

Software Engineering Project Effort Estimation

using Fuzzy Neural Network

Submitted By

Sobia Khalid

Supervised By

Dr. Aasia Khanum

College of Electrical & Mechanical Engineering
National University of Sciences and Technology

2010

Software Engineering Project Effort
Estimation using Fuzzy Neural Network

By

Sobia Khalid

2008-NUST-MS PhD-CSE (E)-22

Submitted to the Department of Computer Engineering
in partial fulfillment of the requirements for the degree of

Master of Science
in

Computer Software Engineering

Advisor:
 Dr. Aasia Khanum

College of Electrical & Mechanical Engineering
National University of Sciences and Technology

2010

DECLARATION

I hereby declare that I have developed this thesis entirely on the basis of personal efforts

under the sincere guidance of my supervisor Dr Aasia Khanum. All the sources used in this

thesis have been cited. No portion of the work presented in this thesis has been submitted in

support of any application for any other degree of qualification to this or any other university

or institute of learning.

 Sobia Khalid

ACKNOWLEDGMENTS

All prayers and thanks to Allah Almighty, The most Merciful, and The most Beneficent.

There is no success without the will of God. I am grateful to Almighty, for showing me the

path to success in this work and ever before.

My special thanks are for my supervisor Dr. Aasia Khanum for the preparation of this thesis

work. I would like to thank all the faculty members of the department of Computer Software

Engineering, for their help and support all the time. I also thank to all the committee members

for their acceptance to become the members of guidance and evaluation committee of this

thesis and for sparing their precious time for reviewing the manuscript.

I am eternally thankful to my family, who have always stood by me and guided me through

my career. I owe my thanks to my all friends and my classmates who gave me moral support.

In the end, I would like to thank Mr Munir Naveed, Mr Yasir Fayyaz, Mr Wasi Haider Butt,

and Mr Imran Hassan for delivering their valuable knowledge and who have helped me when

I got stuck.

It is impossible to remember all, and I apologize to those I've unintentionally left out.

I would like to dedicate this thesis work to

my teachers, family and friends.

ABSTRACT

“Estimation” is an important task in software engineering. Estimation has application in

many areas e.g. cost estimation, effort estimation. The most crucial thing is the “effort

estimation of the software project”. Most of the software projects fail due to improper effort

estimation. Effort estimation directly affects the budget of the software project. Software

Project Mangers consider effort estimation of software engineering project a very difficult

and challenging task because of its inherent imprecision. Therefore it is important and most

crucial to have right effort estimate at the right time. Accurate effort estimation in software

engineering projects is a challenging task, and it is one of the most crucial project

management activities.

In this dissertation, we propose a Fuzzy Neural Network (FNN) model for effort estimation

of software engineering project. This approach provides dual benefits of incorporating

qualitative knowledge of experts and learning from historical data obtained from previous

projects. The main focus of this research is to minimize the error by combining neural

network and fuzzy logic and train the FNN with evolutionary algorithm. Three different

datasets are used in this research work for training and testing purposes; each dataset is

divided into three equal parts and each part is in turn used for testing purpose. For

performance measurement, a total of 216 experiments were performed for the three datasets

including the three combinations of each dataset, out of which 108 are with crossover

operation and 108 are without crossover operations. The results show that the FNN is well

trained by giving small values of Root Mean Square Error (RMSE) Moreover, the results

show that greater the population size, lower the RMSE. The accuracy of the FNN is also

based on the number of samples which are provided for training; the more the number of

samples, the more the accuracy. Once trained, the FNN is supposed to predict the effort (in

person months) of a software engineering project. The results show that network is trained at

an acceptable level of accuracy. Some of the examples are compared with the COCOMO

model and the result shows that the proposed model behaves comparably well in these

examples.

TABLE OF CONTENTS

Contents Page No

CHAPTER 1 INTRODUCTION

1.1 Artificial Intelligence in Software Engineering 1
1.2 Effort Estimation 2
 1.2.1 Expert Effort Estimation 2
 1.2.2 Model based Effort Estimation 3
 1.2.3 Combination based Effort Estimation 3
1.3 Fuzzy Neural Network 3
 1.3.1 Neural Network 3
 1.3.1.1 A Neuron 3
 1.3.1.2 Activation Function 6
 1.3.1.3 Learning Paradigms 6
 1.3.1.3.1 Supervised Learning 7
 1.3.1.3.2 Unsupervised Learning 7
 1.3.1.4 Neural Network Topologies 7
 1.3.1.4.1 Feed Forward Neural Network 7
 1.3.1.4.2 Recurrent Neural Network 7
 1.3.2 Fuzzy Logic 8
 1.3.2.1 Fuzzy Sets 8
 1.3.2.2 Membership Functions 8
 1.3.2.3 Logical Operations 9
 1.3.2.4 IF-THEN Rules 9
 1.3.2.5 Fuzzy Inference System 9
 1.3.3 Fuzzy Neural Network 10
 1.3.3.1 Architecture of Fuzzy Neural Network 11
 1.3.3.1.1 Input Layer 11
 1.3.3.1.2 Conditional Element Layer 11
 1.3.3.1.3 Rule Layer 12
 1.3.3.1.4 Action Element Layer 12
 1.3.3.1.5 Output Layer 12
1.4 Evolutionary Algorithm 12
 1.4.1 Initialize the Population 13
 1.4.2 Evaluation of Population 13
 1.4.3 Selection Process 14
 1.4.4 Recombination 14
 1.4.5 Mutation Process 14
 1.4.6 Reinsertion 15
1.5 Problem Statement 15
1.6 Summary 15
1.7 Dissertation Organization 16

CHAPTER 2 LITERATURE SURVEY

2.1 Estimation Approaches 17
2.2 Estimation Tools 17
2.3 Literature Review 18
2.4 Summary 23

CHAPTER 3 FRAMEWORK DESIGN

3.1 Database Design 24
 3.1.1 Structure of Database 24
 3.1.1.1 Training& Testing Data 25

3.1.1.1.1 ID 26
3.1.1.1.2 PREC 27
3.1.1.1.3 FLEX 27

 3.1.1.1.4 RESL 27
3.1.1.1.5 TEAM 27
3.1.1.1.6 PMAT 27
3.1.1.1.7 RELY 27
3.1.1.1.8 DATA 28
3.1.1.1.9 CPLX 28
3.1.1.1.10 RUSE 28
3.1.1.1.11 DOCU 28
3.1.1.1.12 TIME 29
3.1.1.1.13 STOR 29
3.1.1.1.14 PVOL 29
3.1.1.1.15 ACAP 29
3.1.1.1.16 PCAP 29
3.1.1.1.17 PCON 30
3.1.1.1.18 AEXP 30
3.1.1.1.19 PEXP 30
3.1.1.1.20 LTEX 30
3.1.1.1.21 TOOL 30
3.1.1.1.22 SITE 31
3.1.1.1.23 SCED 31
3.1.1.1.24 LOC 31
3.1.1.1.25 ACTUAL_EFFORT 31

3.2 Finding the Parameters of Gaussian Function 32
 3.2.1 Initiate Center Randomly 34

3.2.2 Calculate Distance 34
3.2.3 Find Minimum Distance 34
3.2.4 Add Objects in a Cluster 34
3.2.5 Check Objects Move in a Different Cluster 34
3.2.6 Calculate Mean/Center 35

3.3 Adding & Extracting Rules 35
 3.2.1 Read Data from the Database 37

3.2.2 Assign Numbers based on Ranking 37
3.2.3 Check Whether Rules are similar to one another 38
3.2.4 Discard Duplicate Rules 38

3.2.5 Add Hard Coded Rules to Previous Array 38
3.4 Design of Neural Network 38
 3.4.1 Topology of Fuzzy Neural Network 38

3.4.2 Functionality of Layers of Fuzzy Neural Network 39
3.4.2.1 Input Layer 40
3.4.2.2 Conditional Element Layer 40
3.4.2.3 Rule Layer 40
3.4.2.4 Action Element Layer 41
3.2.4.5 Output Layer 41

3.4.3 Training Algorithm for Fuzzy Neural Network 41
3.4.3.1 Initialize the population 42
3.4.3.2 Feeding Input to the Network 43
3.4.3.3 Calculation of Error 43
3.4.3.4 Selection Process 43
3.4.3.5 Crossover Operation 44
3.4.3.6 Mutation & Reinsertion Process 44

3.4.4 Testing for Fuzzy Neural Network 45
3.5 Summary 45

CHAPTER 4 IMPLEMENTATION DETAILS & USER INTERFACE

4.1 Implementation Details 47
4.2 User Interface 48
 4.2.1 Training 48

4.2.2 Testing 50
 4.2.3 Effort Estimation 51
4.3 Summary 53

CHAPTER 5 RESULTS & TESTING

5.1 Input Dataset Characteristics 54
5.2 Factors of Comparisons 55
5.3 Training Results & Analysis 55
 5.3.1 Results 55
 5.3.1.1 Dataset 1 55
 5.3.1.1.1 Data Combination 1 (DC11) 56
 5.3.1.1.2 Data Combination 2 (DC12) 59
 5.3.1.1.3 Data Combination 3 (DC13) 62
 5.3.1.2 Dataset 2 66
 5.3.1.2.1 Data Combination 1 (DC21) 66
 5.3.1.2.2 Data Combination 2 (DC22) 69
 5.3.1.2.3 Data Combination 3 (DC33) 72
 5.3.1.3 Dataset 3 75
 5.3.1.3.1 Data Combination 1 (DC31) 75
 5.3.1.3.2 Data Combination 2 (DC32) 78
 5.3.1.3.3 Data Combination 3 (DC33) 81
 5.3.2 Cumulative Analysis on the Datasets 84
 5.3.2.1 Crossover Operation 84
 5.3.2.2 Population Size of Chromosomes 84
5.4 Testing Results & Analysis 85

 5.4.1 Results 85
 5.4.1.1 Dataset 1 86
 5.4.1.1.1 Data Combination 1 (DC11) 86
 5.4.1.1.2 Data Combination 2 (DC12) 88
 5.4.1.1.3 Data Combination 3 (DC13) 91
 5.4.1.2 Dataset 2 94
 5.4.1.2.1 Data Combination 1 (DC21) 94
 5.4.1.2.2 Data Combination 2 (DC22) 96
 5.4.1.2.3 Data Combination 3 (DC33) 99
 5.4.1.3 Dataset 3 102
 5.4.1.3.1 Data Combination 1 (DC31) 102
 5.4.1.3.2 Data Combination 2 (DC32) 104
 5.4.1.3.3 Data Combination 3 (DC33) 107
 5.4.2 Cumulative Analysis on the Datasets 109
 5.4.2.1 Crossover Operation 110
 5.4.2.2 Population Size of Chromosomes 110
5.5 Summary 110

CHAPTER 6 CONCLUSIONS & FUTURE WORK

6.1 Conclusion 111
6.2 Future Work 112
6.3 Summary 113

REFERENCES

References 114

LIST OF TABLES

Table 3.1 Attributes of Training & Testing Data 25

Table 3.2 Mapping of Rules from Text to Numeric Form 36

Table 5.1 RMSE of Training Results with Crossover (DC11) 56

Table 5.2 RMSE of Training Results without Crossover (DC11) 57

Table 5.3 Average RMSE of Training Results with & without Crossover (DC11) 59

Table 5.4 RMSE of Training Results with Crossover (DC12) 60

Table 5.5 RMSE of Training Results without Crossover (DC12) 60

Table 5.6 Average RMSE of Training Results with & without Crossover (DC12) 62

Table 5.7 RMSE of Training Results with Crossover (DC13) 63

Table 5.8 RMSE of Training Results without Crossover (DC13) 63

Table 5.9 Average RMSE of Training Results with & without Crossover (DC13) 65

Table 5.10 RMSE of Training Results with Crossover (DC21) 66

Table 5.11 RMSE of Training Results without Crossover (DC21) 67

Table 5.12 Average RMSE of Training Results with & without Crossover (DC21) 69

Table 5.13 RMSE of Training Results with Crossover (DC22) 69

Table 5.14 RMSE of Training Results without Crossover (DC22) 70

Table 5.15 Average RMSE of Training Results with & without Crossover (DC22) 72

Table 5.16 RMSE of Training Results with Crossover (DC23) 72

Table 5.17 RMSE of Training Results without Crossover (DC23) 73

Table 5.18 Average RMSE of Training Results with & without Crossover (DC23) 75

Table 5.19 RMSE of Training Results with Crossover (DC31) 75

Table 5.20 RMSE of Training Results without Crossover (DC31) 76

Table 5.21 Average RMSE of Training Results with & without Crossover (DC31) 78

Table 5.22 RMSE of Training Results with Crossover (DC32) 78

Table 5.23 RMSE of Training Results without Crossover (DC32) 79

Table 5.24 Average RMSE of Training Results with & without Crossover (DC32) 81

Table 5.25 RMSE of Training Results with Crossover (DC33) 81

Table 5.26 RMSE of Training Results without Crossover (DC33) 82

Table 5.27 Average RMSE of Training Results with & without Crossover (DC33) 84

Table 5.28 RMSE of Testing Results with Crossover (DC11) 86

Table 5.29 RMSE of Testing Results without Crossover (DC11) 87

Table 5.30 Average RMSE of Testing Results with & without Crossover Operation

DC11)

87

Table 5.31 RMSE of Testing Results with Crossover (DC12) 89

Table 5.32 RMSE of Testing Results without Crossover (DC12) 89

Table 5.33 Average RMSE of Testing Results with & without Crossover Operation

(DC12)

90

Table 5.34 RMSE of Testing Results with Crossover (DC13) 91

Table 5.35 RMSE of Testing Results without Crossover (DC13) 92

Table 5.36 Average RMSE of Testing Results with & without Crossover Operation

(DC13)

93

Table 5.37 RMSE of Testing Results with Crossover (DC21) 94

Table 5.38 RMSE of Testing Results without Crossover (DC21) 95

Table 5.39 Average RMSE of Testing Results with & without Crossover Operation

(DC21)

96

Table 5.40 RMSE of Testing Results with Crossover (DC22) 97

Table 5.41 RMSE of Testing Results without Crossover (DC22) 97

Table 5.42 Average RMSE of Testing Results with & without Crossover Operation

(DC22)

98

Table 5.43 RMSE of Testing Results with Crossover (DC23) 99

Table 5.44 RMSE of Testing Results without Crossover (DC23) 100

Table 5.45 Average RMSE of Testing Results with & without Crossover Operation

(DC23)

101

Table 5.46 RMSE of Testing Results with Crossover (DC31) 102

Table 5.47 RMSE of Testing Results without Crossover (DC31) 103

Table 5.48 Average RMSE of Testing Results with & without Crossover Operation

(DC31)

104

Table 5.49 RMSE of Testing Results with Crossover (DC32) 105

Table 5.50 RMSE of Testing Results without Crossover (DC32) 105

Table 5.51 Average RMSE of Testing Results with & without Crossover Operation

(DC32)

106

Table 5.52 RMSE of Testing Results with Crossover (DC33) 107

Table 5.53 RMSE of Testing Results without Crossover (DC33) 108

Table 5.54 Average RMSE of Testing Results with & without Crossover Operation

(DC33)

109

LIST OF FIGURES

Fig 1.1 Natural Neuron 04

Fig 1.2 Model of a neuron 05

Fig 1.3 Block Diagram of FIS 10

Fig 1.4 Structure of Fuzzy Neural Network 11

Fig 3.1 k-Means Clustering Flow 33

Fig 3.2 Basic Flow of Rule Extraction 37

Fig 3.3 Topology of Fuzzy Neural Network 39

Fig 4.1 User Interface 48

Fig 4.2 User Interface with Parameters Selected 49

Fig 4.3 Training of FNN 50

Fig 4.4 Testing of FNN 51

Fig 4.5 Effort Estimation 52

Fig 4.6 Example of Effort Estimation 53

Fig 5.1 Graph with 100 Population Size and 60 Best Chosen Size of Chromosomes

(DC11 with Crossover)

58

Fig 5.2 Graph with 50 Population Size and 20 Best Chosen Size of Chromosomes

(DC11 without Crossover)

58

Fig 5.3 Summary of the Training Results of DC11 with & without Crossover Operation 59

Fig 5.4 Graph with 100 Population Size and 60 Best Chosen Size of Chromosomes

(DC12 with Crossover)

61

Fig 5.5 Graph with 100 Population Size and 40 Best Chosen Size of Chromosomes

(DC12 without Crossover)

61

Fig 5.6 Summary of the Training Results of DC12 with & without Crossover Operation 62

Fig 5.7 Graph with 100 Population Size and 40 Best Chosen Size of Chromosomes

(DC13 with Crossover)

64

Fig 5.8 Graph with 100 Population Size and 60 Best Chosen Size of Chromosomes

(DC13 without Crossover)

64

Fig 5.9 Summary of the Training Results of DC13 with & without Crossover Operation 65

Fig 5.10 Graph with 100 Population Size and 50 Best Chosen Size of Chromosomes

(DC21 with Crossover)

67

Fig 5.11 Graph with 100 Population Size and 40 Best Chosen Size of Chromosomes

(DC21 without Crossover)

68

Fig 5.12 Summary of the Training Results of DC21 with & without Crossover

Operation

68

Fig 5.13 Graph with 100 Population Size and 50 Best Chosen Size of Chromosomes

(DC22 with Crossover)

70

Fig 5.14 Graph with 50 Population Size and 20 Best Chosen Size of Chromosomes

(DC22 without Crossover)

71

Fig 5.15 Summary of the Training Results of DC22 with & without Crossover

Operation

71

Fig 5.16 Graph with 10 Population Size and 4 Best Chosen Size of Chromosomes

(DC23 with Crossover)

73

Fig 5.17 Graph with 20 Population Size and 12 Best Chosen Size of Chromosomes

(DC23 without Crossover)

74

Fig 5.18 Summary of the Training Results of DC23 with & without Crossover

Operation

74

Fig 5.19 Graph with 20 Population Size and 12 Best Chosen Size of Chromosomes 76

(DC31 with Crossover)

Fig 5.20 Graph with 100 Population Size and 60 Best Chosen Size of Chromosomes

(DC31 without Crossover)

77

Fig 5.21 Summary of the Training Results of DC31 with & without Crossover

Operation

77

Fig 5.22 Graph with 100 Population Size and 40 Best Chosen Size of Chromosomes

(DC32 with Crossover)

79

Fig 5.23 Graph with 50 Population Size and 30 Best Chosen Size of Chromosomes

(DC32 without Crossover)

80

Fig 5.24 Summary of the Training Results of DC32 with & without Crossover

Operation Fig 5.25 Graph with 100 Population Size and 60 Best Chosen Size of

Chromosomes (DC33 with Crossover)

80

Fig 5.25 Graph with 100 Population Size and 60 Best Chosen Size of Chromosomes

(DC33 with Crossover)

82

Fig 5.26 Graph with 50 Population Size and 25 Best Chosen Size of Chromosomes

(DC33 without Crossover)

83

Fig 5.27 Summary of the Training Results of DC32 with & without Crossover

Operation

83

Fig 5.28 Summary of the Testing Results of DC11 with & without Crossover Operation 88

Fig 5.29 Summary of the Testing Results of DC12 with & without Crossover Operation 90

Fig 5.30 Summary of the Testing Results of DC13 with & without Crossover Operation 93

Fig 5.31 Summary of the Testing Results of DC21 with & without Crossover Operation 96

Fig 5.32 Summary of the Testing Results of DC22 with & without Crossover Operation 98

Fig 5.33 Summary of the Testing Results of DC23 with & without Crossover Operation 101

Fig 5.34 Summary of the Testing Results of DC31 with & without Crossover Operation 104

Fig 5.35 Summary of the Testing Results of DC32 with & without Crossover Operation 106

Fig 5.36 Summary of the Testing Results of DC33 with & without Crossover Operation 109

1

CHAPTER 1

INTRODUCTION

In this chapter, we will discuss the main concepts which are used in this thesis. Artificial

Intelligence in software engineering is discussed in section 1.1. Section 1.2 discusses the

effort estimation. The detail of fuzzy neural network and evolutionary algorithm is discussed

in section 1.3 and 1.4. Section 1.5 describes the problem statement and section 1.6 gives the

summary of this chapter and the thesis organization is described in section 1.7.

1.1 Artificial Intelligence in Software Engineering

According to Lugar, Artificial Intelligence may be defined as the branch of computer science

which deals with the mechanization of human/intelligent behavior [1]. There are several

branches of artificial intelligence which include: natural language processing, computer

vision, robotics, problem solving and planning, learning and expert system [2].

According to Somerville, software engineering is considered an engineering discipline which

deals with all characteristics of software production. It also deals with the physical constraints

of developing and delivering valuable software [3].

Software Engineering has been criticized from the beginning. The main criticism on software

engineering is that it is not well developed science at all because software engineers do not

know accurately that how long their projects will be applicable, project’s cost, and either

software work properly after release or not [4].

The models and methods developed by AI can be valuable for software engineering [5]. The

models and methods developed by AI can be used to estimate the effort and cost of the

software projects.

2

1.2 Effort Estimation

The estimate of the effort is considered as the most significant variables in the process of

project management because it helps to plan the forthcoming activities [6]. Effort Estimation

is defined as the prediction of number of hours and numbers of employees are needed to

develop a project [6]. Software development effort estimation is based on incomplete,

uncertain or noisy input and effort estimation is used as an input for investment, budget

analysis and project plans [7]. Accurate estimation of effort/cost/time is a huge problem for

software engineers [7]. In order to carry out the prediction with low error rate, a large volume

of data is needed which is very difficult to obtain [6].

The categorization of estimation approaches are as follows:

o Expert Estimation

o Formal Estimation Model

o Combination Based Estimation

1.2.1 Expert Effort Estimation

In expert estimation, the quantization step is a judgment based, and the quantification step is

defined as a step where the required effort for a software project is measured. The term

“Expert” may be used for an individual or for a team. The quantification steps are based on

the perception and sometimes may be based on the unambiguous, analytical argumentation.

It is assumed that experts typically possessed more information and have the more flexibility

that how information is processed [8].

3

1.2.2 Model based Effort Estimation

In model based estimation, the quantification step is mechanical. For example, use a formula

derived from historical data like COCOMO. However, it may be complicated to build models

for software development effort estimation because of lack of stable relationships and use of

small data sets to build models [8].

1.2.3 Combination based Effort Estimation

In combination based effort estimation, the quantification step is based on a judgmental or

mechanical combination [7].

1.3 Fuzzy Neural Network

1.3.1 Neural Network

The brain consists of a large number of neurons which are connected with each other by

synapses. These networks of neurons are called neural networks, or natural neural networks.

The artificial neural network (ANN) is a simplified mathematical model of a natural neural

network. Basically it seems like a directed graph where a vertex corresponds to a neuron and

an edge to a synapse [9].

1.3.1.1 A Neuron

The computational model of artificial neuron is motivated by the functionality of natural

neuron. Natural neurons receives signals through synapses, and when the received signal is

strong enough, then the neuron is activated and release the signal through axon, and this

signal might sent to another neuron or synapse [10]. This all work is shown in Fig 1.1.

4

Fig 1.1 Natural Neuron [10]

In artificial neuron, the synapses are basically the inputs, which are multiplied by the

connection weights which show the strength of the signal and then determine the activation of

the neuron through some mathematical function. The artificial neural network is basically

the combination of these artificial neurons [10]. The mathematical model of artificial neural

network is shown in Fig 1.2.

5

Fig 1.2 Model of a neuron [11]

From this model the interval activity of the neuron can be shown to be:

j

p

j
kjk xwv .

1
∑
=

= ………………………… 1.1 [11]

The output of the neuron, yk, would therefore be the outcome of some activation function on

the value of vk.

)(kk vfy = ………………………… 1.2

Where f is any activation function.

6

1.3.1.2 Activation Function

There are three types of activation function namely:

i). Threshold Function

ii). Piecewise Linear Function

iii). Sigmoid Function

Threshold function has possible two values of 0 and 1. Threshold Function has a value of 0 if

the summed input (vk) is less than a certain threshold value (v), and the value 1 if the summed

input (vk) is greater than or equal to the threshold value [11].

In piecewise Linear function, the certain region or we can say that the certain values remain

as it is while other changes to 0 and 1 [11]. For example, if we define the range of 0.3 and

0.6. Then if the value of the summed input comes between 0.3 and 0.6, then it remains as it

is. However, if the value comes below 0.3 then the result is 0 and if it comes above 0.6, then

the result is 1.

In sigmoid function, the output also comes between 0 and 1, and the output varies

continuously depending on the summed input.

1.3.1.3 Learning Paradigms

We can categorize the learning situations in two distinct types. These are:

i). Supervised Learning

ii). Unsupervised Learning

7

1.3.1.3.1 Supervised Learning

Supervised learning is also called associative learning. In supervised learning, the network is

trained by providing the input and desired output patterns. These patterns can be provided by

a expert [11].

1.3.1.3.2 Unsupervised Learning

Unsupervised learning is also called self organization. In this type of learning, no input-

output patterns are provided, only the input is provided. The system has supposed to discover

the characteristics of the input [11].

1.3.1.4 Neural Network Topologies

The topologies of the neural network are based on the connection between the neurons and

propagation of data. So we can distinct the topology in two different ways.

1.3.1.4.1 Feed Forward Neural Network

Feed-forward ANNs allow signals to travel one way only; from input to output. There is no

feedback (loops) connections present i.e. the output of any layer does not affect that same

layer or previous layers [11].

1.3.1.4.2 Recurrent Neural Network

In recurrent neural network, feedback connections are present [11]. The network feed the

outputs from neurons to other adjacent neurons or to neurons in preceding layers.

8

1.3.2 Fuzzy Logic

The idea of fuzzy logic was first invented by Dr Lofti Zadeh. Fuzzy logic is considered as an

approach to calculate based on the degree of fact rather than the Boolean values. Fuzzy logic

includes Boolean values of 0 and 1 as extreme values of fact, but also includes the various

cases of truth between these extreme values [12]. Fuzzy logic is one of the means that can

model multi-input and multi-output system. It provides the ability for modeling states that

are inaccurately defined. Fuzzy Logic techniques have been used in classification, clustering,

feature extraction etc. It has the ability to mimic the human mind to utilize modes of

reasoning that are approximate instead of exact [13]. The basic concepts which are used in

fuzzy logic are discussed below.

1.3.2.1 Fuzzy Sets

Fuzzy set is considered as an extension of crisp set. However, crisp sets allow only full

membership or membership not at all; it does not allow any partial membership state, where

as, fuzzy set allows the partial membership state. Fuzzy set describe linguistic labels like low,

medium, high. A given element can be the member of more than one fuzzy set at a time, and

how much it belongs to one fuzzy set is indicated by their membership grade [13].

1.3.2.2 Membership Functions

Membership functions are used to convert the crisp value into fuzzy value. A membership

function curve defines that how each point in the input space is converted into membership

value. There are different types of membership function including triangular, trapezoidal,

generalized bell shaped, guassian curve, polynomial curve, and sigmoid function [13].

9

1.3.2.3 Logical Operations

In fuzzy logic (FL), the truth of statement is the subject of degree. FL operators include min,

max and complement operations. Most applications use min for fuzzy intersection, max for

fuzzy union, and 1-µ (a) for complement operations [13].

1.3.2.4 IF-THEN Rules

If-then rules describe the relationship between fuzzy input and output sets. The “if” part of

the rule is called antecedent or premise, and “Then” part of the rule is called consequent. If-

then rule involve two discrete steps. The first step includes evaluation of the premise which

involves fuzzification and applies any operator if required and second step is called

implication in which the result of the antecedent is applied to the consequent [13].

1.3.2.5 Fuzzy Inference System (FIS)

FIS defines a nonlinear mapping of the input and output data with the help of fuzzy rules. The

mapping method includes input/output membership function, FL operators, if-then rules,

collection of output sets and defuzzification. FIS mainly has four components, fuzzifier,

inference engine, rule base and defuzzifier. Fuzzifier converts the input into corresponding

fuzzy membership value. The inference engine maps the fuzzy input sets to the fuzzy output

sets. It calculates the degree to which premise is satisfied to the each rule. If more than one

rule fires at the same time, then output of all the rules are aggregated. The defuzzifier maps

the fuzzy output set into fuzzy number [13]. The block diagram of FIS is shown in Fig 1.3.

10

Fig 1.3 Block Diagram of FIS [13]

1.3.3 Fuzzy Neural Network

Neural Network and Fuzzy Logic, both are considered as the best possibility to deal with

complex and poorly defined data [14]. With the integration of neural network and fuzzy

logic, it is possible to deal with the expert knowledge and also capable of handle incomplete

data. The strengths of fuzzy neural network includes fast and precise learning, good

generalization capabilities, and ability to accommodate both data and existing expert

knowledge [15].

11

Fig 1.4 Structure of Fuzzy Neural Network [18]

1.3.3.1 Architecture of Fuzzy Neural Network

The fuzzy neural network may contain three or five layers.

1.3.3.1.1 Input Layer

The first layer is called input layer which simply passes the input to the next layer. The input

nodes represent linguistic variables [14].

1.3.3.1.2 Conditional Element Layer

The second layer is called conditional element layer which performs fuzzification. The nodes

at this layer act as the membership function [14] and output of this node is the degree that the

input belongs to the given membership function [15].

12

1.3.3.1.3 Rule Layer

The nodes in the rule layer is called rule node and each rule node represents one fuzzy rule.

The input to the rule node is the fuzzy input that comes after applying the fuzzy membership

function at conditional element layer, and output of this node is the fuzzy output that passes

to the action element layer. The association between layer 2 and 3 are called precondition

link and association between layer 3 and 4 are called consequent link [14]. The links between

conditional and rule layer perform precondition matching of fuzzy rules. So the connection

weights are either set randomly or then trained through some algorithm [15].

1.3.3.1.4 Action Element Layer

In action element layer, the nodes represent the fuzzy labels of the output variable [15]. For

example, if the output variable has three labels, then action element layer contain three nodes,

each node represent one label. The activation of the node represents the degree to which this

membership function is supported by the current data [15].

1.3.3.1.5 Output Layer

The output layer performs defuzzification to convert the fuzzy value into crisp output value.

The Center of Gravity is the most commonly used defuzzification method that acquires the

best result [15].

1.4 Evolutionary Algorithm

Evolutionary algorithm is a stochastic search method. It model natural processes such as

selection, recombination, mutation and reinsertion. It works on population of individuals

instead of a single solution. It provides a number of possible solutions to a given problem

[16].

13

The pseudo-code of evolutionary algorithm [17] is given below.

Pseudo-Code

Initialize Population with random candidate solution.

Evaluate every candidate solution.

Repeat until Termination Condition is satisfied do

1. Select Parents

2. Recombine pairs of best parents

3. Mutate the resulting offspring

4. Evaluate new candidates

5. Select Individuals for the next generation

End

1.4.1 Initialize Population

The first step in the algorithm is to initialize the population. Population contains the number

of individuals. Each individual contain one possible solution. The size of the population is

defined by the user. The variety of population is the measure of number of different solutions

[17].

1.4.2 Evaluation of Population

In evaluation of population, the solution of every individual is evaluated based on fitness

function. There are different criteria of fitness function. For example, we can evaluate the

solution of population based on their error; in this case error is the basis of fitness function.

14

1.4.3 Selection Process

In the selection process, the parents which are survived for the next generation are selected,

and which are used to produce off springs. There are different methods of selection including

random, absolute, roulette and rank selection [19].

In random selection process, choose the individuals at random. In absolute selection process,

n-best fit individuals are selected which replaces the n-worst individuals. In roulette wheel

selection, relative weights proportional to their fitness are assigned to individuals, and

individuals are picked randomly. In rank selection process, rank is assigned to each

individual based on their solution; the best fit individual has the rank number 1 while the least

fit has the individual 10 [19].

1.4.4 Recombination

Recombination is also called cross over. In this operation, it merges the information from best

parents into off springs. The principle behind recombination is that by crossovering the two

individuals with different features can create the off spring by combining the features of both.

Recombination operator can use two or more than two parents [17].

1.4.5 Mutation Process

A unary variation operator is called mutation. It is applied to one individual. It is a random

process which a little modifies the genes of the individuals. Mutation process may include

lengthening, shortening or modifying the genes of the individual [19].

15

1.4.6 Reinsertion

After producing the off springs, they must be inserted into the population. Reinsertion

scheme determined that which individuals ought to be inserted in next generation and which

individuals are to be replaced by the new offspring’s [16].

1.5 Problem Statement

Accurate effort estimation in software engineering projects is a challenging task, and it is one

of the most crucial project management activities. Project mangers consider it a very difficult

and challenging task because of its inherent imprecision. It helps the project manager of a

software project to plan the activities that are required for project completion and guides

project manager to allocate their resources (e.g. hire the staff) as per requirement.

Most of the software projects fail due to improper effort estimation. Effort estimation directly

affects the budget of the software project. Therefore it is important and most crucial to have

right effort estimate at the right time.

A model is developed for software project effort estimation by combining artificial

intelligence techniques of fuzzy logic and neural networks.

1.6 Summary

Accurate Effort Estimation is the one of the most challenging task. It helps project manager

to plan upcoming activities. For effort estimation, fuzzy neural network is used. The approach

provides dual benefits of incorporating qualitative knowledge of experts and learning from

historical data obtained from previous projects. It is basically hybrid approach combining

artificial intelligence techniques of fuzzy logic and neural networks. Fuzzy logic contain

approximate reasoning whereas neural network is able to learn the ill defined data. For

16

training of fuzzy neural network, evolutionary algorithm is used which contain different

solution among which best one is selected.

1.7 Dissertation Organization

The thesis is structured into chapters and organized as follows: Chapter 1 provides the brief

introduction about the terms used in the thesis. Chapter 2 provides the literature review

related to effort estimation. Chapter 3 discusses the framework design in detail. Chapter 4

provides the implementation details of the thesis. Chapter 5 provides the analysis of the

results that comes from training and testing data. Chapter 6 concludes the thesis with future

work.

17

CHAPTER 2

LITERATURE SURVEY

In this chapter, we will discuss the literature review regarding our work. This chapter initially

describes the different approaches used for effort estimation. Section 2.1 name the estimation

approaches, section 2.2 name the estimation tools and discusses few of them, whereas some

models are discussed in section 2.3. The summary is given in section 2.4.

2.1 Estimation Approaches

There are many effort estimation models which have been established over the last decades.

A number of estimation approaches including: analogy based estimation, WBS-based

estimation, parametric models, size-based estimation models, group estimation, mechanical

combination, judgmental combination [20].

2.2 Estimation Tools

There are a number of estimation tools available in market including: 20s estimation

calculator, 20s reference estimator, ACEIT, COCOMO II, Construx Estimate, CostXpert,

Coaster, Estimate Express, EstimatorPal, EZEstimate, FP Outline, Function Point

WorkBench, knowledge Plan, Oracle Crystal Ball, QUEST, RASS Estimate, REVIC

Software Estimation Model, SCOPE, SEER for software, SEER IT, SLIM Estimate,

SystemStar, True Planning for IT [21].

20s estimator calculator estimate fixed price or time, and specify the restriction on time, cost

or personnel, and it will work with excel version 97, 2000, 2002, whereas 20s reference

18

calculator create precise estimate for future projects by indicating the historical projects. It

accumulates the actual hours and original estimated hours that are required for delivery on

project. ACEIT contains a number of applications that support project manager during all

phases of project life cycle. It is a tool for analyzing, developing and sharing the cost

estimate. COCOMO II is a model that estimates the cost, effort and schedule when planning a

new software development activity. It contains the three sub models including application

composition, early design and post architecture model. Coaster is a software development

estimation tool based on the Constructive Cost Model described by Barry Boehm. Software

Project Manager use Coaster to estimate project duration, staffing level, cost and effort.

Estimate Express is a software project estimating tool. It estimates the cost, reliability,

schedule and resources on big and small projects. Function Point WORKBENCH estimate

project effort, time and cost, asses’ software delivery productivity and quality. SEER for

Software estimating software projects, it plan, analyze and manage complex software

development projects. It evaluates software parameters not as isolated factor, but as inter

dependent variables across project aim, constraints, work products and life cycle. SLIM

Estimate helps to estimate the time, effort and cost required to satisfy a given set of software

requirements and conclude the best strategy for designing and implementing the software

project [21].

2.3 Literature Review

Some of the models are discussed below.

Sheppard et al used analogies to estimate software project effort. Estimation by analogy is the

form of CBR (Case Based Reasoning). The key activities for estimation by analogy include

identification of the problem, the retrieval of cases, and reuse of knowledge and suggestion of

19

solution for the new case. The approach used in this paper has been guided by the aims of

feasibility and simplicity. The author takes a new project, one for which wish to predict

effort, and attempt to find other similar projects. Since these projects were completed and

their development effort will be known, and it can be used as a basis for estimating effort for

the new project. The author analyzed the data in terms of features. Features may be

categorical or continuous. The datasets used in the experimentation are quite diverse and

drawn from different application domain ranging from telecommunication to commercial

information system. A jack-knifing procedure was adopted for analogy based prediction.

Each dataset is treated separately, since each one has different project features available, and

therefore not able to merge data into a single all encompassing dataset. The result shows that

for all the dataset, the MMRE performance of estimating by analogy is better than that of

regression methods. This suggests that analogy is capable of yielding more accurate

prediction for these dataset. Hence the author at the end, conclude that accurate estimation of

software project effort at an early stage in the development process is a significant challenge

for the software engineering community. The approach adopted in this paper allows user to

assess the reasoning process behind a prediction by identifying the most analogous project,

thereby increasing, or reducing their confidence in prediction [22].

In 2009, Reddy et al proposed a neural network model for effort estimation and compare the

results with the COCOMO model. The architecture of neural network which is used is multi

layer feed forward network trained with back propagation algorithm. According to Reddy et

al, this new model improves the performance and accuracy in predicting the effort. The data

used for this research is COCOMO data set. The data is divided into two sets: Training set

and testing set. The proposed neural network is trained with the training sample and then its

accuracy is calculated using tested sample. The proposed neural network model requires 22

20

input nodes in the input layer that corresponds to the effort multipliers, scale factors and bias

values. The process of establishing the neural network involves initializing, training and then

testing the network. First train the neural network with the expert judgment’s input. Then the

weights are updated with the back propagation algorithm. The back propagation procedure

iteratively processing the set of training samples and compare the network results with the

actual one. After each iteration, the weights are modified in order to minimize the error

between network calculated output and actual output, and when it comes to certain stopping

criteria, training stops. The stopping criteria can be the error is smaller than specific tolerance

or the number of iteration which are exceed to a specific number. After training the network,

the model is tested with testing samples and the results are compared with the COCOMO

model effort estimate. The results are compared based on the criteria of MRE (Mean Relative

Error). The results show that the proposed model produces more accurate and more

significant results than the COCOMO model [23].

Braga et al introduces the effort estimation along with confidence interval based on machine

learning. Machine learning uses the data from the past project to build the model and then use

that model to predict the effort of the new projects. In this research work, the objective is to

build the regression model using a training dataset that will be used to predict the effort of the

development project in man-months. M5P algorithm is used to build the regression based

tree. Regression tree is a special kind of decision tree. Robust confidence interval is

computed from the prediction error that comes after the regression model is built. To

evaluate the method, two data sets are used, the first one is Derharnais and second one was

NASA dataset. The data set is divided into two sets called training and testing set. Training

data set is used to build the model and testing is used to check the accuracy of the model. The

21

authors take two measurements: MMRE and PRED (25). The results show that the proposed

method was able to build robust confidence interval [24].

Kodada et al experienced the case base reasoning to predict software project effort. assists in

more effective use of CBR techniques for prediction system by providing experimental data.

The analysis for this research work is based on the dataset collected from Canadian Software

House. The pre-processing that is required for the dataset include the deletion of incomplete

cases that are present. The dataset is divided into smaller dataset to explore the impact of size

n. However, in order to generate the prediction, adopted a jack-knifing procedure. According

to author, when more than one analogy is selected, ANGEL will calculate the mean of chosen

analogies. Instinctively, the author expect that closest analogies to have more influence. In

short, the analysis suggests the decision that how to configure CBR system [25].

Deng et al estimated software effort using harmonizing algorithms and domain knowledge in

an integrated data mining approach. The authors present the integrated data mining

framework. Integrated data mining framework incorporates the domain knowledge into series

of data analysis and modeling processes. According to authors, integrating domain

knowledge into data mining solution is challenging, because some domain knowledge is

difficult to put in explicit form such as rules. The computational procedures like feature

selection, visualization etc are not detached from each other, but they share active features

between them. For experimentation, the author takes the dataset from PROMISE Software

Engineering Repository. The feature selection index was employed to value the value of

attributes in predicting effort. The normal-cut algorithm for spectral clustering was used to

cluster the data into four clusters, and project the label into 2-D display. The authors used the

nearest neighbor based algorithm for modeling of effort data. First work with the entire data

22

set for effort prediction, and from the results it was observed that when using log transformed

effort data can significantly improve the indexes. Then working with the subset of data and

the results obtained using homogenous subset are improved in two characteristics: prediction

accuracy and prediction stability. However, from the experimentation, it was found that

domain knowledge can be found to enhance, evaluate and confirm the computational

outcome [26].

Song et al used grey relational analysis to predict software effort with small data sets. The

authors in this paper particularly focus on feature subset selection and effort prediction at an

early stage of project. For this purpose, the author proposes an approach using Grey

Relational Analysis (GRA) of Grey System Theory (GST). The results are evaluated on the

five publicly available data sets. The result shows that this approach is better than other

machine learning techniques. Software development is a growing process because as it

proceeds, collect and analyze deficient information, and try to optimize the development

process. So according to author, effort prediction methods must be suitable for dealing with

uncertainty and continuous effort estimating [27]. GST requires a limited amount of data to

estimate the behavior of uncertainty system. In this paper, the authors focus on the feature

subset selection and effort prediction with-between project data sets at an early stage of

development process [27]. Grey Relational Analysis is used to measure all the influences of

various factors and relationships among data series that is a collection of measurement. The

authors view the feature data as series and software effort as output and applied Grey

Relational Analysis to select the optimal feature subset for software effort prediction. The

steps to select optimal feature subset using GRA includes: data series construction;

normalization; grey relational grade calculation; feature subset selection. The GRA based

software effort prediction method GRACE first construct data series from a project, and

23

measure the grey relational grade among the series, and then use most significant projects to

predict the effort for new project [27].

Attarzadeh et al introduces fuzzy logic concept in fuzzy logic model which include three

main stages, fuzzification, inference of rules and defuzzification. The evaluation criteria for

the model are Magnitude of Relative Error. In order to develop a fuzzy system, the

requirement is to develop a fuzzy system requires that the different categories of different

input into fuzzy sets. The membership functions which are used in it are two sided guassian

membership function, and some rules are also suggested for the model. The result shows that

MMRE by applying fuzzy logic is smaller than other fuzzy logic models [28].

2.4 Summary

There are various approaches used for effort estimation, also there are a number of tools

which are available for effort estimation. Some of the models which are developed for effort

estimation are discussed. However, the main conclusion is that reliability of the effort

estimation is still the big issue.

24

CHAPTER 3

FRAMEWORK DESIGN

In this chapter, the design of framework is discussed in detail, which will be adopted to build

the model which will be used for effort estimation. For building the model, data is collected

from different sources which are used to train and test the fuzzy neural network.

The design of the database is discussed in section 3.1. The method used to find the

parameters of guassian membership is discussed in section 3.2. Section 3.3 describes the

process that is adopted to extract rules from data. The topology and training algorithm of

FNN is discussed in section 3.4. The summary of this chapter is given in section 3.5.

3.1 Database Design

The basic step for the implementation is to design the database, because in order to train the

fuzzy neural network, we have to retrieve the data from the database, so its designing is

important. The database engine which is used to store the data is MS Access which is easy to

use by everyone. The structure and details of database are as follows:

3.1.1 Structure of Database

In the database, we have basic two tables, one is “Training Data”, which is used to train the

fuzzy neural network, the other one is “Testing Data”, which is used to test or in other words

to evaluate the performance the fuzzy neural network. The attributes of training and testing

data are discussed below.

25

3.1.1.1 Training & Testing Data

The attributes for the training and testing data are the same which are given in table 3.1.

Training & Testing Data Attributes

Field Name Data Type Primary

Key

Field Size

ID AutoNumber Yes Long Integer

PREC Text 255

FLEX Text 255

RESL Text 255

TEAM Text 255

PMAT Text 255

RELY Text 255

DATA Text 255

CPLX Text 255

RUSE Text 255

DOCU Text 255

TIME Text 255

STOR Text 255

PVOL Text 255

ACAP Text 255

PCAP Text 255

PCON Text 255

26

AEXP Text 255

PEXP Text 255

LTEX Text 255

TOOL Text 255

SITE Text 255

SCED Text 255

LOC Number Double

ACTUAL_EFFORT Number Double

Table 3.1 Attributes of Training & Testing Data

There are 25 fields in the table. All the input attributes are categorized into six different

rankings ranges from very low, low, nominal, very high, extra high and high. The

output/target field is categorized into low, medium, high. The description of the attributes is

as follows.

3.1.1.1.1 ID

The field named ID is a primary key and it simply contains the row number.

3.1.1.1.2 PREC

PREC stands for “Precedentedness”. It reveals the experience the of the software developer to

the present project context [29]. If the software developer had been working in present

project context then PREC is high.

27

3.1.1.1.3 FLEX

FLEX represents “Development Flexibility”. It holds the number of constraints that the

project has to meet. The more rigid the constraints lower the rating [30].

3.1.1.1.4 RESL

RESL indicates “Architecture/Risk Resolution”. It combines two factors “Design

Thoroughness” and “Risk Elimination” [31]. The rating of this attribute is the weighted

average of the several characteristics. For example, one of the characteristics is that risk

management plan identifies all vital risks [31].

3.1.1.1.5 TEAM

TEAM stands for “Team Cohesion”, and it signifies the capability of a team to work as a

team [29]. This factor consider for the causes of project instability due to complexity in

coordinating the project stakeholder. This may be due to deficient of experience in

stakeholders to work as a team [31].

3.1.1.1.6 PMAT

PMAT represents “Process Maturity” and it is organized around the Software Engineering

Institute’s Capability Maturity Model and the time period for the rating is that when the

project starts [31].

3.1.1.1.7 RELY

RELY stands for “Required Software Reliability”. Rely is defined as the measure of the

amount of to which software must perform its projected role. If the software failure causes

28

slightly trouble, then Rely is low, and if it causes danger to human life, then Rely is very high

[31].

3.1.1.1.8 DATA

DATA stands for “Database Size”. Data tries to measure the influence that large data

requirement have on product development [31]

.

3.1.1.1.9 CPLX

CPLX indicates “Product Complexity”. According to [31], complexity is divided into five

areas which are: control operations, computational operations, device-dependent operations,

data management operations, and user interface management operations. The evaluation of

the complexity depends on the individual weighted average of these areas [31].

3.1.1.1.10 RUSE

RUSE stands for “Required Reusability”. This cost driver is evaluated in terms of effort

needed to build components which will be used in future. If the component is build to be used

across multiple programs, then effort is high [31]

.

3.1.1.1.11 DOCU

DOCU indicates “Documentation match to Life-Cycle needs”. The evaluation of this driver is

based on the appropriateness of the project’s documentation to its life cycle needs [31]. When

the project documentation is appropriate according to the life cycle needs, then DOCU is

high.

29

3.1.1.1.12 TIME

TIME represents “Execution Time Constraint”. Time is defined as the evaluation of the

execution time constraint that is forced upon a software system and is expressed in terms of

the percentage of the execution time used by the system or sub system out of the available

execution time [31].

3.1.1.1.13 STOR

STOR represents “Main Storage Constraint”. Stor represents the degree of the storage

constraint that will be consumed by the software [31].

3.1.1.1.14 PVOL

PVOL indicates “Platform Volatility”. The word platform is used to represent the software

and hardware which are used by any program to perform its assignment. It can include any

compilers and assemblers which support the development of the software system. If there is

major change in platform after every twelve months, then PVOL is low [31].

3.1.1.1.15 ACAP

ACAP stands for “Analyst Capability”. Acap is a personnel factor and depends on the

individual analysis and design capability, efficiency and carefulness, and ability to

communicate and cooperate [31].

3.1.1.1.16 PCAP

PCAP shows “Programmer Capability”. The evaluation of the programmer capability is

based on the aptitude of a programmer as a team, as well as ability, efficiency, carefulness

and ability to communicate and cooperate [31].

30

3.1.1.1.17 PCON

PCON indicates “Personnel Continuity”. The evaluation of PCON is based on the project

annual personnel turnover [30]. If the project annual personnel turnover rate is 48% per year,

then PCON is very low [31].

3.1.1.1.18 AEXP

AEXP shows “Application experience”. Aexp shows the level of application experience the

project team which are developing the software has with this type of application [31].

3.1.1.1.19 PEXP

PEXP stands for “Platform Experience” and accounts for the understanding of the platforms

including more graphical user interface, database, networking and distributed middleware

capabilities. If the developer has platform experience of 2 months, it is considered as very

low [31].

3.1.1.1.20 LTEX

LTEX indicates “Language and Tool Experience” and it is a measure of level of experience

of programming language and software tool. An experience of less than or equal to two

months, it is counted as very low [31]

.

3.1.1.1.21 TOOL

TOOL represents the “Use of Software Tools”. The use of software tool ranges from simple

edit and debug code to integrated lifecycle management tools [31].

31

3.1.1.1.22 SITE

SITE stands for “Multisite Development”. The evaluation of this attribute is based on

measurement of site collocation and communication support. For example, if the site

communication is through some phone, mail, it is considered as very low [31].

3.1.1.1.23 SCED

SCED show “Required Development Schedule”. Sced measure the schedule constraint

imposed on the project team developing the software and is defined in terms of the

percentage of the schedule stretch out [31].

3.1.1.1.24 LOC

LOC stands for “Lines of Code”. Loc is the measure of the size of project. The loc is based

on the code which is delivered as a part of product, created by project staff [32].

3.1.1.1.25 ACTUAL_EFFORT

ACTUAL_EFFORT is the total effort required for project in terms of man month [33].

The next step which comes is to train the fuzzy neural network. For training of fuzzy neural

network, we need to know rules and have to find the parameters of the guassian membership

function for the continuous attribute named “LOC”.

32

3.2 Finding the Parameters of the Gaussian Function

We have to find the parameters of the guassian membership function for the attribute named

“LOC”. LOC contain continuous numeric data. The rating of “LOC” is categorized as

• Very Low

• Low

• Medium

• High

• Very High

• Extra High

The reason to use guassian membership function is that for effort estimation, it behaves well

as compared to triangular membership function [34]. To find the parameters of the

membership function of each category of the attribute, first we have to know the guassian

membership function. The formula is

 3.1 [34]

From the formula, we know that we have to find the mean and variance for each category. To

differentiate the ranking, the data is divided into six different clusters and each cluster

represent one category, then we find the mean and variance of each cluster and the guassian

membership function for each cluster is different. To make cluster of each category, we have

used k-means clustering. First, we will discuss how to make clusters, and then from clusters

how to find mean and variance.

33

The basic flow of the k-means clustering is shown in the figure 3.1.

 Fig 3.1 k-Means Clustering Flow

Initiate Centers
Randomly

Calculate Distance

Calculate Minimum
Distance

Make Groups based
on Minimum

Distance

Calculate Mean

Check Objects
Move in a Group

END

Yes

No

34

The steps which are adopted to make clusters are shown turn by turn:

3.2.1 Initiate Centers Randomly

The first step to make clusters is to initiate the centers randomly. The number of centers is

equal to the number of clusters. So here, the number of centers which are initialized is six.

3.2.2 Calculate Distance

The next step is to calculate the distance of each object against every center. To find the

distance, we used Euclidean distance.

…….................................... 3.2 [35]

Where i represents the center of each cluster.

3.2.3 Find Minimum Distance

Then we find that to which center the distance is nearer, means which cluster distance is

small.

3.2.4 Add Objects in a Cluster

Based on the “find minimum distance”, we added objects in the clusters. For example, if the

distance of object to the center of cluster 3 is the smallest, then the object is added to that

cluster.

3.2.5 Check Objects Move in a Different Cluster

35

After adding the objects in a cluster, check whether objects move in a cluster which is

different from a previous cluster. If no object moves from one cluster to another cluster, then

stop the algorithm, otherwise calculate mean and repeat the steps from 3.2.2 to 3.2.6.

3.2.6 Calculate Mean/Center

The mean of the clusters which are formed from the previous step, is calculated. The mean of

each cluster is calculated as the sum of the values of the objects included in the cluster

divided by the total number of objects in the cluster.

……. 3.3 [36]

The parameters of the guassian membership function include the mean and variance, the

mean has been calculated when making the clusters. Then after making the clusters, the

variance of each cluster is calculated, the formula for calculating the variance is given below.

 ……. 3.4 [36]

3.3 Adding & Extracting Rules

The next step after finding the parameters for the guassian membership function is to make

the rules which will be passed to the fuzzy neural network. Some rules are hard coded, means

that they are added by the developer based on the observation and their experience while

other rules are extracted from the data. Some assumption that was made before adding and

extracting the rules are given below.

36

RANK NUMBER

Very Low 1

Low 2

Medium 3

High 4

Very High 5

Extra High 6

Table 3.2 Mapping of Rules from Text to Numeric Form

Some of the rules which were added by the developer based on their observation and

experience, and also observed from [37]. Some of the hard-coded/observed rules are as

follows:

o If ACAP is low, then effort is high

o If PCAP is high, then effort is low

o If AEXP is very low, then effort is high

o If TOOL is low, then effort is high

o If RELY is low, then effort is low

o If DATA is high, then effort is high

o If RELY is low, and DATA is low, then effort is low

While the steps which are adopted to extract the rules from the data are as follows:

37

Fig 3.2 Basic Flow of Rule Extraction

3.3.1 Read Data from the Database

The first step in rule extraction is to read the data from the database which is in text form.

3.3.2 Assign numbers based on the Ranking

Add hard coded
Rules to the

previous array

Discard duplicate
Rules and add

distinct Rules to
another array

Assign Numbers
based on the ranking

Check that whether
Rules are similar to

one another

Read Data from the
Database

38

As the ranking are in text form, we convert it into numeric form for our easiness. It is

converted into numeric form according to the assumption which is given in table 3.2. So we

can say that the rules are in numeric form.

3.3.3 Check whether Rules are similar to one another

After assigning the numbers, the next step is to check that whether some rules are repeated or

not. If there is a duplicate rule, then note down their index.

3.3.3 Discard Duplicate Rules

In order to discard the duplicate rules, copy the array of rules to another array, but not copy

the duplicate rule.

3.3.4 Add hard coded Rules to the previous array

The last which we do is, add hard coded rules to the previous array.

3.4 Design of Fuzzy Neural Network (FNN)

3.4.1 Topology of Fuzzy Neural Network

The topology of FNN contains five layers. The first layer is called input layer, the second is

conditional element layer which performs fuzzification, the third one is rule layer, the fourth

is action element layer which performs defuzzification, and the last one is the output layer.

The topology is shown in figure below.

39

Fig 3.3 Topology of Fuzzy Neural Network

40

3.4.2 Functionality of Layers of Fuzzy Neural Network

As we know there are three or five layers in the fuzzy neural network. Each Layer depends on

the other layer. We will discuss the functionality with respect to five layers turn by turn.

3.4.2.1 Input Layer

The input layer of fuzzy neural network simply passes the value to the conditional element

layer.

3.4.2.2 Conditional Element Layer

The conditional element layer performs fuzzification. Fuzzification is defined as the

conversion of fuzzy variable into membership value or grade for fuzzy sets [38]. The

conditional element layer measures the membership grade of each ranking. In the data, we

have categorical and continuous variables. For categorical attribute, we used singleton

membership function and for continuous variable, we used guassian membership function

whose parameters finding method is mentioned in section 3.2.

Singleton membership ship function is defined to be 1 on one rank while 0 on all other ranks.

We can define fuzzy singleton with a membership function that is 1 one point while zero on

everywhere else [39].

3.4.2.3 Rule Layer

The rule layer measures the strength of each rule to fire. The node of each rule layer

multiplies the input which is coming to this node with their respective weight and adds all the

inputs which are coming to this node, which is show in equation 3.5 and then applied the

activation function. The activation function which is used over here is sigmoid activation

function which is shown in equation 3.6.

41

j

p

j
kjk xwv .

1
∑
=

= ………….................................... 3.5 [15]

)1/(1 xeOutput −+= …………… 3.6 [15]

3.4.2.4 Action Element Layer

Action element layer performs defuzzification. Defuzzification is defined as a process of

transforming a fuzzy output into crisp input [39]. The nodes of action element layer depend

on ranking which are used for the output. In this project, there are three nodes of action

element layer because we have chosen three ranking for the output i.e. low, medium, high.

The node of each action layer multiplies the input which is coming to this node with their

respective weight and adds all the inputs which are coming to this node, which is show in

equation 3.5 and then applied the activation function. The activation function which is used

over here is sigmoid activation function which is shown in equation 3.6.

3.4.2.5 Output Layer

The node of output layer multiplies the input which is coming to this node with their

respective weight and adds all the inputs which are coming to this node, which is show in

equation 3.5 and then applied the activation function. The activation function which is used is

shown in equation 3.7.

∑
=

=
p

j
k actionoutvOutput

1
)(/ ………….................................... 3.7[15]

3.4.3 Training Algorithm for Fuzzy Neural Network

42

After deciding the topology for the respective data and understanding the functionality of

layers, the next step is to train the FNN. For training FNN, variation of evolutionary

algorithm is used to evolve the weights of FNN. An evolutionary algorithm is a stochastic

search method and is very similar to biological evolution [40]. In FNN, there are five layers,

and each neuron in a layer is connected to neurons of the conditional layer, and neurons in the

conditional layer are connected to the neurons in the rule layer and neurons in the rule layer is

connected to the neurons in the action layer and neurons in the action layer is connected

output neuron in the output layer. The network is trained for several iterations, with each

iteration; the error is computed as the difference between the network output and observable

output. The combination of randomly assign weight, which gives the low error, replaces the

weights with other combination of weights, which gives high error. This process is called

training.

Training is the process to adjust the connection weights to enable the network to produce the

expected output for all inputs.

The main steps which are used to train the FNN are as follows:

3.4.3.1 Initialize the Population

In algorithm, the first step is to create the population. So initially population of size 10 is

created means 10 chromosomes are created. But we have experimented with different number

of chromosomes. The size of chromosome is calculated by the following form.

Total_No_of_Weights = (size of input * 6) + no of rule layer nodes + no of action layer

nodes……………………................................... 3.8

Where total_No_of_Weights contains the total number of weights that are used to train the

fuzzy neural network, and the weights are randomly assigned.

43

3.4.3.2 Feeding Input to the Network

After the initialization of population, the next step is to feed the inputs into the network. The

Fuzzy network calculates the output by following the steps which is described in

functionality of layers, and returns the results.

3.4.3.3 Calculation of Error

The steps which are mentioned above are repeated for each chromosome and error rate of

each chromosome will be measured. Error is affirmed as the difference between the actual

network output and the observable outcome shown in equation 3.9. Observable outcome is

the effort per person months.

 Error= actual network output – desired/observable output……….........................3.9

After the calculation of error, the steps of algorithm are applied.

3.4.3.4 Selection Process

After calculation of error, selection step is applied. In this step the best individuals are

selected. There are different methods of selecting it Its up to the developer or user to select

any method for selection. Here we use Rank Selection. In this selection method, the

individuals are ranked according to their fitness, and individuals having the high fitness

value/lowest rank are selected and how many individuals are selected is defined by the user.

We have experimented by selecting different number of individuals. For example if we want

44

to choose four best individuals, it means four individuals having the highest fitness value

which are at the low rank are selected. We take the fitness criteria on the basis of error. The

chromosomes whose error is low have high fitness function, so those chromosomes whose

error is low are selected. It is summarized in equation 3.10.

 Low Error = High Fitness

 High Error = Low Fitness ………................................... 3.10

3.4.3.5 Crossover Operation

The crossover operation is defined as the combination of connection weights of two

individuals which have been selected from the selection process. The cross over rate is

defined by the user. The cross over rate may be 50% and 50%. It means that 50 percent of the

connection weight of one individual is selected and 50 percent of the connection weight of

second best individual is selected.

3.4.3.6 Mutation & Reinsertion Process

After crossover of chromosomes, the values of chromosomes are mutated. The number of

chromosomes which are mutated depends on the process of reinsertion. In reinsertion

process, the method which is used is Elitist Reinsertion. In this method, the number of

offspring’s created is less than the number of parents, and offspring replaces the worst

parents. The worst parents are those whose fitness is low means whose error is high. In our

case, the best chromosomes are kept the same which have high fitness value, and other

chromosomes are also replaced by chromosomes which are cross over but with small

variations with self adaptive parameter.

The variations by using self adaptive parameter are summarized in equation 3.11.

))1,0(exp(][][''
jjj Nii τσσ ∗=

45

 ………………..................... 3.11 [41]

where j=1, 2………………..size means the total number of weights and bias in the neural

network.

The above overall steps are repeated for each iteration in order to train FNN.

3.4.4 Testing for Fuzzy Neural Network

The fuzzy neural network has two phases: Training and Testing. In training phase, the

network is trained by providing the complete information about the characteristics of the data

and the observable outcomes to perform a particular task. FNN develops the model that

learns the relationship between the input data and desired outcome in the training phase.

Whereas in testing phase, the testing data is provided as input. The performance of this phase

depends on the training phase, means it depends on the samples that are provided during

training phase and also on the number of times, the network is trained and how much

accurate the network is trained. It is impossible that the network output is 100% precise for

any input.

For testing the FNN, cross validation method is used, and in cross validation, we use k-fold

method, in which data is divided into different subsets, one subset is called testing data which

is not used in training, the other subsets are called training data. We have done

experimentation by taking each subset as a testing data. In testing phase, weights of the

trained FNN and test data is provided to the network and output is calculated by performing

the steps given in section 3.4.3.2 to 3.4.3.3.

)1,0(][]['
jjii Njweightjweight ⋅±= σ

size∗= 2/1τ

46

3.5 Summary

We can teach a network to perform a specific task by using the following procedure. We

present the network with the training examples which contain the sample of activities for the

input units and also the desired output for the output unit, then present the network with

different randomly assign weight i.e. with chromosomes. In others words, we can say that we

initiate the population. Then determine how much difference exists between the network

output and the desired output. Error is calculated by using RMSE. The next step is to

determine the individuals /chromosomes with high fitness i.e. whose error is low. The best

individuals whose error is low are kept as it is, and other chromosomes are also replaced by

the weights of these chromosomes but with the little variations by using crossover operation

and self adaptive parameter.

47

CHAPTER 4

IMPLEMENTATION DETAILS & USER INTERFACE

Our task is to develop a model for the effort estimation using fuzzy neural network. In this

chapter, we discuss implementation details regarding the development of model, and also the

user interface. Implementation details are discussed in section 4.1. Section 4.2 discusses the

user interface and summary of this chapter is given in section 4.3.

4.1 Implementation Details

For the implementation, latest technologies are used; the language which is used for the

implementation of this project is C# and the tool which is used for it is Microsoft Visual

Studio.Net version 2005 and database engine is Microsoft Access.

Microsoft Visual Studio contains the set of development tools for building ASP.Net

application, XML web services, desktop applications and mobile applications. It can be used

to develop console and graphical user interface applications along with windows form

applications, web applications etc [42]. It contains Visual Basic, Visual C#, and Visual J #.

They all use the same integrated development environment [43].

The code which we implement should have:

o Proper User Interface in order to interact with the user for completion of task.

o Error Free

o Easy to Understand

48

4.2 User Interface

User interface of this application is divided into three parts.

i). Training

ii). Testing

iii). Effort Estimation

Fig 4.1 User Interface

4.2.1 Training

In order to train the fuzzy neural net, the parameters are selected. The first parameter is the

recombination parameter in which the user decides that whether he/she wants to apply

49

mutation process on crossover offspring’s or on without crossover chromosomes. Moreover,

the number of iterations and the size of chromosomes which are taken initially are also

selected by the user. As there are three datasets which can be used for training, the user also

have to select the dataset on which training is to be done. Then click on the training button.

After training, the message box is displayed which tells that Training is successfully

completed.

Fig 4.2 User Interface with Parameters Selected

50

Fig 4.3 Training of FNN

4.2.2 Testing

In order to test the neural net, click on the testing button. . When testing is finished, the

message box is displayed which tells that Testing is successfully completed.

51

Fig 4.4 Testing of FNN

4.2.3 Effort Estimation

When the user clicks on the “Estimation” button, another form will open, in which user fills

the specified fields and click on the “Estimate” button, the resultant value is displayed in the

text box.

52

Fig 4.5 Effort Estimation

53

Fig 4.6 Example of Effort Estimation

4.3 Summary

In this chapter, we discussed the implementation details, and also the user interface, means

how it looks and how it works.

54

CHAPTER 5

RESULTS & TESTING

In this chapter, we will detail the results of system testing on different datasets. Each dataset

was divided into two parts: training dataset and testing dataset. For various experiments, the

system was trained on the training dataset and then its results were analyzed on the test

dataset.. The results are represented in the form of tables and graphs to increase readability

for the user.

This chapter is organized as follows. Section 5.1 describes the datasets. The factors which are

used for the analysis purpose are described in section 5.2. The training results of the datasets

and their analysis are discussed in section 5.3. The testing results of the datasets and their

analysis are discussed in section 5.4. The summary of this chapter is given in section 5.5.

5.1 Input Dataset Characteristics

Three different datasets was used to evaluate the performance of the Fuzzy Neural Network

(FNN). The first dataset contain real data that is taken from [33] and from ERP team leader of

College of E&ME. The second dataset was created by a professional developer based on his

experience with various projects. The third dataset contain randomly generated data. For the

analysis purpose, each dataset is divided into three equal parts, two parts are used for the

training purpose and one is used for the testing purpose, and every part is used for the testing

purpose in each experiment.

55

5.2 Factors of Comparisons

We evaluate the performance of FNN in terms of its Root Mean Square Error (RMSE). While

taking the experiments, the factors which are used for the comparisons and analysis purpose

are:

o RMSE effect with and without crossover operations.

o RMSE effect by changing the initial size of the population i.e generation of

chromosomes at the start of algorithm.

5.3 Training Results & Analysis

Different experiments were conducted in order to observe how well the FNN is trained, or in

other words, we can say measure the performance of the FNN. The experiments are carried

out in various ways. For the purpose of performance measure, total of 216 experiments were

performed for the three datasets including the three combinations of each dataset, out of

which 108 are with crossover operation and 108 are without crossover operations. Crossover

operation means that connection weights of two best chromosomes are combined. The

population sizes which are used for the analysis purpose are 10, 20, 50 and 100. The results

of the experiments for different datasets are discussed below.

5.3.1 Results

We will discuss the results of each dataset with the different combination of data turn by turn.

5.3.1.1 Dataset 1

We will discuss the results with different combinations of data one by one.

56

5.3.1.1.1 Data Combination 1 (DC11)

The results of the dataset with data part or data combination 1 (DC11) with and without

crossover operation and by changing the population size, and by selecting the different

number of best chromosomes are shown in Table 5.1 and 5.2.

S. No Population

Size

Selection of Best Chosen Chromosomes for Next

Generation (RMSE of Experiments)

1 10 4 5 6

1.63820667963474 1.63821115601164 1.63819126295196

2 20 8 10 12

1.60307678886961 1.63819820670947 1.63844337162949

3 50 20 25 30

1.61788060526262 1.63819177597436 1.63818952520204

4 100 40 50 60

1.62247988886841 1.63819371843808 1.5314973753452

Table 5.1 RMSE of Training Results with Crossover (DC11)

57

S. No Population

Size

Selection of Best Chosen Chromosomes for Next

Generation (RMSE of Experiments)

1 10 4 5 6

1.63698678422563 1.63827307071342 1.63829625954059

2 20 8 10 12

1.6381893467108 1.638189897977 1.63820892889931

3 50 20 25 30

1.58064683566918 1.63818924680562 1.63818960239284

4 100 40 50 60

1.58141026519184 1.62310124962382 1.63818932140575

Table 5.2 RMSE of Training Results without Crossover (DC11)

From the table 5.1, we observe that lowest RMSE is 1.5314973753452 with population size

100 and number of best chosen chromosome is 60, and their training pattern is shown in the

Fig 5.1. And from table 5.2, the lowest RMSE is 1.58064683566918 with population size 50

and number of best chromosome is 20 and their training graph is shown in Fig 5.2. We

observe from the graphs, as the number of iteration increases, the root mean square error

decreases, and after some iteration, it becomes stable, means it does not learn more patterns

after becoming stable.

58

Fig 5.1 Graph with 100 Population Size and 60 Best Chosen Size of Chromosomes

(DC11 with Crossover)

Fig 5.2 Graph with 50 Population Size and 20 Best Chosen Size of Chromosomes (DC11

without Crossover)

The summary of the RMSE’s of the results given in table 5.1 and 5.2 with and without

crossover are shown in Fig 5.3.

59

Fig 5.3 Summary of the Training Results of DC11 with & without Crossover Operation

The averages of the RMSE’s of the results calculated from table 5.1 and 5.2 are given in

Table 5.3.

Average RMSE of Training Results with

Crossover

Average RMSE of Training Results

without Crossover

1.626322902 1.627322567

Table 5.3 Average RMSE of Training Results with & without Crossover (DC11)

5.3.1.1.2 Data Combination 2 (DC12)

The results of the dataset with data part or data combination 2 (DC12) by changing the

population size, and by selecting the different number of best chromosomes with and without

crossover operation are shown in Table 5.4 and 5.5.

60

S. No Population

Size

Selection of Best Chosen Chromosomes for Next

Generation (RMSE of Experiments)

1 10 4 5 6

1.99399330192257 1.99416156726356 1.9941069267815

2 20 8 10 12

1.99320061238867 1.99383184617617 1.99415418546137

3 50 20 25 30

1.99433545139472 1.99394512166747 1.96405630896112

4 100 40 50 60

1.96035569971199 1.9261357343588 1.84199952084285

Table 5.4 RMSE of Training Results with Crossover (DC12)

S. No Population

Size

Selection of Best Chosen Chromosomes for Next

Generation (RMSE of Experiments)

1 10 4 5 6

1.99404166149417 1.99421863259106 1.99402740910471

2 20 8 10 12

1.99377517481042 1.99393735896395 1.99401180492594

3 50 20 25 30

1.98003945625951 1.95941363637786 1.99401232615357

4 100 40 50 60

1.92577461885759 1.99367552784335 1.97419501805537

Table 5.5 RMSE of Training Results without Crossover (DC12)

61

From the table 5.4, we observe that lowest RMSE is 1.84199952084285 with population size

100 and best chosen chromosome is 60, and their training pattern is shown in the Fig 5.4.

And from table 5.5, the lowest RMSE is 1.92577461885759 with population size 100 and

number of best chromosome is 40 and their training graph is shown in Fig 5.5.

Fig 5.4 Graph with 100 Population Size and 60 Best Chosen Size of Chromosomes

(DC12 with Crossover)

Fig 5.5 Graph with 100 Population Size and 40 Best Chosen Size of Chromosomes

(DC12 without Crossover)

62

The summary of the RMSE’s of the results given in table 5.4 and 5.5 with and without

crossover are shown in Fig 5.6.

Fig 5.6 Summary of the Training Results of DC12 with & without Crossover Operation

 The averages of the rmse’s of the results calculated from table 5.4 and 5.5 are given in Table

5.6.

Average RMSE of Training Results with

Crossover

Average RMSE of Training Results

without Crossover

1.970356356 1.982593552

Table 5.6 Average RMSE of Training Results with & without Crossover (DC12)

5.3.1.1.3 Data Combination 3 (DC13)

The results of the dataset with data part or data combination 3 (DC13) by changing the

population size, and by selecting the different number of best chromosomes with and without

crossover operation are shown in Table 5.7 and 5.8.

63

S. No Population

Size

Selection of Best Chosen Chromosomes for Next

Generation (RMSE of Experiments)

1 10 4 5 6

1.66440318234985 1.66258289577062 1.66299836201039

2 20 8 10 12

1.66237543532013 1.66229812330325 1.66267756484166

3 50 20 25 30

1.66130138748718 1.65747375101583 1.64021174791185

4 100 40 50 60

1.62974428634952 1.6619340641745 1.6329793984847

Table 5.7 RMSE of Training Results with Crossover (DC13)

S. No Population

Size

Selection of Best Chosen Chromosomes for Next

Generation (RMSE of Experiments)

1 10 4 5 6

1.66273619584422 1.66215288845445 1.65997856921291

2 20 8 10 12

1.63749217758516 1.6622989208378 1.64448822959757

3 50 20 25 30

1.63489799862911 1.64760910595616 1.65274769443576

4 100 40 50 60

1.66258454395329 1.63931136926958 1.63209098819314

Table 5.8 RMSE of Training Results without Crossover (DC13)

64

From the table 5.7, we observe that lowest RMSE is 1.62974428634952 with population size

100 and best chosen chromosome is 40, and their training pattern is shown in the Fig 5.7.And

from table 5.8, the lowest RMSE is 1.63209098819314 with population size 100 and number

of best chromosome is 60 and their training graph is shown in Fig 5.8.

Fig 5.7 Graph with 100 Population Size and 40 Best Chosen Size of Chromosomes

(DC13 with Crossover)

Fig 5.8 Graph with 100 Population Size and 60 Best Chosen Size of Chromosomes

(DC13 without Crossover)

65

The summary of the RMSE’s of the results given in table 5.7 and 5.8 with and without

crossover are shown in Fig 5.9.

Fig 5.9 Summary of the Training Results of DC13 with & without Crossover Operation

 The averages of the rmse’s of the results calculated from table 5.7 and 5.8 are given in Table

5.9.

Average RMSE of Training Results with

Crossover

Average RMSE of Training Results

without Crossover

1.655081683 1.649865723

Table 5.9 Average RMSE of Training Results with & without Crossover (DC13)

As we observe from the above tables and graphs that FNN is not well trained for the data

combination 2 as compared to the other combinations because it contains highest RMSE. The

main drawback with this dataset is the small number of training examples, and the network

66

needs a large number of examples to better train a network, but on the other hand the main

advantage of this dataset is that it contains real data, which is good for training.

5.3.1.2 Dataset 2

Now we will discuss the results of dataset 2 with different combinations of data turn by turn.

5.3.1.2.1 Data Combination 1 (DC21)

The results of the dataset with data part or data combination 1 (DC21) with and without

crossover operation and by changing the population size, and by selecting the different

number of best chromosomes are shown in Table 5.10 and 5.11.

S. No Population

Size

Selection of Best Chosen Chromosomes for Next Generation

(RMSE of Experiments)

1 10 4 5 6

0.774147841943023 0.774087828804581 0.774321967242386

2 20 8 10 12

0.77417087618872 0.774077129494083 0.77407686235788

3 50 20 25 30

0.774076772862918 0.774088395035455 0.761375185886316

4 100 40 50 60

0.739998872768895 0.7377853709561 0.751061950493052

Table 5.10 RMSE of Training Results with Crossover (DC21)

67

S. No Population

Size

Selection of Best Chosen Chromosomes for Next Generation

(RMSE of Experiments)

1 10 4 5 6

0.774085587508678 0.773391863030158 0.774078357483707

2 20 8 10 12

0.765870447963984 0.774076607421646 0.774076644156088

3 50 20 25 30

0.752880647900112 0.774077057228241 0.76895485819402

4 100 40 50 60

0.72323205683826 0.754993139338827 0.765907444900027

Table 5.11 RMSE of Training Results without Crossover (DC21)

From the table 5.10, we observe that lowest RMSE is 0.7377853709561 with population size

100 and best chosen chromosome is 50, and their training pattern is shown in the Fig

5.10.And from table 5.11, the lowest RMSE is 0.72323205683826 with population size 100

and number of best chromosome is 40 and their training graph is shown in Fig 5.11.

68

Fig 5.10 Graph with 100 Population Size and 50 Best Chosen Size of Chromosomes

(DC21 with Crossover)

Fig 5.11 Graph with 100 Population Size and 40 Best Chosen Size of Chromosomes

(DC21 without Crossover)

The summary of the RMSE’s of the results given in table 5.10 and 5.11 with and without

crossover are shown in Fig 5.12.

Fig 5.12 Summary of the Training Results of DC21 with & without Crossover

Operation

69

The averages of the rmse’s of the results calculated from table 5.10 and 5.11 are given in

Table 5.12.

Average RMSE of Training Results with

Crossover

Average RMSE of Training Results

without Crossover

0.765272412 0.764635393

Table 5.12 Average RMSE of Training Results with & without Crossover (DC21)

5.3.1.2.2 Data Combination 2 (DC22)

Then results of the dataset with data part or data combination 2 (DC22) by changing the

population size, and by selecting the different number of best chromosomes with and without

crossover operation are shown in Table 5.13 and 5.14.

S. No Population

Size

Selection of Best Chosen Chromosomes for Next Generation

(RMSE of Experiments)

1 10 4 5 6

0.785220409133273 0.785183936061847 0.785183900985981

2 20 8 10 12

0.785395703857917 0.785085388623097 0.78520099582178

3 50 20 25 30

0.747352559679869 0.737673513249608 0.748861346785677

4 100 40 50 60

0.785183368075852 0.634502449903263 0.757567461920363

Table 5.13 RMSE of Training Results with Crossover (DC22)

70

S. No Population

Size

Selection of Best Chosen Chromosomes for Next Generation

(RMSE of Experiments)

1 10 4 5 6

0.78518811646665 0.78522879206761 0.788783822690797

2 20 8 10 12

0.785183363280739 0.785192005151932 0.785183572550179

3 50 20 25 30

0.709138059073213 0.782552663752828 0.760856989596845

4 100 40 50 60

0.772512979595968 0.756998074179578 0.773561205495457

Table 5.14 RMSE of Training Results without Crossover (DC22)

From the table 5.13, we observe that lowest RMSE is 0.634502449903263 with population

size 100 and best chosen chromosome is 50, and their training pattern is shown in the Fig

5.13.And from table 5.14, the lowest RMSE is 0.709138059073213 with population size 50

and number of best chromosome is 20 and their training graph is shown in Fig 5.14.

71

Fig 5.13 Graph with 100 Population Size and 50 Best Chosen Size of Chromosomes

(DC22 with Crossover)

Fig 5.14 Graph with 50 Population Size and 20 Best Chosen Size of Chromosomes

(DC22 without Crossover)

The summary of the RMSE’s of the results given in table 5.13 and 5.14 with and without

crossover are shown in Fig 5.15.

Fig 5.15 Summary of the Training Results of DC22 with & without Crossover

Operation

72

The averages of the rmse’s of the results calculated from table 5.13 and 5.14 are given in

Table 5.15.

Average RMSE of Training Results with

Crossover

Average RMSE of Training Results

without Crossover

0.76020092 0.772531637

Table 5.15 Average RMSE of Training Results with & without Crossover (DC22)

5.3.1.2.3 Data Combination 3 (DC23)

Then results of the dataset with data part or data combination 3 (DC23) by changing the

population size, and by selecting the different number of best chromosomes with and without

crossover operation are shown in Table 5.16 and 5.17.

S. No Population

Size

Selection of Best Chosen Chromosomes for Next Generation

(RMSE of Experiments)

1 10 4 5 6

0.714630955109737 0.726538627533142 0.72695674529044

2 20 8 10 12

0.726558485418481 0.726675478297488 0.726537368824476

3 50 20 25 30

0.726537346599972 0.72653753627359 0.726557356446783

4 100 40 50 60

0.723558351800119 0.726537474546244 0.726198786612324

Table 5.16 RMSE of Training Results with Crossover (DC23)

73

S. No Population

Size

Selection of Best Chosen Chromosomes for Next Generation

(RMSE of Experiments)

1 10 4 5 6

0.726551463478924 0.72653812290335 0.726538472674194

2 20 8 10 12

0.726538185942841 0.726537382338909 0.701322929303188

3 50 20 25 30

0.726544395107216 0.726539287464678 0.72531990226945

4 100 40 50 60

0.723400376093425 0.720602851703414 0.726537329786993

Table 5.17 RMSE of Training Results without Crossover (DC23)

From the table 5.16, we observe that lowest RMSE is 0.714630955109737 with population

size 10 and best chosen chromosome is 4, and their training pattern is shown in the Fig

5.16.And from table 5.17, the lowest RMSE is 0.701322929303188 with population size 20

and number of best chromosome is 12 and their training graph is shown in Fig 5.17.

74

Fig 5.16 Graph with 10 Population Size and 4 Best Chosen Size of Chromosomes (DC23

with Crossover)

Fig 5.17 Graph with 20 Population Size and 12 Best Chosen Size of Chromosomes

(DC23 without Crossover)

The summary of the RMSE’s of the results given in table 5.16 and 5.17 with and without

crossover are shown in Fig 5.18.

Fig 5.18 Summary of the Training Results of DC23 with & without Crossover

Operation

75

The averages of the rmse’s of the results calculated from table 5.16 and 5.17 are given in

Table 5.18.

Average RMSE of Training Results with

Crossover

Average RMSE of Training Results

without Crossover

0.725318709 0.723580892

Table 5.18 Average RMSE of Training Results with & without Crossover (DC23)

5.3.1.3 Dataset 3

Now we will discuss the results of dataset 3 with different combinations of data turn by turn.

5.3.1.3.1 Data Combination 1 (DC31)

The results of the dataset with data part or data combination 1 (DC31) with and without

crossover operation and by changing the population size, and by selecting the different

number of best chromosomes are shown in Table 5.19 and 5.20.

S. No Population

Size

Selection of Best Chosen Chromosomes for Next Generation

(RMSE of Experiments)

1 10 4 5 6

0.853498565299813 0.853088253350499 0.854353166051225

2 20 8 10 12

0.853094546950559 0.853090996977275 0.852154627366715

3 50 20 25 30

0.853087763744071 0.853087753763717 0.853087641064629

4 100 40 50 60

76

0.853087256802815 0.853088166640357 0.85308723411144

Table 5.19 RMSE of Training Results with Crossover (DC31)

S. No Population

Size

Selection of Best Chosen Chromosomes for Next Generation

(RMSE of Experiments)

1 10 4 5 6

0.853124744626693 0.85312580372016 0.853466542544103

2 20 8 10 12

0.853104526049794 0.853265680607571 0.853219309384738

3 50 20 25 30

0.853092096320901 0.853087411303574 0.853101455059848

4 100 40 50 60

0.85308889437917 0.853087497982272 0.853087233009058

Table 5.20 RMSE of Training Results without Crossover (DC31)

From the table 5.19, we observe that lowest RMSE is 0.852154627366715 with population

size 20 and number of best chosen chromosomes is 12, and their training pattern is shown in

the Fig 5.19.And from table 5.20, the lowest RMSE is 0.853087233009058 with population

size 100 and number of best chromosomes is 60 and their training graph is shown in Fig 5.20.

77

Fig 5.19 Graph with 20 Population Size and 12 Best Chosen Size of Chromosomes

(DC31 with Crossover)

Fig 5.20 Graph with 100 Population Size and 60 Best Chosen Size of Chromosomes

(DC31 without Crossover)

The summary of the RMSE’s of the results given in table 5.19 and 5.20 with and without

crossover are shown in Fig 5.21.

78

Fig 5.21 Summary of the Training Results of DC31 with & without Crossover

Operation

The averages of the rmse’s of the results calculated from table 5.19 and 5.20 are given in

Table 5.21

Average RMSE of Training Results with

Crossover

Average RMSE of Training Results

without Crossover

0.853150498 0.853154266

Table 5.21 Average RMSE of Training Results with & without Crossover (DC31)

5.3.1.3.2 Data Combination 2 (DC32)

The results of the dataset with data part or data combination 2 (DC32) with and without

crossover operation and by changing the population size, and by selecting the different

number of best chromosomes are shown in Table 5.22 and 5.23.

S. No Population Selection of Best Chosen Chromosomes for Next Generation

79

Size (RMSE of Experiments)

1 10 4 5 6

0.84582991192323 0.845813122657213 0.847798286849673

2 20 8 10 12

0.845812381376998 0.845816124754819 0.845915255931628

3 50 20 25 30

0.845812693606922 0.845813358365221 0.845812360722539

4 100 40 50 60

0.845111236090684 0.845574422632092 0.845812330815447

Table 5.22 RMSE of Training Results with Crossover (DC32)

80

S. No Population

Size

Selection of Best Chosen Chromosomes for Next Generation

(RMSE of Experiments)

1 10 4 5 6

0.845833345026194 0.845824221376483 0.845812320780172

2 20 8 10 12

0.845815121172136 0.845813445229444 0.845814691805434

3 50 20 25 30

0.845813154773314 0.845813113041145 0.845812275056077

4 100 40 50 60

0.845812448250635 0.845812348582527 0.845813593878958

Table 5.23 RMSE of Training Results without Crossover (DC32)

From the table 5.22, we observe that lowest RMSE is 0.845111236090684 with population

size 100 and number of best chosen chromosomes is 40, and their training pattern is shown in

the Fig 5.22. And from table 5.23, the lowest RMSE is 0. 0.845812275056077 with

population size 50 and number of best chromosomes is 30 and their training graph is shown

in Fig 5.23.

81

Fig 5.22 Graph with 100 Population Size and 40 Best Chosen Size of Chromosomes

(DC32 with Crossover)

Fig 5.23 Graph with 50 Population Size and 30 Best Chosen Size of Chromosomes

(DC32 without Crossover)

The summary of the RMSE’s of the results given in table 5.22 and 5.23 with and without

crossover are shown in Fig 5.24.

Fig 5.24 Summary of the Training Results of DC32 with & without Crossover

Operation

82

The averages of the rmse’s of the results calculated from table 5.22 and 5.23 are given in

Table 5.24

Average RMSE of Training Results with

Crossover

Average RMSE of Training Results

without Crossover

0.845910124 0.84581584

Table 5.24 Average RMSE of Training Results with & without Crossover (DC32)

5.3.1.3.3 Data Combination 3 (DC33)

The results of the dataset with data part or data combination 3 (DC33) with and without

crossover operation and by changing the population size, and by selecting the different

number of best chromosomes are shown in Table 5.25 and 5.26.

S. No Population

Size

Selection of Best Chosen Chromosomes for Next Generation

(RMSE of Experiments)

1 10 4 5 6

0.889731133110635 0.889449872478944 0.889393387565423

2 20 8 10 12

0.889343769475781 0.8894400201316 0.889402742047199

3 50 20 25 30

0.889359318856807 0.886720720416569 0.887053659050378

4 100 40 50 60

0.889342547916596 0.889342374392427 0.877870996195777

Table 5.25 RMSE of Training Results with Crossover (DC33)

83

S. No Population

Size

Selection of Best Chosen Chromosomes for Next Generation

(RMSE of Experiments)

1 10 4 5 6

0.889435152662864 0.889345442538824 0.889421363625855

2 20 8 10 12

0.889366400431416 0.889342521962807 0.889342839631661

3 50 20 25 30

0.889342903282971 0.879418433408268 0.889344019068735

4 100 40 50 60

0.889342449852189 0.889342374392427 0.887606809612924

Table 5.26 RMSE of Training Results without Crossover (DC33)

From the table 5.25, we observe that lowest RMSE is 0.877870996195777 with population

size 100 and number of best chosen chromosomes is 60, and their training pattern is shown in

the Fig 5.25. And from table 5.26, the lowest RMSE is 0.879418433408268 with population

size 50 and number of best chromosomes is 25 and their training graph is shown in Fig 5.26.

84

Fig 5.25 Graph with 100 Population Size and 60 Best Chosen Size of Chromosomes

(DC33 with Crossover)

Fig 5.26 Graph with 50 Population Size and 25 Best Chosen Size of Chromosomes

(DC33 without Crossover)

The summary of the RMSE’s of the results given in table 5.25 and 5.26 with and without

crossover are shown in Fig 5.27.

Fig 5.27 Summary of the Training Results of DC32 with & without Crossover

Operation

85

The averages of the rmse’s of the results calculated from table 5.25 and 5.26 are given in

Table 5.27.

Average RMSE of Training Results with

Crossover

Average RMSE of Training Results

without Crossover

0.888037545 0.888387559

Table 5.27 Average RMSE of Training Results with & without Crossover (DC33)

5.3.2 Cumulative Analysis on the Datasets

We have compared the results of the datasets in terms of root mean square error. By looking

at the results, we have drawn some conclusions from it which we will discuss one by one.

The analysis of the results with respect to different parameters is as follows.

5.3.2.1 Crossover Operation

 By looking at the table which shows the summaries of the training results of the different

combination of the datasets, we have observed that in more than half of the results, average of

RMSE of the experiments is low with crossover operation. Moreover, by looking at the

graphs which show the summaries of the experiments with and without crossover operation,

we have observed that lowest root mean square error was associated with the crossover

operation. So from this observation, we can say that crossover operation improves the

performance of the network, or in other words the network is better trained with crossover

operation, because crossover operation have combined the connection weights of best

chromosomes, so there is more diversity in the connection weights of chromosomes and more

chance that RMSE is more reduced.

86

5.3.2.2 Population Size of Chromosomes

The other thing which we observe from the results is that most of the time the lowest RMSE

comes with population size of 50 and 100, so the conclusion which we derived from it is that

“greater the population size, lower rmse”, the reason for this is that larger the population size

means more variety in the connection weights of the chromosomes which are used to train the

network.

5.4 Testing Results & Analysis

Testing is a building block in the development of any application. Testing is defined as a

process which are used to identify the correctness and performance of the computer software

or application, means how well it performs. It only discovers the correctness or defects, not

correcting it. [44] In testing, we are generalizing the error, means how well it performs on the

untrained data.. There are further categorization of cross validation methods which are

holdout cross validation, k-fold cross validation, leave one out cross validation [45]. In this

thesis work, we use the k-fold cross validation method. In k-fold cross validation method, the

whole data is divided into three subsets and every time one subset is used for testing purpose

called testing set while other two subset are used for training purpose called training set..

Training dataset is used to train the fuzzy neural network and testing data is used to estimate

that how well the fuzzy neural network is trained. The performance of training and testing

data is measured in terms of root mean square error.

5.4.1 Results

As we discussed above, that each dataset is divided into three parts and each part is used in

testing. So we will discuss the results of testing of dataset with respect to their combination.

87

One important thing is that the part of dataset which is used for testing are not included in

training.

5.4.1.1 Dataset 1

We will discuss the results with different combinations of data one by one.

5.4.1.1.1 Data Combination 1 (DC11)

The testing results of the dataset with data part or data combination 1 (DC11) with and

without crossover operation and by changing the population size, and by selecting the

different number of best chromosomes are shown in Table 5.28 and 5.29.

S. No Population

Size

Selection of Best Chosen Chromosomes for Next

Generation (RMSE of Experiments)

1 10 4 5 6

1.45955365436334 1.45881584577382 1.45931353345552

2 20 8 10 12

1.67221054070569 1.45944892615229 1.46071225461028

3 50 20 25 30

1.45565267726206 1.45905814550451 1.45924126844571

4 100 40 50 60

1.46871459041243 1.45901631002939 1.6888694613283

Table 5.28 RMSE of Testing Results with Crossover (DC11)

88

S. No Population

Size

Selection of Best Chosen Chromosomes for Next

Generation (RMSE of Experiments)

1 10 4 5 6

1.45880531400417 1.45848865944384 1.46013526416725

2 20 8 10 12

1.45915590193692 1.45927174001992 1.45883454739994

3 50 20 25 30

1.43894845855592 1.45916768663753 1.45924645568662

4 100 40 50 60

1.45078652756554 1.5116934911351 1.4592239133083

Table 5.29 RMSE of Testing Results without Crossover (DC11)

From the table 5.28, we observe that lowest RMSE is 1.45565267726206 with population

size 50 and number of best chosen chromosome is 20. And from table 5.29, the lowest RMSE

is 1.43894845855592 with population size 50 and number of best chromosome is 20.

The summary of the RMSE’s of the results given in table 5.28 and 5.29 with and without

crossover operation are shown in Fig 5.28

89

.

Fig 5.28 Summary of the Testing Results of DC11 with & without Crossover Operation

The averages of the rmse’s of the results calculated from table 5.28 and 5.29 are given in

Table 5.30.

Average RMSE of Testing Results with

Crossover

Average RMSE of Testing Results without

Crossover

1.49677267 1.461146497

Table 5.30 Averages RMSE of Testing Results with & without Crossover Operation

(DC11)

5.4.1.1.2 Data Combination 1 (DC12)

The testing results of the dataset with data part or data combination 2 (DC12) with and

without crossover operation and by changing the population size, and by selecting the

different number of best chromosomes are shown in Table 5.31 and 5.32.

90

S. No Population

Size

Selection of Best Chosen Chromosomes for Next

Generation (RMSE of Experiments)

1 10 4 5 6

1.47513596603901 1.47376113598488 1.47290812012457

2 20 8 10 12

1.47384067984055 1.4750779409451 1.47311013970736

3 50 20 25 30

1.47513652636656 1.47700049059649 1.45148418343979

4 100 40 50 60

1.40763694062448 1.42044066494135 1.400836484229

Table 5.31 RMSE of Testing Results with Crossover (DC12)

S. No Population

Size

Selection of Best Chosen Chromosomes for Next

Generation (RMSE of Experiments)

1 10 4 5 6

1.47464973133103 1.47493553816494 1.47714669594494

2 20 8 10 12

1.4751508626539 1.47725922065732 1.47419741553959

3 50 20 25 30

1.45278359746026 1.49852533949348 1.47522702234024

4 100 40 50 60

1.3989814530978 1.47434108641329 1.43583337259369

Table 5.32 RMSE of Testing Results without Crossover (DC12)

91

From the table 5.31, we observe that lowest RMSE is 1.400836484229 with population size

100 and number of best chosen chromosome is 60. And from table 5.32, the lowest RMSE is

1.3989814530978 with population size 100 and number of best chromosome is 40.

The summary of the RMSE’s of the results given in table 5.31 and 5.32 with and without

crossover operation are shown in Fig 5.29

.

Fig 5.29 Summary of the Testing Results of DC12 with & without Crossover Operation

The averages of the rmse’s of the results calculated from table 5.31 and 5.32 are given in

Table 5.33.

Average RMSE of Testing Results with

Crossover

Average RMSE of Testing Results without

Crossover

1.456364106 1.465752611

Table 5.33 Averages RMSE of Testing Results with & without Crossover Operation

(DC12)

92

5.4.1.1.3 Data Combination 3 (DC13)

The testing results of the dataset with data part or data combination 3 (DC13) with and

without crossover operation and by changing the population size, and by selecting the

different number of best chromosomes are shown in Table 5.34 and 5.35.

S. No Population

Size

Selection of Best Chosen Chromosomes for Next

Generation (RMSE of Experiments)

1 10 4 5 6

1.46095700758555 1.46470528137562 1.46407424858062

2 20 8 10 12

1.4655400421302 1.4635136727361 1.46590707359042

3 50 20 25 30

1.46132408883306 1.46462699359236 1.49989087970591

4 100 40 50 60

1.43813540919528 1.46463913909041 1.4735391488274

Table 5.34 RMSE of Testing Results with Crossover (DC13)

93

S. No Population

Size

Selection of Best Chosen Chromosomes for Next

Generation (RMSE of Experiments)

1 10 4 5 6

1.46449313727159 1.46622866650681 1.46235976642011

2 20 8 10 12

1.53792666932487 1.46593584384851 1.50729283946837

3 50 20 25 30

1.46347287625809 1.46130603533105 1.50993813968947

4 100 40 50 60

1.46495282592517 1.47031788961447 1.47128255848725

Table 5.35 RMSE of Testing Results without Crossover (DC13)

From the table 5.34, we observe that lowest RMSE is 1.43813540919528 with population

size 100 and number of best chosen chromosome is 50. And from table 5.35, the lowest

RMSE is 1.46130603533105 with population size 50 and number of best chromosome is 25.

The summary of the RMSE’s of the results given in table 5.34 and 5.35 with and without

crossover operation are shown in Fig 5.30.

94

.

Fig 5.30 Summary of the Testing Results of DC13 with & without Crossover Operation

The averages of the rmse’s of the results calculated from table 5.34 and 5.35 are given in

Table 5.36.

Average RMSE of Testing Results with

Crossover

Average RMSE of Testing Results without

Crossover

1.465571082 1.478792271

Table 5.36 Averages RMSE of Testing Results with & without Crossover Operation

(DC13)

95

5.4.1.2 Dataset 2

We will discuss the results with different combinations of data one by one.

5.4.1.2.1 Data Combination 1 (DC21)

The testing results of the dataset with data part or data combination 1 (DC21) with and

without crossover operation and by changing the population size, and by selecting the

different number of best chromosomes are shown in Table 5.37 and 5.38.

S. No Population

Size

Selection of Best Chosen Chromosomes for Next Generation

(RMSE of Experiments)

1 10 4 5 6

0.623797558621138 0.623538533570821 0.624238670691255

2 20 8 10 12

0.623868818729786 0.623422041782224 0.623413127481597

3 50 20 25 30

0.623409218163806 0.623259508502428 0.611247527459716

4 100 40 50 60

0.59637985004315 0.592343638935951 0.602246525092826

Table 5.37 RMSE of Testing Results with Crossover (DC21)

96

S. No Population

Size

Selection of Best Chosen Chromosomes for Next Generation

(RMSE of Experiments)

1 10 4 5 6

0.623275141377187 0.621852255854453 0.623337868980252

2 20 8 10 12

0.617233072521659 0.623385036235649 0.623401289872932

3 50 20 25 30

0.611177421073346 0.623419895082388 0.617176669421871

4 100 40 50 60

0.57455614266472 0.609017226055767 0.610719908521369

Table 5.38 RMSE of Testing Results without Crossover (DC21)

From the table 5.37, we observe that lowest RMSE is 0.592343638935951 with population

size 100 and number of best chosen chromosome is 50. And from table 5.38, the lowest

RMSE is 0.57455614266472 with population size 100 and number of best chromosome is 40.

The summary of the RMSE’s of the results given in table 5.37 and 5.38 with and without

crossover operation are shown in Fig 5.31.

97

.

Fig 5.31 Summary of the Testing Results of DC21 with & without Crossover Operation

The averages of the rmse’s of the results calculated from table 5.37 and 5.38 are given in

Table 5.39.

Average RMSE of Testing Results with

Crossover

Average RMSE of Testing Results without

Crossover

0.615930418 0.614879327

Table 5.39 Averages RMSE of Testing Results with & without Crossover Operation

(DC21)

5.4.1.2.2 Data Combination 2 (DC22)

The testing results of the dataset with data part or data combination 2 (DC22) with and

without crossover operation and by changing the population size, and by selecting the

different number of best chromosomes are shown in Table 5.40 and 5.41.

98

S. No Population

Size

Selection of Best Chosen Chromosomes for Next Generation

(RMSE of Experiments)

1 10 4 5 6

0.622975665776128 0.622891823880451 0.62289197696855

2 20 8 10 12

0.623188885109456 0.622846086957695 0.62294468668883

3 50 20 25 30

0.58982919780186 0.588744508131284 0.596092113020063

4 100 40 50 60

0.622897891600409 0.514331789486978 0.605450018145771

Table 5.40 RMSE of Testing Results with Crossover (DC22)

S. No Population

Size

Selection of Best Chosen Chromosomes for Next Generation

(RMSE of Experiments)

1 10 4 5 6

0.622884282861822 0.622987788249734 0.625457732457799

2 20 8 10 12

0.622896867585704 0.622927345739741 0.622900985553704

3 50 20 25 30

0.561867556016215 0.62091265587529 0.603772968141184

4 100 40 50 60

0.614880272582332 0.601210704057985 0.616513793827449

Table 5.41 RMSE of Testing Results without Crossover (DC22)

99

From the table 5.40, we observe that lowest RMSE is 0.514331789486978 with population

size 100 and number of best chosen chromosome is 50. And from table 5.41, the lowest

RMSE is 0.561867556016215 with population size 50 and number of best chromosome is 20.

The summary of the RMSE’s of the results given in table 5.40 and 5.41 with and without

crossover operation are shown in Fig 5.32.

.

Fig 5.32 Summary of the Testing Results of DC22 with & without Crossover Operation

The averages of the rmse’s of the results calculated from table 5.40 and 5.41 are given in

Table 5.42.

Average RMSE of Testing Results with

Crossover

Average RMSE of Testing Results without

Crossover

0.604590387 0.613267746

Table 5.42 Averages RMSE of Testing Results with & without Crossover Operation

(DC22)

100

5.4.1.2.3 Data Combination 3 (DC23)

The testing results of the dataset with data part or data combination 3 (DC23) with and

without crossover operation and by changing the population size, and by selecting the

different number of best chromosomes are shown in Table 5.43 and 5.44.

S. No Population

Size

Selection of Best Chosen Chromosomes for Next Generation

(RMSE of Experiments)

1 10 4 5 6

0.618832131210131 0.623656720784124 0.622956818490383

2 20 8 10 12

0.623835195377885 0.624264280728401 0.623587144740045

3 50 20 25 30

0.623589076970229 0.623624771451243 0.623404320134514

4 100 40 50 60

0.618175155988828 0.623580337226775 0.624399407611922

Table 5.43 RMSE of Testing Results with Crossover (DC23)

101

S. No Population

Size

Selection of Best Chosen Chromosomes for Next Generation

(RMSE of Experiments)

1 10 4 5 6

0.623790045410455 0.6235581339618 0.623550150533192

2 20 8 10 12

0.623646464644337 0.623586094742587 0.603144551188115

3 50 20 25 30

0.623732553292529 0.623535387841109 0.622505051745046

4 100 40 50 60

0.619572643653266 0.617596428802631 0.623590786314214

Table 5.44 RMSE of Testing Results without Crossover (DC23)

From the table 5.43, we observe that lowest RMSE is 0.618175155988828 with population

size 100 and number of best chosen chromosome is 40. And from table 5.44, the lowest

RMSE is 0.603144551188115 with population size 20 and number of best chromosome is 12.

The summary of the RMSE’s of the results given in table 5.43 and 5.44 with and without

crossover operation are shown in Fig 5.33.

102

Fig 5.33 Summary of the Testing Results of DC23 with & without Crossover Operation

The averages of the rmse’s of the results calculated from table 5.43 and 5.44 are given in

Table 5.45.

Average RMSE of Testing Results with

Crossover

Average RMSE of Testing Results without

Crossover

0.622825447 0.620749033

Table 5.45 Averages RMSE of Testing Results with & without Crossover Operation

(DC23)

103

5.4.1.3 Dataset 3

We will discuss the results with different combinations of data one by one.

5.4.1.3.1 Data Combination 1 (DC31)

The testing results of the dataset with data part or data combination 1 (DC31) with and

without crossover operation and by changing the population size, and by selecting the

different number of best chromosomes are shown in Table 5.46 and 5.47.

S. No Population

Size

Selection of Best Chosen Chromosomes for Next Generation

(RMSE of Experiments)

1 10 4 5 6

0.705564096058224 0.704807347256134 0.705136928139166

2 20 8 10 12

0.704778543144133 0.704790966247574 0.708374718288802

3 50 20 25 30

0.704841774484552 0.70481270779954 0.704814270731231

4 100 40 50 60

0.704829969631705 0.704846848749679 0.704827832546508

Table 5.46 RMSE of Testing Results with Crossover (DC31)

104

S. No Population

Size

Selection of Best Chosen Chromosomes for Next Generation

(RMSE of Experiments)

1 10 4 5 6

0.704979520400426 0.704733628296321 0.705522169914631

2 20 8 10 12

0.704757509274665 0.704703510113762 0.704703417487986

3 50 20 25 30

0.704786549297968 0.704818402416826 0.70491366185805

4 100 40 50 60

0.704853886066065 0.704837294546055 0.70482589252514

Table 5.47 RMSE of Testing Results without Crossover (DC31)

From the table 5.46, we observe that lowest RMSE is 0.704778543144133 with population

size 20 and number of best chosen chromosome is 8. And from table 5.47, the lowest RMSE

is 0.704703417487986 with population size 20 and number of best chromosome is 12.

The summary of the RMSE’s of the results given in table 5.46 and 5.47 with and without

crossover operation are shown in Fig 5.34.

105

.

Fig 5.34 Summary of the Testing Results of DC31 with & without Crossover Operation

The averages of the rmse’s of the results calculated from table 5.46 and 5.47 are given in

Table 5.48.

Average RMSE of Testing Results with

Crossover

Average RMSE of Testing Results without

Crossover

0.705202167 0.70486962

Table 5.48 Averages RMSE of Testing Results with & without Crossover Operation

(DC31)

5.4.1.3.2 Data Combination 2 (DC32)

The testing results of the dataset with data part or data combination 2 (DC22) with and

without crossover operation and by changing the population size, and by selecting the

different number of best chromosomes are shown in Table 5.49 and 5.50.

106

S. No Population

Size

Selection of Best Chosen Chromosomes for Next Generation

(RMSE of Experiments)

1 10 4 5 6

0.704736920588566 0.704711241673261 0.706462866881421

2 20 8 10 12

0.704709156375465 0.704702870822574 0.704751618732011

3 50 20 25 30

0.704709513297396 0.70471188055663 0.704708999928931

4 100 40 50 60

0.703941739666852 0.705900664970475 0.704706258641629

Table 5.49 RMSE of Testing Results with Crossover (DC32)

S. No Population

Size

Selection of Best Chosen Chromosomes for Next Generation

(RMSE of Experiments)

1 10 4 5 6

0.704706833309395 0.704729559394198 0.704707693262924

2 20 8 10 12

0.704715703837385 0.704712106972528 0.704703255482934

3 50 20 25 30

0.7047113225316 0.704704370506739 0.704707299006516

4 100 40 50 60

0.704705689995826 0.704708184841005 0.704706114937425

Table 5.50 RMSE of Testing Results without Crossover (DC32)

107

From the table 5.49, we observe that lowest RMSE is 0.703941739666852 with population

size 100 and number of best chosen chromosome is 40. And from table 5.50, the lowest

RMSE is 0.704703255482934 with population size 20 and number of best chromosome is 12.

The summary of the RMSE’s of the results given in table 5.49 and 5.50 with and without

crossover operation are shown in Fig 5.35.

.

Fig 5.35 Summary of the Testing Results of DC32 with & without Crossover Operation

The averages of the rmse’s of the results calculated from table 5.49 and 5.50 are given in

Table 5.52.

Average RMSE of Testing Results with

Crossover

Average RMSE of Testing Results without

Crossover

0.704896144 0.704709845

Table 5.51 Averages RMSE of Testing Results with & without Crossover Operation

(DC32)

108

5.4.1.3.3 Data Combination 3 (DC33)

The testing results of the dataset with data part or data combination 3 (DC33) with and

without crossover operation and by changing the population size, and by selecting the

different number of best chromosomes are shown in Table 5.53 and 5.54.

S. No Population

Size

Selection of Best Chosen Chromosomes for Next Generation

(RMSE of Experiments)

1 10 4 5 6

0.552674956660219 0.552597956401514 0.552756725104372

2 20 8 10 12

0.552658834043939 0.55281721097396 0.55276972317618

3 50 20 25 30

0.552609195876144 0.551646078048397 0.55602380449261

4 100 40 50 60

0.552650313255273 0.552647962712029 0.547890916774405

Table 5.52 RMSE of Testing Results with Crossover (DC33)

109

S. No Population

Size

Selection of Best Chosen Chromosomes for Next Generation

(RMSE of Experiments)

1 10 4 5 6

0.552811302967002 0.552666101921924 0.552596081562961

2 20 8 10 12

0.552605033040785 0.552650018427661 0.552653018739183

3 50 20 25 30

0.552635719171274 0.546228460989004 0.552660084155147

4 100 40 50 60

0.552649115243442 0.552647962712029 0.555740380961404

Table 5.53 RMSE of Testing Results without Crossover (DC33)

From the table 5.53, we observe that lowest RMSE is 0.547890916774405 with population

size 100 and number of best chosen chromosome is 60. And from table 5.54, the lowest

RMSE is 0.546228460989004 with population size 50 and number of best chromosome is 25.

The summary of the RMSE’s of the results given in table 5.53 and 5.54 with and without

crossover operation are shown in Fig 5.36.

110

.

Fig 5.36 Summary of the Testing Results of DC33 with & without Crossover Operation

The averages of the rmse’s of the results calculated from table 5.53 and 5.54 are given in

Table 5.55.

Average RMSE of Testing Results with

Crossover

Average RMSE of Testing Results without

Crossover

0.55247864 0.552378607

Table 5.54 Averages RMSE of Testing Results with & without Crossover Operation

(DC33)

5.4.2 Cumulative Analysis on the Datasets

We have compared the results of the datasets in terms of root mean square error. By looking

at the results, we have observed that testing RMSE is lower than training RMSE which

indicates that network is also well trained for unknown data. The parameters which we have

discussed in training results will also be discussed in testing results.

111

5.4.2.1 Crossover Operation

 By looking at the table which shows the summaries of the testing results of the different

combination of the datasets, we have observed that in more than half of the results, average of

RMSE of the experiments is low without crossover operation. Moreover, by looking at the

graphs which show the summaries of the experiments with and without crossover operation,

we have observed that most of the time lowest root mean square error was associated without

the crossover operation. So from this observation, we can say that without crossover

operation shows improved performance for unseen data, or in other words the network shows

better behavior without crossover operation for unknown data.

5.4.2.2 Population Size of Chromosomes

The other thing which we observe from the testing results is same as we have observed in

training results, that most of the time the lowest RMSE comes with population size of 50 and

100, so the conclusion which we derived from it is that “greater the population size, lower

rmse”.

5.5 Summary

 In this chapter, we have discussed the training and testing results of the datasets with their

different combination. The result of the analysis have shown that crossover operation behaves

well for the known data, but on the other hand the experiments which we have done without

crossover operation shows better behavior for the unknown data. Moreover, the greater the

population size, the lower the rmse. Furthermore, the experiments which we have done to

analyze the selection of best chromosomes for the next generation does not draw any useful

conclusion.

112

CHAPTER 6

CONCLUSIONS & FUTURE WORK

This chapter concludes the thesis, summarizing the work presented so far and provides

directions for the future work. Conclusion is discussed in section 6.1 and section 6.2

discusses the future work. The summary of this chapter is discussed in section 6.3.

6.1 Conclusion

Accurate effort estimation in software engineering projects is a challenging task, and it is one

of the most crucial project management activities. It helps the project manager of a software

project to plan the activities that are required for project completion. In the thesis work, we

have done effort estimation with a hybrid approach combining artificial intelligence

techniques of fuzzy logic and neural networks. The approach provides dual benefits of

incorporating qualitative knowledge of experts and learning from historical data obtained

from previous projects. The fuzzy neural network (FNN) is trained with the help of

evolutionary algorithm. The evolutionary approach offers the possible pathways of a

problem, the solutions are compared, and indicate which one is better and identifies and

collects the useful solution. This process can optimize the solution for the given problem. It

demonstrates that evolving weights can be of major advantage. The evolutionary algorithm

evolve the weights with two variations, in one variation we have used crossover operation

and self mutation process, while in other variation we only use self mutation process.

Experiments are also done by changing the population size of chromosomes, in other words

we have changed the number of possible solutions.

113

In this research, I have achieved the following goals:

i). Training fuzzy neural network with different variations of evolutionary algorithm by

using training data.

ii). Analysis of training of FNN, with and without using crossover operation, changing

the population size and number of best chromosomes that does not change in next

iteration.

iii). Testing of FNN is done by using different parts of each dataset called testing data,

which are not used in the training phase.

iv). Use the training weights for effort estimation.

The conclusion which are derived from the experimental results are

i). Training of FNN including crossover operation shows better results.

ii). Testing of FNN without crossover operation show better results.

iii). Overall without crossover operation, training is better, because our aim to achieve

accurate results for unknown data.

iv). Greater the Population size, lower the RMSE.

6.2 Future Work

There is a lot of research work available, related to neural network and data mining, which

helps the researcher to continue the work based on the previous literature, and contribute

faster to the pool of information.

This research may further be extended by training FNN with other algorithms like gradient

descent, different variations of backpropogation algorithm e.g. Momentum strategy. Different

architecture FNN can also be used, for example in this research work, we first extract the

rules and then train the network, but we can also design a architecture that extract the rules

114

from the data during training. As training of FNN takes more time to train large set of data,

we can research on some technique that takes less time for training.

6.3 Summary

In this chapter, we conclude the thesis with the observation, that FNN is well trained by using

crossover operation, but for unknown data, including self mutation process is better. The

other conclusion is that greater the number of possible solutions, lower the RMSE. The

research work may be extended by training the FNN with other algorithms, then compared

that which algorithm is better. Moreover, also research some method that takes less time to

train the FNN when the size of dataset is large.

115

REFERENCES

[1] George Lugar, (2004), Artificial Intelligence, structure and strategies for Complex

Problem Solving, fifth Edition, Published by Addison Wesley, ISBN 978-81-317-2327-2

[2] Badiru Adediji B, Cheung Jihn Y, (2002), Fuzzy Engineering Expert System with Neural

Network Application, Published by John Wiley & Sons, New York

[3] Somerville, Software Engineering, (2006), Eight Edition, Published by Addison Wesley,

SBN 978-81-317-2461-3

[4] On Effort Estimation in Software Projects, https://oa.doria.fi/handle/10024/31235, (20th

March, 2010)

[5] L. Ford, Artificial Intelligence and Software Engineering, Artificial Intelligence Review

(1987) 1, 255-273

[6] Effort Estimation, 11th Aug, 2004, http://tracer.lcc.uma.es/problems/estimation/estimati

on.html, (25th July, 2010)

[7] Software Development Effort Estimation, 22nd April, 2010, http://en.wikipedia.org

/wiki/Sofftware_effort_estimation, (30th April, 2010)

[8] Jorgenson Magne, Forecasting of Software Development Work Effort: Evidence on

Expert Judgment and Formal Models, May 2007, 1-34

[9] Sunyoung Lee, Sungzoon Cho, Patrick M. Wong, 1998, Rainfall Prediction Using

Artificial Neural Networks, Journal of Geographic Information and Decision Analysis, 2(2);

233 – 242

[10] Carlos Gershenson, Artificial Neural Network for Beginners, http://arxiv.org/ftp/cs/pap

ers/ 0308/0308031.pdf, (5th Feb, 2010)

[11] Artificial Neural Network, http://www.learnartificialneuralnetworks.com/ (16th Mar,

2010)

116

[12] Fuzzy Logic, http://whatis.techtarget.com/definition/0,,sid9_gci212172,00.html, (23th

April, 2010)

[13] Chapter 3, Fuzzy Logic Fundamentals, March 26, 2001, http://ptgmedia.pearsoncmg.c

om /images /0135705991/samplechapter/0135705991.pdf, (6th July, 2010)

[14] Lan et al, An Approach to Early prediction of Software Quality, Journal of Electronic

Science and Technology of China, Vol 5, Mar 2007; 1-6

[15] Kasabov N.K, Kim J.S, Gray A.R, Watts M.J, “A Fuzzy Neural Network Architecture

for Adaptive learning and knowledge Acquistation”, Pages 155-175, Volume 101, Issues 3-

4, Journal of Information Sciences, Special Issues on Advanced Neuro-Fuzzy Techniques and

Their Applications, October 1997

[16] Evolutionary Algorithm, Overview, http://www.geatbx.com/docu/algindex-01.html,

(16th May, 2010)

[17] Eiben Smith, Introduction to Evolutionary Algorithm, Chapter 2, http://www.cs.vu.nl/~

gusz /ecbook /Eiben-Smith-Intro2EC-Ch2.pdf

[18] Bayo Adeloye, Modeling Activated Sludge Process Using Adaptive Network- Based

Fuzzy Inference System (ANFIS), 22 Aug 2002, http://www.sbe.hw.ac.uk/Researchand

Business/SWMRG/Project%20Pages/Modelling%20activated%20sludges%20process%20usi

ng%20ANFIS.htm, (6th April, 2010)

[19] Blokhead, A Beginning Guide to Evolutionary Algorithm, Oct 13, 2003, http://www.perl

monks.org/?node_id=298877, (7th June, 2010)

[20] Software Development Effort Estimation, 26th June 2010, http://en.wikipedia.org/wiki/

Software_development_effort_estimation, 27th June 2010

[21] Effort Estimation Tools, http://www.esendem.eu/en/project-management/55-effort-

estimation-tools, (14th April, 2010)

117

[22] Shepperd. M, Schofield. C, “Estimating Software Project Effort Using Analogies”, IEEE

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 12, pp. 736-743,

NOVEMBER 1997

[23] Reddy CH, Raju K, A Concise Neural Network Model for Estimating Software Effort,

International Journal of Recent Trends in Engineering, Issue. 1, Vol. 1, May 2009

[24] Petronio L. Braga, Adriano L. I. Oliveira, Silvio R. L. Meira, “Software Effort

Estimation using Machine Learning Techniques with Robust Confidence Intervals,” pp.352-

357, 7th International Conference on Hybrid Intelligent Systems (HIS 2007), 2007

 [25] Kadoda G, Cartwright M, Chen L, and Shepperd M. Experiences Using Case-Based

Reasoning to Predict Software Project Effort, 1-23, March 15,2000,

[26] Deng Jeremiah. D, Purvis Martin. K, “Software Effort Estimation: Harmonizing

Algorithms and Domain Knowledge in an Integrated Data Mining Approach “, The

Information Science Discussion paper Series, Jun 2009, ISSN 1177-455X, pp 1-13

[27] Qinbao Song, Martin Sheppard, Carolyn Mair, "Using Grey Relational Analysis to

Predict Software Effort with Small Data Sets," metrics, pp.35, 11th IEEE International

Software Metrics Symposium (METRICS'05), 2005

[28] Attarzadeh. I, Ow S.H, Software Development Effort Estimation based on New Fuzzy

Logic Model, International Journal of Computer Theory and Engineering, Vol 1, No 4,

October 2009, pp 473-476

 [29] Application of COCOMO II regarding Off Shore Software Projects, Betz. S, Makio. J,

http://www.outshore.org/LinkClick.aspx?fileticket=UivJBCgTPCg%3D&tabid=58&mid=38

7, 1-11

[30] COCOMO II and COQUALMO Data Collection Questionnaire,

sunset.usc.edu/research/COCOMOII/Docs/cform22.pdf

118

[31] Cocomo II Cost Driver & Scale Driver Help, http://sunset.usc.edu/research/COCOMO

II/expert_cocomo/drivers.html, (5th March, 2010)

[32] Overview of Cocomo, April 18, 2005, http://www.softstarsystems.com/overview.htm

(10th Dec, 2009)

[33] Ayse Bener, Ekrem, Kocaquneli, PROMISE Repository of empirical software

engineering data http://promisedata.org/ repository, Software Research Laboratory (Softlab),

Bogazici University, Istanbul, Turkey, May 19, 2009

[34] Reddy. Satyananda Ch, Raju KVSVN, An Improved Fuzzy Approach for COCOMO’s

Effort Estimation using Guassian Membership Function, Journal of Software, Vol 4, No 5,

July 2009, 452-459

[35] Distance, http://mathworld.wolfram.com/Distance.html, (8th April, 2010)

[36] Mean and Standard Deviation, http://www.fmi.uni-sofia.bg/vesta/virtuallabs/freq/freq

2.html, (8th April, 2010)

[37] Tim Menzies, PROMISE Repository of empirical software engineering data,

http://promisedata.org/repository/data/coc81/coc81_1_1.arff, December 2, updated

(5/28/2008)

[38] Christian Schmid, Fuzzification, http://www.esr.ruhr-uni-bochum.de/rt1/syscontrol/nod

e122.html, 2005-05-09

[39] Documentation – Fuzzy Logic Toolbox, http://www.mathworks.com/access/helpdesk

/help/ toolbox/fuzzy/fp998738.html, (9th April, 2010)

[40] Alba Enrique, Cotta Carlos, Evolutionary Algorithm, 1-25, Feb 19, 2004

[41] Chellapilla Kumar, Fogel David .B, Evolving Neural Network to Play Checkers without

Relying on Expert Knowledge, IEEE Transaction on Neural Networks, Vol 10, Issue 6, pp

1382-1391, Nov 1999

119

[42] Microsoft Visual Studio, 30th Aug, 2010, http://en.wikipedia.org/wiki/Microsoft_

Visual_Studio, (30th Aug, 2010)

[43] Visual Studio 2005, http://msdn.microsoft.com/en-us/library/ms950416.aspx, (8th Aug,

2010)

 [44] Software testing, http://www.wordiq.com/definition/Software_testing, (5th July, 2010)

[45] Jeff Schneider, Cross validation, http://www.cs.cmu.edu/~schneide/tut5/node42.html,

Feb 7(30th June, 2010)

	starting_Pages.pdf
	Final_Documentation_MSThesis.pdf

