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Preface 

 

 

This report is presented by a student from the department of mechatronics at college of 

electrical and mechanical engineering, NUST. This document contains a detailed report of 

MS thesis project in relations to Unmanned Arial Vehicle. 

There were three semesters on campus and one off campus in the MS program in 

mechatronics. The purpose of on campus semesters was to give a brief theoretical knowledge 

to the students about different aspects of mechatronic systems and its applications. 

The goal of this project is to derive a viable states space model of Quad-X and design a 

controller which is able to make the Quad-X hover. This report is divided in to five main 

chapters: Introduction, System Description, Design and Strategy, Modelling and Controller 

design. All the references are listed at the end and all the MATLAB code and Quad-X 

simulation models are all given in the project CD. 

The author wishes to give special thanks to all those people who gave their time for the 

successful completion of the project namely Lt. Col. Dr. Knuwar Faraz and Sir Shafiq. 
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Abstract 

 

In this paper, a non-linear modal of quad-rotor aircraft is derived (which is an under-

actuated with six degrees of freedom (6DOF) is derived) using the basic laws of physics. The 

derived model is highly unstable, so first the model is linearized and then a linear 

multivariable control strategy is developed for the purpose of first stabilizing the aircraft and 

secondly forcing the aircraft to follow a certain fix reference value. The performance of this 

linear control strategy is evaluated using simulations on Simulink/MATLAB and the results 

show the effectiveness of the LQR controllers. 
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CHAPTER 1 

INTRODUCTION 

This is an introductory chapter which will give the reader some background knowledge 

about the project and also help the reader to quickly understand the basic aims of the project. The 

first part of this chapter gives a brief explanation about the theoretical background and important 

terms related to the project. The part of this chapter states the problem statement and the main 

goal which we are planning to achieve. 

UAV’s (Unmanned Aerial Vehicles) have recently become very popular. Now a day’s 

low price and small scale UAV’s are available on different websites and are easily purchasable. 

Quad copters also fall under the category of UAV’s. It has a cross like frame with four rotors 

mounted at each corner as shown in the figure 1.1.  

    

 

 

 

 

 

 

 

 

 

 

Fig 1.1: Quad-X Frame 

Different quad rotor platforms are commercially available on the website and now a day 

like Turbo Ace X830-D [1], ArduCopter [2], ARDrone quadcoptor [3] and many others. These 

aircrafts are bought by hobbyists, professional flyers or teaching institutes for different purposes 

like entertainment, flying competitions or research. Due to the unavailability of the readymade 

frames in Pakistan and high shipment cost I have designed and built a custom quad rotor aircraft 

for this project and named it ‘Quad-X’. 

There are several applications of such aircrafts and some of them are listed below: 
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1. A Research platform for the students 

2. Traffic monitoring and aerial surveillance 

3.  In military for search operations 

4. Inspection of disaster hit areas and many others 

The list of applications described above each requires different levels of control. For some 

applications high precision and accuracy is mandatory on the other hand some applications may 

work with large tolerances. 

1.1 Problem Statement 

Here I will describe the problem statement of the project and the goals that are set and the 

necessary steps to achieve those goals. 

The goal of this project is divided in to three parts which will be implemented separately step by 

step. The first two parts are mandatory and the third part is optional and will be implemented 

provided if the time resources are available. The first part is the design and built of the Quad-X 

frame. The second part is related to the development of a control scheme which we will be 

implementing on the mathematical model of the Quad-X frame and check the results of the 

developed controller using MATLAB. The third part is the implementation of the controller on 

the actual frame.  

These three parts can be further divided into sub parts and the completion of all the sub-parts is 

mandatory for the achievement of the main goal. The collective sub-parts are listed below which 

serves as the checklist for the development of the project. 

 Mechanical design, procurement of components and assembly of the Quad-X frame. 

 Modelling and development of a viable state’s space modal of the Quad-X frame. 

 Design, implementation and simulations of a stable hovering controller on the developed 

model using MATLAB. 

 Analysing the controller’s ability to stabilize the model using MATLAB. 

 Analysing the controller’s ability to follow a fixed reference path using MATLAB. 

 Implementation of the controller on the Quad-X frame and analysing the results. 

1.2 Chapter Summery 

The main aims and objectives of the project have been discussed in this chapter. Some 

theoretical background has also been explained in order for the reader to get along with the 

project. The labs used throughout the project development are CNC machines lab and projects 

lab at Wah Engineering College. The main focus of the next chapters would be how to build the 

frame and develop its mathematical model. Design and implementation of a controller for stable 

hovering and fixed input following would be discussed next. 
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CHAPTER 2 

SYSTEM DESCRIPTION 

This chapter deals with the description of the labs used along with the facilities in the 

development of the project. The first part of the chapter describes the hardware components of 

the Quad-X frame used in developing the aircraft and the later part gives a little knowledge about 

the theory of aircraft specifically its behaviour in mid-air with respect to some given inputs 

which will help the reader to understand about the manoeuvrability of the aircraft. 

2.1 Quad-X Hardware 

This section will present the hardware description of the Quad-X aircraft. The Quad-X aircraft 

have been designed, assembled and maintained in the robotics lab of Wah Engineering College.  

In figure 2.1 the hardware description of the Quad-X frame is shown. It contains two aluminium 

square pipes, a square core made up of Plexiglas material, four BL-DC motors, four propellers 

(two normal and two with counter pitch), Li-Po battery packs and main circuit board. We can 

also see three small gyroscopes placed besides the battery packs. An additional component which 

is missing in this fig and will be explained later is the 7 channel RC made by Futaba with a TX 

and RX modules [4]. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.1: Hardware description of the Quad-X Frame 
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2.2 Quad-X Remote Control and Manoeuvring 

The size of the Quad-X frame depicts that its manoeuvrability is normal neither too low nor too 

high. This section presents some of the most common manoeuvres of a quad rotor aircraft with 

some predefined inputs. Most of the complex movements of a quad rotor are simply a 

combination of these basic manoeuvres. Moreover it was thought to be of great importance that 

the reference frames used in the modelling part should be introduced here as well. 

2.2.1 Reference frames 

For the better understanding of the Quad-X manoeuvres two reference frames are defined here 

one called the earth frame E which is fixed with the real world and other is the body frame B 

which is fixed at the centre of the aircraft. The orientation and placement of the frames is shown 

in fig 2.2. These frames are basically the 3D coordinates systems in which the quad rotor 

manoeuvres. The coordinates system will be used as a reference in the modelling part of this 

aircraft. The vectors in the earth frame E will be referred as   and those in the body frame B 

will be referred to as   .The Quad-X is able to rotate freely around the three body axis and signs 

are defined based on the inputs given positive inputs means clockwise rotation and negative 

inputs means counter clockwise rotation. 

 

 

 

 

 

 

 

 

Fig 2.2: Description of the coordinates system used in the project [5] 

2.2.2 Quad-X Control Inputs 

The Quad-X uses four rotors to generate lift. Two of them are rotating in the clockwise direction 

and the other two are rotating in the counter clockwise direction. These are fixed pitched rotors 

as opposed to conventional helicopters. The main principle behind the movement of a Quad-X 

aircraft is the speed difference between the rotors i.e. the system can be completely controlled by 

changing the rotational speed of the four rotors thus varying the thrust and torques produced. Fig 

2.3 describes the change in the Quad-X attitudes with the given remote control inputs. There are 
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two sticks on the main remote control module and both of them can either move up-down or left-

right thus giving an attitude changes to the Quad-X frame as depicted in fig 2.3 

 

 

 

 

 

 

 

 

 

 

Fig 2.3: Quad-X sketch with wireless remote control interface [5] 

2.2.3 Quad-X Manoeuvring 

After the complete description of the reference frames and the control inputs of the Quad-X 

frame the manoeuvring possibilities are now discussed in detail. 

The upward forces of the four rotors are generated by their angular speeds which are controlled 

by the wireless remote control as shown in fig 2.3. When the rotors rotate it splashes through the 

air and due to the frictional force between the air particles and the rotor motion two forces are 

generated. One is the lift force and the other is the drag force. The lift force lifts the quad rotor in 

the upward direction as shown in fig 2.4. The drag force results in counter moments on the rotors 

known as the induced moments (        ) which are in the opposite direction of the rotation of 

the rotors as shown in fig 2.4. On a conventional helicopter tail rotor is specifically placed to 

counter the effect of this induced moment in order to stop the helicopters body from spinning, 

but in our case we can achieve the same results by simply rotation the rotor in pairs with two of 

them rotation in one direction and the other two rotation in the opposite direction as shown in fig 

2.4. 
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Fig 2.4: Forces and Torques of the Quad-X frame while hovering [5] 

2.2.4 Mathematical description of Forces and Torques 

Starting from the Newton’s second law for translational and rotational systems we get the two 

famous relations as shown: 

∑          (2.1) 

∑          (2.2) 

Where ‘F’ is the total force applied to any rigid body ‘m’ is the mass of the body and ‘a’ is the 

linear acceleration of the body. Similarly ‘𝞽’ is the total torque exerted to the body ‘ ’ is the 

moment of inertia and ‘α’ is the angular acceleration. 

While in hovering mode the Quad-X is in Force and Torque balance. Equal thrust and torques 

are generated by the rotors at equal speeds because of the similarity in their design which means 

that if the four rotors are rotation at equal speeds the total torque exerted on the Quad-X frame 

about the Z-body axis should be equal to zero. Similarly at equal speeds the thrust forces 

generated by each rotor would be same resulting in zero angular acceleration about the X- and Y-

body axis. The only issue now is the huge amount of stresses being exerted at the central core of 

the Quad-X frame. In order to deal with the stress the material of the core and its thickness 

should be selected wisely. This part is discussed in detail in the mechanical design section of this 

report which will come later on. 

2.2.5 Roll, Pitch and Yaw movements 

Fig 2.5(a), (b), (c) depicts the roll, pitch and yaw movements of the Quad-X frame from left to 

right respectively along with their control inputs. 
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Roll means the rotation of the Quad-X frame about the X-body axis. This could be achieved by 

changing the speeds of rotor 2 and rotor 4 while maintaining the speeds of rotor 1 and rotor 3. 

For positive or clockwise movement about X-body axis the speed of rotor 2 is increased and the 

speed of rotor 4 is decreased as shown in fig 2.5(a). 

Pitch means the rotation of the Quad-X frame about the Y-body axis. This could be achieved by 

changing the speeds of rotor 1 and rotor 3 while maintaining the speeds of rotor 2 and rotor 4. 

For positive or clockwise movement about Y-body axis the speed of rotor 1 is increased and 

speed of rotor 3 is decreased as shown in fig 2.5(b). 

Yaw means the rotation of the Quad-X frame about the Z-body axis. As we already know that 

the induced moments generated by the rotors movement exert torques on the frame. The net 

torque exerted on the aircraft is zero as long as the torques exerted by the pair of rotors rotating 

in the clockwise direction is equal to the torques exerted by the pair of rotors rotating in counter 

clockwise direction. Thus generating a net zero torque but if we want to achieve a yaw 

movement we need to mismatch the pair of torques generated by the two pairs for example if we 

want to achieve a positive yaw rotation about the Z-body axis we will simply increase the speeds 

of rotor 2 and rotor 4 and decrease the speeds of rotor 1 and rotor 3 as shown in fig 2.5(c). 

 

  

 

 

 

 

Fig 2.5(a): Roll movement  [5] Fig 2.5(b): Pitch movement [5] Fig 2.5(c): Yaw movement [5] 

2.3 Chapter Summery 

In this chapter the overall system analysis is carried out. Different hardware components used are 

discussed. System parameters are also discussed and system behaviour to different inputs is 

discussed. 

In the next chapter a detailed mechanical design analysis is carried regarding the frame of Quad-

X aircraft. 
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CHAPTER 3 

DESIGN AND STRATEGY 

This chapter describes some basic calculations related to the mechanical design of the 

Quad-X frame and the modelling and control strategies used in order to achieve stable hover. 

3.1 Mechanical design of the Quad-X frame 

The Mechanical Design has been categorized in the following sections: 

a. Basic Design 

b. Material Selection 

c. Design Calculations 

3.1.1 Basic Design 

The basic design consists of two links attached together in a cross formation. The links 

are reinforced at the center by plates. Motors are mounted at the end of the links as shown in fig 

3.1. 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.1: The basic Quad copter schematic 
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3.1.2 Material Selection 

The criterion for the selection of material was: 

 Durability  

 Strength 

 Machine ability 

 Light Weight 

 Availability 

 Cost 

So the material selected was Aluminum 

 

Physical Properties Metric System 

Density 2560kg/m
3 

Mechanical Properties  

Ultimate Tensile Strength 70MPa 

Modulus Of Elasticity 70GPa 

 

Table 3.1: Properties for Aluminum Alloy 1100-H14 

 

3.1.3  Design Calculations 

 

3.1.3.1 Lift Calculations 

As the blades have a natural twist to make the lift force constant along the length of the 

blade. 

Angle of attack    =16.6 
0
  

The formula for lift is:  

   
 

 
                 (3.1) 
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Where: 

L=Lift force 

p=Density of air 

V=Linear velocity of rotors 

A=Area swept by the rotors 

CL=Coefficient of lift 

According to the datasheet of the motors, the maximum lift force they can provide with 12X6 

propeller is = 550g X 9.81 = 5.4N 

For the Arms we selected Square pipes of Aluminum 12.5 X 12.5 mm which are easily available in 

the market. The material selected for the central part (base plate) of the frame is Plexiglas of 2.2mm. 

The stress calculations for above selected material are as follows: 

The critical points in the frame are the joints of the arms with the base plate. Considering the arms as 

cantilevers, so the moment generated by the lift force is shown in fig 3.2:  

 

3.1.3.2 Bending Stress Calculations: 

 

Fig 3.2: Orthographic Views of the Aluminum pipe 

 

Moment is given by: 

  
       

   
        

The moment of inertia is:  
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Centroid is: 

         

So the bending stress is: 

   
   

 
                                    

 

3.1.3.3 Maximum Deflection 

 

 

 

 

 

 

 

Fig 3.3: Beam Deflection 

 

               

                    

                              

So, 

                   
           

     
         

 

3.1.3.4 Bearing Stresses on Bolts and Base Plate 

 

As bending stress is: 

           

And area is: 

                                        

So force will be: 

                           

Bolt diameter is: 

      

Area of the bolt under stress is: 

         
                        

So bearing stress on bolt is: 
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Hence it’s safe to use the bolts. 

Now to calculate the bearing stress on the base plate: 

Area of the plate in contact with the bolt is: 

                               
             

 

                      
 

  
 

       

          
                

Hence it is safe to use the plate. 

3.2 Chapter Summery 

In this chapter a detailed mechanical design analysis is carried out in order to make the frame of Quad-

X which can bear all the stresses being applied due to different forces being generated during flight. A 

general block diagram and a dimensioned diagram of the main components of Quad-X frame are also 

given. 

The main aim of the next chapter is to draw a viable state space model if Quad-X aircraft for 

control purpose.  
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CHAPTER 4 

MODELLING 

In this chapter a non-linear model of Quad-X is derived from the simple laws of Physics. 

The mathematical modal basically consists of equations of motion of the aircraft in three 

dimensions. The non-linear model is first simulated in MATLAB to see its behaviour for some 

given inputs. Finally the non-linear model is linearized for the purpose of control and the linear 

model is then validated by comparing its results with the non-linear model. 

4.1 Quad rotor dynamics 

The block diagram of the approximated system model is given below [5, page 24 fig 4.1]. 

 

                
 

     ̇           P 

 

 

                                   Θ 

              

Fig 4.1: Approximated System Model 

The three reference angular inputs to the quad rotor which are given as   ,    and    and the 

dynamic system of equations assumes the structure as shown below [5, page 25 eq. 4.1-4.3]. 

               (4.1) 

Where, 

    [

  
  
  

]   [
         
          
         

]    (4.2) 

Also, 

  
           

               
           (4.3) 

Where, 

                                                                                      

Force 

Polynomial 

Rigid Body 

Dynamics 

Internal Attitude control 

Rigid Body 

Kinematics 
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Two important equations relating translational and angular velocities in the body frame to the 

earth frame are as follows: 

      
                   

            (4.4) 

 

Where, 

  
                                                                               

  
                                                                            

The values of the Transformation matrices are taken from [5, Appendix J] 

Propellers exhibit the main forces and torques on the frame. 

Propeller 1, 3 are rotating in clockwise direction and 2, 4 are 

rotating in anti-clockwise direction. Total upward force is thus 

given by: 

 

 

      
 
    

 
   

 
   

 
   

 
   

 
    (4.5) 

      
 
        

 
   

 
     (4.6) 

Where, 

  

   
 
    

 
                                                        

And, 

  
 
                                      

The gravitational force in the body frame is calculated below by using Newton’s second law 

     and a transformation matrix from earth frame to body frame   
  as shown below in 

equation 4.7 

  
            

     
     

     
     

         (4.7) 

Fig 4.2: Net vertical force 
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And g = [
 
 
 
] 

Furthermore the translational acceleration   ̇ as seen from the earth can also be calculated using 

Newton’s second law. 

                                             
       ̇     ̇         

  ⁄    (4.8) 

The translational velocity     as seen from earth frame can also be written as follows: 

      
             (4.9) 

Differentiating equation (4.9) from both sides we get: 

  ̇     
        ̇     

 ̇           (4.10) 

In the above equation the derivative of the transformation matrix can be written as the cross 

product as shown below in equation 4.11 [6, page 24 equation 4.4] 

  
 ̇           

                 (4.11) 

Where, 

                                                

Putting (4.11) into (4.10), we get: 

  ̇     
        ̇    

                (4.12) 

Now after comparing the two equations (1.8) and (1.12) and simplifying yields the translation 

acceleration of the air craft as seen from body frame as shown below: 

      
  ⁄      

        ̇    
                (4.13) 

  
        ̇          

  ⁄    
                (4.14) 

Multiplying both sides by   
     we get: 

  
       

        ̇      
           

  ⁄    
                (4.15) 

  ̇      
           

   ⁄    
       

                (4.16) 

  ̇          
  ⁄              (4.17) 

As, 
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For       
 

 the following cubic polynomial is considered [5, Appendix H] 

      
 
      [

 
 

               
                

                       
] (4.18) 

Where, 

                                                    

Equation (4.18) shows that for the given range of inputs            there is a range of net 

upward thrust (         
                  

 
     ). 

Where, 

                                           

                                            

         
                                                           

         
                                                       

Also equation (4.18) shows that whenever a constant input is applied a constant acceleration in 

the negative z-direction is generated where as in actual the aircraft settles at a constant velocity 

after initial acceleration and does not accelerates indefinitely. Based on the work of [7] we add 

an additional term to the model this which simulates the induced inflow through the quad rotor 

aircraft during upward movement. 

       
        

      (4.19) 

Induced flow is basically the total perpendicular airflow to the propellers minus the generated 

airflow by the rotors circular motion.  Induced airflow is a negative constant and its value found 

by [7, Appendix A] is used. The upward force       
 

     the gravitational force   
  and the 

induced inflow force        
  results in a dynamic system equation as shown below: 

  

      
 
        

 
   

 
        

     (4.20) 

      
 
        

         
            

    (4.21) 
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This concludes the modeling section of the quad rotor aircraft. Next we will simulate this non-

linear modal in MATLAB Simulink. 

4.2 Non-Linear Model Simulations 

In order to simulate the non-linear model of quad rotor aircraft its system of non-linear equations 

are implemented on Simulink/Matlab by creating its non-linear simulation model. First the 

complete system of equations is gathered below (eq. 4.22 to 4.26) for clear visualization. 

               (4.22) 

    [

  
  
  

]   [
         
          
         

]   (4.23) 

      
                   

           (4.24) 

  ̇          
  ⁄              (4.25) 

      
 
        

         
            

    (4.26) 

The non-linear simulation model of quad-rotor is shown below in Fig 4.3. The transformation 

matrices of translational and angular velocities from body frame to earth frame and vice versa 

are discussed in detail in [5, Appendix J]. The model is simulated with zero initial conditions i.e. 

        for x, y, z and         for pitch, roll and yaw respectively. 

 

 

 

 

 

 

 

 

 

 

Fig 4.3: Non-linear Simulation Modal 
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The inputs given to the above model and their corresponding outputs are shown below: 

 

 

 

 

 

 

 

 

 

 

Fig 4.4: Input Signals to the Non-Linear Model 

 

The output graphs generated are shown below: 

 

 

 

 

 

Fig 4.5: Estimated Attitude of the Non-Linear Model of Quad-X 

 

 

We see in fig 4.5 that the air craft maintains its orientation for very short interval in after that it 

starts to deviate and the deviation increases further after that and after 2 seconds the air craft is 

significantly tilted. Keeping these results in mind we can easily justify the divergence of the 

translational movements of the quad rotor aircraft because when the platform is tilted the Thrust 
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force       
  is now pointing not only in the z-direction but it is making components in the x and 

y directions as well. Following figure shows the estimated positions of the Quad-X model. 

 

 

 

 

 

 

 

 

Fig 4.6: Estimated positions of the Non-Linear Model of Quad-X 

 

4.3 Linearization of the Quad rotor Model 

The controller chosen is linear and is suitable for multivariable control. In order to implement 

this controller on the quad rotor model it needs to be linearized first and after linearization its 

viable state space model must be constructed for the implementation of this controller. 

4.3.1 Linearization Using Taylor Series approximation 

The system of non-linear dynamic equations of quad rotor aircraft is linearized using Taylor 

series approximation about a certain operating point in which the functions are approximated by 

an infinite sum of terms containing the derivatives of the function. First Order Taylor Series 

approximation is used for the linearization of the Quad-X model in which only the first order 

term is calculated and the rest of the terms are ignored. Taylor Series approximation with one 

variable is shown in equation 4.27. 

        ̅  
 ̇  ̅ 

  
    ̅   

 ̈  ̅ 

  
    ̅   

 ⃛  ̅ 

  
    ̅     

    ̅ 

  
    ̅   (4.27) 

The First Order Taylor Series approximation is shown in equation 4.28. 

        ̅  
 ̇  ̅ 

  
    ̅           (4.28) 

The linearization of any system is usually done around the point where system behaves normally. 

This is the case when the x,y-body plane is aligned with the x,y-earth plane and Quad-X is in 



20 
 

perfect hover and the yaw angle is zero. So the linearization can thus be approximated as 

                  which means that the attitude is maintained close to zero. So the 

linearization is done about the angles      ̅           where  ̅ indicates small angular 

deviation. The parameters of our system will be affected by this assumption of the operating 

point as follows: 

                  (4.29)  

Now using the First Order Taylor approximation is applied on the trigonometric functions 

around the operating point zero as shown in equations 4.30 to 4.32. 

                      ̅   ̅    (4.30) 

                         ̅      (4.31) 

              
 

         
  ̅   ̅    (4.32) 

 

4.3.2 Linearization of Kinematic and Dynamics of Quad-X 

Referring to equation 4.4 linear velocities and angular velocities or earth frame and body frame 

are as follows: 

      
                   

            (4.33) 

The linearization of equation 4.33 means simplifying the direction cosine matrix   
     and 

transformation matrix   
     respectively. Both these matrices in their original form and 

linearized form are shown below. 

  
     [

                          
                          
           

]  (4.34) 

 [

          
          
    

]  [
    
    
    

]  (4.35) 

After substituting linearized cosine matrix in equation 4.33 we get the following relationship if 

translational velocities in earth and body frames. 

      
             (4.36) 

 [
    
    
    

]        (4.37) 
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]  [

  
 

  
 

  
 

]    (4.38) 
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]  [

  
 

  
 

  
 

]       (4.39) 

Similarly we can follow the same procedure to simplify the transformation matrix   
    . 

  
     [

         
      
           

]  [
    
    
   

]  [
   
    
   

]  (4.40) 

And after substituting it in equation 4.33 following results are obtained. 

      
             (4.41) 

 [
   
    
   

]  [

  
 

  
 

  
 

]  [

  
      

 

  
      

 

    
    

 

]  [

  
 

  
 

  
 

]      (4.42) 

Now referring to equation 4.21 related to the forces affecting the Quad-X frame are presented 

and linearized. The method of linearization is same as before. First we will write the original 

equation as follows: 

      
 
        

     ⏟         
      ⏟          

 
⏟     (4.43) 

(1)               (2)          (3) 

Where, 

                

                        

                   

The only non-linear part is the gravitational force with a direction cosine matrix so we will focus 

on linearizing this part as we did with the translational and angular velocities. The only 

additional step is that here we need the transpose of the previously used direction cosine matrix. 

  
        

         (4.44) 



22 
 

  
 
   

     [
 
 
 
]    [

    
    
    

]  [
 
 
 
]    [

  
 
 
]       (4.45) 

Now referring to equation 4.17 and including the assumption of equation 4.29 we get: 

  ̇          
  ⁄               (4.46) 

  ̇    
      
 

 
 
       
        

 
        
 

 
    (4.47) 

When we write the translational acceleration in vector form we will note that the force generated 

by the propellers       
 
 and the induced inflow would be placed in the z-component only as 

shown. 

 ̇  [

 ̇ 
 

 ̇ 
 

 ̇ 
 

]  [

    
   

      
        

 
 
  

 
   
 

]   (4.48) 

The reason for placing these forces in the z-component is because they are directed always 

towards the z-direction of the body frame. The term       
 

    can be replaced by the term 

   which is the net-upward force acted on the Quad-X frame as explained earlier in section 4.1 

and figure 4.2. 

So we have a complete linear system of equation which could be written collectively as: 

 ̇    
 

 ̇    
 

 ̇    
 

                            

 ̇ 
      

 ̇ 
     

 ̇ 
  

  

 
 
  

 
   
 

                            

 ̇       

 ̇       
 ̇       

  (4.49) 

Using the above system of equations we can drive the system’s state space model which is the 

main focus of the coming section. 

4.4 State Space Derivation 

The main aim of this section is to convert the equations derived in section 4.3 of the Quad-X to 

their respective state space form as the controller which we will be implementing requires the 

state space model for its utilization. First the linearized set of equations is converted to state 

space in continuous time domain and then using MATLAB it model is discretized. 

4.4.1 System States 

Although a lot of variables were available but for simplicity we chose the following state and 

input vectors. 



23 
 

                                    
       

       
      (4.50) 

                               (4.51) 

A more complex model could also have been derived by adding the translational acceleration 

terms in the state vector but it would have increased our work so we will stick to the above 

mentioned states. Here       are the positions of Quad-X centre of mass in 3D space.       are 

the 3-2-1 Euler angles and   
    

    
  are the linear velocities of the Quad-X in 

          direction respectively. From now on we would refer equation 4.50 as the state vector 

throughout the rest of the chapter. 

4.4.2 Matrices Derivation 

In state space model we describe our system in the form of a differential equation. There are two 

equations in a state space model one related to the system states and the other related to the 

system inputs. 

The general form of the state space model in continuous time domain is shown below in 

equations 4.52 and 4.53. 

 ̇                          (4.52) 

                          (4.53) 

Where, 

                    

 ̇                       

                                                     

                                          

                   

                    

                                           

                                                        

By arranging the above linearized system of equations we can extract the following          

matrices. The direct transmission matrix    is zero because there is no direct transmission of 

system inputs to system outputs. 
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            (4.56) 

The first task of driving the continuous state space model from the linearized system model has 

been achieved and in the coming section this continuous time domain model is discretized for 

controller implementation purpose.  

4.4.3 Continuous to Discrete Conversion  

Another restriction for the implementation of our controller is that our state space model should 

be in discrete time domain. Let’s start with the continuous state space model derived in the 

previous section and convert it to discrete form. 

 ̇                          (4.57) 

                          (4.58) 

As we know that equation 4.52 is a simple first order non-homogeneous differential equation and 

its general solution is given by: 

       
              ∫  

                
 

  
   (4.59) 
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Now we can convert equation 4.59 from its continuous time representation to discrete time 

representation by simply replacing                   . 

Rewriting equation 4.59 we get the following new equation as: 

          
         ∫                     

    

  
   (4.59) 

What we are doing above is simply using zero order hold       in the above expression in 

which the value of the continuous response is taken after a specified time interval    and this 

value remains constant for  the whole interval until the next time inter      is reached. The 

input function becomes: 

                        (4.60) 

For simplicity we will introduce a dummy or intermediate term to make the system less complex. 

             (4.61) 

Inserting   in equation 4.59 and rewriting it as: 

           
          (∫  

    
 

 
)             (4.62) 

Looking at the above equation 4.62 we can obtain              matrices as follows: 

    
      (∫  

    
 

 
)                 (4.63) 

Now we can easily construct the state space model of Quad-X in discrete time domain as shown 

equations 4.64 and 4.65. 

                            (4.64) 

                   (4.65) 

As the output is not directly affected by the inputs, this makes the matrix    zero and hence it is 

omitted in equation 4.65. 

For the computation of the above equation 4.63 we will use the built-in function of 

MATLAB                 . The function takes three parameters, system state space model in 

continuous time domain      , the sampling time     and the method of sampling which in our 

case is simply zero order hold in which the value between the two samples is considered constant 

and is equal to the value of the first point out of the two. The discrete state space matrices that 

we obtain after the implantation of the above mentioned function are: 
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            (4.56) 

4.5 Chapter Summery 

In this chapter modelling of Quad-X has been carried out and a viable state space model is 

derived. The model being non-linear is first simulated for a specific set of input and then it is 

linearized using First Order Taylor Series approximation. The linear model achieved is then 

converted from continuous to discrete time domain which is the requirement of our controller. 

The main focus of the next chapter is to use this derived stat space model and derive a viable 

system control.  
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CHAPTER 5 

CONTROLLER DESIGN 

As we have seen in the previous chapter that the Quad-X model is non-linear and time-

variant as the battery reduces with fly time. However for this project we are considering two 

design approaches for the controller one is stable hovering of the Quad-X and second is constant 

reference tracking. The key objective of this chapter is to present a complete procedure and the 

necessary design steps taken in developing the controller. 

The controller chosen for the stabilization of the Quad-X model is the linear state feedback 

controller due to its unique property of handling MIMO systems efficiently with great accurately. 

5.1 State Feedback 

 The word feedback describes the property of any system to check if the required outputs of the 

system are met or not and correcting them at the same time by linking this feedback with the 

input. Using feedback we can design controllers that can make our system robust even in the 

presence of external disturbance or any irregularity within a system generated due to any reason. 

When we present a system in state space form the state vector contains all the information 

needed to compute the future behaviour of the system due to which our controller becomes 

memory-less. The only assumption that we have to make now is that all the states at the time t 

are measureable or can be estimated using different techniques. 

So in general we can write the desired controller which is a function of the states at time k as: 

                     (5.1) 

Where, 

                          

                      

We can derive a controller from the above equation 5.1 in which the inputs at time k +1 are linear 

combination of the states at time k as shown below. 

                                (5.2) 

Where, 
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For time invariant models the controller designed is also time invariant i.e.          which 

means that the controller is just a multiplication gain of constant values and in our case we are 

going to consider this and our main goal of the remaining chapter will be to calculate that gain. 

The linear feedback can also take the following form with reference considered. 

                              
        

     (5.3) 

Where, 

                 

                                

The open loop dynamics is given by the following equations 5.4 and 5.5 and figure 5.1 as: 

                          (5.4) 

                  (5.5) 

 

Bd 1/Z Cd

Ad

+
+

     X(k)X(k+1)I(k) y(k)

 

Fig 5.1: Open Loop 

Now by creating the close loop the state transition matrix      changes to          . Now 

for the desired behaviour of the close loop the only thing now required is the careful making of 

the gain matrix K. 

Now the close loop dynamics are shown in the following equations 5.6 and 5.7 and in figure 5.2 

as: 

                                (5.6) 

                  (5.7) 
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Bd (s) 1/Z Cd (s)

Ad (s)

+

+

     X(k)X(k+1)I(k) y(k)

+

-

K

Kr

r(k)

 

Fig 5.2: Close Loop with State Feedback 

5.1.1 State Feedback Methods 

Determining a controller for any system is same as determining a suitable feedback gain matrix 

K. Now for SISO systems we can design a controller purely based on the positions of the closed 

loop poles. But as we know that it can be quiet hectic to find the right set of pole values because 

even after finding the right set of poles we may encounter a situation where the control signal is 

outside the physical limits that we can actually produce even for small or reasonable disturbance 

and reference signals. 

Now if we talk about the MIMO systems like the one under study the model of Quad-X it 

becomes even more hectic and tedious to relate the elements of the gain matrix K to that of the 

close loop poles. The parameters are more in number then the constraints and an under-

determined system has to be solved which means there is no unique solution K for a set of poles, 

and to determine the optimum value is not trivial. 

For systems like the model presented here of the Quad-X, Linear-Quadratic methods are more 

suitable which falls under the category of Optimum control. Optimum Control gives provides us 

with a design technique which instead of putting effort in finding the positions of poles focuses 

on the minimization of a certain performance function. We will see in the coming sections that it 

is basically a systematic method for finding an optimum value of the state feedback gain matrix. 

5.2 Linear Quadratic Methods 

5.2.1 Optimum Control Problem 

As explained earlier that in optimum control we find a control law I by minimizing a certain 

function. This function is known as the cost function Ψ of the states and control variables and our 

job is to balance this cost function in a meaningful manner. 
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The general expression for the non-linear, discrete, optimum control problem is as follows: 

                         (5.8) 

The performance function or index of performance ί is the sum of performance and cost criterion 

Ψ(k) over time horizon N, which starts form k0=0. 

We can further divide this in to two different problems: 

1. Finite time horizon N. 

  ∑                          
      (5.9) 

2. Infinite time horizon N=∞. 

  ∑                
       (5.10) 

Our key purpose is to optimize the above performance function with the sequence of control 

inputs I. The final optimized performance index will depend on the system dynamics f and the 

initial states x0 and the inputs. For the case of finite horizon, there is an additional term as we can 

see in equation 5.9   which basically puts a gain at the state error for the final time step. 

5.2.2 LQ Control for Discrete Time Systems 

We will start with the following linear model which we derived in the previous chapter. 

                                
        

     (5.11) 

For this project we will drive the controller matrix from the cost function as discussed above and 

in our case we will consider that our performance function ί which is a function of Ψ is quadratic 

in I(k) and x(k). In general several other cases could also be considered and some of them are in 

fact explored in the current research. 

Our performance function will take the following form: 

  ∑                    
               

         
   
     (5.12) 

  ∑                    
          

 
       (5.13) 

The matrices Q1 and Q2 are symmetric and they are the parameters of our control problem. For 

the complex cases these matrices could be time-variant, but we will stick to constant matrices not 

changing with time as the time-variant case is beyond the scope of the project. Further in the 

linearization problem two constraints are used, one is that the state weight matrices Q1 and QN 

are positive-semi definite, and the actuation weight matrix Q2 is strictly positive definite, which 

means that the weights in of the diagonal states could be zero, but the command scaling weights 

are always positive. 
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The above constraint helps us in making the controller a linear function of the states and after 

optimization we will achieve linear state feedback solution. 

                     (5.14)  

Where, 

                                                                              

The LQ state feedback gain matrix from now on will be denoted by L. 

As our performance function is of the quadratic form, for optimization purpose we need to 

minimize this function ϊ=min(ί(k)). The solution will be dependent on the state dynamics and as 

defined by the calculated constant real matrices (Ad, Bd), and the initial states x0. After solving 

the optimization problem the result which we would be interesting in would be the gain matrix 

L(k) and the command sequence I
*
(k), while the actual value of the performance index after 

minimization ϊ=min(ί(k)) would be less interesting. 

When we calculate the state feedback gain matrix L(k) using the finite horizon equation we get 

time-variant matrix but for practical situations where operation time is undetermined as in our 

case constant gain matrix is preferred as the flight time is not determined and our only objective 

is to make the Quad-X hover irrespective of the flight time. For this we will use the infinite 

horizon optimization strategy that will produce time-invariant controller L. 

5.2.3 Infinite Horizon Optimization 

The solution of Infinite horizon controller in used in this project in which the performance 

function is an infinite sum of only the positive terms, due to its quadratic nature and for this sum 

to minimize it must converge. So for this performance function to converge the optimum 

controller sequence I
*
(k) will drive the performance and cost criterion to zero. Also the states 

x(k) and commands I(k) must also tend to zero because the matrices Q1 and Q2 are constant and 

positive definite. 

          (    )      ∑               
      (5.15) 

               
   
(               

            )     (5.16) 

Where, 

                                                 

                 
   
          (5.17) 

The most important thing here is to specify the correct system model in order to map the problem 

presented here which means that in hover state our Quad-X model must fulfil the condition 
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described in equation 5.17. We will see in the coming sections of the chapter that after the 

introduction of the reference signal we will be able to meet this condition because the quantities 

being weighted in the performance index are three positions and three angles. Now for position 

the performance index will minimize the difference: x-rx, y-ry, z-rz and in this form it will satisfy 

the condition given in 5.17. In hovering state the Roll, Pitch and Yaw commands are naturally 

zero or very close to zero as the Quad-X will not be making any angular movements ideally. One 

more important factor is the thrust force which will not be zero rather it will have some non-zero 

constant value. So in order to cater for this problem we will not take in account the thrust force 

but the net vertical upward force FZ. The net upward force in hover is zero so in this way the 

condition of equation 5.17 will be satisfied. 

The general solution to infinite horizon problem guaranties a unique input command sequence 

solution I
*
 to the optimization provided certain conditions are met like (Ad, Bd) are controllable 

and Q2>0 and (Ad, Q2) is observable. These conditions are sufficient but more relaxed criteria 

may exist. 

Moreover the optimizing command sequence       is described by just a constant state feedback 

matrix       , and can be proved that it is stable in close loop. Thus a single matrix can easily 

be computed offline and used for an infinite time horizon of control which will bring our system 

from an initial arbitrary state to zero with minimum cost. 

This time-invariant feedback matrix obtained as a result of infinite horizon optimization problem 

is the main focus of the rest of the chapter. 

5.3 Linear Quadratic Algorithm 

The method used to find the state feedback static gain is to first formulate the expression for time 

varying LQ-controller using the finite-time horizon algorithm and backward induction principle 

described in the next session which is known dynamic programming. After that we put N=∞ and 

perform iterations for a variable number of time which depends upon the convergence of the 

values of the required controller matrix. 

Step by step the process of derivation the expression will be explained which is used in the final 

algorithm and its pseudo-code is also given. The algorithm is based on the optimal control notes 

[8] and the description of the Standard Regulator problem for discrete systems in [6]. 

Furthermore, reference is introduced and the system changes needed to cope with it are 

explained and some guidelines for selecting Q1 and Q2 for optimum results are discussed. 

5.3.1 Dynamic Programming 

Dynamic programming is basically a procedure of breaking complex function into series of 

simpler functions easy to solve. 

The optimization process takes the advantage of this fact, that: 
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 Suppose that we have derived a control strategy which is optimal in the interval [0; N] it must 

also be optimal in any interval [k; N] with 0 ≤ k ≥ N. 

It makes sense because if we are able to improve the efficiency of our controller in the interval 

       this would also improve the efficiency of the controller in the entire interval       . 

So based on the above assumption we will split our optimization and introduce the following 

notation; 

  
  ∑              

       (5.18) 

Since the performance function is dependent only on the initial state vector and sequence of 

control signals so the above equation can be modified as: 

  
    

                                (5.19) 

This makes sense because the next state say      is determined by the previous state      and 

the sequence of inputs like      etc. 

Now for the minimum obtainable performance function we will write: 

  
 (    )                  

                              (5.20) 

Now introducing the dynamic programming part which was stated at the beginning of the 

section, the performance function in the sub interval        is stated as: 

  
  ∑              

       (5.21) 

  
    

                             (5.22) 

And similarly to equation 5.20 we will write the minimum obtainable performance function for 

the above equation 5.22 as: 

  
 (    )                  

                            (5.23) 

  
 (    )                ∑              

     (5.24) 

  
 (    )                [ (         )  ∑              

     ]  (5.25) 

  
 (    )         [ (         )                  ∑              

     ] (5.26) 

  
 (    )         [ (         )      

 (      )]  (5.27) 

We see that using simple substitution and manipulation we calculated the above expression 

which shows that if we have the performance function in the interval       , the performance 

function in the interval          can be calculated. So in order to calculate the performance 
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function in the interval       , we need to calculate all the terms backwards from 

  
 (    )      

 (    )  according to the following algorithm. 

STEP 0: 

  
 (    )                  (5.28) 

     is mostly zero as it is the last command input and does not affect any state vector and any 

non-zero value will just increase the performance function. 

STEP 1: 

    
 (      )           [ (             )    

 (    )] (5.29) 

This is written in accordance with the equation 5.27 and a minimized command signal         

is obtained. 

STEP i: 

    
 (      )           [ (             )        

 (        )] (5.30) 

Extending our approach used in step 1 and through iteration calculating the performance function 

and command signal         

STEP N: 

Finally the performance function in the interval       will be obtained as: 

  
 (    )         [ (         )    

 (    )]   (5.31) 

So, we can calculate the whole command signal from       to      . 

Thus by using this algorithm, just by knowing the initial states we can completely calculate the 

command sequence from               which will bring the plant from its initial states to zero. 

Although this method could also be applied to the open-loop systems but due to disturbances the 

results may not be very pleasing. A close-loop control would have good results. The next section 

is about the calculation of the feedback matrix gain. 

5.3.2 Matrix Algebra 

Assuming that we have enough knowledge about our system and about the performance index 

we shall start this section with the following equation which is nothing but equation 5.27: 

  
 (    )         [ (         )      

 (      )]  (5.31) 

Now we will make two simple assumptions: 
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                    (5.32) 

          
 (    )                     (5.33) 

The first assumption is simple but for the second assumption it needs some explanation. As we 

have already seen that the performance function was originally quadratic function of the states 

and the inputs, but actually it can be just written as a function of states only because we shall see 

that when we minimize our performance function with respect to input I we will derive an 

expression for input sequence I
*
 and back substitute it in the original performance function there 

by elimination the input and the performance function then will completely become function of 

states as shown in equation 5.33. 

We will insert equation 5.33 in 5.31 for the expression     
 (      ) and search for the control 

signal I(k) which will give us the minimal performance index   
 (    ) : 

  
 (    )           

              
              

                        (5.34) 

  
 (    )           

              
                              

      

                                 (5.35) 

We can make the above expression simpler by removing the k argument from the input and the 

states vector but we will use it with the S matrix because that is the matrix which is under 

consideration at the moment. 

  
           

        
                  

                             (5.36) 

Now we will differentiate the above performance function with respect to I and find the optimal 

control signal I
*
 using the matrix derivative [9, page 10, eq. 70] as shown: 

   
    

  
        

        
                       (5.37) 

            
                           (5.38) 

The optimal control signal I
*
 can only be found iff       

             is invertible. 

Reintroducing the argument k our expression for optimum control would become: 

             
            

     
                     (5.39) 

Now comparing equation 5.32 and 5.39 we get the proportionality matrix       

           
            

     
              (5.40) 

Next we will insert         in the expression of the performance index   
     and obtain: 

  
                  

                      
                          (5.41) 
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After some manipulation we will get: 

  
            

               
                          (5.42) 

  
 (    )               (5.43) 

So we have proved our assumption that the performance function is quadratic in      i.e. the 

states of our model. So we can formulate a recursive expression for the      matrix by simply 

comparing equation 5.42 and 5.43 as shown. 

         
                        

                      (5.44) 

We shall now derive the simpler expression for the      matrix which would be non-negative 

and definite because   is non-negative and definite. 

For the derivation of      we will omit the argument k again and insert the value of     . 

         
             

                    (5.45) 

Now by inserting the value of      and simplifying we get the simple final form for      as: 

          
                           (5.46) 

The expressions for      and      calculated so far are time varying and mostly time invariant 

matrices are preferred which are      and      by taking    . 

Which means that                    and this steady state value of L will correspond 

to the steady state value of                   . 

So our equations will simplify further to the following final form: 

        
       

     
          (5.47) 

       
                             (5.48) 

The above equation is the Algebraic Riccati equation. Solving it will yield the matrix S which 

intern will give us the matrix L which is actually required for this project. 

5.3.3 MATLAB Code for Calculating L Matrix 

Following is the MATLAB code that was implemented for the extraction of the static feedback 

gain matrix: 
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5.3.4 Weight Matrices Selection 

The only design parameters for the implementation of our control algorithm which is the LQ-

method are the two time-invariant matrices    and   . Although the number of parameter from 

which we have to select become very large i.e.       but as a reward we will get a unique 

controller gain L. However if we limit the matrices to diagonal matrices we can reduce the no of 

choices to just     which is a huge reduction. 

 As described earlier while describing the performance index that the weight matrices are 

quadratic and symmetric.    and    were positive semi-definite       and    was positive 

definite     . We also noted that    affected the current state,    the final state and    the 

input state. 

The problem for selecting the appropriate weights for a given controller design problem is 

naturally up to a system’s engineer, and mainly depends upon the system’s dynamics. After the 

careful selection of the weight matrices we need to solve the Riccati equation and find the  -

matrix and test it either by simulation or practically. 

After testing we shall note if some states       has a slow/fast response then we can adjust it by 

increasing/decreasing the weight matrix         and on the other hand if the input signal       

become too large/small and fall out of our practical range then we can adjust it by 

increasing/decreasing the weight matrix        . 

One of many techniques used for the purpose of finding the gain matrices is the Bryson’s Rule 

which states that acceptable value of weights for the states      and control input      would be 

to choose the diagonal matrices    and    as: 

        
 

  
 
    

     (5.49) 

        
 

  
 

    

     (5.50) 

Where         is the maximum acceptable value for       and        is the maximum acceptable 

value for      . 

5.3.5 Reference Tracking 

The controller designed and calculated in the above sections was for the purpose to bring our 

system from an initial disturbed state to zero state. Suppose if we want to track a certain 
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reference signal like step, ramp, sin or any other signal we need to model the controller 

accordingly and obtain a suitable gain L. Different procedures for calculating the controller gain 

to track such reference along with disturbances are discussed in detail in [12, chapter 5, 6 and 7]. 

For our project we only selected to follow constant reference (step reference) and it has been 

proved in [8] that the gain matrix L that we calculated to bring the states back to zero can be used 

to force the system to follow the step reference as the model does not affect the value of L. the 

block diagram with reference signal becomes as follows: 

 

Bd (s) 1/Z Cd (s)

Ad (s)

     X(k)X(k+1)I(k) y(k)

-Ls(0)

-Lr(0)

r(k)

 

Fig: 5.3: Block Diagram of Optimal Control System With Constant Reference 

 

5.4 LQ Implementations and Simulations 

The controller is calculated offline using the MATLAB code as given in the previous section and 

the obtained controller matrix is used in the Simulink model of our Quad-X and offline results 

are generated. The Simulink model is shown below in figure 5.4. 

Now we will simulate few results offline to check the performance of our controller. 
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Fig 5.4: Linear-Discrete Simulink model of Quad-X with Constant Reference 

 

5.4.1 Simulation Results 

The offline simulations were run for reference states                        and initial 

state                       . 

 

 

 

 

 

 

 

 

Fig 5.5: Step on X-Axis 

The above simulations show that our controller brings the Quad-X from an initial disturbed 

position in X-Axis to the origin in less than 4 seconds. 
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Fig 5.6: Generated Control Inputs 

These are the control inputs generated to bring it to the initial state. 

Let’s see another example for a constant reference tracking. The initial position of the Quad-X 

aircraft is                        and reference signal                       . The output 

graphs are as follows: 

 

 

 

 

 

 

 

Fig 5.7: Step on Z-Axis 

The above graphs illustrates that in less than four seconds the Quad-X moves from -1 to -2 

meters height vertically upward as positive Z-Axis is in the downward direction. 

The control sequence needed for the Quad-X to perform this manoeuvre is depicted in the 

following fig 5.8.   
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Fig 5.8: Control Sequence for Z-Axis 

As a reference the truncated values of the weight matrices    and    and the feedback and 

reference gains are given here. 
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5.5 Chapter Summery 

In this chapter a controller is designed which can perform two operations one is to bring the 

Quad-X model from any initially disturbed position to zero state and second is to make it follow 

a constant reference signal. The controller is actually a constant gain which is multiplied with the 

states of the Quad-X at time t and calculated the inputs for the next time step t+1. This controller 
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is obtained by an iterative convergent technique with the help of MATLAB which guarantees the 

stability of the Quad-X model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



43 
 

CHAPTER 6 

CONCLUSION 

This project was started with the initial aim to make the Quad-X frame, design a viable 

controller and implement it on the aircraft first to make it perform a stable hover and secondly to 

move the aircraft from one point to another i.e. to make it follow a constant reference input. 

Due to shortage of time and as it was a solo project performed by me so all the objectives were 

not successfully achieved but the objectives achieved were considered enough for the successful 

completion of my MS Thesis. 

The objectives achieved are as follows: 

1. Quad-X model was successfully designed and built 

2. A viable stat space model was built for the purpose of controller design 

3. An LQ controller was successfully designed and simulated and the results were shown 

6.1 Future Work 

The future work includes the following points: 

1. To implement this controller on the Quad-X frame 

2. Design of more complex controller which can cater for external disturbances 

3. Design of a controller which can follow dynamic paths like ramp input, sinusoidal input 

etc. 
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