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Abstract 

 

The thesis proposes a high speed data compression architecture for multi-purpose 

communication applications. The architecture is a systolic array design for hardware 

implementation, and LZ 77 has been implemented as compression algorithm. Compression is 

achieved by reducing redundancy inherent in data, by comparing input data stream with 

previously encoded and transmitted bits. Design has been further optimized by carrying out 

searches in parallel, and future searches of data stream are carried out in same clock cycle 

increasing throughput to manifolds. The architecture has been further pipelined to reduce the 

critical time and further enhance throughputs exceeding 10 Gbits / sec. 

 

The motivation for research is the ever-increasing development in the field of digital 

communication. Requirements of information transfer as well as storage transferred have 

increased many folds in last many years. The communication bandwidth, although trying to 

match the pace of information increase has always been lagging behind, and there has always 

been a mis-match between the two. And both communication bandwidth and memories are quite 

expensive and cannot be increased just to match to the ever-growing information across 

networks. This necessitates measures to reduce the amount of information that needs to be 

transferred or stored, and hence, the basis of Data Compression. 

 

Various techniques varying from statistical to dictionary based methods exist in literature with a 

view to remove redundancies in data and achieve data compression. The techniques have been 

successfully implemented both across software and hardware platforms with far-reaching results. 

The choice of LZ 77 Algorithm, the simplest of dictionary based schemes, with a systolic 

architecture, owing to its inherent promising advantages of speed, error-resistant and simplicity 

forms the basis of this research. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Motivation 

Data compression is fast becoming a necessity to sustain the development and even normal 

functioning of high data-rate data communication systems and data storages. With the ever 

increasing awareness and requirements of users, the endless series of questions warranting 

WHAT and WHY need to be answered and user satisfaction guaranteed for progress of 

technology. With limited bandwidth of communication channels and limited space for storages, 

coupled with high costs associated for increasing their capacities, the only viable solution left is 

to economize the existing capacities available and develop frameworks that can be 

incorporated in these systems and achieve higher desired specifications. 

Considerable work has been done in this field, with evolving efficient designs competing for 

implementation and promising higher data rates and storages. Various algorithms have been 

developed, modified and implemented, both in software and hardware platforms, with their 

pros and cons. However, hardware based systems with only drawback of system complexity vis-

à-vis their higher processing rates and reduced costs still promise to be a competitive solution 

to existing bottle-necks. 

This forms the basis of our proposed design which explores a data compression algorithm 

implementation on an efficient, optimized hardware design, promising exceptionally high 

throughputs. 

1.2 Introduction to Data Compression 

In 1940, when Claude Shannon first conceived a communication system that could efficiently 

transmit the information produced from a source to a destination, he laid down the 

foundations of an entirely new chapter in field of communication systems, that we now call 

Data Compression. The field that was limited to a very small number of engineers and scientists 

is now a leading and enabling technology for multimedia revolution. 
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Data compression is the science of representing information in a compact form, by removing all 

possible redundancies inherent in the data and encoding repeated longer strings into shorter 

codes [1]. In essence, data compression research aims to evolve compression algorithms and 

their implementations, which are actually ways to reduce the number of symbols required to 

represent source information. This reduces the amount of space needed to store the 

information as well as amount of time necessary to transmit that information over available 

media. 

The advancement of technology world over has seen a vast increase in the amount information 

transferred across media, in terms of communication. The increase in amount of information 

has also forced media to evolve and develop, in order to meet the challenging requirements of 

ever increasing data, with advancement in fields of both hardware and software to support 

communication requirements. 

Over a period of time, data compression has become a very common requirement for most 

software applications as well as an active research area of computer science. Personal 

communication a decade back involved voice only and texts were considered quite infrequent 

and uncommon. Today, it encompasses texts coupled with multimedia as well as frequent data 

exchanges, taking personal communication to a whole new world.  

Take another example of High Definition Television (HDTV). Without compression, it requires 

data transmission rate of 885 MBits per sec, requiring approximately 220 MHz of channel 

bandwidth. With the help of data compression, the effort is reduced to 20 MBits per sec and a 

channel bandwidth of 6 MHz. Similarly, without data compression, the speedy transmission 

over facsimile would also not have been possible. It would take a whole day just to transmit a 

single page document. 

Compressed data thus offloads the choked bandwidth providing effective and efficient 

communication [2-7]. Similarly, the physical space of storage devices, whether it is static type 

hard disks or dynamic memories, is also relieved by use of compressed data [8-9]. 

1.3 Traditional Applications of Data Compression 

Analyzing the field of data communications, there are mainly two main applications of data 

compression. The first is to save storage space; by saving files in such a manner that they 
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occupy less space, hence, compressed. Within the aspect of saving storage space, the 

characteristics of the compressors and the decompressor are determined by the accessibility 

patterns of these files once used. Backup files, which are rarely used, such as in case of 

emergency recovery, necessitate the compressors and decompressor to have slow speeds. The 

thing that matters here is compression and not quickness of response.  

Similarly, if files are read frequently but updated occasionally, then compressor may be slow, 

but decompressor has to be comparatively faster. However, if both the reading and updating of 

files are quite frequent, then both the compressors and decompressor have to be fast.  

Another issue is that of robustness; backups stored in a medium prone to introduce small errors 

indicate use of a compression method that may allow for recovery of some part of the file or 

files. However, this means introducing redundancy in the compressed files, which goes against 

data compression that aims to reduce redundancy. For this, error correcting codes are used, 

which is another very vast and complex aspect, and does not form part of the research we have 

carried out. 

The second application of data compression is where data before transmission is compressed at 

the source end and on receiving, is decompressed at the destination end. With the explosive 

growth of digital information transmission, for example, over the internet, there is always 

problem of matching available bandwidth to required data transfer rates. And in today’s fast 

world of development, getting delayed sometimes results in losing the entire struggle. The aim 

is to effectively utilize the available bandwidth of the communications channel to one’s benefit. 

1.4 Data Compression Unfolded 

Depending on the application requirement, there are basically two types of data compression; 

the lossy and the lossless. As the name implies, the lossy data compression attempts to reduce 

the actual number of bits carrying information, while at the same time compromising on the 

integrity of the actual information, to an extent that is either not noticeable or can be done 

away with. A simple example of lossy compression is the gif file system, which tends to ignore 

the high frequency components not visible to a naked eye, and yet displays a considerably 

satisfying picture to a viewer. Such like approach is used where there is no harm in 

compromising on the quality attributes of the information.  
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Lossless data compression implies achieving compression under strict constraints of retaining 

actual information, not compromising on the quality attributes. This kind of technique may also 

be termed as a reversible process, where the data before compression and after 

decompression is exactly identical. Medical imaging applications require enhancing pictures for 

the purpose of detection of minor defects/changes and such like images, if compressed under 

lossy technique, are bound to suffer and sometimes, result in fatal consequences with inability 

to detect the presence of a flaw. 

There are various algorithms that have been developed to accomplish both the lossy as well as 

lossless data compression. The algorithms take into account the two aspects of data 

compression, i.e. modeling and coding. The model component analyzes the input data stream 

and identifies characteristics in the incoming data, such as probabilities, repetitions and 

redundancies for exploitation. The coder part then takes into account the modeling outcome, 

such as the probability biases, and uses this information to generate codes for symbols. 

Huffman Coding is a perfect example of this, where modeling component analyzes the 

probabilities of symbols, and the coder component then generates codes. Shorter codes are 

used for frequently appearing symbols and relatively larger codes are used for rarely appearing 

symbols.  

Here, we must understand that a typical model developed for one system may not be practical 

for implementation on another system. However, having one model, there may be different 

ways to code the symbols. This lays down the basis for the two basic schemes of modeling, 

namely the statistical modeling and the dictionary based modeling approaches. The modeling 

schemes are completely independent of the coding schemes, which are basically means to 

implement theoretical algorithms on a specific type of model. 

Moreover, the implementation of data compression may be done over software platform or 

hardware architecture. The two types vary in speed of implementation as well as costs and 

resources involved. Software based platforms are relatively slow, since they require frequent 

memory addressing, hence introducing latency in the system, which in turn implies reduced 

throughput. Increase in throughputs through software based solutions means increased 

memories for larger searches, and increased memories implies increased costs. Hardware 
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based platforms are difficult to implement, involving complex architectures, yet they guarantee 

high throughputs with comparatively reduced overheads. 

Within the hardware platforms, there are a number of techniques to implement data 

compression models, the two most distinct approaches being the Content Addressable 

Memories (CAMs) based architectures and the Systolic Array architectures. Details on these 

aspects shall be covered in subsequent chapters, however, we shall dwell more on the Systolic 

Array based architectures as it forms the basis of our research. 

1.5 Systolic Arrays 

There is continuing drive to create faster and faster computers to address the ever increasing 

signal processing and communications applications. Faster computers mean faster clock rates, 

and there is a limit to gaining computational advantage by increasing speed alone. The 

computers need increased memory to support their input / output requirements, when 

processing at such high speeds; and memories are quite expensive. The solution to this problem 

has been found by extracting parallelism, which enables more work to be done in less time. 

This concept has introduced computer architectures that have made possible the development 

and implementation of multi-processor platforms to execute multiple instructions/processes. 

Flynn’s taxonomy gives a detailed account of various types of parallel computing architectures. 

From parallel computing evolves the concept of systolic array architectures. 

Systolic arrays are special purpose processors which are very fine-grained and hence suited for 

typical applications that are computationally intensive. They a have a very simple structure that 

enables them to execute limited and very simple computations on very high clock rates. Data 

between these processors is moved in a synchronous and rhythmic manner, mimicking the 

systole of a human heart that regularly and repetitively supplies blood to complete body 

through rhythmic pumping [10]. 

Unlike typical parallel computing architectures where processors loose speed due to 

interconnects, systolic arrays are special-purpose parallel architectures that have processors or 

processing elements connected by very short wires. Moreover, another advantage gained by 

use of systolic architectures is the reduction in computing complexity. For example an n x n 
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matrix multiplication would normally require nn computations. However, systolic architectures 

reduce this computation to n2 computations.  

Amongst various factors that have contributed to systolic array’s choice as a leading choice for 

handling computationally intensive applications are technology advances, concurrent 

processing and demanding scientific applications [11]. 

In succeeding chapters, we will elaborate our research which is proposes a novel architecture 

for implementing a high speed lossless data compression algorithm on a simple systolic array 

based design that is capable of handling very computationally intensive data, yielding 

throughputs exceeding 10 Gbits/sec. 

1.6 Organization of Thesis Report 

In this chapter, a brief introduction to various aspects of data compression has been covered. 

Typical applications of data compression in communication systems have been covered 

followed by a brief account of lossy and lossless data compression has been discussed. Lastly, 

we have introduced systolic array architectures, an evolving solution to address the modern day 

to day computationally intensive applications that are performed without compromise on 

speed of processing. The rest of the thesis is organized as follows. 

Chapter 2 gives detailed account of literature review, with focus on related work on the subject, 

up to and including most recent advances in the pertinent field of LZ 77 hardware based 

lossless data compression.  

In Chapter 3, we have dilated upon LZ 77 Data Compression Algorithm and its working 

methodology in detail. The concept of Algorithm and its working is discussed in detail, with an 

example as relevant to our work. Chapter 4 elaborates architectural details of proposed design. 

The conception of design with different modules in hierarchical order is discussed at length 

concluding with a block required for single iteration. Chapter 5 takes on the basic design to a 

higher level, with its unfolded and pipelined versions, which greatly enhance the perceived 

throughputs.  

Chapter 6 comprises results obtained when the design is simulated and synthesized on FPGA 

families. The results are discussed in detail and compared with some of the recent designs 
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proposed in literature. Chapter 7 concludes the report with insight into Future 

Recommendations. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Data Compression Requirements 

Data required to be stored on a storage media or transferred over a communication link 

contains significant redundancy. This inherent redundancy may be modeled and then exploited 

by means of a coding strategy that aims to reduce the redundancy, and hence offload thick data 

communication channels and data storage devices. Same information now requires fewer 

overheads, either for storage or transmission. And in today’s modern age of digital data where 

information is represented by bits of value 0 and 1, this inherent redundancy is always there. 

The only thing left is to devise strategies for modeling and coding of data and hence reducing 

redundancies. 

In the scenarios of satellite communications, where an enormous amount of information is 

required to be transferred between various communication entities, the data rates rises to the 

orders of Giga Bits/sec. This communication, if not expertly handled by use of optimized 

systems, may easily breakdown the entire communication channel, resulting in loss of critical 

information.  

Problems associated once common compression methodologies are integrated into computer 

systems have encouraged increased tendency to use automated data compression. This 

includes mis-match between execution times of the techniques and data transfer rates, lack of 

flexibility for implementation on multiple applications once developed and at times, non-

optimized compression techniques, resulting in opposite of what was intended to be achieved. 

Techniques developed for compressing one specific application, when used for another 

application, sometimes result in expansion of the data rather than opposite.  

2.2 Data Compression Terminologies 

In order to gauge the performance metrics of any technique for the purpose of implementing 

data compression, it is necessary to understand various terminologies associated with this field. 
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Space and time efficiency could be one of the factors that must be analyzed. Speed of 

compression and ratio of compressed data to uncompressed data could be another. All this in 

turn depends on the input source of data and the model being used, whether lossy or lossless. 

Thus, there are various criteria to evaluate any compression algorithm and those associated 

with lossless families will be briefly dealt with in subsequent paragraphs.  

2.2.1 Compression Ratio 

Compression ratio is ratio between the size of the compressed file and the size of the 

uncompressed source file. Mathematically, it is defined as:-  

      
                       

                         
           ( 2.1) 

 

2.2.2 Compression Factor 

Compression factor is the inverse of compression ratio, and is ratio of uncompressed source file 

to compressed file. Mathematically, it is defined as: 

    
                         

                       
        (2.2) 

 

2.2.3 Saving Percentage 

Saving percentage refers to the percentage reduction in size of the compressed file achieved as 

a result of compression. Mathematically, it is defined as: 

     
(                                              )

                       
         (2.3) 

 

2.2.4 Compression Time 

Compression time refers to time needed for both compression and decompression and requires 

that both be accounted for, separately. Compression algorithms when implemented may have 

same time required for compression as well as decompression or even different times. 

Therefore, it is necessary to take into account both the factors. In storage of video, we may 
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afford to have slower compression techniques; however, once reading the same video under 

the same system, decompression has to be faster to accommodate uninterrupted viewing. 

2.2.5 Entropy 

A key measure of information is known as entropy, which is usually expressed by the average 

number of bits needed to store or communicate one symbol in a message [12]. The information 

content of a group of bytes (a message) is termed as entropy H, which is a function of symbol 

frequency.  It is the weighted average of the number of bits required to encode the symbols of 

a message and mathematically defined as: 

 

 (  )      
 

  
                 (2.4) 

where pi is the probability of occurrence of the symbol si 

 

This mathematical notation establishes the fact that higher the probability of a symbol, lower 

will be the information carried by it, to the extent that if a symbol has pi =1, then information in 

the communication I(s) = 0 !  

The entropy of the entire message is the sum of the individual symbol entropies, given by 

mathematical relationship as: 

I  ∑ (  )         (  )        (2.5) 

 

2.2.6 Code Efficiency 

Average code length is the average number of bits required to represent a single code word. If 

the source and the lengths of the code words are known, the average code length can be 

calculated using the following equation:- 

 

   ∑       
 
                                       (2.6) 
 

 where pi is the occurrence probability of jth symbol of the source message,  

 lj is the length of the particular code word for that symbol and L = {l1, l2, …. Ln}. 
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2.2.7 Bandwidth 

The maximum data transfer rate that can be achieved or allowed over a medium is referred to 

as bandwidth of the media. It is a measure of how much data can be transferred in a given 

amount of time. It does not measure the speed of travel from one point to another, rather 

amount of data flowing through a specific point at one time.  

2.2.8 Throughput 

Throughput is analogous to bandwidth. It is essentially the data transfer rate that is practically 

achieved. Maximum throughput achieved is equal to digital bandwidth of the media. It may also 

be termed as amount of data processed in one clock cycle of any communication system. 

 

2.3 Lossless Data Compression 

 Lossless data compression, as we have dwelled upon earlier, implies a reversible process, 

where the data before and after compression is exactly identical; there is absolutely no room 

for loss of any information in the data. As compared to lossy techniques, wherein, high 

frequency information, that is either not noticeable or may be compromised, is done away 

with, lossless techniques are applied mostly to texts based applications, where integrity of the 

data is of prime importance. Important databases, executable codes and sensitive biomedical 

images all are compressed using lossless technique. 

A lossless compressor maps all files to different encodings; if it shortens some files, it 

necessarily makes others longer. We try to design the compressor so that the probability that a 

file is lengthened is very small, and the probability that it is shortened is large.  

There are two main schemes of lossless data compression, as regards to modeling of the 

systems, namely the statistical scheme and the dictionary based scheme. The two schemes 

alongwith related work on the relevant method shall be dealt with in subsequent sections. 

2.3.1 Statistical Data Compression Scheme 

In statistical modeling, data is analyzed for entropy, characters and word frequencies and 

probabilities. These characteristics of data are tabulated and codes generated for the 
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characters based on their frequencies. The statistics of input data reveal the inherent 

redundancy in the input data which is coded using an appropriate algorithm.  

Shannon-Fano Codes and Huffman trees are common examples of this model, which are also 

known as fixed to variable length coding [13]. But such like statistic modeling is particular to the 

data stream which has been previously analyzed. If the data stream changes, the entire model 

of compression degrades to unacceptable levels. 

Building different models for different streams implies overheads, since the model has to be 

transmitted to the decoder ahead of the compressed data stream. Moreover, compression 

performance of these codes may be high, but they are very slow to implement and hence not 

suited for real-time use.  

For most data applications, statistical methods provide excellent compression ratios. However, 

there are two main disadvantages associated with them. The first disadvantage is that it 

requires two passes over the data before encoding. Firstly, for calculating the probabilities, and 

secondly, for encoding the data based on the calculated probabilities. The second disadvantage 

is non-optimal encoding.  

According to Shannon theory [14], the optimal number of bits to be used for each symbol is 

calculated by log base 2 of (1/p) where p is probability of the given symbol. The coding ceases 

to be optimal as the number of bits used to encode are integral and cannot be fractional as 

necessitated by probabilities at times. For example, take a case of a probability of a symbol 

being 9/10, which would assign 0.15 bits for encoding; however, due to limitation, Huffman 

coding would assign 1 bit, which would be almost 6 times more than required. 

However, despite all these facts, statistical modeling remained the undisposed king of 

compression techniques and considerable work was done in the field of communications with 

far reaching results. In fact, some of the schemes are still very effective for some specific 

applications, either when used alone or in combination with other techniques. 

2.3.2 Dictionary Based Schemes 

In certain cases of communication systems, the embedded structural regularities in strings of 

incoming data may be taken advantage of, hence saving time for modeling and achieving better 
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performance than statistical modeling. Cases where a priori knowledge of incoming data source 

renders statistical modeling to be impossible or unreliable, there is a need to develop and 

adopt a universal coding scheme that has the learning aspect interlaced within the coding 

process. This forms the basis of dictionary based modeling for reducing redundancy. 

Prior to 1977, research in field of data compression was confined to statistical modeling and 

coding, and improvements of these approaches. Jacob Ziv and Abraham Lempel presented a 

novel modeling technique that gave birth to a new concept, i.e. Dictionary based data 

compression scheme. The scheme was presented in their two successive publications in 1977 

and 1978 [15-16]. 

Dictionary based scheme uses a completely different approach to achieve compression; in fact, 

the model is opposite to statistical modeling in that, compression is achieved by using variable 

to fixed length coding. A dictionary is built by analyzing data and matches of incoming stream of 

data is matched with previously transmitted data; if a match is found, the pointer indicating the 

location and length of previous data is transmitted as a token. If the match is not found, the 

data is coded in with tokens, but in a less efficient manner. If the number of bits of tokens is 

smaller than actual data stream bits, compression is achieved. 

All dictionary schemes have almost same statistical scheme and thus achieve the same 

compression ratios. Whereas higher order context models may achieve better compression 

ratios in statistical modeling, dictionary schemes are getting popular because of their speed and 

economy of memory. Moreover, such methods address the limitation of statistical methods in 

that there is just one pass over the data required for encoding. Data is coded and compressed 

in real-time, on the fly. 

2.3.3 Static vs. Adaptive Dictionaries 

A static dictionary is one that is built and synchronized before communication takes place. Such 

a dictionary is not generalized, but specific to an application. The biggest advantage is its 

simplicity, that is, it can be tuned up by making small changes to fit the data it is intended for. 

Thereafter, the compression and decompression is automatic. The disadvantages of such like 

dictionary are its inflexibility to adapt to changing models as well as how to pass it to the 

decoder for synchronizing.  
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Adaptive dictionaries on the other hand are generalized dictionaries that may be conveniently 

used with lot of flexibility. These dictionaries are empty or contain null characters at the start of 

the process, and as compression process continues, they are built up sequentially, retaining 

recent and frequent characters and discarding old and rarely occurring characters. The 

dictionary adapts itself to the input data as it changes, automatically. At the decoder end, the 

data is decoded on the basis of recently received data and hence synchronization and updating 

of dictionary is automatic. 

With the advent of this technique, technological advancement has been quite considerable in 

the field of data compression. Both software and hardware solutions make it practical for 

implementation.  

2.3.4 Lempel Ziv Family of Algorithms 

The Lempel Ziv Algorithms, also common known as LZ Algorithms is a whole family of adaptive 

dictionary based algorithms, branching from two main algorithms proposed by the authors 

Jacob Ziv and Abraham Lempel in 1977 and 1978 [Christina Seminars], as depicted in Figure 2.1. 

 

Figure 2.1 – LZ Family of Algorithms [17] 

The two main algorithms are in fact based on the same concept, with the difference of 

dictionary updating technique. Other branches from the two main algorithms are optimized 

improvements to the main algorithms, as developed from time to time.  

In LZ77 Algorithm [15], the dictionary is a sliding window, consisting of a search and history 

buffer, as shown in Figure 2.2. At the encoder end, the incoming data slides into the search 

buffer for encoding and transmission, shifting into history buffer after encoding for future 

comparison and out of it. The symbols in search buffer are compared to the already encoded 

symbols in the history buffer, and if a match is found, a code or a token, consisting of a triplet 
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(p,l,C) is output as a code to the decoder. In the token triplet, p refers to the pointer or location 

of start of matched symbol or string, l denotes the length of the matched string, and C denotes 

the first unmatched character after the matched string. 

 

           

 

    History Buffer         Search Buffer 

Figure 2.2 - Sliding Window of LZ 77 

 

LZ 77 is also termed as a greedy algorithm, as it attempts to find longest match of strings for 

encoding. The size of the window, i.e. history and search buffers are the main driving factors 

affecting the compression ratio achieved. However, the limitation of LZ 77 Algorithm is that if 

the distance or number of characters between two matching symbols or strings is greater than 

the search buffer, there is a decline in efficiency of coding. Fixed size window is again another 

limitation as the matched strings for coding cannot be greater than the size of window, that is, 

size of search buffer plus history buffer. 

In LZ 78 Algorithm [16], no sliding window is used, and encoded text is added to dictionary, 

which does not have a fixed size. Each time a code or a token is used, the encoded string is 

added to the existing dictionary. Once the limit to dictionary size is reached, either the 

dictionary is saved for future use, if the coding efficiency is good, or reset to zero, if coding 

efficiency is deteriorating. 

Moreover, instead of using triples in code or tokens as in case of LZ 77, LZ 78 uses pairs, that is, 

the pointer p and the symbol C following the matched string; the length is discarded. At the 

decoder end, since the encoding scheme and pair-format is known, the dictionary can be 

reconstructed and input stream of pairs decoded to recover the actual data. This is a 

considerable improvement, however, the algorithm being patented, is the biggest hurdle in its 

common use for applications. 

  

 

Data Out 

 

Data In 
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2.4 Implementation Methodologies 

The algorithms are just a theoretical basis for achieving data compression in digital 

communications. These theoretical guidelines require practical implementation on platforms 

for achieving the desired results. There are two main platforms available for practical 

implementation of such like and other algorithms in the field of digital communication, namely 

the software platform and the hardware architectures. A hybrid methodology also exists 

incorporating both the software and hardware platforms as well as Reduced Instruction Set 

Computer (RISC) also known as microprocessor based designs. Related work in these fields will 

be elaborated in subsequent sub-sections. 

2.4.1 Software Solutions 

Data compression on software platforms imply implementing these algorithms or their 

guidelines in the form of software developed for the application on a general purpose 

computer. The advantage of this approach is that frequent improvements and up-gradations 

for optimized solutions may be incorporated without much of a hassle. Compression ratios may 

be improved by increasing the size of the dictionary, which enhances the computation power of 

the CPU for carrying out larger searches. However, this also means increase in CPU’s processing 

time as well as memory usage, introducing latency. And we know that latency directly affects 

throughput. 

A wide range of software applications and programs have been developed based on LZ based 

algorithms, for example, compress, lha, zoo, pkzip, gzip, V.42, gif, etc. Multiple memory 

accesses in software solutions are a bottleneck in high speed performance requirements, and 

thus, software solutions do not support high throughput data compression requirements. 

Despite the fact that several fast string matching techniques have been applied to accelerate 

compression speeds [18-20], the achieved results are far too slow for real-time applications 

such as wireless data networking and high speed mass storage transfers.  

2.4.2 Hardware Solutions 

The exploding traffic over the wired and wireless networks for data transfers and storages in 

orders of terabytes have deemed hardware solutions of data compression necessary [21]. The 
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advent of VLSI technology and parallel computation methods have further eased real-time high 

speed data compression to be implemented on hardware platforms, so that data may be 

compressed and decompressed on-the-fly [22]. 

In dictionary based algorithms, like LZ 77 algorithm, the most time consuming part is searching 

for the longest possible search, which if done by the CPU itself, bogs down all other 

applications. However, if the same is made to be done by a co-processor or an FPGA, the CPU is 

off-loaded for other computations and an accelerated increase in compression speed is 

achieved. A dedicated hardware designed for a specific algorithm can thus achieve faster and 

reliable compression as well as high throughputs. Hardware implementations on FPGAs or 

ASICs facilitate real-time compression and decompression of data, with throughputs in order of 

gigabits/sec. 

2.4.3 Microprocessor Based Implementation 

Reduced Instruction Set Computer (RISC) based approach has also been researched for purpose 

of removing redundancies in data and achieve data compression [23]. A stand-alone 

microprocessor is programmed and used to implement a selected algorithm.  However, the 

approach has not been very promising and successful as large-scale implementation is not 

feasible owing to increased costs of memories, increased power consumptions and complex 

inter-connects. Moreover, such like approach also has a higher complexity in hardware-testing 

issues. Due to simpler designs in lower hierarchy, this approach is largely employed in scenarios 

where limited data is required to be handled and as such, its development remains confined to 

these scopes only. 

2.4.4 CAM Based Implementations 

In this technique, string matching is carried out by employment of Content Addressable 

Memories (CAMs) which results in higher speed of matching. Repeated strings of input data 

may be matched to parallel lookups within the CAMs, thus resulting in high-speed comparison 

and high throughputs. With pipelining, the CAM based architectures have been reported to 

achieve throughputs as high as 100 Mbits/sec. However, CAM based approach is not very 

popular since CAMs, after all being memories, are quite expensive. 
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Content Addressable Memories (CAMs) based architectures provide constant time to search 

the matching strings, which is a great advantage.  Designs based on these architectures have 

proven to be quite effective [24], as a CAM-based LZ 77 data compressor can process one input 

symbol per clock cycle, regardless of the sizes of buffer and length of string. 

A CAM based design has been discussed in [25]. This approach suggests a two-stage 

compression-decompression architecture, based on combined features of Parallel Dictionary 

LZW [26] and Adaptive Huffman (AH) algorithms. The resultant design is 4 times hardware 

efficient in terms of cost and beats Adaptive Huffman in most of cases. Moreover, the 

architecture also excels when compared to Adaptive Huffman algorithm applied on software 

platform, such as compress utility of UNIX system. It operates at a clock of 100 MHz, achieving 

compression throughputs ranging from 16.7 - 125 MB/sec and decompression rates ranging 

from 25-83 MB/sec. The design can be easily adapted to any FPGA. However, the mis-match 

between the compression and decompression rates makes it unsuitable for ideal real-time 

applications. 

Another CAM based design has been suggested in [27]. Identifying the critical path in the 

architecture, pipelining of the design in matching portion and portioning of Content 

Addressable Memories into blocks for fully parallel searches has been been applied to gain 

speed at cost of area and hence, cost. The architecture has clock rate of 50 MHz, implying 

50MSamples/sec can be processed. In fact, the Titan-R was termed as the fastest compressor in 

2008 [28] achieving throughputs upto 8 Gbits per sec. 

However, there are two disadvantages associated with this approach. First, memories are 

expensive. Increasing the size of window to enhance compression ratios, by allowing larger 

strings to be available for matching implies increased costs. Second, memories constantly 

consume static DC power, which, for larger memory banks, means increased power 

consumption and associated power dissipation problems.  

2.4.5 Systolic Array Architectures 

A systolic array is an arrangement of processors in an array where data flows synchronously 

across the array between neighbors, usually with different data flowing in different directions. 

Each processor at each step, takes in data from one or more neighbors, processes it and, in the 
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next step, outputs results in the opposite direction. The idea is to form an extended layout of 

identical processing elements, each having simple interconnections and capable of carrying out 

simple tasks. A simple layout of a systolic array is shown in Figure 2.3. 

 

 

 

 

 

Figure 2.3: Systolic Array 

Systolic architectures have the properties of being extremely fast, scalable and convert some 

exponential problems into linear ones. The order of computations of a serial match problem 

can be reduced from n2 to n by use of n systolic processing elements, n being the length of 

longest match.  

A number of factors support use of systolic arrays for highly intensive computational problems 

that are likely to degrade or even fail a software system. Firstly, VLSI technology and Moore’s 

law has made possible smaller and faster gates, which in turn make possible high rates of 

communication within the chip, thus increasing processing speed. Then, these chips do not 

have power consumption and dissipation issues and hence are ideally suitable for hardware 

implementation of computationally intensive applications. Economical design and manufacture 

processes have made possible a considerable decrease in their prices. Finally, advanced 

simulation techniques ensure a fault-free chip is tested before fabrication, ensuring error free 

hardware. A fault-tolerance measure taken in one cell is bound to propagate to all other cells in 

design of a systolic design, every cell being identical to the prototype. 

Whereas CAM based designs perform string matching by fully parallel searches, systolic array 

architectures accomplishes the same by pipelining. CAM based designs may be faster but 

systolic designs are cost-effective and error resistant [29]. The only de-merit of systolic 

architectures is that being highly specialized architectures, they are difficulty to design, build 

and implement. 

PE PE PE 

PE PE PE 

PE PE PE 
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The earliest systolic array based data compression hardware is found publication titled “High 

Speed VLSI Designs for Lempel-Ziv Based Data Compression” [24], published in IEEE 

transactions on Circuits and Systems in 1993. The proposed architecture employs thousands of 

processing elements (PEs) and achieves high speed and throughput for text based compression 

by exploiting pipelining and parallelism. Using n-processors array, it has been practically proven 

that the number of computations are reduced from nn to n2. Operating at a frequency of 40 

MHz, the architecture achieves a compression rate of 13.3 Mbytes/sec. 

A wrap architecture [30] based proposed design is a significant improvement upon this earliest 

architecture, and is based on a variant of LZ 77 Algorithm, namely the LZSS Algorithm [31]. 

Maximum matched length is achieved for every clock cycle and structure is able to compress 

and decompress the data on the fly for real-time data communication systems. Reaching an 

operating frequency of 91 MHz, each character can be encoded in one clock cycle. The 

improvements included compression time being linearly proportional to input length and a 

simple and modular architecture for ease of implementation and expansion. Despite being 

hardware complex, the design was a significant improvement over previous proposed designs. 

An improvement is suggested in “Unified VLSI Systolic Array Design for LZ Data Compression” 

published in IEEE Transactions on VLSI Systems in 2001 [29]. The research proposes a number 

of processor array designs and concludes one as the most optimal. Capable of operating at 

clock of 150 MHZ (simulated) and 100 MHz (practically for prototype chip), throughputs of 10 

MBits/sec is claimed. A number of processors may be used in parallel to exploit the parallelism 

in the data stream multiplying yields in throughputs, for example, 10 x processors can achieve a 

compressed throughput of 100MBits / sec. 

Another efficient systolic array design is proposed which is high speed and area efficient in 

research “Design and Implementation of FPGA-based Systolic Array for LZ Data Compression” 

published in IEEE journal in 2007 [21]. Using 16 PEs, it was the most cost effective systolic array 

architecture. The systolic approach eases designing and routing in that only PE is laid out, and 

the rest 15 x PEs are replicated. A comparison is presented with a recent architecture on the 

same lines, i.e with Design-I [29] and results show a comparative improvement in terms of 

hardware resources once implemented on SPARTAN II XC 200 FPGA. Achieving clock speeds of 

105 MHz, a single chip containing 10 PEs can process and achieve throughput of 130 MBits/sec. 



33 
 

 

Moreover, the design being flexible allows implementation of variants of LZ 77 algorithm, such 

as LZ 78, LZW or LZSS. 

The latest research proposes a novel high speed data compression architecture embedded in an 

enterprise network communication system, to cater for multiple communication interfaces 

[32]. The systolic array arrangement is used for parallel comparisons of multiple symbols in a 

single clock cycle. With a layered structure catering for LAN, WAN and SAN of the enterprise 

network system, the scheduler optimizes these layers by directing different data streams on 

different layers as per their workloads. With different types of data being handled by respective 

layers, the architecture caters for future iterations of the algorithm in the same clock cycle and 

producing more than one codeword. The architecture is also subjected to pipelining and 

unfolding techniques to enhance throughputs to multi-giga bit rates. Operating at clock of 100 

MHz and unfolding factor 2, throughputs of order of 9.17 GBit/sec have been achieved. Once 

the architecture is pipelined, throughputs upto 8.7 GBits/sec are achieved at a clock of 165 

MHz. Synthesizing these architectures at higher clocks, such as 500 MHZ can result in 

throughputs greater than 10 GBits/sec. 

2.5 Summary 

In this chapter, we have discussed the requirement of data compression vis-à-vis the current 

and future data communication systems requirements. We have briefly stated various terms 

associated with lossless data compression, before moving on to types of lossless data 

compression schemes. We have briefly referred to the LZ family of Algorithms comprising the 

dictionary based schemes. Implementation methodologies of this family of algorithms and 

related work done in the field has been discussed momentarily, up to and including latest 

research work done so far, both on software and hardware platforms. 

  



34 
 

 

CHAPTER 3 

LZ 77 ALGORITHM 

 

3.1 Why Dictionary Based Schemes 

Certain structural regularities are always there in data streams, especially when we deal 

with them in discrete domain. These regularities can be exploited to reduce the number of 

bits needed for either communication or storage. Prior to 1977, lossless data compression 

techniques were confined to the statistical modeling, where the data stream was analyzed 

for statistical patterns. Redundancies were deduced from these patterns and based on 

probability of symbols in data streams, codes were generated. Quite some work has been 

done in this field as already covered in Chapter 2. 

These models assumed that prior knowledge of incoming symbols in data stream is known 

and not expected to change much during the processing time. However, when no a priori 

knowledge of source is available, a large memory is required to interlace the learning 

aspect of model with the coding scheme. The statistical schemes thus become either very 

expensive or unreliable and at times, impossible. 

When Jacob Ziv and Abraham Lempel created the breakthrough in 1977 with their 

research about a universal compression algorithm for sequential data compression [15], a 

new dimension was added in the field of data compression. This concept, which was so 

simple and yet was waiting to be discovered and realized, was ideally suited to systems 

where there was no a priori information of the source. The concept behind algorithm was 

to maintain a dictionary that may be static, suited for specific applications or adaptive, that 

is updated continuously with the changing patterns in incoming data stream. 

Take for example the text preceding this paragraph, where frequently used words are 

stream, scheme, data, compression, etc. The incoming symbols in the data stream are 

matched to those in the dictionary, and if a match is found, an index to the dictionary is 

transmitted instead of the steam. 
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If considerable matches are found from dictionary, and the number of bits for index 

transmission is less than number of bits required to transmit the data as it is, compression 

is said to have been achieved. And certain redundancies are always inherent in the data 

streams.  

Dictionary based schemes exploit temporal locality of reference, i.e. patterns in current 

data stream are most likely to recur in near future. And this concept has proven to be 

quite true, as evident from the results obtained when applying this technique to various 

lossless applications. 

Lossless data compression requires the solution to be strictly complying to the algorithm, 

whether hardware based or software based. The increasing efficiency and effectiveness of 

the model requires exploiting architectural optimization techniques in hardware, whereas 

software based platforms need to be simpler and adaptable for compiler translation. 

3.2 Introduction to LZ Family 

The LZ family of algorithms are named after their authors, Abraham Lempel and Jacob Ziv 

and based on the two researches published in 1977 and 1978 [15-16]. There have been 

considerable improvements to the two basic algorithms over past 35 years, and 

improvements such as LZW, LZSS, LZR, LZT, LZH etc have been published. The basic idea of 

all these algorithms is the dictionary concept, where frequently occurring strings of 

symbols are stored in buffers, and future matches are indexed to this dictionary. A large 

number of applications today are based on these algorithms, and developed as a 

standalone hardware or software solution, or in combination with a statistical scheme 

such as Huffman or Adaptive Huffman Coding. A few examples such as GIF, compress, lha, 

arc, zip, gzip, stacker and V.42 are important to be mentioned here. 

The LZ 77 or LZ1 algorithm essentially works with a sliding window consisting of a history 

and a search buffer as shown in Fig 3.1. At the source end, incoming data slides in from the 

right, into the search buffer, coded, and shifted into history buffer and out of it. The 

window size is kept fixed and size of search buffer is comparatively much larger that the 

search buffer. The algorithm aims to find longest match of a string of symbols in search 

buffer starting at cursor position, from the already encoded and transmitted symbols in 
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the history buffer. Depending on the match found, a triple comprising the index position of 

match in history buffer, length of match and the first non-matching symbol after the match 

are transmitted. If the size of this triple is comparatively small than the symbols itself, 

compression is achieved. 

B0 B1 B2 B3 B4 B5
B6

M0

B7

M1

B8

M2

n:dictionary length
History buffer Search buffer

Length = LsLength = n - Ls

 
 

Figure 3.1: Sliding Buffers of LZ 77 

In LZ 78 or LZ2, no sliding window is used; instead a coded symbol or string is iteratively 

and incrementally added to the dictionary. Once the preset size of dictionary is reached to 

the limit, the dictionary is either discarded, if compression is not optimal, or saved, if the 

compression is optimal. Moreover, the code-word comprises a double instead of a triple as 

in case of LZ 1, with only index to location and non-matching symbol being transmitted and 

length being discarded. However, the LZ 78 did not become as popular as LZ 77 because 

parts of it were patented after few years of its publication. 

We shall focus on the details of LZ 77 as it forms the basis of our proposed architecture. 

3.3 LZ 77 Data Compression Algorithm 

The LZ 77 Data Compression Algorithm also called LZ 1, is the most popular of its family 

and belongs to a class of universal algorithms with results comparable to certain optimal 

codes. It can be easily applied on any discrete source. The underlying concept is encoding 

future segments of the source data by maximum-length copying from recently coded 

segments. The longest match found in the current string is coded by a triple, essentially an 

index to the dictionary and comprises buffer address, length of the matched segment and 

usually the first unmatched character. 

Thus, a variable length segment of the input data is coded to a fixed length codeword. 

Using this code word and recently received symbols, the decoder reconstructs the 

segments being received. The transmitted code-words contain sufficient information for to 
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allow the decoder to recover the data on the fly. These code-words are overhead in the 

initial stage of the compression, as the coder builds up its dictionary. However, with 

subsequent transfers, less and less information is sent, enabling compression 

accomplishment. Data is decoded right away; as whatever code-word is received, the 

decoder has to reconstruct the data from its own local dictionary. There is no need for 

large storage buffers to retain the received code-words for processing, until data is 

recovered by the decoder; the dictionary automatically does it, in real-time. 

Referring back to definition of Compression ratio, as long as the ratio of output to input 

data stream is less than 1, compression is said to be effective. There are a number of 

variants to LZ 77 algorithm as proposed in literature, however, we shall constrain our 

discussion and implementation to the basic simplified version of the LZ77 algorithm 

processing as mentioned in research paper [32]. 

3.3.1 The Algorithm 

LZ 77 uses a dictionary that is a portion of recently processed data stream. The incoming 

string is imagined to be passing through a sliding window, from right to left. As the data 

slides through the window, it is compressed and the dictionary is updated, imitating a 

compressor scanning and processing the data segments from start till end.  

This sliding window is divided into two portions, the window commonly referred to as 

buffer, meaning a temporary storage. The first portion is called the History Buffer and the 

second portion is called the search buffer. The history buffer contains recently processed 

symbol segments. The search buffer contains the data segment immediately following the 

processed data in the stream, and required to be compressed. The size of each buffer is 

fixed as per the designed architecture, and is an important factor affecting compression 

ratios achieved. The size of history buffer is comparatively much larger than that of the 

search buffer. A detailed study in this regard has been carried out in [33]. 

For each encoding step, the incoming data characters are pushed into the window, say of 

length N characters, from one side and basing on the number of characters encoded, out 

of it from other side. The window is further divided into two history and search buffers as 

already shown in Fig 3.1. The input data required to be coded for say E characters (s0-s2) 
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occupies the search buffer and the already encoded data of say F characters (h0-h7) 

occupies the search buffer. The first character of the look-ahead buffer (y0) is compared 

with entire character string (s0-s7) in the search buffer, and once a match is found, the next 

character in search buffer (s1) is concatenated to the first character (s0) and the entire 

matching is done again to find a string-match. This process is repeated for all characters of 

the look-ahead buffer (s0-s2) if successive matches are found. Accordingly, codes are 

generated depending on the matched string position in history buffer and length of 

matched-string. The first non-matching character is appended to the code-word complete 

one iteration.  

At the beginning of compression process, the entire window comprising history and search 

buffers is normally filled with zeroes. Initial steps yield nulls as characters as code-words, 

as characters do not match with the pre-filled zeroes of the history buffer. With each clock 

cycle, the data is pushed into the window sequentially, and code-words generated as per 

the match. The window slides by number of characters encoded in each step plus 1, in 

direction of incoming data stream, throwing out the same number of characters from 

history buffer and entering new characters of same length into the search buffer. This is 

the concept of the sliding window encoding method, which will be elaborated further with 

the help of an example when we discuss the details of encoding.  

For the purpose of implementation, we will denote the starting point of history buffer 

where the match occurred with character of look-ahead buffer as pointer pntr, the length 

of the matching characters as len and the first non-matching character is denoted as 

symbl. The three outputs are concatenated as (pntr len symbl) and output as a codeword. 

The window thus slides len +1 characters followed by a match. 

Following compression, the total number of bits required for the code-word can be easily 

calculated by using the following notations. 

Let the size of History Buffer be denoted as H. 

Let the size of Search Buffer be denoted as S. 

Let the size of the source alphabet / character be denoted as C. Then, size of codeword N 
for such a compression scheme is defined as: 

N = [log2 H] + [log2 S] +[ C]                                      (3.1) 



39 
 

 
 

To sum up, the algorithm executes following 3 x steps in loops:- 

a. Search and find longest match of a segment of incoming data, starting at cursor 

and completely contained in the search buffer to a segment contained in the 

history buffer. 

b. Output a codeword, essentially a triple (pntr, len, ‘c’), where p is the pointer 

indicating the location of match in the history buffer, len is the length of the 

matched segment and ‘c’ is the first un-matched symbol after the matched 

segment. 

c. Move the cursor n + 1 characters forward. 

 

The pseudo code for the algorithm implementation whether in hardware or software is as 

under:- 

 

while (SearchBuffer not empty) { 
get a reference (position, length) to longest match; 
if (length > 0) { 
output (position, length, next symbol); 
shift the window length+1 positions along; 
} else { 
output (0, 0, first symbol in the search buffer); 
shift the window 1 character along; 
} 
} 

 

3.3.2 Encoding Process 

The encoding scheme employs applying the above mentioned pseudo code to hardware 

architecture or a software platform. Loop handling is easy in software but quite tricky and 

cumbersome in hardware. Quite precision has to be taken care of while implementing 

such kind of recursive operations in a hardware system. In this research, we shall explain 

the encoding technique employed for the simplified version of the algorithm on our 

architecture as already mentioned. 

Extending the concept outlined in the section above, let us take an example and unfold the 

encoding process as it happens in our proposed architecture. We take window length W = 

11, search buffer H = 8 and Look-ahead buffer S=3. We assume a data string of characters 
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comprising the sentence “this thesis deals with data compression” as our input string and 

subject it to compression technique. 

The coding process is explained in Table 3.1 below; each row simulates a step for entire 

compression process, including comparison, calculating the required code-word and 

shifting of window before this process is repeated. h0 – h7 depicts the characters in the 

search buffer whereas s0 – s2 depict the characters in the history buffer. Window length is 

same as used in our research and already mentioned above. The steps are shown as under 

and are self-explanatory. 

 

h0 h1 h2 h3 h4 h5 h6 h7 s0 s1 s2 
Code Out 
(p, l, “c”) 

Shift by  
(l+1) 

0 0 0 0 0 0 0 0 t h i 0,0,t 1 

0 0 0 0 0 0 0 t h i s 0,0,h 1 

0 0 0 0 0 0 t h i s t 0,0,i 1 

0 0 0 0 0 t h i s t h 0,0,s 1 

0 0 0 0 t h i s t h e 4,2,e 3 

0 t h i s t h e s i s 4,1,i 2 

h i s t h e s i s i s 2,3,o 4 

h e s i s i s o n d a 0,0,n 1 

e s i s i s o n d a t 0,0,d 1 

s i s i s o n d a t a 0,0,a 1 

i s i s o n d a t a c 0,0,t 1 

s i s o n d a t a c o 2,1,c 2 

s o n d a t a c o m p 7,1,m 2 

n d a t a c o m p r e 0,0,p 1 

d a t a c o m p r e s O,0,r 1 

a t a c o m p r e s s 0,0,e 1 

t a c o m p r e s s i 0,0,s 1 

a c o m p r e s s I o 1,1,i 2 

o m p r e s s i o n  8,1,n 2 

Table 3.1 :  Encoding Process of LZ 77 Algorithm 

 

Instead of the string characters being transmitted as such, the code-words are 

transmitted. We have assumed the text to be in ASCII (American Standard Code for 
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Information Interchange), hence requiring 8-bits for each character. The length “N” for 

code-word can be easily calculated by recalling Equation 3.1 as under: 

N = [log2 H] + [log2 S] +[C]                                      (3.1) 

Having History Buffer Size H = 8, Search Buffer Size S = 8 and Character C=8, we get N as:- 

N = [log2 8] + [log2 8] + [8] 

N = 3 + 3 + 8 = 14 bits 

This result in use of 14 bits-encoding as against transmission of 32 bits, 3 x 8-bit characters 

encoded and 1 x 8-bit character appended, resulting in maximum compression ratio of 44 

%.  Experimenting with different sizes of History and Search Buffers, depending on type of 

input data, considerable compression ratios may be achieved. These codes may be used as 

such, or further subjected to other techniques of encoding and/or encryption, enhancing 

integrity of data and efficiency of channel bandwidth. 

3.3.3 Decoding Process 

At the receiver end, the code-words are received as transmitted by the transmitter. If the 

code-words were further subjected to another technique of encoding and/or encryption, 

the reverse of these techniques are applied to recover the actual code-word required for 

recovering the string of characters for LZ 77 decoding. 

Code-words are then used to recover the actual characters of the string on the fly. It may 

not be out of point to mention here that the decoding process is automatic; there is 

absolutely no delay in recovering the characters from the code-words, rather the 

characters are generated as received. The dictionary is built, starting from all nulls initially, 

and maintained at the receiver end. Using the last received and decoded characters 

present in the dictionary and the new code-words received, the decoder reveals the new 

characters, simply replicating them from the pointers and lengths received and 

regenerating the data stream. 

For example, let us take the initial few steps of decoding, starting from the code-words 

received and inferring the characters referred to by them as in Table 3.2 below. 
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Code Out 
(p, l, “c”) 

s0 s1 s2 s3 s4 s5 s6 s7 h0 h1 h2 

0,0,t 0 0 0 0 0 0 0 0 t   

0,0,h 0 0 0 0 0 0 0 t h   

0,0,i 0 0 0 0 0 0 t h i   

0,0,s 0 0 0 0 0 t h i s   

4,2,e 0 0 0 0 t h i s t h e 

4,1,i 0 t h i s t h e s i  

Table 3.2 : Decoding Process 

 

3.4 Performance and Limitations of LZ 77 Algorithm 

The LZ 77 data compression algorithm produces optimal results on most text-based 

lossless data compression applications. The results of-course varies with the size of the 

window and in turn the size of the history and search buffers used. The disadvantage of LZ 

77 algorithm is that it is fairly efficient only for long files or messages; shorter messages or 

strings usually result in overheads in transmission or storage, since considerable matches 

cannot be found and hence the number of bits required after processing are more than 

actual. If the repeating characters in the string occur with a period greater than the size of 

the search window, the performance obviously degrades. In most practical applications, 

size of the history buffer is usually 8 192 bits and size of the search buffer is about 10 to 20 

bits. 

The code-words initially tend to expand the transmission or storage requirement as 

dictionary is building up. Consider for example, as in Table 3.1, the replacement of a 14-bit 

codeword against an 8-bit character in a string. However, as the dictionaries build-up, the 

overheads decrease and more and more characters are encoded and thus less information 

is required to help the receiver decode the code-word. The process then approaches 

optimization and hence achieving compression.  
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3.5 Summary 

In this chapter, we have introduced and discussed in detail the advantage of dictionary 

based schemes over the traditional statistical based schemes. We have introduced the LZ 

family of algorithms with details on structure, encoding and decoding process of the basic 

LZ 77 Data Compression Algorithm. The scheme has been explained in detail using an 

example as relevant to our implementation methodology. We have also touched upon the 

performance and limitations of the LZ 77 algorithm which has been used in our proposed 

hardware. 
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CHAPTER 4 

ARCHITECTURAL DESIGN OF PROPOSED METHODOLOGY 

 

4.1  Introduction 

Having discussed the structure of LZ 77 algorithm in detail in the preceding chapter, we 

now move on to its implementation. The algorithm as already discussed may be 

implemented in hardware or software, each having its merits and demerits. However, by 

and large, we saw in Chapter 2 that hardware based implementation is relatively 

beneficial, efficient and more reliable. Data compression implementation is relatively easy 

in hardware as dedicated FPGAs may be employed to carry-out the relatively complex and 

time-consuming task of comparisons, off-loading the general purpose CPU of the 

computer. In this way, the main processor is available for other tasks, ensuring saving of 

precious clock cycles and contributing to transmission and processing efficiency.  

To achieve high throughputs, we have explored architectural optimizations to convert 

serial processing into parallel comparisons. Processing of existing data as well as future 

data strings / character concept will be used within the same clock cycle. Previous 

researches have mostly focused on a single match per clock cycle whereas our research 

extends this concept to future matches within same clock cycle, hence contributing to 

increased throughputs. 

We have developed our design using the bottom-up approach, starting from basic 

comparison architecture, and building up hierarchical modules to evolve the complete 

architecture. Our design is systolic array based architecture, replicating the basic 

comparison architecture in multiple iterations. We utilize the advantages of systolic 

architectures to achieve simplicity and flexibility in design in order to have increased 

throughputs. 

This chapter starts with a brief introduction to systolic architectures, their pros and cons 

vis-à-vis their application, before moving on to unfold own design including the proposed 

basic hardware architecture performing the comparisons for the purpose of data 
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compression. The architecture is scalable and flexible to be implemented in various 

applications that require economy in bandwidth and storage. We shall dwell upon our 

basic compression architecture in this chapter, and cover the details of unfolded and 

pipelined architectures in next chapter. 

4.2 Why Systolic Architectures 

Having already discussed in detail in Chapter 2, within the orbat of hardware platforms, 

systolic architectures are an obvious choice when compared to CAM based and other such 

like approaches. CAM based design carryout fully parallel string matching whereas Systolic 

designs do the same through pipelining. Moreover, CAM based designs are comparatively 

faster yet systolic designs are not only cheaper to implement but also error resistant when 

tested. 

With the development in field of digital systems and Very Large Scale Integration (VLSI) 

and Wafer Scale Integration (WSI) technologies increasing the gate density of chips, their 

production cost are reduced dramatically. Pipelining and parallelism have further eased 

use of such specialized chips and ever increasing throughputs are now achievable. The 

complexity of such architectures remains a problem, but nevertheless, it is workable. 

Systolic architectures tend to further increase the ease and efficiency of specialized VLSI 

chips, developed to handle computationally complex problems. Before we go into the finer 

details of systolic architectures, let us first go through the underlying process of chip 

designing and implementation of algorithms that necessitate their use.  

4.2.1 Systolic Architectures Elaborated 

The concept of systolic architectures was first introduced by Kung in [11] as a means to 

implement computationally intensive repetitive applications requiring local 

communication. Such architectures exploited features of regularity, modularity, rhythmic, 

synchronous and concurrency of processes in application required to be implemented. 

The term systolic is coined from physiology of a living heart that contracts in a rhythmic 

fashion to regularly supply blood to the body. Analogous to this, systolic elements perform 

specified tasks in a rhythmic, repetitive and regular manner, taking inputs and processing 

them to produce desired outputs. 
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A simple definition of systolic array architecture as given from literature is, “Imagine n 

simple processors arranged in a row or an array and connected in such a manner that each 

processor may exchange information with only its neighbors to the right and left. The 

processors at either end of the row are used for input and output. Such a machine 

constitutes the simplest example of a systolic array.”[34] 

Systolic architectures have grid-like multiple processing elements (PEs) interconnected by 

simple communication paths and networked to form an array, as shown in Fig 4.1 The PEs 

are balanced, uniform and identical, each capable of performing a specified simple task. 

Each PE is interconnected to other PEs through simple wired connection. Simple 

interconnections do not only contribute to increased computations but also facilitate 

design and implementation.  

 

Fig 4.1 Simplified Systolic Array 

Data within the architecture flows at multiple speeds in multiple directions. Speed is 

achieved in the design through register-to-register transfer of data. And then all PEs are 

processing at a central common clock, and each PE including those at boundary of array is 

I/O capable. Thus, systolic array architectures have a very high I/O rate and aptly suited to 

computationally intensive applications, implemented in a very simplistic manner. 
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4.2.2 Issues in Special Purpose Chip Design 

VLSI chip designing is a complex problem and needs deliberate and detailed discussion of 

various issues, starting from conceiving its design to its test and production. We shall not 

go into details of these at the moment, but just briefly touch upon the important ones that 

shall form the basis for understanding our proposed design. 

The first thing that must be taken into consideration before designing a VLSI chip 

specialized for a specific task is identification of that task that needs to be implemented. 

Then the design must be divided into few simple modules with relatively simple interfaces, 

so that costs on designs and testing can be reduced. The modularity helps modifying the 

design and adapt to changing environment. Then we focus onto the inter-module 

communication and ensure concurrency in communication and coordination between 

different modules. 

The last step is to balance the chip computations with input and output (I/O) of the design. 

Frequent I/O accesses imply latency in the design, whereas, recursive computations with 

the same data imply data storage within the design, hence increased memory 

requirements, which in turn imply increased cost. This is where systolic architectures come 

as a rescue. 

4.3  Proposed Compression Architecture 

We start unfolding our design, explaining the various constituent blocks that have been 

used. Using a bottom up approach, we have proposed small basic building blocks, and 

connected and re-used the same for developing a higher-order architecture that carries 

out parallel matching and achieves multi-gigabit throughputs. The various blocks include 

namely Compression Cell block, Column Logic block, Pointer and Length Calculation block, 

and explained in succeeding paragraphs below. 

4.3.1 The Compression Cell 

Our most basic module is a simple comparison block that reduces the comparison of two 

characters to a single bit, i.e. the compression cell. We have realized the sequential 

process of comparisons as parallel comparisons for achieving increased throughput. We 
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have considered our input to design to be 8-bit American Standard Code for Information 

Exchange (ASCII) or Extended ASCII characters. This means there are 28 or 256 possible 

characters that can be fed to the design for the purpose of compression. The input string 

thus comprises of characters from these 256 different characters.  

During the process of compression, each of these characters in search buffer shall be 

compared with those of history buffers. This comparison is carried out by a comparator 

that compares each of the 8-bits of a character in search buffer with the corresponding 8-

bits of the characters in history buffer, and basing on the result of the comparisons, 

decides whether a match has occurred or not. 

The bit-to-bit comparison is done using Exclusive-NOR (XNOR) gate which gives an active 

HIGH (1) output if both the inputs are matched. This ensures that the each of the 8-bits of 

both the characters of the search and the history buffers are truly compared. The 8-

outputs of individual XNOR gates are then fed to an 8-input AND gate, to achieve a single 

bit output. The output of the AND gate shall always be active high (1) if and only if, both 

the characters are exactly matched. In net effect, the two characters are compared in 

totality, and a single-bit output is produced, which is then used for further processing. For 

characters s0 and h0 in search and history buffers, this is illustrated in Figure 4.2 below. 

 

Figure 4.2 – Compression Cell  
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This comparator has been used in our proposed design, and in fact, forms the basis of a 

systolic architecture used here onwards. Replicating this compression cell and carrying out 

matching in parallel, multiple characters of the search buffer are matched with entire 

contents of already encoded history buffer simultaneously.  

Using a sliding window with history buffer size h = 8, and a search buffer size s = 3, we 

carryout multiple searches for longest match. Let the characters in history buffer be h0-h7 

and characters in search buffer be s0-s2. All the characters of the search buffer are 

compared with 3 characters of history buffer at a time, and iteration is repeated for all 

sequential 3-characters combinations of history buffer. The various matching schemes are 

as shown in Table 4.1 below.  

 

Ser 

Character Matching Pairs in each Iteration 

History Buffer Characters History Buffer 
Characters 

0 
h0 
s0 

h1 
s1 

h2 
s2 

h3 
 

h4 
 

h5 
 

h6 
 

h7 
 

s0 
 

s1 
 

s2 

1 
 h1 

s0 
h2 
s1 

h3 
s2 

       

2 
  h2 

s0 
h3 
s1 

h4 
s2 

      

3 
   h3 

s0 
h4 
s1 

h5 
s2 

     

4 
    h4 

s0 
h5 
s1 

h6 
s2 

    

5 
     h5 

s0 
h6 
s1 

h7 
s2 

   

6 
      h6 

s0 
h7 
s1 

s0 
s2 

  

7 
       h7 

s0 
s0 
s1 

s1 
s2 

 

 

Table 4.1 – Parallel Comparisons in LZ 77 Algorithm Implementation 
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There are a total of 24 x essential 2-character comparisons that have to be made in order 

to search for the longest match of search buffer characters from already encoded history 

buffer characters.  3 x compression cells are employed in each of the rows for this purpose. 

All these searches are performed in a single cycle of a clock and produce lengths of 

matches that occurred and the location of match in the row where it occurred. A simple 

mechanism may then be employed to select the row that generates the optimum 

codeword. 

4.3.2 Column Logic 

To manage execution of all these iterations for obtaining an optimum codeword of longest 

possible match, we have incorporated a circuit that gives us occurrence of a match and its 

location in a specified row. When a match is found in any iteration, the architecture 

computes its length (0 for no match, 3 for longest match) and its pointer (0-7), or specific 

row where the match occurred. Each comparator in a row compares two characters and 

the output if led to a circuit that carries forward the match result and calculates the 

pointer to the row where the match occurred. 

As we can see from Table 3.1, the first character s0 of search buffer is being compared with 

all the preceding characters present in history buffer, from h0-h7 and thus forms the first 

sub-column of our architecture. Similarly, s1 is compared with all 8 x characters preceding 

it, h1-h7 ,s1  and thus forms the second sub-column of our architecture, and so on for s2 . 

Moreover, the output of each comparator is carried forward across the row over a 

cascaded AND gate incorporated so that maximum length in a row may be calculated. This 

is explained in Fig 4.2. 

The outputs of each of these comparators are then given to a column logic circuit, which 

carries forward the status of matches in the first sub-column and the row in which the 

match occurred. The column logic circuit essentially carries forward the status of a match 

in a sub-column, which is set to 1 if a match is found, and its location in the row where the 

match occurred, or a pointer.  

A number of designs for column logic may be conceived, each having its own merits and 

demerits, with the aim of carrying forward the occurrence of a match and its location. A 



51 
 

 

serial optimized logic implementation exists in [32]. We have proposed a novel 

optimization where the serial logic is made to work in pairs and results in logarithmic 

complexity, as shown in Figure 4.3. 

 

Figure 4.3  Column Logic with Logarithmic Complexity 
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4.3.3 Pointer and Length Calculation 

Having executed all the above mentioned iterations in parallel, we need to select the 

optimum pair of length of pointer that gives us the longest possible sequential match. Each 

of the sub-columns gives us a match flag and a pointer. One iteration of the algorithm with 

the given window size gives us three match flags and three pointers, which are then 

selected through a Pointer and Length Calculation block to give us a pair for optimized 

codeword . Figure 4.4 shows the proposed block for this purpose, which is one of the most 

important blocks of our proposed design.  

 

Fig 4.4 Pointer and Length Calculation Block 

 

The lengths of history buffer may be increased to achieve better compression ratios, 

however, larger history buffers have their effect on the critical path of Pointer and Length 

Calculation block. A typical length of 8-32 characters of history buffers produce optimal 

results as quoted in [27], [29], [35]. 

4.3.4 Compression Block 

Together, the Compression Cell (CC), Column Logic (CL) and Pointer and Length Calculation 

(PLC) blocks constitute a Compression Block (CB) of proposed architecture for executing a 

single iteration of the LZ77 Algorithm. The various interconnects are shown in Fig 4.5 

below. Characters from search and history buffers are fed to the parallel CCs, through CLs 

and finally to the PLCs, which calculate the desired pointers and lengths of matches. This 

architecture is fully parallel and designed to run on a single clock cycle.  
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Fig 4.5 Compression Block for Single Iteration 
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The proposed design compares contents of entire search buffer with that of history buffer 

in a single clock cycle. The length of code-word for proposed design is 13 bits, with 3-bits 

for pointer, 2-bits for length and 8-bits for the appended character. This code-word can 

achieve a maximum compression of 41 % Compression Ratio if all 3 characters in search 

buffer are matched.  

Various lengths of history and search buffers may produce different results, with 

considerable decrease in performance for larger buffer sizes, due to increased critical 

paths and hence execution timings. This architecture may be unfolded using barrel shifters 

to shift encoded characters from search buffer into history buffer and out of it, as the 

coding and compression process continues. At the same time, new characters are fed into 

the search buffer from incoming data stream. 

4.4 Summary 

 In this chapter, we have introduced our proposed design for implementing LZ77 Data 

Compression Algorithm. The proposed architecture has been designed using a bottom up 

approach and various constituent blocks have been discussed in detail. The entire 

Compression Block for single Iteration execution has been revealed in the last portion of 

the chapter. The architecture optimizes the searches, and converts serial sequential 

matches into parallel matches, saving a lot in execution time. This architecture is a fully 

parallel architecture and works to compress the entire contents of the search buffer in a 

single clock cycle. 
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CHAPTER 5 

SUPER UNFOLDED AND PIPELINED ARCHITECTURES 

 

5.1 Unfolding of Architecture 

Systolic architectures as we have already elaborated on in Chapter 4, are regular arrays of 

simple finite state machines (FSM) where each FSM in the array is identical. The underlying 

algorithm in the architecture is same and relies on data from different directions at regular 

intervals and outputs are combined [36]. 

The sliding window in the proposed architecture has specifications as history buffer h=8, 

search buffer s=3 and a window size W=11. The design is capable of encoding three 8-bit 

characters from the search buffer at a time in one clock cycle. The replicating of the design 

to form a fully parallel systolic architecture can increase its throughput many-folds.  

Depending on the number of characters encoded, the data fed into search buffer varies 

from one character at minimum (case when there is no match) to 4 characters at 

maximum (when all 3 characters are encoded and 4th character is appended in the 

codeword). In simple terms, length of the match would force the window to slide “l+1” 

characters ahead, where “l” is the length of match found. This analogy may be further 

utilized to unfold the proposed design to include future matches of the window, based on 

the present matches, and processed in the same clock cycle. 

5.2 Super Unfolded Architecture 

The idea mentioned in the paragraph above is used to extend this design into multiple 

parallel stages, where the search buffer is extended to include future iterations of the 

matching in present clock cycle. This is the proposed systolic architecture that we shall be 

using for purpose of LZ 77 data compression and forms one of the complete designs of this 

research. 

Consider Table 5.1 below, using the same specifications W=11, h=8 and s=3. If all 3 

characters are matched, the window slides 4 characters forward. The six columns cater for 
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an unfolding by factor of 2 and eight search characters s0-s7.  For a higher order unfolding, 

for example 3, the number of columns would increase to 11 and search buffer characters 

include s0-s10.  This search scheme may be further extended to include further future 

searches, and all searches are carried out in parallel and in same clock cycle. The unfolding 

factor is simply determined by lengths of history and search buffers. 

Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 

h0h1h2 

s0s1s2 

h1h2h3 

s1s2s3 

h2h3h4 

s2s3s4 

h3h4h5 

s3s4s5 

h4h5h6 

s4s5s6 

h5h6h7 

s5s6s7 

h1h2h3 

s0s1s2 

h2h3h4 

s1s2s3 

h3h4h5 

s2s3s4 

h4h5h6 

s3s4s5 

h5h6h7 

s4s5s6 

h6h7s0 

s5s6s7 

h2h3h4 

s0s1s2 

h3h4h5 

s1s2s3 

h4h5h6 

s2s3s4 

h5h6h7 

s3s4s5 

h6h7s0 

s4s5s6 

h7s0s1 

s5s6s7 

h3h4h5 

s0s1s2 

h4h5h6 

s1s2s3 

h5h6h7 

s2s3s4 

h6h7s0 

s3s4s5 

h7s0s1 

s4s5s6 

s0s1s2 

s5s6s7 

h4h5h6 

s0s1s2 

h5h6h7 

s1s2s3 

h6h7s0 

s2s3s4 

h7s0s1 

s3s4s5 

s0s1s2 

s4s5s6 

s1s2s3 

s5s6s7 

h5h6h7 

s0s1s2 

h6h7s0 

s1s2s3 

h7s0s1 

s2s3s4 

s0s1s2 

s3s4s5 

s1s2s3 

s4s5s6 

s2s3s4 

s5s6s7 

h6h7s0 

s0s1s2 

h7s0s1 

s1s2s3 

s0s1s2 

s2s3s4 

s1s2s3 

s3s4s5 

s2s3s4 

s4s5s6 

s3s4s5 

s5s6s7 

h7s0s1 

s0s1s2 

s0s1s2 

s1s2s3 

s1s2s3 

s2s3s4 

s2s3s4 

s3s4s5 

s3s4s5 

s4s5s6 

s4s5s6 

s5s6s7 

 

Table 5.1 - Multiple Iterations of Algorithm with Parallel Comparisons 

 

The first column is same as explained in Chapter 4; it contains all parallel comparisons of 

history and search buffers as in a simple unfolded architecture. Now depending on the 

number of characters matched, the window will slide forward and search will be carried 

out in either of column 2 through 4. When there is no match of search buffer with any 

character in history buffer in the first iteration of the algorithm, symbol s0 is shifted in the 
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history buffer, by just being appended to the codeword. The second iteration of the 

algorithm is executed in column 2 of Table 5.2, with all parallel matches shown with the 

same scheme. 

If the first column search results in matching of s0 only, the next symbol s1 is appended, 

and subsequent iteration of the algorithm is executed as shown in Table 3. Similarly, if s0-s1 

are matched in first iteration of the algorithm, the next symbol s2 is appended, and second 

iteration of the algorithm is executed as shown in Column 3 of Table 5.1. And for a best 

possible scenario, where all the characters of search buffer s0-s2 are matched in first 

iteration of the algorithm, s3 is appended to the codeword and subsequent iteration is 

executed as shown in Column 4 of table 5.1.  

Having employed the same scheme, future iterations are also carried out in the current 

clock cycle, achieving encoding of more than one word in the same clock cycle. Thus, 

future strings are encoded by unfolding the algorithm, and number of strings encoded is 

directly dependent on the level of unfolding used.  

5.3 Optimized Super Unfolded Architecture 

Having discussed the details of unfolded design, a close observation of Table 5.1 reveals 

that one-third of matches in subsequent columns are identical to matches in the preceding 

columns. The results of these matches are already available to us at the end of the 

previous iteration, and hence, need not to be re-processed again. The matches in each 

preceding column which are redundant for next subsequent columns are colored blue for 

easy identification and shown in Table 5.2. Thus the results of previous iteration are simply 

carried forward to the next subsequent iteration for use in the Length and pointer 

calculation block. 
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Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 

h0 h1h2 

s0 s1s2 

h1h2h3 

s1s2s3 

h2h3h4 

s2s3s4 

h3h4h5 

s3s4s5 

h4h5h6 

s4s5s6 

h5h6h7 

s5s6s7 

h1 h2h3 

s0 s1s2 

h2h3h4 

s1s2s3 

h3h4h5 

s2s3s4 

h4h5h6 

s3s4s5 

h5h6h7 

s4s5s6 

h6h7s0 

s5s6s7 

h2 h3h4 

s0 s1s2 

h3h4h5 

s1s2s3 

h4h5h6 

s2s3s4 

h5h6h7 

s3s4s5 

h6h7s0 

s4s5s6 

h7s0s1 

s5s6s7 

h3 h4h5 

s0 s1s2 

h4h5h6 

s1s2s3 

h5h6h7 

s2s3s4 

h6h7s0 

s3s4s5 

h7s0s1 

s4s5s6 

s0s1s2 

s5s6s7 

h4 h5h6 

s0 s1s2 

h5h6h7 

s1s2s3 

h6h7s0 

s2s3s4 

h7s0s1 

s3s4s5 

s0s1s2 

s4s5s6 

s1s2s3 

s5s6s7 

h5 h6h7 

s0 s1s2 

h6h7s0 

s1s2s3 

h7s0s1 

s2s3s4 

s0s1s2 

s3s4s5 

s1s2s3 

s4s5s6 

s2s3s4 

s5s6s7 

h6 h7s0 

s0 s1s2 

h7s0s1 

s1s2s3 

s0s1s2 

s2s3s4 

s1s2s3 

s3s4s5 

s2s3s4 

s4s5s6 

s3s4s5 

s5s6s7 

h7 s0s1 

s0 s1s2 

s0s1s2 

s1s2s3 

s1s2s3 

s2s3s4 

s2s3s4 

s3s4s5 

s3s4s5 

s4s5s6 

s4s5s6 

s5s6s7 

 

Table 5.2: Identification of Redundant Comparisons 

These redundant matches are not redundant for only the next subsequent column, but 

also for also for further subsequent columns. Removing the matches already carried out 

previously in future iterations helps reduce the number of matches for the unfolded design 

considerably. In fact, for the given window, with W=11, h=8 and s=3, the number of 

matches are reduced from 4x8x6 =192(literal) to 72 (practical/optimized).  

The optimized architecture in our design utilizes this advantage and redundant matches 

are discarded. This analogy helps reduce area of optimized design as compared to a 

simpler form of repeated blocks. The details of the optimized architecture are shown in 

Figure 5.1. The Length and Pointer Calculation blocks are interconnected to carry forward 
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the results of previous matches to next subsequent blocks. A simple logic may then be 

used to select the required pointers and lengths.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.1 High Speed Super Unfolded Architecture 

 

In each of the subsequent iteration, we just need to incorporate one sub-column of 

comparators to match the new characters, whereas the previous two sub-columns being 

redundant are not used, and their results from previous iterations are carried forward to 

this iteration for utilizing in Pointer Calculation block. Except for the first column, each 

subsequent new column implies just one sub-column of new characters to be matched, 

thus achieving a much anticipated reduction in terms of area. 
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The overall advantage achieved by this optimized design is not only in terms of space, but 

also in speed, as future strings are also encoded in the same clock cycle. Increasing the 

length of window, and thus lengths of history and search buffers, and unfolding the design 

by higher orders, the throughputs achieved are very high as compared to proposed designs 

in existing literature so far. 

This design helps achieve boosting of throughputs and ideally suited for high speed 

communication applications which are bandwidth thirsty. Either devices work more 

efficiently in the allotted Bandwidths or they are able to work at virtually enhanced 

Bandwidths than existing Bandwidths provided. 

5.4 Summary 

In this chapter, we have further elaborated upon the proposed design and taken it two 

steps ahead, first by unfolding it, and later on optimizing the super-unfolded architecture. 

Both the designs are discussed in detail in this chapter. The redundancies introduced in 

unfolding of design are identified and matching is optimized to achieve reduction in not 

only in terms of area, but also in terms of speed. Pipelining of the design helps further 

reduce the critical time and achieve even higher operating clocks, contributing to higher 

throughputs. 
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CHAPTER 6 

EXPERIMENTAL RESULTS AND COMPARISONS 

 

6.1 Results 

This research was aimed at proposing a novel architecture for high speed lossless data 

compression. Considerable improvement and enhancement of throughputs was perceived 

to be desired from proposed design. The architecture is a systolic array implementation 

and inherits the obvious advantages of simplicity, flexibility and error-resistant. 

For its obvious advantages of adaptive dictionary and independence of apriori knowledge 

of data stream, LZ 77 data compression algorithm is has been used for implementation. In 

our experiment, we have used a Window Size N=11 characters, with History Buffer H=8 

characters and Search Buffer S=3 characters. The proposed design was conceived and 

developed in a step-by-step approach. Thorough study and analysis of design has led to 

optimization of the architecture and redundant modules have been eliminated, which 

results in simplifying computational complexity, saving critical area and power 

requirements. 

The design has then been unfolded to order 2, with future searches of Search Buffer 

incorporated in the current clock cycle. Whereas the algorithm lays down basis for a 

limited search equaling the size of search buffer in a single clock cycle, the same idea has 

been extended by incorporating future searches within the same clock cycle, and results 

obtained in parallel. This unfolded design ensures encoding of 8 characters (s0 – s7) in a 

single clock, hence enhancing throughput manifolds. 

The proposed design has been extensively simulated and synthesized on various families 

of FPGAs using Model Sim ® and Xilinx ® platforms respectively for all possible values of 

data including “WORST” and “BEST” case scenarios. The inputs and outputs to the 

architecture are shown in Figures below.  There is a considerable reduction in terms of 

area as well as increase in terms of speed as already claimed in preceding chapters. 
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Figure 6.1 Simulated Design with Random Input Data 

 

The inputs are passed to Registers before being input to the design. 8-bit Registers H_0 – 

H_7 contain the history buffer characters whereas 8-bit Registers S_0 – S_7 contain the 

Search Buffer characters required to be encoded. Maximum match length of 3 characters 

entails 6 x 2-bit Registers “length1-length6” to be used for storing results from respective 

iteration. The length of history buffer of 8 characters entails 6 x 3-bit Registers for storing 

pointers from respective iterations. The initializing followed by inputs to registers after 20 

ns is shown in Figure 6.1 above. Accordingly, the outputs stored in length/pointer registers 

are shown in Figure 6.2 below. 
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Figure 6.2 Simulated Design Outputs from Random Input Data 

 

As seen from the simulation results, the outputs for 8 characters to be encoded are 

available within one clock cycle. The pointers and lengths are stored in their respective 

registers which may then be used using a simple logic circuit that picks up the necessary 

length/pointer pairs, append respective characters and form the desired code-words for 

further processing. 

The Super unfolded architecture has been synthesized on various families of Virtes ® FPGA. 

When synthesized on Virtex-6 family of FPGA, the design can work on a maximum 

operating clock of 270 MHz, promising throughputs of 17.3 GigaBits / sec. Considerable 

slices are still available using the buffer specifications used, implying that larger buffers 

may be used, and increased characters may be encoded, enhancing the throughput many 

times. Detailed results are tabulated in Table 6.1. 
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Architectural Information Virtex 4 Virtex 5 Virtex 6 

No of Slices 335 / 6144 158 / 19200 158 / 93120 

No of 4 input LUTs 632 / 12288 431 / 19200 397 / 46560 

Max Operating Frequency 204 MHz 209 MHz 270 MHz 

Throughput 13 GBit/sec 13.4 Gbits/sec 17.3 Gbits/sec 

 

Table 6.1 : Experimental Results of Proposed Design 

 

6.2 Comparisons 

The proposed idea of carrying out future searches within the same clock cycle has already 

been introduced in [32]. However, the underlying design of modified column logic block, 

responsible for calculating lengths and pointers has been the main motivation for this 

proposed design. The block processes data in parallel and a considerable improvement 

from [32] has been obtained. Due to the nature of the design, our proposed design takes 

two stages of pipelining for fully parallel processing, whereas the design in [32] requires 

seven stages of pipelining for fully pipelined. Either speed or area has to be compromised 

in the previous design, and own proposed design overcomes this dis-advantage. 

6.3 Summary 

In this chapter, we have discussed in detail the experimental results of the proposed 

architecture. The design is being systolic array based is modular, fully parallel highly error-

resisting. The nature of design makes it easier to extend the size of buffers so that larger 

number of future searches may be incorporated within the current clock cycle. The results 

obtained are far better than proposed designs in literature. 
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CHAPTER 7 

CONCLUSION AND FUTURE RECOMMENDATIONS 

 

7.1 Conclusion 

Considerable improvements have been incorporated in design. By incorporating future 

searches in current clock cycle and elimination of redundant matches, high speed 

compression is accomplished and highest throughputs have been achieved. 

The proposed architecture finds wide-spread applications in the communication industry. 

The design may be implemented on an FPGA and used in layered design, with a multiple 

data communication hubs, having various ports for communication applications depending 

on bandwidth allocation. Each layer may then be interfaced with this design through its 

corresponding port and all layers work in parallel to achieve high throughputs for the 

entire communication bandwidth. The optimized architecture saves space available on 

FPGA board for incorporating a further encryption scheme to help improve communication 

standard.  

With the throughputs obtained from the design, the device may be easily connected on 

100GigaBit interfaces, and incoming data streams may be distributed using MUXES at 

headers. The results also show that existing Bandwidths may be effectively and efficiently 

utilized, and even enable communication devices to communicate at virtually enhanced 

Bandwidths than allocated.  

7.2 Future Recommendations 

The novelty of design and its flexible nature promises a lot of work that can take on from 

the research conducted so far. The design has been developed using LZ 77 Algorithm. 

However, using the same scheme, the architecture can be modified for use with other data 

compression algorithms that may prove to be optimal for a given application. LZ 77 is, in 

fact, the first and the simplest of dictionary based schemes. Considerable improvements to 
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the LZ 1 or LZ 77 Algorithms have been documented and the same scheme may be used 

for implementation using this design.  

The proposed design may also be extended for larger window sizes, including larger history 

and search buffers, and limitations to the size of window and history and search buffers 

may be identified. 

For larger window sizes, the searches for matches may be done in parallel to optimize the 

design for higher throughputs. The design shall have to be broken up into multiple 

matching groups, for example, for window size W=40 with history buffer h=32 and search 

buffer s=8, we have 256 parallel matches to be processed. These matches may be 

pipelined into two groups of 128 matches each, four groups of 64 matches each or even 

eight groups of 32 matches each. The tradeoff would exist between area and speed, again 

depending on the nature of application for which it is being used. 

Moreover, critical time path in column logic circuit may be reduced by pipelining the 

design, which may further enhance the compression speed and increase throughputs 

further. Moreover, unfolding design to higher orders may introduce latency in the 

architecture that may be again overcome through pipelining of the blocks required to work 

in parallel and independent. 

These are few of the leads that are perceived to be carried on from the research concluded 

in this dissertation and may be exploited in future work on the subject. 
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