
E2E security for popular web services

By

M. Zohaib Shaheen

00000172598

Supervisor

Dr.Syed Taha Ali

Department of Electrical Engineering

A thesis submitted in partial fulfillment of the requirements for the degree

of Masters of Science in Information Technology (MS IT)

In

School of Electrical Engineering and Computer Science,

National University of Sciences and Technology (NUST),

Islamabad, Pakistan.

(May 2019)

Approval

It is certified that the contents and form of the thesis entitled “E2E security

for popular web services” submitted by M. Zohaib Shaheen have been

found satisfactory for the requirement of the degree.

Advisor: Dr.Syed Taha Ali

Signature:

Date:

Committee Member 1: Dr. Asad Waqar Malik

Signature:

Date:

Committee Member 2: Dr. Arsalan Ahmed

Signature:

Date:

Committee Member 3: Ms. Haleemah Zia

Signature:

Date:

i

Certificate of Originality

I hereby declare that this submission is my own work and to the best of my

knowledge it contains no materials previously published or written by another

person, nor material which to a substantial extent has been accepted for the

award of any degree or diploma at NUST SEECS or at any other educational

institute, except where due acknowledgement has been made in the thesis.

Any contribution made to the research by others, with whom I have worked

at NUST SEECS or elsewhere, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product

of my own work, except for the assistance from others in the project’s de-

sign and conception or in style, presentation and linguistics which has been

acknowledged.

Author Name: M. Zohaib Shaheen

Signature:

ii

Abstract

With the ever growing number of data breaches on servers, its now more im-

portant than ever to secure sensitive information in a way that only intended

parties can decrypt/understand the message even if data itself is compro-

mised. This is specially true for government agencies and officials, who have

always remained main target for attackers.

Government Officials are however not the only intended recipients. Shar-

ing business secrets and confidential messages is also a challenge using email

as medium. We intend to create an open system which can be easily adopted

by masses and can ensure complete confidentiality of data as well as user

identities. Our work will provide end to end encryption for emails. On top

of that, sender/receiver identity will also remain hidden from email client.

Only the sender and receiver will know who sent and who received. No one

else! To achieve this, we created a client side application which encrypts

email on client side and forward emails in a tor like way to hide sender re-

ceiver pair. Gmail is the most famous email client with 1.2 billion users

and therefore we created our application to extend Gmail functionalities to

include more privacy.

iii

Dedication

To my parents,

without whom it was almost impossible for me to accomplish.

iv

Certificate of Originality

I hereby declare that this submission is my own work and to the best of my

knowledge it contains no materials previously published or written by another

person, nor material which to a substantial extent has been accepted for the

award of any degree or diploma at NUST SEECS or at any other educational

institute, except where due acknowledgement has been made in the thesis.

Any contribution made to the research by others, with whom I have worked

at NUST SEECS or elsewhere, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product

of my own work, except for the assistance from others in the project’s de-

sign and conception or in style, presentation and linguistics which has been

acknowledged.

Author Name: M. Zohaib Shaheen

Signature:

v

Acknowledgment

I am absolutely grateful for my thesis adviser, Dr. Syed Taha Ali for his lead-

ership in ensuring my successful development through academic achievement

and for polishing my skills. The door to his office was always open whenever

I ran into a trouble spot or had a question about my research or writing.

Finally, I must express my very profound gratitude to my family members

and friends for providing me with unfailing support and continuous encour-

agement throughout my years of life.

vi

Table of Contents

List of Figures x

List of Symbols xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Problem definition . 2

1.3 Objectives and goals . 3

1.4 Thesis roadmap . 4

2 Background 5

2.1 Types of encryptions . 5

2.1.1 Symmetric . 5

2.1.2 Asymmetric . 5

2.2 Famous encryption algorithms 6

2.2.1 AES . 6

2.2.2 RSA . 7

2.3 Digital Signing . 8

2.4 End to end encryption . 8

2.4.1 S/MIME . 8

2.4.2 OpenPGP/MIME . 9

vii

TABLE OF CONTENTS viii

2.4.3 Why end to end encryption is chosen? 10

2.5 Application structure . 10

2.5.1 Server side scripting 10

2.5.2 Client side scripting . 11

2.5.3 Client side storages . 11

2.6 Onion routing . 12

2.6.1 Tor . 13

3 Related Work 16

3.1 Mutt Email Client . 16

3.2 ProtonMail . 17

3.3 Mailvelope . 17

3.4 Confidante . 21

4 Methodology 23

4.1 Graphical User Interface: Welcome to SecuriMail 23

4.1.1 Connection . 23

4.1.2 Key Setup . 24

4.1.3 Email Client . 27

4.2 Core Development . 30

4.2.1 function handleAuthClick(): 30

4.2.2 function handleAuthResult(authResult): 32

4.2.3 function openpgp.generateKey(); 32

4.2.4 function jQuery.getJSON() 33

4.2.5 function encrypt(); . 34

4.2.6 function decrypt(); . 36

5 Evaluation 38

5.1 Security Evaluation . 38

TABLE OF CONTENTS ix

5.1.1 SQL Injection Attack 38

5.1.2 Cross-Site Scripting (XSS) Attack 39

5.1.3 Brute Force Attack . 40

5.1.4 Eavesdropping Attack 40

5.2 Usability Case Study . 41

5.2.1 Study Setup . 42

5.2.2 Demographics . 42

5.2.3 Results . 42

5.3 SecuriMail Vs Other E2E Applications 43

5.4 Compromised Parameters . 44

6 Conclusion and future work 45

6.1 Usability . 45

6.2 Security . 46

6.3 Adaptability . 46

6.4 Performance . 46

6.5 Contributions . 47

6.6 Future Research Directions: 49

List of Figures

2.1 Symmetric Encryption . 6

2.2 Asymmetric Encryption . 7

2.3 An example of End-to-End encryption 9

2.4 Client Side Scripting . 11

2.5 Working of Tor Step 1 . 14

2.6 Working of Tor Step 2 . 15

3.1 ProtonMail . 18

3.2 Mainvelope . 19

3.3 Confidante . 21

4.1 Connections . 24

4.2 Uploading PGP keys . 25

4.3 Generating PGP keys . 26

4.4 PGP keys . 27

4.5 Stored keys . 28

4.6 Fully Formatted Decrypted Email 30

4.7 Email Forwarding Using Onion Routing 31

5.1 Depicting SQL injection attack 39

5.2 Demonstrating possible XSS attack 40

x

LIST OF FIGURES xi

5.3 Eavesdropping Attack . 41

List of Tables

3.1 Mutt Commands . 20

5.1 Educational Backgrounds Of Participants 42

5.2 Study Results . 43

5.3 A Brief Comparison of E2E Applications Against Different

Characteristics . 44

xii

xiii

List of Symbols xiv

List of Symbols

Abbreviations

PGP Pretty Good Privacy

AES Advanced Encryption Standard

RSA Rivest Shamir and Adleman

MIME Multipurpose Internet Mail Extensions

S/MIME Secure/Multipurpose Internet Mail Extensions

CA Certificate Authority

PGP/MIME Pretty Good Privacy Multipurpose Internet Mail Extensions

HTML Hypertext Markup Language

HTML5 Hypertext Markup Language Version 5

OAuth Open Authorization

Repo Repository

POP3 Post Office Protocol Version 3

IMAP Internet Message Access Protocol

SMTP Simple Mail Transfer Protocol

List of Symbols xv

API Application Programming Interface

TOR The Onion Router

EMAIL Electronic Mail

Chapter 1

Introduction

In this chapter, we first describe the motivation behind this work. We then

move to problem statement. This is followed by objective and goal of this

research. Finally, we provide a roadmap of this thesis.

1.1 Motivation

Nowadays cyber attacks are on the rise and hence privacy compromise is on

the peak. Recently Hillary Clintons emails were hacked despite the fact that

she was a very important person and her email/data is secured by technology

experts. Still the hackers were able to penetrate through her email security.

The information disclosed from these emails cost her the most important

elections of USA. On the other side, government agencies are involved in

breaching personal space of individuals. Government backed surveillance has

been making headlines all across the world. Therefore, people need a medium

through which they can communication without the fear from government or

black hat hacker. In 2013, 3 billion Yahoo accounts were compromised which

included information like passwords, security questions, personal details and

1

2

much more. The privacy is not just for people dealing with suspicious activi-

ties but its also important corporate world. KFCs secret recipe is what keeps

the empire on top of world. If their recipe could have been stolen, the empire

would have sunk. Hence privacy is important everywhere. Our proposed

system can prove to be really helpful for exchange of sensitive information

between parties specially lawyers, journalists and government official by en-

crypting emails using PGP before sending and forwarding emails in a tor like

network preventing email clients from knowing sender receiver identities.

1.2 Problem definition

Email is the mostly widely adopted mode of communication today but un-

fortunately popular email providers like Gmail, Yahoo and Outlook do not

support end-to-end encryption and PGP seems to be only option for users to

share sensitive information. Much work has already been done on using PGP

encryption for sending emails but the usability and practicality of systems

for use by general public has always been a challenge [1]. Study conducted

in paper ”Why Johnny Still, Still Can’t Encrypt” [2] shows that only 5% of

the users were able to successfully send encrypted email using Mailvelope,

a popular chrome extension to integrate PGP into webmail systems. Confi-

dante [3] improves on the Mailvelope by simplifying key management using

Keybase. Keybase allows users to connect their social media identities with

their public key i.e. to simply user search and also allows key management

i.e. creation, storage and distribution of key. Although Keybase improves

the usability of Mailvelope but it still falls short on two grounds:

• Sender and Receiver Identities are exposed to webmail services

• User has to provide access to their email using oAuth and user can

3

decrypt/read emails only in custom designed app, which means non-

zero trust on their servers since they have complete access to users’

emails.

The goal is to improve Mailvelope and Confidante by establishing zero-

trust model for email exchange i.e. no access to routing server and hiding

sender and receiver identities using Tor [4] like network. This will not only

make email encryption more accessible but will also reduce reliance on email

providers like Gmail.

1.3 Objectives and goals

This thesis is aimed at following goals:

• Emails are encrypted on client side using PGP [5] before sending email,

through email client, making sure only desired recipient can read the

email.

• Emails are forwarded in a tor like network hiding sender and receiver

identities. This ensures that only sender knows to whom the email is

sent and only recipient knows from whom he received email. Not even

email client involved in forwarding can find out about sender receiver

pair.

• Improve usability of existing systems by providing built-in key man-

agement.

• Ensuring mass scale adaptability by building service on top of existing

mail client.

4

1.4 Thesis roadmap

Thesis organization is as follows: Chapter 2 provides fundamental concepts

about encryption techniques, application structures, client side program-

ming, onion routing and Tor. This chapter provides the baseline for better

understanding of concepts delivered in later chapters. Chapter 3 describes

the work already done in field of end to end encryption for email exchange.

This chapter also compares different applications in details which are working

on principle of E2E encryption. In Chapter 4, we describe the construction of

our application designed to enhance security and privacy of users. Chapter 5

shows evaluation of our application. This chapter covers security evaluation,

usability case study and comparison of our application with other existing

solutions.

Chapter 2

Background

2.1 Types of encryptions

Two types of encryptions that are mainly used:

• Symmetric

• Asymmetric

2.1.1 Symmetric

In this technique, when the data is encrypted using key. The same key is

used to decrypt it. In this type of encryption, that single key must be kept

safe and both sender/receiver needs to have same key [6] [7] to send and

receive encrypted messages, depicted in figure 2.1.

2.1.2 Asymmetric

In this technique, a key pair is used. For encryption and decryption, different

keys are used [8]. The key pair is known as public/private keys. Public key

5

6

Figure 2.1: Symmetric Encryption

is used to encrypt message and in order to decrypt it, private key is used.

In this case the private key must be kept hidden by owner, public key is for

anyone who wants to send message to owner, shown in figure 2.2

2.2 Famous encryption algorithms

2.2.1 AES

Advanced Encryption Standard is a type of symmetric encryption [9] . AES

works with AES-128, AES-192 and AES-256 i.e. 129 bit key, 192 bit key and

256 bit key. This type of encryption uses block cipher text algorithm i.e. if

128 bit key is used then for every 128 bit of message, 128 bit cypher text

is generated. Similarly for 192 bit key, 192 bit of hypertext is generated for

every 192 bit of message. The key bits chosen for algorithm comes at a price.

If less bits are selected then process is faster but less secure as compared to

longer bits. On the other hand, longer bit keys take more time in encryption

making algorithm slow. As AES is a type of symmetric encryption, it means

7

Figure 2.2: Asymmetric Encryption

only one key is used for both encryption and decryption. Hence key must be

provided to recipient in order to read encrypted message and that key must

never be shared with anyone else.

2.2.2 RSA

This is a type of asymmetric encryption. There are two separate keys for

encryption and decryption [10]. The public key is used to encrypt message

and private key is used to decrypt message. As name suggests, private key

must be kept secure and never shared with anyone. In this method, sender

only needs to have public key of recipient to send him encrypted message.

The receiver can decrypt that message using his corresponding private key.

Mostly 1024 bit and 2048 bit keys are used which make this algorithm sig-

nificantly secure. In SecuriMail, OpenPGP is used which is a type of RSA

cryptography.

8

2.3 Digital Signing

The identity of sender or recipient can be confirmed using digital signing [11]

[12]. The message is signed by the private key of sender and sent away to

recipient. The recipient upon receiving can verify the sender identity using

corresponding public key of sender. In asymmetric encryption, if something is

encrypted by using public key, only its corresponding private key can decrypt

it. This process works other way around too. If something is encrypted by

using private key, only its corresponding public key can decrypt it. So when

the sender signs his message by using his private key, the recipient decrypts

it using senders public key and upon success, he can verify sender identity.

This ensures that the message is sent by actual sender.

2.4 End to end encryption

When the encryption and decryption is performed at end users and theres no

central entity involved then that process is referred to as end-to-end encryp-

tion. This ensures that there is no one listening/reading except end users

themselves. It ensures that even service providers cannot eavesdrop, shown

in figure 2.3. S/MIME [13] [14] and PGP/MIME are most widely used for

email end to end encryption. We have used OpenPGP/MIME for our thesis

but we have described both below for better understanding of our choice.

2.4.1 S/MIME

This type relies on a centralized authority to decide key size used and en-

cryption algorithm. In this type, user needs a public key and a certificate to

show user trust. The certificate comprises of information about public key

9

Figure 2.3: An example of End-to-End encryption

and digital signatures signed using corresponding private key. In order to

achieve this certificate, user must obtain it from certificate authority (CA).

2.4.2 OpenPGP/MIME

Pretty Good Privacy (PGP) The other heavyweight in email encryption is

PGP/MIME, which is what were going to focus on in the latter part of this

tutorial. You get more flexibility in how you encrypt emails, it relies on a

decentralized, distributed trust model, and its fairly easy to use with web-

based email clients. Its also free to get a certificate, which S/MIME is usually

not. With PGP, not only can you choose how you encrypt, you can specify

how well encrypted the messages you receive must be.

10

2.4.3 Why end to end encryption is chosen?

We have used end to end encryption in our thesis, following points describe

why we opted for this.

• End to end encryptions ensures that no middle person/server can read

messages [15]. If the hacker compromises the serves where your data is

stored, even then they cannot decrypt that without private keys stored

safely by end user. Yahoo server hack is perfect example of why we

need end to end encryption.

• Privacy! The email clients can read your emails i.e Google, Yahoo can

read all emails that are sent from their email accounts. End to end

encryption ensures that even Gmail, Yahoo themselves cannot read

your important details.

2.5 Application structure

We have developed our app using client side scripting, the reason for this

choice is explained below.

2.5.1 Server side scripting

In server side programming, the program runs on server and user request is

fulfilled on server and resulting data (i.e. HTML) is sent back to user after

processing on server. In this type, all data is stored on server in sessions

or databases. All requests are sent to server which means server can track

everything user is doing.

11

2.5.2 Client side scripting

In client side scripting, the program runs on client side i.e. end user, demon-

strated in figure 2.4. Whole process takes place on end user computer. The

source code is sent from backend server to browser and user interacts with

it on client side. In this type, the data is stored in local storage/html5 stor-

age. This means that server doesnt play any role in user interactions with

application. The purpose of our application is to prevent any middle node

from tracking user behaviour, hence we opted for client side scripting in our

application.

Figure 2.4: Client Side Scripting

2.5.3 Client side storages

To store data on client side, browsers provide different types of local storage

APIs. Some are discussed below

12

Cookies

Data can be stored on client side in browser using cookies. The cookies can be

set, deleted, updated using simple functions. Both old and modern browsers

have support for cookies but unfortunately they have very less storage limit

of 4KB. Every time request is sent to server, the cookie is attached and sent

to server. This increases request time. In our case, we dont want server

to read any storage items. Therefore, we didnt use cookie storage in our

application.

HTML5 Local storage

This is a significant improvement over cookies [16]. The storage limit is

increased to 5MB. The data is not sent to server on HTTP request. The

data stored in local storage has no expiry time. It’s kept in browser until

deleted specifically. This is primarily used for client side scripting. We have

used local storage in our application.

HTML5 Session storage

Session storage keeps in browser memory as long as browser is open. Once

browser window is closed this storage is automatically deleted [17] [18]. It is

also 5MB in size. Similarly, as local storage, the data is not sent to server

on HTTP request.

2.6 Onion routing

In this work, the concept of onion routine is used in forwarding emails in

order to hide sender and receiver identity from any middle node and Gmail.

13

Onion routing is used for anonymous communication in network [19]. Mes-

sages are encapsulated in layers of encryption. Hence the name taken from

onion because of its layers. Without onion routine, if encrypted message is

intercepted, the attacker can still know which user generated request even

if he cant read that encrypted part. Thanks to onion routing, the attacker

cannot even identify which user generated that request.

How it works?

In onion routing, multiple nodes take part in connection. When user gener-

ates request, the connection hops from multiple hops before finally reaching

the end user/node. The end node then processes request and sends back

response in same manner. Different key is used for every hop and each hop

can only read what is necessary for it to forward request.

2.6.1 Tor

Tor network integrates onion routing to hide user identities from any middle

nodes, service provides etc. The users Tor client gets information about all

Tor nodes from central directory. Then that client chooses a random path

to destination server. In order to prevent middle routing nodes from reading

end user requests, the request is encapsulated in layers with different keys

for encryption. Each node can only peel/decrypt its concerning layer [20]and

read only necessary information which guides it to next node. If user needs

to make another request to some other server, the Tor client takes a different

path making it a totally random new path. Working of Tor is shown in

figures 2.5 and 2.6.

14

Figure 2.5: Working of Tor Step 1

Encapsulation

In human analogy, if Seth wants to message Alice. The Tor client will choose

Person1, Person2 and Person3 to relay message. First the Tor client will

encrypt message that only Alice can read and add extra information on top

of it telling Person3 to transfer it to Alice. Then that Person3s message

is further encrypted for Person2. Person2 can only read that he needs to

transfer massage to Person3. Similarly, the client will add another layer,

which only Person1 can decrypt and that person can only read that the

message needs to be transferred to Person2.

Forwarding

When the message is transferred from Seth to Person1, Person1 decrypts

its layer and finds out that it needs to transfer message to Person2. Then

Person2 decrypts its layer and finds out that it needs to transfer it to Person3.

Then Person3 decrypts its layer and finds address of Alice and it transfers

message to Alice. So,

15

• Person1 only knows about Person2

• Person2 only knows about Person3

• Person3 only knows about Alice.

Problems and challenges of Tor

• Tor is susceptible to correlation attacks. If a single entity controls

both entry and exit nodes for your data, it can do statistic analysis to

potentially identity you i.e. your real IP address. However this scenario

is only feasible in small networks with limited number of nodes.

• If an exit node is compromised or controlled by malicious entity, they

can sniff the traffic and read contents over HTTP if the data is not sent

over HTTPs. This can be easily prevented by always using HTTPs.

Figure 2.6: Working of Tor Step 2

Chapter 3

Related Work

In this section, We will compare some of the most popular applications in

use today and how they fall short in providing complete security and privacy.

3.1 Mutt Email Client

Mutt email client is a command based program capable of performing mail

functions. It was initially released as early as 1995. Mutt includes support

for POP3, IMAP, SMTP for sending and receiving emails. Mutt can be con-

trolled and customised using hooks. We have mentioned Mutt here because

Mutt provides support for PGP and S/MIME for encryption of emails. Mutt

is used mainly by professional security companies. Its configuration is hectic

and above ordinary users skills.

Every action needs to be performed using commands. Some are listed in table

3.1 so readers can have an idea about how Mutt operates. Nevertheless, Mutt

is worth mentioning here because it is one of the earliest encryption tool for

emails. Mutt can encrypt/decrypt emails but it doesnt hide sender/receiver

identity. That means, the sender and receiver identity is not encrypted and

16

17

email client have full knowledge of who sent email and who received.

3.2 ProtonMail

It is like any regular email client e.g. Gmail, Yahoo with its custom apps for

iOS, Android and web browser support. On top of email services, it provides

end to end encryption using public private key pairs. The public key is stored

in open directory for everyone. Any user can get public key of other user

from that directory for easy communication. No need to manually share your

public key with others. The private key is stored locally and its encrypted

version is stored on their servers. The interface of ProtonMail is shown in

figure 3.1.

The problem with ProtonMail is that its a standalone service and people have

to use their email service if they want to send encrypted emails. Whereas

most people prefer to use their regular email accounts for both purposes.

Gmail is most famous with 1.2 billion users and people prefer to keep using

Gmail instead of switching to this service. Moreover, ProtonMail doesnt hide

sender and receiver identities. They claim that they do not keep log of emails

sent and received but how can we researchers just trust their word.

3.3 Mailvelope

Mailvelope is one of the advanced tools for end to end encryption. It is built

on top of Gmail, Yahoo, Outlook and GMX. This tool is used to encrypt

emails that are sent from from famous email services instead of a separate

email client like ProtonMail. Its early version was released in 2012 and after

6 years they released its first stable built in 2018. Mailvelope uses OpenPGP

18

Figure 3.1: ProtonMail

for encryption and decryption of emails. This application is built as an

extension to web browsers. Currently they provide extensions for Google

Chrome and Mozilla Firefox. Javascript is used as its core programming

language. This extension functions by working directly on browsers tab where

user has accessed Gmail or Outlook. It adds an extra button on compose

message. If user opts this option, the user can type in this message box and

the extension will encrypt that message based on recipients public key. The

interface of Mailvelope is shown in figure 3.2.

At the recipients side, the encrypted email will be shown with lock image.

Recipient can decrypt that with corresponding private key. The key is stored

in extension memory for easy access and Mailvelope itself manages decryption

process. The problem with Mailvelope is that there is no central management

for keys. Users have to manually ask recipient for their public keys in order

for encryption to take place. A study was published Why Johnny Still, Still

Cant Encrypt [2] which evaluated the usability of this extension. During

19

Figure 3.2: Mainvelope

this study 20 participants were gathered to take part. They were divided

in pairs to communicate. Each pair was given 1 hour to successfully send

encrypted email and decrypt it at recipients side. After one hour it was found

that only one pair was able to successfully communicate using Mailvelope.

That is only 5 percent success rate. Later on it was found that the pair

which was successful had prior knowledge of public private key cryptography.

The common reason found for failure was difficulty in key generation and

management. Absence of central directory for key storage and sharing. They

do work email encryption for they still let client clients know about sender

and receiver identities.

20

Table 3.1: Mutt Commands

Key Function Description

∧A or <Home> <bol> move to the start of the line

∧B or <Left> <backward-char> move back one char

Esc B <backward-word> move back one word

∧D or <Delete > <delete -char> delete the char under the cursor

∧E or <End > <eol> move to the end of the line

∧F or <Right > <forward-char> move forward one char

Esc F <forward-word> move forward one word

<Tab > <complete> complete filename, alias, or label

∧T <complete-query> complete address with query

∧K <kill-eol> delete to the end of the line

Esc d <kill-eow> delete to the end of the word

∧W <kill-word> kill the word in front of the cursor

∧U <kill-line> delete entire line

∧V <quote-char> quote the next typed key

<Up > <history-up> recall previous string from history

<Down > <history-down> recall next string from history

∧R <history-search> use current input to search history

<Backspace > <backspace> kill the char in front of the cursor

Esc u <upcase-word> convert word to upper case

Esc l <downcase-word> convert word to lower case

Esc c <capitalize-word> capitalize the word

21

3.4 Confidante

It uses OpenPGP to encrypt emails inside custom designed application before

sending email using APIs. Confidante doesn’t store keys on its servers. It

Leverages Keybase for management and storage of public and private keys.

Private keys after encryption are stored in Keybase. So users have to create

accounts on Confidante as well as Keybase to use its encryption service.

Keybase further allows users to connect accounts with their social media

profiles. This way they establish more user trust regarding keys. This is

shown in figure 3.3.

Figure 3.3: Confidante

22

Confidante’s web application stores authentication tokens of users pro-

vided by email clients e.g Gmail OAuth token. Hence they can access user’s

email account. Though they mention, they cant read encrypted emails but

still if they can read all unencrypted ones we send, it questions the integrity

of total privacy.

As it doesnt provide meta data protection hence identity of sender and

receiver is not protected. It relies on Keybase for key management. This

means it adds another third party service which has knowledge of users keys.

Chapter 4

Methodology

4.1 Graphical User Interface: Welcome to Se-

curiMail

This section is further divided into following three parts:

• Connection

• Key setup

• Email Client

4.1.1 Connection

User can send encrypted emails and hide sender and receiver identities through

our application SecuriMail. The user will have to pair his Gmail account with

SecuriMail. User will be prompted with connect screen. This is shown in

figure 4.1. Once the user tries to connect, he will be shown message regarding

privacy, Note: The authentication is performed on client side and all data

is accessed and delivered from your browser only i.e. our servers won’t have

23

24

access to your emails. Once the user tries to connect, Gmail will show their

standard oAuth modal. User can login from his desired account. No pass-

word is shared with us. Gmail only provide access to user account on clients

browser. No token is stored.

Figure 4.1: Connections

4.1.2 Key Setup

Once user has successfully logged in using his Gmail account on our applica-

tion SecuriMail. He will be asked to manage keys. These are the keys which

will be used for encryption and decryption purposes. User can either upload

his old keys or can generate new keys using our application.

Uploading Keys

If user opts to add his old keys, he will be prompted with 2 input fields,

Public Key and Private Key. These keys will be locally stored so user won’t

need to add them every time for encryption and decryption. Public key will

be used to sign user emails and is needed by others to send him encrypted

emails. Private key will be used to read encrypted emails. Private key is

25

confidential. It will be stored in local storage of users browser and never on

server.

Figure 4.2: Uploading PGP keys

Generating Keys

User can generate new keys from application. User will be required to add

name, email and password to generate keys. Private key will be encrypted

with provided password before storage, to add an extra layer of security.

User will need to enter his password every time private key is needed. Keys

generated are standard PGP keys.

26

Figure 4.3: Generating PGP keys

Key Sharing

Once keys have been generated or uploaded, they are stored in browsers

local storage. But the purpose of public key is that everyone knows about

that and can send particular user encrypted email using that users public

key. Therefore, for easy sharing of keys, we have made a public directory for

storage of emails and their public keys. So any user using our service can

send encrypted email to other user on our application without the hassle of

adding public key manually. Sharing our public key is as simple as pressing

a single button.The user can click ’sync public key with public repo button

27

and SecuriMail will automatically upload users email and public key in our

directory. As simple as that!

Figure 4.4: PGP keys

View Stored Keys

If user doesnt want to share his public key in our directory. He can access his

stored public and private keys at any time. It is of importance to note that

the private key shown here is encrypted with user selected password. Hence

user can only copy encrypted version of his private key. This is to add an

extra layer of security in case someone gets physical access of users browser.

4.1.3 Email Client

This section will include details about accessing inbox, sending encrypted

emails and decrypting received emails. This is the main backbone of ap-

plication. It is kept as simple as possible and as close to Gmails interface

as possible. Emails are shown in list view. The list displays senders name,

subject of email and time received. Once user clicks emails subject, detail

28

Figure 4.5: Stored keys

modal box is shown with full message body as shown in figure ??. In case

of encrypted message, the user will be prompted to decrypt it. In order to

decrypt it, user will have to add his password with which his private key is

encrypted. The private key is stored in browsers local storage. SecuriMail

automatically uses this key and decrypts it with password provided by user.

Then that decrypted key is used.

If encrypted email is accessed directly from Gmail, it will show meaningless

data as shown below.

29

—-BEGIN PGP MESSAGE—–

Version: OpenPGP.js v3.0.9

Comment:https://openpgpjs.org

wcBMA5XrGTpqGe40AQf/eSTXBsSDsrHXSV+pIWRYu0hVhlaE0/J4Bqnso4eq

AyRKIMd3SV+eszGUnIwFNexpdBrdansi+rdS5OQ/uFt/28ftCzuLh7AyGEh+

uSnvx9fVaepGnhIY3+tDJ85sMt8zgVv6KQG9eXduaLjIly2Ref7F79J9isTm

IRBpjRQJrdb5ar1z8bc2CE1baJ2XR/agkDtgVUfx5kHw1eA1KkAlmRVhQpgF

nu5eFve1TKKMFQndxKX/Od9U2fXDo1Gl1qHLEMjd26JaACFOPs6vE9htB0k+

lX/FdOLsZCsOYrHJKXd4t69At6MzHHspvzDRvU7ZFQfZssl147lcS36FBA0/

4NLB/wGylchBsLhWy3gufPMrlN4QOVX6RcvvRScE3RcUXaq5So8V/yb6H9c/

wSTHeELt+4T3/SdVeGH8/Kt6cd8Xf03PypxH6eTrKgQ92c2dJRCmiogQQZU7

wowkzjHDWzi7Pe+EJSqQj1wdwZUzYzpw6+Ox2z9EOMKtFcMBpxS+0ynr/Oip

9GRhF5AaB5QGdfzXsolWCesAVStUyx8NFJIaJ1VWXTiN41mIh61rLCI4e1zp

oSVlciHzwom14Repsap+8K68mMSUlZnVAfwDuZ3026/9YMr1HWYIQVX/+vg+

3eq5olKakf7wracjN137CaprzeGug4uWNFXmlIaqnuFryOyzId5M42M6uheO

gycMMLB9U0Zwjbtp5hBj/HHZLx7GnrxvV9qdktD/Bl9JetM282rK7vk6eGeA

mh8dyzPO49G7oAcTunhxxm+oryoCXEvNAqfhkqhXWrQY/5UFLsJ2qeCxi6W8

WXYVrmfotZoFFo7ZRiYUJg6NFjAt3gHDF0ZwieXElmf6ZQq/1G8DchdwBpak

J4BmfoTjOYf5yMzsQ9dyWQxXd2rCKPgkzHVHCTeOS9cJ/d2Dp5Rda5UPDVL5

ITav3oHLN+EY9ADj6XGNYxRknaug32ZX6fZUScHn///Am1AdQKIyZs4xh5Xs

S0883EYFt2wBP/1/mj5BeJi4xz++uGu25IkzUvLvvKGNbm5FKmQxMQOLyl7R

UMMPbJXdXumf3J3RS4evAW7aEJsl1xyAFXNfOkq4KKTeAhvmeMfvSFZ74W71

i074tC3GeS6jgaVdji2tVO4F6JYXs5YJUa9tTi1DIfgU/ZFPhpMjJSe4izwT

FwUPnB4aGiIPyjHiGBB9oArKeZd64tuezr0efa+upJqzWWw464l1gWY7/Fr/

IEs3BlEX50Veo7GUe8yCsRwSl/67CWloR1uvMh0rrTY=

=sblq

—–END PGP MESSAGE—–

 https://openpgpjs.org

30

Only SecuriMail can access information from that encrypted email. Once

that email is opened in SecuriMail and it is decrypted. The application will

even retain images and email formatting as shown in 4.6.

Figure 4.6: Fully Formatted Decrypted Email

4.2 Core Development

This section will explain the actual programming behind the application and

it is divided into six algorithms for better understanding of readers.

4.2.1 function handleAuthClick():

Algorithm 4.1 is used to call gmail to start authentication of user. clientId

and apiKey are taken from gmail for OAuthentication in our application. The

scopes define which permissions are needed from users. In our case, we re-

31

Figure 4.7: Email Forwarding Using Onion Routing

Algorithm 4.1 function handleAuthClick():

1: Set clientId

2: Set apiKey

3: Define scopes

4: Ask read permission

5: Ask write permission

6: Contact Gmail for authentication

7: if authentication is successful then

8: Proceed to next algorithm

9: else

10: prompt error message

11: Goto step 1

12: end if

quested permission for reading users email and sending email on his behalf on

client side. Once gmail processes the request, handleAuthResult(authResult)

function is called to send back result of authentication.

32

Algorithm 4.2 function handleAuthResult(authResult):

1: Check user authentication

2: Store user email

3: if public and private keys exist then

4: Display Inbox

5: else

6: Upload keys

7: Goto Step 5

8: end if

4.2.2 function handleAuthResult(authResult):

Algorithm 4.2 checks if user is authenticated. If user is successfully logged

in. His email is stored in local storage. Then the function checks if user has

already created public and private keys. If these keys are not found in local

storage, the user is prompted to generate or upload keys before accessing

inbox. Once keys are stored, the algorithm will show inbox to user.

4.2.3 function openpgp.generateKey();

Algorithm 4.3 is used to generate public and private key pair for user using

OpenPGPs javascript library. The user is required to enter passphrase and

email. The email is validated with standard email format. Password is

validated and only stronger passwords are allowed. Then algorithm generates

public private key pair. It is of importance to keep in mind that the private

key generated is encrypted and user is required to enter passphrase to decrypt

his private key every time he wishes to decrypt his emails. Generated keys

are stored in local storage of browser for convenience. These keys can be

downloaded in text format for exporting.

33

Algorithm 4.3 function openpgp.generateKey();

1: Input email

2: Input passphrase/password

3: Validate email and password

4: if valid then

5: Load OpenPGPs javascript library

6: Generate public private key pair

7: Encrypt private key with passphrase/password

8: else

9: Goto Step 4

10: end if

11: Store Public Key

12: Store encrypted private key

Algorithm 4.4 function jQuery.getJSON()

1: Contact central directory

2: Browser email and public key pair

3: Retrieve email and public key pair

4: Store in variable

4.2.4 function jQuery.getJSON()

Algorithm 4.4 is used to get public key and email pair of all users from

our central database. This helps user to automatically find public key of

recipient. These public key and email pairs are also used to aid in creating

onion route which will be discussed in details in encrypt function.

34

Algorithm 4.5 function encrypt();

1: Input Email

2: Input Subject

3: Input Message

4: Validate inputs

5: if valid then

6: Get public key of email inputted in step 2 using algorithm 4.4

7: Load OpenPGP javascript library

8: Assign recipient value from step 2

9: Encrypt message using public key taken in step 6

10: while random do

11: Get random email and public key from algorithm 4.4

12: Add previous email details on top of message

13: Encrypt message using public key taken in step 11

14: Replace recipient with email taken from step 11

15: end while

16: Send email to new recipient

17: else

18: Goto Step 1

19: end if

4.2.5 function encrypt();

Algorithm 4.5 is of utmost important in our thesis. It is used for encryption

of email based on OpenPGP javascript library. When user wanted to send

encrypted email, the application executes 4.5. It checks if all required fields

are filled i.e. recipient, subject and message. Once it passes that check, the

recipents public key is taken from central database and message is encrypted

35

using that public key, so that only required recipient can read the email using

his private key. Now the message is encrypted and ready to be sent away.

But, we want to also hide sender / receiver identity. For this purpose, we

take inspiration from Onion routing. The function grabs 3-5 other user email

and key pairs and that encrypted message is further encrypted in layers using

these public keys.

In depth Explanation

First our application will encrypt message that only actual Recipent can

read and add extra information on top of it telling Email3 to transfer it to

Recipent. Then that User3s message is further encrypted for User 2. User

2 can only read that he needs to transfer massage to User3. Similarly, the

client will add another layer, which only User1 can decrypt and that user

can only read that the message needs to be transferred to User2.

Encryption takes place on client side. Server cannot read any users mes-

sage or onion route. The emails which are selected to be part of onion route

which aid in hiding sender / recipient identity are chosen on client side and

no record is kept anywhere.

Forwarding

When the message is transferred from Sender to Recipent, User1 decrypts

its layer and finds out that it needs to transfer message to User2. Then

User2 decrypts its layer and finds out that it needs to transfer it to User3.

Then User3 decrypts its layer and finds address of Recipent and it transfers

message to Recipent. Then the Recipient decrypts its message sent from

actual Sender.

36

Algorithm 4.6 function decrypt();

1: Get encrypted private key from local storage

2: Prompt user to enter passphrase/password

3: Load OpenPGPs javascript library

4: Validate password

5: if valid then

6: Decrypt encrypted private key using password

7: else

8: Show error

9: Goto step 2

10: end if

11: Validate private key with email message

12: if valid then

13: Decrypt email

14: if decrypted email have header details to further forward email then

15: forward to recipient from decrypted email

16: show thank you message for being part of onion route

17: else

18: show decrypted email in application

19: end if

20: else

21: Show error

22: end if

4.2.6 function decrypt();

Algorithm 4.6 is used in decrypting emails body. The message is decrypted

using OpenPGPs javascript library on client side. The user is prompted

37

to enter passphrase/password needed to decrypt the private key. This de-

crypted private key is then used to decrypt message. If this private key is

corresponding to the public key which is used to encrypt message, the mes-

sage is decrypted correctly. Otherwise the user is shown error. If decrypted

email have header details to further forward email, forward it to recipient

found after decrypting email. Show current user thank you message for be-

ing part of onion route. Otherwise, if decrypted email had no extra header

details that means this email is intended for current user. Show current user

the decrypted email in SecuriMail. Decryption takes place only on client

side. Server cannot read any users message either encrypted or unencrypted.

Chapter 5

Evaluation

In this chapter, we first evaluate the security of SecuriMail. We describe

possible attacks on web applications which is followed by detailing about

how proposed SecuriMail is equipped with counter measures to prevent them.

Then we give a brief discussion of a usability case study conducted on Securi-

Mail. In the last, we compare SecuriMail with it’s well-known counterparts

and describe how proposed solution is better than its counterparts.

5.1 Security Evaluation

This section evaluates the security provided by our application against ad-

vanced attacks. First, it explains the possible attacks and then it explains

the counter measures taken by SecuriMail.

5.1.1 SQL Injection Attack

In this type of attack, the attacker tries to get access of database by injecting

custom SQL queries. If successfully, this is the most dangerous type of attack.

It has been depicted in Figure 5.1. In SecuriMail, it means the attacker can

38

39

get access of email and public key directory and change corresponding emails

and their public keys. However, even if successful the attacker cannot get

private key of any user because the application stores private key only in

end users local system and it is further encrypted by passphtase,making it

totally safe. In order to prevent SQL injection, SecuriMail is equipped with

web application firewall (WAF) which ensures that no malicious query can

be passed to the server.

Figure 5.1: Depicting SQL injection attack

5.1.2 Cross-Site Scripting (XSS) Attack

Cross site scripting happens when an attacker can inject a malicious script

into applications front end, demonstrated in Figure 5.2. This often happens

because of poor site security. There are two types of XSS attacks; persistent

and reflected. In persistent attack, the attacker stores some malicious script

and whenever that page is opened, that malicious script is executed. In

reflected attack, the attack constructs URL of application in such a way that

whenever a user visits that URL, the malicious script is executed. Once

any form of attack is successfully, the attacker can steal cookies and session

information data of users. In order to prevent this type of attack, SecuriMail

40

Figure 5.2: Demonstrating possible XSS attack

is following guidelines of OWASP XSS security. If user tries to push tags and

scripts through input, he is blocked. Every input is validated and sanitized

before displaying its result on front end.

5.1.3 Brute Force Attack

In this type of attack, the attacker tries to log in on actual users behalf by

using brute force. The attacker users some script which tries to input all

possible combinations of username and password to pass through. In our

case, SecuriMail doesnt allow login inside application. User needs to log into

their Gmail account on gmail.com. Hence, in this regard Gmail is ensuring

security of users accounts.

5.1.4 Eavesdropping Attack

In this attack, the attack eavesdrops on client which is communicating with

server and tries to read their communication. This is demonstrated in figure

5.3. In our case, the attacker trying to read emails sent and received by user.

41

Fortunately, SecuriMail is built keeping in mind the privacy and security of

end users. All emails are encrypted on client side using recipients public keys.

Hence the attacker cannot access email messages. Similarly, the emails are

decrypted at client side using private key stored only inside clients browser,

which is further encrypted using passphrase. Hence communication is totally

secure and safe!

Figure 5.3: Eavesdropping Attack

5.2 Usability Case Study

This is a case study conducted to test usability of SecuriMail by general

public. The study parameters are kept as close to a previous case study

Why Johnny Still, Still Cant Encrypt [2]. That study was conducted to test

usability of Mailvelop. Mailvelop is a browser extension that works on top

of Gmail to send and receive encrypted emails. Surprisingly, in that study

there was only 5 percent success rate. Therefore, we conducted this study

on SecuriMail to compare results with previous study of Mailvelope.

42

5.2.1 Study Setup

The study was conducted on 12 May, 2019. A total of 10 participants were

used. They were formed in pairs of 2. Each pair was given task to communi-

cate successfully with each other. Each pair was given one hour to complete

the task. In order to maintain standardization, both users in pair were re-

quired to have Gmail accounts. The participants were given instructions

about what they have to perform.

Table 5.1: Educational Backgrounds Of Participants

Participant 1 Participant 2

Pair 1 Under Graduation Student Under Graduation Student

Pair 2 Under Graduation Student Under Graduation Student

Pair 3 Under Graduation Student Under Graduation Student

Pair 4 Post Graduation Student Post Graduation Student

Pair 5 Post Graduation Student Post Graduation Student

5.2.2 Demographics

All participants were invited from NUST university. There were 8 male par-

ticipants and 2 female participants. Educational backgrounds of participants

are shown in table 5.1.

5.2.3 Results

At the end of study, it was found that 4 pairs were successful in communi-

cating with each other. This means 80 percent success rate as compared to

5 percent success rate of Mailvelope. The successful pairs found it simple

43

and straight forward to use. The only pair which was not successful, found

key creation to be difficult. They further explained, they were trying to send

email to recipient without creating account of recipient on SecuriMail which

means the public key of recipient was not available and sender couldnt locate

recipients account beforehand. Time taken and results of study according to

each pair is shown in table 5.2.

Table 5.2: Study Results

Time Taken Success

Pair 1 20 mins Yes

Pair 2 40 mins No

Pair 3 13 mins Yes

Pair 4 12 mins Yes

Pair 5 10 mins Yes

5.3 SecuriMail Vs Other E2E Applications

All E2E applications including ProtonMail, Confidante, Mailvelope, to men-

tion a few, do encryption; so does our SecuriMail. But the question here

arises is then how it is better than all well-known E2E applications? For-

tunately, the answer is interesting. It is worth mentioning that SecuriMail

is an E2E application, first of its kind, which does use Onion routing to

hide the identities of sender/ receiver pair. Also, it outperforms other E2E

applications in other features are well.

All other E2E applications, as depicted in Table 5.3, merely provide a

couple of features which limits their use. For instance, though ProtonMail

44

provides built-in key directory, however, it is not open source. Moreover,

Mailvelope which is open source though, does not provide other features.

Therefore, our SecuriMail thus provides many features which are demon-

strated in the Table 5.3.

Table 5.3: A Brief Comparison of E2E Applications Against Different

Characteristics

E2E Server Open Mobile Random Reciever Sender Onion Built-in

Applications Less Source Compatibility Header Identity Identity Routing Public Key

Model Size Hiding Hiding Directory

Mutt

Email No Yes No No No No No No

Client

ProtonMail No No Yes No No No No Yes

Mailvelope Yes Yes No No No No No No

Confidante No Yes Yes No No No No No

SecureiMail Yes Yes Yes Yes Yes Yes Yes Yes

5.4 Compromised Parameters

Our designed system compromises on the following aspects:

• As in our system, an Email needs to be hopped from one user to the

other before it reaches the receiver. Thus, time delay in the system can

be incurred. However, this is how onion routeing works. We do incur

time delay but sender and receiver identity is masked.

• Message size is also increased in our case. Size of the message depends

how many hops Email will traverse in the network; because every hop

adds a layer on message received. This could increase size of the mes-

sage significantly when number of hops is large. We argue that in

future, this direction needs to be explored to minimize overhead.

Chapter 6

Conclusion and future work

The research shows that it is not only possible to improve usability of existing

solutions, with same level of security, but to also ensure privacy of the user

identities without compromising on either performance or adaptability.

6.1 Usability

In a test study conducted with small number of test users, applications in-

terface was reported to be intuitive and mostly self-explanatory. Breaking

down of key generation into steps and providing tips at each step to make it

simpler, was specially appreciated by all users. Test users didnt experience

any crashes or unexpected behaviors throughout the study. It was however

necessary to brief on what is OpenPGP in essence and how we are employing

it on client side, in order to establish user trust.

45

46

6.2 Security

Our application employs NIST recommended key length of 2048 bits, which

has been deemed sufficient for security requirements till 2030. Our choice of

key length provides equal and in few cases better security than other available

solutions in market today without impacting performance.

6.3 Adaptability

Adaptability is usually a decisive factor in mass adoption of any application.

The goal was to make it feasible for application to be adapted for various

platforms like Android, iOS and Linux. With the above goal in mind, the

application was built entirely in client-side JavaScript. This not only allows

access on any platform through browser but also makes it extremely easy to

create a port for any platform in the form of native application. Unlike other

solutions available in market, we have built this tool on top of largest email

provider in the world i.e. Gmail which has more than 1.2 billion monthly

active users. This incentivizes users by allowing them to send secure mails

without changing their email account.

6.4 Performance

OpenPGP is unique in a way that it combines best features of both public key

cryptography and symmetric encryption. It works by compressing data and

then encrypts it using one- time symmetric key which is in-turn encrypted

using public-key cryptography and sent with encrypted email. This greatly

impacts which key length we can use for our public / private key pair. Our

choice of 2048 bit key was based on the fact that key length will only affect

47

the key

generation, which is one-time process and wont affect encryption or decryp-

tion of email at any stage thus providing same performance as other solutions

in market.

6.5 Contributions

This research has been carried out in three systematically chosen steps.

• We have analyzed existing solutions and found usability and privacy

issues associated with each. Based on these issues, functional and non-

functional requirements for new system have been laid down.

• We have proposed a new system using available technologies, which can

improve on usability of existing solutions and add privacy by using Tor

network.

• We have created a fully functionating cross-platform application, which

can be used by anyone with Gmail account.

The summary of our contributions is as below:

• We have done an in-depth analysis of existing solutions in market and

found usability and privacy concerns in each. In studies highlighted in

previous sections, it has been shown that usability of existing applica-

tions has been a hinderance in mass adaptation of openPGP by users.

This ranges from un-intuitive interfaces to lack of key management

and user guides built into applications today. We have also highlighted

that none of the solutions available provide privacy or user identity

hiding, which is a crucial feature now giving privacy concerns of users

48

all across the world. Based on the shortcomings of existing solutions,

requirements for new system has been laid down.

• Our second contribution is in the form of new architecture which pro-

vides user identity hiding by employing Tor in email routing. This is a

novel approach towards email privacy and has been proved effective in

providing anonymity and privacy in other forms of data communica-

tion before. Apart from identity hiding, architecture also proposes an

improved usability model by integrating key management. Architec-

ture relies on Zero Trust model i.e. there is no server involvement and

all steps including key generation, encryption, decryption and routing

are done on client-side. The architecture can be easily adapted for

other platforms including Android, iOS and Linux and is not limited

to Gmail only.

• Our most important contribution is in the form of a cross-platform

application built using client-side JavaScript. It provides an intuitive

and simple interface to connect Gmail and encrypt / decrypt emails on

the go. Application has built-in key management and public repository

as proposed in the architecture and handles email routing using Tor

with minimal user interaction.

• The biggest accomplishment of application is accessibility on any de-

vice using browser and its ability to handle key generation, encryption,

decryption and routing on client-side with zero sever involvement i.e.

Zero Trust model. This zero-trust model is crucial nowadays given

that large scale data breaches have been reported by multinational or-

ganizations and our data cannot be considered secure with any server

now.

49

6.6 Future Research Directions:

Like any research, this research has certain limitations and based on these

limitations we are prosing future directions to improve usability and perfor-

mance of system.

• Application can already be accessed on any platform using browser but

adaption of the solution in the form of native applications for platforms

like Android and iOS will greatly improve its adoption and usability.

Features like push notifications and background sync can push users to

use these apps as their daily drivers.

• Current implementation of Tor doesnt take into account if the interme-

diary nodes are online or not, which can add delays to email routing.

This can be countered by using web sockets to broadcast status of

each node to server, which can then publish online nodes only when

applications requests node list for routing.

• Architecture is not limited to just Gmail and can be adapted for other

email providers like Outlook or Yahoo, which provide APIs. However,

it is absolutely necessary that APIs are accessible on client-side to main

Zero trust model proposed in the research.

Bibliography

[1] A. Whitten and J. Tygar, “Why johnny can’t encrypt: A usability case

study of pgp 5.0,” 1999.

[2] S. Ruoti, J. Andersen, D. Zappala, and K. Seamons, “Why johnny still,

still can’t encrypt: Evaluating the usability of a modern pgp client,” 10

2015.

[3] A. A. Lerner, E. Zeng, and F. Roesner, “Confidante: Usable encrypted

email a case study with lawyers and journalists,” 2017.

[4] D. Goldschlag, M. Reed, and P. Syverson, “Onion routing for anonymous

and private internet connections,” 1999.

[5] S. L. Garfinkel and D. Margrave, “How to make secure email easier to

use,” 2005.

[6] D. Salama, H. Abd elkader, and M. M. Hadhoud, “Performance eval-

uation of symmetric encryption algorithms,” Communications of the

IBIMA, vol. 10, 01 2009.

[7] P. Henry and Hui Luo, “Off-the-record email system,” vol. 2, pp. 869–

877 vol.2, April 2001.

50

BIBLIOGRAPHY 51

[8] M. Agrawal and P. Mishra, “A comparative survey on symmetric key

encryption techniques,” 2012.

[9] D. P. Mahajan and A. Sachdeva, “A study of encryption algorithms

aes, des and rsa for security,” Global Journal of Computer Science and

Technology, 2013.

[10] Xin Zhou and Xiaofei Tang, “Research and implementation of rsa algo-

rithm for encryption and decryption,” vol. 2, pp. 1118–1121, 2011.

[11] W. Dai, T. P. Parker, H. Jin, and S. Xu, “Enhancing data trustworthi-

ness via assured digital signing,” IEEE Transactions on Dependable and

Secure Computing, vol. 9, no. 6, pp. 838–851, 2012.

[12] S. Halevi and H. Krawczyk, “Strengthening digital signatures via ran-

domized hashing,” 2006.

[13] F. Zibran and Minhaz, “Cryptographic security for emails: A focus on

s/mime,” 05 2019.

[14] B. Ramsdell and S. Turner, “Secure/multipurpose internet mail exten-

sions (s/mime) version 3.2 message specification,” 2010.

[15] D. D. Clark and M. S. Blumenthal, “The end-to-end argument and

application design: The role of trust.”

[16] W. West and S. M. Pulimood, “Analysis of privacy and security in html5

web storage,” Journal of Computing Sciences in Colleges, 2013.

[17] S. Matsumoto and K. Sakurai, “Acquisition of evidence of web storage

in html5 web browsers from memory image,” pp. 148–155, 2014.

BIBLIOGRAPHY 52

[18] S. Z. Naseem and F. Majeed, “Extending html5 local storage to save

more data; efficiently and in more structured way,” pp. 337–340, 2013.

[19] J. Re and J. Wu, “Survey on anonymous communications in computer

networks,” Computer Communications, pp. 420–431, 2013.

[20] M. Backes, I. Goldberg, A. Kate, and E. Mohammadi, “Provably secure

and practical onion routing,” pp. 369–385, 2012.

	Abstract
	List of Figures
	List of Symbols
	Abbreviations
	Nomenclature
	Introduction
	Motivation
	Problem definition
	Objectives and goals
	Thesis roadmap

	Background
	Types of encryptions
	Symmetric
	Asymmetric

	Famous encryption algorithms
	AES
	RSA

	Digital Signing
	End to end encryption
	S/MIME
	OpenPGP/MIME
	Why end to end encryption is chosen?

	Application structure
	Server side scripting
	Client side scripting
	Client side storages

	Onion routing
	Tor

	Related Work
	Mutt Email Client
	ProtonMail
	Mailvelope
	Confidante

	Methodology
	Graphical User Interface: â•ŸWelcome to SecuriMailâ•Ž
	Connection
	Key Setup
	Email Client

	Core Development
	function handleAuthClick():
	function handleAuthResult(authResult):
	function openpgp.generateKey();
	function jQuery.getJSON()
	function encrypt();
	function decrypt();

	Evaluation
	Security Evaluation
	SQL Injection Attack
	Cross-Site Scripting (XSS) Attack
	Brute Force Attack
	Eavesdropping Attack

	Usability Case Study
	Study Setup
	Demographics
	Results

	SecuriMail Vs Other E2E Applications
	Compromised Parameters

	Conclusion and future work
	Usability
	Security
	Adaptability
	Performance
	Contributions
	Future Research Directions:

