
Actualizing Fast Lanes using Software
Defined Networking and

SmartContract

By
Muhammad Muneem Shabir

00000172214

Supervisor
Dr.Syed Taha Ali

Department of Electrical Engineering

A thesis submitted in partial fulfillment of the requirements for the degree
of Masters of Science in Electrical Engineering (MS EE)

In
School of Electrical Engineering and Computer Science,

National University of Sciences and Technology (NUST),
Islamabad, Pakistan.

(September 2019)

Approval

It is certified that the contents and form of the thesis entitled “Actualizing
Fast Lanes using Software Defined Networking and SmartCon-
tract” submitted by Muhammad Muneem Shabir have been found sat-
isfactory for the requirement of the degree.

Advisor: Dr.Syed Taha Ali
Signature:

Date:

Committee Member 1: Dr. Wajahat Hussain

Signature:
Date:

Committee Member 2: Mr. Muhammad Imran Abeel

Signature:
Date:

Committee Member 3: Dr. Arsalan Ahmed

Signature:
Date:

i

Abstract

Fast Lanes in service provider‘s network are provisioned on each node through-

out the route. Number of resources are required to construct a Fast Lane

over a large network and a Fast Lane keeps on retaining the network re-

sources (bandwidth, Data rate etc.) permanently. Client pays for services

to develop a Fast Lane as well as retain the networking resources, which to-

gether add a significant amount to clients expenditures. Using third party

financial platforms to pay ISPs, is a hindrance in fast service delivery. It

lacks transparency, adds an overhead to the process and it is prone to cy-

ber attacks. We propose a solution which uses SDN to centrally control the

network and instantly construct an end-to-end Fast Lane using Ethereum

based SmartContract. First, we have developed SDN controller App which

lay a Fast Lane over the network for end-to-end communication, then we

have developed a SmartContract on Ethereum to eliminate presence of 3rd

party financial services. Using Ethereum we have built single pane-of-glass

facility for consumer to acquire pay-as-you-go Fast Lanes access. In the end

Intel SGX has been used for reliable communication of control traffic between

Ethereum and SDN module. Research in this project presents the realiza-

tion of open source platforms in SDN and Ethereum to provide on-demand

service of Fast Lanes with SmartContracts.

ii

Certificate of Originality

I hereby declare that this submission is my own work and to the best of my

knowledge it contains no materials previously published or written by another

person, nor material which to a substantial extent has been accepted for the

award of any degree or diploma at NUST SEECS or at any other educational

institute, except where due acknowledgement has been made in the thesis.

Any contribution made to the research by others, with whom I have worked

at NUST SEECS or elsewhere, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product

of my own work, except for the assistance from others in the project’s de-

sign and conception or in style, presentation and linguistics which has been

acknowledged.

Author Name: Muhammad Muneem Shabir

Signature:

iii

Dedication

I dedicate this study to my parents, their wholeheartedly support and en-

couragement kept me motivated throughout the degree.

iv

Acknowledgment

All praise and thanks to Almighty Allah who blessed me with opportunities,

strength and resourcefulness to pursue and complete the studies.

I would like to pay gratitude to my beloved parents. Without their con-

stant support and guidance I would never be able to achieve what I have

now. Their sincere prayers, wishes and love have made it possible for me to

come this far.

My special thanks goes to Dr.Syed Taha Ali for being an amazing teacher

and then for his guidance and incredible support throughout the journey of

this research.

Here‘s to the friends. To the ones I met at NUST, your friendship em-

powered me and helped me get going through thick and thin. Thank you for

your tremendous support and love.

v

Table of Contents

1 Introduction 1

1.1 Overview . 2

1.2 Motivation . 3

1.3 Problem statement . 4

1.4 Proposed approach . 4

1.5 Contributions . 6

2 State of the Art 7

2.1 Conventional data communication networking 7

2.2 Traditional electronic payment mechanism 10

2.2.1 Credit payment system 10

2.2.2 Debit payment system 10

2.2.3 Pros and cons . 11

2.3 Software defined networks(SDN) 11

2.3.1 History of SDN . 12

2.3.2 SDN Architecture . 13

2.3.3 SDN benefits and use-cases 14

2.4 Software defined networking- Control plane 15

vi

TABLE OF CONTENTS vii

2.4.1 Overview . 16

2.4.2 Ryu Controller . 16

2.5 Software defined networking -Data plane 17

2.5.1 OpenFlow overview . 18

2.5.2 OpenFlow Architecture 18

2.6 SmartContracts . 20

2.6.1 Brief History of BlockChain 20

2.6.2 Ethereum . 21

2.7 Software Guard Extensions . 24

2.7.1 On-the-fly decryption 25

2.7.2 Thread Model approach 25

2.7.3 SGX support . 25

2.7.4 SGX operation . 25

3 Proposed Architecture 27

3.1 Overview . 27

3.2 Tools and Components . 29

3.2.1 Ryu SDN Controller 30

3.2.2 RESTful API . 30

3.2.3 Topology API . 30

3.2.4 Web3 Library . 30

3.2.5 OpenSGX . 31

3.2.6 Remix Ethereum IDE 31

4 Design and Implementations 32

TABLE OF CONTENTS viii

4.1 Fast Lanes actualization by SmartContracts application spec-

ifications . 32

4.1.1 Application components 32

4.1.2 Application workflow 33

4.2 Ryu SDN Controller Fast Lanes application 34

4.2.1 Network Discovery . 35

4.2.2 Network Monitoring 35

4.2.3 Delay calculation . 35

4.2.4 Main module . 36

4.3 SmartContract . 36

4.3.1 Ethereum Virtual Machine 36

4.3.2 Remix IDE . 36

4.3.3 Web3 Library . 37

4.3.4 Ropsten blockchain . 37

4.4 Software guard extensions . 37

4.5 API server . 38

5 Results and Observations 39

5.1 SDN network topology . 39

5.2 SmartContract structure . 41

5.3 Software Guard extensions . 42

5.4 Testing scenario . 42

5.5 results . 43

6 Conclusion 48

TABLE OF CONTENTS ix

7 Future work 51

7.1 OpenSGX compatibility . 52

7.2 Topology discovery . 52

7.3 Smart contract . 52

List of Figures

1.1 SDN based Network for Fast Lanes with Ethereum based Smart-

Contract . 5

2.1 Conventional IP network . 8

2.2 Traditional networking building blocks 9

2.3 SDN architecture . 14

2.4 Ryu controller architecture . 17

2.5 OpenFlow connection between switch and controller architecture 18

2.6 SGX architecture . 24

2.7 SGX operation flow . 26

3.1 Proposed architecture of SDN Fast Lanes with Ethereum based

SmartContract . 28

4.1 Component description of SDN Fast Lanes actualization by

SmartContract . 33

4.2 Component description of SDN controller application for Fast

Lanes . 34

5.1 Flow table entries in OpenFlow switch 40

x

LIST OF FIGURES xi

5.2 Network topology discovered by Ryu controller 40

5.3 SmartContract implementation on Remix IDE 41

5.4 SmartContract implementation on Remix IDE 41

5.5 Flow table entries in OpenFlow switch 43

5.6 SDN Fast Lanes controller application and sub-modules ini-

tialization . 43

5.7 switches and Ryu controller connection setup 44

5.8 SmartContract input functions on user-interface 44

5.9 SmartContract successful transaction dialog 45

5.10 Generating key-pair for SGX Enclave 45

5.11 Encrypting data using the key-pair and storing it in Enclave . 45

5.12 SGX terminal output for Enclave data (Fast Lanes provision-

ing request) is accessed . 46

5.13 Provisioned Fast Lanes statistics on Ryu controller 47

Chapter 1

Introduction

This research work contains the design and implementation of system which

allows the user to acquire a Fast Lane over an IP network using Software

Defined Networking and Pay for it by Ethereum based block-chain network.

With the help of SmartContract, financial arbitration is settled beforehand

and user can leverage pay-as-you-go method. Several techniques have been

introduced to improve quality of service on Fast Lanes when acquiring Fast

Lanes and eliminated the role of middleman from provisioning the network

service and payment mechanism. Overview of thesis is described next, fol-

lowed by motivation and problem statement. Approach to address the prob-

lem statement have been described with low-down explanation of each mod-

ule and component below.

1

CHAPTER 1. INTRODUCTION 2

1.1 Overview

With increasing footprint of smart devices and emergence of Internet-of-

things, usage of internet has been increased exponentially. Researchers are

constantly evolving devices and units to make them smart and connected

to internet to have a remote access and control. Smart devices have given

boost to internet usage, but the conventional way of handling internet is ma-

jor hindrance of evolving IT solutions to a smart system. Software defined

networking over the past few years is a subject area of exploration to address

this issue. Handful of developments have been made so far and rest are yet

to come. Personalized internet control is leveraged in this thesis using an

application written in Python language off RESTful API of Ryu controller.

Controller Application in this project is a program which allows user to sign-

up for a specific amount of time, lay a Fast Lane for a flow of his choosing and

pay for it through fully transparent distributed block chain mechanism known

as Ethereum. A SmartContract is written on Ethereum block-chain. It is

an electronic agreement between end-user and network service provider, and

does not require any middlemans involvement. It protects both parties inter-

ests and execute the agreement with 100 percent transparency and integrity.

SmartContract is written in Solidity language and hosted on Ethereum vir-

tual machine and that is why it entertains the benefits of immutability and

no party can coarse or breach the agreement. SmartContract in our project

provides users with interface to select a flow of their choosing and pay for it.

SmartContract on the bases of pre-defined agreement carry out the financial

transactions and instruct SDN to spin-off the Fast Lane and let end user

CHAPTER 1. INTRODUCTION 3

enjoy the seamless, top quality of service end-to-end flow. SGX is positioned

between SDN and EVM for both modules to exchange control traffic through

it. SGX provides the role of trusted platform module between Ethereum and

SDN to curb any manipulations in control traffic from adversary.

1.2 Motivation

Emergence of digitization has made internet the backbone of the modern

world and ISP role is no more confined just to provide the network access.

ISPs are required to provide personalized services to the clients which in-

clude but not limited to QoS, tunnels, L3 VPNs, L2 VPNs, content delivery,

streaming, storage, gaming services and so on. Some on-premise services

i.e. video conferencing, gaming, streaming and storage area network traf-

fic between clients‘ different sites required smooth and better end-to-end

network paths which need to be provisioned right away in case of mission

critical services. With the dawn of SDN, network personalization has started

taking place. It provides service provider the ability to control and man-

age its network centrally and write any functions required to perform, using

SDN controller API. SDN controller can interact to 3rd party applications

and programs using programmable interface and personalized services can be

achieved with better QoS and response time by developing programs on API.

The monetizing platforms should no longer be owned by 3rd parties because

that gives them unnecessary network statistics which in the era of big data

is a significant thing to give way. Ethereum blockchain addresses this solu-

tion by offering the ability to execute contracts on a distributed computing

CHAPTER 1. INTRODUCTION 4

platform.

1.3 Problem statement

Client requests service providers to provide them with a Fast Lane for better

end-to-end connectivity. Service providers on-demand provision a Fast Lane

which is static in nature. Team of technical resources lay this end-to-end Fast

Lane by configuring each node on hops and it stays provisioned whether any

traffic is transferred or not, and costumer pays for acquiring this constant

facility. This Fast Lane is monetized using a billing and charging system at

service provider. Charging system is often a system provided by a bank who

controls the finances on ISPs behalf. A whole solution is deployed to get no-

tified for the transaction from banking portal and use that to decide whether

to provide client with service or not. Involvement of a bank put clients and

ISPs information at risk and any contenders in market can leverage off that.

Banking systems when working online are prone to cyber attacks and any

manipulation can cause catastrophic events for a client who is paying for a

mission critical application. Moreover, charging for a service through a 3rd

party involves an overhead in the daily business.

1.4 Proposed approach

To spin off a self-provisioned Fast Lanes through SmartContracts deployed

on distributed ledger network, we have built an application on top of SDN

controller by using its API. SDN due to its flexible nature and centralized

CHAPTER 1. INTRODUCTION 5

Figure 1.1: SDN based Network for Fast Lanes with Ethereum based Smart-
Contract

control allows the developer to build applications to control and manage net-

works centrally. We integrated SDN module with Ethereum virtual machine

and developed a SmartContract on it. SmartContract while on one hand al-

lows the user to select a Fast Lane and proceed for payment. It on the other

hand passes on the instructions to SDN controller for provisioning the Fast

Lanes. To protect the control traffic from manipulation, an SGX module

has been introduced with guarantees for protection of control traffic between

modules in discussion. This presented architecture is further elaborated in

chapter 3. High level design diagram of proposed architecture is illustrated

in figure 1.1.

CHAPTER 1. INTRODUCTION 6

1.5 Contributions

Our primary contribution in this project comprises developing a prototype

system which provision on-demand Fast Lanes on SDN network using Smart-

Contract as pay-as-you-go-method. The whole project mainly consist of four

functional areas.

• IP network topology discovery.

• Bandwidth and Delay based optimized path selection for end-to-end

link over an SDN based IP network.

• SmartContract in Solidity language deployed on Ethereum virtual ma-

chine to execute financial transactions, carry out the contract between

parties to provision Fast Lanes and provide user-interface to invoke and

revoke a service.

• Software guard extension as a trusted platform module for reliable con-

trol traffic exchange between different modules.

Chapter 2

State of the Art

This section of thesis elaborates all components of Ethereum virtual machine

and its function to execute SmartContracts. We intend to present the ap-

plication of Ethereum virtual machine as a financial system and contract

arbitrator between concerned parties alongside the network. We also explain

the building blocks of software defined networking.

2.1 Conventional data communication network-

ing

Traditional data communication is carried out using the network of inter-

connected nodes which are connected in different type of typologies. These

interconnected nodes are categorized in a hierarchy and operations. These

devices use the framework of OSI model and typically work on layer 2 or layer

3 [1]. Devices designed on layer 2 are called switches. Switch is responsible

to make decision based on incoming MAC address and forward it to the right

7

CHAPTER 2. STATE OF THE ART 8

port based on destination MAC address in the frame.

Router on the other hand handles the packet on the bases of source and

destination IP addresses and forward the packet to respective sub network.

Hundreds of switches forming a LAN network can aggregate on a single port

of router for a gateway. In conventional packet-switch networking, routers

and switches are mainly dedicated hardware devices. Their role recently has

been expanded from dedicated hardware appliances to virtualized software

modules. This allows a single server in datacenter to house tens of virtual

routers and switches on top of shared computing resources [2]. Devices in

traditional networking are always proprietary and their fabrics are built on

top of FPGA and ASICs [3].

Conventional networking has 3 building blocks mentioned below

Figure 2.1: Conventional IP network

CHAPTER 2. STATE OF THE ART 9

• Data plane: In routers and switches data plane helps to forward traffic

to the next hop on the bases of forwarding table built by control plane.

Data plane is mostly a CPU based process.

• Management plane: Management plane is built to provide inter-

action with control plane for Command-line, network monitoring and

management tools.

• Control plane: It uses system information and routing protocols i.e.

RIP, OSPF to fill out the forwarding tables. Control plane is hard

coded on the fabric.

Figure 2.2: Traditional networking building blocks

These planes are implemented on a same appliance whether it is a switch,

router or a firewall. It limits the scalability, flexibility and becomes the

hindrance in the realization of advance technology paradigms i.e. IoT . In

coming topics, we are going to discuss software defined networking that curb

these limitations and opens new research opportunities in networking.

CHAPTER 2. STATE OF THE ART 10

2.2 Traditional electronic payment mechanism

Electronic payment method is a mean to pay for a service acquired without

paying in cash or cheque. Payment is provided online using credits or account

transactions for the services which are either acquired online or in tangible

from. One of the most common online payment method is credit card or

debit card provided by some bank. Costumer in possession of these cards

can pay for a service he wants to acquire through internet. Service providers

faces user-interface provided by the bank to the costumer for payment. This

portal is provided by a 3rd party bank which controls and manages costumers

credit or debit history and indicates the service provider to provide a service

once the amount is paid.

2.2.1 Credit payment system

In this system costumer in possession of credits which are equivalent to real

time currency can acquire this service through sending those credits off to

the bank and bank on behalf of costumer sends the real currency to the

service providers account. Bank let service provider knows the transaction

and service provider gives the service to the concerned costumer.

2.2.2 Debit payment system

This system requires the costumer to debit the payment in service providers

account by using the middle-ware banks portal. Service provider cross verifies

the payment with bank and allows the costumer to acquire service for paid

amount of time.

CHAPTER 2. STATE OF THE ART 11

2.2.3 Pros and cons

Electronic payment system is built to facilitate the costumer to pay for online

services without paying personal visit to the bank. Costumer can transfer

the funds anywhere and at any moment when he requires the service. Where

it provides ease and comfort with payment, it has many cons as well. A

costumer and service provider must rely on third party system and trust

it with their financial history. Sometimes that information can lead to dis-

closures which competitors can leverage on. 3rd party portals are sourced

from banks and If their system is down it becomes hindrance between ser-

vice providers and costumer. While 3rd party payment facilities deprive you

of your anonymity it is also prone to financial attacks. E-payment attacks

are growing up by 30 percent, therefore, technical companies are focusing

on finding attack-proof solutions which are sophisticated to integrate, and

can rule-out the need of 3rd party‘s involvement. We will go in details on

proposed technology in the topics to follow.

2.3 Software defined networks(SDN)

SDN provides abstraction to decouple the control plane and data plane from

each other which in traditional way are implemented on a same device. De-

coupling the control plane and data plane helps to control the SDN network

through single-pane-of-glass by a centralized controller [4]. This centralized

control allows the network operators and developers to run and implement

policies centrally while actions take place on forwarding nodes that are spread

throughout the networks [5]. SDN controller provides a programmable in-

CHAPTER 2. STATE OF THE ART 12

terface called northbound API which allows the user to develop applications

to manage data plane [6]. Southbound API helps controller to interact with

forwarding nodes. Various protocols are available to run on southbound API.

i.e. NETCONF, SNMP and OpenFlow [7]. These vendor agnostic protocols

provide the seamless connectivity between multi-vendor network forwarding

nodes and keeps the simplicity on forwarding plane. OpenFlow by far has

been adopted widely in SDN networks and standout the most [8].

Open networking foundation presented the concept of OpenFlow pro-

tocol whose main purpose was to provide a seamless connectivity between

controller and forwarding nodes while having no regards to the vendor spec-

ification. Due to its simplicity and subtle packet formation OpenFlow has

been adapted widely and currently considered as a standard protocol on

Southbound API of SDN [8].

2.3.1 History of SDN

McKeown et al in 2008 presented the idea of software defined networking

in a paper OpenFlow: Enabling Innovation in Campus Networks [9]. The

idea of programmable data plane to make intelligent forwarding decisions

is dated back to 1997 [10]. After that, concept to decouple the data and

control plane has been emphasized time to time by various projects such as

Tempest, PCE, NCP, ForCES, RCP with the focus for better network wide

control in Ethernet, MPLS and ATM framework networks. Solutions i.e.

Ethane [11], SANE [12], NOX [13] presented the sophisticated decoupling of

data plane and forwarding plane with minimum effort on data plane nodes

CHAPTER 2. STATE OF THE ART 13

gave rise to advancement in this area of research and became driving force

for the orchestration of OpenFlow [9]. OpenFlow opens research area for

new service running on top of network by moving the control of network cen-

trally and introducing the concept of segmentation without effecting network

performance.

2.3.2 SDN Architecture

Software defined networking is a paradigm in which network programmabil-

ity is made possible by abstracting [14] different functionality layers. The

abstraction layer at the bottom of hierarchy is called infrastructure or data

plane layer. This layer comprises forwarding nodes which are communicated

by controller for forwarding decisions via OpenFlow [9] protocol through

Southbound API. Another layer of abstraction is the control plane layer.

This layer is the heart of network operating system. All the decisions for

forwarding planes are taken in this abstraction layer by applications run-

ning on the northbound interface of centralized controller. As compared to

southbound interface, northbound interface provide flexibility and variety of

functions on top to program and manipulate network functions. Controllers

as such Open Daylight [15], Ryu [16] and NOX [13] support Java or Python

programs to run on their northbound API. Figure 2.3 is describing the SDN

hierarchical architecture.

CHAPTER 2. STATE OF THE ART 14

Figure 2.3: SDN architecture

2.3.3 SDN benefits and use-cases

There are plenty areas of networking where SDN can be implemented to

improve network control, performance and scalability. The most prominent

fields where SDN has been under the research are mentioned below.

• Data Center networks: Granular control and features of SDN i.e.

network virtualization and segmentation make SDN useful for Data

center networking. The integration of NFV [16] and SDN provides

better control over the rack and stack of network and brings down the

CAPEX and OPEX to incredibly low level as compared to traditional

vendor proprietary networking solutions.

CHAPTER 2. STATE OF THE ART 15

• network management system (NMS): Due to SDNs centralized

controller, it provides user better control over the network through

single pane of glass. i.e. FlowVisor [17].

• Traffic engineering: SDN provides network slicing and segmentation

which is the essence of overlay networks and hence make extremely easy

to implement traffic engineering protocols on top of it. I.e. mBGP,

MPLS-TP, MPLS-TE, VPLS, L3-VPN, L2-VPNs.

• Mobility networks: Light virtual access points [18] open research

areas in wireless and mobility networks.

• Security networks: Piggybacking security functions [17] on SDN en-

ables the cloud-based security networking. Any firewall or security

application can be developed at the centralized controller and imple-

mented networkwide.

2.4 Software defined networking- Control plane

Controller or network NOS (network operating system) [19] is a centrally

located network director and manager which interacts with all the nodes

spread in the network for flow decisions. Controller takes the decision and

provides the data plane nodes with flow entries. Data plane fabrics take the

forwarding decisions on the bases of flow entries provided. OpenFlow [9] is

used for back and forth communication between controller and data plane

nodes.

CHAPTER 2. STATE OF THE ART 16

2.4.1 Overview

After the emergence of OpenFlow in 2008 several controllers have been de-

signed for SDN networking. There are some trade-offs with respect to perfor-

mances and flexibility among the controllers that have been built so far. But

their I/O and APIs architecture is similar. All of them use REST API on

their northbound interface for management and functionality and OpenFlow

on their southbound interface to interact with data plane nodes. The most

prominent and advancing open source controllers are Open Day Light [15],

POX [20] and NOX [13]. Market leading vendors have also manufactured

computing devices dedicated for SDN controllers and bundled up their li-

cense on them. Cisco APIC [21], VMware NSX [22] and HPE VAN are most

prominent ones in enterprise market.

2.4.2 Ryu Controller

Our SDN network in this project is based on Ryu controller [20]. Ryu is

a Python written controller, licensed under Apache2.0, and is available for

anyone to use.

It has standard OpenVswitch support on its northbound end. Ryu is de-

veloped and supported by NTT labs Japan. Ryu has vast variety of libraries

and modules available and is by far the most advancing SDN controller.

Architecture of Ryu controller is illustrated in Figure 2.4.

Ryu project has have several built-in APIs to perform various network

functions. Some common Ryu APIs are below.

• Firewall API: Using this API, developer can write functions to make

CHAPTER 2. STATE OF THE ART 17

Figure 2.4: Ryu controller architecture

data plane switches perform firewall functions. The security functions

can be as complex as Next-generation-firewalls.

• QoS API: This API is used to prioritize services and flows.

• Flow-Table API: Along with flow manipulations this API is useful to

pull statistics for flows, queues and buffer values.

• Topology API: This API helps to draw network-wide topology in GUI

using Apache2.0 web server. It orchestrates the topology using LLDP

packets.

2.5 Software defined networking -Data plane

Data plane is a layer of forwarding devices spread across the network. These

devices can be routers or switches with their primary job to switch packets

from one to the other using the information provided in the flow table by

Ryu Controller.

CHAPTER 2. STATE OF THE ART 18

2.5.1 OpenFlow overview

It is used for communication between centralized controller and data plane

nodes. OpenFlow started rolling out in 2008 [9]. It allows the flow entries in

data plane nodes to be modified centrally in the real time.

Data plane switches which support the OpenFlow protocol are called

OpenFlow switches. OpenFlow switches establish a SSL channel with SDN

controller and use instructions sent by controller to update their flow tables.

2.5.2 OpenFlow Architecture

The primary motivation behind OpenFlow is to provide seamless communi-

cation in vendor-agnostic environments. It is most used protocol in SDN and

considered a standard on southbound API as appose to NETCONF, SNMP,

MPLS etc.

Figure 2.5: OpenFlow connection between switch and controller architecture

Switch which supports OpenFlow protocol is also called OpenFlow switch.

CHAPTER 2. STATE OF THE ART 19

The main component of OpenFlow switch is the flow table entry database.

This routing table lookalike database is used for all forwarding decisions.

OpenFlow establishes a secure channel between the switch and controller be-

fore the real control packets start flowing back and forth. OpenFlow provides

a separate table which is called group flow. This table is useful for decisions

that can be applied to prefixes or users in group for Policy based routing.

Flow table entries have following blocks.

• Header: Header field contains all the addresses from layer 2 to layer

5. It contains source and destination IP addresses, Mac addresses,

TCP/UDP port numbers etc.

• Actions: This field is a stack of actions which can be applied to the

particular packets. i.e. drop the packet, forward the packet to some

port, or send it to the controller as shown in table 2.1.

• Counter: Statistics are collected using the counter. Counters are

triggered when events are generated.

• Match entries: It is a predefined set of information that can be

used for matching with incoming packets and process them for ac-

tions. Match can be based off IP addresses, Mac address, VLANs, Port

CHAPTER 2. STATE OF THE ART 20

no. etc. If there is no match entry available for the incoming packet,

the packet goes to the controller as packetIn. Controller evaluates the

PacketIn and updates the switch with flow entry for future. Predefined

match fields are available in OpenFlow specification documents [8].

2.6 SmartContracts

SmartContract is a self-executing contract between concerned parties with

terms of agreement written into the lines of code [23]. It is not constrained

to a hardware or server, rather it is stored and implemented on a distributed

blockchain network. SmartContract is implemented on a blockchain [24]

platform called Ethereum [25] which provides the ability to be executed and

accessed across the internet. In later sections we will discuss SmartContracts

and building blocks in details.

2.6.1 Brief History of BlockChain

Blockchain are considered brainchild of Satoshi Nakamoto -his identity is

unknown to this day. Satoshi in 2008 presented the idea of ledger based

financial system. The idea of distributed ledger relates to the formation of

bit-torrent [26]. It is a peer to peer network where parties can share files

without having any involvement of a centralized point or node. Satoshi pre-

sented an electronic currency called bitcoin which is based on cryptographic

proof instead of trust [26] and hence proved quite promising in online finan-

cial settlements. By 2017 the Bitcoin Blockchains have grown by 100GB in

size. In 2013 Vitalik Butern in his white paper A Next-Generation Smart-

CHAPTER 2. STATE OF THE ART 21

Contract and Decentralized Application Platform shaped up the blockchains

to a whole new concept. He presented the concept of blockchain based virtual

machines with the intent to build decentralized applications. Vitalik Butern

named it Ethereum [27]. From then on Ethereum has become the most so-

phisticated platform for decentralized applications and SmartContracts. A

financial algorithm is also defined which is called Ether, Ether works signifi-

cantly different, compared to the previously built coins. Ether is a value to

pay for any execution on the ledger. Ether is intended to be taken as a fuel

for computing power rather than a coin [27].

2.6.2 Ethereum

Ethereum is a public Blockchain based distributed computing platform and

OS (operating system). It is built to host SmartContracts. It is based on an

improved version of Satoshi Nakamotos blockchains as financial platform. A

token named Ether is used whose blockchain is implemented by Ethereum

platform. Ethereum platform is also used as Ethereum virtual machine

(EVM) which run and executes scripts using public nodes spread across the

internet. Ethereum virtual machines‘ instructions set and scripting language

is made to be universally computational as appose to the bitcoin platform.

Ether

Ether is a base token for Ethereum operations which provides the publicly

available distributed ledger for computations and transactions. All computa-

tions in EVM are enforced by transactions which converts the computational

CHAPTER 2. STATE OF THE ART 22

effort in gas and instruct the EVM to run certain script when the specific

amount for the gas is paid [27]. Ether, the token with symbol ETH is used

to pay for gas.

Addresses scheme

Every Ethereum node, whether computing or client has a unique Ethereum

address associated with it. Identifier for hexadecimal number scheme 0x is

used in concatenation with 20 rightmost bytes taken off Keccak-256 hash

of ECDSA public key. Each address contains 40Hexadecimal digits in to-

tal. i.e. 0xb793F5fA9ba35494bE833614fffBA74279579267. Contract and

transactional accounts both follow the same address format and are indis-

tinguishable. As appose to bitcoin which uses base58check to validate the

address, any keccak-256 hash can do for Ethereum address if properly put in

the format.

Ethereum virtual machine

Using the publicly available distributed ledger on peer to peer network,

Ethereum provides a virtual machine on top of it. By pooling all the re-

sources available on Ethereum network off Ethereum nodes, Virtual machine

encompasses the 256-bit register stack to run codes written in SmartCon-

tracts as intended [27]. The EVM is developed in various programming

languages i.e. C, C++, C, Python, Ruby, Rust, etc.

CHAPTER 2. STATE OF THE ART 23

Ethereum as a SmartContract

SmartContract [27] is a protocol which digitally verifies, facilitates and en-

forces the negotiations and implementation of an agreement between two

parties without a middleman. SmartContracts are written with a script in

an interactive tool. Solidity is used to detail a SmartContract. SmartCon-

tract written in solidity is converted to byte code using solidity compilers.

EVM byte code in compliance with the Ethereum virtual machine runs the

code on the blockchain. Smart Conrtacts on Ethereum are catagorized in

two levels.

1. High level abstraction is provided for scripts which can be written in

various programming languages i.e. Serpent, Low-level-lisp, Mutant,

solidity etc. Off all above languages‘ solidity is being used in production

the most due to its library and structure like C.

2. On the low level, script written in interactive tool is converted to EVM

byte code.

SmartContracts can either be private (hashed) or public, which guarantees

the transparency between two parties withholding an agreement and abiding

by its instructions through computation on EVM [27]. This transparent

attribute of SmartContracts give rise to the possibility of creating many

distributed applications for gaming, auctions or financial deals with complete

transparency and integrity [28].

CHAPTER 2. STATE OF THE ART 24

Ethereum on permissioned ledger

As appose to the public blockchain ledger a concept of permissioned ledger

is introduced. Permissioned ledger adds an access control layer on top

of blockchain to grant or deny the features to certain individuals or ac-

counts [29]. JP. Morgan Chase has presented a permissioned ledger based

Ethereum coin JPM coin in a bid to provide integrity between consensual par-

ties without revealing their identities in financial on-goings [29]. A project

by ConsenSys is rolled out by the name Pantheon which provides privacy

using access control [30].

2.7 Software Guard Extensions

SGX (Software guard extensions) is a bundle of instruction codes hosted by

modern processors. They allow to build a private memory region known as

Enclaves. Content in Enclave [31] is cryptographically protected and can not

be read or modified by any CPU even if it has a higher-level access privilege.

Figure 2.6: SGX architecture

CHAPTER 2. STATE OF THE ART 25

2.7.1 On-the-fly decryption

Data that is kept in the Enclave is cryptographically encrypted using the

pair of RSA keys between memory block and CPU. The data is decrypted

using the CPUs Enclaves key and computed. It cannot be accessed by any

other computing body from outside of Enclave. Process thus makes it sure

that the code which should run in the Enclave can neither be spied on nor

used by other code in any way.

2.7.2 Thread Model approach

In this model all cyber variabilities can be identified, categorized and listed

from a potential attackers point of view. The data or the code running in

Enclave uses thread model to become attack-proof. In this design Enclave is

marked as trusted and all resources or entities outside of Enclave are marked

as potentially hostile, including operating system, Kernel, Hypervisors, I/O

devices or computing units etc.

2.7.3 SGX support

SGX support in the CPU is identified by its CPUID Structured Extended

feature Leaf”, with EBX bit 02. But SGX is only available to the applications

if it is enabled from the BIOS.

2.7.4 SGX operation

Every code leveraging the advantages of SGX is written in two sections,

trusted and untrusted. When application runs, it instantly creates an Enclave

CHAPTER 2. STATE OF THE ART 26

in memory space which becomes a trusted memory space. Trusted memory

space (Enclave) provides a function (trust-function) which upon called from

external space, computes the code in secure environment and returns the

value for external use. Processing data can be seen by the Enclave, but it is

not accessible from the outside. Trusted data remains in the Enclave memory

unchanged when trust-function returns.

Figure 2.7: SGX operation flow

Chapter 3

Proposed Architecture

In this chapter proposed architecture and its working flow has been discussed

in detail.

3.1 Overview

This project aims to automate service provider network commissioning. From

high-level-design‘s perspective the project proposes the automated design ap-

proach in network which provision the end-to-end Fast Lanes for IP flows

using the Software defined networking. Monetization for Fast Lanes as a

service is carried out using Ethereum based SmartContract. ABI (Applica-

tion binary interface) based GUI (graphical user interface) is provided to the

costumer to acquire Fast Lane on pay-as-you-go bases. This advanced mon-

etization of service provider networks curbs the role of financial management

party as a middleman and increases the revenue. It also reduces the manage-

ment and provisioning time drastically low. The SGX positioning between

27

CHAPTER 3. PROPOSED ARCHITECTURE 28

SDN and Ethereum network provides trusted environment for control traffic.

Our project consists of four main components mentioned below

• Ryu SDN Controller Application

• Ethereum based SmartContract

• API server

• Software guard extensions

Figure 3.1: Proposed architecture of SDN Fast Lanes with Ethereum based
SmartContract

CHAPTER 3. PROPOSED ARCHITECTURE 29

First component, controller app is responsible for provisioning Fast Lanes

on SDN nodes and statistics collection of entire networks. Second component

is a payment platform which is built on Ethereum blockchain.

It is a robust financial payment which not only monetize the network

service but also send and receive control messages with Ryu controller to take

required action on the network. API server acknowledges the user request

and payment fulfillment and instructs controller through APIs to provision

the requested Fast Lane. At the last, SGX (software guard extension) plays

the vital role in providing trusted environment for control traffic between

Ethereum platform and API server. Architecture of proposed design is shown

in Figure 3.1.

3.2 Tools and Components

• Ryu SDN Controller

• RESTful API

• Topology API

• Web3.py library

• OpenSGX

• Remix Ethereum IDE

CHAPTER 3. PROPOSED ARCHITECTURE 30

3.2.1 Ryu SDN Controller

Ryu SDN controller is a Python based SDN controller which uses the component-

based framework with huge variety of APIs and libraries to make network

agile and easy to manage. Ryu is supported and advanced by NTT. It has a

wide-spread community of developers, active support and periodic upgrades

with documentation and hence becomes the best choice off all available SDN

controllers.

3.2.2 RESTful API

The RESTful API often goes with the name REST API is built on the north-

bound interface on Ryu controller to interact with upper layer application

with the intent to retrieve network statistics, network information and func-

tions manipulations.

3.2.3 Topology API

This API communicates through northbound interface with application layer

interfaces. It provides topology information formulated with the help of

LLDP packets dispersion. This API allows the graphical illustration of net-

workwide topology.

3.2.4 Web3 Library

This library is built in Python module to interact with Ethereum platform.

It has the API quite like JavaScript API and it is used to translate likewise

scripts in Python format.

CHAPTER 3. PROPOSED ARCHITECTURE 31

3.2.5 OpenSGX

OpenSGX [32] is an SGX emulator built on the binary translations of Qemu [33].

It provides similar functionality as Intels proprietary hardware SGX. Sgxlib

library is used to perform Intels like operations inside and outside the En-

claves. OS emulator [32] and Enclave program loader implements the SGX

abstractions and stacks regions appropriately [32].

3.2.6 Remix Ethereum IDE

Remix is a set of components and tools to interact with Ethereum whether

to build a SmartContract or debug a dApp [27]. It can be used though its

web access with UI or can be downloaded from GitHub for local setup.

Chapter 4

Design and Implementations

4.1 Fast Lanes actualization by SmartCon-

tracts application specifications

In this research project we have developed a Ryu controller SDN application

to provision end-to-end Fast Lanes. We have also designed and deployed

SmartContracts to work as a payment gateway and further initiate instruc-

tions securely to the Ryu application to actualize the Fast Lanes. Applica-

tions modules and components are elaborated in the sections below.

4.1.1 Application components

the Fast Lane actualization application consists of four main modules listed

below.

• Ryu SDN Controller Fast Lanes Application

• Ethereum based SmartContract

32

CHAPTER 4. DESIGN AND IMPLEMENTATIONS 33

• Software guard extensions

• API server

These modules are illustrated in the figure 4.1 below.

Figure 4.1: Component description of SDN Fast Lanes actualization by
SmartContract

4.1.2 Application workflow

Costumer opens up Ethereum IDE, selects the Fast Lanes for a flow and

pays through his Ethereum account. The instructions from Ethereum after

CHAPTER 4. DESIGN AND IMPLEMENTATIONS 34

confirmation of payment and valid IP addresses goes to SDN controller to

spin off a Fast Lane on network. Mechanism follows following steps.

1. Costumer selects and pays a Fast Lane on Ethereum IDE

2. Ethereum IDE sends the instructions to SDN controller

3. Instructions are intercepted by SGX

4. SGX protects the instructions in Enclave and sends the secure version

to SDN controller

5. SDN controller provisions a Fast Lane

4.2 Ryu SDN Controller Fast Lanes applica-

tion

This Python written application in SDN controller is the main component

which provision the Fast Lanes and implement network functionalities.

Figure 4.2: Component description of SDN controller application for Fast
Lanes

CHAPTER 4. DESIGN AND IMPLEMENTATIONS 35

It is divided in four sub modules for functional simplicity. Applications

sub modules are illustrated in figure4.2. Each module provides a different

function and pulls information off the network which helps to orchestrate the

overall functionality of Fast Lanes application.

In sections to follow we will explain out each submodule in detail.

4.2.1 Network Discovery

This module uses the Topology API to retrieve all the network information.

i.e. number of switches, routers, links, ports, VLANs and sort the information

out to develop a topology which further by using GUI creates a network wide

topology illustration. The topology API uses LLDP packets and retrieve

information from all the devices connected in the network.

4.2.2 Network Monitoring

This module gather statistics from all devices connected in the network.

Statistics include run time counter readings for bytes sent and received, hits

on a port, aggregations of devices, active and disable flows, traffic load on

each port and link etc. These statistics help the main module to define

decision regions and actions on top of all.

4.2.3 Delay calculation

This module calculate delays between network devices for all possible routes.

The information statistics are stored in Python structures which are later

used by main module to take decisions for Fast Lanes provisioning.

CHAPTER 4. DESIGN AND IMPLEMENTATIONS 36

4.2.4 Main module

This module is the application on SDN controller which configures the Fast

Lanes. In the initial phase, it takes the information of topology and network

statistics using network discovery and network monitoring tool to arrange

the network wide topology. Then it runs the delay calculation mechanism

on top of topology to find out delay values through all possible routes then

using K-shortest path algorithm it chooses the k-best paths for a flow based

on pre-defined metrics i.e. hop count, delay or bandwidth.

4.3 SmartContract

In this project SmartContract is deployed on public ledger to perform both

as a payment gateway and user interface to invoke and revoke a Fast Lane.

SmartContract is built on following modules

4.3.1 Ethereum Virtual Machine

We have used an Ethereum Virtual machine to implement SmartContract.

It is a 256-bit stack which uses computing power from Ethereum nodes on

distributed networks and provides a virtual machine-like environment to run

scripts and functions.

4.3.2 Remix IDE

This interactive tool is used to access SmartContract‘s GUI, where costumer

is facilitated with options to select flow and cost is deducted and transferred

CHAPTER 4. DESIGN AND IMPLEMENTATIONS 37

when costumer interacts after providing his Ethereum address. If costumer

does not contain sufficient balance, the code does not execute Fast Lanes

requests.

4.3.3 Web3 Library

This Python library uses JAVA Script API to interact with Ethereum. We

leverage this library to pull data from SmartContract and save in a local

storage where it is being updated whenever change occurs in SmartContract‘s

output.

4.3.4 Ropsten blockchain

This blockchain for Ethereum platform is deployed alongside the primary

production blockchain and is publicly available with the sole purpose to pro-

vide testing facility. We have developed our SmartContract on Ropsten net-

work for testing purpose. Our SmartContract can similarly be deployed on

production network if integrated for monetizing purpose.

4.4 Software guard extensions

OpenSGX is built on top of Qemu for trusted platform module functionality.

SGX Enclave external interface takes the control data from SmartContract,

save it in trusted memory zone where the data is immutable and only readable

when invoked by a request initiated from inside the Enclave. This function-

ality has been implemented in C language with Sgxlib inside the Enclave.

CHAPTER 4. DESIGN AND IMPLEMENTATIONS 38

The data in protected memory zone in a read-only fashion is used by SDN

controller to provision the Fast Lanes.

4.5 API server

API server is built to interact with multiple APIs of SDN controller to per-

form defined functionalities to implement Fast Lanes. API server from one

side reads data (Control traffic) off SGX Enclave and on the other side call

SDN APIs and feed this data for Fast Lanes provisioning. API server keeps

an event based check on SmartContract data in SGX. Whenever the data is

updated API server makes sure that the updated data is transferred to the

SDN controller.

Chapter 5

Results and Observations

In this chapter we are going to observe and obtain desired results from our

test bed implementation and discuss the significance of observations

5.1 SDN network topology

We have implemented network topology using Mininet network emulator.

Nonetheless our controller application is topology independent, we have im-

planted topology illustrated in figure 5.2 to use as a reference point. Five

switches are connected using links powered with Ethernet protocol on layer 2.

All five switches are named as dpid:1, dpid:2, dpid:3, dpid4, dpid,5. Dpid1 is

a stub switch which connects to the ring of dpid:2, dpid:3, dpid:4 and dpid:5.

There is another link between dpid:4 and dpid:2 to induce complexity. Using

Mininet we implemented these switches as OpenVswitch which are running

on OpenFlow version 1.3 and backwards compatible with previous versions.

Topology is hard-coded using Mininet‘s Python API mytopo. When SDN

39

CHAPTER 5. RESULTS AND OBSERVATIONS 40

Figure 5.1: Flow table entries in OpenFlow switch

controller connects with Mininet on loopback interface 127.0.0.1:6633, it re-

trieves the entire topology in Python structure using topology discovery mod-

ule. Decision rules taken by SDN controller are enumerated in switches‘ flow

table shown in figure5.1 above.

Figure 5.2: Network topology discovered by Ryu controller

CHAPTER 5. RESULTS AND OBSERVATIONS 41

5.2 SmartContract structure

We are using Remix IDE to compile and execute SmartContract. Remix is a

publicly available ethereum ID which also provide user-interface to pass and

retrieve function values of the SmartContract code.

Figure 5.3: SmartContract implementation on Remix IDE

On the backend we have Ganache. It swiftly fires up a personal Ethereum

blockchain or connects the back-end platform with public blockchain, which

we can use to run tests, execute commands, inspect state of blockchain, and

integrate decentralized applications to public blockchain.

Figure 5.4: SmartContract implementation on Remix IDE

We are using Ganache (shown in figure5.4) to integrate web3.py Python

CHAPTER 5. RESULTS AND OBSERVATIONS 42

module with Ropsten blockchain and to manage and log transactions exe-

cuted for the smartcontract.

5.3 Software Guard extensions

SGX module is placed between the SmartContract and SDN Controller API‘s

server. Data coming off web3.py API of Ethereum is picked by SGX external

interface and sent over to Enclave. Enclave encrypts the data and stores it

in read-only memory space. This data In protected memory space is fed to

the SDN controller through Pipe.

5.4 Testing scenario

A SmartContract is implemented on Ethereum virtual machine which pro-

vides costumer the UI to interact with. Network topology is deployed using

Mininet. All topology switches are connected to SDN Ryu controller‘s ap-

plication through SSL connection on its TCP port 6633. Once the topology

is loaded, handshaking process begins, and topology gets loaded in SDN‘s

Python structure. Controller application will provision the Fast Lanes by

running algorithm on stored topology with help of network awareness and

delay calculator module once it receives the provisioning request on its API

facing SGX. Invocation and revocation of Fast Lanes are implemented by

controller app on the bases of request received from SmartContract via SGX

module.

CHAPTER 5. RESULTS AND OBSERVATIONS 43

5.5 results

In the first step we initialize the Mininet topology by using Mininets custom

application written on its Python‘s API. The Mininet application initializa-

tion is shown in figure 5.5.

Figure 5.5: Flow table entries in OpenFlow switch

After the topology implementation on Mininet gets completed we com-

pute the SDN controller application on Ryu-Manager instance using following

commands on a remote server. SDN controller application loads all the sub

modules and components in the main instance shown in figure 5.6.

Figure 5.6: SDN Fast Lanes controller application and sub-modules initial-
ization

Once application is up and running it retrieves the Mininet topology

information and loads the topology in Python structure. Switches being

CHAPTER 5. RESULTS AND OBSERVATIONS 44

recognized by controller application are shown in figure 5.4.

Figure 5.7: switches and Ryu controller connection setup

After all switches‘ information is retrieved, controller instantiates the

dispersion of LLDP packets back and forth between neighbor switches and

construct a network-wide topology by using information arranged in switch

connection matrix.

After the topology is learned, whole network is reachable to provision

the Fast Lanes. Next step involves the request generation from SmartCon-

tract. In our project SmartContract also provide Getter functions which take

the users values shown in figure5.6 for Fast Lanes. User values in our case

are source and destination IPs fastlane is going to be provisioned for, and

payment receiver(ISP).

Figure 5.8: SmartContract input functions on user-interface

SmartContract charges user some ”wei” as a cost for Fast Lane. Once the

transaction is fulfilled and users instructions meet the valid criteria following

CHAPTER 5. RESULTS AND OBSERVATIONS 45

dialog is shown for successful computation.

Figure 5.9: SmartContract successful transaction dialog

Using Web3.py API on a Python module, request to provision the Fast

Lane is picked by the SGX. SGX will generate and apply signature key by

using following command.

Figure 5.10: Generating key-pair for SGX Enclave

In the next step SGX encrypts the document and saves it in secure mem-

ory address space which is only accessible from the processor who is in pos-

session of signature key.

Figure 5.11: Encrypting data using the key-pair and storing it in Enclave

the Fast Lane request data in secure memory blocks is immutable and ac-

cessed in read-only mode by script in main module (shown in figure5.8). Data

CHAPTER 5. RESULTS AND OBSERVATIONS 46

is accessed in read-only fashion and passed on to the SDN for provisioning

of Fast Lanes on network. SGX terminal output is shown in Figure5.8.

Figure 5.12: SGX terminal output for Enclave data (Fast Lanes provisioning
request) is accessed

The data in the read-only address memory blocks is fed to the Ryu SDN

controller application using its Rest API to provision a Fast Lane. An end-to-

end Fast Lane is provisioned and shown in terminal window of SDN controller

as shown in figure 5.14. Same steps are involved to revoke a Fast Lane.

CHAPTER 5. RESULTS AND OBSERVATIONS 47

Figure 5.13: Provisioned Fast Lanes statistics on Ryu controller

Chapter 6

Conclusion

As the digitization is making its footprints in various domains, the demand

of bandwidth per user is increasing day by day. To meet demand of increas-

ing bandwidths, service providers must continuously expand their network

infrastructure. The concept of Fast lanes has been in networking for many

years. Traditional networks are basically combination of distributed enti-

ties which work on propriety rules and protocols and these networks provide

bandwidth commitment and reservation using static methods, i.e. an engi-

neer must provision a fast lane through all the nodes. The static method

of provisioning takes time and due to the reservation of network resources,

a factor of bandwidth goes unused when a Fast Lane‘s client is not sending

traffic, while other users are having contention for rest of the bandwidth.

Where on one hand this method is a hindrance in catering to the increasing

demand of bandwidth per user in the era of digitization, it is also a time

taking process to provision a Fast Lane, and hence becomes unsuitable for

mission critical applications. The other major problem is a monetizing of

48

CHAPTER 6. CONCLUSION 49

network services. Now the end-user‘s requirements have been evolved, they

have different network requirements at different times depending on their

platforms and end applications which becomes difficult to achieve with tra-

ditional monetizing platforms, as traditional monetizing platforms are mostly

provided by banking sectors add an overhead in the process of acquiring a

network service. It also gives the 3rd party some visibility over the network,

and moreover service provider has to pay a huge sum to acquire monetizing

platform for its network.

This research was focused on Software defined networking and Ethereum

blockchains. Because of decoupling of control plane and data plane in SDN it

becomes easy to manage and monitor the network centrally. The controller

can be installed on a commodity hardware and network nodes are simply

dump layer 2 boxes who forward packets on the bases of rules instructed by

centralized controller. This paradigm not only comforts the service provider

on revenue front, it also provides with the facility to program network func-

tions and test them on a network slice before implementing them in pro-

duction, on the same network. Blockchain has provided the pivotal role in

cutting financial expenditures on service providers end. Smart Contract on

distributed ledger has circumvented the middleman problem. In chapter 3

we have thoroughly discussed the role of Ethereum based monetizing plat-

form. The execution of a program on Ethereum virtual machine has allowed

us to provide the control of network directly to the customer and brought

the provisioning time to a drastically low level. SDN and Ethereum network

together can provide optimal solution for fast lanes provisioning as well as

monetizing of network and due to their open nature, they can be programmed

CHAPTER 6. CONCLUSION 50

and shaped to meet changing requirements.

Positioning SGX between SDN and Ethereum provides reliable commu-

nication for control traffic and can be used as trusted platform module for

various functionalities. In chapter 5 we have shown step by step implementa-

tion of actualizing fast lanes using SDN and Ethereum. Multiple open source

platforms have been put together to implement the prototype. Because of

SDN and Ethereum flexibility and Open source approach the prototype is

salable to thousand of devices with minimal changes.

Chapter 7

Future work

Although the blockchains have been around for many years but Ethereum

has brought a different approach to decentralization by providing a virtual

machine on to the blockchains. This platform can be anything depending on

what we can program on it and gives the opportunity to create robust and

agile decentralized applications. As in our case, we used Ethereum to write

smart contract which is kind of a banking service as well as financial arbitra-

tion based on predefined terms. SDN and Ethereum in our prototype has a

huge potential to expand and mold to meet various service provider network

requirements and functionalities. In this on-demand fast lanes actualization

through smart contract system there are many potential improvements which

can enhance the capability and functionality of the system. The foremost ar-

eas of potential improvements are mentioned below.

51

CHAPTER 7. FUTURE WORK 52

7.1 OpenSGX compatibility

OpenSGX the emulation of Intel SGX has many hardware and operating

system constraints as it is supported on few versions of Ubuntu x64 OS

and it has limited community support. The computation time of SGX is

also significantly high. We firmly believe, compatibility and computation

time improvements will lead to better Enclave performance and research

breakthroughs in various aspects.

7.2 Topology discovery

Our Fast Lane application on Ryu controller use the conventional LLDP dis-

persion logic to discover network topology which is naive to be implemented

on production level. This can be improved by implementing loop avoidance

mechanism along side the LLDP discovery function in the SDN controller

application.

7.3 Smart contract

Since smart contract is a monetizing platform implemented on distributed

ledger which cuts the role of financial arbitrator it also gives rise to another

problem in our system. There is no conflict-resolve mechanism defined in

our prototype. If client invokes a fast lane on using Ethereum platform the

request goes through, and client starts paying fractions of ether for it, but if

SDN on the side fails to provide service due to network outage or any other

malfunctioning client is still paying as there is no feedback system between

CHAPTER 7. FUTURE WORK 53

smart contract and SDN. A system should be introduced in smart contract

to check service delivery of the network.

Bibliography

[1] Benjamin B. Bauer and Andrew S. Patrick. A human factors extension

to the seven-layer osi reference model. 2002.

[2] Norbert Egi, Adam Greenhalgh, Mark Handley, Mickal Hoerdt, Felipe

Huici, and Laurent Mathy. Towards high performance virtual routers

on commodity hardware. page 20, 01 2008.

[3] Jad Naous, Glen Gibb, Sara Bolouki, and Nick McKeown. Netfpga:

Reusable router architecture for experimental research. In Proceedings of

the ACM Workshop on Programmable Routers for Extensible Services of

Tomorrow, PRESTO ’08, pages 1–7, New York, NY, USA, 2008. ACM.

[4] Christian Esteve Rothenberg, Roy Chua, Josh Bailey, Martin Winter,

Carlos N. A. Correa, Sidney C. de Lucena, Marcos Rogerio Salvador, and

Thomas D. Nadeau. When open source meets network control planes.

Computer, 47(11):46–54, November 2014.

[5] Maciej Kuzniar, Peter Peresini, and Dejan Kostic. What you need to

know about sdn flow tables. Lecture Notes in Computer Science (LNCS),

page 13, 2015.

54

BIBLIOGRAPHY 55

[6] ONF. Software-defined networking: The new norm for networks. Tech-

nical report, Open Networking Foundation, April 2012.

[7] Alexander Shalimov, Dmitry Zuikov, Daria Zimarina, Vasily Pashkov,

and Ruslan Smeliansky. Advanced study of sdn/openflow controllers.

In Proceedings of the 9th Central & Eastern European Software

Engineering Conference in Russia, CEE-SECR ’13, pages 1:1–1:6, New

York, NY, USA, 2013. ACM.

[8] The Open Networking Foundation. OpenFlow Switch Specification, Jun.

2012.

[9] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,

Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.

Openflow: Enabling innovation in campus networks. SIGCOMM Com-

put. Commun. Rev., 38(2):69–74, March 2008.

[10] AA Lazar, Koon-Seng Lim, and F. Marconcini. Realizing a foundation

for programmability of atm networks with the binding architecture. Se-

lected Areas in Communications, IEEE Journal on, 14(7):1214–1227,

Sep 1996.

[11] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo, Nick

McKeown, and Scott Shenker. Ethane: Taking control of the enter-

prise. In Proceedings of the 2007 Conference on Applications, Tech-

nologies, Architectures, and Protocols for Computer Communications,

SIGCOMM ’07, pages 1–12, New York, NY, USA, 2007. ACM.

BIBLIOGRAPHY 56

[12] David Klingel, Rahamatullah Khondoker, Ronald Marx, and Kpatcha

Bayarou. Security analysis of software defined networking architectures:

Pce, 4d and sane. In Proceedings of the AINTEC 2014 on Asian Internet

Engineering Conference, AINTEC ’14, pages 15:15–15:22, New York,

NY, USA, 2014. ACM.

[13] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Mart́ın

Casado, Nick McKeown, and Scott Shenker. Nox: Towards an operating

system for networks. SIGCOMM Comput. Commun. Rev., 38(3):105–

110, July 2008.

[14] Martin Casado, Nate Foster, and Arjun Guha. Abstractions for software-

defined networks. Commun. ACM, 57(10):86–95, September 2014.

[15] J. Medved, R. Varga, A. Tkacik, and K. Gray. Opendaylight: Towards

a model-driven sdn controller architecture. In 2014 IEEE 15th Inter-

national Symposium on ”A World of Wireless, Mobile and Multimedia

Networks” (WoWMoM), pages 1–6, Los Alamitos, CA, USA, jun 2014.

IEEE Computer Society.

[16] Chang Liu, Arun Raghuramu, Chen-Nee Chuah, and Balachander Kr-

ishnamurthy. Piggybacking network functions on sdn reactive routing:

A feasibility study. In Proceedings of the Symposium on SDN Research,

SOSR ’17, pages 34–40, New York, NY, USA, 2017. ACM.

[17] Rob Sherwood, Glen Gibb, Kok kiong Yap, Martin Casado, Nick Mck-

eown, and Guru Parulkar. Flowvisor: A network virtualization layer.

Technical report, 2009.

BIBLIOGRAPHY 57

[18] Lalith Suresh, Julius Schulz-Zander, Ruben Merz, Anja Feldmann, and

Teresa Vazao. Towards programmable enterprise wlans with odin. In

Proceedings of the First Workshop on Hot Topics in Software Defined

Networks, HotSDN ’12, pages 115–120, New York, NY, USA, 2012.

ACM.

[19] Wikipedia contributors. Network operating system — Wikipedia, the

free encyclopedia, 2019. [Online; accessed 20-August-2019].

[20] Jehad Ali, Seungwoon Lee, and Byeong-hee Roh. Performance analysis

of pox and ryu with different sdn topologies. In Proceedings of the 2018

International Conference on Information Science and System, ICISS ’18,

pages 244–249, New York, NY, USA, 2018. ACM.

[21] Rajat Jain and Rahamatullah Khondoker. Security Analysis of SDN

WAN Applications—B4 and IWAN, pages 111–127. Springer Interna-

tional Publishing, Cham, 2018.

[22] Justin Pettit, Ben Pfaff, Joe Stringer, Cheng-Chun Tu, Brenden Blanco,

and Alex Tessmer. Bringing platform harmony to wmvare nsx. SIGOPS

Oper. Syst. Rev., 52(1):123–128, August 2018.

[23] Jesse Yli-Huumo, Deokyoon Ko, Sujin Choi, Sooyong Park, and Kari

Smolander. Where is current research on blockchain technology?a sys-

tematic review. PLOS ONE, 11(10):1–27, 10 2016.

[24] Michael Nofer, Peter Gomber, Oliver Hinz, and Dirk Schiereck.

Blockchain. Business Information Systems Engineering: The Interna-

tional Journal of WIRTSCHAFTSINFORMATIK, 59(3):183–187, 2017.

BIBLIOGRAPHY 58

[25] Gavin Wood. Ethereum: A secure decentralised generalised transaction

ledger eip-150 revision (759dccd - 2017-08-07), 2017. Accessed: 2018-

01-03.

[26] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2009.

[27] Vitalik Buterin. Ethereum: A next-generation smart contract and de-

centralized application platform, 2014. Accessed: 2016-08-22.

[28] Piotr Piasecki. Gaming self-contained provably fair smart contract casi-

nos. Ledger, 1(0):99–110, 2016.

[29] Marko Vukolić. Rethinking permissioned blockchains. In Proceedings

of the ACM Workshop on Blockchain, Cryptocurrencies and Contracts,

BCC ’17, pages 3–7, New York, NY, USA, 2017. ACM.

[30] Peter Robinson, David Hyland-Wood, Roberto Saltini, Sandra Johnson,

and John Brainard. Atomic crosschain transactions for ethereum private

sidechains. CoRR, abs/1904.12079, 2019.

[31] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi.

Town crier: An authenticated data feed for smart contracts. In Proceed-

ings of the 2016 ACM SIGSAC Conference on Computer and Commu-

nications Security, CCS ’16, pages 270–282, New York, NY, USA, 2016.

ACM.

[32] Prerit Jain, Soham Desai, Seongmin Kim, Ming-Wei Shih, JaeHyuk Lee,

Changho Choi, Youjung Shin, Taesoo Kim, Brent Byunghoon Kang,

and Dongsu Han. OpenSGX: An Open Platform for SGX Research. In

BIBLIOGRAPHY 59

Proceedings of the Network and Distributed System Security Symposium,

San Diego, CA, February 2016.

[33] Daniel Bartholomew. Qemu: A multihost, multitarget emulator. Linux

J., 2006(145):3–, May 2006.

