Urdu Text to Speech System for
Navigation App

Muhammad Asfand
00000119770

Supervisor
Dr. Ali Tahir
Department of Computing

A thesis submitted in partial fulfillment of the requirements for the degree
of Masters in Commuter Science (MS CS)

In
School of Electrical Engineering and Computer Science,
National University of Sciences and Technology (NUST),
Islamabad, Pakistan.

(August 2019)

Acceptance Certificate

Certified that final copy of MS/MPhil thesis written by Muhammad
Asfand, Regno. 00000119770, of SEECS has been vetted by under- signed,
found complete in all respects as per NUST Statutes/Regulations, is free of
plagiarism, errors and mistakes and is accepted as partial fulfill- ment for
award of MS /M Phil degree. It is further certified that necessary amendments
as pointed out by GEC members of the scholar have also been incorporated
in the said thesis.

Signature:

Name of Supervisor:
Date:

Signature(HOD):
Date:

Signature(Dean/Principal):

Date:

Approval

It is certified that the contents and form of the thesis entitled “Urdu Text
to Speech System for Navigation App” submitted by Muhammad
Asfand have been found satisfactory for the requirement of the degree.

Advisor: Dr. Ali Tahir

Signature:

Date:

Committee Member 1: Dr. Faisal Shafait

Signature:
Date:

Committee Member 2: Dr. Safdar Abbas

Signature:
Date:

Committee Member 3: Dr. Qaiser Riaz

Signature:
Date:

11

Abstract

Due to increase in taxi hailing service (Uber & Careem), a demand for Urdu
text to speech system was increasing. This system would be used in a Pak-
istani navigation app which would facilitate the drivers(captains) in finding
a way without keeping an eye on the mobile. The goal is to provide Pak-
istani people the language in which they are most comfortable i.e. Urdu.
In Pakistan, most of the drivers are illiterate and don’t understand English
commands by Google Maps. So we developed an Urdu Text To Speech Sys-
tem in which the commands during turn by turn navigation would be in
Urdu. Some of the main steps involved are Lexicon generation, LTS rules
generation, Data labeling, Pitch marking, extracting Mel Frequency Cep-
stral Coefficents, building HMM model. Once the model is generated, we
will export it to Android devices. We will check the quality of both models
i.e. original and the one ported to Android. Our testing is done using both
manual and automatic methods.

Keywords - Urdu Text to Speech, Hidden Markov Model, navigation, Mel
Frequency Coefficients.

111

Certificate of Originality

I hereby declare that this submission is my own work and to the best of my
knowledge it contains no materials previously published or written by another
person, nor material which to a substantial extent has been accepted for the
award of any degree or diploma at NUST SEECS or at any other educational
institute, except where due acknowledgement has been made in the thesis.
Any contribution made to the research by others, with whom I have worked
at NUST SEECS or elsewhere, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product
of my own work, except for the assistance from others in the project’s de-
sign and conception or in style, presentation and linguistics which has been
acknowledged.

Author Name: Muhammad Asfand
Signature:

v

Acknowledgment

Thanks to Almighty Allah for giving me knowledge, power and strength to
accomplish this task. I learned a lot from this project and this will certainly
help me in forthcoming life.

I would like to give a big thanks to our supervisor Dr. Ali Tahir who guided
me throughout. With his expert knowledge and experience we made an
innovative and successful project. Also I would like to thank all Committee
members for there support.

I would also like to thank my team lead Faraz Khalid for his help and guide
throughout. Also I would like to thank Muhammad Ahmed from BESE 15
batch for his help in finding the cause of an issue I was facing.

Table of Contents

1 Introduction and Motivation 1
1.1 Brief History 2
1.2 Motivation 2
1.3 Problem Statement and Contribution 3

2 Literature Review 5

3 Design and Methodology 9
3.1 LEXICON 9

3.1.1 Lexicon format 11
3.1.2 ADDENDA 12
3.2 Letter To Sound Rules 12
3.3 FESTIVAL based model 16
3.3.1 Trainingdata L. 17
3.3.2 Preprocessing 18
3.3.3 Feature Extraction 21
3.3.4 Model Generation 22
3.4 FLITE based model 25
3.4.1 Language conversion 25
3.4.2 Lexicon conversion 27
3.4.3 Voice conversiono 28

4 Implementation and Results 29

5 Conclusion and Future Work 36
5.1 Conclusion 36
5.2 Future Work 36

A Phoneme Properties 38

B Phoneme and Urdu Characters 41

vi

List of Figures

1.1 TTS General Flow 2

2.1 phonological processing flow chart 6
2.2 Urdu TTS architecture for HMM and Unit selection Synthesizer 8

3.1 Subset of a Lexicon file 10
3.2 Addenda 12
3.3 Listofallowable. 14
3.4 Subset of our LTS rules. 15
3.5 Festival General Flow 16
3.6 Recording with some noise in the background 17
3.7 Recording without noise in the background 18
3.8 Example of an utterance file 19
3.9 Exampleofanlabfile 20
3.10 Example of phone sequences 21
3.11 Example of Statename file 23
3.12 Definition of Phones in LISP 26
3.13 Phones and features arraysin C 26
3.14 Phones and there features valuesin C 27
B.1 Phoneme with there corresponding urdu characters part 1 . . 42
B.2 Phoneme with there corresponding urdu characters part 2 . . 43

Vil

List of Tables

2.1 Statistics of speech corpus for travel domain 7
3.1 Phoneme distribution of "tracktor workshop” 20
3.2 Simplified vector example”o 25
4.1 Summary of result oo 33
4.2 Summary of resulto 35
4.3 Summary of result 35
A.1 Phoneme with there properties part 1 39
A.2 Phoneme with there properties part 2 40

Viil

Chapter 1

Introduction and Motivation

Text to speech (TTS) is a system which takes text as an input and gives
corresponding audio as an output. It is also referred as speech synthesis.
The end goal is to create an artificial human voice. A text to speech sys-
tem is usually concatenative based or parametric based. Concatenative TTS
produces a more natural sound whereas parametric TTS is less natural but
with better pronunciation and more control. The reason why concatenative
is more natural is because its stores recording of speech and combines them
part by part to form a sentence. This obviously will require a large amount of
storage. On the other hand parametric TTS stores features of speech which
takes less storage. So our focus in this thesis will be parametric TTS as we
want our system to be lite and have better pronunciation. In parametric
TTS, we will be using Hidden markov model (HMM). HMM based speech

synthesizer works in following way:
e Training part

— Extracting mel-cepstral coefficients

— Extracting excitation parameters
e Model training
e Synthesis

— Conversion of text to phones
— Parameter generation algorithm
— Waveform Generation

Generally, in order to train such a system, one require audio files with there
transcriptions. One has to then map audio files with each characters in there

CHAPTER 1. INTRODUCTION AND MOTIVATION 2

respective transcription file. This will train the system to know how each
character is spoken. Generally the steps involved in T'TS are text processing,
feature extraction and waveform generation as shown in figure 1.1. These
steps will be discussed in detail later on.

Text Feature | Waveform
Processing Extraction Generation

Figure 1.1: TTS General Flow

1.1 Brief History

In 1936, we saw the 1st practical use of speech synthesis. Britain General
Post Office introduced a speaking clock. All the words were prerecorded and
stored on optical disks. One disk each for hours, minutes and seconds. They
were concatenated to givea output time. After this several improvements and
methods have been invented in this domain. After that different methods
were tried but mainly consist of concatenation of recorded speech. It saw an
increase in 1970s when electronic storage started become cheap and robust.
After that work was done to process text to speech, form text analysis,
prosodic prediction, phoneme generation, and waveform synthesis. As time
passes, the hardware prices were becoming cheap and people started working
on different methods for concatenative speech. A much larger inventory
of concatenative units were introduced where each previously unit now has
multiple options and are selected based on some rules. In early 2000s, a new
statistical method was developed which instead of selecting unit, they were
generating them. Thus came HMM synthesis which upon the course of time
has been developing.

1.2 Motivation

[am a frequent Uber and Careem user and had been using it to travel
to and from university & office. During the ride, conversation with the
captain(driver) normally starts and they end up asking what do I do. And
I tell them that I work in TPL Maps where we make maps. They ask that
maps like Google Maps? And I reply yes. Then they ask whether we provide
navigation or not. To which I say of-course we do provide navigation. Then
they ask is it in Urdu? And I say no. Then they tells me that they are

CHAPTER 1. INTRODUCTION AND MOTIVATION 3

not literate and don’t understand English routing instruction. And they find
it difficult to use mobile during driving. So they asked me if somehow we
can integrate Urdu navigation system. These type of conversation led us to
think that there should be a system for it in Urdu. Upon searching on the
internet we didn’t found one and hence we decided to work on Urdu Text
to Speech System for Navigation app.

1.3 Problem Statement and Contribution

So our purpose here is to create a T'TS system for a navigation app which
the drivers can use without looking at there phones. There were two ways
to do it. One was to record and store all the possible words which could be
used during navigation or to create a T'TS system which would synthesize the
given text. The former method would require storing of each word’s audio
file which would take lot of memory space. We choose the latter as it is more
resource efficient, provides more control and can incorporate new words too.
So our aim is to create a system which is given any Urdu routing sentence
and it will synthesize it.

When we searched for Urdu TTS online, we only found one which was made
by Center for Language Engineering(CLE) Lahore. But the problem was that
they were charging for its use. The rate of usage is PKR 1.00 per transaction
plus PKR 0.01 per character exceeding 100 characters length. Pricing is not
acceptable as we can’t impose pricing on captains. So we decided to make our
own TTS which would be incorporated in TPL Maps and would be available
free. The major limitation was that we were using University of Edinburgh’s
Festival tool for this purpose and they were using LISP language. It was
difficult understanding LISP and getting to know the workflow. Also work
on Urdu TTS was very limited so we had to figure out most things and took
help from English TTS. Also another problem was collection of audio data
and preparation of Urdu dictionary which is required for navigation purpose.
We had to prepare Urdu data for our need and modify Festival & Flite to go
with our changes.

Another major problem we faced was that we have to use Urdu in Roman
style instead of Nastaliq. The reason was that we had to use data provided
to us by TPL Maps. And there data was in Roman script. So we had two
options; either convert Roman urdu in Nastaliq or make TTS using given
style. Developing T'T'S in Nastaliq style would help us categorized and map
characters with vowels easily but using Roman style it becomes difficult as
number of alphabets don’t match. English has 26 alphabets whereas Urdu
has around 40. So we need to map or differentiate some vowels using two

CHAPTER 1. INTRODUCTION AND MOTIVATION 4

alphabets. For example ch would be use as chay of Urdu etc. But this causes
another problem as there are words which might use ch as kay of Urdu e.g.
school. Now here we need to differentiate both sounds using ch. This would
not have happen if we had used Nastaliq style. But still we had to choose
Roman style as we had to rely on automatic conversion from Roman to
Nastaliq style which in many cases were giving wrong results. Forexample
Ideas by GulAhmed was converted to Gulahmed k khyallat which was wrong
in a sense that this shop name had to remain same in Urdu as well. Plus
manual conversion was not possible as it was a huge dataset and would
require a large amount of time. Also the data was not final. TPL Maps were
carrying out survey so they plan to increases there data with the passage of
time. So we had to go with there standards.

Chapter 2

Literature Review

In (Tokuda and Black., 2002), authors have worked on parametric based
synthesis and described HMM based speech synthesis system for English.
They have described both the training and synthesis part of the method.
In (Black, 2006), they have presented CLUSTERGEN method which they
have integrated in FESTIVAL to build speech models. Our focus will be on
this method as we will be using it in our case to build model for Urdu TTS.
Also we will be using FESTIVAL toolkit developed by them in simplifying
our tasks to build a parametric based Urdu voice. In (Zen et al., 2007),
they have described the new and improved version of HMM-based speech
synthesis system called HTS version 2.0. In this version they improved the
performance, removed bugs and added new features which are helpful in
synthesis process. In (Zen et al., 2009), gives an overview of HMM based
synthesis method and its advantages and disadvantages compared to others.
According to it, we have following reasons to go for HMM based synthesis:

e Modifiable voice characteristics

e Can be used for multiple languages

e As compared to unit selection, it requires very less data.
e Speech Recognition techniques can be used with it

In (Oord et al., 2016), a different technique was developed for synthesizing
speech from text. The technique which they developed is called Wavenet
and is based on deep neural net. Its similar to PixelCNN. They claim that
the voice generated from it appears more natural then that concatenative
or parametric based voice. In (Oord et al., 2017), Wavenet was improved
as the orginal one doesn’t support parrallel processing and took too long to
synthesize. They claimed that it is twenty times faster than that of original

5

CHAPTER 2. LITERATURE REVIEW 6

one.

In (Kabir H., 2002), they used NLP for Urdu TTS System (Preprocessing and
Phonological processing). In (Hussain, 2004), author have discussed Urdu
letter to sound rules. He classified the Urdu letters and aerabs in different
categories and then explains about there placement in a word and how they
act as vowel or consonant. In (Hussain, 2005), author discusses phonological
processing for Urdu TTS system in which normalized text is converted to
annotated phone string. The flow which he described is as shown in fig 2.1
In (Ijaz M., 2007), they have developed a Urdu Lexicon from a corpus which

B

™~

Letter to Sound
Conversion

\ anbar

Syllabification

R‘ an.bar

Sound Change Rule
Application

\‘ am.bar

Stress
Assignment

x am. bar

Intonation
Assignment

T~

am|[L]."bar[H*L'L.%]

Figure 2.1: phonological processing flow chart

they collected from different sources. They followed followings steps:
e Parts of speech tags
e Lemmas

e Phonemic Transcription

CHAPTER 2. LITERATURE REVIEW 7

e [exicon Format

In (Basit and S., 2014), they have worked further in text processing for
Urdu TTS System and converted text to 8-bit Urdu Zabta Takhti (UZT)
(Tokenization, Semantic tagger, Text generation). In (O. and T., 2014), the
authors have used HTS toolkit for the development of HMM based Urdu
synthesizer. Also they have used greedy search algorithm to select 200 high
frequency words. They have divided the development in two parts which
is training and synthesis. There results were good but were very limited
to selected data as there database consists of only 30 minutes of recording
which is less. In (Mumtaz B. and W., 2015),they have worked on stress
annotated urdu speech corpus to build female voice for TTS. In (M. and
B., 2016), they have perform testing on the current TTS system of CLE.
They presented the Phonological Rules and there testing results on multiple
speakers dataset. In(Qasim M. and S., 2016), they have worked on the
development of speech corpus for travel domain. It is similar to what we
want as travel domain is closely related to navigation domain. Although
there vocabulary only consists of 250 items(summary is shown in table 2.1),
we are doing it on a little larger vocabulary than this. They had an accuracy
of 87.21%. In (Adeba F. and K.S., 2016), they have compared both speech

Dimension Vocabulary size
Confirmation 2

Bus Preference 2

Number of Seats 11

Day of Reservation | 23

Destinations 44

Time of Reservation | 150

Table 2.1: Statistics of speech corpus for travel domain

synthesis techniques for Urdu Text i.e. HMM based & Unit Selection. They
have used Festival framework for there development. They tested the system
using Urdu ASR. There results showed that HMM based synthesizer has
higher accuracy than Unit Selection. There TTS architecture is shown in
figure 2.2. In (R. and B., 2016), they have developed a list of diphthongs
for Urdu language. Diphthongs are sound formed by the combination of two
vowels. They have done this using both manual and digital identification. In
(Shahid Kh. S. and Haq., 2016), they have developed a test to measure Urdu
speech quality of the TTS system there center developed. For this purpose
they had total of 23 urdu native speakers. They were played the recordings

CHAPTER 2. LITERATURE REVIEW 8
Unit Selection Speech Synthesizer
Cluster Units Units
Selection Concatenation)
T T T e e e - Synthesized
| ‘I speech
o] o | oS Tanaingl | Phonetic | [CISAWP |
"l Processing 9918111 exicon Lookup| | Transcription |~ |
I
| |
' Letier o Sound i Excitation Parameters Spectral Parameters
! Mapping ! Parameter
(‘| Generation —l
e _
Excitaion |- -
i] » S sis Filter
Urdu Text Processing Generation ynthe s)‘mhesized
speech
HMM Based Speech Synthesizer

Figure 2.2: Urdu TTS architecture for HMM and Unit selection Synthesizer

and there response was recorded. Tests were divided into two categories
which are as follows:

o Intelligibility test

e Naturalness test

In intelligibility test, they speakers were asked to identify the words whereas
in naturalness, they were asked to rate how natural in there opinion is the

sound.

Chapter 3

Design and Methodology

3.1 LEXICON

Lexicon is a list of all the words in the dictionary we have along with there
pronunciations. By pronunciation, we mean that each word is segmented in
to there corresponding phonemes as shown in figure 3.1. For example lets
take phoneme distribution of word Lahore which is as follows:

("lahore” n (((1A h Or)0)))

If you ignore n and 0 (will be discussed later on format section), you can
see that Lahore is breakdown into five phonemes instead of six. The reason
is that although its spelling contains an ‘e’, there is no sound of it during
pronunciation so we would not include its relative phoneme in Lexicon. This
would help our model to know how to pronounce these words. So to develop
a text to speech system, we first need to make a LEXICON file. To make a
complete and a perfect lexicon file, is a difficult task as it would require as to
include all the words with there pronunciation which could possibly be used
in our TTS. Now imagine if you have to do this for a ten thousands words.
How much time it would require just to make a lexicon file then?

Lets consider a single word requires at-least 5 min of time for us to break it
into phonemes. So ten thousands words would require at-least 35 days with
non stop processing which is not possible. Lets say we work 12 hours a day
then it would take 70 days just to make this lexicon file. You might think
that I am over exaggerating here by saying at-least 5 min, but in truth it
might take more. The reason is that you have to speak each word again and
again in order to understand how it is broken down in terms of phonemes.
You have to check which parts of your mouth are being used to pronounce
and select corresponding phoneme then. Now this is your thinking, what
about others. You have to ask others of there opinions as well. You have

CHAPTER 3. DESIGN AND METHODOLOGY 10

("a" nil (((e) @)))

("aa" nil (((A) ©)))

("aaa" nil ({((t r I p) @) ({y 1) @) ((e) 8)))
("aaapartment” nil (((A) @) ((y p) ®) ({(y r t) @) ((mY¥Y n t) 8)))
("aaay" nil (((A) @) ((e) ©)))

("aab” nil (((A b) ©)))

("aaba" nil (((A b) B) ((A) B8)))

("aaban" nil (((A b) ®) ((A n) ©)))

("aabd" nil (((A b dd) @)))

("aabelting" nil (((A b) @) ((Y L t) @) ((I N) @)))
("aabi" nil (((A b) @) ((i) ®)))

("aabpara" nil (((A b p) @) ((A r) @) ((A) @)))
("aabroo" nil ({(A b) @) ((r u) 8)))

("aabrother” nil (((A b) @) ((r y dd) @) ({y r) @)))
("aabrothers” nil (((A b) @) ((r y dd) @) ((y r z) @)))
("aabshaar” nil (((A b sh) @) ({(A r) @8)))
("aabshar" nil (((A b sh)) ((A r) ©8)))

("aachi" nil (((A ch) @) ((i) @)})

("aad" nil (((A dd) @)))

("aada" nil (((A dd) @) ((A) @)))

("aadab" nil (((A dd) @) ((A b) @)))

("aadcen" nil (((A dd s) B8) ((Y n) 8)))

("aadi" nil (((A dd) @) ((i) @)))

("aadil® nil (((A dd) @) ((I 1) ©8)))

("aadmani" nil (((A dd) @) ((m A n) @) ((i) @)))
("aado" nil (((A dd) @) ((o) @)))

("aadowal" nil (((A dd) ©) ({o v) @) ({(A 1) ©)))
("aafaah" nil (((A f) @) ((A) @)})

("aafandis" nil (((A f) ©) ((y n dd) @) ((i s) @)))
("aafag" nil (((A f) ©) ((A qg) @)))

("aafi" nil (((A f) @) ((i) ®)))

("aafia" nil (((A) 8) ((I) @) ((A) @)))

("aaftab™ nil (((A f) @) ({(tt A b) 8)))

("aag" nil (((A g) ©)))

("aaghaush" nil (((A ggh) @) ((0 sh) @)))
("aaghosh" nil (((A ggh) @) ({0 sh) @)))

Figure 3.1: Subset of a Lexicon file

CHAPTER 3. DESIGN AND METHODOLOGY 11

to refer some language professional for this purpose as well. Now you might
be thinking that 5 min is less for this. In reality it is less and the number
of words is not ten thousands but greater than this around fifty thousands
plus. So how would you do this?

An approach recommended by University of Edinburgh is that you make
lexicon file of most used words and then automatically build LTS rules from
data. Then test the results of it by passing the remaining words. If the
phonemes are correct then add them as it is in our lexicon otherwise correct
them and then add them. This approach reduces the time for making a
lexicon file. In our case, a lexicon was already developed by my supervisor Dr.
Ali Tahir and his students. They developed it for speech to text recognition
system. We used that lexicon, modified it our desired format and added
missing words in it as well.

3.1.1 Lexicon format

A lexicon files have many lexicon entries corresponding to each word. Each
entry is separated by a new line. Each lexicon entry has three parts which
are:

e Word
e Part of speech
e Pronunciation

Lets again take the example of Lahore but this time we will use a little
advance version of it. Its lexical entry is as follows:

("lahore” n (((L A h) 0) ((O1)0)))

Now here lahore is the word whose pronunciation we are defining. ‘n’ tells
us the part of speech which here means its a noun. If ‘v’ was used then that
would have mean verb. Similarly other parts of speech can be specified here.
After that is the pronunciation part. Pronunciation part is further divided
into small parts which are:

e Phones
e Stress marking
e Syllables

You might have noticed that pronunciation this time is different from previ-
ous and looks more complex. The reason is that we have used syllabification.

CHAPTER 3. DESIGN AND METHODOLOGY 12

Previously, I had mentioned that I A h O r are the phonemes. But what is
0 and why they are separated this time. 0 is used to express the stress on
vowels. The reason why they are separated is because of syllabification. We
have divide each word on the basis of its corresponding syllable. 1 A h makes
one syllable and O r makes another.

3.1.2 ADDENDA

Addenda is similar to lexicon but small in size. It contains words and there
pronunciation which are not part of lexicon. They are usually used when
some words are missing in Lexicon or you want to have small dictionary for
a particular application. Abbreviations are also added here. In our case we
have only added punctuation in it as we need to ignore them regarding there
pronunciation as shown in fig 3.2.

(define (tpl urdu addenda)
"(tpl urdu addenda)
Basic lexicon should (must ?) have basic letters, symbols and punctuation."”

x.add.entry "("." punc nil)})
x.add.entry '("'" punc
¥.add.entry pund
¥.add.entry pund
¥.add.entry pund
x.add.entry

x.add.entry

x.add.entry

x.add.entry

®.add.

Figure 3.2: Addenda

3.2 Letter To Sound Rules

Now we have developed our Lexicon and Addenda, we are all good to go. But
what happens if a word comes which is not in dictionary. Or what happens if
a word’s spelling is not right. For example instead of ‘i’, ‘e’ is used or instead
of ‘w’, ‘0’ is used. Our system will reject those words as they don’t match
in either Lexicon or in addenda. Also you can’t add all those possibilities in
Lexicon. Just think of time it would take to think of all possibilities of each
word and the time to add them in Lexicon. So what do we do now?

The answer is that we write rules to handle such situations. These rules are

CHAPTER 3. DESIGN AND METHODOLOGY 13

called letter to sound rules as they will map how each letter will be pro-
nounced with others letters. Generally when a word is not found in lexicon,
an error is returned which states that word is not in dictionary. However we
will not return error and will use letter to sound rules. So how to build these
letter to sound rules. There are two ways to do this which are:

e Manual writing
e Automatic building

Manual writing as the name suggests is that you manually define those rules.
Although this is a difficult task as it is difficult to find all the rules and then
manually add them but it guarantees that all those words which fall under
those rules are pronounced correctly. Rules are defined in following format:
(LEFTCONTEXT [ITEMS | RIGHTCONTEXT = NEWITEMS)

where I'TEMS means the letter or group of letters whose pronunciation needs
to be defined provided that it comes after a letter or group of letters or
none shown by LEFTCONTEXT and is followed by a letter or group of
letters or none shown by RIGHTCONTEXT. Lets explain it with an example.
Consider the following two words which are school and sacha. The ch sound
in both will be different. In school it will give a sound of kay where as in
sacha it will give sound of chay. So to differentiate we would first identify the
difference between them. We noted that all words in which ch comes after s
and is followed by o, it gives sound of k. So we will make a rule of it which
as follows:

(s [ch] o =k)

Now in all the words like school, scholar and schooling; k sound would be
produce in place of ch. Finding all such rules is a difficult and time taking
task. We generally note the common or most use rules manually. For the
rest we would do it automatically by using our Lexicon. This will work by
checking the relationship of letters in our Lexicon. The steps involved in it
are:

e Define allowables

e Align letters

e Find probabilities

e Building CART models

First we need to define allowables. Allowable is a list of letters with its pos-
sible phone. Meaning that only these phones can replace that letter. For
example letter b can be replaced either by ‘b’ or ‘bh’ or ‘_epsilon_’ (_epsilon_

CHAPTER 3. DESIGN AND METHODOLOGY

epsilon Ae EY y 0 An yn en)
epsilon b bh}

epsilon ch k chh sh s)
~epsilon_ ¢ dd j dh ddh)
epsilon T 1ieAEY Yy yy)
_epsilon T}

epsilon g gh ggh)

~epsilon_ h A e E)

epsilon I yy 1 e A E 1n en)

(j _epsilon_ j jh)

(k epsilon kh kkh k)
~epsilon_ 1 11)

_epsilon m)

~epsilon_ n N An en in ¥Yn un On on)
~epsilon_ u U o 0 A on y)

epsilon p ph)

epsilon k q)

~epsilon_ r rh d)

~epsilon y A e s z sh)

[t epsilon T th tth tt sh ch dd)
_epsilon_u U o 0 A un y)
epsilon v)
~epsilon v u o 0)

K :

epsilon

5 Z)

[y epsilon y Y yn¥niIin Ine E A en yy)
epsilon '

#)

Figure 3.3: List of allowable

14

CHAPTER 3. DESIGN AND METHODOLOGY 15

(set! tpl urdu lts rules '{
(a
((n.name is #)
{(p.name is e)
((p.p.name is s)
(((epsilon_ 1) epsilon))
((p.p.name is t)
(({_epsilon_ 1) epsilon_})
(((A 08.833333) (_epsilon_ ©.166667) A))))
Ilp name is o)
Ilp p.name is 1)
(((_epsilon_ 1) _epsilon_))
IIp p.name is r)
({1 epcllnn 1) _epsilon_))
182) (epsilon_ ©.181818) A))))

(epfllnn
(0 6.680031
(y 0.00691172)
AdD))
({n.name is a)
{(p.name is c)
({({¥ 1) ¥))
({n.n.n.name is #)
((p.name is y)
ffp p.name 1s a)
({n.n.name is nﬁ
((({_epsilon_ ©.333333) (Y 0.666667) Y))
(({ epsilon_ Z._, Y 0.5) epsilon)))
((n.n.name is t)
(((A 0.5) (_epsilon_ 08.5) A))
(((A 8.037037) (_epsilon_ ©.962963) _epsilon_))))
({n.n.name is k)
((p.name is t)
({(A B.5) (¥ B8.5) A))
((p.name is r)
(((A 8.25) (epsilon_ ©8.25) (y 0.5) y))
((p.p.name is s)
({(A 0.5) (epcllnn
(((A ©.111111) (epsilon_
((n.n.name is p)
Ilp p name is #)

(_epsilon_

Figure 3.4: Subset of our LTS rules

CHAPTER 3. DESIGN AND METHODOLOGY 16

means nothing). Complete list is shown in figure 3.3. After defining allow-
ables, check that all the letters in your lexicon are aligned with respective
phonemes as defined in allowables. If not then add those phonemes in allow-
ables or if you think Lexicon entry is wrong then correct them. Then we will
find the number of each letters that appears along with the number of there
pairs. This is done to find the probability of each letter to phone conversion
given the adjacent letters/phones. Now using these probabilities, we will
build a Classification and Regression tree (CART) to store this information.
Here CART tree is build using wagon tool. CART tree will help us selecting
the phonemes for a word which is not available in lexicon or addenda. Figure
3.4 shows a subset of how our LTS rules look like.

3.3 FESTIVAL based model

Festival is an open source speech synthesis system developed by University of
Edinburgh. It is under the Center for Speech Technology Research (CSTR)
there. It is written in C+4. We will be using it as a basis for generation of
our own text to speech system. The general flow of Festival is shown below
in Figure: 3.5.

prompts utterances

Training data Preprocessing

&3
coefficients voicing . f0

Feature Extraction

Build duration
cluster model

Model Generation

Figure 3.5: Festival General Flow

SO the basic steps involved in our speech synthesis system are:
e Training data

e Preprocessing

CHAPTER 3. DESIGN AND METHODOLOGY 17

e Feature Extraction

e Model Generation

3.3.1 Training data

The first step in any system is to prepare the training data. As we are
working on Urdu TTS, we requires recording of Urdu transcriptions from
different speakers. For this purpose 2 male and 2 female speakers were used
to record our data. Urdu transcriptions contained data related to routing
and local area addresses. For example

e aap ki manzil aap ke baien taraf hai
e roundabout pe dasvin sarak lein
e bakhshupura gujraat

There were around 1600 lines where on average it took 4 seconds to record
a line. So we had training data set of around 7 hours. All recordings were
recorded at sample rate of 16000Hz. All recordings were numbered accord-
ing to the there transcription number which allows us to easily map them.
During recording, we made sure that speaker is not interrupted nor there
should be any noise in the surrounding. This is done to make sure there is
consistency while recording is going on. In below images, one can clearly see
the difference between two recordings of the same sentence when recorded in
noisy background 3.6 and quiet background 3.7.

samples

S000

3000

1000

-1000

-3000

-5000
0.4 0.5 0.6 0.7 0. 049 1 11 1.2 1.3

Time (%)

Figure 3.6: Recording with some noise in the background

CHAPTER 3. DESIGN AND METHODOLOGY 18

samples

3000

-5000

| NI W SN SO ST SN AN SN SN SN T [N TN T W LA | ST ST T N AN SN ST SN SN AN SN TN NS T T T S NN ST ST ST SN ST

0s 0e 07 0.s (] 1 1.1 1.2 1.3 14
Time (s)

Figure 3.7: Recording without noise in the background

3.3.2 Preprocessing

Before we begin processing our data, we need to transform it into a format
which is understandable by our system. First we will confirm that all the
wave files are in correct format. For this we will run a simple script which
will output our wavefiles in 16000Hz and in riff format. Second we need to
remove extra silence from our recordings. This extra silence is either at the
start of recording or at the end. We have to remove it as they are not re-
quired and only increases the duration of recordings. In image above 3.7, one
can see that there is an unrequired part at the beginning of the recording.
We will remove it to have only that part of the recording which is of use to
us. For this purpose we will use Edinburgh speeh toolkit. This is done by
extraction of fundamental frequency (f0). FO can be used to estimate the
beginning and ending of the speech. Using it we can eliminate extra seconds
from our wave files.

Now our wave files have been set, we will move on to next step of prepro-
cessing in which we will generate utterances. These are used to approximate
phones for each sentences. These are calculated using Festival library. In 3.8,
one can see text is broken down into its phonemes and then there relative po-
sitions in the wave files. For example the text ”tractor workshop” is broken
down to the phonemes as shown in the table 3.1. A lab file is also generated
which only shows phonemes and there relative duration in the wave files 3.9.

CHAPTER 3. DESIGN AND METHODOLOGY

EST_File utterance

DataType ascii

version 2

EST_Header_End

Features max_id 25 ; type Text ; iform "\ "tractor workshop)

Stream_Items
id
id
id
id
id
id
id
id

: name tractor ; whitespace "" ; prepunctuation "" ;
name workshop ; whitespace " " ; prepunctuation "" ;
name workshop ; pbreak BB ; pos nil ;

name tractor ; pbreak NB ; pos nil ;

name BB ;

name syl ; stress 0 ;

name syl ; stress 0 ;

name pau ; dur factor 1 ; end .11 ;

id name t ; dur_factor 1 ; end 0.22 ;

id name r dur_factor 1 ; end 0.33 ;

id 9 ; name Y dur_factor 1 ; end 0.44 ;

id 18 ; name ; dur_factor end ©.55 ;

id _11 ; name dur_factor end 0.66 ;

id 12 ; name dur_factor end 0.77 ;

id _13 ; name dur_factor end ©.88 ;

id 15 ; name dur_factor end 1.045 ;

id 16 ; name dur_factor end 1.21 ;

id _17 ; name dur_factor end 1.375 ;

(R e o e
[t =

SRR O WA N

o

[y

P e e e e
s e
LML LM LM s tes es fea

[

id 18 name dur_factor ; end 1.54 ;
id _19 name ; dur_factor 1.5 ; end 1.705 ;
id 20 name ; dur_factor 1.5 ; end 1.87 ;
id _21 name ; dur_factor 1.5 ; end 2.035
id 23 name ; dur_factor 1 ; end 2.145
id 25 ; fo 118 ; pos 2.035 ;

id 24 ; fo 130 ; pos ©.11 ;
_of_Stream_Items

m A € O R

Figure 3.8: Example of an utterance file

CHAPTER 3. DESIGN AND METHODOLOGY

Text | Phone
t t

r r
a Y
c k
t t
0 y
r r
w v
0 y
r r
k k
sh sh
0 O
p p

Table 3.1: Phoneme distribution of ”tracktor workshop”

la"l?-.“\‘{(ﬂ‘{r‘f?—?-(‘\r‘fg
[=

- o
o

0.
0.
0.
0.
0.
0.
0.
0.
1.
1.
1.
1.
1.
1.
2.
2.

Figure 3.9: Example of an lab file

CHAPTER 3. DESIGN AND METHODOLOGY 21

3.3.3 Feature Extraction

After preprocessing the data, its time to extract useful features. Feature
extraction involves following steps:

e Label generation

Extract {0

Extract mcep

Extract voicing

Combine coefficient

Label generation

We use EHMM labeler to label our data. It is provided and recommended
by festvox as it follows there format as well. First it will extract phone
sequences and save them in a text file 3.10. Then it will compute neces-
sary features which are mel-frequency cepstrals. The resultant files are then
converted to binary format. It then uses BaumWelch algorithm to find max-
imum likelihood of HMM’s parameters. After that features are aligned and
standardized.
O pau s Y vynssildipau
10 pau h U m A ssil b 1 0 k pau
100 pau b 1 0 k ssil n A I n t i n pau
1000 pau n I u ssil ch A 1 1 pau
1001 pau s t o r ssil b 1 0 k pau
1003 pau b L 0 k ssil t U Y n t 1 pau
f A
b i

1004 pau IvssilbYhYrIApau
1005 pau

ch ssil s £t r i t pau

Figure 3.10: Example of phone sequences

Extract {0

In this step, we will first extract pitchmarks using Edinburgh speech tools and
save them in .pm files. Using these pitchmarks, we will extract fundamental
frequency of each wave files and store it in .f0 files. They are also known as
excitation parameters.

CHAPTER 3. DESIGN AND METHODOLOGY 22

Extract mcep

In this step, Mel Cepstral Coefficients are extracted from wave files. Tools
to extract these are provided with Festvox, so no issue in this step as well.
This step may take some time depending on the amount of data (number of
files). The features are stored as .mcep files.

Extract voicing

This step is to detect pitch in each wave file. This is done using pda which
produces fundamental frequency contours. The output is stored as .v files
and contains data in the form of zeroes and ones.

Combine coefficient

In this step we combine above features in one file for each corresponding
utterance we have. The data in each of corresponding files (.f0 , .mcep , .v)
are extracted and pasted in new files. New files are stored in .mcep format.

3.3.4 Model Generation

After extracting features, we will create a parametric model. The model
will be based on the features we extracted in the previous step. It involves
following steps:

e (Generate Statenames
o (Generate Filters

e Clustering & Duration Model

Generate Statenames

This is a simple step in which we create a scheme file for statenames. These
statenames are EHMM state labels. A subset of it is shown in Figure 3.11.
It contains vowel and its corresponding three states. This step is just a
prerequisite for model creation.

Generate Filters

In this step we create two types of filters. In our first type, we will split the
frequency ranges into five categories which are as follows:

e Low pass filter at 500

CHAPTER 3. DESIGN AND METHODOLOGY 23

(set! tpl urdu fem::phone to states '(
(AA1AZ2ZAS)

E'
E'
E'
E'
E'
E'
E'
E'
E'
E'
E'
(
E'
E'
E'
E'
E'
E'
E'
E'
E'
E'

Figure 3.11: Example of Statename file

Band pass filter between 900 and 1500

Band pass filter between 2000 and 3750

Band pass filter between 4000 and 6000
e Band pass filter between 6250 and 7500

And our second type of filter is a simple Low pass filter at 6000. These filters
ranges are defined by University of Edinburgh.

Note: Low pass filter is a filter which only allows lower frequency (from the
specified) to pass through and blocks remaining one. Whereas in Band pass
filter, only the specified range is allowed to pass and remaining is blocked.

Clustering & Duration Model

This is the step in which we train our model. The method which we are using
is called CLUSTERGEN. This method requires recording and there utter-
ances which we have collected and preprocessed in previous steps. Cluster-
ing is done using Classification And Regression Tree (CART). CART tree is
learned from labelled data which we have collected before. It is a supervised

CHAPTER 3. DESIGN AND METHODOLOGY 24

learning process and it uses wagon system which University of Edinburgh
has developed. It produces trees in LISP format which is desired format in
FESTIVAL. CART tree is useful because it can predict both categorical val-
ues or continuous values. Categorical values are used for classification and
continuous values are used for regression tree. Against categorical values,
we will get probability distribution and against continuous values, we will
get mean or standard deviation. Wagon requires data files from database
which consists of vector. The first field of each vector determines whether
to build a regression tree or classification tree. First we will build clusters
using fO and mcep features we calculated before and then we will find mean
and standard deviation of duration of phones in our database. Then we will
extract features from our utterances and save them in one data file.

It is a lengthy process and requires many features to train a tree. But for
simplicity, I'll be using some features to explain how it works. Consider one
of the statement from our database which is:

abu bakar

Each statement is divided into segments.For each segment we will have vec-
tors in our data file. Each vector contains many properties but for simplicity
lets say it uses 5 properties which are:

name (phone)
e p.name (previous phone)

e n.name (next phone)

pos_in_syl (position in word)
e seg onsetcoda (segment type)

So for above statement we will have vector as shown in table 3.2. Lets
consider the second row from the table 3.2 to explain these properties. The
first property is the name of phoneme which is currently in focus in the
segment which in this case is “y”. The second property tells us the previous
phoneme of the segment which here is “pau”. Similarly third property tells
us the next phoneme in the segment which is “b”. Fourth property tells
us the position of the phoneme in the word. Zero means first here. Fifth
property tells us if it is a vowel or it comes before or after an vowel. Coda
means it is vowel or it comes after vowel whereas onset means it comes before
vowel.

CHAPTER 3. DESIGN AND METHODOLOGY 25

Row | name | p.name | n.name | pos_in_syl | seg onsetcoda
pau 0 coda
pau onset
onset
coda
onset

onset

onset
onset
coda
coda
coda

O| 0| || T | W[DN —

Bl | R |Tle | T

=l e ol e | o
olg =< | = w< || e | o=
OIU WO ROO

[Sy —
[l =

pau

Table 3.2: Simplified vector example”

Similarly there is a list of properties which is used for training our model.
We get these properties from the previous steps we have used so far. Using
such data file, we can train our model.

3.4 FLITE based model

Once our model in Festival is ready, it is time to export it to flite so that it
can be used on mobile devices. Flite is designed as a run time engine written
in ANSI C. Any working voice in FESTIVAL can be converted to flite. Voice
can’t be build in flite; it can only be converted from festival voice. In order
for our voice to work on mobile devices, we need following conversions:

e Language conversion
e Lexicon conversion

e Voice conversion

3.4.1 Language conversion

This is one of the simple steps. We just need to convert our phone-set from
scheme format to C. A simple script separates phones and its features and
stores them in array form. For example figure 3.12 shows our phone-set in
LISP format. Here “tpl.urdu”is our phoneset name. Followed by phone fea-
tures (clst, ve, ving, vheight, vfront, vrnd, ctype, cplace, cvox, asp, nuk) and
there possible values. After that is the vector of phones with there feature

CHAPTER 3. DESIGN AND METHODOLOGY 26

value described above.

[defPhoneSet
tpl_urdu

(ving s 1
(vheight 1 2 3 €@
(vfront 1 2 3
(vrnd B)

(ctype s fanlrao)

ace Laphb

Figure 3.12: Definition of Phones in LISP

Now the conversion script will separate phone names and features name
from it and make them separate arrays as shown in figure 3.13. Similarly it
will make separate arrays corresponding to each phones to store its feature
values as shown in figure 3.14. Feature values and phoneset are linked by
there indexes.

; tpl_urdu_featnames[] = {
lng", "vheight", " ont", "vrnd", "c

q",

Figure 3.13: Phones and features arrays in C

CHAPTER 3. DESIGN AND METHODOLOGY 27

int tpl_urdu_fv_6@8[]
tpl_urdu_fv_601[]
tpl_urdu_fv_gez2[]
tpl_urdu_fv_003[]
tpl_urdu_fv_084[]
tpl_urdu_fv_805[]
t tpl_urdu_fv_086[]
tpl_urdu_fv_807[]
tpl_urdu_fv_008[]
tpl_urdu_fv_689[]
tpl_urdu_fv_616[]
tpl urdu_fv_811[]
tpl_urdu_fv_812[]
tpl_urdu_fv_013[]
tpl_urdu_fv_814[]
tpl_urdu_fv_015[]
tpl urdu fv_816[1]
tpl_urdu_fv_817[1]
tpl_urdu_fv_018[]
tpl_urdu_fv_819[1]
tpl_urdu_fv_620[]
tpl _urdu
t tpl_urdu
tpl_urdu_f
tpl_urdu
tpl_urdu
tpl _urdu
t tpl_urdu_f
tpl_urdu_f
tpl_urdu_f
tpl_urdu_f
tpl urdu f
t tpl_urdu_f
tpl urdu f
tpl_urdu_f
tpl_urdu_f
tpl urdu f
tpl_urdu_f
tpl urdu f
tpl_urdu_f
tpl urdu

Figure 3.14: Phones and there features values in C

3.4.2 Lexicon conversion

Here we need to convert our lexicon file and letter to sound(lts) rules to C.
Lets start with first conversion of lexicon file. First total number of entries are
counted and stored in a variable. Then phones used in lexicon file are stored
in an array. All lexicon entries are then indexed and stored in a separate file.
The number of bytes which our lexicon take is also noted down to allocate
memory in future. This is done using flite’s tool with following code line:

$FESTIVAL —heap 10000000 —b $FLITEDIR/tools /make_lex .scm
‘(lextoC 7tpl_urdu” ”tpl_urdu_lex.out” 7¢”)’ ;

Now we will convert 1ts rules. Here we need to convert decision trees of lts
rules to a format understood by flite. We will first convert the LTS trees
to regular grammer and then build weighted finite state transducers (wfst).
Then we will convert wfst in to C compilation structure. This is done using
flite’s tool with following code line:

$FESTIVAL —heap 10000000 —b $FLITEDIR/tools/make_lts_wfst.scm
Its_scratch/lex_lts_rules .scm
‘(lts_to_rg_to_wfst lex_lts_rules "wfst/”)’;

$FESTIVAL —heap 10000000 —b $FLITEDIR/tools/make_lts.scm

CHAPTER 3. DESIGN AND METHODOLOGY 28

lts_scratch /lex_lts_rules .scm
“(ltsregextoC 7 ‘SLEXNAME’” lex_lts_rules "wfst/” "¢”)’;

3.4.3 Voice conversion

This is an automatic process where FESTIVAL has provided the script to
easily convert FESTIVAL voice into FII'TE voice using Language and Lexicon
file we converted in previous steps. We just need to use “build_flite”for
conversion. In our FESTIVAL voice directory we need to run following code:

./bin/build _flite cg
cd flite
make

This will result in our flite voice named as flite_tpl_urdu_female3. After re-
naming to match flite android app format, it can be used in the app. The
naming format which android needs is as follows:

“female;female3.cg.flitevox”

Where female is the gender, female3 is the voice name, cg tells its clustergen
voice and flitevox is the format. Apart from this, Language and Lexicon files
are also linked with flite app. Without linking the app will either crash or
load default files.

Chapter 4

Implementation and Results

I am using the same testing method as used by (Shahid Kh. S. and Haq.,
2016) i.e. both through survey and through our own speech to text system.
So in first phase, to check the accuracy of our system, we had to ask different
people to listen to our results and give us feedback. The idea of the feedback
is to see whether the general public understand our TTS’s result or not. Also
to find any shortcomings in it for future updates. Here lets discuss six random
sentences which we played to users and took there feedback regarding the
understanding of each word in the sentence. The sentences were:

e baain, jaanib murain or phir fori baaein murain

e fifteen sector qasimabad multan

daaien, jaanab rahain

e baain, jaanab rahain

roundabout pay chothi sarak lein
e aap apni manzil per pohonch chukay hain

The audios were of both the Festival and Flite voice so that we could also
compare them. Lets plot the results to better understand them

29

CHAPTER 4. IMPLEMENTATION AND RESULTS 30

baain jaanib murain or phir fori baaein murain

100 |- U0FESTIVALIIFLITE i
80| i
60 | i

baain jaanib murain 0T phir fori baaein murain2

fifteen sector qasimabad multan

100 - IOFESTIVALUOFLITE |

80 :

fifteen sector qasimabad multan

100
80
60
40

20

100

80

60

CHAPTER 4. IMPLEMENTATION AND RESULTS 31
daaien jaanib rahain
|
— JOFESTIVALUOFLITE _
T T T
daaien jaanib rahain
baaien jaanib rahain
— JEFESTIVALUOFLITE _
\m I \m
baaien jaanib rahain

CHAPTER 4. IMPLEMENTATION AND RESULTS 32

roundabout pay choti sarak lain

120 | | |
J0FESTIVALIDFLITE
110 | :
100 poypy T ol el e
90 + 8
I I I I I
roundabout pay choti sarak lain
aap apni manzil per pohonch chukay hain
| | | | |
1001 —— R J0FESTIVALIDFLITE _ _ |
80 | :
60 - 8
I I I I I I \m
aap apni manzil Per pohonch chukay hain

We also asked the users to tell us how natural or robotic the sound feels. For
this we gave them scale from 1-5 to rate each voice. Summary for that is:

CHAPTER 4. IMPLEMENTATION AND RESULTS 33

naturalness factor with 1 being lowest and 5 being highest

TOFESTIVALIIFLITE
40| — l
30| |
20| |
10| |
ol —— =8 H]
1 2 3 1 5

We also asked the users, which voice in there opinion is better or are they of
same quality. The results for this are as follows:

Quality comparison

80 | :
60

40 | |

20

0, J— — S D S D — = -

1 2 3 4 5 6

Number of words correctly understood by users is shown in 4.2

Voice Total number of words | Correct number of words
Festival | 60 55
Flite 60 53

Table 4.1: Summary of result

CHAPTER 4. IMPLEMENTATION AND RESULTS

76

74

72

70

Quality comparison

|
lIFESTIVALUIIFLITE

[

Percentage

34

In second phase, we played the synthesized audio in front of a speech recogni-
tion program. Speech recognition program for the same database has already
been developed by my supervisor Dr. Ali Tahir and his students. The sum-
mary of it is shown in

Correct detection for Festival

91%

9%

Wrong detection for Festiva

CHAPTER 4. IMPLEMENTATION AND RESULTS 35

Correct detection for Flite

88%

12%
Wrong detection for Flite

So overall accuracy of our system is given in table

Voice Manual Testing | Automatic Testing
Festival | 91.37 76
Flite 88.33 69

Table 4.2: Summary of result

We compared our results with CLE HTS voice as shown in table 4.3. We are
only comparing our festival result with them as they haven’t developed TTS

for mobile.

Voice

Our | CLE blind

CLE un-blind

Festival

91 81

96

Table 4.3: Summary of result

Chapter 5

Conclusion and Future Work

5.1 Conclusion

We were successful in making a Urdu TTS for navigation app. It achieved
an accuracy of 91% on FESTIVAL and 88% on FLITE which is very good
considering no such previous work was done in this domain. Also the accuracy
is good considering that we used Roman Urdu instead of traditional Nastaliq
style. The accuracy on FLITE was less than that of FESTIVAL due to the
fact that its model was derived and converted from FESTIVAL and files
were compressed to make it a lighter version so that it could be used in
mobile devices. CLE’s accuracy is little higher than us in unblind test as
they prepared everything in Nastaliq style.

Also we couldn’t use Wavenet due to the fact that it was computationally
expensive. Training took alot of times i.e. in weeks. Plus the synthesis also
took alot of time i.e. 15 mins to generate for 10 words sentence or 5 mins
when using Fast wavenet.

5.2 Future Work

For future, we need to improve it as there were some words which the users
were unable to understand and also to work on its naturalness. Users com-
plained that although they understood most of the words, they didn’t sound
natural enough. So works need to be done on this regards. Also work is
required at FLITE side to make it sound as cleaner as possible with less or
no loss. After some modification and improvement in it, this will become
part of TPL Maps navigation system.

Furthermore, our system currently supports Urdu numbers from 0-9. That
is it will only synthesize these number. Numbers greater than 9 are synthe-

36

CHAPTER 5. CONCLUSION AND FUTURE WORK 37

size in parts. For example twelve (12) will be synthesized as aik(1) do(2).
So in future we plan to first include numbers till 100 as from 0-100. The
reason for only including till hundred is that each of these number has a
unique name. After that, repetition starts so we will write rules to deal with
numbers greater than 100.

Appendix A

Phoneme Properties

Table A.1 and Table A.2 show all the phonemes with there properties which
we have used in development of our TTS system. These properties are:

ve to define vowel or consonant
ving to define vowel length

vheight to define vowel height
viront to define vowel frontness
vrnd to define lip rounding

ctype to define consonat type
cplace to define place of articulation
cvox to define consonant voicing

asp to define aspiration

You would notice that each phoneme has either properties of vowel or conso-
nant not both. If a phoneme is a vowel than its consonant properties would
be zero and if its a consonant, its vowel properties would be zero.

38

39

APPENDIX A. PHONEME PROPERTIES

Phone | vc | ving | vheight | vfront | vrnd | ctype | cplace | cvox | asp

pau

bh
ch

chh

dh
dd

ddh

ggh

gh

dZ

jh

kkh
kh

11

Table A.1: Phoneme with there properties part 1

40

APPENDIX A. PHONEME PROPERTIES

Phone | vc | ving | vheight | vfront | vrnd | ctype | cplace | cvox | asp

ph

rh

sh

tt

tth
th

yy

n
en

Yn

un

on
On

An

Table A.2: Phoneme with there properties part 2

Appendix B

Phoneme and Urdu Characters

Figure B.1 and B.2 shows phoneme we used and there corresponding char-
acters in Urdu. You may be wondering that why there is more than one
phoneme corresponding to same urdu character. The reason is that although
they are corresponding to same urdu character, there properties is different.
We speak urdu characters in different ways. For example we jusually speak
in regular way but some time we speak using our nose. There are other cases
where we use different part of our mouth to pronounce a word. So to differ-
entiate, we have different phonemes corresponding to same Urdu characters.

41

APPENDIX B. PHONEME AND URDU CHARACTERS 42

Phone Urdu character

A |
b -
ch el
chh sz
d 2
_;H'_JL o
dd 3
ggh A3
= s
E £

f i
ggh 3
g &
gh a5

h a

i v

| £
dz '
h =3
k Y
kkh 55
kh 55
| J
[J
m ¢
n ¥
N ¥

Figure B.1: Phoneme with there corresponding urdu characters part 1

APPENDIX B. PHONEME AND URDU CHARACTERS

Phone Urdu character
0 3
O 5
P =

ph N
q 3
r J

L':! aJj
S [

sh -
[} '

1} .

H_l_'! Al
[h A
U |
U |
v 3
Y T
Y v

¥y s
£ J
in L

2n L

¥n ot

un 3

on 9

On g

An !

Figure B.2: Phoneme with there corresponding urdu characters part 2

Bibliography

Adeba F., Hussain S., H. T. H. E. and K.S., S. (2016). Comparison of urdu
text to speech synthesis using unit selection and HMM based techniques.
19th Oriental COCOSDA Conference 2016, Bali, Indonesia.

Basit, H. R. and S., H. (2014). Text processing for urdu TTS system. Lan-
guage and Technology Conference, Pakistan.

Black, A. W. (2006). Clustergen: a statistical parametric synthesizer using
trajectory modeling. In INTERSPEECH.

Hussain, S. (2004). Letter to sound rules for urdu text to speech sytem. Work-
shop on Computational Approaches to Arabic Script-based Languages,
Geneva, Switzerland.

Hussain, S. (2005). Phonological processing for urdu text to speech system.
Contemporary Issues in Nepalese Linguistics, Linguistics Society of Nepal.

ljaz M., H. S. (2007). Corpus based urdu lexicon development. Conference
on Language Technology (CLTO07), University of Peshawar, Pakistan.

Kabir H., Raza S., S. A. H. S. (2002). Natural language processing for urdu
TTS system. IEEE International Multi- Topic Conference.

M., F. and B., M. (2016). Urdu phonological rules in connected speech. Con-
ference on Language and Technology 2016 (CLT 16), Lahore, Pakistan.

Mumtaz B., Urooj S., H. S. and W., H. (2015). Stress annotated urdu speech
corpus to build female voice for TTS. 18th Oriental COCOSDA/CASLRE
Conference, Shanghai, China.

O., N. and T., H. (2014). Hidden markov model (HMM) based speech syn-
thesis for urdu language. Conference on Language and Technology 2014
(CLT14), Karachi, Pakistan.

Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves,
A., Kalchbrenner, N., Senior, A., and Kavukcuoglu, K. (2016). Wavenet:
A generative model for raw audio. arXiv preprint arXiv:1609.03499.

Oord, A. v. d., Li, Y., Babuschkin, I., Simonyan, K., Vinyals, O.,
Kavukcuoglu, K., Driessche, G. v. d., Lockhart, E., Cobo, L. C., Stimberg,
F., et al. (2017). Parallel wavenet: Fast high-fidelity speech synthesis.
arXiww preprint arXw:1711.104335.

44

BIBLIOGRAPHY 45

Qasim M., Rauf S., H. T. and S., H. (2016). Urdu speech corpus for travel
domain. 19th Oriental COCOSDA Conference 2016, Bali, Indonesia.
R., B. and B., M. (2016). Identification of diphthongs in urdu and their
acoustic properties. Conference on Language and Technology 2016 (CLT

16), Lahore, Pakistan.

Shahid Kh. S., Habib T., M. B. A. F. and Haq., E. U. (2016). Subjective
testing of urdu text-to-speech (TTS) system. Conference on Language
and Technology 2016 (CLT 16), Lahore, Pakistan.

Tokuda, Keiichi, H. Z. and Black., A. W. (2002). An HMM-based speech
synthesis system applied to english. IEEE Speech Synthesis Workshop.
Zen, H., Nose, T., Yamagishi, J., Sako, S., Masuko, T., Black, A. W., and
Tokuda, K. (2007). The HMM-based speech synthesis system (HTS) ver-

sion 2.0.

Zen, H., Tokuda, K., and Black, A. W. (2009). Statistical parametric speech

synthesis. speech communication, 51(11):1039-1064.

