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ABSTRACT 

“Estimation” is an important task in software engineering. Estimation has application in 

many areas e.g. cost estimation, effort estimation. The most crucial thing is the “effort 

estimation of the software project”. Most of the software projects fail due to improper effort 

estimation. Effort estimation directly affects the budget of the software project. Software 

Project Mangers consider effort estimation of software engineering project a very difficult 

and challenging task because of its inherent imprecision. Therefore it is important and most 

crucial to have right effort estimate at the right time. Accurate effort estimation in software 

engineering projects is a challenging task, and it is one of the most crucial project 

management activities.  

In this dissertation, we propose a Fuzzy Neural Network (FNN) model for effort estimation 

of software engineering project. This approach provides dual benefits of incorporating 

qualitative knowledge of experts and learning from historical data obtained from previous 

projects.  The main focus of this research is to minimize the error by combining neural 

network and fuzzy logic and train the FNN with evolutionary algorithm. Three different 

datasets are used in this research work for training and testing purposes; each dataset is 

divided into three equal parts and each part is in turn used for testing purpose. For 

performance measurement, a total of 216 experiments were performed for the three datasets 

including the three combinations of each dataset, out of which 108 are with crossover 

operation and 108 are without crossover operations. The results show that the FNN is well 

trained by giving small values of Root Mean Square Error (RMSE) Moreover, the results 

show that greater the population size, lower the RMSE. The accuracy of the FNN is also 

based on the number of samples which are provided for training; the more the number of 

samples, the more the accuracy. Once trained, the FNN is supposed to predict the effort (in 



person months) of a software engineering project.  The results show that network is trained at 

an acceptable level of accuracy. Some of the examples are compared with the COCOMO 

model and the result shows that the proposed model behaves comparably well in these 

examples. 
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CHAPTER 1 

 

INTRODUCTION 

 

In this chapter, we will discuss the main concepts which are used in this thesis. Artificial 

Intelligence in software engineering is discussed in section 1.1.  Section 1.2 discusses the 

effort estimation. The detail of fuzzy neural network and evolutionary algorithm is discussed 

in section 1.3 and 1.4. Section 1.5 describes the problem statement and section 1.6 gives the 

summary of this chapter and the thesis organization is described in section 1.7. 

 

1.1 Artificial Intelligence in Software Engineering 

According to Lugar, Artificial Intelligence may be defined as the branch of computer science 

which deals with the mechanization of human/intelligent behavior [1]. There are several 

branches of artificial intelligence which include: natural language processing, computer 

vision, robotics, problem solving and planning, learning and expert system [2].  

According to Somerville, software engineering is considered an engineering discipline which 

deals with all characteristics of software production. It also deals with the physical constraints 

of developing and delivering valuable software [3].  

Software Engineering has been criticized from the beginning. The main criticism on software 

engineering is that it is not well developed science at all because software engineers do not 

know accurately that how long their projects will be applicable, project’s cost, and either 

software work properly after release or not [4].  

The models and methods developed by AI can be valuable for software engineering [5]. The 

models and methods developed by AI can be used to estimate the effort and cost of the 

software projects.  
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1.2 Effort Estimation 

The estimate of the effort is considered as the most significant variables in the process of 

project management because it helps to plan the forthcoming activities [6]. Effort Estimation 

is defined as the prediction of number of hours and numbers of employees are needed to 

develop a project [6]. Software development effort estimation is based on incomplete, 

uncertain or noisy input and effort estimation is used as an input for investment, budget 

analysis and project plans [7]. Accurate estimation of effort/cost/time is a huge problem for 

software engineers [7]. In order to carry out the prediction with low error rate, a large volume 

of data is needed which is very difficult to obtain [6].  

 

The categorization of estimation approaches are as follows: 

o Expert Estimation 

o Formal Estimation Model 

o Combination Based Estimation 

 

1.2.1 Expert Effort Estimation 

In expert estimation, the quantization step is a judgment based, and the quantification step is 

defined as a step where the required effort for a software project is measured.  The term 

“Expert” may be used for an individual or for a team. The quantification steps are based on 

the perception and sometimes may be based on the unambiguous, analytical argumentation.  

It is assumed that experts typically possessed more information and have the more flexibility 

that how information is processed [8]. 
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1.2.2 Model based Effort Estimation   

In model based estimation, the quantification step is mechanical. For example, use a formula 

derived from historical data like COCOMO. However, it may be complicated to build models 

for software development effort estimation because of lack of stable relationships and use of 

small data sets to build models [8].   

 

1.2.3 Combination based Effort Estimation 

In combination based effort estimation, the quantification step is based on a judgmental or 

mechanical combination [7].  

 

1.3 Fuzzy Neural Network 

 

1.3.1 Neural Network 

The brain consists of a large number of neurons which are connected with each other by 

synapses. These networks of neurons are called neural networks, or natural neural networks. 

The artificial neural network (ANN) is a simplified mathematical model of a natural neural 

network. Basically it seems like a directed graph where a vertex corresponds to a neuron and 

an edge to a synapse [9].  

 

1.3.1.1 A Neuron 

The computational model of artificial neuron is motivated by the functionality of natural 

neuron. Natural neurons receives signals through synapses, and when the received signal is 

strong enough, then the neuron is activated and release the signal through axon, and this 

signal might sent to another neuron or synapse [10]. This all work is shown in Fig 1.1. 
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Fig 1.1 Natural Neuron [10] 

 

In artificial neuron, the synapses are basically the inputs, which are multiplied by the 

connection weights which show the strength of the signal and then determine the activation of 

the neuron through some mathematical function.   The artificial neural network is basically 

the combination of these artificial neurons [10]. The mathematical model of artificial neural 

network is shown in Fig 1.2. 
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Fig 1.2 Model of a neuron [11] 

From this model the interval activity of the neuron can be shown to be:  

j

p

j
kjk xwv .

1
∑
=

=  ………………………… 1.1 [11] 

The output of the neuron, yk, would therefore be the outcome of some activation function on 

the value of vk. 

)( kk vfy = ………………………… 1.2  

 

Where f is any activation function. 

 

 



6 
 

1.3.1.2 Activation Function 

There are three types of activation function namely: 

i). Threshold Function 

ii). Piecewise Linear Function 

iii). Sigmoid Function 

 

Threshold function has possible two values of 0 and 1. Threshold Function has a value of 0 if 

the summed input (vk) is less than a certain threshold value (v), and the value 1 if the summed 

input (vk) is greater than or equal to the threshold value [11].  

 

In piecewise Linear function, the certain region or we can say that the certain values remain 

as it is while other changes to 0 and 1 [11].  For example, if we define the range of 0.3 and 

0.6. Then if the value of the summed input comes between 0.3 and 0.6, then it remains as it 

is. However, if the value comes below 0.3 then the result is 0 and if it comes above 0.6, then 

the result is 1.  

 

In sigmoid function, the output also comes between 0 and 1, and the output varies 

continuously depending on the summed input. 

 

1.3.1.3 Learning Paradigms 

We can categorize the learning situations in two distinct types. These are: 

i). Supervised Learning 

ii). Unsupervised Learning 
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1.3.1.3.1 Supervised Learning 

Supervised learning is also called associative learning. In supervised learning, the network is 

trained by providing the input and desired output patterns. These patterns can be provided by 

a expert [11]. 

 

1.3.1.3.2 Unsupervised Learning 

Unsupervised learning is also called self organization. In this type of learning, no input-

output patterns are provided, only the input is provided. The system has supposed to discover 

the characteristics of the input [11].  

 

1.3.1.4 Neural Network Topologies 

The topologies of the neural network are based on the connection between the neurons and 

propagation of data. So we can distinct the topology in two different ways. 

 

1.3.1.4.1 Feed Forward Neural Network 

Feed-forward ANNs allow signals to travel one way only; from input to output. There is no 

feedback (loops) connections present i.e. the output of any layer does not affect that same 

layer or previous layers [11].  

 

1.3.1.4.2 Recurrent Neural Network 

In recurrent neural network, feedback connections are present [11].  The network feed the 

outputs from neurons to other adjacent neurons or to neurons in preceding layers.  
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1.3.2 Fuzzy Logic 

The idea of fuzzy logic was first invented by Dr Lofti Zadeh. Fuzzy logic is considered as an 

approach to calculate based on the degree of fact rather than the Boolean values. Fuzzy logic 

includes Boolean values of 0 and 1 as extreme values of fact, but also includes the various 

cases of truth between these extreme values [12]. Fuzzy logic is one of the means that can 

model multi-input and multi-output system.  It provides the ability for modeling states that 

are inaccurately defined. Fuzzy Logic techniques have been used in classification, clustering, 

feature extraction etc. It has the ability to mimic the human mind to utilize modes of 

reasoning that are approximate instead of exact [13]. The basic concepts which are used in 

fuzzy logic are discussed below. 

 

1.3.2.1 Fuzzy Sets 

Fuzzy set is considered as an extension of crisp set. However, crisp sets allow only full 

membership or membership not at all; it does not allow any partial membership state, where 

as, fuzzy set allows the partial membership state. Fuzzy set describe linguistic labels like low, 

medium, high.  A given element can be the member of more than one fuzzy set at a time, and 

how much it belongs to one fuzzy set is indicated by their membership grade [13].  

 

1.3.2.2 Membership Functions 

Membership functions are used to convert the crisp value into fuzzy value. A membership 

function curve defines that how each point in the input space is converted into membership 

value.  There are different types of membership function including triangular, trapezoidal, 

generalized bell shaped, guassian curve, polynomial curve, and sigmoid function [13].  
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1.3.2.3 Logical Operations 

In fuzzy logic (FL), the truth of statement is the subject of degree. FL operators include min, 

max and complement operations. Most applications use min for fuzzy intersection, max for 

fuzzy union, and 1-µ (a) for complement operations [13].  

 

1.3.2.4 IF-THEN Rules 

If-then rules describe the relationship between fuzzy input and output sets. The “if” part of 

the rule is called antecedent or premise, and “Then” part of the rule is called consequent. If-

then rule involve two discrete steps. The first step includes evaluation of the premise which 

involves fuzzification and applies any operator if required and second step is called 

implication in which the result of the antecedent is applied to the consequent [13]. 

 

1.3.2.5 Fuzzy Inference System (FIS) 

FIS defines a nonlinear mapping of the input and output data with the help of fuzzy rules. The 

mapping method includes input/output membership function, FL operators, if-then rules, 

collection of output sets and defuzzification. FIS mainly has four components, fuzzifier, 

inference engine, rule base and defuzzifier. Fuzzifier converts the input into corresponding 

fuzzy membership value. The inference engine maps the fuzzy input sets to the fuzzy output 

sets.  It calculates the degree to which premise is satisfied to the each rule. If more than one 

rule fires at the same time, then output of all the rules are aggregated. The defuzzifier maps 

the fuzzy output set into fuzzy number [13]. The block diagram of FIS is shown in Fig 1.3. 
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Fig 1.3 Block Diagram of FIS [13] 

 

1.3.3 Fuzzy Neural Network 

Neural Network and Fuzzy Logic, both are considered as the best possibility to deal with 

complex and poorly defined data [14]. With the integration of neural network and fuzzy 

logic, it is possible to deal with the expert knowledge and also capable of handle incomplete 

data. The strengths of fuzzy neural network includes fast and precise learning, good 

generalization capabilities, and ability to accommodate both data and existing expert 

knowledge [15].  
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Fig 1.4 Structure of Fuzzy Neural Network [18] 

 

1.3.3.1 Architecture of Fuzzy Neural Network 

The fuzzy neural network may contain three or five layers.  

 

1.3.3.1.1 Input Layer 

The first layer is called input layer which simply passes the input to the next layer. The input 

nodes represent linguistic variables [14].  

 

1.3.3.1.2 Conditional Element Layer 

The second layer is called conditional element layer which performs fuzzification. The nodes 

at this layer act as the membership function [14] and output of this node is the degree that the 

input belongs to the given membership function [15].  
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1.3.3.1.3 Rule Layer 

The nodes in the rule layer is called rule node and each rule node represents one fuzzy rule. 

The input to the rule node is the fuzzy input that comes after applying the fuzzy membership 

function at conditional element layer, and output of this node is the fuzzy output that passes 

to the action element layer.  The association between layer 2 and 3 are called precondition 

link and association between layer 3 and 4 are called consequent link [14]. The links between 

conditional and rule layer perform precondition matching of fuzzy rules. So the connection 

weights are either set randomly or then trained through some algorithm [15].  

 

1.3.3.1.4 Action Element Layer 

In action element layer, the nodes represent the fuzzy labels of the output variable [15]. For 

example, if the output variable has three labels, then action element layer contain three nodes, 

each node represent one label.  The activation of the node represents the degree to which this 

membership function is supported by the current data [15].  

 

1.3.3.1.5 Output Layer 

The output layer performs defuzzification to convert the fuzzy value into crisp output value. 

The Center of Gravity is the most commonly used defuzzification method that acquires the 

best result [15].  

 

1.4 Evolutionary Algorithm 

Evolutionary algorithm is a stochastic search method. It model natural processes such as 

selection, recombination, mutation and reinsertion. It works on population of individuals 

instead of a single solution. It provides a number of possible solutions to a given problem 

[16].   
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The pseudo-code of evolutionary algorithm [17] is given below. 

Pseudo-Code 

Initialize Population with random candidate solution. 

Evaluate every candidate solution. 

Repeat until Termination Condition is satisfied do 

1. Select Parents 

2. Recombine pairs of  best parents 

3. Mutate the resulting offspring 

4. Evaluate new candidates 

5. Select Individuals for the next generation 

End 

 

1.4.1 Initialize Population 

The first step in the algorithm is to initialize the population. Population contains the number 

of individuals. Each individual contain one possible solution. The size of the population is 

defined by the user. The variety of population is the measure of number of different solutions 

[17].  

 

1.4.2 Evaluation of Population 

In evaluation of population, the solution of every individual is evaluated based on fitness 

function. There are different criteria of fitness function. For example, we can evaluate the 

solution of population based on their error; in this case error is the basis of fitness function. 
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1.4.3 Selection Process 

In the selection process, the parents which are survived for the next generation are selected, 

and which are used to produce off springs. There are different methods of selection including 

random, absolute, roulette and rank selection [19].   

In random selection process, choose the individuals at random. In absolute selection process, 

n-best fit individuals are selected which replaces the n-worst individuals. In roulette wheel 

selection, relative weights proportional to their fitness are assigned to individuals, and 

individuals are picked randomly. In rank selection process, rank is assigned to each 

individual based on their solution; the best fit individual has the rank number 1 while the least 

fit has the individual 10 [19].  

 

1.4.4 Recombination 

Recombination is also called cross over. In this operation, it merges the information from best 

parents into off springs. The principle behind recombination is that by crossovering the two 

individuals with different features can create the off spring by combining the features of both. 

Recombination operator can use two or more than two parents [17].   

 

1.4.5 Mutation Process 

A unary variation operator is called mutation. It is applied to one individual. It is a random 

process which a little modifies the genes of the individuals. Mutation process may include 

lengthening, shortening or modifying the genes of the individual [19].  
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1.4.6 Reinsertion 

After producing the off springs, they must be inserted into the population. Reinsertion 

scheme determined that which individuals ought to be inserted in next generation and which 

individuals are to be replaced by the new offspring’s [16].  

  

1.5 Problem Statement 

Accurate effort estimation in software engineering projects is a challenging task, and it is one 

of the most crucial project management activities. Project mangers consider it a very difficult 

and challenging task because of its inherent imprecision. It helps the project manager of a 

software project to plan the activities that are required for project completion and guides 

project manager to allocate their resources (e.g. hire the staff) as per requirement. 

Most of the software projects fail due to improper effort estimation. Effort estimation directly 

affects the budget of the software project. Therefore it is important and most crucial to have 

right effort estimate at the right time. 

A model is developed for software project effort estimation by combining artificial 

intelligence techniques of fuzzy logic and neural networks. 

 

1.6 Summary 

Accurate Effort Estimation is the one of the most challenging task. It helps project manager 

to plan upcoming activities. For effort estimation, fuzzy neural network is used. The approach 

provides dual benefits of incorporating qualitative knowledge of experts and learning from 

historical data obtained from previous projects.  It is basically hybrid approach combining 

artificial intelligence techniques of fuzzy logic and neural networks. Fuzzy logic contain 

approximate reasoning whereas neural network is able to learn the ill defined data. For 
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training of fuzzy neural network, evolutionary algorithm is used which contain different 

solution among which best one is selected.  

 

1.7 Dissertation Organization  

The thesis is structured into chapters and organized as follows: Chapter 1 provides the brief 

introduction about the terms used in the thesis. Chapter 2 provides the literature review 

related to effort estimation. Chapter 3 discusses the framework design in detail. Chapter 4 

provides the implementation details of the thesis. Chapter 5 provides the analysis of the 

results that comes from training and testing data. Chapter 6 concludes the thesis with future 

work. 
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CHAPTER 2 

 

LITERATURE SURVEY 

 

In this chapter, we will discuss the literature review regarding our work. This chapter initially 

describes the different approaches used for effort estimation. Section 2.1 name the estimation 

approaches, section 2.2 name the estimation tools and discusses few of them, whereas some 

models are discussed in section 2.3. The summary is given in section 2.4. 

 

2.1 Estimation Approaches  

There are many effort estimation models which have been established over the last decades. 

A number of estimation approaches including: analogy based estimation, WBS-based 

estimation, parametric models, size-based estimation models, group estimation, mechanical 

combination, judgmental combination [20].  

 

2.2 Estimation Tools 

There are a number of estimation tools available in market including: 20s estimation 

calculator, 20s reference estimator, ACEIT, COCOMO II, Construx Estimate, CostXpert, 

Coaster, Estimate Express, EstimatorPal, EZEstimate, FP Outline, Function Point 

WorkBench, knowledge Plan, Oracle Crystal Ball, QUEST, RASS Estimate, REVIC 

Software Estimation Model, SCOPE, SEER for software, SEER IT, SLIM Estimate, 

SystemStar, True Planning for IT [21].  

 

20s estimator calculator estimate fixed price or time, and specify the restriction on time, cost 

or personnel, and it will work with excel version 97, 2000, 2002, whereas 20s reference 
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calculator create precise estimate for future projects by indicating the historical projects. It 

accumulates the actual hours and original estimated hours that are required for delivery on 

project. ACEIT contains a number of applications that support project manager during all 

phases of project life cycle. It is a tool for analyzing, developing and sharing the cost 

estimate. COCOMO II is a model that estimates the cost, effort and schedule when planning a 

new software development activity. It contains the three sub models including application 

composition, early design and post architecture model. Coaster is a software development 

estimation tool based on the Constructive Cost Model described by Barry Boehm. Software 

Project Manager use Coaster to estimate project duration, staffing level, cost and effort. 

Estimate Express is a software project estimating tool. It estimates the cost, reliability, 

schedule and resources on big and small projects. Function Point WORKBENCH estimate 

project effort, time and cost, asses’ software delivery productivity and quality. SEER for 

Software estimating software projects, it plan, analyze and manage complex software 

development projects. It evaluates software parameters not as isolated factor, but as inter 

dependent variables across project aim, constraints, work products and life cycle. SLIM 

Estimate helps to estimate the time, effort and cost required to satisfy a given set of software 

requirements and conclude the best strategy for designing and implementing the software 

project [21].  

 

2.3 Literature Review 

Some of the models are discussed below. 

 

Sheppard et al used analogies to estimate software project effort. Estimation by analogy is the 

form of CBR (Case Based Reasoning). The key activities for estimation by analogy include 

identification of the problem, the retrieval of cases, and reuse of knowledge and suggestion of 
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solution for the new case. The approach used in this paper has been guided by the aims of 

feasibility and simplicity. The author takes a new project, one for which wish to predict 

effort, and attempt to find other similar projects. Since these projects were completed and 

their development effort will be known, and it can be used as a basis for estimating effort for 

the new project. The author analyzed the data in terms of features. Features may be 

categorical or continuous. The datasets used in the experimentation are quite diverse and 

drawn from different application domain ranging from telecommunication to commercial 

information system. A jack-knifing procedure was adopted for analogy based prediction. 

Each dataset is treated separately, since each one has different project features available, and 

therefore not able to merge data into a single all encompassing dataset. The result shows that 

for all the dataset, the MMRE performance of estimating by analogy is better than that of 

regression methods. This suggests that analogy is capable of yielding more accurate 

prediction for these dataset. Hence the author at the end, conclude that accurate estimation of 

software project effort at an early stage in the development process is a significant challenge 

for the software engineering community. The approach adopted in this paper allows user to 

assess the reasoning process behind a prediction by identifying the most analogous project, 

thereby increasing, or reducing their confidence in prediction [22].  

 

In 2009, Reddy et al proposed a neural network model for effort estimation and compare the 

results with the COCOMO model. The architecture of neural network which is used is multi 

layer feed forward network trained with back propagation algorithm. According to Reddy et 

al, this new model improves the performance and accuracy in predicting the effort. The data 

used for this research is COCOMO data set.  The data is divided into two sets: Training set 

and testing set. The proposed neural network is trained with the training sample and then its 

accuracy is calculated using tested sample. The proposed neural network model requires 22 
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input nodes in the input layer that corresponds to the effort multipliers, scale factors and bias 

values. The process of establishing the neural network involves initializing, training and then 

testing the network. First train the neural network with the expert judgment’s input. Then the 

weights are updated with the back propagation algorithm. The back propagation procedure 

iteratively processing the set of training samples and compare the network results with the 

actual one. After each iteration, the weights are modified in order to minimize the error 

between network calculated output and actual output, and when it comes to certain stopping 

criteria, training stops. The stopping criteria can be the error is smaller than specific tolerance 

or the number of iteration which are exceed to a specific number. After training the network, 

the model is tested with testing samples and the results are compared with the COCOMO 

model effort estimate. The results are compared based on the criteria of MRE (Mean Relative 

Error). The results show that the proposed model produces more accurate and more 

significant results than the COCOMO model [23].  

 

Braga et al introduces the effort estimation along with confidence interval based on machine 

learning. Machine learning uses the data from the past project to build the model and then use 

that model to predict the effort of the new projects. In this research work, the objective is to 

build the regression model using a training dataset that will be used to predict the effort of the 

development project in man-months. M5P algorithm is used to build the regression based 

tree. Regression tree is a special kind of decision tree. Robust confidence interval is 

computed from the prediction error that comes after the regression model is built.  To 

evaluate the method, two data sets are used, the first one is Derharnais and second one was 

NASA dataset. The data set is divided into two sets called training and testing set.  Training 

data set is used to build the model and testing is used to check the accuracy of the model. The 
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authors take two measurements: MMRE and PRED (25). The results show that the proposed 

method was able to build robust confidence interval [24].  

 

Kodada et al experienced the case base reasoning to predict software project effort. assists in 

more effective use of CBR techniques for prediction system by providing experimental data. 

The analysis for this research work is based on the dataset collected from Canadian Software 

House. The pre-processing that is required for the dataset include the deletion of incomplete 

cases that are present.  The dataset is divided into smaller dataset to explore the impact of size 

n. However, in order to generate the prediction, adopted a jack-knifing procedure. According 

to author, when more than one analogy is selected, ANGEL will calculate the mean of chosen 

analogies. Instinctively, the author expect that closest analogies to have more influence. In 

short, the analysis suggests the decision that how to configure CBR system [25].  

 

Deng et al estimated software effort using harmonizing algorithms and domain knowledge in 

an integrated data mining approach. The authors present the integrated data mining 

framework. Integrated data mining framework incorporates the domain knowledge into series 

of data analysis and modeling processes. According to authors, integrating domain 

knowledge into data mining solution is challenging, because some domain knowledge is 

difficult to put in explicit form such as rules. The computational procedures like feature 

selection, visualization etc are not detached from each other, but they share active features 

between them. For experimentation, the author takes the dataset from PROMISE Software 

Engineering Repository. The feature selection index was employed to value the value of 

attributes in predicting effort.  The normal-cut algorithm for spectral clustering was used to 

cluster the data into four clusters, and project the label into 2-D display. The authors used the 

nearest neighbor based algorithm for modeling of effort data.  First work with the entire data 
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set for effort prediction, and from the results it was observed that when using log transformed 

effort data can significantly improve the indexes. Then working with the subset of data and 

the results obtained using homogenous subset are improved in two characteristics: prediction 

accuracy and prediction stability. However, from the experimentation, it was found that 

domain knowledge can be found to enhance, evaluate and confirm the computational 

outcome [26].  

 

Song et al used grey relational analysis to predict software effort with small data sets.  The 

authors in this paper particularly focus on feature subset selection and effort prediction at an 

early stage of project. For this purpose, the author proposes an approach using Grey 

Relational Analysis (GRA) of Grey System Theory (GST). The results are evaluated on the 

five publicly available data sets. The result shows that this approach is better than other 

machine learning techniques. Software development is a growing process because as it 

proceeds, collect and analyze deficient information, and try to optimize the development 

process. So according to author, effort prediction methods must be suitable for dealing with 

uncertainty and continuous effort estimating [27]. GST requires a limited amount of data to 

estimate the behavior of uncertainty system. In this paper, the authors focus on the feature 

subset selection and effort prediction with-between project data sets at an early stage of 

development process [27]. Grey Relational Analysis is used to measure all the influences of 

various factors and relationships among data series that is a collection of measurement. The 

authors view the feature data as series and software effort as output and applied Grey 

Relational Analysis to select the optimal feature subset for software effort prediction. The 

steps to select optimal feature subset using GRA includes: data series construction; 

normalization; grey relational grade calculation; feature subset selection. The GRA based 

software effort prediction method GRACE first construct data series from a project, and 
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measure the grey relational grade among the series, and then use most significant projects to 

predict the effort for new project [27].  

 

Attarzadeh et al introduces fuzzy logic concept in fuzzy logic model which include three 

main stages, fuzzification, inference of rules and defuzzification. The evaluation criteria for 

the model are Magnitude of Relative Error. In order to develop a fuzzy system, the 

requirement is to develop a fuzzy system requires that the different categories of different 

input into fuzzy sets. The membership functions which are used in it are two sided guassian 

membership function, and some rules are also suggested for the model. The result shows that 

MMRE by applying fuzzy logic is smaller than other fuzzy logic models [28].  

 

2.4 Summary 

There are various approaches used for effort estimation, also there are a number of tools 

which are available for effort estimation. Some of the models which are developed for effort 

estimation are discussed. However, the main conclusion is that reliability of the effort 

estimation is still the big issue. 
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CHAPTER 3 

 

FRAMEWORK DESIGN 

 

In this chapter, the design of framework is discussed in detail, which will be adopted to build 

the model which will be used for effort estimation. For building the model, data is collected 

from different sources which are used to train and test the fuzzy neural network. 

The design of the database is discussed in section 3.1.  The method used to find the 

parameters of guassian membership is discussed in section 3.2. Section 3.3 describes the 

process that is adopted to extract rules from data. The topology and training algorithm of 

FNN is discussed in section 3.4. The summary of this chapter is given in section 3.5. 

 

3.1 Database Design 

 

The basic step for the implementation is to design the database, because in order to train the 

fuzzy neural network, we have to retrieve the data from the database, so its designing is 

important. The database engine which is used to store the data is MS Access which is easy to 

use by everyone. The structure and details of database are as follows: 

 

3.1.1 Structure of Database 

In the database, we have basic two tables, one is “Training Data”, which is used to train the 

fuzzy neural network, the other one is “Testing Data”, which is used to test or in other words 

to evaluate the performance the fuzzy neural network.  The attributes of training and testing 

data are discussed below. 
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3.1.1.1 Training & Testing Data 

The attributes for the training and testing data are the same which are given in table 3.1.  

 

 

Training & Testing Data Attributes 

Field Name Data Type Primary 

Key 

Field Size 

ID AutoNumber Yes Long Integer 

PREC Text  255 

FLEX Text  255 

RESL Text  255 

TEAM Text  255 

PMAT Text  255 

RELY Text  255 

DATA Text  255 

CPLX Text  255 

RUSE Text  255 

DOCU Text  255 

TIME Text   255 

STOR Text  255 

PVOL Text  255 

ACAP Text  255 

PCAP Text  255 

PCON Text  255 
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AEXP Text  255 

PEXP Text  255 

LTEX Text  255 

TOOL Text  255 

SITE Text  255 

SCED Text  255 

LOC Number  Double 

ACTUAL_EFFORT Number  Double 

Table 3.1 Attributes of Training & Testing Data 

 

There are 25 fields in the table. All the input attributes are categorized into six different 

rankings ranges from very low, low, nominal, very high, extra high and high. The 

output/target field is categorized into low, medium, high. The description of the attributes is 

as follows. 

 

3.1.1.1.1 ID 

The field named ID is a primary key and it simply contains the row number. 

 

3.1.1.1.2 PREC 

PREC stands for “Precedentedness”. It reveals the experience the of the software developer to 

the present project context [29]. If the software developer had been working in present 

project context then PREC is high. 
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3.1.1.1.3 FLEX 

FLEX represents “Development Flexibility”. It holds the number of constraints that the 

project has to meet. The more rigid the constraints lower the rating [30].  

 

3.1.1.1.4 RESL 

RESL indicates “Architecture/Risk Resolution”. It combines two factors “Design 

Thoroughness” and “Risk Elimination” [31]. The rating of this attribute is the weighted 

average of the several characteristics. For example, one of the characteristics is that risk 

management plan identifies all vital risks [31].  

 

3.1.1.1.5 TEAM 

TEAM stands for “Team Cohesion”, and it signifies the capability of a team to work as a 

team [29]. This factor consider for the causes of project instability due to complexity in 

coordinating the project stakeholder. This may be due to deficient of experience in 

stakeholders to work as a team [31].  

 

3.1.1.1.6 PMAT 

PMAT represents “Process Maturity” and it is organized around the Software Engineering 

Institute’s Capability Maturity Model and the time period for the rating is that when the 

project starts [31].  

 

3.1.1.1.7 RELY 

RELY stands for “Required Software Reliability”. Rely is defined as the measure of the 

amount of to which software must perform its projected role. If the software failure causes 
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slightly trouble, then Rely is low, and if it causes danger to human life, then Rely is very high 

[31].  

 

3.1.1.1.8 DATA 

DATA stands for “Database Size”. Data tries to measure the influence that large data 

requirement have on product development [31] 

.  

3.1.1.1.9 CPLX 

CPLX  indicates “Product Complexity”. According to [31], complexity is divided into five 

areas which are: control operations, computational operations, device-dependent operations, 

data management operations, and user interface management operations. The evaluation of 

the complexity depends on the individual weighted average of these areas [31].  

 

3.1.1.1.10 RUSE 

RUSE stands for “Required Reusability”. This cost driver is evaluated in terms of effort 

needed to build components which will be used in future. If the component is build to be used 

across multiple programs, then effort is high [31] 

.  

3.1.1.1.11 DOCU 

DOCU indicates “Documentation match to Life-Cycle needs”. The evaluation of this driver is 

based on the appropriateness of the project’s documentation to its life cycle needs [31]. When 

the project documentation is appropriate according to the life cycle needs, then DOCU is 

high. 
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3.1.1.1.12 TIME 

TIME represents “Execution Time Constraint”. Time is defined as the evaluation of the 

execution time constraint that is forced upon a software system and is expressed in terms of 

the percentage of the execution time used by the system or sub system out of the available 

execution time [31].  

 

3.1.1.1.13 STOR 

STOR represents “Main Storage Constraint”. Stor represents the degree of the storage 

constraint that will be consumed by the software [31].  

 

3.1.1.1.14 PVOL 

PVOL indicates “Platform Volatility”.  The word platform is used to represent the software 

and hardware which are used by any program to perform its assignment. It can include any 

compilers and assemblers which support the development of the software system. If there is 

major change in platform after every twelve months, then PVOL is low [31].  

 

3.1.1.1.15 ACAP 

ACAP stands for “Analyst Capability”. Acap is a personnel factor and depends on the 

individual analysis and design capability, efficiency and carefulness, and ability to 

communicate and cooperate [31].  

 

3.1.1.1.16 PCAP 

PCAP shows “Programmer Capability”.  The evaluation of the programmer capability is 

based on the aptitude of a programmer as a team, as well as ability, efficiency, carefulness 

and ability to communicate and cooperate [31].  
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3.1.1.1.17 PCON 

PCON indicates “Personnel Continuity”.  The evaluation of PCON is based on the project 

annual personnel turnover [30]. If the project annual personnel turnover rate is 48% per year, 

then PCON is very low [31].  

 

3.1.1.1.18 AEXP 

AEXP shows “Application experience”. Aexp shows the level of application experience the 

project team which are developing the software has with this type of application [31].  

 

3.1.1.1.19 PEXP 

PEXP stands for “Platform Experience” and accounts for the understanding of the platforms 

including more graphical user interface, database, networking and distributed middleware 

capabilities. If the developer has platform experience of 2 months, it is considered as very 

low [31].  

  

3.1.1.1.20 LTEX 

LTEX indicates “Language and Tool Experience” and it is a measure of level of experience 

of programming language and software tool. An experience of less than or equal to two 

months, it is counted as very low [31] 

.  

3.1.1.1.21 TOOL 

TOOL represents the “Use of Software Tools”. The use of software tool ranges from simple 

edit and debug code to integrated lifecycle management tools [31].  
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3.1.1.1.22 SITE 

SITE stands for “Multisite Development”. The evaluation of this attribute is based on 

measurement of site collocation and communication support. For example, if the site 

communication is through some phone, mail, it is considered as very low [31].  

 

3.1.1.1.23 SCED 

SCED show “Required Development Schedule”. Sced measure the schedule constraint 

imposed on the project team developing the software and is defined in terms of the 

percentage of the schedule stretch out [31].  

  

3.1.1.1.24 LOC 

LOC stands for “Lines of Code”. Loc is the measure of the size of project. The loc is based 

on the code which is delivered as a part of product, created by project staff [32].  

 

3.1.1.1.25 ACTUAL_EFFORT 

ACTUAL_EFFORT is the total effort required for project in terms of man month [33].  

 

The next step which comes is to train the fuzzy neural network. For training of fuzzy neural 

network, we need to know rules and have to find the parameters of the guassian membership 

function for the continuous attribute named “LOC”. 
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3.2 Finding the Parameters of the Gaussian Function 

We have to find the parameters of the guassian membership function for the attribute named 

“LOC”. LOC contain continuous numeric data. The rating of “LOC” is categorized as 

• Very Low 

• Low 

• Medium 

• High 

• Very High 

• Extra High 

 

The reason to use guassian membership function is that for effort estimation, it behaves well 

as compared to triangular membership function [34]. To find the parameters of the 

membership function of each category of the attribute, first we have to know the guassian 

membership function. The formula is 

 

 ................................... 3.1 [34] 

 

From the formula, we know that we have to find the mean and variance for each category. To 

differentiate the ranking, the data is divided into six different clusters and each cluster 

represent one category, then we find the mean and variance of each cluster and the guassian 

membership function for each cluster is different. To make cluster of each category, we have 

used k-means clustering. First, we will discuss how to make clusters, and then from clusters 

how to find mean and variance.  
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The basic flow of the k-means clustering is shown in the figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

   

   

   

 

 

 

          Fig 3.1 k-Means Clustering Flow 
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The steps which are adopted to make clusters are shown turn by turn: 

 

3.2.1 Initiate Centers Randomly 

The first step to make clusters is to initiate the centers randomly. The number of centers is 

equal to the number of clusters. So here, the number of centers which are initialized is six.  

 

3.2.2 Calculate Distance 

The next step is to calculate the distance of each object against every center. To find the 

distance, we used Euclidean distance.  

…….................................... 3.2 [35] 

Where i represents the center of each cluster. 

 

3.2.3 Find Minimum Distance 

Then we find that to which center the distance is nearer, means which cluster distance is 

small. 

 

3.2.4 Add Objects in a Cluster 

Based on the “find minimum distance”, we added objects in the clusters. For example, if the 

distance of object to the center of cluster 3 is the smallest, then the object is added to that 

cluster.  

 

3.2.5 Check Objects Move in a Different Cluster 
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After adding the objects in a cluster, check whether objects move in a cluster which is 

different from a previous cluster. If no object moves from one cluster to another cluster, then 

stop the algorithm, otherwise calculate mean and repeat the steps from 3.2.2 to 3.2.6. 

3.2.6 Calculate Mean/Center 

The mean of the clusters which are formed from the previous step, is calculated. The mean of 

each cluster is calculated as the sum of the values of the objects included in the cluster 

divided by the total number of objects in the cluster.  

 

……. ................................... 3.3 [36] 

 

The parameters of the guassian membership function include the mean and variance, the 

mean has been calculated when making the clusters. Then after making the clusters, the 

variance of each cluster is calculated, the formula for calculating the variance is given below. 

 

 ……. ................................... 3.4 [36] 

 

 

3.3 Adding & Extracting Rules 

The next step after finding the parameters for the guassian membership function is to make 

the rules which will be passed to the fuzzy neural network. Some rules are hard coded, means 

that they are added by the developer based on the observation and their experience while 

other rules are extracted from the data. Some assumption that was made before adding and 

extracting the rules are given below. 
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RANK NUMBER 

Very Low 1 

Low 2 

Medium 3 

High 4 

Very High 5 

Extra High 6 

Table 3.2 Mapping of Rules from Text to Numeric Form 

 

Some of the rules which were added by the developer based on their observation and 

experience, and also observed from [37]. Some of the hard-coded/observed rules are as 

follows: 

o If ACAP is low, then effort is high 

o If PCAP is high, then effort is low 

o If AEXP is very low, then effort is high 

o If TOOL is low, then effort is high 

o If RELY is low, then effort is low 

o If DATA is high, then effort is high 

o If RELY is low, and DATA is low, then effort is low 

 

While the steps which are adopted to extract the rules from the data are as follows: 
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Fig 3.2 Basic Flow of Rule Extraction 

 

3.3.1 Read Data from the Database 

The first step in rule extraction is to read the data from the database which is in text form. 

 

3.3.2 Assign numbers based on the Ranking 

Add hard coded 
Rules to the 

previous array 

Discard duplicate 
Rules and add 

distinct Rules to 
another array 

Assign Numbers 
based on the ranking 

Check that whether 
Rules are similar to 

one another 

Read Data from the 
Database 
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As the ranking are in text form, we convert it into numeric form for our easiness. It is 

converted into numeric form according to the assumption which is given in table 3.2. So we 

can say that the rules are in numeric form. 

3.3.3 Check whether Rules are similar to one another 

After assigning the numbers, the next step is to check that whether some rules are repeated or 

not. If there is a duplicate rule, then note down their index. 

 

3.3.3 Discard Duplicate Rules 

In order to discard the duplicate rules, copy the array of rules to another array, but not copy 

the duplicate rule. 

 

3.3.4 Add hard coded Rules to the previous array 

The last which we do is, add hard coded rules to the previous array. 

 

3.4 Design of Fuzzy Neural Network (FNN) 

 

3.4.1 Topology of Fuzzy Neural Network 

The topology of FNN contains five layers. The first layer is called input layer, the second is 

conditional element layer which performs fuzzification, the third one is rule layer, the fourth 

is action element layer which performs defuzzification, and the last one is the output layer. 

The topology is shown in figure below. 
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Fig 3.3 Topology of Fuzzy Neural Network 
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3.4.2 Functionality of Layers of Fuzzy Neural Network 

As we know there are three or five layers in the fuzzy neural network. Each Layer depends on 

the other layer. We will discuss the functionality with respect to five layers turn by turn. 

3.4.2.1 Input Layer 

The input layer of fuzzy neural network simply passes the value to the conditional element 

layer. 

 

3.4.2.2 Conditional Element Layer 

The conditional element layer performs fuzzification. Fuzzification is defined as the 

conversion of fuzzy variable into membership value or grade for fuzzy sets [38]. The 

conditional element layer measures the membership grade of each ranking. In the data, we 

have categorical and continuous variables. For categorical attribute, we used singleton 

membership function and for continuous variable, we used guassian membership function 

whose parameters finding method is mentioned in section 3.2. 

 

Singleton membership ship function is defined to be 1 on one rank while 0 on all other ranks. 

We can define fuzzy singleton with a membership function that is 1 one point while zero on 

everywhere else [39].  

 

3.4.2.3 Rule Layer 

The rule layer measures the strength of each rule to fire. The node of each rule layer 

multiplies the input which is coming to this node with their respective weight and adds all the 

inputs which are coming to this node, which is show in equation 3.5 and then applied the 

activation function. The activation function which is used over here is sigmoid activation 

function which is shown in equation 3.6. 
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3.4.2.4 Action Element Layer 

Action element layer performs defuzzification. Defuzzification is defined as a process of 

transforming a fuzzy output into crisp input [39]. The nodes of action element layer depend 

on ranking which are used for the output. In this project, there are three nodes of action 

element layer because we have chosen three ranking for the output i.e. low, medium, high. 

The node of each action layer multiplies the input which is coming to this node with their 

respective weight and adds all the inputs which are coming to this node, which is show in 

equation 3.5 and then applied the activation function. The activation function which is used 

over here is sigmoid activation function which is shown in equation 3.6. 

 

3.4.2.5 Output Layer 

The node of output layer multiplies the input which is coming to this node with their 

respective weight and adds all the inputs which are coming to this node, which is show in 

equation 3.5 and then applied the activation function. The activation function which is used is 

shown in equation 3.7. 

∑
=

=
p

j
k actionoutvOutput

1
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3.4.3 Training Algorithm for Fuzzy Neural Network 
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After deciding the topology for the respective data and understanding the functionality of 

layers, the next step is to train the FNN. For training FNN, variation of evolutionary 

algorithm is used to evolve the weights of FNN. An evolutionary algorithm is a stochastic 

search method and is very similar to biological evolution [40]. In FNN, there are five layers, 

and each neuron in a layer is connected to neurons of the conditional layer, and neurons in the 

conditional layer are connected to the neurons in the rule layer and neurons in the rule layer is 

connected to the neurons in the action layer and neurons in the action layer is connected 

output neuron in the output layer. The network is trained for several iterations, with each 

iteration; the error is computed as the difference between the network output and observable 

output.  The combination of randomly assign weight, which gives the low error, replaces the 

weights with other combination of weights, which gives high error. This process is called 

training.  

Training is the process to adjust the connection weights to enable the network to produce the 

expected output for all inputs.  

 

The main steps which are used to train the FNN are as follows: 

 

3.4.3.1 Initialize the Population 

In algorithm, the first step is to create the population.  So initially population of size 10 is 

created means 10 chromosomes are created. But we have experimented with different number 

of chromosomes. The size of chromosome is calculated by the following form. 

Total_No_of_Weights = (size of input * 6) + no of rule layer nodes + no of action layer 

nodes……………………................................... 3.8 

Where total_No_of_Weights contains the total number of weights that are used to train the 

fuzzy neural network, and the weights are randomly assigned. 
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3.4.3.2 Feeding Input to the Network 

After the initialization of population, the next step is to feed the inputs into the network. The 

Fuzzy network calculates the output by following the steps which is described in 

functionality of layers, and returns the results. 

 

3.4.3.3 Calculation of Error 

The steps which are mentioned above are repeated for each chromosome and error rate of 

each chromosome will be measured. Error is affirmed as the difference between the actual 

network output and the observable outcome shown in equation 3.9. Observable outcome is 

the effort per person months. 

 Error= actual network output – desired/observable output……….........................3.9 

 

After the calculation of error, the steps of algorithm are applied. 

 

3.4.3.4 Selection Process 

After calculation of error, selection step is applied. In this step the best individuals are 

selected. There are different methods of selecting it Its up to the developer or user to select 

any method for selection. Here we use Rank Selection.  In this selection method, the 

individuals are ranked according to their fitness, and individuals having the high fitness 

value/lowest rank are selected and how many individuals are selected is defined by the user.  

We have experimented by selecting different number of individuals. For example if we want 
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to choose four best individuals, it means four individuals having the highest fitness value 

which are at the low rank are selected. We take the fitness criteria on the basis of error. The 

chromosomes whose error is low have high fitness function, so those chromosomes whose 

error is low are selected. It is summarized in equation 3.10. 

    Low Error = High Fitness 

    High Error = Low Fitness         ………................................... 3.10 

 

3.4.3.5 Crossover Operation 

The crossover operation is defined as the combination of connection weights of two 

individuals which have been selected from the selection process. The cross over rate is 

defined by the user. The cross over rate may be 50% and 50%. It means that 50 percent of the 

connection weight of one individual is selected and 50 percent of the connection weight of 

second best individual is selected. 

 

3.4.3.6 Mutation & Reinsertion Process 

After crossover of chromosomes, the values of chromosomes are mutated. The number of 

chromosomes which are mutated depends on the process of reinsertion. In reinsertion 

process, the method which is used is Elitist Reinsertion. In this method, the number of 

offspring’s created is less than the number of parents, and offspring replaces the worst 

parents. The worst parents are those whose fitness is low means whose error is high. In our 

case, the best chromosomes are kept the same which have high fitness value, and other 

chromosomes are also replaced by chromosomes which are cross over but with small 

variations with self adaptive parameter.  

The variations by using self adaptive parameter are summarized in equation 3.11. 

 ))1,0(exp(][][ ''
jjj Nii τσσ ∗=
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                                                               ………………..................... 3.11 [41] 

 

 

where j=1, 2………………..size means the total number of weights and bias in the neural 

network.  

 

The above overall steps are repeated for each iteration in order to train FNN. 

 

3.4.4 Testing for Fuzzy Neural Network 

The fuzzy neural network has two phases: Training and Testing. In training phase, the 

network is trained by providing the complete information about the characteristics of the data 

and the observable outcomes to perform a particular task. FNN develops the model that 

learns the relationship between the input data and desired outcome in the training phase. 

Whereas in testing phase, the testing data is provided as input. The performance of this phase 

depends on the training phase, means it depends on the samples that are provided during 

training phase and also on the number of times, the network is trained and how much 

accurate the network is trained. It is impossible that the network output is 100% precise for 

any input. 

For testing the FNN, cross validation method is used, and in cross validation, we use k-fold 

method, in which data is divided into different subsets, one subset is called testing data which 

is not used in training, the other subsets are called training data. We have done 

experimentation by taking each subset as a testing data. In testing phase, weights of the 

trained FNN and test data is provided to the network and output is calculated by performing 

the steps given in section 3.4.3.2 to 3.4.3.3. 

 

)1,0(][][ '
jjii Njweightjweight ⋅±= σ

size∗= 2/1τ
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3.5 Summary 

We can teach a network to perform a specific task by using the following procedure. We 

present the network with the training examples which contain the sample of activities for the 

input units and also the desired output for the output unit, then present the network with 

different randomly assign weight i.e. with chromosomes. In others words, we can say that we 

initiate the population. Then determine how much difference exists between the network 

output and the desired output. Error is calculated by using RMSE. The next step is to 

determine the individuals /chromosomes with high fitness i.e. whose error is low. The best 

individuals whose error is low are kept as it is, and other chromosomes are also replaced by 

the weights of these chromosomes but with the little variations by using crossover operation 

and self adaptive parameter.  
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CHAPTER 4 

 

IMPLEMENTATION DETAILS & USER INTERFACE 

 

Our task is to develop a model for the effort estimation using fuzzy neural network. In this 

chapter, we discuss implementation details regarding the development of model, and also the 

user interface.  Implementation details are discussed in section 4.1. Section 4.2 discusses the 

user interface and summary of this chapter is given in section 4.3. 

 

4.1 Implementation Details 

For the implementation, latest technologies are used; the language which is used for the 

implementation of this project is C# and the tool which is used for it is Microsoft Visual 

Studio.Net version 2005 and database engine is Microsoft Access. 

Microsoft Visual Studio contains the set of development tools for building ASP.Net 

application, XML web services, desktop applications and mobile applications. It can be used 

to develop console and graphical user interface applications along with windows form 

applications, web applications etc [42]. It contains Visual Basic, Visual C#, and Visual J #. 

They all use the same integrated development environment [43].  

The code which we implement should have: 

o Proper User Interface in order to interact with the user for completion of task. 

o Error Free  

o Easy to Understand 
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4.2 User Interface 

User interface of this application is divided into three parts. 

i). Training 

ii). Testing 

iii). Effort Estimation 

Fig 4.1 User Interface 

 

4.2.1 Training 

In order to train the fuzzy neural net, the parameters are selected. The first parameter is the 

recombination parameter in which the user decides that whether he/she wants to apply 
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mutation process on crossover offspring’s or on without crossover chromosomes. Moreover, 

the number of iterations and the size of chromosomes which are taken initially are also 

selected by the user. As there are three datasets which can be used for training, the user also 

have to select the dataset on which training is to be done. Then click on the training button. 

After training, the message box is displayed which tells that Training is successfully 

completed. 

 

 

Fig 4.2 User Interface with Parameters Selected 
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Fig 4.3 Training of FNN 

 

4.2.2 Testing 

In order to test the neural net, click on the testing button. . When testing is finished, the 

message box is displayed which tells that Testing is successfully completed. 
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Fig 4.4 Testing of FNN 

 

4.2.3 Effort Estimation 

When the user clicks on the “Estimation” button, another form will open, in which user fills 

the specified fields and click on the “Estimate” button, the resultant value is displayed in the 

text box. 
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Fig 4.5 Effort Estimation 
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Fig 4.6 Example of Effort Estimation 

 

4.3 Summary 

In this chapter, we discussed the implementation details, and also the user interface, means 

how it looks and how it works. 
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CHAPTER 5 

 

RESULTS & TESTING 

 

In this chapter, we will detail the results of system testing on different datasets. Each dataset 

was divided into two parts: training dataset and testing dataset. For various experiments, the 

system was trained on the training dataset and then its results were analyzed on the test 

dataset.. The results are represented in the form of tables and graphs to increase readability 

for the user. 

This chapter is organized as follows. Section 5.1 describes the datasets. The factors which are 

used for the analysis purpose are described in section 5.2.  The training results of the datasets 

and their analysis are discussed in section 5.3. The testing results of the datasets and their 

analysis are discussed in section 5.4. The summary of this chapter is given in section 5.5. 

  

5.1 Input Dataset Characteristics  

Three different datasets was used to evaluate the performance of the Fuzzy Neural Network 

(FNN). The first dataset contain real data that is taken from [33] and from ERP team leader of 

College of E&ME. The second dataset was created by a professional developer based on his 

experience with various projects. The third dataset contain randomly generated data. For the 

analysis purpose, each dataset is divided into three equal parts, two parts are used for the 

training purpose and one is used for the testing purpose, and every part is used for the testing 

purpose in each experiment.  
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5.2 Factors of Comparisons 

We evaluate the performance of FNN in terms of its Root Mean Square Error (RMSE). While 

taking the experiments, the factors which are used for the comparisons and analysis purpose 

are: 

o RMSE effect with and without crossover operations.  

o RMSE effect by changing the initial size of the population i.e generation of 

chromosomes at the start of algorithm.  

 

5.3 Training Results & Analysis 

Different experiments were conducted in order to observe how well the FNN is trained, or in 

other words, we can say measure the performance of the FNN. The experiments are carried 

out in various ways. For the purpose of performance measure, total of 216 experiments were 

performed for the three datasets including the three combinations of each dataset, out of 

which 108 are with crossover operation and 108 are without crossover operations. Crossover 

operation means that connection weights of two best chromosomes are combined. The 

population sizes which are used for the analysis purpose are 10, 20, 50 and 100.  The results 

of the experiments for different datasets are discussed below. 

 

5.3.1 Results 

We will discuss the results of each dataset with the different combination of data turn by turn.  

 

5.3.1.1 Dataset 1 

We will discuss the results with different combinations of data one by one.  
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5.3.1.1.1 Data Combination 1 (DC11) 

The results of the dataset with data part or data combination 1 (DC11) with and without 

crossover operation and by changing the population size, and by selecting the different 

number of best chromosomes are shown in Table 5.1 and 5.2.   

 

S. No Population 

Size 

Selection of Best Chosen Chromosomes for Next 

Generation (RMSE  of Experiments) 

1 10 4 5 6 

1.63820667963474 1.63821115601164 1.63819126295196

2 20 8 10 12 

1.60307678886961 1.63819820670947 1.63844337162949

3 50 20 25 30 

1.61788060526262 1.63819177597436 1.63818952520204

4 100 40 50 60 

1.62247988886841 1.63819371843808 1.5314973753452 

Table 5.1 RMSE of Training Results with Crossover (DC11) 
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S. No Population 

Size 

Selection of Best Chosen Chromosomes for Next 

Generation (RMSE  of Experiments) 

1 10 4 5 6 

1.63698678422563 1.63827307071342 1.63829625954059

2 20 8 10 12 

1.6381893467108 1.638189897977 1.63820892889931

3 50 20 25 30 

1.58064683566918 1.63818924680562 1.63818960239284

4 100 40 50 60 

1.58141026519184 1.62310124962382 1.63818932140575

Table 5.2 RMSE of Training Results without Crossover (DC11) 

 

From the table 5.1, we observe that lowest RMSE is 1.5314973753452 with population size 

100 and number of best chosen chromosome is 60, and their training pattern is shown in the 

Fig 5.1. And from table 5.2, the lowest RMSE is 1.58064683566918 with population size 50 

and number of best chromosome is 20 and their training graph is shown in Fig 5.2.  We 

observe from the graphs, as the number of iteration increases, the root mean square error 

decreases, and after some iteration, it becomes stable, means it does not learn more patterns 

after becoming stable. 
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Fig 5.1 Graph with 100 Population Size and 60 Best Chosen Size of Chromosomes 

(DC11 with Crossover) 

 

 

Fig 5.2 Graph with 50 Population Size and 20 Best Chosen Size of Chromosomes (DC11 

without Crossover) 

 

The summary of the RMSE’s of the results given in table 5.1 and 5.2 with and without 

crossover are shown in Fig 5.3. 
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Fig 5.3 Summary of the Training Results of DC11 with & without Crossover Operation 

 

The averages of the RMSE’s of the results calculated from table 5.1 and 5.2 are given in 

Table 5.3. 

 

Average RMSE of Training Results with 

Crossover 

Average RMSE of Training Results 

without Crossover 

1.626322902 1.627322567 

Table 5.3 Average RMSE of Training Results with & without Crossover (DC11) 

 

5.3.1.1.2 Data Combination 2 (DC12) 

The results of the dataset with data part or data combination 2 (DC12) by changing the 

population size, and by selecting the different number of best chromosomes with and without 

crossover operation are shown in Table 5.4 and 5.5.   
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S. No Population 

Size 

Selection of Best Chosen Chromosomes for Next 

Generation (RMSE  of Experiments) 

1 10 4 5 6 

1.99399330192257 1.99416156726356 1.9941069267815 

2 20 8 10 12 

1.99320061238867 1.99383184617617 1.99415418546137

3 50 20 25 30 

1.99433545139472 1.99394512166747 1.96405630896112

4 100 40 50 60 

1.96035569971199 1.9261357343588 1.84199952084285

Table 5.4 RMSE of Training Results with Crossover (DC12) 

 

S. No Population 

Size 

Selection of Best Chosen Chromosomes for Next 

Generation (RMSE  of Experiments) 

1 10 4 5 6 

1.99404166149417 1.99421863259106 1.99402740910471

2 20 8 10 12 

1.99377517481042 1.99393735896395 1.99401180492594

3 50 20 25 30 

1.98003945625951 1.95941363637786 1.99401232615357

4 100 40 50 60 

1.92577461885759 1.99367552784335 1.97419501805537

Table 5.5 RMSE of Training Results without Crossover (DC12) 
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From the table 5.4, we observe that lowest RMSE is 1.84199952084285 with population size 

100 and best chosen chromosome is 60, and their training pattern is shown in the Fig 5.4. 

And from table 5.5, the lowest RMSE is 1.92577461885759 with population size 100 and 

number of best chromosome is 40 and their training graph is shown in Fig 5.5. 

 

 

Fig 5.4 Graph with 100 Population Size and 60 Best Chosen Size of Chromosomes 

(DC12 with Crossover) 

 

 

Fig 5.5 Graph with 100 Population Size and 40 Best Chosen Size of Chromosomes 

(DC12 without Crossover) 
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The summary of the RMSE’s of the results given in table 5.4 and 5.5 with and without 

crossover are shown in Fig 5.6. 

 

 

Fig 5.6 Summary of the Training Results of DC12 with & without Crossover Operation 

 

 The averages of the rmse’s of the results calculated from table 5.4 and 5.5 are given in Table 

5.6. 

 

Average RMSE of Training Results with 

Crossover 

Average RMSE of Training Results 

without Crossover 

1.970356356 1.982593552 

Table 5.6 Average RMSE of Training Results with & without Crossover (DC12) 

 

5.3.1.1.3 Data Combination 3 (DC13) 

The results of the dataset with data part or data combination 3 (DC13) by changing the 

population size, and by selecting the different number of best chromosomes with and without 

crossover operation are shown in Table 5.7 and 5.8.   
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S. No Population 

Size 

Selection of Best Chosen Chromosomes for Next 

Generation (RMSE  of Experiments) 

1 10 4 5 6 

1.66440318234985 1.66258289577062 1.66299836201039

2 20 8 10 12 

1.66237543532013 1.66229812330325 1.66267756484166

3 50 20 25 30 

1.66130138748718 1.65747375101583 1.64021174791185

4 100 40 50 60 

1.62974428634952 1.6619340641745 1.6329793984847 

Table 5.7 RMSE of Training Results with Crossover (DC13) 

 

S. No Population 

Size 

Selection of Best Chosen Chromosomes for Next 

Generation (RMSE  of Experiments) 

1 10 4 5 6 

1.66273619584422 1.66215288845445 1.65997856921291

2 20 8 10 12 

1.63749217758516 1.6622989208378 1.64448822959757

3 50 20 25 30 

1.63489799862911 1.64760910595616 1.65274769443576

4 100 40 50 60 

1.66258454395329 1.63931136926958 1.63209098819314

Table 5.8 RMSE of Training Results without Crossover (DC13) 
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From the table 5.7, we observe that lowest RMSE is 1.62974428634952 with population size 

100 and best chosen chromosome is 40, and their training pattern is shown in the Fig 5.7.And 

from table 5.8, the lowest RMSE is 1.63209098819314 with population size 100 and number 

of best chromosome is 60 and their training graph is shown in Fig 5.8. 

 

 

Fig 5.7 Graph with 100 Population Size and 40 Best Chosen Size of Chromosomes 

(DC13 with Crossover) 

 

 

Fig 5.8 Graph with 100 Population Size and 60 Best Chosen Size of Chromosomes 

(DC13 without Crossover) 
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The summary of the RMSE’s of the results given in table 5.7 and 5.8 with and without 

crossover are shown in Fig 5.9. 

 

 

Fig 5.9 Summary of the Training Results of DC13 with & without Crossover Operation 

 

 The averages of the rmse’s of the results calculated from table 5.7 and 5.8 are given in Table 

5.9. 

 

Average RMSE of Training Results with 

Crossover 

Average RMSE of Training Results 

without Crossover 

1.655081683 1.649865723 

Table 5.9 Average RMSE of Training Results with & without Crossover (DC13) 

 

As we observe from the above tables and graphs that FNN is not well trained for the data 

combination 2 as compared to the other combinations because it contains highest RMSE. The 

main drawback with this dataset is the small number of training examples, and the network 
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needs a large number of examples to better train a network, but on the other hand the main 

advantage of this dataset is that it contains real data, which is good for training.  

 

5.3.1.2 Dataset 2 

Now we will discuss the results of dataset 2 with different combinations of data turn by turn.  

 

5.3.1.2.1 Data Combination 1 (DC21) 

The results of the dataset with data part or data combination 1 (DC21) with and without 

crossover operation and by changing the population size, and by selecting the different 

number of best chromosomes are shown in Table 5.10 and 5.11.   

 

S. No Population 

Size 

Selection of Best Chosen Chromosomes for Next Generation 

(RMSE  of Experiments) 

1 10 4 5 6 

0.774147841943023 0.774087828804581 0.774321967242386

2 20 8 10 12 

0.77417087618872 0.774077129494083 0.77407686235788 

3 50 20 25 30 

0.774076772862918 0.774088395035455 0.761375185886316

4 100 40 50 60 

0.739998872768895 0.7377853709561 0.751061950493052

Table 5.10 RMSE of Training Results with Crossover (DC21) 
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S. No Population 

Size 

Selection of Best Chosen Chromosomes for Next Generation 

(RMSE  of Experiments)  

1 10 4 5 6 

0.774085587508678 0.773391863030158 0.774078357483707

2 20 8 10 12 

0.765870447963984 0.774076607421646 0.774076644156088

3 50 20 25 30 

0.752880647900112 0.774077057228241 0.76895485819402 

4 100 40 50 60 

0.72323205683826 0.754993139338827 0.765907444900027

Table 5.11 RMSE of Training Results without Crossover (DC21) 

 

From the table 5.10, we observe that lowest RMSE is 0.7377853709561 with population size 

100 and best chosen chromosome is 50, and their training pattern is shown in the Fig 

5.10.And from table 5.11, the lowest RMSE is 0.72323205683826 with population size 100 

and number of best chromosome is 40 and their training graph is shown in Fig 5.11. 
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Fig 5.10 Graph with 100 Population Size and 50 Best Chosen Size of Chromosomes 

(DC21 with Crossover) 

 

Fig 5.11 Graph with 100 Population Size and 40 Best Chosen Size of Chromosomes 

(DC21 without Crossover) 

 

The summary of the RMSE’s of the results given in table 5.10 and 5.11 with and without 

crossover are shown in Fig 5.12. 

 

 

Fig 5.12 Summary of the Training Results of DC21 with & without Crossover 

Operation 



69 
 

 

The averages of the rmse’s of the results calculated from table 5.10 and 5.11 are given in 

Table 5.12. 

Average RMSE of Training Results with 

Crossover 

Average RMSE of Training Results 

without Crossover 

0.765272412 0.764635393 

Table 5.12 Average RMSE of Training Results with & without Crossover (DC21) 

 

5.3.1.2.2 Data Combination 2 (DC22) 

Then results of the dataset with data part or data combination 2 (DC22) by changing the 

population size, and by selecting the different number of best chromosomes with and without 

crossover operation are shown in Table 5.13 and 5.14.   

 

S. No Population 

Size 

Selection of Best Chosen Chromosomes for Next Generation 

(RMSE  of Experiments)  

1 10 4 5 6 

0.785220409133273 0.785183936061847 0.785183900985981

2 20 8 10 12 

0.785395703857917 0.785085388623097 0.78520099582178 

3 50 20 25 30 

0.747352559679869 0.737673513249608 0.748861346785677

4 100 40 50 60 

0.785183368075852 0.634502449903263 0.757567461920363

Table 5.13 RMSE of Training Results with Crossover (DC22) 
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S. No Population 

Size 

Selection of Best Chosen Chromosomes for Next Generation 

(RMSE  of Experiments) 

1 10 4 5 6 

0.78518811646665 0.78522879206761 0.788783822690797

2 20 8 10 12 

0.785183363280739 0.785192005151932 0.785183572550179

3 50 20 25 30 

0.709138059073213 0.782552663752828 0.760856989596845

4 100 40 50 60 

0.772512979595968 0.756998074179578 0.773561205495457

Table 5.14 RMSE of Training Results without Crossover (DC22) 

 

From the table 5.13, we observe that lowest RMSE is 0.634502449903263 with population 

size 100 and best chosen chromosome is 50, and their training pattern is shown in the Fig 

5.13.And from table 5.14, the lowest RMSE is 0.709138059073213 with population size 50 

and number of best chromosome is 20 and their training graph is shown in Fig 5.14. 
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Fig 5.13 Graph with 100 Population Size and 50 Best Chosen Size of Chromosomes 

(DC22 with Crossover) 

 

Fig 5.14 Graph with 50 Population Size and 20 Best Chosen Size of Chromosomes 

(DC22 without Crossover) 

 

The summary of the RMSE’s of the results given in table 5.13 and 5.14 with and without 

crossover are shown in Fig 5.15. 

 

 

Fig 5.15 Summary of the Training Results of DC22 with & without Crossover 

Operation 
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The averages of the rmse’s of the results calculated from table 5.13 and 5.14 are given in 

Table 5.15. 

Average RMSE of Training Results with 

Crossover 

Average RMSE of Training Results 

without Crossover 

0.76020092 0.772531637 

Table 5.15 Average RMSE of Training Results with & without Crossover (DC22) 

 

5.3.1.2.3 Data Combination 3 (DC23) 

Then results of the dataset with data part or data combination 3 (DC23) by changing the 

population size, and by selecting the different number of best chromosomes with and without 

crossover operation are shown in Table 5.16 and 5.17.   

 

S. No Population 

Size 

Selection of Best Chosen Chromosomes for Next Generation 

(RMSE  of Experiments) 

1 10 4 5 6 

0.714630955109737 0.726538627533142 0.72695674529044 

2 20 8 10 12 

0.726558485418481 0.726675478297488 0.726537368824476

3 50 20 25 30 

0.726537346599972 0.72653753627359 0.726557356446783

4 100 40 50 60 

0.723558351800119 0.726537474546244 0.726198786612324

Table 5.16 RMSE of Training Results with Crossover (DC23) 
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S. No Population 

Size 

Selection of Best Chosen Chromosomes for Next Generation 

(RMSE  of Experiments) 

1 10 4 5 6 

0.726551463478924 0.72653812290335 0.726538472674194

2 20 8 10 12 

0.726538185942841 0.726537382338909 0.701322929303188

3 50 20 25 30 

0.726544395107216 0.726539287464678 0.72531990226945 

4 100 40 50 60 

0.723400376093425 0.720602851703414 0.726537329786993

Table 5.17 RMSE of Training Results without Crossover (DC23) 

 

From the table 5.16, we observe that lowest RMSE is 0.714630955109737 with population 

size 10 and best chosen chromosome is 4, and their training pattern is shown in the Fig 

5.16.And from table 5.17, the lowest RMSE is 0.701322929303188 with population size 20 

and number of best chromosome is 12 and their training graph is shown in Fig 5.17. 
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Fig 5.16 Graph with 10 Population Size and 4 Best Chosen Size of Chromosomes (DC23 

with Crossover) 

 

Fig 5.17 Graph with 20 Population Size and 12 Best Chosen Size of Chromosomes 

(DC23 without Crossover) 

 

The summary of the RMSE’s of the results given in table 5.16 and 5.17 with and without 

crossover are shown in Fig 5.18. 

 

 

Fig 5.18 Summary of the Training Results of DC23 with & without Crossover 

Operation 
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The averages of the rmse’s of the results calculated from table 5.16 and 5.17 are given in 

Table 5.18. 

Average RMSE of Training Results with 

Crossover 

Average RMSE of Training Results 

without Crossover 

0.725318709 0.723580892 

Table 5.18 Average RMSE of Training Results with & without Crossover (DC23) 

 

5.3.1.3 Dataset 3 

Now we will discuss the results of dataset 3 with different combinations of data turn by turn.  

 

5.3.1.3.1 Data Combination 1 (DC31) 

The results of the dataset with data part or data combination 1 (DC31) with and without 

crossover operation and by changing the population size, and by selecting the different 

number of best chromosomes are shown in Table 5.19 and 5.20. 

 

S. No Population 

Size 

Selection of Best Chosen Chromosomes for Next Generation 

(RMSE  of Experiments) 

1 10 4 5 6 

0.853498565299813 0.853088253350499 0.854353166051225

2 20 8 10 12 

0.853094546950559 0.853090996977275 0.852154627366715

3 50 20 25 30 

0.853087763744071 0.853087753763717 0.853087641064629

4 100 40 50 60 
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0.853087256802815 0.853088166640357 0.85308723411144 

Table 5.19 RMSE of Training Results with Crossover (DC31) 

 

S. No Population 

Size 

Selection of Best Chosen Chromosomes for Next Generation 

(RMSE  of Experiments) 

1 10 4 5 6 

0.853124744626693 0.85312580372016 0.853466542544103

2 20 8 10 12 

0.853104526049794 0.853265680607571 0.853219309384738

3 50 20 25 30 

0.853092096320901 0.853087411303574 0.853101455059848

4 100 40 50 60 

0.85308889437917 0.853087497982272 0.853087233009058

Table 5.20 RMSE of Training Results without Crossover (DC31) 

 

From the table 5.19, we observe that lowest RMSE is 0.852154627366715 with population 

size 20 and number of best chosen chromosomes is 12, and their training pattern is shown in 

the Fig 5.19.And from table 5.20, the lowest RMSE is 0.853087233009058 with population 

size 100 and number of best chromosomes is 60 and their training graph is shown in Fig 5.20. 
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Fig 5.19 Graph with 20 Population Size and 12 Best Chosen Size of Chromosomes 

(DC31 with Crossover) 

 

Fig 5.20 Graph with 100 Population Size and 60 Best Chosen Size of Chromosomes 

(DC31 without Crossover) 

 

The summary of the RMSE’s of the results given in table 5.19 and 5.20 with and without 

crossover are shown in Fig 5.21. 
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Fig 5.21 Summary of the Training Results of DC31 with & without Crossover 

Operation 

 

The averages of the rmse’s of the results calculated from table 5.19 and 5.20 are given in 

Table 5.21 

Average RMSE of Training Results with 

Crossover 

Average RMSE of Training Results 

without Crossover 

0.853150498 0.853154266 

Table 5.21 Average RMSE of Training Results with & without Crossover (DC31) 

 

5.3.1.3.2 Data Combination 2 (DC32) 

The results of the dataset with data part or data combination 2 (DC32) with and without 

crossover operation and by changing the population size, and by selecting the different 

number of best chromosomes are shown in Table 5.22 and 5.23. 

 

S. No Population Selection of Best Chosen Chromosomes for Next Generation 
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Size (RMSE  of Experiments) 

1 10 4 5 6 

0.84582991192323 0.845813122657213 0.847798286849673

2 20 8 10 12 

0.845812381376998 0.845816124754819 0.845915255931628

3 50 20 25 30 

0.845812693606922 0.845813358365221 0.845812360722539

4 100 40 50 60 

0.845111236090684 0.845574422632092 0.845812330815447

Table 5.22 RMSE of Training Results with Crossover (DC32) 
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S. No Population 

Size 

Selection of Best Chosen Chromosomes for Next Generation 

(RMSE  of Experiments) 

1 10 4 5 6 

0.845833345026194 0.845824221376483 0.845812320780172

2 20 8 10 12 

0.845815121172136 0.845813445229444 0.845814691805434

3 50 20 25 30 

0.845813154773314 0.845813113041145 0.845812275056077

4 100 40 50 60 

0.845812448250635 0.845812348582527 0.845813593878958

Table 5.23 RMSE of Training Results without Crossover (DC32) 

 

From the table 5.22, we observe that lowest RMSE is 0.845111236090684 with population 

size 100 and number of best chosen chromosomes is 40, and their training pattern is shown in 

the Fig 5.22. And from table 5.23, the lowest RMSE is 0. 0.845812275056077 with 

population size 50 and number of best chromosomes is 30 and their training graph is shown 

in Fig 5.23. 
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Fig 5.22 Graph with 100 Population Size and 40 Best Chosen Size of Chromosomes 

(DC32 with Crossover) 

 

Fig 5.23 Graph with 50 Population Size and 30 Best Chosen Size of Chromosomes 

(DC32 without Crossover) 

 

The summary of the RMSE’s of the results given in table 5.22 and 5.23 with and without 

crossover are shown in Fig 5.24. 

 

 

Fig 5.24 Summary of the Training Results of DC32 with & without Crossover 

Operation 
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The averages of the rmse’s of the results calculated from table 5.22 and 5.23 are given in 

Table 5.24 

Average RMSE of Training Results with 

Crossover 

Average RMSE of Training Results 

without Crossover 

0.845910124 0.84581584 

Table 5.24 Average RMSE of Training Results with & without Crossover (DC32) 

 

5.3.1.3.3 Data Combination 3 (DC33) 

The results of the dataset with data part or data combination 3 (DC33) with and without 

crossover operation and by changing the population size, and by selecting the different 

number of best chromosomes are shown in Table 5.25 and 5.26. 

 

S. No Population 

Size 

Selection of Best Chosen Chromosomes for Next Generation 

(RMSE  of Experiments) 

1 10 4 5 6 

0.889731133110635 0.889449872478944 0.889393387565423

2 20 8 10 12 

0.889343769475781 0.8894400201316 0.889402742047199

3 50 20 25 30 

0.889359318856807 0.886720720416569 0.887053659050378

4 100 40 50 60 

0.889342547916596 0.889342374392427 0.877870996195777

Table 5.25 RMSE of Training Results with Crossover (DC33) 
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S. No Population 

Size 

Selection of Best Chosen Chromosomes for Next Generation 

(RMSE  of Experiments) 

1 10 4 5 6 

0.889435152662864 0.889345442538824 0.889421363625855

2 20 8 10 12 

0.889366400431416 0.889342521962807 0.889342839631661

3 50 20 25 30 

0.889342903282971 0.879418433408268 0.889344019068735

4 100 40 50 60 

0.889342449852189 0.889342374392427 0.887606809612924

Table 5.26 RMSE of Training Results without Crossover (DC33) 

 

From the table 5.25, we observe that lowest RMSE is 0.877870996195777 with population 

size 100 and number of best chosen chromosomes is 60, and their training pattern is shown in 

the Fig 5.25. And from table 5.26, the lowest RMSE is 0.879418433408268 with population 

size 50 and number of best chromosomes is 25 and their training graph is shown in Fig 5.26. 
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Fig 5.25 Graph with 100 Population Size and 60 Best Chosen Size of Chromosomes 

(DC33 with Crossover) 

 

Fig 5.26 Graph with 50 Population Size and 25 Best Chosen Size of Chromosomes 

(DC33 without Crossover) 

 

The summary of the RMSE’s of the results given in table 5.25 and 5.26 with and without 

crossover are shown in Fig 5.27. 

 

 

Fig 5.27 Summary of the Training Results of DC32 with & without Crossover 

Operation 



85 
 

 

The averages of the rmse’s of the results calculated from table 5.25 and 5.26 are given in 

Table 5.27. 

Average RMSE of Training Results with 

Crossover 

Average RMSE of Training Results 

without Crossover 

0.888037545 0.888387559 

Table 5.27 Average RMSE of Training Results with & without Crossover (DC33) 

 

5.3.2 Cumulative Analysis on the Datasets 

We have compared the results of the datasets in terms of root mean square error. By looking 

at the results, we have drawn some conclusions from it which we will discuss one by one. 

The analysis of the results with respect to different parameters is as follows. 

 

5.3.2.1 Crossover Operation 

 By looking at the table which shows the summaries of the training results of the different 

combination of the datasets, we have observed that in more than half of the results, average of 

RMSE of the experiments is low with crossover operation. Moreover, by looking at the 

graphs which show the summaries of the experiments with and without crossover operation, 

we have observed that lowest root mean square error was associated with the crossover 

operation. So from this observation, we can say that crossover operation improves the 

performance of the network, or in other words the network is better trained with crossover 

operation, because crossover operation  have combined the connection weights of best 

chromosomes, so there is more diversity in the connection weights of chromosomes and more 

chance that RMSE is more reduced.   
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5.3.2.2 Population Size of Chromosomes 

The other thing which we observe from the results is that most of the time the lowest RMSE 

comes with population size of 50 and 100, so the conclusion which we derived from it is that 

“greater the population size, lower rmse”, the reason for this is that larger the population size 

means more variety in the connection weights of the chromosomes which are used to train the 

network.  

 

5.4 Testing Results & Analysis 

Testing is a building block in the development of any application. Testing is defined as a 

process which are used to identify the correctness and performance of the computer software 

or application, means how well it performs. It only discovers the correctness or defects, not 

correcting it. [44] In testing, we are generalizing the error, means how well it performs on the 

untrained data..  There are further categorization of cross validation methods which are 

holdout cross validation, k-fold cross validation, leave one out cross validation [45]. In this 

thesis work, we use the k-fold cross validation method. In k-fold cross validation method, the 

whole data is divided into three subsets and every time one subset is used for testing purpose 

called testing set while other two subset are used for training purpose called training set.. 

Training dataset is used to train the fuzzy neural network and testing data is used to estimate 

that how well the fuzzy neural network is trained. The performance of training and testing 

data is measured in terms of root mean square error. 

 

5.4.1 Results  

As we discussed above, that each dataset is divided into three parts and each part is used in 

testing. So we will discuss the results of testing of dataset with respect to their combination. 
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One important thing is that the part of dataset which is used for testing are not included in 

training.  

 

 

5.4.1.1 Dataset 1 

We will discuss the results with different combinations of data one by one.  

 

5.4.1.1.1 Data Combination 1 (DC11) 

The testing results of the dataset with data part or data combination 1 (DC11) with and 

without crossover operation and by changing the population size, and by selecting the 

different number of best chromosomes are shown in Table 5.28 and 5.29. 

 

S. No Population 

Size 

Selection of Best Chosen Chromosomes for Next 

Generation (RMSE  of Experiments) 

1 10 4 5 6 

1.45955365436334 1.45881584577382 1.45931353345552

2 20 8 10 12 

1.67221054070569 1.45944892615229 1.46071225461028

3 50 20 25 30 

1.45565267726206 1.45905814550451 1.45924126844571

4 100 40 50 60 

1.46871459041243 1.45901631002939 1.6888694613283 

Table 5.28 RMSE of Testing Results with Crossover (DC11) 
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S. No Population 

Size 

Selection of Best Chosen Chromosomes for Next 

Generation (RMSE  of Experiments)  

1 10 4 5 6 

1.45880531400417 1.45848865944384 1.46013526416725

2 20 8 10 12 

1.45915590193692 1.45927174001992 1.45883454739994

3 50 20 25 30 

1.43894845855592 1.45916768663753 1.45924645568662

4 100 40 50 60 

1.45078652756554 1.5116934911351 1.4592239133083 

Table 5.29 RMSE of Testing Results without Crossover (DC11) 

 

From the table 5.28, we observe that lowest RMSE is 1.45565267726206 with population 

size 50 and number of best chosen chromosome is 20. And from table 5.29, the lowest RMSE 

is 1.43894845855592 with population size 50 and number of best chromosome is 20.  

 

The summary of the RMSE’s of the results given in table 5.28 and 5.29 with and without 

crossover operation are shown in Fig 5.28 
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. 

Fig 5.28 Summary of the Testing Results of DC11 with & without Crossover Operation 

 

The averages of the rmse’s of the results calculated from table 5.28 and 5.29 are given in 

Table 5.30. 

 

Average RMSE of Testing Results with 

Crossover 

Average RMSE of Testing Results without 

Crossover 

1.49677267 1.461146497 

Table 5.30 Averages RMSE of Testing Results with & without Crossover Operation 

(DC11) 

 

5.4.1.1.2 Data Combination 1 (DC12) 

The testing results of the dataset with data part or data combination 2 (DC12) with and 

without crossover operation and by changing the population size, and by selecting the 

different number of best chromosomes are shown in Table 5.31 and 5.32. 
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S. No Population 

Size 

Selection of Best Chosen Chromosomes for Next 

Generation (RMSE  of Experiments)  

1 10 4 5 6 

1.47513596603901 1.47376113598488 1.47290812012457

2 20 8 10 12 

1.47384067984055 1.4750779409451 1.47311013970736

3 50 20 25 30 

1.47513652636656 1.47700049059649 1.45148418343979

4 100 40 50 60 

1.40763694062448 1.42044066494135 1.400836484229 

Table 5.31 RMSE of Testing Results with Crossover (DC12) 

 

S. No Population 

Size 

Selection of Best Chosen Chromosomes for Next 

Generation (RMSE  of Experiments)  

1 10 4 5 6 

1.47464973133103 1.47493553816494 1.47714669594494

2 20 8 10 12 

1.4751508626539 1.47725922065732 1.47419741553959

3 50 20 25 30 

1.45278359746026 1.49852533949348 1.47522702234024

4 100 40 50 60 

1.3989814530978 1.47434108641329 1.43583337259369

Table 5.32 RMSE of Testing Results without Crossover (DC12) 
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From the table 5.31, we observe that lowest RMSE is 1.400836484229 with population size 

100 and number of best chosen chromosome is 60. And from table 5.32, the lowest RMSE is 

1.3989814530978 with population size 100 and number of best chromosome is 40.  

 

The summary of the RMSE’s of the results given in table 5.31 and 5.32 with and without 

crossover operation are shown in Fig 5.29 

 

. 

Fig 5.29 Summary of the Testing Results of DC12 with & without Crossover Operation 

 

The averages of the rmse’s of the results calculated from table 5.31 and 5.32 are given in 

Table 5.33. 

 

Average RMSE of Testing Results with 

Crossover 

Average RMSE of Testing Results without 

Crossover 

1.456364106 1.465752611 

Table 5.33 Averages RMSE of Testing Results with & without Crossover Operation 

(DC12) 
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5.4.1.1.3 Data Combination 3 (DC13) 

The testing results of the dataset with data part or data combination 3 (DC13) with and 

without crossover operation and by changing the population size, and by selecting the 

different number of best chromosomes are shown in Table 5.34 and 5.35. 

 

S. No Population 

Size 

Selection of Best Chosen Chromosomes for Next 

Generation (RMSE  of Experiments)  

1 10 4 5 6 

1.46095700758555 1.46470528137562 1.46407424858062

2 20 8 10 12 

1.4655400421302 1.4635136727361 1.46590707359042

3 50 20 25 30 

1.46132408883306 1.46462699359236 1.49989087970591

4 100 40 50 60 

1.43813540919528 1.46463913909041 1.4735391488274 

Table 5.34 RMSE of Testing Results with Crossover (DC13) 



93 
 

 

S. No Population 

Size 

Selection of Best Chosen Chromosomes for Next 

Generation (RMSE  of Experiments) 

1 10 4 5 6 

1.46449313727159 1.46622866650681 1.46235976642011

2 20 8 10 12 

1.53792666932487 1.46593584384851 1.50729283946837

3 50 20 25 30 

1.46347287625809 1.46130603533105 1.50993813968947

4 100 40 50 60 

1.46495282592517 1.47031788961447 1.47128255848725

Table 5.35 RMSE of Testing Results without Crossover (DC13) 

 

From the table 5.34, we observe that lowest RMSE is 1.43813540919528 with population 

size 100 and number of best chosen chromosome is 50. And from table 5.35, the lowest 

RMSE is 1.46130603533105 with population size 50 and number of best chromosome is 25.  

 

The summary of the RMSE’s of the results given in table 5.34 and 5.35 with and without 

crossover operation are shown in Fig 5.30. 
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. 

Fig 5.30 Summary of the Testing Results of DC13 with & without Crossover Operation 

 

The averages of the rmse’s of the results calculated from table 5.34 and 5.35 are given in 

Table 5.36. 

 

Average RMSE of Testing Results with 

Crossover 

Average RMSE of Testing Results without 

Crossover 

1.465571082 1.478792271 

Table 5.36 Averages RMSE of Testing Results with & without Crossover Operation 

(DC13) 
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5.4.1.2 Dataset 2 

We will discuss the results with different combinations of data one by one.  

 

5.4.1.2.1 Data Combination 1 (DC21) 

The testing results of the dataset with data part or data combination 1 (DC21) with and 

without crossover operation and by changing the population size, and by selecting the 

different number of best chromosomes are shown in Table 5.37 and 5.38. 

 

S. No Population 

Size 

Selection of Best Chosen Chromosomes for Next Generation 

(RMSE  of Experiments)  

1 10 4 5 6 

0.623797558621138 0.623538533570821 0.624238670691255

2 20 8 10 12 

0.623868818729786 0.623422041782224 0.623413127481597

3 50 20 25 30 

0.623409218163806 0.623259508502428 0.611247527459716

4 100 40 50 60 

0.59637985004315 0.592343638935951 0.602246525092826

Table 5.37 RMSE of Testing Results with Crossover (DC21) 
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S. No Population 

Size 

Selection of Best Chosen Chromosomes for Next Generation 

(RMSE  of Experiments) 

1 10 4 5 6 

0.623275141377187 0.621852255854453 0.623337868980252

2 20 8 10 12 

0.617233072521659 0.623385036235649 0.623401289872932

3 50 20 25 30 

0.611177421073346 0.623419895082388 0.617176669421871

4 100 40 50 60 

0.57455614266472 0.609017226055767 0.610719908521369

Table 5.38 RMSE of Testing Results without Crossover (DC21) 

 

From the table 5.37, we observe that lowest RMSE is 0.592343638935951 with population 

size 100 and number of best chosen chromosome is 50. And from table 5.38, the lowest 

RMSE is 0.57455614266472 with population size 100 and number of best chromosome is 40.  

 

The summary of the RMSE’s of the results given in table 5.37 and 5.38 with and without 

crossover operation are shown in Fig 5.31. 
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. 

Fig 5.31 Summary of the Testing Results of DC21 with & without Crossover Operation 

 

The averages of the rmse’s of the results calculated from table 5.37 and 5.38 are given in 

Table 5.39. 

 

Average RMSE of Testing Results with 

Crossover 

Average RMSE of Testing Results without 

Crossover 

0.615930418 0.614879327 

Table 5.39 Averages RMSE of Testing Results with & without Crossover Operation 

(DC21) 

 

5.4.1.2.2 Data Combination 2 (DC22) 

The testing results of the dataset with data part or data combination 2 (DC22) with and 

without crossover operation and by changing the population size, and by selecting the 

different number of best chromosomes are shown in Table 5.40 and 5.41. 
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S. No Population 

Size 

Selection of Best Chosen Chromosomes for Next Generation 

(RMSE  of Experiments)  

1 10 4 5 6 

0.622975665776128 0.622891823880451 0.62289197696855 

2 20 8 10 12 

0.623188885109456 0.622846086957695 0.62294468668883 

3 50 20 25 30 

0.58982919780186 0.588744508131284 0.596092113020063

4 100 40 50 60 

0.622897891600409 0.514331789486978 0.605450018145771

Table 5.40 RMSE of Testing Results with Crossover (DC22) 

 

S. No Population 

Size 

Selection of Best Chosen Chromosomes for Next Generation 

(RMSE  of Experiments)  

1 10 4 5 6 

0.622884282861822 0.622987788249734 0.625457732457799

2 20 8 10 12 

0.622896867585704 0.622927345739741 0.622900985553704

3 50 20 25 30 

0.561867556016215 0.62091265587529 0.603772968141184

4 100 40 50 60 

0.614880272582332 0.601210704057985 0.616513793827449

Table 5.41 RMSE of Testing Results without Crossover (DC22) 
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From the table 5.40, we observe that lowest RMSE is 0.514331789486978 with population 

size 100 and number of best chosen chromosome is 50. And from table 5.41, the lowest 

RMSE is 0.561867556016215 with population size 50 and number of best chromosome is 20.  

 

The summary of the RMSE’s of the results given in table 5.40 and 5.41 with and without 

crossover operation are shown in Fig 5.32. 

 

. 

Fig 5.32 Summary of the Testing Results of DC22 with & without Crossover Operation 

 

The averages of the rmse’s of the results calculated from table 5.40 and 5.41 are given in 

Table 5.42. 

 

Average RMSE of Testing Results with 

Crossover 

Average RMSE of Testing Results without 

Crossover 

0.604590387 0.613267746 

Table 5.42 Averages RMSE of Testing Results with & without Crossover Operation 

(DC22) 
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5.4.1.2.3 Data Combination 3 (DC23) 

The testing results of the dataset with data part or data combination 3 (DC23) with and 

without crossover operation and by changing the population size, and by selecting the 

different number of best chromosomes are shown in Table 5.43 and 5.44. 

 

S. No Population 

Size 

Selection of Best Chosen Chromosomes for Next Generation 

(RMSE  of Experiments) 

1 10 4 5 6 

0.618832131210131 0.623656720784124 0.622956818490383

2 20 8 10 12 

0.623835195377885 0.624264280728401 0.623587144740045

3 50 20 25 30 

0.623589076970229 0.623624771451243 0.623404320134514

4 100 40 50 60 

0.618175155988828 0.623580337226775 0.624399407611922

Table 5.43 RMSE of Testing Results with Crossover (DC23) 
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S. No Population 

Size 

Selection of Best Chosen Chromosomes for Next Generation 

(RMSE  of Experiments)  

1 10 4 5 6 

0.623790045410455 0.6235581339618 0.623550150533192

2 20 8 10 12 

0.623646464644337 0.623586094742587 0.603144551188115

3 50 20 25 30 

0.623732553292529 0.623535387841109 0.622505051745046

4 100 40 50 60 

0.619572643653266 0.617596428802631 0.623590786314214

Table 5.44 RMSE of Testing Results without Crossover (DC23) 

 

From the table 5.43, we observe that lowest RMSE is 0.618175155988828 with population 

size 100 and number of best chosen chromosome is 40. And from table 5.44, the lowest 

RMSE is 0.603144551188115 with population size 20 and number of best chromosome is 12.  

 

The summary of the RMSE’s of the results given in table 5.43 and 5.44 with and without 

crossover operation are shown in Fig 5.33. 
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Fig 5.33 Summary of the Testing Results of DC23 with & without Crossover Operation 

 

The averages of the rmse’s of the results calculated from table 5.43 and 5.44 are given in 

Table 5.45. 

 

Average RMSE of Testing Results with 

Crossover 

Average RMSE of Testing Results without 

Crossover 

0.622825447 0.620749033 

Table 5.45 Averages RMSE of Testing Results with & without Crossover Operation 

(DC23) 
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5.4.1.3 Dataset 3 

We will discuss the results with different combinations of data one by one.  

 

5.4.1.3.1 Data Combination 1 (DC31) 

The testing results of the dataset with data part or data combination 1 (DC31) with and 

without crossover operation and by changing the population size, and by selecting the 

different number of best chromosomes are shown in Table 5.46 and 5.47. 

 

S. No Population 

Size 

Selection of Best Chosen Chromosomes for Next Generation 

(RMSE  of Experiments) 

1 10 4 5 6 

0.705564096058224 0.704807347256134 0.705136928139166

2 20 8 10 12 

0.704778543144133 0.704790966247574 0.708374718288802

3 50 20 25 30 

0.704841774484552 0.70481270779954 0.704814270731231

4 100 40 50 60 

0.704829969631705 0.704846848749679 0.704827832546508

Table 5.46 RMSE of Testing Results with Crossover (DC31) 
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S. No Population 

Size 

Selection of Best Chosen Chromosomes for Next Generation 

(RMSE  of Experiments)  

1 10 4 5 6 

0.704979520400426 0.704733628296321 0.705522169914631

2 20 8 10 12 

0.704757509274665 0.704703510113762 0.704703417487986

3 50 20 25 30 

0.704786549297968 0.704818402416826 0.70491366185805 

4 100 40 50 60 

0.704853886066065 0.704837294546055 0.70482589252514 

Table 5.47 RMSE of Testing Results without Crossover (DC31) 

 

From the table 5.46, we observe that lowest RMSE is 0.704778543144133 with population 

size 20 and number of best chosen chromosome is 8. And from table 5.47, the lowest RMSE 

is 0.704703417487986 with population size 20 and number of best chromosome is 12.  

 

The summary of the RMSE’s of the results given in table 5.46 and 5.47 with and without 

crossover operation are shown in Fig 5.34. 
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. 

Fig 5.34 Summary of the Testing Results of DC31 with & without Crossover Operation 

 

The averages of the rmse’s of the results calculated from table 5.46 and 5.47 are given in 

Table 5.48. 

 

Average RMSE of Testing Results with 

Crossover 

Average RMSE of Testing Results without 

Crossover 

0.705202167 0.70486962 

Table 5.48 Averages RMSE of Testing Results with & without Crossover Operation 

(DC31) 

 

5.4.1.3.2 Data Combination 2 (DC32) 

The testing results of the dataset with data part or data combination 2 (DC22) with and 

without crossover operation and by changing the population size, and by selecting the 

different number of best chromosomes are shown in Table 5.49 and 5.50. 
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S. No Population 

Size 

Selection of Best Chosen Chromosomes for Next Generation 

(RMSE  of Experiments)  

1 10 4 5 6 

0.704736920588566 0.704711241673261 0.706462866881421

2 20 8 10 12 

0.704709156375465 0.704702870822574 0.704751618732011

3 50 20 25 30 

0.704709513297396 0.70471188055663 0.704708999928931

4 100 40 50 60 

0.703941739666852 0.705900664970475 0.704706258641629

Table 5.49 RMSE of Testing Results with Crossover (DC32) 

 

S. No Population 

Size 

Selection of Best Chosen Chromosomes for Next Generation 

(RMSE  of Experiments) 

1 10 4 5 6 

0.704706833309395 0.704729559394198 0.704707693262924

2 20 8 10 12 

0.704715703837385 0.704712106972528 0.704703255482934

3 50 20 25 30 

0.7047113225316 0.704704370506739 0.704707299006516

4 100 40 50 60 

0.704705689995826 0.704708184841005 0.704706114937425

Table 5.50 RMSE of Testing Results without Crossover (DC32) 
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From the table 5.49, we observe that lowest RMSE is 0.703941739666852 with population 

size 100 and number of best chosen chromosome is 40. And from table 5.50, the lowest 

RMSE is 0.704703255482934 with population size 20 and number of best chromosome is 12.  

 

The summary of the RMSE’s of the results given in table 5.49 and 5.50 with and without 

crossover operation are shown in Fig 5.35. 

 

. 

Fig 5.35 Summary of the Testing Results of DC32 with & without Crossover Operation 

 

The averages of the rmse’s of the results calculated from table 5.49 and 5.50 are given in 

Table 5.52. 

 

Average RMSE of Testing Results with 

Crossover 

Average RMSE of Testing Results without 

Crossover 

0.704896144 0.704709845 

Table 5.51 Averages RMSE of Testing Results with & without Crossover Operation 

(DC32) 
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5.4.1.3.3 Data Combination 3 (DC33) 

The testing results of the dataset with data part or data combination 3 (DC33) with and 

without crossover operation and by changing the population size, and by selecting the 

different number of best chromosomes are shown in Table 5.53 and 5.54. 

 

S. No Population 

Size 

Selection of Best Chosen Chromosomes for Next Generation 

(RMSE  of Experiments)  

1 10 4 5 6 

0.552674956660219 0.552597956401514 0.552756725104372

2 20 8 10 12 

0.552658834043939 0.55281721097396 0.55276972317618 

3 50 20 25 30 

0.552609195876144 0.551646078048397 0.55602380449261 

4 100 40 50 60 

0.552650313255273 0.552647962712029 0.547890916774405

Table 5.52 RMSE of Testing Results with Crossover (DC33) 
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S. No Population 

Size 

Selection of Best Chosen Chromosomes for Next Generation 

(RMSE  of Experiments)  

1 10 4 5 6 

0.552811302967002 0.552666101921924 0.552596081562961

2 20 8 10 12 

0.552605033040785 0.552650018427661 0.552653018739183

3 50 20 25 30 

0.552635719171274 0.546228460989004 0.552660084155147

4 100 40 50 60 

0.552649115243442 0.552647962712029 0.555740380961404

Table 5.53 RMSE of Testing Results without Crossover (DC33) 

 

From the table 5.53, we observe that lowest RMSE is 0.547890916774405 with population 

size 100 and number of best chosen chromosome is 60. And from table 5.54, the lowest 

RMSE is 0.546228460989004 with population size 50 and number of best chromosome is 25.  

 

The summary of the RMSE’s of the results given in table 5.53 and 5.54 with and without 

crossover operation are shown in Fig 5.36. 
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. 

Fig 5.36 Summary of the Testing Results of DC33 with & without Crossover Operation 

 

The averages of the rmse’s of the results calculated from table 5.53 and 5.54 are given in 

Table 5.55. 

 

Average RMSE of Testing Results with 

Crossover 

Average RMSE of Testing Results without 

Crossover 

0.55247864 0.552378607 

Table 5.54 Averages RMSE of Testing Results with & without Crossover Operation 

(DC33) 

 

5.4.2 Cumulative Analysis on the Datasets 

We have compared the results of the datasets in terms of root mean square error. By looking 

at the results, we have observed that testing RMSE is lower than training RMSE which 

indicates that network is also well trained for unknown data.  The parameters which we have 

discussed in training results will also be discussed in testing results.  
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5.4.2.1 Crossover Operation 

 By looking at the table which shows the summaries of the testing results of the different 

combination of the datasets, we have observed that in more than half of the results, average of 

RMSE of the experiments is low without crossover operation. Moreover, by looking at the 

graphs which show the summaries of the experiments with and without crossover operation, 

we have observed that most of the time lowest root mean square error was associated without 

the crossover operation. So from this observation, we can say that without crossover 

operation shows improved performance for unseen data, or in other words the network shows 

better behavior without crossover operation for unknown data.   

 

5.4.2.2 Population Size of Chromosomes 

The other thing which we observe from the testing results is same as we have observed in 

training results, that most of the time the lowest RMSE comes with population size of 50 and 

100, so the conclusion which we derived from it is that “greater the population size, lower 

rmse”. 

 

5.5 Summary 

 In this chapter, we have discussed the training and testing results of the datasets with their 

different combination. The result of the analysis have shown that crossover operation behaves 

well for the known data, but on the other hand the experiments which we have done without 

crossover operation shows better behavior for the unknown data.  Moreover, the greater the 

population size, the lower the rmse. Furthermore, the experiments which we have done to 

analyze the selection of best chromosomes for the next generation does not draw any useful 

conclusion.  
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CHAPTER 6 

 

CONCLUSIONS & FUTURE WORK 

 

This chapter concludes the thesis, summarizing the work presented so far and provides 

directions for the future work. Conclusion is discussed in section 6.1 and section 6.2 

discusses the future work. The summary of this chapter is discussed in section 6.3. 

 

6.1 Conclusion 

Accurate effort estimation in software engineering projects is a challenging task, and it is one 

of the most crucial project management activities. It helps the project manager of a software 

project to plan the activities that are required for project completion. In the thesis work, we 

have done effort estimation with a hybrid approach combining artificial intelligence 

techniques of fuzzy logic and neural networks. The approach provides dual benefits of 

incorporating qualitative knowledge of experts and learning from historical data obtained 

from previous projects. The fuzzy neural network (FNN) is trained with the help of 

evolutionary algorithm. The evolutionary approach offers the possible pathways of a 

problem, the solutions are compared, and indicate which one is better and identifies and 

collects the useful solution. This process can optimize the solution for the given problem. It 

demonstrates that evolving weights can be of major advantage. The evolutionary algorithm 

evolve the weights with two variations, in one variation we have used crossover operation 

and self mutation process, while in other variation we only use self mutation process.  

Experiments are also done by changing the population size of chromosomes, in other words 

we have changed the number of possible solutions. 
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In this research, I have achieved the following goals: 

i). Training fuzzy neural network with different variations of evolutionary algorithm by 

using training data. 

ii). Analysis of training of FNN, with and without using crossover operation, changing 

the population size and number of best chromosomes that does not change in next 

iteration. 

iii). Testing of FNN is done by using different parts of each dataset called testing data, 

which are not used in the training phase. 

iv). Use the training weights for effort estimation.  

 

The conclusion which are derived from the experimental results are 

i). Training of FNN including crossover operation shows better results. 

ii). Testing of FNN without crossover operation show better results. 

iii). Overall without crossover operation, training is better, because our aim to achieve 

accurate results for unknown data. 

iv). Greater the Population size, lower the RMSE. 

 

6.2 Future Work 

There is a lot of research work available, related to neural network and data mining, which 

helps the researcher to continue the work based on the previous literature, and contribute 

faster to the pool of information. 

This research may further be extended by training FNN with other algorithms like gradient 

descent, different variations of backpropogation algorithm e.g. Momentum strategy. Different 

architecture FNN can also be used, for example in this research work, we first extract the 

rules and then train the network, but we can also design a architecture that extract the rules 
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from the data during training. As training of FNN takes more time to train large set of data, 

we can research on some technique that takes less time for training.  
 

6.3 Summary 

In this chapter, we conclude the thesis with the observation, that FNN is well trained by using 

crossover operation, but for unknown data, including self mutation process is better. The 

other conclusion is that greater the number of possible solutions, lower the RMSE. The 

research work may be extended by training the FNN with other algorithms, then compared 

that which algorithm is better. Moreover, also research some method that takes less time to 

train the FNN when the size of dataset is large. 
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