21 1 14.060 1.630 2.280 18 126 3 3170 0.240 2100 5650 1.000 3710 780
22 1 12.930 3800 2650 18.600 102 2410 2410 0.250 1.980 4500 1.030 3520 770
23 1 13710 1.860 2360 16.600 101 2610 2880 0.270 1.690 3800 1110 4 1035
24 1 12.850 1.600 2520 17.800 95 2480 2370 0.260 1.460 3930 1.090 3630 1015
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Education Dataset:

Meta-Data View:

&) Meta Data View
Role  MName
id S.no.
regular PSM
regular CTG
regular SEM
regular ASS
regular GP
regular ATT
regular LW
regular ESM
Data View:
Row No.
1 1
2 2
3 3
4 4
5 5
i i
7 7
8 8
9 9
10 10
11 11
12 12
13 13
14 14
18 18
16 16
17 17
18 18
19 19
20 20
2 2
22 22
23 23

Data View

Type
integer
polynominal
polynominal
polynominal
binominal
binominal
polynominal
binominal
polynominal

Plot View

Statistics

avg = 25.500 +- 14577
mode = Second (16), least = Fail (8)
made = Poor (18), least = Good (16)

mode = Average (22), least = Good (13)

Advanced Charts

ExampleSet (50 examples, 1 special attribute, 8 regular attributes)

mode =Yes (27), least = No (23)
mode =Yes (32), least=No (18)
mode = Good (21), least = Poor (14)
mode = Yes (38), least=No (11)
mode = Second (15), least = Fail (8)

g.no. PSN CTG
First Good
First Good
First Good
First Average
First Average
First Poor
First Poor
First Average
First Poor
First Average
Second Good
Second Good
Second Good
Second Average
Second Good
Second Good
Second Average
Second Average
Second Poor
Second Average
Second Poor
Second Poor
Second Poor

ExampleSet (50 examples, 1 special attribute, & regular attributes)

SEM

Good
Average
Average
Good
Average
Average
Average
Foar
Poar
Average
Good
Average
Average
Good
Average
Average
Average
Average
Average
Foar
Average
Foar
Poar

Yes
Yes
Mo
Mo
Mo
Mo
Mo
Yes
Mo
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Mo
Yes
Mo
Yes
Mo
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Annotations

[1.000; 50.000]

First (10), Second (16), Third (16), Fail (8)

Range

Good (16), Average (16), Poar (18)
Good (13), Average (22), Poor (15)

Yes (27), Mo (23)
Yes (32), No (18)

Good (21), Average (15), Poor (14)

Yes (39), No (11)

First (14), Second (15), Third (13), Fail (8)

GP
Yes
Mo
Mo
Mo
Yes
Mo
Mo
Yes
Mo
Yes
Yes
Yes
Mo
Yes
Yes
Yes
Yes
Yes
Yes
Mo
Yes
Yes
Mo

ATT
Good
Good
Average
Good
Good
Average
Foar
Average
Foar
Good
Good
Good
Good
Good
Average
Foar
Good
Foar
Good
Average
Foar
Average
Average

Yas
Yes
Mo
Yes
Yes
Yes
Yes
Mo
Mo
Mo
Yes
Yes
Mo
Mo
Yes
Yes
Yes
Yes
Yes
Yes
Mo
Yes
Yes

LW

Missings

0
0
0
0
0
0
0
0
0

ESH
First
First
First
First
First
First
Second
First
Third
First
First
First
First
First
First
Second
Second
Second
Second
Second
Third
Third
Third



