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Abstract

Cloud provides a shared computing space on a pay-as-you-go model. Due

to this sharing, it is difficult to execute the task efficiently in terms of time.

Several factors play its parts such as process scheduling and computing re-

quirement of other processes sharing the system. Moreover, network usage

is highly depended on processes, typically processes are categorized comput-

ing and communication intensive. Such sharing of platform often degrade

the performance of parallel and distributed simulations (PDS). The growth

and advancements in the field of Cloud Computing has presented its users

with new challenges. Cloud Computing offers resources to its consumers on

pay-as-you-go basis. Cloud computing offers storage, virtual machines, mem-

ory, processor and network as resources to its consumers. The more you use

these resources, the costly it becomes. Parallel and distributed simulation

(PDS) involves a number of logical processes (LPs) executing simultaneously

while communicating with each other by interchanging small messages called

packets using network. Since network is also offered as a resource in cloud

computing if a PDS involves exchanging a huge number of messages over a

network, the procedure becomes expensive. In this dissertation a new way

of simulating huge networks is presented that focuses on reducing network

traffic.
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Chapter 1

Introduction

The domain of parallel and distributed simulations (PDS) has evolved over

the years. Its purpose is to simulate the behavior of executing processes

on parallel or distributed processors. Communication is established between

these processes via either message passing or shared memory. Improving the

overall performance of the simulation on heterogeneous platforms is one of

the major research concern in this field.

Cloud computing provides its users with hardware and software resources

and these resources can be remotely utilized by the users. Goal of cloud ser-

vice providers is to improve the performance by enhancing the application

portability and offer more diverse resource deployment options. Cloud com-

puting data centers require a comprehensive resource allocation system to

manage both computational and network resources. There are many opti-

mal and sub-optimal resource allocation techniques for cloud computing data

centers [1]. With such appealing processing capabilities of cloud comput-

ing, many scientific research applications and paradigms use cloud computing

architecture. Similarly, cloud computing presents a fascinating means to pro-

1



CHAPTER 1. INTRODUCTION 2

vide simulation applications to its users, specially the parallel and distributed

simulations.

In traditional distributed simulation, logical processes (LPs) are mapped

on different systems/cores. These LPs communicate with each other by send-

ing and receiving time-stamped messages. However, process mapping on dif-

ferent Processing Entities (PEs) in a cloud can greatly affect the performance

of entire simulation system.

Performance of Parallel and Distributed Simulations (PADS) degrades

on account of the fact that logical processes exchange large number of event

messages that are sent across the networks. A lot of network traffic is gener-

ated because of the recurring communication of processes. The goal of this

work is to minimize this network traffic by using Machine Learning’s cluster-

ing techniques.

We have suggested a migration technique that is based on Machine Learn-

ing that will reduce the overall communication expense of the network.

1.1 Background

The idea of parallel and distributed simulations (PDS) first came out four

decades ago as an attempt make extremely large scale simulations less time

consuming and efficient because the old techniques used for simulations at

that time had some system limitations. For example in parallel discrete

event simulations the processors that are involved in the simulation are lo-

cated within the same room while in distributed simulations processors are
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distributed across the globe and they communicate using network. Another

objective of coming up with distributed simulations was to utilize resources

that are distributed over the globe. That being said it still had quite a few

challenges to cope with because of the new software and hardware require-

ments. [2].

Simulating the pay-as-you-go nature of cloud computing framework using

PDS is a good way of estimating the cost of the framework. A good amount

of work has been done to make simulation as efficient and less costly as

possible. However lesser attempts in terms of reducing network usage have

been made.

1.2 Problem Statement

Just as a cloud resource provider provides resources like memory, storage and

processors, network is also provided as a resource to users. Using network

as a resource from a cloud provider can become expensive in terms of both

time and cost if proper attention is not being paid to it. PDS is a nice way

for performing parallel simulation but the performance is highly affected by

communication overhead [3]

Processes that are distributed over large distances will rely on network

for communication. In such cases frequent exchanging of messages between

processes that are distant from each other will be a disadvantage as they will

use network and the more you use network the expensive it becomes. This

nature of cloud framework is not acceptable as it is not user friendly.
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1.3 Thesis Outline

Chapter 2 contains a detailed literature review about advancements and de-

velopments in the different research areas of Parallel and distributed simula-

tions. Chapter 3 discusses how the problem is being identified and laid out.

Chapter 4 puts lights on the methodology proposed for making simulations

network efficient.

Chapter 5 discusses with details the results of our proposed method and

comparison with the old method and Chapter 6 contains the conclusion of

the research work and the future efforts that could be made in the same

domain.



Chapter 2

Literature Review

Parallel and distributed simulation involves a number of logical processes com-

municating with one another using tiny messages.

A sample of PDS is shown in Fig. 2.1. This is a simple example of PDS

in which 5 logical processes are taking part and they are communicating with

each other by exchanging small packets.

A significant amount of work has been done in the field of PDS to im-

prove it in one way or another. There are approaches proposed to improve

workload balancing. Other approaches like improving energy consumption,

performance and network efficiency have also been proposed. Some of the

relevant work in this domain will be discussed in this chapter with details.

Fujimoto et al. [2] enlightened the state-of-the-art challenges related to re-

search in PDS. In [4] Alfred et al. came up with a technique called Aurora

that employs a master worker paradigm. The technique was designed in

such a way that it supports the execution of huge simulations on distributed

architecture. Aurora utilizes web services to lessen the space between PDS

5
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and computing. Aurora is based on the basic idea of parallel discrete event

simulation (PDES) containing a number of processes communicating through

messages that have a time stamp associated with them. Master is responsible

for providing workers with jobs to execute and the workers have a duty of

executing those jobs and providing the master with results. This techniques

employs the conservative algorithm for synchronization.

Figure 2.1: A simple simulation model

The cloud virtualization paradigm introduces new challenges for parallel

and distributed simulation community. In [5], Srikanth B. Y. et al. explored

the impact of runtime dynamics of cloud over PDES performance. The au-

thors have presented the empirical study and proposed a new deadlock free

scheduling algorithm designed for PDES application over the virtualized en-

vironment.
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Shichao Guan et al. [6] proposed a cloud-based framework designed on

simulation standards i.e. High Level Architecture (HLA) and Distributed In-

teractive Simulation (DIS). The basic objective is to manage underlying dis-

tributed resources efficiently and to provide unlimited computing for complex

simulation scenarios. Moreover, the proposed framework support process mi-

gration and handle diverse network paradigms. Further, security features are

also added to block malicious attach in the cloud. The experimental eval-

uation shows that the performance is similar to the grid but it has many

advantages over traditional grid environment.

Unbalanced workload may cause frequent rollbacks and huge network

traffic. Malik et al. in [7] in their article deals with such situations. Plac-

ing processes randomly over clouds can cause workload to be unbalanced due

to which the performance of the simulation process will be hugely affected [8].

Perumalla et al [9] proposed a mechanism for processing optimistic par-

allel application using time warp. The mechanism supports a variety of

synchronization techniques. It is designed in such a way that processes can

dynamically choose between synchronization techniques. Jagtap et al. in [10]

used a procedure for minimization of delays incurred during synchronization

using a multi-threaded technique.

In an attempt to improve performance Wentong et al [16] came up with

the idea to achieve the best speed for the execution of simulation. The ba-

sic concept behind the idea is to provide virtual machines with resources at

runtime. They also made sure the nodes execute at a similar pace. Xiao

et al. [11] presented a method that increases the performance of High Level
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Architecture (HLA) systems. They did so by employing load balancing keep

in account both computation and communication expenditure.

In [3] Jingjing Wang et al. approaches to PDES by proposing a multi-

threaded simulator. The objective of the author’s work is to increase the per-

formance of simulations by using a threaded model. Doing so will increase the

performance of communicating processes compared to using a non-threaded

model. Munck et al [12] discussed the problems with conservative synchro-

nization’s null message protocol justifying that it sends enormous amount of

null messages causing overhead and then proposes a technique that integrates

the fruitfulness of existing techniques.

In [13], writers Gabriele D’Angelo et al. discussed the challenges faced in

executing parallel and distributed simulations in clouds as well as multi-core

systems. Under the constraints of performance and utility, authors evaluated

the existing PADS techniques for deficiencies and then proposed an adaptive

way to overcome those deficiencies. The proposed system lessens the cost of

communication and improves load balancing.

In similar attempts Weiwei Chen et al. [14] enhances the performance of

PDES by using multi-threading. The objective of the work is to decide at

runtime whether it is a good idea or not to launch a group of thread. In [15]

Nguyen et al. presented an idea for the execution of large scale simulations.

Parallelism at upper levels has been employed to improve network efficiency.

The criteria produces efficiency in the networks by giving high level paral-

lelism. The gist of this work is to replace node model by link model, that

is an LP portrays a link to the network and not a node and it will perform
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better.

Some of the contribution made by researches to the domain of Paral-

lel and Discrete Event Simulation are shown in the figure. Research areas

in PDES includes energy efficiency, performance, power efficiency, workload

balancing and network performance. Many researches have worked on one or

more areas in their research for example Wentong Cai et al. [16] worked on

performance and load balancing, Jinjing Wang et al. [3] worked on network

performance and overall performance, Angelo et al. [13] did their research

on network efficiency, simulation performance and load balancing, Munck et

al. [12] worked on just simulation performance and so on.

Randomly placed nodes may cause network traffic to rise as they commu-

nicate more and more with each other. In this dissertation a contemporary

method has been employed to minimize the cost of network making the com-

munication cost less and thus improving the performance of the simulation.
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Table 2.1: Recent Research Contributions in Parallel and Distributed Simu-

lation - Summary

Authors Energy Effici. Network Effici. Performance Power Effici. Workload Balancing

Wentong Cai et al. [16] X X

Jingjing Wang et al. [3] X X

Gabriele DAngelo et al. [13] X X X

S. De Munck et al. [12] X

Weiwei Chen et al. [14] X

Weiwei Lin et al. [17] X X

Ke Wang et al. [18] X X

Philipp A. et al. [19] X

Wei Wang et al. [20] X X

Xiao Song et al. [21] X X

Srikanth B. Y. et al. [22] X

Shichao Guan et al. [6] X X

Shichao Guan et al. [23] X X

Zengxiang Li et al. [24] X X

Vy Thuy Nguyen et al. [25] X

Hongjian Li et al. [26] X X

Juan Fang et al. [27] X

Shuting Xu et al. [28] X X

Zhou, Z et al. [29] X

M. A. Khoshkholghi et al. [30] X

Xinhu Liu et al. [31] X



Chapter 3

Problem Formulation

In this chapter the proposed method for minimizing network usage to im-

prove PDES efficiency has been proposed. In a typical PDES we have a

number of logical processes (LPs) that are taking part in it. By default these

LPs are randomly placed on a number of nodes. The nodes may belong to

the same rack or different racks of the data center.

A simulation involves the participation of a number of Logical Processes

(LP’s) i.e.

LP1, LP2, ........LPm ∈ LP

These logical processes are scheduled on a number of Compute Codes (CN’s).

A data center is a huge station containing a lot of physical cores also called as

Processing Elements (PE’s). Each Processing Element is capable of schedul-

ing multiple Virtual Machines. Logical processes are scheduled on these

virtual machines. Compute Nodes are same as virtual machines. It is to be

noted that these nodes may or may not belong to the same rack in a data

center.

11
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CN1, CN2, ........CNm ∈ CN

Furthermore to layout the network we have supposed a mesh topology.

Doing so will enable an LP to be able to communicate with every other LP

on the network. There is a cost associated with every path through which a

processes will communicate given by:

costx,y|{weight(x, y) = weight(y, x)}

Additionally, LP’s can either be scheduled on the same compute node or

on different compute nodes. The cost of communication between such LP’s

is represented by CostlocalNode. LP’s could also be scheduled on different

compute nodes but within one rack. In that case, cost of communication

is maintained by CostlocalRack. In another case LP’s could be scheduled on

different nodes across different racks and then the cost for this situation is

maintained by CostremoteRacks.

The cost of communication between LP’s on the same compute node must

be the lowest whereas the cost of communication between LP’s on different

racks must be the highest i.e.

CostlocalNode < CostlocalRack < CostremoteRacks

As cloud supplies its users with resources like processing power, memory

and storage on pay-as-you-go basis. Users are charged on account of mem-

ory usage, amount of computation, amount of communication and usage of



CHAPTER 3. PROBLEM FORMULATION 13

storage. The goal here is to lessen the cost of communication by migrating

processes near to its communicating counterpart.

Assuming, if we have six compute nodes on a data center i.e.

CN1, CN2, CN3...CN6 and an equivalent amount of LP’s are launched on

those compute nodes i.e.

{lp1.w, lp1.w+1, ..., lp1.x} −→ cn1

{lp2.x, lp2.x+1, ..., lp2.y} −→ cn2

...

{lp6.y, lp6.y+1, ..., lp6.z} −→ cn6

R1 +R2 + ...+Rk −→ DataCenter

R stands for Racks that belong to a data center.

Additionally nodes pairs are placed on racks.

cn1, cn2 −→ R1

cn3, cn4 −→ R2

and

cn5, cn6 −→ R3

Assuming that communication occurred between process located on dif-

ferent racks is represented by m, communication occurred between processes

on different nodes but same rack is represented by r and communication oc-

curred between processes on the same node is represented by q. Assuming
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m > r > q

(cn1, cn3)⇒ (p1.r+r, p3.j) −→ m

(cn5, cn6)⇒ (p5.l, p6.m) −→ r

(cn4, cn4)⇒ (p4.x, p4.x+1) −→ q

Equations above represent how communication occurred between pro-

cesses on different racks, on different nodes but same rack and on the same

node.

The expense of the total communication is devised as:

f(x) = {
m∑
i=1

CostremoteRacks +
r∑

i=1

CostsameRack +

q∑
i=1

CostlocalNode}

Considering a three-tier architecture, communication happened between

processes on different racks will require at least 3 hops as the message tra-

verser through TOR-AGGREGATE-TOR switches. Similarly, on same rack,

the communication will require just one hop and on the same node, there are

no hops as the communication is done locally.

min{
∑m

i=1CostremoteRacks +
∑r

i=1CostlocalRack +
∑q

i=1CostlocalNode}

There is a way [32] to lessen the traffic on the network by introducing lo-

cality between communicating processes. More number of hops means more
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delay incurred. So:

delaylocalNode < delaylocalRack < delayremoteRacks

Bringing processes who communicate more on the same node can lessen

the traffic on the network, that is another goal of our work. The idea is

to lessen delay incurred in communication between processes that transmit

message most frequently by introducing locality between such processes. In

traditional synchronization [33] methodology, rollbacks can affect the per-

formance of the simulation by congesting the network which will resultantly

make the system costly. So the goal is:

min{
∑m

i=1
delremRacks +

∑r

i=1
dellocRack +

∑q

i=1
dellocNode}

Reducing the amount of rollbacks means reducing the amount of anti-

messages sent across the network, that in result will reduce the network

usage and thus enhance the performance.

3.1 Data Center Design

In this research work we proposed a three-tiered data center. Fig. 3.1

shows a typical three-tiered data center. In such data centers there are core

switches at the very top level. At the lower level we have aggregate (distribu-

tion) switches and at the last level we have top-of-the-rack (access) switches.

Physical nodes as many as possible can be connected to the top-of-the-rack
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switches, aggregate switches connect top-of-the-rack switches and the core

switch at the top connects the aggregate switches.

Figure 3.1: Proposed Methodology Diagram

For our problem we used the same three-tiered data center with five nodes

connecting to each of the four top-of-the-rack switches. Fig. 3.2 shows the

architecture of data center we used for our research problem. There are a to-

tal of twenty nodes. Each top-of-the-rack switch can support only five nodes

at the same time and no more in our approach.

When a node has to send a message to another node it can either send

the message to a node that is located in the same rack or to a node that is

located in a different rack. The far the destination node is from the sender

node, the higher number of hops the message will take to reach there.

Looking at Fig. 3.2 if node N1 has to send a message to node N2, N3,

N4 or N5 the message will take only one hop as it will pass through just the

TOR1 switch. If node N1 has to send a message to node N6, N7, N8, N9

or N10 the message will take three hops as it will pass through the TOR1
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switch then Aggregate1 switch and then throgh TOR2 switch.

Similary for nodes N11, N12, N13, N14, N15 the messages takes five hops

given that the message originates from node N1. For N16, N17, N18, N19 or

N20 the number of hops are again five (TOR1-Aggregate1-Core-Aggregate2-

TOR4).

Figure 3.2: Proposed Methodology Diagram

To summarize the message could reach from a sender to destination tak-

ing either one, three or five hops. If there is frequent communication between

nodes that would require more hops to sent their message to the receiver then

in such case there will be a lot of network traffic generated from the nodes.

More network traffic will cause the system to consume more bandwidth hence

making the process costly and also degrade the performance of the over all

simulation process.

On the contrary if we have frequent communication between nodes that

will require less number of hops to interchange their messages then less traffic

will be generated, less bandwidth will be consumed, performance will be less

affected hence resulting in efficient simulation process.



Chapter 4

Proposed Methodology

4.1 Proposed Approach

As discussed previously that randomly placing processes might not be a good

idea as there is a higher chance that high network traffic will be generated

because of the fact that there might be frequent communication between

processes that are placed at a distance from each other.

We also discussed that in our data center design if nodes communicate

with other nodes that are part of the same rack will consume less network

bandwidth than with those which are part of a different node. We need some

approach that can group those nodes together who are frequently communi-

cating with each other and decouple those in between which there is no or

less communication.

18
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4.1.1 Clustering Analysis

In search for a better way to minimize the gap between high communicating

processes we came up with a technique that involves the use of clustering

algorithms. The main purpose of such algorithms is to group together most

frequent communicating processes and decouple the non or less communicat-

ing ones.

Clustering algorithms are techniques that categorizes different points of

data. A number of data points are given that are fed to clustering algorithms

and the job of those algorithms is to categorize each of those points into a

single relevant and convenient category. Those points in the data that share

the same characteristics are put in the same category. In Machine Learn-

ing those characteristics are called features. There are mainly two types

of Machine Learning techniques i.e. Supervised Learning and Unsupervised

Learning. Clustering algorithm are associated to Unsupervised Learning.

Clustering algorithms provides valuable feedback for that data it works

on by putting them in different clusters. There are various types of Clus-

tering algorithms like K-Means Clustering, Density based Spatial Clustering

and Agglomerative Hierarchal Clustering etc. A brief detail about each of

those algorithms is give below.

K-Means Clustering

One of best knowns algorithm for clustering is called K-Means. It’s is sim-

ple to understand and to work with. K-Means works in the following manner:
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� The first step is to set the number of clusters. A random central point

will be selected for each cluster by the algorithm

� In the next step each data elements is put in a cluster that it belongs

to using a distance function

� Each cluster has a central point that is derived by taking the mean of

all the points in the cluster

� This process is repeated for a number of times until when there is no

or insignificant change in the central points

K-Means is known for being fast and simple. We just have to derive the

distance between data points and central points of clusters.

Hierarchal Clustering

� There are two approaches to Hierarchal Clustering i.e. Top-down and

Bottom-up. Each point of data is considered as one cluster in bottom-

up approach.

� There are multiple iterations involved in hierarchal clustering. Each

iteration merges two clusters into one using some distance measures

(complete link, average link etc). For example average link works by

finding the mean distance between the data points in one cluster and

data points in the other.

� Any two clusters are merged in one if they have the smallest distance

between them

� The above step is repeated till we merge the all data points in one

cluster.
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� We can select the number of clusters by specifying when to stop merging

clusters.

� A tree like structure is maintained in this algorithm

This technique works best in the cases where the structure of the data it is

working on is hierarchal and you need to derive that hierarchy.

Density Based Spatial Clustering of Application with Noise (DB-

SCAN)

� DBSCAN starts with random unvisited initial data point. This data

point has a defined neighborhood that is derived using a distance func-

tion ε. Data points falling inside this ε are neighboring data points

� A criteria called minPoints is defined that is actually a minimum num-

ber of points that should fall inside the ε. So if there are enough data

points the meets the defined criteria then the process starts and the

current points becomes the initial point this new cluster. On the other

hand if there are no enough data points that meet the minimum criteria

then that point is considered as noise

� The points that fall inside the ε are added to the cluster and this

processes is repeated for those new points again

� This processes is kept continuous until all the data points within ε are

visited and tagged.

� After being done with this cluster a new point is selected that is un-

visited by that time and the same procedure takes place for it.
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Due to ε and the minPoints criteria, DBSCAN does not perform as good as

other clustering algorithms if the cluster have different density or the data

has more features.

Proposed approach

This is a technique that we designed ourself and its purpose is also to clus-

ter together frequent communicating processes. The technique works in the

following way:

� An n*n matrix is generated by running simulation for sometime. The

processes placed in the initial simulation follow the random placement

technique.

� The n*n matrix shows the number of times each process that is in-

volved in the simulation, communicates with each other processes in

the simulation. So for example if there are 20 processes involved in the

PDS, the generated matrix will be 20*20

� The next step is to combine the number of messages that two processes

exchange with one another throughout the simulation, for example if

a node N1 sends 30 messages to another node N8 and N8 sends 12

messages to N1, we will combine these two values and make them a

pair so we will have N1N8/N8N1 = 42. Similarly we will pair up all

the remaining nodes. For example:
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Figure 4.1: Communication matrix of 5 nodes

� Now we will pair up the nodes and add up their messages like:

N1N2 = N1→ N2 +N2→ N1 = 12 + 8 = 20

N1N3 = 5 + 7 = 12

N1N4 = 6 + 16 = 22

N2N3 = 2 + 23 = 25

N2N4 = 15 + 5 = 20

N3N4 = 2 + 9 = 11

� So the total number of pairs for a 4*4 matrix will be 6.

� Now if we have to make a cluster of 4 processes , we will proceed as:

– Select the pair with highest value for example in our case N2N3

is the highest and add them to cluster

Figure 4.2: Communication matrix of 5 nodes
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– Below N2, add the node with which N2 has the most communi-

cation and below N3 add the node with which N3 has the most

communication i.e.

Figure 4.3: Communication matrix of 5 nodes

– Next compare the two pairs N2N4 and N3N1 and add the highest

to the cluster and then continue until you reach the cluster limit

– After completing one cluster, delete all the pairs in which any of

the node is involved that is already added in a cluster and do so

again for the next cluster.

� Algorithm 4.1 contains the pseudo code for the above explained proce-

dure.
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Algorithm 4.1 Proposed Method

1: Generate an n ∗m communication matrix

2: convert the matrix into key/value pairs

3: Integer cluster size

4: Integer total clusters

5: List current cluster

6: for i = 1 to total clusters do

7: pick the pair(x, y) with max value

8: add pair(x, y) to the current cluster

9: while current cluster.size() < cluster size do

10: if either x or y belongs to current cluster then

11: list the pairs that x&y mostly communicate with

12: compare the two pairs

13: add max to the list

14: Delete all the pairs containing nodes from the current cluster

4.2 Implementation of Proposed Way

In this research work we employed Unsupervised Machine Learning tech-

niques i.e. K-Means clustering, Hierarchal clustering and Density Based

clustering to find structure in our data produced by processes involved in

our simulation.

Initially all processes were placed across the data center randomly. Ran-

dom communication was established between those processes and the com-

munication patterns were recorded from the simulation.
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The features that makes up our are the number of messages sent by a

process, the number of messages received by a process, the total number of

messages sent or received by a process, the total number of hops took by

messages sent by a single process and the means hops of each process.

We ran the simulation for a million events and wrote the data to a file

with the aforementioned features. We used Weka [34] that is one of the best

tool for application of Data Mining diverse algorithms on user’s data, for

cluster analysis. We fed our data to different clustering algorithms using

Weka and made changes in our Data Center’s structure according to the

results of those algorithms. The cluster algorithm will decide based on the

features we provided which processes have identical communication patterns

and group them together. The results will be discussed in the Chapter. 5
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Results

5.1 Assumptions

We have kept the number of clusters to be made by the clustering algorithm

to be exactly four because we are considering a data center with four racks.

Meaning the a physical node can be in either of those four racks. Now the

clustering algorithm can have results that will put more nodes in one cluster

and less in another. For example if the algorithm gives us four clusters con-

taining 3, 7, 4, 6 nodes. We will have to do load balancing in such case and

keep all cluster of the same size that is 5, 5, 5, 5 because there can only be

five nodes in a rack in our proposed data center.

5.2 Experiments and their results

In this section we will be discussing about the results of our research work.

How random placement generated huge network traffic and how our pro-

posed methods reduced it. As already discussed, a message to be sent from

27
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one node to another can either take one, three or five hops. The best case

that will consume less bandwidth is that a processes be sending a message

that requires only one hop to reach its destination. The next best case will

be for the message to require three hops and the worst case that would con-

sume more bandwidth would be that a message requires 5 hops to reach its

intended destination.

We will be showing the following in our results:

Within a rack/cluster:

� Number of messages sent within a rack taking only 1 hop

� Number of messages sent across a rack taking 3 hops

� Number of messages sent between racks taking 5 hops

Within the Data Center

� Number of messages sent within the Data Center taking only 1 hop

� Number of messages sent within the Data Center taking 3 hops

� Number of messages sent within the Data Center taking 5 hops

In the end will be comparing how our proposed method resulted in a scenario

that reduced network traffic i.e. reduced number of messages that took five

hops and increased those which took one or three hops.



CHAPTER 5. RESULTS 29

5.2.1 Results of Random Process Placement

The initial random method where processes are randomly placed across the

data center resulted in greater network traffic as huge amount of messages

were sent across the network which consumed a lot of bandwidth and affected

the simulation performance. Figure. 5.1 shows the representation of how the

initial random method performed within each of the four clusters.

Figure 5.1: Cluster-wise Performance of Random method

On x-axis we have four clusters and on y-axes we have the number of

messages sent by processes. It can be clearly seen that the number of mes-

sages that took five hops were greater in each one of the rack while the one

that took only one hop were minimum. Figure. 5.2 shows the data produced

by random method.

In cluster 1 the messages taking only one hop to reach their destinations



CHAPTER 5. RESULTS 30

Random Method

Cluster 1 2 3 4 Total %

Messages/1 hop 61 43 62 78 244 21.5357

Messages/3 hops 89 45 71 99 304 26.8314

Messages/5 hops 175 101 150 159 585 51.6328

Total 325 189 283 336 1133 100

Figure 5.2: Data produced by random method

were only 61, those taking three hops were 89 and the ones that took five

hops were of greater number 175. In cluster 2 we have 43 messages taking

one hop, 45 taking three hops and 101 taking five hops. Cluster 3 has 62,

71, 150 message taking one , three and five hops respectively and cluster 4

has 78, 99, 159. Fig. 5.3 shows how the random method performed within

the whole data center.
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Figure 5.3: Data Center Performance of Random method

So the total number of messages across the whole data center that took

1 hop were only 244, messages taking three hops were 304 and those which

took the maximum number of hops i.e. 5 were 585. This is like the complete

opposite of our ideal scenario where we want to reduce the network traffic as

much as possible.

5.2.2 Results using DBSCAN

The first clustering algorithm we used for grouping related processes (more

communicating) together was DBSCAN. Fig. 5.4 shows the results of DB-

SCAN and Fig. 5.5 shows the statistics.

In Cluster 1 messages taking:
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� Only 1 hops were 33

� 3 hops were 51

� 5 hops were 117

In Cluster 2 messages taking:

� Only 1 hops were 117

� 3 hops were 137

� 5 hops were 234

In Cluster 3 messages taking:

� Only 1 hops were 56

� 3 hops were 54

� 5 hops were 99

In Cluster 4 messages taking:

� Only 1 hops were 59

� 3 hops were 72

� 5 hops were 104

Similarly the overall results of the data center after using DBSCAN al-

gorithm were:
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DBSCAN

Cluster 1 2 3 4 Total %

Messages/1 hop 33 117 56 59 264 23.3892

Messages/3 hops 51 137 54 72 314 27.714

Messages/5 hops 117 234 99 104 554 48.8967

Total 201 488 209 235 1133 100

Figure 5.5: Data produced by DBSCAN method

Figure 5.4: Cluster-wise Performance of DBSCAN method

Similarly the overall results of the data center after using DBSCAN al-

gorithm were:

In Data Center the messages taking:
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� Only 1 hop were 264

� 3 hops were 314

� 5 hops were 554

Figure 5.6: Data Center Performance of DBSCAN method

DBSCAN did only just better than the random method and resulted in

just slightly less network traffic. It increased hop 1 messages by only a small

percentage that is 1.8535%, increased hop 3 messages by just 0.88% and de-

creased hop 5 messages by just 2.7401%.

5.2.3 Results using Hierarchical Clustering

In comparison to random method using Hierarchical clustering to structure

to our network also performed but with just slight improvement. Fig. 5.7
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shows the network analysis and Fig. 5.8 shows its statistics.

In Cluster 1 messages taking:

� Only 1 hops were 46

� 3 hops were 64

� 5 hops were 101

In Cluster 2 messages taking:

� Only 1 hops were 37

� 3 hops were 50

� 5 hops were 107

In Cluster 3 messages taking:

� Only 1 hops were 94

� 3 hops were 116

� 5 hops were 147

In Cluster 4 messages taking:

� Only 1 hops were 81

� 3 hops were 113

� 5 hops were 177
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Figure 5.7: Cluster-wise Performance of Hierarchical method

Hierarchal

Cluster 1 2 3 4 Total %

Messages/1 hop 46 37 94 81 258 22.7714

Messages/3 hops 64 50 116 113 343 30.2736

Messages/5 hops 101 107 147 177 532 46.955

Total 211 194 357 371 1133 100

Figure 5.8: Data produced by Hierarchical method

Throughout the data center the performance of hierarchical clustering

was as follows:

In Data Center the messages taking:
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� Only 1 hop were 258

� 3 hops were 343

� 5 hops were 532

Fig. 5.9 depicts the data center’s data representation.

Figure 5.9: Data Center Performance of Hierarchical method

There was an increase of 1.2% in hop 1 messages, an increase of 3.44%

in hop 3 messages and a slight decrease of 4.67% in hop 5 messages. Again

the change was not significant but still the results were better than in case

of random method.

5.2.4 Results using K-Means

K-Means gave us better results by outclassing all both DBSCAN and Hier-

archical Clustering algorithms. Fig. 5.10 shows the results of K-Means in all
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four clusters and the statistic of this representation is given in Fig. 5.11.

Figure 5.10: Cluster-wise Performance of K-Means

In Cluster 1 messages taking:

� Only 1 hops were 42

� 3 hops were 55

� 5 hops were 104

In Cluster 2 messages taking:

� Only 1 hops were 161

� 3 hops were 167

� 5 hops were 161
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In Cluster 3 messages taking:

� Only 1 hops were 65

� 3 hops were 51

� 5 hops were 92

In Cluster 4 messages taking:

� Only 1 hops were 70

� 3 hops were 68

� 5 hops were 97

K-Means

Cluster 1 2 3 4 Total %

Messages/1 hop 42 161 65 70 338 29.8323

Messages/3 hops 55 167 51 68 341 30.0971

Messages/5 hops 104 161 92 97 454 40.07061

Total 201 489 208 235 1133 100

Figure 5.11: Data produced by K-Means

Fig. 5.12 shows data center performance after using K-Means. The facts

of the data center are:

In Data Center the messages taking:

� Only 1 hop were 338

� 3 hops were 341
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� 5 hops were 454

Figure 5.12: Data Center Performance of K-Means

In comparison to random method K-Means performed way better and it

also did well than its partner clustering algorithms i.e. DBSCAN and Hi-

erarchical Clustering. After using K-Means the number of messages taking

only 1 hop were increased by 8.29%. Those messages that took 3 hops in-

creased by 3.26% and the number of messages taking the maximum 5 hops

to reach their destination were reduced by 11.56% which beats all the other

algorithms.

5.2.5 Results using proposed method - Experiment 1

Experiment 1 consisted of 10% defined communication and the rest was ran-

dom. Tree method performed in the best way and the results were better
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than random method and all the other approaches that we used. Fig. 5.13

shows the results of Tree method in all four clusters and the statistics of this

representation is given in Fig. 5.14

Figure 5.13: Cluster-wise Performance of Tree Method

In Cluster 1 messages taking:

� Only 1 hops were 41

� 3 hops were 43

� 5 hops were 108
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In Cluster 2 messages taking:

� Only 1 hops were 106

� 3 hops were 73

� 5 hops were 90

In Cluster 3 messages taking:

� Only 1 hops were 67

� 3 hops were 56

� 5 hops were 94

In Cluster 4 messages taking:

� Only 1 hops were 182

� 3 hops were 124

� 5 hops were 149

Tree Method

Cluster 1 2 3 4 Total %

Messages/1 hop 41 106 67 182 396 34.95146

Messages/3 hops 43 73 56 124 296 26.12533

Messages/5 hops 108 90 94 149 441 38.92321

Total 192 269 217 455 1133 100

Figure 5.14: Data produced by proposed method

Fig. 5.15 shows data center performance after using proposed method.

The facts of data center are:
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In Data Center the messages taking:

� Only 1 hop were 396

� 3 hops were 296

� 5 hops were 441

Figure 5.15: Data Center Performance of proposed Method

21.5357,26.8314,51.6328 In comparison to random method, proposed method

performed way better and it also did well than all other algorithms i.e. DB-

SCAN, Hierarchical Clustering and K-Means. After using proposed Method

the number of messages taking only 1 hop were increased by 13.4%. Those
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messages that took 3 hops increased by 0.7% and the number of messages tak-

ing the maximum 5 hops to reach their destination were reduced by 12.709%

which beats all the other algorithms.

5.2.6 Results using proposed method - Experiment 2

So to make sure the results are better we applied our proposed approach on

another scenario where the communication patterns are different than the

last simulation’s communication patterns. We increased the planned com-

munication upto 15% in this experiment and the rest of the communication

followed a random pattern. Fig. 5.16 shows how the results were in case the

processes were placed randomly, fig. 5.17 shows the the performance of the

overall data center for the same case and fig. 5.18 shows the statistics.

Figure 5.16: Rack-wise Performance of Random Method
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Figure 5.17: Data Center performance of Random Method

Random Method

Cluster 1 2 3 4 Total %

Messages/1 hop 68 63 99 88 318 22.12944

Messages/3 hops 73 62 125 103 363 25.26096

Messages/5 hops 168 159 224 205 756 52.6096

Total 309 284 448 396 1437 100

Figure 5.18: Data produced by Random method for experiment 2

Now we will apply our proposed approach for the same simulation and

compare the results with random method. Fig. 5.19, fig. 5.20 and fig. 5.21

rack-wise performance, statistics and data center wise performance of our

proposed method respectively.
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Figure 5.19: Cluster-wise Performance of Proposed Method

In Cluster 1 messages taking:

� Only 1 hops were 181

� 3 hops were 113

� 5 hops were 105

In Cluster 2 messages taking:

� Only 1 hops were 125

� 3 hops were 111

� 5 hops were 181
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In Cluster 3 messages taking:

� Only 1 hops were 88

� 3 hops were 99

� 5 hops were 114

In Cluster 4 messages taking:

� Only 1 hops were 114

� 3 hops were 106

� 5 hops were 100

Proposed Method

Cluster 1 2 3 4 Total %

Messages/1 hop 181 125 88 114 508 35.35143

Messages/3 hops 113 111 99 106 429 29.85386

Messages/5 hops 105 181 114 100 500 34.79471

Total 399 417 301 320 1437 100

Figure 5.20: Data produced by proposed method

In Data Center the messages taking:

� Only 1 hop were 508

� 3 hops were 429

� 5 hops were 500
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Figure 5.21: Data Center Performance of proposed Method

The number of messages taking only 1 hop were increased by 13.22%. Those

messages that took 3 hops increased by 4.59% and the number of messages

taking the maximum 5 hops to reach their destination were reduced by

17.81% which again is a significant increase in performance.

5.3 Summary of Results

To summarize the results we will discuss in this section how each technique

helped in reducing the total number of hops throughout the entire data cen-

ter. Fig. 5.22 shows the total number of hops took by messages in all of

the four techniques we experimented on in this thesis. Fig. 5.23 shows the

statistics.
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Figure 5.22: Comparison of techniques

Number of Hops Comparison

Technique Random DBSCAN Hierarchical K-Means proposed

Method

Hops 4081 3977 3947 3631 3489

Figure 5.23: Hop-wise comparison of discussed techniques

There were a total of 1133 message packets sent across the data center by

the 20 nodes that were taking part in the simulation. Each one of these 1133

messages took either one, three or five hops to reach its intended destination.

Our simulation performance will be affected highly if the majority of those

messages took five hops to reach their destination. On the other hand the

performance will be better if somehow the messages taking five hops were
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reduced and those taking just one hops were increased. More hop 3 messages

is also a better scenario than more hop 5 messages. The results of the tech-

niques we employed are discussed below.

The total number of hops throughout the simulation in experiment

1 in:

� Random method were: 4081

� DBSCAN method were: 3977

� Hierarchical Clustering were: 3947

� K-Means Clustering were: 3631

� Proposed method were: 3489

Reduction percentage in total number of hops in experiment 1 by

using:

� DBSCAN was 2.54%

� Hierarchical Clustering was 3.28%

� K-Means was 11.02%

� Proposed Method was 14.50%

The total number of hops throughout the simulation in experiment

2 in:

� Random method were: 5187
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Reduction percentage in total number of hops in experiment 2 by

using:

� Proposed Method was 17.19%
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Conclusion

In Cloud computing framework resources such as memory, storage, process-

ing power and network are shared by a huge number of users. Different users

have different workload demands. Executing Parallel and Discrete Event

Simulation for such platforms may effect the performance of the simulation

if the processes are placed randomly across the network as huge amount of

message will travel through the network which will generate huge network

traffic and consume a lot of bandwidth and thus make the system costly.

We need a criteria that can dynamically keep the system state balanced and

efficient.

We proposed an automated system that dynamically identifies those pro-

cesses which communicate with each other a lot and place them near one

another as compare to the random method that place a process randomly

at any location generating huge network traffic. Our method worked better

and it significantly decreased the amount of messages that traveled across

the network. This reduction in the number of messages lead to reduction in

network delays and hence improved the overall performance of our PDS.

52
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In future efforts could be made to apply clustering techniques to reduce

energy and power consumption and load balancing.
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