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Abstract

To increase the throughput of system is the requirement of many designs. Normally for
FPGA based designs pipelining is used to increase the throughput of the system. Pipelining
increases the throughput of the system by introducing multiple inputs in a pipeline.
Pipeline increases latency for single computation. But the total number of outputs per unit
time increases. Pipelining has advantages for the designs which have only feed forward
circuits. The designs where feedback loops also part of the design, pipelining cannot
perform well. In those scenarios, c-slow is the better approach. C-slow increases the
throughput of the system even in the presence of feedback loops. C-slow increases the
throughput by taking the advantage of parallel computation i.e. multiple threads are
executed in parallel. For this purpose each register in the design is replaced with C number

of registers.

Vi
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Chapter 1

Introduction

Motivation

As with the increase in technology, the number of components increases in a great
amount on the same area size. So the more and more hardware resources are available to
program. Here the task is now how to program in such away so that on one we can utilize
the available hardware and to increase the speed without adding any additional hardware.
The basic idea behind this research thesis is to develop some technique that can perform
the above defined goal in complex applications such as FPGA based designs as well as DSP
applications. Another effect of this as when we purchase a hardware, we have already paid
for all its components either we use it or not. So then it becomes out basic requirement to
develop such techniques in which we can increase performance and speed with maximum
utilization of available hardware.

Background

Because this thesis is based on the FPGA based systems and development of FPGA based
system is involved a large number of complex transformations and optimizations. A simple
FPGA contains of two dimensional arrays of logic cells and programmable switches. A logic
cell can be programmed to perform a simple task while the programmable switch can be
programmed in such a way that it can provide interconnection between logic cells. A FPGA
based digital logic is designed so that the function of each logic cell is specified. In this
thesis Spartan 3 family device is used. A basic Spartan 3 devices is given below,

Table 1.1 Devices in the Spartan-3 family

Device Number of | Number of | Block Number of | Number of
LCs block RAMs RAM bits | multipliers DCMs
XC3S50 1,728 4 72K 4 2
XC3S5200 4,320 12 216K 12 4
XC35400 8,064 16 288K 16 4
XC351000 17,280 24 432K 24 4
XC351500 29,952 32 576K 32 4
XC352000 46,080 40 720K 40 4




XC354000 62,208 96 1,728K 96 4

XC3S5000 74,880 104 1,872K 104 4

In above paragraph, a small introduction of FPGAs and the devices that used in this thesis
is presented. Now below we discuss some of the FPGA design issues such as speed, area,
power etc.

When we use some arbitrary coding methods for designing FPGA based digital systems,
optimization tools cannot perform well in those cases because the requirements for those
are not met. When the speed is major issue in designs, it is based on problem domain.
There are three domains by which we can define speed, throughput, latency and timing.
When we process data in a FPGA, throughput is the amount of data that is processed in a
single clock cycle. And it is usually measured as bits per second. Latency is the amount of
time between input data and processed output and latency is measured in clock cycles.
And in the last, Timing is the delays in sequential elements when data pass through them.
The basic task behind this thesis is to increase throughput and to reduce latency. Timing is
not the major issue during the thesis.

High Throughput

When we are concerned about high throughput designs, i.e. designs in which data rate is
constant and less worried about the latency i.e. the time consumed to process a single
piece of data. The pipelining is the basic idea to increase the throughput. In pipelining,
multiple stages are defined such as when first instruction is at second stage, second
instruction enters at first stage and so on. In this case, it may possible that the time
required for a single instruction increases but if we consider the number of outputs per
unit time, it increases.

Low Latency

A low latency design means which can pass the input data to the output or process input
data as quickly as possible by minimizing the intermediate processing delays. As above
discussed high throughput design use the concept of pipelining but that increases latency
in design. When latency is the major design issue, pipelining in the design is removed and
requires some sort of parallelisms in designs and logical shortcuts that can reduce the
throughput or maximize the clock speed. The bad thing in removing pipelining stages is the
increase in timing or combinational delays.

Timing



Timing refers to the clock speed of a design. The maximum delay between any two
sequential elements in a design will determine the max clock speed. The idea of clock
speed exists on a lower level of abstraction than the speed/area trade-offs discussed
elsewhere. The maximum speed, or maximum frequency, can be defined according to the
straightforward and well-known maximum-frequency equation,

Maximum Frequency

1
F =
e T::!k + T!r.:\_qz'c + Tsaru',u + Trourin_q - Tskaw

Where Fmax is the maximum frequency of clock; T is the data arrival time; Tlogic is the
propagation delay through logic between flip-flops; Tsetup is minimum time data must
arrive at D before next rising edge of clock; Trouting is the routing delay between flip-
flops; and Tskew is propagation delay of clock between the launch flip-flop and the
capture flip-flop.

Area Minimization

Area minimization is based on the selection of correct design method. Design method is
based on high level design organization and not on the device level. A design method that
refers to the area, must reuses the logic resources to maximum extent possible, often at
the expense of speed. Normally this requires the recursive data flow where the output of
one stage is fed back to the input to the similar process. It may be implemented with
simple loop that flows simply with algorithm or it can be implemented with the help of
special controls.

Methodology

As we are developing technique for FPGAs so the programming environment here used is
Verilog. For the test purpose of this technique, we developed a simple microprogrammed
finite state machine design as well as some filters in which both feed forward and feed
backward filters are included. In filters the developed technique is implemented for finite
impulse response filters and infinite impulse response filters. The basic idea to increase the
speed is to execute multiple programs with the same hardware as for the single program
but with just adding that hardware that is available in excessive amount without any
expenditure.

For the above defined purpose, | used C-slow retiming with microprogrammed finite state
machine design. Microprogrammed state machine will be discussed in the next chapter.
Basically the concept of microprogramming is much old, but here we combined the
microprogrammed finite state machine with C-slow retiming. The concept of C-slow is to



increase the number of registers C times. Now we can implement C different instruction
sets that can work in parallel. The idea behind to choose the C-slow is that with the
passage of time we have more and more registers are available on FPGAs. So if we
increase the number of registers it will not much effect because these registers are
available in the same cost either we use them or not.

After obtaining the simulation results to check the timing results, synthesize the code in
Xilinx to get the hardware results. Then do the power analysis to verify our technique. And
all these results are added in result analysis chapter.

Scope of thesis

The end result of this thesis is a process or technique which can perform the above defined
functions. The developed technique is not only for a single program but it must be general
purpose. It means we can use this technique in many physical complex applications.

These complex applications include Image processing applications, Signal processing
applications, Communication and many other more fields where complex computations
are involved. The applications where a lot number of multiplications or additions are used.
So in these applications if we want to increase the speed of computation we also have to
increase the multipliers and adders which take a lot of space as well as power which is not
suitable for area critical as well as power critical designs. So my proposed technique is
much more efficient in such cases because in these cases we just have to increase the
number of registers and not any other hardware so helps to reduce the cost and area. At
the end we will discuss the results by implementing the proposed applications on more
than one design architectures and prove that the above claim about this technique is true.

Organization

The thesis is organized in the following sections to easily make the readers understand;

e chapter2 elaborates the characteristics in details about the finite state machines.

® chapter3 gives an overview of the Finite state Machine and Datapath

e chapter4 briefly describes the basic concepts of microprogramming



chapter 5 gives the review Microprogrammed state machine and the details of its

implementation on a hard ware platform

chapter6 give the concept of C-slow retiming and effects of C-slow retiming on different
types of architectures and comparisons of C-slow pipelined and Unfolding

architecture is addressed in this chapter

chapter 7 discusses the C-slow based microprogrammed FSM and its architecture to

execute multiple threads in parallel and its implementation.

chapter 6 addresses the analytical simulation results of the C-slow based parallel

computing processor architecture



Chapter 2

Finite State Machine

Introduction

The finite state machine (FSM) design is used in cases when a system transits among some
finite number of states. And these transitions depend on the present state of the system
and input from external source. Unlike the normal sequential circuit in which system
transits between the states in a sequential manner i.e. first, second, etc. but in FSM, the
state transition do not show a simple repetitive pattern. Its next state logic depends upon
many conditions and also known as random logic.

In this chapter we will discuss in details about the finite state machines. The major
application of finite state machine is to act as controller in a large number of digital
systems in which FSM check the external commands and status and selects the proper
control signals to control the operation of data path which is usually composed of regular
sequential and combinational circuits.

FSM representation

There are two ways to represent a finite state machine, state diagram and ASM chart
(Algorithmic State Machine chart). These two representations shows the same
information. The FSM representation is more compact and better for simple applications.
The ASM chart representation is somewhat like a flowchart and is better for applications
with complex transition conditions and actions.

State Diagram

A state diagram is composed of nodes, which represent states and are drawn as circles,
and annotated transitional arcs. A single node and its transition arcs are shown in Figure
2.1(a). A logic expression expressed in terms of input signals is associated with each
transition arc and represents a specific condition. The arc is taken when the corresponding
expression is evaluated true.



The Moore output values are placed inside the circle since they depend only on the
current state. The Mealy output values are associated with the conditions of transition
arcs since they depend on the current state and external input. To reduce clutter in the
diagram, only asserted output values are listed. The output signal takes the default (i.e.,
unasserted) value otherwise.

A representative state diagram is shown in Figure 2.1(b). The FSM has three states, two
external input signals (i.e., a and b), one Moore output signal (i.e., y1), and one Mealy
output signal (i.e., y0). The yl signal is asserted when the FSM is in the SO or s | state. The
yo signal is asserted when the FSM is in the SO state and a and b signalsare " 11".

mo: moore output
me: mealy output

State_Name
Mo = Value

Logic expression/me=value ogic expression/me=value

To other state to other state
(a) A simple node representation

(b) State diagram using nodes

Figure 2.1: State diagram representation



ASM chart

An ASM chart consists of a network of ASM blocks. An ASM block consists of one state box
and a network of decision boxes and conditional output boxes. A simple representation of
ASM block is shown in Figure 2.2(a).

A state box represents a state in an FSM, and the asserted Moore output values are listed
inside the box. Note that it has only one exit path. A decision box tests the input condition
and determines which exit path to take. It has two exit paths, labeled T and F, which
correspond to the true and false values of the condition. A conditional output box lists
asserted Mealy output values and is usually placed after a decision box. It indicates that
the listed output signal can be activated only when the corresponding condition in the
decision box is met.

A state diagram can easily be converted to an ASM chart, and vice versa. The
corresponding ASM chart of the previous FSM state diagram is shown in Figure 2.2(b).

State entry
State name

State box

Mo = value

Boolean
condition

Conditional
w output box

Exit to other ASM
or block

To other ASM or
block

(a) ASM block



s0

(b) ASM chart
Figure 2.2 ASM representation

Control Algorithm interpretation with FSM

The finite state machine (FSM) implementing control algorithm is represented by classical
model of sequential circuit, which can be treated as the composition of combinational
circuit and register.

< Start

Clock

Figure 2.3 FSM structural diagram

Presence of register in this structure can be explained in the following way. A time-
distributed microinstruction sequence Y(0),Y(1), . . .,Y(t), where t is the time determined
by synchronization pulse "Clock", appears on the output of FSM. The initial time t = 0 is
determined by a single-shot pulse "Start". To produce such a sequence, some information
about history of the system operation is needed. This sequence is determined by input

9



signals X(0), . . . ,X(t -1) for previous moments of time. It means that output signal Y(t) at
time t is determined by the following formula

Y(9) = £ (XQ0), ..., X( -1),X()

Expressions of this kind are very cumbersome and could not be realized in hardware,
especially if they contain cycles with unpredictable number of iterations. In practice, the
history is described by special internal states of the FSM, from the set of states A={a,, . ..
,am}. States am € A are encoded by binary codes K(am) having not less than

R=[log:M ]

Elements of the set of state variables T={T4, ...,Tz} are used to encode the states of FSM.
The code of current state is kept in register RG, which includes R synchronous flip-flops
with common timing signal "Clock". The code of initial state al €A is loaded into RG using
pulse "Start". The content of RG can be changed by pulse "Clock" on the base of input
memory functions, which form the set of input memory functions. As a rule, the register
RG is implemented using D flip-flops. In case of the Mealy FSM, output functions Y are
represented as

Y =Y(T.X)

In case of the Moore FSM, output functions depend only on the states variables:

Y=Y(T)

Synchronous FSM

Most FSM systems are synchronous; that is, they make use of a clock to move from one
state to the next. In this methodology, all storage elements are controlled (i.e.,
synchronized) by a global clock signal and the data is sampled and stored at the rising or
falling edge of the clock signal. It allows designers to separate the storage components
from the circuit and greatly simplifies the development process. Using a clock to control
the synchronous movement between one state and the next allows the FSM logic time to
settle before the next transition. The block diagram of a synchronous system is shown in
Figure 4.2. It consists of the following parts:
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Figure 2.4 Block diagram of synchronous FSM

State register: a collection of D FFs controlled by the same clock signal

Next-state logic: combinational logic that uses the external input and internal state
(i.e., the output of register) to determine the new value of the register.

Output logic: combinational logic that generates the output signal.

Asynchronous FSM

There is another kind of FSM, one that does not use a clock to instigate a transition
between states. This is known as the asynchronous FSM. In an asynchronous FSM, the
transition between states is controlled by the event inputs, so that the FSM does not need
to wait for a clock signal input. For this reason, asynchronous FSM are sometimes called
‘event-driven’ FSMs. FSM will only change state when there is a change of input variable;
hence, the event nature of the system. Sometimes, it is desired to change state when
there is no input signal change (as has been seen in clocked driven systems). An important
feature with event-driven FSM systems is that when the FSM is in a stable state (perhaps
waiting for an input event to move to the next state) the power drain is very low in
circuits, since there is no repetitive clock to consume power. This allows asynchronous
(event) systems to be low power, while also being very fast. This latter point is due to the
fact that the event FSM will move to the next state as soon as the relevant event input
changes, and is only limited by the propagation delay for its event-driven logic.

Event
FSM

Fig 2.5 Block diagram of Asynchronous FSM
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In a clocked FSM, the implementation (synthesis) will make use of some type of flip-flop;
the event-driven system needs to make use of memory elements that do not require a

clock input.

There can be a number of individual turn-on
Inputs and a number of individual turn-offs
Inputs to the cell

Turn on set
> >
Event Output of cell
Turn off set Cell
—
_»
Hold term

Fig 2.6 Basic Event (Asynchronous) Cell

12



Chapter 3

Finite State Machine with Datapath

Introduction

An FSMD (finite state machine with data path) combines an FSM and regular sequential
circuits. The FSM, which is sometimes known as a control path, examines the external
commands and status and generates control signals to specify operation of the regular
sequential circuits, which are known collectively as a data path. The FSMD is used to
implement systems described by RT (register transfer) methodology, in which the
operations are specified as data manipulation and transfer among a collection of registers.

Simple Register Transfer Operation

An RT operation specifies data manipulation and transfer for a single destination register. It
is represented by the notation

TI'.I'EISE' = f(rsrcl’-rsrcﬂ’ ’Tsrcn)

Where r4est 1s the destination register, Ty, I'si2, and rsqen are the source registers, and f (.)
specifies the operation to be performed. The notation indicates that the contents of the
source registers are fed to the f (.) function, which is realized by a combinational circuit,
and the result is passed to the input of the destination register and stored in the destination
register at the next rising edge of the clock. Following are several representative RT
operations:

rl =0 A constant O is stored in the r1 register.

rl + rl The content of the rl register is written back to itself

#2 ¢ 723 3 The 12 register is shifted right three positions and then written back to itself.

172 « r1 The content of the rl register is transferred to the r2 register.

i «< 1+ 1 The content of the i register is incremented by 1 and the result is written back to
itself

A single RT operation can be implemented by constructing a combinational circuit for the f
(.) function and connecting the input and output of the registers. For example, consider the
a « a— b + 1 operation. The f (.) function involves a subtractor and an incrementor. The
block diagram is shown in Figure 3.1. For clarity, we use the reg and next suffixes to
represent the input and output of a register. Note that an RT operation is synchronized by an
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embedded clock. The result from the f (.) function is not stored to the destination register
until the next rising edge of the clock.
a_next J
+1 o 0 Q

a_reg

b_reg

clk >

Fig 3.1 A single register transformation operation

ASMD Chart

A design that based on the register transfer method defines which register transfer operation
will execute at each step. As the register transfer operation is performed on clock by clock
basis so its timing is similar to the state transition of an FSM. So the Finite State Machine
becomes the first choice for sequencing in a register transfer operation. Thus we extend the
Algorithmic State Machine chart to incorporate with register transfer operations and it is
called by the name of ASMD chart (ASM with datapath).

A part of an ASMD chart is shown in Figure 3.2(a). It contains one destination register, 1l,
which is initialized with 8, added with content of the r2 register, and then shifted left two
positions. Note that the rl register must be specified in each state. When 1l is not changed,
the rl« rl operation should be used to maintain its current content, as in the s3 state.

Implementing the RT operations of an ASMD chart involves a multiplexing circuit to route
the desired next value to the destination register. For example, the previous segment can be
implemented by a 4-to- 1 multiplexer, as shown in Figure 3.2(b). The current state (i.e., the
output of the state register) of the FSM controls the selection signal of the multiplexer and
thus chooses the result of the desired RT operation.

An RT operation can also be specified in a conditional output box, as the r2 register.
Depending on a>b condition, the FSMD performs either r2¢r2+a or 12 « r2+b. Note that
all operations are done in parallel inside an ASMD block. We need to realize a>b, r2+a, and
r2+b operations and use a multiplexer to route the desired value to r2.
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() ASMD segment (b) Block diagram

Figure 3.2 ASMD representation

Decision box with a register

The appearance of an ASMD chart is similar to that of a normal flowchart. The main
difference is that the RT operation in an ASMD chart is controlled by an embedded clock
signal and the destination register is updated when the FSMD exits the current ASMD
block, but not within the block.

Consider the FSMD .The r register is decremented in the state box and used in the decision
box. Since the r register is not updated until the FSMD exits the block, the old content of r
is used for comparison in the decision box. If the new value of r is desired, we should use
the output of the combinational logic (i.e., r_next) in the decision box (i.e., replace the r ==
0 expression with r next==0.

FSMD block diagram

The conceptual block diagram of an FSMD is divided into a data path and a control path, as
shown in Figure 6.5. The data path performs the required RT operations. It consists of:

Data registers: store the intermediate computation results
Functional units: perform the functions specified by the RT operations
Routing network: routes data between the storage registers and the functional units

The data path follows the control signal to perform the desired RT operations and generates
the internal status signal.
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The control path is an FSM. As a regular FSM, it contains a state register, next-state logic,
and output logic. It uses the external command signal and the data path's status signal as the
input and generates the control signal to control the data path operation. The FSM also

generates the external status signal to indicate the status of the FSMD operation.

data path

data

input

routing
network

functional units

d
routing |

data

q

network > registers

command

internal status

controf signal

d
next-state I

logic

I

stateq output

> register logic

control path
Figure 3.3 Block diagram of FSMD

data
output

external
status

Although an FSMD consists of two types of sequential circuits, both circuits are controlled
by the same clock, and thus the FSMD is still a synchronous system.
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Chapter 4

Basic Concepts of Microprogramming

Introduction

This chapter introduces the basic concepts of microprogramming and it includes the
principles of micro program controls and behavior of micro programmed control units.
Microprogramming is a technique to implement the control logic necessary to execute
instructions within a processor. It relies on fetching low-level microinstructions from a
control store and deriving the appropriate control signals as well as micro program
sequencing information from each microinstruction.

History of Microprogramming

A microinstruction is a string of bits in ROM (read-only memory) and when executed, it
generates many enable signals to control the timing of executing a target instruction.

Each bit in a microinstruction provides a single control function. Due to the fact that less
hardwired logic is required to execute microinstructions, it is easier to debug the logic. A
microinstruction means microcode, and it is occasionally just abbreviated as instruction.

The concept of microprogramming was first introduced by prof. M. Wilkes in early 1950 in
his famous work [1]. In 1950 microprogramming gain some attention but it was not
commercially became popular until IBM first implemented this technique [2] and [3]. The
reason of this long delay is due to the speed difference between memory where
microinstructions were to be stored and logic circuits which had to control the
microinstructions.

The memory technology that was first time developed for microprogranning were
capacitive, transformer ROMs discussed in  [4].

In early 1970s and 60s, there was a great improvement in semiconductor, there is great
increase of microprogramming for commercial use [5]. This also introduced a new method
of dynamic microprogramming in which microcode could not only read but also new
microinstructions could be introduced. This is described in [7].
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Principle of Microprogramming

The principle of microprogramming was developed by V. Glushkov. According to this
principle, any complex operation executed by digital system can be divided into a
sequence of small processes. These small processes are named as micro instructions.
Special logic is used to control the sequence of execution. An executable microprogram
consists of microinstructions and logical conditions.

A control algorithm can be implemented as a program or as a network of logic elements.
The principle developed by Glushkov can be explained as follows;

1. Any operation, executed by a digital device, is considered as a complex action,
which is represented as the sequence of elementary operations (microoperations)
on the words of information (operands).

2. The logical conditions (status signals) are used to control the order of
microoperation executions. The values of logical conditions are calculated as some
Boolean functions depending on the values of operands.

3. Execution of operations in a digital device is specified by a control algorithm, which
is represented in terms of logical conditions and microoperations. It is called
microprogram". Microprograms determine an order of testing the values of logical
conditions and sequences of microoperations, which are necessary to get proper
operation of the device.

4. The microprogram is used as a particular form of specification of the function of a
device and determines the structure of digital device and the order of its time
operation sequence.

Firmware

While microprograms contain information that control hardware at a primitive level, they
are stored in a memory and are executed as stored programs. This gives
microprogramming a software as well as a hardware flavor so the appellation "firmware,"
"a term to designate microprograms resident in the computer's control memory" [8], is
most appropriate. This software nature means that microprogramming may be considered
independently from machine languages; indeed, the brief description in the previous
paragraph of the operation of a microprogrammed computer makes no reference to
machine language instructions.

Flynn [9] and some other provide that both software and hardware designers work on
algorithms but the realization is different for both of them. If the memory is writeable we
refer its contents as software. And if read only we can think it as hardware. In both cases
the term “firmware” can describe its functional utilization.
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Characteristics of Microprogrammable Architectures

In his paper [6] described some characteristics of microprogrammable architectures.
According to that a microprogrammable machine can be characterized on the basis of
control store design, microinstruction design, microinstruction implementation and
microprogrammability.

Control Store Design

The control store of a microprogrammed computer may be logically organized in a variety
of ways :

1. The simplest and most common control store structure is the ordinary memory
array in which there is one microinstruction in each control store word. There are
several variations of this structure.

2. In one form the number of bits in each control store word is increased so that two
microinstructions occupy each control store word. The advantage of this scheme is
that two microinstructions are read into the microinstruction register(MIR)
simultaneously. This reduces the number of control store references.

3. In another structure, the control store is divided into blocks. In this scheme there
are two types of control store addresses-addresses of control store words in the
same block as the current microinstruction and addresses of other blocks. As a
result of this organization, addresses of other microinstructions in the same block
are shorter than in a no blocked structure.

4. In the split control store structure, control store comprises two distinct storage
units which have different word sizes. The storage unit with the shorter word size
contains microinstructions which move literal data contained in the
microinstruction to one or more machine registers, or initiate the execution of a
microinstruction which resides in the other storage unit. The second storage unit
has many more bits per word and hence can exercise more control over machine
resources.

Microinstruction design

Of primary interest in the design of microinstructions is the number of resources each
microinstruction controls. In this respect, microinstructions can be classified into two
categories; horizontal microinstruction format, vertical microinstruction format.

Vertical microinstructions effect single operations-load, add, store, branch, etc. They often

resemble machine language instructions containing one operation code and two or more
operands. Lengths of vertical microinstructions typically range from 12 to 24 bits.
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Horizontal microinstructions, in contrast, control many resources which operate in parallel.
A single horizontal microinstruction might control the simultaneous and independent
operation of one or more ALU's, input from and output to main memory, conditional next
address generation, etc.

While horizontal microprogramming has the potential advantage of efficient hardware
utilization, developing horizontal microprograms that use resources optimally is a difficult
problem. Because horizontal microinstructions control multiple resources, they contain
more information than vertical microinstructions and hence have greater length;
horizontal microinstructions with 64 bits and more are common. The determining
characteristic between vertical and horizontal microinstructions, then, is the number of
simultaneously controlled resources.

Microinstruction Implementation

While microinstructions are performed in a general fetch-decode-execute sequence,
details of implementations vary greatly. Unlike the- implementation of machine language
instructions, the effects of microinstruction implementation are usually not hidden from
the microprogrammer. The serial-parallel characteristic of microinstruction
implementation measures the amount of overlap between the execution of the current
microinstruction and the fetching of the next microinstruction to be executed. In a serial
implementation fetching the next microinstruction to be executed does not begin until the
execution of the current microinstruction terminates. At the other extreme, the fetch of
the next microinstruction to be executed is performed in parallel with the execution of the
current microinstruction. The advantage of serial or sequential fetch is simplicity of
realization; the hardware need not control execution and fetch simultaneously, and no
problems arise in executing conditional branch instructions. The advantage of parallel
fetch is the corresponding saving of time; the execution of a microinstruction begins
immediately after the completion of the previous microinstruction.

In a mono phase implementation, there are no distinct sub cycles of the basic clock cycle;
each microinstruction is affected by a single simultaneous issue of control signals. In a poly
phase implementation, each major clock cycle comprises multiple minor clock cycles; the
hardware generates control signals at each minor clock cycle. The advantage of mono
phase operation is simplicity of realization when race conditions are not present. Poly
phase operations allow interaction among resources at the expense of more complicated
control.

Micrprogrammabilty

The degree of difficulty in microprogramming a machine once the design and
implementation of its microinstructions are understood characterizes the
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microprogrammability of the machine. The ease with which a machine can be
microprogrammed depends on the-realization of control store and the availability of
support software to assist in microprogram preparation. The microprogrammability
characteristic thus deals with both hardware and software aspects of microprogramming.
The microprogrammability spectrum ranges from non microprogrammed (i.e., hardwired)
computers to dynamically user microprogrammable machines.

User Microprogramming

User microprogramming considered as a tool for the user in which user can actively
change the microinstructions according to its needs. Microprogramming as tool of the user
has slowly evolved. Minicomputer manufacturers were probably the first to actively
support user participation in the design process by making available facilities to assist in
the design and checkout of ROM programs and by producing customized ROM’s to meet
special needs, particularly in the process control environment. Cost, lead time and
relatively difficulty of microprogramming combined to limit this mode of user
participation. Despite of cost, there is one other thing due to which most of users do not
appreciate user defined microprogramming because most of the users are unaware of the
languages and tools required to reprogram the control memory. And also user wants
system at less cost, so manufacturers prefer to create fixed microprogram.

Software support available to the user for microprogramming varies greatly. In several
machines, users are not given facilities for putting microprograms into control store, even
though it may be writable. These machines are considered microprogrammed but not user
microprogrammable. Support for microprogrammable computers includes preparing
microprograms according to user design specifications and providing assistance to users in
creating their own microprograms. This assistance is manifested in the form of support
software [6].

Dynamic Microprogramming

Dynamic microprogramming gives us the concept of microprogram memory as not only
readable but also writeable. Dynamic microprogrammed machines have been given the
capability of swapping of microprogram in and out from microprogram control memory.
Thus dynamic microprogramming has great advantages. Sometimes user’s need changes
to some extent. If the capability of dynamic microprogramming is available, then it is
possible to redesign the architecture just by changing the microprogram in the control
memory in order to meet the needs of immediate job to be done.

In microprogrammed machines, control store realizations vary from inflexible read only
memories (ROM's) through memories with fast read/write capabilities, which allow the
microprogrammer to add new microinstructions to control store as the microprogram is
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interpreted. Machines in which the control store can be loaded under program control are
called dynamically microprogrammable [7].

Writeable Control Store

The introduction of writeable control store, control memory with the capability of read as
well write, has given rise to what can truly be described as micro programmable
computers, in which not only the designer but the system programmer and even
applications programmer can utilize the microprogramming capabilities to assist in
problem solving. The first micro programmable machines included ROM for the bulk of the
micro program and a smaller amount of write control store to enable the addition of new,
special instructions to extend the basic repertoire or perhaps permit the
microprogramming of the special routines to speed up highly repetitive and time
consuming tasks. Even in these machines however, microprogramming features primarily
reflect designer’s intention of implementing a specified target machine. It is easy to write a
micro program but it may be difficult to write micro programs to accomplish different
tasks from the same machine.

Recently, machines have begun to appear that are fully micro programmable and whose
architecture are intended to support general purpose microprogramming. With the equal
level of difficulty, they can be micro programmed to accomplish a variety of tasks.

Microprocessors and Microprogramming

The terms of microprocessor and microprogramming are usually somewhat confusing. A
microprocessor is generally an integrated circuit on a single chip, and with the addition of
clock circuit and other mathematical and logical functions it becomes a microcomputer. it
is commonly thought that microprocessors are inherently microprogrammed, i.e., that
programming a microprocessor is microprogramming. This notion is not correct; as with
minicomputers and large computers, some microprocessors are microprogrammed and
some are not. The prefix "micro" in the term "microprocessor," as it is generally used
today, means small [6].

Applications of Microprogramming

In [5] some applications of microprogramming are explained. With the development of
user microprogrammable minicomputers and microprogrammable bit slice
microprocessors, practitioners have facilities to explore new applications. Interpretation of
machine' language instructions continues to be the most common application of
microprogramming. Here we discuss developments in microprogramming applications and
research areas during the last few years.
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Emulation

According to the definition of Rosin,”... we use the term "emulator" to describe a complete
set of microprograms which, when embedded in a control store, define a machine. We
shall call a machine which is realized by an emulator a "virtual machine" and the machine
which supports microprograms a "host machine"." By appropriately defining virtual
machines, many microprogramming applications may be considered to be instances or
examples of emulation.

In emulation of microprocessors and minicomputers, there have been several reports in
the literature, [10], [11], [13] because the manufacturers test their machine’s working
before they actually implement the design.

Operating System

Recent work in the area of microprogramming use in operating systems has followed two
approaches:
1. implementing primitives that will be used throughout an operating system in
microprograms and
2. Implementing important portions of operating systems partly or entirely in
microprograms.

The primitives that are candidates for microprogram implementation are those which are
too specific for hardware implementation, unlikely to change with time, and which would
suffer from the slower execution rate of software. Brown et al. [12] list fourteen functions
that could be implemented as primitives through microprogramming. These include

1. Program synchronizing primitives,

2. Queue manipulation mechanisms, and

3. State switching.

The advantages of this first approach result in operating systems with
1. Increased performance,
2. Decreased program development cost, and
3. Improved security and correctness.

A subsequent report [14] describes how to select the primitives most appropriate for

implementation and how to perform an analysis of the tradeoffs between software,
firmware, and hardware.

23



Use of Microprogramming in Architecture Implementation

As logic and memory technology improve, microprogramming is being used in innovative
ways to implement many aspects of computers' architectures. Machines have been
designed whose microprogram level architecture facilitates implementation of higher level
languages. Kogge has discussed the advantages of using microprogramming to implement
various pipeline structures [14]. Microprogrammable microprocessors are being used to
implement minicomputers and emulate monolithic microprocessors [15], [16], [17] to
implement special floating point processors [6], and to implement test equipment [18].
Networks of microprogrammable microprocessors are being used to implement advanced
features such as pipelining, multiprocessing, and distributed processing [19]
microprogrammable minicomputers are, being used as specialized reconfigurable nodes in
networks [20]. In addition microprogramming continues to be used in implementing fault
tolerant systems [21] and measurement systems.
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Chapter 5

Microprogrammed Finite State Machine

Introduction

The ratio of internal circuit clock frequency and input sample frequency has a great effect
on the design. In signal processing applications circuit frequency is much greater than
sampling frequency. In this case if we directly map the design, it will not fully utilize the
hardware resources. A logical design decision should be to use only required number of
hardware computational resources and share them for multiple computations of the
algorithm in different clock cycles. The architecture where one functional block is reuse in
time to execute different computations of the algorithm is termed as time-shared or
folded architecture.

Any synchronous digital design sharing the HW building blocks for different computation in
different cycles will require a controller. The controller directs different computations of
the algorithm to use the resource in different clock cycles. In time-shared architecture the
digital system is divided in two parts: data path and control unit. The data path is the
computational engine and consists of registers, multiplexers, de-multiplexers, ALUs,
multipliers, shifters, combinational circuits and buses. In time-shared architecture different
computational nodes in the data flow graph share these computation units in the data
path. This sharing requires a controller directing data path to perform multiple operations
on single physical unit in non-overlapping cycles. The controller selects the operations and
determines the sequence in which these operations are to be performed. In many
applications this sequence of operations may also depend on status of some computation
in the data path and the status signals are fed back to the control unit. For hardwired state
machine based designs, the controller is implemented as Mealy or Moore Finite State
Machine (FSM).

In many applications the algorithms are so complex that either a hardwired state machine
based designed is not feasible or is too complicated to design. In other applications several
algorithms may need to be implemented for different scenarios. In these applications a
flexible state machine based controller is needed which can be reprogrammed easily if
required. This chapter describes designs of Micro programmed State Machines with
different capabilities and options. The chapter generates motivation by listing equivalent
microprogrammed state machine based implementations.
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The analysis of few algorithms shows that in many cases a simple counter based Micro-
program state machine can be used to implement a controller. The memory contains all
the control signals to be generated in a sequence whereas the counter keeps computing
the address of the next micro-code stored in the memory. In applications where decision
based execution operations is required, this elementary counter-based state-machine is
augmented with decision support capability. The execution is based on few condition lines
coming either from the data-path or as input, if condition is true the state-machine start
executing sequence of instruction stored at address specified in the conditional
instruction. Further to this the counter in the state-machine can be replaced by a Program
Counter (PC) register, which in normal execution adds a fixed offset to its content to get
the address of the next instruction. The chapter then lists cases where a program instead
of executing the next micro-code needs to take a jump to execute sequence of instructions
stored at different location in the program memory. This requires subroutine support in
the state-machine. After executing the subroutine, the state-machine returns to the
address of the next instruction from where the subroutine was called.

Microprogrammed Controller

A microprogrammed control unit consists of binary control values stored as a word in
memory. Each word in the control contains a microinstruction that performs one or more
microoperations for a system. And this sequence of microinstruction is called by the name
of microprogram. The contents of microinstruction, stored in memory at a given address,
shows the microoperations performed on both datapath and control unit. Memory where
the microinstructions are stored is called control memory. If the memory is RAM, then it is
called writeable control memory.

Normally, the microprogram is loaded up at the start up of the computer from the non
volatile memory to the computer memory. The block diagram of microprogrammed
control unit is shown in the fig. 4.1.

The control memory is assumed to be a ROM within which all control information is
permanently stored. The control address register specifies the address of the
microinstruction. The control data register, which is optional, may hold the
microinstruction currently being executed by the datapath and the control unit. One of the
functions of the control word is to determine the address of the next microinstruction to
be executed. This microinstruction may be the next one in sequence, or it may be located
somewhere else in the control memory. Therefore, one or more bits that specify how to
determine the address of the next microinstruction must be present in the current
microinstruction. The next address may also be a function of status and external control
inputs. While a microinstruction is being executed, the next-address generator produces
the next address. This address is transferred to the control address register on the next
clock pulse and is used to read the next microinstruction to be executed from ROM. Thus,
the microinstructions contain bits for activating microoperations in the datapath and bits
that specify the sequence of microinstructions executed.
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The next-address generator, in combination with the CAR, is sometimes called a
microprogram sequencer, as it determines the sequence of instructions that is read from
control memory. The address of the next microinstruction can be specified in several ways,
depending on the sequencer inputs. Typical functions of a microprogram sequencer are
incrementing the control address register by one and loading the control address register.
Possible sources for the load operation include an address from control memory, an
externally provided address, and an initial address to start control unit operation.

The control data register holds the present microinstruction while the next address is
being computed and the next microinstruction is being read from memory. The control
data register breaks up a long combinational delay path through the control memory and
the datapath. The ROM operates as a combinational circuit, with the address as the input
and the corresponding microinstruction as the output. The contents of the specified word
in ROM remain on the output lines of the ROM as long as the address value is applied to
the inputs. No read/write signal is needed, as it is with RAM. Each clock pulse executes the
microoperations specified by the microinstruction and also transfers a new address to the
control address register, which, in this case, is the only component in the control that
receives clock pulses and stores state information. The next-address generator and the
control memory are combinational circuits. Thus, the state of the control unit is given by
the contents of the control address register.

control inputs

from data path

r L 4 L 4

Mext Address generator

Control Addressregister

sequenoer

Control Diata Register

i ‘j’ i, microinstroction
control outputs  control signals to datapath
Figure 5.1 Block diagram of microprogrammed control unit
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Counter based Microprogrammed FSM Implementation

In many controller designs the FSM generates a sequence of control signals without any
input. In these design the Micro-program Memory is sequentially filled with the control
signals. The state machine only needs to generate address in a sequence starting from 0
and ending at the last control signal in the sequence. The address can be easily generated
with a counter. Thus the counter acts as a state register and generates the address and
automatically gets incremented to generate next state for the state register as shown in
the fig 5.1.

reset
Qo AD
Q1 Al
Microprogrammed

Metory

sysclk )
Qn An

control bits

to architecture

Figure 5.2 Block diagram of microprogrammed control unit

The counter is a complex structure that includes the state variable flip-flops and input
combinational network. The output combinational network is implemented with a
memory as shown in the figure. The counter is made to count a binary sequence beginning
with zero i.e. reset. All data outputs from the memory are available for use in engineering
control signals. This machine, like the first one, is of use only generating a single sequence
of control signals even through the actual values of the signals as a function of time are
completely flexible. Once the memory is filled with desired values, then its outputs will
cycle endlessly until reset.

There is another type of counter based FSM toward a generally useful design by
introducing a mechanism whereby a count sequence can be changed to begin another

sequence under control of the micro program memory. Most of the bits in the micro
program are used to generate control signals for some architecture which is not shown.

Counter Based Microprogrammed FSM with Branching
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Unconditional Branching

A simple Counter-based Micro-program state machine can only generate control signals in
a sequence. Many algorithms once mapped on time-shared architecture may also require
some decision making capabilities where the controller while generating a sequence of
control signals is capable to jump and start generating control signals from some other
location in the Micro-program memory. This flexibility in the design is added by
incorporating the address to be branch as part of the instruction and a load-able counter
to load this value when load signal is asserted. This branching is termed as unconditional
branch provision in the architecture.
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Figure 5.3 Unconditional branching

Conditional Branching

In many applications it is desirable to add conditional branching support in the Micro
program state machine. The state machine implements control signals in a sequence and
the machine is also capable of transitioning to a new address in PM subject to status of
conditional inputs. The control inputs usually come from the data path Status and Control
Register (SCR). On the basis of execution of some micro code, the ALU in the data path sets
corresponding bits of the SCR. Example of control bits are zero and positive status bits in
SCR. These bits are set if the result of previous ALU instruction is zero or positive. These
two status bits can allow selection of two conditional branching. In this case the state
machine will check if the input control signal from the data path is true of false. The
controller will load the branch address in the counter if the conditional input is true,
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otherwise the controller will keep generating sequential control signals from PM as shown
in the fig 5.3.
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Figure 5.4 Conditional Branching

Register Based Microprogrammed FSM

The counter in counter-based micro programmed machines, is divided into two parts i.e.
an incrementer and register. The microprograms counter register. Instead of taking an
address into the micro program memory directly from the state variable outputs as we did
in the counter based controller, we will impose a multiplexer, MUX, between the state
variables and micro program memory as shown in fig 5.4.

The path from the branch address field to the micro program memory via the parallel load
input of the counter is changed so that it passes through the MUX directly to the memory
address inputs. This removes one level of clocked element from the path, hence the one
clock delay that we experienced in our counter based implementation. The path from the
micro programmed counter register outputs through the MUX to the PC register inputs via
the incrementer modifies the flow along the path in a parallel loadable counter. In the
counter, the parallel data path goes to directly to the register depending upon the load
input. In this new design, the value applied to the address inputs of the micro programmed
memory will always be incremented and placed in micro programmed register at the end
of the current SYSCLK cycle no matter what the source address is.
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Figure 5.5 Register based microprogrammed controller

Microprogrammed FSM with subroutine support

In many applications it is desired to repeat a set of microcode instructions in generating
sequence of control signals to the data path. Adding subroutine capability in the
Microprogram State Machine optimizes these types of design. Those microcode
instructions that are repeating can be placed in a subroutine and call to this subroutine is
made from the required locations in the microcode. The state machine after executing the
sequence of operations in the subroutine needs to return to the next microcode from
where the call to the subroutine is made. . This requires a register storing the contents of
micro PC at instance when the state machine decodes the call to subroutine microcode as
in this cycle the micro PC contains the address of the next microcode in the sequence.
While executing the return microcode, the next address select logic directs the next
address MUX to select the address store in SRA register. Though the micro PC has the
address of the next instruction but return address gets to the address bus and the
microcode at return address is read for execution. In the next clock cycle the micro PC
stores an incremented value of the next address thus keeps executing sequence of micro-
codes from there on. All this is shown in the fig below.
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Chapter 6

C-Slow Retiming

Introduction

This chapter is the most important because to understand the thesis, the required concepts
will be discussed in this chapter. In first we will discuss some basic concepts in which
pipelining, retiming, folding, unfolding, timeshared vs hardwired and feedback vs feed
forward systems. Then we will discuss the concept of c-slow retiming and why we need c-
slow retiming in the present of such algorithms. In the last, some examples of c-slow and
their results are discussed.

Pipelining is a method that is used to increase the throughput by adding register stages
between logic groups of design. A well-designed module can usually be pipelined by adding
additional register stages and only cost is total latency with a small amount in area.

Leiserson et al. [22] were the first to propose retiming, an process to reposition pipeline
stages to balance a design. Their algorithm can rebalance a design so that the critical path is
optimally reduced. In addition, two modifications, repipelining and C-slow retiming, can
add additional pipeline stages to a design to further improve the critical path.

The key idea is simple: If the number of registers in every clock cycle in the design does not
change, the end-to-end design does not change. Thus retiming tries to solve two primary
objectives: All paths longer than the desired critical path are registered, and the number of
registers around every cycle is unchanged.

This optimization is useful for conventional FPGAs but absolutely essential for fixed-
frequency FPGA architectures, which are devices that contain large numbers of registers
and are designed to operate at a fixed, but very high, frequency, often by pipelining the
interconnect as well as the computation.

To meet the fixed frequency, a design must ensure that every path is properly registered.
Repipelining or C-slow retiming enables a design to be transformed to meet this objective.
Without repipelining or C-slow retiming, the designer must manually ensure that all
pipeline objectives are met by the design.

Retiming operates by determining an optimal placement for existing registers; while
repipelining and C-slowing add registers before the beginning of retiming. After retiming,
the design should balanced, with no pipeline stage requiring significantly more time than
any other stage.

32



Background

In many applications, there is a requirement of digital data processing. These applications
include mobile radio, satellite communications, speech processing, video and image
processing, biomedical applications. Real-time implementations of these systems require
design of hardware that can match the application sample rate to the hardware processing
rate (which is related to the clock rate and the implementation style). Thus, real-time does
not always mean high speed. Real-time designs are capable of processing samples as they
have received from the signal source, without storing them in buffers for later processing.
Furthermore, real-time designs operate on an infinite time series (since the number of the
samples of the signal source is so large that it can be considered infinite). While speech and
sonar applications require lower sample rates, radar and video image processing
applications require much higher sample rates. The architecture cannot be choosing on the
basis of sample rate. The algorithm complexity is also an important factor. For example, a
very complex and computationally expensive algorithm for a low-sample-rate application
and a computationally simple algorithm for a high-sample-rate application may require
similar hardware speed and complexity. These ranges of algorithms and applications
motivate us to study a wide variety of architecture styles.

Usually programmable digital signal processors can be prototyped much fast. These
prototyped systems can prove very effective in fast simulation of computation-expensive
algorithms (such as those encountered in speech recognition, video compression, and signal
processing). After standards are determined, it is more useful to implement the algorithms
using dedicated hardware.

Designing of dedicated circuits is not a simple task. Dedicated circuits have limited or no
programming flexibility. Their requirement is less area and consumes less power. However,
due to the low production volume, high design cost, and long time are some of the
difficulties associated with the design of dedicated systems.

Successful designing of dedicated circuits is required to choose careful algorithm and
architecture. Thus, some of these may be suitable for a particular application while other
may not be able to meet the sample rate requirements of the application. The lower-level
architecture can be implemented in a word-serial or word-parallel method. The arithmetic
functional units can be implemented in bit-serial or digit-serial or bit-parallel method. The
synthesized architecture may be implemented with a dedicated data path or shared data
path.

Algorithm transformations play an important role in the design of dedicated architectures
(Parhi, 1989). This is because the transformed algorithms can be made to operate with better
performance (where the performance may be measured in terms of speed, area, or power).
Examples of these transformations include pipelining, parallel processing, retiming,
unfolding, folding, and look-ahead, associativity, and distributivity. These transformations
and other architectural concepts are described in detail in subsequent sections.
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Pipelining

Pipelining is a common design method that is used to increase the throughput of digital
circuits. Pipelining is especially important for field-programmable gate array (FPGA)
circuits due to the long combinational delay of logic functions and interconnects. Most
high-performance FPGA circuits have some form of pipelining. In most cases, pipelining
can be implemented without using additional FPGA resources.

Pipelining can increase the amount of the number of tasks performed simultaneously in an
algorithm. Pipelining is accomplished by placing registers at intermediate points in a data
flow graph that describes the algorithm. The registers can be placed at feed-forward cut sets
of the data flow graph. In pipelining, different instances of programs are partially
overlapped during execution. Depending on what is considered as a basic building block of
a program, three forms of pipelining are most often considered: sub operational (just
pipelining), control loop pipelining (software pipelining, folding) and functional pipelining.
The program execution in sub operational pipelining is an operation, in control pipelining,
program loop has to be pipelined and in functional pipelining only the instance is program
which is executed iteratively.

In synchronous hardware implementations, pipelining increases the clock rate of the system
(and therefore the sample rate). The drawbacks of pipelining are the increase in no. of clock
cycles and the increase in the number of registers. For many digital signal processing (DSP)
designs, however, simply increasing the clock speed does not significantly improve the
design. In many medium sample rate applications, the design goal is to minimize the total
system area by mapping the design onto the smallest (i.e., cheapest) possible FPGA device.
To show that the speed increases by using pipelining, consider the second-order three-tap
finite impulse response (FIR) filter shown in Figure 6.1(a). The signal x(n) in this system
can only be sampled at a low rate due to the throughput of one multiplication and two
additions. For simplicity, if we assume the multiplication time is two times more than the
addition time, the effective sample or clock rate of this system is 1/4Tadd. By placing
registers as shown in Figure 6.1(b) at the cut set shown by the line, the sample rate can be
improved to the rate of one multiplication or two additions. While pipelining can be easily
applied to such algorithms where there are no feedback loops by the appropriate placement
of registers, it cannot easily be applied to algorithms with feedback loops. This is because
the cut sets in feedback algorithms have both feed-forward and feedback data flow and
cannot be considered only feed-forward cut sets.
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An important parameter of every pipelined system is the input introduction time (J). In
software pipelining, this parameter is named as the initiation interval [23]. For digital
circuits, this parameter is measured in clock cycles and specifies the number of clock cycles
between the initiations of sequential iterations of the pipelined computation. An input
introduction time of 0 = lrepresents a fully pipelined circuit with a new computation
initiated every clock cycle [24].
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(b) Equivalent pipelined digital filter
Figure 6.1 Representation of pipelining

Pipelined circuit modules are characterized with two parameters. The first parameter is the
module latency (Am), which is the number of clock cycles to perform a single computation.
The second parameter is the module input introduction time (om), which is the number of
clock cycles separating the next input to the module. These two parameters completely
describe the timing behavior of pipelined circuit modules for the scheduling process. Fully
pipelined circuit modules are those where om = 1 and Am > 1 (i.e., a new computation can
be initiated every clock cycle). Partially pipelined modules occur when 1 < dm < Am. Non
pipelined modules occur when Am = dm [24].
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Pipelining of algorithms can increase the sample rate of the system. Sometimes, for a
constant sample rate, pipelining can also reduce the power consumed by the system. This is
due to the fact that the data paths in the pipelined system can be charged or discharged with
lower supply voltage. Achieving low power can be important in many battery-powered
applications.

The presence of feedback reduces the ability to increase throughput using pipelining. Each
cycle C within a dependence graph must be broken by a sample delay node or an edge
representing data dependence between different iterations of the pipelined computation.

The use of pipelined circuit modules increases the possibilities of resource sharing. A
pipelined multi cycle circuit module can increases the sharing since a new operation may be
started on the module before the previous operation has completed. A multi cycle pipelined
circuit module may be shared if the input introduction time of the module is less than or
equal to half the data introduction interval of the global pipeline (i.e., dm < (1/2)60). The
maximum number of operators that can share a pipelined module is [24].

8
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As shown in above equation, by the initiation time é we can calculate how much sharing
may be possible for each module. For small values of o, there are limited sharing
possibilities. A pipelining in which 0 = 1 will result in a circuit with dedicated resources and
no opportunities for sharing. With larger values of J, the data introduction time of the
modules reduces than the global data introduction interval. Several projects have shown
resource sharing within pipelining, but these approaches are limited to single-cycle or non
pipelined circuit modules [26], [27], [28], [29].

Unfolding

How to efficiently and effectively design iterative or recursive algorithms is an important
problem in VLSI high level synthesis For example, for a given signal flow graph for any
filter (which have many cycles), we need to know how to get a schedule such that a
resultant hardware can achieve the highest pipeline rate.

The input algorithm can be described as a data-flow graph (DFG), which is widely used in
many fields; for example, in circuitry [30], in program descriptions [31], [32], [45], etc. In a
DFG, nodes represent operations and edges represent relationships. The graph G in Fig. 2a
is an example of DFG, where the number attaches to a node is the time it needs to compute.
A DFQG is called a unit-time DFG if the computation time of its every node is one unit. A
certain delay count is attached with each edge to represent inter iteration precedence.
Unfolding can reduce the cycle period of a DFG. However, the process of unfolding is time-
consuming and space-consuming.
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The unfolding transformation is like the process of loop unrolling. In J-unfolding, each node
is replaced by J nodes and each edge is replaced by J edges. The J-unfolded data flow graph
executes J iterations of the original algorithm (Parhi, 1991).

The unfolding transformation can show the hidden parallelism in a data flow program. The
achievable iteration period for a J-unfolded data flow graph is 1/J times the length of critical
path of the unfolded data flow graph. Unfolding can lead to a lower iteration period in the
context of a software programmable multiprocessor implementation.

The unfolding transformation can also be applied in the context of hardware design. If we
apply an unfolding transformation in an algorithm which have no feedback, the resulting
data flow graph represents a simply parallel algorithm that processes multiple samples or
words in parallel every clock cycle. If we apply two-unfolding to the three-tap FIR filter in
Figure 6.1(a), we can obtain the data flow graph of Figure 6.2 (Richard C. Drof, 2006).

Because the unfolding algorithm is based on graph theory approach, it is possible to apply
this at the bit level. Thus, unfolding of a bit-serial data flow program by a factor of J leads
to a digit-serial program with digit size J. The digit size represents the number of bits
processed per clock cycle. In the digit-serial design, clocked at the same rate as the bit-
serial. Because the digit-serial program processes J bits per clock cycle the effective bit rate
of the digit-serial design is J times higher. In both ways, the unfolding transformation can
be applied to both word level and bit level simultaneously to generate word-parallel, digit-
serial architectures. Such architectures process multiple words per clock cycle and process a
digit of each word (not the entire word).
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Figure 6.2 Two Fold Parallel Realization of three Tap digital filters

Retiming
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Concepts

Retiming is similar to pipelining but still different in many ways (Leiserson et al., 1983).
Retiming is the process of moving the delays around in the data flow graph. Removing one
delay from all input edges of a node and putting of one delay to each outgoing edge of the
same node is the simplest example of retiming. Unlike pipelining, retiming does not
increase the latency of the system. However, retiming changes the number of delay
elements in the system. Retiming can reduce the critical path of the data flow graph. As a
result, it reduces the clock period in hardware implementations or critical path of the acyclic
precedence graph or the iteration period in programmable software system implementations.
One effect of changing the locations of the delays is the reduction in combinational rippling
that allows the circuit to be clocked at a higher rate. Reducing combinational rippling also
reduces the power dissipation in the circuit [33] and allows the circuit to be operated with a
reduced supply voltage, both of which lead to low-power implementations [46]. Another
effect of changing the locations of delays is that the number of delay elements required can
be reduced, which is an area-efficient implementations. In addition to retiming for high
speed, low power, and low area implementations, retiming can also an important step
towards scheduling for high-level synthesis [47]-[49].

Figure 6.4 shows a simple example. In this design, the nodes represent logic delays (a), with
the inputs and outputs passing through fixed registers. The critical path is 5, and the input
and output registers cannot be moved. Figure 6.4(b) shows the same graph after retiming.
The critical path is reduced from 5 to 4, but the I/O registers have not been changed, as
three cycles are still required for a datum to proceed from input to output.

(a) A graph before retiming

(b) Graph after retiming
Figure 6.4 Representation of retiming
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As can be seen, the initial design has a critical path of 5 between the internal register and
the output. If the internal register could be moved forward, the critical path would be
reduced to 4. However, in that case the feedback loop would not work properly. Thus, in
addition to moving the register forward, another register is required to be added to the
feedback loop, resulting in the final design. Now, even if the last node has been removed,
critical path lower cannot be reduced than 4 because of the feedback loop. There is no
method that can reduce the critical path of a single-cycle feedback loop by moving registers:
Only additional registers can speed up such a design.

The initial state of a circuit is determined by the initial values of the registers in the circuit.
For a limited set of applications, e.g., for the data path circuitry in DSP type circuits, the
initial state is not important and retiming without additional constraints can be applied [48].
But, in many microprocessor and controller type applications, the initial state is very
important part of the behavior of the machine. A retimed circuit has an initial state
equivalent to an initial state in the original circuit if for any input sequence applied to both
circuits. One circuit started in the initial state, the other in same state, the same sequence of
results is produced. One method to design circuit that a corresponding initial state can be
found in the retimed network is to only move registers forward in the network [44].

Pipelining with retiming is an important transformation in DSP hardware design. Pipelining
with retiming can be defined as the retiming of the original algorithm with a large number
of delays at the input edges. Thus, we can increase the system latency to any amount and
remove the appropriate number of delays from the inputs after the transformation.

Algorithm

The main objective of retiming is to automate this process: For a graph representing a
circuit, with combinational delays as nodes and integer weights on the edges, the
requirement is to find a new assignment of edge weights that meets a targeted critical path
or fail if the critical path cannot be met. Leiserson’s retiming algorithm is guaranteed to find
such an assignment, if it exists, that both minimizes the critical path and ensures that around
every loop in the design the number of registers always remains the same. It is this second
constraint, ensuring that all feedback loops are unchanged, which ensures that retiming
doesn’t change the semantics of the circuit.

Leiserson’s algorithm takes the graph as input and then adds an additional node, with
appropriate edges added to account for all I/Os. This additional node is necessary to ensure
that the circuit’s global I/O registers are unchanged by retiming.

Two matrices are then calculated, W and D, that represents the number of registers and
critical path between every pair of nodes in the graph. These matrices are important because
retiming operates by ensuring that at least one register exists on every path that is longer
than the critical path in the design. Each node also has a lag value r that is calculated by the
algorithm and used to change the number of registers that will be placed on any given edge.
Conventional retiming does not change the design semantics: All input and output timings
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remain unchanged while minor design constraints are imposed on the use of FPGA features.
More details and formal proofs of correctness can be found in Leiserson’s original paper
[43].

According to the fig. 6.1, No edge will have a negative number of registers, while every
cycle will always contain the original number of registers. All I/O passes through the
intermediate node, to ensure that input and output timings do not change. These constraints
must be modified so that a particular line will contain no registers, or a minimum number of
registers, to meet architectural requirements without changing the complexity of the
equations. But it is the final requirement, that all critical paths above a predetermined delay
P are registered, that gives this optimization its effectiveness.

Memories themselves can be retimed similarly to any other element in the design, in
memories with dual ports, considered as a single node for retiming purposes.

Some FPGA designs have registers with predefined initial values. If retiming is allowed to
move these registers, the proper initial values must be calculated so that the circuit still
produces the same behavior.

Another important thing is how to process with multiple clocks. If the interfaces between
the clock domains are registered by clocks from both domains, it is a simple process to
retime the domains separately. Yet without this design requirement, retiming with multiple
clock domains is very difficult.

Limitations

The major problem with retiming is the limitation of benefit to a well balanced design. If
the clock cycle is defined by a single cycle feedback loop, retiming cannot improve the
architecture, as just moving the register along the feedback loop produces no effect. A
familiar example of this is The AES encryption algorithm which consists of a single cycle
feedback loop.

Nevertheless, retiming can still be a best approach if the design contains of multiple
feedback loops (such as the synthetic microprocessor datapath) or an initially unbalanced
pipeline. Still, for balanced circuits, even complex designs, retiming is often only a smart
benefit.

Repipelining

For most reconfigurable designs, this means that the placement can also be changed to add
the new registers. As the new placement may not have the same timing characteristics as the
original placement. This results the reduction in the accuracy of the retiming, by slowing the
circuit down instead of speeding it up [42].
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Repipelining is a small extension to retiming that can change the clock frequency for feed
forward computations at the cost of additional pipeline registers. Unlike C-slow retiming,
repipelining is only better when a computation’s critical path contains no feedback loops.
Feed forward computations, those that contain no feedback loops, are commonly seen in
DSP algorithms. For example, the discrete cosine transforms (DCT), the fast Fourier
transforms (FFT), and finite impulse response filters (FIRs) can all be constructed as feed
forward pipelines.

Repipelining is obtained from retiming in one of two ways, both of which produce same
results. The first is done by adding additional pipeline registers to the start of the
computation and allowing retiming to rebalance the registers and create an absolute number
of additional stages. The second is to decoupling of the inputs and outputs to allow the
retimer produce pipelining. Although these techniques operate in somewhat different ways,
they both provide extra registers for the retimer to then move and they produce almost
similar results.

Repipelining produces additional clock cycles and thus increases latency to the design.
Thus, it produces the same results and the same relative timing on the outputs. It is only the
data-in to data-out timing that is affected.

Repipelining is designed to improve throughput, but will almost always make overall
latency worse. Although the increased pipelining will boost the clock rate and thus reduce
some of the delay from unbalanced clocked paths, the delay from additional flip-flops on
the input-to-output paths typically overwhelms this improvement and the resulting design
will take longer to produce a result for an individual input.

C-Slow Retiming

Unlike repipelining, C-slow retiming can enhance designs that contain feedback loops. C-
slowing enhances retiming simply by replacing every register with a sequence of C separate
registers before retiming occurs; the resulting design performs C separate execution tasks.
[41] The effect of C-slow retiming is to ensure pipelining of the critical path, even in the
presence of feedback loops. To take advantage of this increased throughput however, there
needs to be parallelism in the tasks. This process will slow any single task but the average
throughput will be increased by interleaving the resulting computation. C-slow style
retiming has long been used within the cryptographic community when implementing block
ciphers [40], [39].

In the example below, this is 2-slow, the design interleaves between two computations. On
the first clock cycle, it accepts the first input for the first stream of execution. On the second
clock cycle, it accepts the first input for the second stream, and on the third it accepts the
second input for the first stream. Because of the interleaved nature of the design, the two
streams of execution will never interfere. On odd clock cycles, the first stream of execution
accepts input; on even clock cycles, the second stream accepts input.
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Figure 6.5 C-slow operational diagram

The easiest way to utilize a C-slowed block is to simply multiplex and de-multiplex C
separate datastreams. However, a more very good interface is required depending on the
application. One possible interface is to register all inputs and outputs of a C-slowed block.
Because of the additional edges retiming creates to track 1/Os, every stream of execution
presents all outputs at the same time, with all inputs registered on the next cycle. If part of
the design is C-slowed, but all parts operate on the same clock, the result can be retimed as
a complete whole and still preserve all other constraints.

C-Slow and Memory Design

One major issue in C-slow operation is the need to handle random access memories within a
C-slowed block. [34]. In cases where the C-slowed design is used to support N independent
computations, one needs to create the illusion that each stream of execution is completely
independent and unchanged. To create such illusion, the memory capacity must be
increased by a factor of C. This ensures that each stream of execution enjoys a completely
separate memory space. There are two different types of memory which need to be
addressed when C-slowing a design, either automatically or manually. The first is isolated
memory, where each thread of execution has its own view of memory. The second is shared
memory, where all streams of execution share a common memory view.
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C-Slow and Throughput

C-slowing significantly improves throughput, but it can only apply to tasks where there are
at least C independent threads of execution and where throughput is the primary goal. The
reason is that C-slowing makes the latency much worse. Latency is a property of the design
and computation whereas throughput is a property derived from cost. Both repipelining and
C-slow retiming can be applied only when there is sufficient task-level parallelism, in the
form of either a feed forward pipeline (repipelining) or independent tasks (C-slowing).

Latency can be improved only up to a given point for a design through conventional
retiming. Once the latency limit is reached, no amount of optimization, save a major
redesign or an improvement in the FPGA, has any effect. This is because independent task
throughput can be added via replication, creating independent modules that perform the
same function, as well as C-slowing. When sufficient parallelism exists, and costs are not
constrained, simply throwing more resources at the problem is sufficient to improve the
design to meet desired goals.

C-Slowing As Multithreading

There have been many multi-threaded architecture designs, but all of them have a common
property: increasing system throughput by enabling multiple streams of execution, or
threads, to operate simultaneously. These architectures generally can be divided into four
classes: context switching always without bypassing [38],[36], context switching on event
[37], interleaved multi-threaded, and symmetric multi-threaded [35]. The ideal goal of all of
them is to increase system throughput by operating on multiple streams of execution.

The general concept of C-slow retiming can be applied to highly complex designs,
including microprocessors. Unlike a simple FIR filter bank or an encryption algorithm, it is
not a simple matter of inserting registers and balancing delays. Nevertheless, the changes
necessary are comparatively small and the benefits substantial: producing a simple,
statically scheduled, higher clock rate, multi-threaded architecture that is semantically
equivalent to an interleavedmulti-threaded architecture, alternating between a fixed number
of threads in a round-robin fashion to create the illusion of a multiprocessor system.

The biggest complications in C-slowing a microprocessor are selecting the implementation
semantics for the various memories through the design. The first type keeps the traditional
C-slow semantics of complete independence, where each thread sees a completely
independent view, usually by duplication. This applies to the register file and most of the
state registers in the system. This occurs automatically if C-slowing is performed by a tool,
because it represents the normal semantics for C-slowed memory.

The second is completely shared memory, where every thread sees the same memory, such
as the caches and main memory of the system. Most such memories exist in the non-C-
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slowed portion. The third is dynamically shared, where a hardware thread number is tagged
to each entry, with only the valid tags used. This breaks the automatic C-slow semantics and
is best employed for branch predictors and similar caches. Such memories need to be
constructed manually, but offer potential efficiency advantages as they do not need to
increase in size. Because they cannot be constructed automatically they may be subject to
interference or synergistic effects between threads.

The biggest architectural changes are to the register file: It needs to be increased by a factor
of C, with a hardware thread counter to select which group of registers is being accessed.
Now each thread will see an independent set of registers, with all reads and writes for the
different threads going to separate memory locations. Apart from the thread selection and
natural enlargement, the only piece remaining is to pipeline the register access.

Cost of C-Slow

There are four primary costs associated with C-slow retiming as discussed in [34]. These
are increased latency for single computations, greater circuit area, increased power
consumption, and the costs of interacting with single-instance. The increased latency is the
biggest concern, caused by unbalanced pipeline stages and the setup and hold time from the
additional pipeline stages. The unbalanced stages can be reduced through the use of
conventional retiming, but some imbalance will undoubtedly remain.

The second major concern is circuit area, and is a direct function of how aggressively the
design is retimed. With modern FPGAs possessing as many registers as 4-LUTs, most
designs underutilized the registers available. Thus, for low levels (2-4 slow) retiming, the
resulting circuit cost is usually very low as the registers can be combined with the
associated logic blocks.

Power consumption is naturally increased due to the higher clock rates and larger number of
elements involved. If lower power is desired, the higher-throughput design can be modified
to save power by reducing the clock rate and operating voltage. Although the finer
pipelining allows the frequency and the voltage to be scaled back to a significant degree
while maintaining throughput, the activity factor of each signal may now be considerably
higher. Because each of the C streams of execution is completely independent, it is safe to
assume that every wire will probably have a significantly higher activity factor that
increases power consumption.

The final cost of C-slow retiming results from the increased complexity of interacting with
other blocks in the design. If there is a feedback loop between a C-slowed block and a
different block, then the different block should be included within the C-slow retiming
process. Otherwise, one simply needs to interleave and de interleave the data streams
coming to and from the C-slowed block.
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Examples of C-slow Retiming

IIR Implementation

IIR filters are very important in digital signal processing systems. Now we design IIR filter
without c-slow retiming and then with 2-slow. After that we will compare results of IIR and

FIR as the example circuits of feed forward and feedback circuits.
fili)

Xinj . _ ,_L _¥in]

Xy Y

Figure 6.9 Simple 8-tap IIR filter
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Chapter 7

C-Slowed Microprogrammed Finite State Machine

Introduction

In this section, we will design a simple micro programmed processor with a simple, and
then the same architecture is C-Slowed and checks the performance results. In first case it
can execute one instruction per clock cycle. After 2 C-Slow, it executes two instructions per
clock cycle or it can be said it can execute two streams parallel. There are two major parts
of the thesis. One is Processor and the other is micro programmed control unit that is used
perform different tasks on the stored data.

Design of Control Unit

The main purpose of the control unit is to translate or decode instructions and generate
appropriate enable signals to accomplish the desired operation. Based on the contents of
the instruction register, the control unit sends the selected data items to the appropriate
processing hardware at the right time. The control unit drives the associated processing
hardware by generating a set of signals that are synchronized with a master clock.

The control unit performs two basic operations: instruction interpretation and instruction
sequencing. In the interpretation phase, the control unit reads (fetches) an instruction
from the memory addressed by the contents of the program counter into the instruction
register. The control unit inputs the contents of the instruction register. It recognizes the
instruction type, obtains the necessary operands, and routes them to the appropriate
functional units of the execution unit (registers and ALU). The control unit then issues the
necessary signals to the execution unit to perform the desired operation and routes the
results to the specified destination.

In the sequencing phase, the control unit generates the address of the next instruction to
be executed and loads it into the program counter. To design a control unit, one must be

familiar with some basic concepts such as register transfer operations, types of bus
structures inside the control unit, and generation of timing signals.

Basic Concepts
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Register transfer notation is the fundamental concept associated with the control unit
design. For example, consider the register transfer operation.

1 «
L =*

2
2z
K]

The symbol < is called the transfer operator. However, this notation does not indicate the
number of bits to be transferred. An enable signal usually controls transfer of data from
one register to another. The enable input may sometimes be a function of more than one
variable.

Micro Programmed Control Unit Design

As mentioned earlier, a micro programmed control unit contains programs written using
microinstructions. These programs are stored in a control memory normally in a ROM
inside the CPU. To execute instructions, the microprocessor reads (fetches) each
instruction into the instruction register from external memory. The control unit translates
the instruction for the microprocessor. Each control word contains signals to activate one
or more micro operations. A program consisting of a set of microinstructions is executed in
a sequence of micro-operations to complete the instruction execution. Generally, all
microinstructions have two important fields:

1. Control word

2. Next address

The length of a microinstruction is directly related to the following factors: The number of
micro-operations that can be activated simultaneously, this is called the “degree of
parallelism.” And the method by which the address of the next microinstruction is

determined. In my design the micro programmed control unit contains the following

components:
1. Micro program counter register
2. Incrementer
3. Micro programmed Memory (ROM/RAM)
4. Next Address selection logic
5. Control Data Register

Control Data register has three parts, control signals, branch address and condition select.
Control signals to use to control the data transfer through data path. While branch address
and condition select are used to select the next instruction in the sequence. If there is no
select condition then micro instruction executes in a sequence otherwise it will jump at
branch address as shown in the fig. 7.1. Now we discuss different components here:
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Micro program Counter (MPC)

The MPC holds the address of the next microinstruction to be executed. It is initially
loaded from an external source to point to the starting address of the micro program. The
MPC is similar to the program counter (PC). The MPC is incremented after each
microinstruction fetch. If a branch instruction is encountered, the MPC is loaded with the
contents of the branch address field of the microinstruction.

MUX (Multiplexer)

The MUX is a condition select multiplexer. It selects one of the external conditions based
on the contents of the condition select field of the microinstruction fetched into the CWR.
Here is an example of 2-bit condition select MUX.

Condition Select Field Interpretation

0 0 No Branching

1 0 Branch if Z=0

0 1 Unconditional Branch

In micro programmed controller, the length of Instruction word is 24 bit. In this 4 bits are
for condition selection, for branch address, there are 7 bits and 13 bits specified for
control signals i.e. c0 to c12 that are used to control data path of
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machine.

uPC

A
+
—

Microprogram
Xe2__ Memory(ROM)

xch

Condition | branch control
Select address signal
—>

To data path

Figure 7.1 Microprogrammed Control Unit

Design of Micro programmed CPU

Next, Micro programmed CPU design is illustrated. The CPU contains two registers:
1. An 8-bit register A
2. A 2-bit flag register F
The flag register holds only zero (Z) and carry (C) flags. All programs and data are stored in

the 256 x 8 RAM. The detailed hardware schematic of the data-flow part of this processor
is shown in Figure 7.2.

It can be seen that the hardware organization includes four more 8-bit registers, PC, IR,
MAR, and BUFFER. These registers are transparent to a programmer. The 8-bit register
BUFFER is used to hold the data that is retrieved from memory. In this system, only a
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restricted number of data paths are available. These paths are controlled by the control
inputs CO through C9.

The proposed instruction set contains 11 instructions. The first 7 instructions are classified
as memory reference instructions, since they all require a memory address (which is an 8-
bit number in this case). The last 4 instructions do not require any memory address; they
are called non memory reference instructions. Each memory reference instruction is
assumed to occupy 2 consecutive bytes in the RAM. The first byte is reserved for the op-
code, and the second byte indicates the 8-bit memory address. In contrast, a non memory
reference instruction takes only one byte of storage. This instruction set supports only two
addressing modes: implicit and direct. Both branch instructions are assumed to be
absolute mode branch instructions. The op-code encoding for this instruction set is carried
out in a logical manner. If 13 = 1, it is a memory reference instruction (MRI), otherwise it is
a non memory reference instruction (NMRI). Within the memory reference category,
instructions are classified into four groups, as follows:

GROUP NO. INSTRUCTIONS
0 Load and store

1 Add and subtract
2 Jumps

3 Logical

As mentioned before, the instruction execution involves the following steps:

MICROOPERATION COMMENT

CO:PC< O Clear PC to zero

Cl: PC < PC+1 Advance the PC

C2C5C6: PC<& M ((MAR)) Read the data from the memory and save it
in PC

C3C4: MAR ¢« PC Transfer the contents of PC

C5C6C7: Buffer & M(MAR) Read the data from the memory and store
the result in buffer

C3C4: MAR & Buffer Insert the buffer contents into memory
address register

C5C6C8: IR ¢ M(MAR) Read the data from memory and the result
into IR

C:A&F Transfer the ALU output into the register A

C5C6: M(MAR) ¢ A Store the contents of register A into
memory location specified in MAR

The eight ALU operations performed by C10C11C12 are given below:

50




cio C11 Cl2 F

0 0 0 0

0 0 1 R

0 1 0 L+R

0 1 1 L-R

1 0 0 L+1

1 0 1 L-1

1 1 0 LANDR

1 1 1 NOT L
Step1l: Fetch the instruction.
Step2: Decode the instruction to find out the required operation.
Step3: If the required operation is a halt operation, then go to Step6 otherwise
continue.
Step4: Retrieve the operands and perform the desired operation.
Step5: Go to Step 1.
Step6: Execute an infinite LOOP.
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Figure 7.2 A simple Processor design

C-Slowed Micro programmed Controller and Processor
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C-slowed micro programmed counter is shown in the figure. As discussed earlier, in c-slow
register increased c times, and also the memory. So in control unit, there are two micro
programmed counters for each micro program. Which instruction is to execute is control
by multiplexers and de multiplexers.

As shown in the figure, selection of control signals is based upon the clock. At clockO,
control signals from micro programmed memory 1 are generated while at clock 1, control
signals are from memory 2. Thus 2 micro instructions completes once the one clock cycle
completes.

uPC — +1
UPC A
, v
. —\ /
—>
c \ 4
—>
xc0
E—
xc1 _
> Microprogram
XC2 Memory(ROM)
Xc3
E—
xc4
«—>
XCH v
— Condition | branch control
A Select address signal
Condition | branch control
Select address signal
—>
To data path

Figure 7.3 C-Slowed Microprogrammed Controller
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Chapter 8

Results Analysis

Simulation Results Analysis

No. of cycles required to process without c-slow = 25 clock cycles
No. of clock cycles required to process with c-slow = 10 clock cycles

Timing diagrams of both of these results are shown in the fig.7.4 in which (a) show the
results without c-slow while (b) shows the results in the presence of c-slow.
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Figure 7.4 (a) Timing results without C-slow (b) Results with C-slow

Synthesis Results without C-slow

Table 8.1Device utilization summary
Logic Utilization Used Available Utilization

[Number of Slice Registers 107 6,624 7%
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[Number of 4 input LUTs 444 6,624 5%
Logic Distribution
[Number of occupied Slices 778 3,312 13%
[Number of Slices containing 778 778 100%
only related logic
[Number of Slices containing 0 778 0%
unrelated logic
Total Number of 4 input LUTs 454 6,624 5%
[Number used as logic 444
[Number used as a route-thru 0
[Number of bonded I0OBs 333 2%
[Number of GCLKs 2 8 25%
Synthesis Results with C-slow
Table 8.2 Device utilization summary
Logic Utilization Used Available | Utilization
[Number of Slice Registers 4,270 26,624 16%
[Number of 4 input LUTs 3,166 26,624 11%
Logic Distribution
[Number of occupied Slices 3,708 13,312 27%
[Number of Slices containing 3,708 3,708 100%
only related logic
[Number of Slices containing 0 3,708 0%
unrelated logic
Total Number of 4 input 3,167 26,624 11%
LUTs
[Number used as logic 3,167
[Number used as a route-thru 1
[Number of bonded I0OBs 10 333 3%
[Number of GCLKs 2 8 25%

Table 8.3 Timing Summary
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[Microprogrammed 2-slow
FSM Microprogrammed
FSM
[Number of clock cycles 25 10
equired to process two tasks
Minimum period 29.976ns 11.558ns
Minimum input arrival time 29.985ns 5.458ns
efore clock
Maximum Frequency 33.360MHz 86.520MHz
Maximum output required 7.165ns 7.165ns
time after clock

Conclusion

According to the results obtained, it is clear that C-slow increases the throughput of the
system. In the sixth chapter, we have discussed that C-slow increase the throughput at the
cost of increased latency in case of feed forward circuits but if there are feedback loops in
the design, then there is not much effect. It is also discussed that as in C-slow, we increase
the number of registers so there is an increase in area of the design also. Now we will
discuss all these things in the presence of obtained results.

The first thing due to which we have to apply the c-slow is the throughput. And according
to the simulation and synthesis results this is obtained in a good factor. From the simulation
results, total number of clock cycles required to process two independent instruction sets is
25. But on the other hand if we simulate the design after applying C-slow then the same
results are obtained within just 10 clock cycles. So the throughput of the system increases
by decreasing the number of clock cycles required. And there is another effect that the
frequency of the system increases by decreasing the minimum time required to process i.e.
at faster clock speed. These are the results what we obtain from synthesizing the design. In
first case, instructions are executed one by one. Micro program processor design that is
without C-slow, executes one micro instruction at one clock cycle. As in the simulation
results it executes two instructions one is for invert and second is addition of stored data to
the ALU register. And the same case is applied to the design when micro programmed
architecture is c-slowed, these micro instructions are executed in parallel i.e. inverting and
addition instructions are executed at the same time i.e. time to simulate both instructions is
equal to the time required to execute the single instructions.

On the other hand, if we analyze the results on the basis of hardware used then we see a
clear picture in which c-slowed architecture utilize more hardware. As discussed c-slowed
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in filter design example, in the cases when the architecture is simple or when there is no
feedback architecture, c-slowed simply becomes an example of repipelining. Synthesis
results in the previous chapter show when we c-slow the feed forward architecture, it
increase the frequency of execution much more than without c-slow but we have to face a
situation in which output time for a single instruction increases, same behavior as in
pipelining.

But when we apply same phenomena on the complex architecture, then we have a very
different picture. In these cases, after c-slow the frequency of execution does not increase
but somewhat increases because in this case as two instructions execute, we assume our
frequency becomes double. At the same time, output clock period time is reduced about to
half, thus the through put becomes double.

Another effect after C-slow retiming is the increase in the area. Now we see what the effect
of this. From the above synthesis results, the area constraint or the number of FPGA slices,
flip-flop slices, and the number of Look Up Tables (LUT) are shown. From these results it
is clear that C-slow retiming increases the throughput at the cost of area used. But on the
other hand if we analyze the area used, we obtain information that before C-slow the
percentage of area used is seven percent for slice flip-flops, and after C-slow the percentage
area used is sixteen percent. It means we have a lot number of resources available for C-
slowing the design and still we have resources.

In this simple processor design we just implement 2-Slow design in which the area
constraint does not effect much because the number of available resources is very large. But
in case we design a circuit which is 4-Slow or more then area/throughput factor becomes
worse. Because in that case the number of resources used is very large.
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Appendix A

Verilog Code

module iir_8(clk,rst,d _in,d out);
parameter order = 8;

parameter w_in = 8;

parameter w_out = 2*w_in+2;

//Tilter coefficients
parameter bO= 8%d2;
parameter bl= 8"d5;
parameter b2= 8"d8;
parameter b3= 8"dl1l;
parameter b4= 8"dl4;
parameter b5= 8"dl1l;
parameter b6= 8"d8;
parameter b7= 8"d5;
parameter b8= 8"d2;

parameter al= 8"dl;
parameter a2= 8"dl;
parameter a3= 8"dl;
parameter ad4= 8"dl;
parameter a5= 8"dl;
parameter a6= 8"dl;
parameter a7= 8%dl;
parameter a8= 8"dl;

output [w_out-1:0] d_out;
input [w_in-1:0] d_in;
input clk,rst;

reg [17:0]
tap_inl,tap_in2,tap_in3,tap_in4,tap_in5,tap _in6,tap_in7,tap in8;
reg [17:0]
tap_outl,tap_out2,tap_ out3,tap _out4,tap_out5,tap out6,tap out7,tap_out8;
wire [w_out-1:0] d forward;
wire [w_out-1:0] d_back;

assign d_forward = (bO*d_in) +(bl*tap_inl) +(b2*tap_in2) +(b3*tap_in3)
+(b4*tap_in4) + (b5*tap_in5)+(b6*tap_in6)+(b7*tap_in7)+(b8*tap_in8);
assign d_back = (al*tap_outl)+ (a2*tap_out2)+ (a3*tap_out3)+
(ad4*tap_out4)+ (ab*tap_out5) + (a6*tap_out6)+(a7*tap_out7)+(a8*tap_out8);

assign d_out = d_forward+d_back;
always @ (posedge clk)
begin
if (rst == 1)
begin
tap_inl <= 0;
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tap_in2 <= 0;
tap_in3 <= 0;
tap_in4 <= 0;
tap_in5 <= 0;
tap_in6 <= 0;
tap_in7 <= 0;
tap_in8 <= 0;
tap_outl <= 0;
tap_out2 <= 0;
tap_out3 <= 0;
tap_outd4 <= 0;
tap_out5 <= 0;
tap_out6 <= 0;
tap_out?7 <= 0;
tap_out8 <= 0;
end
else
begin
tap_inl <= d_in;
tap_outl <= d_out;

tap_in2 <= tap_inl;
tap_in3 <= tap_in2;
tap_in4 <= tap_in3;
tap_in5 <= tap_in4;
tap_in6 <= tap_inb5;
tap_in7 <= tap_inG6;
tap_in8 <= tap_in7;

tap_out2 <= tap_outl;
tap_out3 <= tap_out2;
tap_out4 <= tap_out3;
tap_outh5 <= tap_out4;
tap_out6 <= tap_out5;
tap_out?7 <= tap_out6;
tap_out8 <= tap_out7;

end
endmodule

Testbench

module stim;
reg [7:0] d_in;
reg clk,rst;
wire [17:0] d_out;

iir_8 f3(clk,rst,d _in,d out);

initial
begin

rst=1;
d_in=8"b00000001;
clk=1;

#4 rst=0;
#34 d_in=8"b00000000;



#2 $Finish;

end
always
begin
#2 clk=~clk;
end
endmodule

2-slow IIR design

Verilog Code

module slow_iir(clk sub,clk main,rst,impulse,unitstep,d out);
parameter order = 8;

parameter w_in = 8;

parameter w_out = 2*w_in+2;

//Tilter coefficients
parameter bO= 8"d2;
parameter bl= 8"d5;
parameter b2= 8"d8;
parameter b3= 8"dl1;
parameter b4= 8%d14;
parameter b5= 8"dl1l;
parameter b6= 8"dS8;
parameter b7= 8%d5;
parameter b8= 8%d2;

parameter al= 8"dl;
parameter a2= 8"dl;
parameter a3= 8"dl;
parameter a4= 8"dl;
parameter a5= 8"dl;
parameter a6= 8"dl;
parameter a7= 8"dl;
parameter a8= 8"dl;

output [w_out-1:0] d_out;
input [w_in-1:0] impulse,unitstep;
input clk _main,clk_sub,rst;

// reg [w_out-1:0] d_out;

reg [w_in-1:0] d_in;

reg [17:0]
tap_inl,tap_in2,tap_in3,tap_in4d,tap_in5,tap_in6,tap_in7,tap in8;

reg [17:0]
temp_inl,temp_in2,temp_in3,temp_in4,temp_in5,temp_in6,temp_in7,temp_in8;

reg [17:0]
tap_outl,tap_out2,tap_out3,tap_out4,tap_out5,tap out6,tap out7,tap_out8;

reg [17:0]
temp_outl, temp_out2,temp_out3,temp_out4,temp_out5,temp_out6,temp_out7,tem
p_out8;

wire [w_out-1:0] d _forward;

wire [w_out-1:0] d_back;

//integer k;
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assign d_forward =

(bO*d_in)+(bl*tap_inl)+(b2*tap_in2)+(b3*tap_in3)+(b4*tap_ind)+(b5*tap_in5

)+(b6*tap_in6)+(b7*tap_in7)+(b8*tap_ind);
//assign d_forward =

(bO*d_in)+(bl1*tap_inl)+(b2*tap_in2) (b3*tap_in3)+(b4*tap_in4)+(b5*tap_in5)

+(b6*tap_in6)+(b7*tap_in7)+(b8*tap_in8);

assign d_back =
(al*tap_outl)+(a2*tap_out2)+(a3*tap_out3)+(ad*tap_outd)+(a5*tap_out5)+(ab

*tap_out6)+(a7*tap_out7)+(a8*tap_out8);
assign d_out = d_forward+d_back;

always @ (posedge clk_sub)

begin

it (rst ==

//for (k
begin
tap_inl <
tap_in2 <
tap_in3 <
tap_in4 <
tap_in5 <
tap_in6 <
tap_in7 <
tap_in8 <
tap_outl
tap_out2
tap_out3
tap_out4
tap_out5
tap_out6
tap_out?7
tap_out8
temp_inl
temp_in2
temp_in3
temp_in4
temp_in5
temp_in6
temp_in7
temp_in8
temp_outl
temp_out2
temp_out3
temp_out4
temp_out5
temp_out6
temp_out7
temp_out8

1)

1; k <= order; k = k+1)

<=

1
[eNoNoNoNoNoNoNe]
[ejolNoNoNoloNoNololoNeoNoNoNeNeNe R e

OO OO0OO0OOOQuivry

// d_out <= 0;

end
else
begin

tap_inl <= d_in;
tap_outl <= d_out;

tap_inl <= temp_inl;
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temp_in2 <= tap_inl;

tap_in2 <=
temp_in3 <
tap_in3 <=
temp_in4 <
tap_in4 <=
temp_in5 <
tap_in5 <=
temp_in6 <
tap_in6 <=
temp_in7 <
tap_in7 <=
temp_in8 <
tap_in8 <=

tap_outl <=

temp_out2 <= tap_outl;
tap_out2 <= temp_out2;
temp_out3 <= tap_out2;
tap_out3 <= temp_out3;
temp_out4 <= tap_out3;
tap_out4 <= temp_out4;
temp_out5 <= tap_out4;
tap_out5 <= temp_out5;
temp_out6 <= tap_out5;
tap_out6 <= temp_out6;
temp_out7 <= tap_out6;
tap_out7 <= temp_out7;
temp_out8 <= tap_out7;
tap_out8 <= temp_out8;

temp_inl

temp_in2;
tap_in2;
temp_in3;
tap_in3;
temp_in4;
tap_in4;
temp_in5;
tap_in5;
temp_in6;
tap_in6;
temp_in7;
tap_in7;
temp_in8;

temp_outl;

<= d_in;

temp_outl <= d_out;

// d_out <= d_forward+d

end

if (clk _main==0)

begin

d_in <= impulse;
// d_outl=d _out;

end

else
begin

d_in <= unitstep;

//d_out2 =

end

end
endmodule

Testbench

d_out;

module stimnew;
reg [7:0] impulse,unitstep;
reg clk sub,clk main,rst;

wire [17:0] d_out;

_back;
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slow_iir cslow(clk sub,clk main,rst, impulse,unitstep,d out);

initial

begin
rst=1;
impulse=8"b00000001;
unitstep=8~b00000001;
clk_sub=1;
clk _main=1;

#2 rst=0;

#2 1mpulse=8"b00000000;
#36 $finish;
end

always

begin
#1 clk_sub=~clk_sub;
end
always
begin
#2 clk_main=~clk_main;
end
endmodule

Synthesis Results

Table A-1 Device Utilization Summary

IR filte | 2-slow IIR | 3-Slow IIR| 4-slow IIR

filter filter filter
Logic Utilization Used Used Available
Number of Slice Flip Flops 208 424 634 717 26,624
Number of 4 input LUTs 315 323 326 453 26,624
Logic Distribution
Number of occupied Slices 285 393 500 575 13,312
Number of Slices containing only| 285 393 500 575 285
related logic
Number of Slices containing 0 0 0 0 285
unrelated logic
Total Number of 4 input LUTs 317 325 328 455 26,624
Number used as logic 315 323 326 389
Number used as a route-thru 2 2 2 2
Number of bonded I0Bs 28 37 36 36 221
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Number of MULT18X18s

32

Number of GCLKs

Table A-2 Timing Summary

IIR filter without C-

2-slow lIR filter

time after clock

slow
Number of clock cycles 18 9
required to process two tasks
Minimum period 22.384ns 22.384ns
Maximum Frequency 44.674MHz 44.674MHz
Minimum input arrival time 19.747ns 5.900ns
before clock
Maximum output required 28.702ns 28.702ns
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Appendix B

Micro Program Instruction Set

Address

0NN N kW~ O

—t ek e ek = e \O
NN Pk~ WN = O

N — = =
S O 0

[USERUSINUS EUS RUC I O RN (O RN \O I (ST O I \O I \O I (O I O]
A LD = OOV INWN KA WN -

Fetch

Decode

CMA

INCA

DCRA

MEMREF

AND

LDSTO

LOAD

STO

ADSUB

Symbolic Instruction
pc— 0
MAR « pc
IR — M(MAR) ; pc <« pc+1
I3 =1? go to MEMREF
XC0=1? Goto CMA
XC1=1? Go to INCA
XC2=1?Goto DCA
go to HALT
A« A
go to Fetch
A — A+l
go to Fetch
A — A-1
go to Fetch
if XCO=1, LDSTO
if XC1 =1, ADDSUB
if XC2 =1, JUMP

MAR < pc

Buffer <= M(MAR), pc < pc+1
MAR < Buffer
Buffer += M(MAR)

A + A & Buffer
go to Fetch
MAR « pc
Buffer «— M(MAR); pc < pc +1
MAR « Buffer
ifI0=1 go to STO
Buffer < M(MAR)
A < Buffer
go to Fetch
M(MAR) — A
go to Fetch
MAR <« pc
Buffer < M(MAR); pc < pc+1
MAR « Buffer
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35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

ADD

SUB

JUMP

JOZ

JOC

LOADPC

HALT

Buffer < M(MAR)
if 10 =, go to SUB
A «— A + Buffer
go to Fetch
A «— A- Buffer
go to Fetch
MAR « pc
if 10 =0, go to JOZ
if 10 =1, go to JOC
if z=1 go to LOADPC
pc «— pct+l
go to Fetch
if c=1 go to LOADPC
pc « pctl
go to Fetch
pc «— M(MAR)
go to Fetch
go to HALT
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