
Automatic Text Detection in Images
using Google Cloud Vision API

By
Sumbal Samad

2015-NUST-MS-IT
00000117522

Supervisor
Dr. Osman Hassan

Department of Electrical Engineering

A thesis submitted in partial fulfillment of the requirements for the degree
of Masters of Science in Information Technology (MS IT)

In
School of Electrical Engineering and Computer Science,

National University of Sciences and Technology (NUST),
Islamabad, Pakistan.

(June 2019)

Approval

It is certified that the contents and form of the thesis entitled “Automatic
Text Detection in Images using Google Cloud Vision API” submitted
by Sumbal Samad have been found satisfactory for the requirement of the
degree.

Advisor: Dr. Osman Hassan
Signature:

Date:

Committee Member 1: Dr. Sharifullah Khan

Signature:
Date:

Committee Member 2: Dr. Sohail Iqbal

Signature:
Date:

Committee Member 3: Asad Shah

Signature:
Date:

i

Abstract

There has been significant growth in daily emails which is estimated to be
over 293 billion by the end of 2019 [11]. About 90% emails are machine-
generated sent from businesses to consumers such as confirmation, reser-
vation, online purchase receipt etc. While a large fraction of them are
commercial emails promoting an offer such as 40% off on entire store, buy
1 get 1 free. The sheer volume imposes a burden and users are unable to
read and manage all of these emails. Consequently, people hesitate while
subscribing to an online store. To fill this gap between companies and con-
sumers third party apps have been introduced by many developers. These
apps assist businesses to reach out consumers by notifying their promotional
emails to app users at earliest. These apps have been manually processing
promotional emails to extract key information, which will eventually be sent
as notifications. Due to Manual processing third-party app’s performance
has been affected as it costs more resources, time and prone to errors.

To solve aforementioned problems, this thesis presents a solution aimed at
performing the above-mentioned manual process of information extraction
from promotional emails with minimal human assistance. Automatic extrac-
tion of key information unlocks the value of promotional emails and assists
third-party apps to make timely updates without human intervention. In or-
der to automate, we have developed a web app which can retrieve incoming
mails, extract images from machine-generated emails and preprocess them,
perform OCR, extract required information and save information on back-end

ii

iii

server periodically. In addition the proposed app, fetches emails using Gmail
API after user authorize app through OAuth 2.0 protocol, extracts images
using lxml parser and performs OCR using Google cloud Vision API [5].

Dedication

I dedicate this thesis to my Parents and Siblings.

iv

Certificate of Originality

I hereby declare that this submission is my own work and to the best of my
knowledge it contains no materials previously published or written by another
person, nor material which to a substantial extent has been accepted for the
award of any degree or diploma at NUST SEECS or at any other educational
institute, except where due acknowledgement has been made in the thesis.
Any contribution made to the research by others, with whom I have worked
at NUST SEECS or elsewhere, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the prod-
uct of my own work, except for the assistance from others in the project’s
design and conception or in style, presentation and linguistics which has been
acknowledged.

Author Name: Sumbal Samad
Signature:

v

Acknowledgment

I would like to thank my Advisor and friends.

vi

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Prior State of Art . 2
1.3 Problem Description . 4
1.4 Proposed Solution . 4
1.5 Huntasale Application as Real Client 5

2 Literature Review 6
2.1 Trigger-Action Model . 6
2.2 OCR (Opticle Character Recognition) 7
2.3 Comparison between Tesseract and Google Cloud Vision . . . 8

3 Framework and APIs 10
3.1 Django . 10
3.2 OAuth 2.0 . 10
3.3 Gmail API . 10
3.4 Google Cloud Vision API . 11
3.5 Email and MIME Package . 11
3.6 bs4 . 11

4 Implementation 12
4.1 Methodology . 12

4.1.1 MVT . 16
4.1.2 Interface . 23

vii

TABLE OF CONTENTS viii

4.2 Admin Module . 24
4.3 Database Design . 27
4.4 Pricing and Quotes . 28

5 Conclusions 29
5.1 Summary . 29
5.2 Future Directions . 29

List of Figures

2.1 Colored & Bi-level image . 9
2.2 Tesseract vs Vision API . 9

4.1 Effect of Background . 14
4.2 Methodology . 15
4.3 Credential Model . 16
4.4 DataSource Model . 17
4.5 Task Model . 17
4.6 Messages Model . 18
4.7 Application Authorization Flow 21
4.8 Cron View . 22
4.9 Sign up Page . 23
4.10 Login Page . 24
4.11 Configuration Page . 25
4.12 Authorization steps . 25
4.13 Administrative Site . 26
4.14 . 26
4.15 E-R Diagram . 27

ix

Chapter 1

Introduction

Objective of this thesis is to assist third party apps by extracting key infor-
mation from commercial emails. These days promotional emails are machine-
generated and consists of heavy-images. Processing these image-rich emails
using machine learning and applying it to each email would be very costly
in terms of processing. In addition, applying model to varying emails can be
very difficult as compared to static emails where accuracy can be achieved
using template induction. We have given a cost-effective method and used
off-the-shelf techniques. Implementation details are given in Chapter 4.

1.1 Motivation

Needless to say that harnessing of email marketing is an influential chan-
nel adopted by digital marketers. Digital marketing encapsulates multiple
methods like social media campaigns, Google AdWords and email market-
ing. Email marketing is important channel for businesses to directly reach
out their customers in an effective way. In addition, email marketing is a cost
effective method as compared to traditional ways of advertisements. Due to
above-mentioned advantages, there is rapid growth in utilization of commer-
cial emails for promotions by businesses. In turn, users feel it difficult to find
out which emails are worth reading. Third-party apps solve their problems

1

CHAPTER 1. INTRODUCTION 2

by sending notifications without having them to navigate through emails and
freeing them from hassle of subscription. Some apps also have coupon and
rewards systems. So, we need to facilitate third-party apps in automation
of their manual process, so businesses can target larger audience through
indirect channel.

1.2 Prior State of Art

A lot of work has been done to pipeline services from different platforms and
making them useful based on triggers and actions. Such platforms get data
from one source application. Process and save data to the targeted appli-
cation automatically e.g. sending a webhook to pushover etc. Zapier is one
of those platforms which provide orchestration between multiple platforms
like Facebook, Gmail, and twitter [12]. User can define different sources of
data and then data is saved to their targeted applications based on different
triggers. It also provides the facility to fetch emails from source application
like Gmail and give multiple options to trigger events like new email, new
attachment, new label, and email from specific sender than save emails to
sink application such as firebase.

IFTTT(IF-THIS-THAN-THAT) [8] also works for the integration of
different services. IFTTT focuses on automation and connectivity of mobile
devices and accessories. Microsoft workflow is another platform which offers
automation based on event-to-action model [10]. It offers multiple services
as connectors for the automation of repetitive task. However, these services
do not cater to the need of users who want to extract data from their HTML
emails. All of the above-mentioned platforms unable to extract information
from machine-generated mails as they only get data from one source and
save data to another platform. However, mailparser is such a platform which
provides extraction of data from email’s attachment [9]. Email parser asks
users to configure their cron job like sniping the attributes from pdf file such

CHAPTER 1. INTRODUCTION 3

that next time when an email is triggered parser can automatically snip data
according to previous snip positions and save data for the user. This also
lacks in the processing of HTML email like extraction of images embedded
in HTML content-type of email.

As we exploit google cloud vision API for text detection similarly
Shin and YiHui [15] make use of the same API for for accessing images
using the text they have insight. Content-based image retrieval was done by
annotating images using API. As API does not consider the synonyms, word
net was used for synonyms and it improved accuracy by 10%. Orekondy
et al. (2018) also used vision API for the automatic redaction of private
information from images [24]. GSV has been exploited to find recognize text,
face and landmark’s bounding boxes for redaction. Hosseini et al. evaluate
API on ImageNet dataset by adding noise to images [19]. Results are com-
pletely different by adding 14.25% of noise. This paper [22] extract useful
information from camera-images and able to achieve 98% after preprocess-
ing images. Camera-images have noise, contrast and light issues, therefore,
preprocessing helped in achieving better results.

Recently, efforts have also been made to classify non-spam machine-
generated emails into different categories using embedded contents. Gmail
used to classify emails into different tabs such as primary, social and promo-
tional by analyzing embedded contents in emails [25]. Clustering has been
done using template induction technique [14]. Template induction technique
has been widely used for purposes like email threading [14] and hierarchical
classification [29]. Template induction technique can be applied when emails
have static layout and structured information whereas promotional emails
have unstructured information. Template induction has also been applied
over well-known Enron email dataset which is unstructured in nature [26].
Gmail also suggests auto-response which is known as smart-reply. Smart-
reply helps users to send a small response as a reply, these responses have

CHAPTER 1. INTRODUCTION 4

been generated using LSTM [20].

1.3 Problem Description

Manual processing has been an obstacle to scale especially for small busi-
nesses where resources are limited. In addition, manual processing is not time
efficient while third-party apps are time-bound because promotions should
be sent to user before they expire. If apps would unable to give latest deals to
its users then they might get bored and may not continue to use apps. Due
to manual processing app’s performance has been affected as it cost more
resources, time and prone to errors.

1.4 Proposed Solution

In this thesis, we propose to overcome above-mentioned limitations by au-
tomating the hand-operated process, aimed at performing with minimum
human-intervention. A very similar approach have been formally applied for
automation extraction of information from business cards [22]. However, to
the best of our knowledge no automation have been made for information
extraction from images of HTML emails specifically in regards of thirdparty
apps.

Proposed solution is based on web app, which fulfill essential re-
quirements of our client. First requirement is to process emails while respect-
ing user’s privacy concerns, which we achieved through authorization server
[7]. Another requirement is to extract and process images from machine-
generated emails, accomplished through beautiful soup. Foremost require-
ment is to perform OCR while making system efficient in terms of processing,
which is done by using off-the-shelf component. Implementation details has
been given in chapter 4

CHAPTER 1. INTRODUCTION 5

1.5 Huntasale Application as Real Client

Huntasale is Pakistan’s first sale hunting mobile app [6]. It assists businesses
to reach out consumers by notifying their promotional emails to app users
at earliest. Huntasale is our real client. We will implement our solution to
facilitate huntasale in automating their manual process. Our solution will
help them in achieving their business goals efficiently.

Chapter 2

Literature Review

As Google cloud vision API was launched in 2015 therefore literature have
very few examples. However a very similar approach is used in a pa-
per, in which an android app can extract information from business cards,
newspaper using vision API and able to achieve 98% accuracy on business
cards [22].Following section contains related work done in frameworks based
on trigger-action model and technologies used in solution.

2.1 Trigger-Action Model

Zapier and IFTT are based on trigger-action model with the aim of provid-
ing customizability and usability. IFTT focuses on consumer services and
devices while Zapier focuses on making complex task easy such as project
management and marketing automation. This paper [27] produced and ana-
lyzed 6406 triggers and 1051 channels from both platforms to analyze user’s
ease of use to create and manage zaps/recipes. For example Zapier allow
user to define a zap which can automatically save attachment to Google drive
whenever defined sender sends and email. But none of zaps allow user for
text recognition from images embedded in html email which is requirement

6

CHAPTER 2. LITERATURE REVIEW 7

of our client. Email-parser [13] by zappier provides a visual interface for
defining rules on email data. This app allows extracting information from
attachments by snipping at time of configuration which means that one zap
can handle structural information whereas our data is highly unstructured
and artistic in nature.

2.2 OCR (Opticle Character Recognition)

History of OCR in field of pattern recognition is quiet old. There was a
time where everyone took subject of OCR, because characters were much
easy to deal with and new problem which needs to be solved. However,
after paper published by C.Y. Suen’s [23] modify their interest and explore
new dimensions of pattern recognition, like 3-D object recognition and image
processing for best results. OCR solves many problems which are common
to other pattern recognition problems.

OCR have been used in many fields like in banking for check processing
without involvement of human, in healthcare for forms processing, and dig-
ital pen [16] and smart glasses [21] is latest application of OCR. Optical
character recognition not only used for scanning but also help blind person.
There are always some major problems for OCRs. For example it’s difficult
to differentiate and recognize text in cluttered images, also letters like O
can be consider zero and vice versa. Researchers have worked a lot for hand
written text recognition and converting scanned documents into editable
form. Detecting text in images has been done for spam filtering. As to
break spam algorithm, they send emails with images with embedded text.
So they use OCR to detect text in attachments for spam filtering [18]. This
paper [17] shows accuracy of 87% using Naive Bayes algorithm to identify
spam in images.

CHAPTER 2. LITERATURE REVIEW 8

To improve the accuracy there are many customized solutions available like
freeOCR which use the Tesseract as OCR and its own algorithm for image
pre-processing and post-processing. Algorithm developed for that purpose
was imgHOG [28], where HOG was histogram of gradient. This program
converts the image into a form on which OCR gives best result. HOG extract
region of interest by detecting features of interest. Features of interests can be
found by using PCA. When there are a lot of features in an image, so to find
principle component which gives high variance or information, researchers
used some technique such as PCA, Binning etc. They can also do some
normalization by binning. Mostly OCR do so by taking 4X4 or 8X8 blocks
or image and each block have number of gradients within itself. Then they
decide one gradient orientation bin based on frequency of gradients. It can
detect any shape but it is slow. Another way of implementing histogram of
gradient is by sampling regions of interest using kernel trick. It can be linear
kernel or polynomial kernel.

2.3 Comparison between Tesseract and Google
Cloud Vision

We have perform experiments on tesseract OCR .Studies shows that tesseract
gives better result when images are converted to bilevel. So we binarize the
images for better results. Because of artistic style of fonts tesseract could not
perform well. Actual and preprocessed images are shown in figure 2.1 Result
of tesseract and Google vision api is shown in figure 2.2

CHAPTER 2. LITERATURE REVIEW 9

Figure 2.1: Colored & Bi-level image

Figure 2.2: Tesseract vs Vision API

Chapter 3

Framework and APIs

3.1 Django

Django is a Python-based framework for web development [2]. Django 1.11.7
version is used in this application. It promotes modular programming which
makes it possible for us to create separate applications for each purpose,
such as registration application, authentication application, and Data source
application.

3.2 OAuth 2.0

OAuth 2.0 protocol is used to access user-owned resources [7]. This protocol
is used to access user’s mailbox on behalf of user by using credentials granted
by authorization server. We have used authorization code access grant for
accessing user’s mailbox in this application. Implicit grant is also used for
creating service of google-cloud vision by using ouath2client library.

3.3 Gmail API

Google provides Gmail API [4] for accessing mailboxes. It allows developers
to get access to user’s mailbox by using different scope. Scope defines what

10

CHAPTER 3. FRAMEWORK AND APIS 11

application can do in user’s mailbox on behalf of user. First application
needs user consent and grant. There are different types of grants implicit
code, authorization code depending upon application and scope type. We
have created project on google console and enabled Gmail API.

3.4 Google Cloud Vision API

Google Cloud Vision Api is used in this project for text detection [5].
Document Text Detection feature is used in this application.

3.5 Email and MIME Package

This package is used to process emails [3]. This package is used to extract
html content type part of email. This package creates object model of email
which makes easy to traverse each part of email.

3.6 bs4

Beautiful Soup is python library, which has been widely used for extraction
of information from webpages.We also have used in our system for extraction
of URL from machine-generated emails.

Chapter 4

Implementation

4.1 Methodology

Following section describes key challenges and their corresponding solutions
in order to achieve defined objective. Methodology diagram is shown in figure
4.2 and following is description of each step

1. While accessing emails privacy is main concern, we ensure to respect
user’s privacy by using authorization protocol. In addition, our appli-
cation will have access token rather than actual passwords and user
can revoke access at any time. As shown in diagram users grant access
for his protected resource/mailbox to authorization server (Oauth 2.0).

2. Authorization server issue credentials to our app, only then our app can
make requests to protected resource using Gmail API on behalf of user.

3. App will make GET requests to Gmail API for mails, corresponding
to each configured job defined by user. In order to minimize network
load we exploit user’s defined query (from:xyz,OR subject: 40% off, OR
search:’sale’). Query works same as people do search in Gmail mailbox.

12

CHAPTER 4. IMPLEMENTATION 13

4. In previous step, Ids of all messages are returned so now application
will make request to Gmail API for each message received previously.

5. Each message is sent to email parser, where each part is traversed and
html content type is saved.

6. Images are extracted by getting src tag of all ¡img¿ tags. This step
creates more hurdles as there are multiple img tags inside machine
generated emails, so it returns a large number of images of all sizes.
Filtering them after performing OCR would increase cost, time and
network usage. We minimize number of images by applying threshold
on size attribute based on our observation of templates.

7. It is more difficult to recognize text on synthetic images rather than
natural images. As images used in promotional emails have background
variations and artistic fonts. Effects of background are shown in figure
4.1, where GCV marks embroidery as text blocks. We overcame this
issue by binerizing images and increasing their contrast and it is also
shown in figure 4.1. After preprocessing, images are then sent to cloud
for text detection.

8. Response received from cloud will be processed for information extrac-
tion by using regex.

9. Processed text will be sent to parse server and saved in application’s
database as well.

CHAPTER 4. IMPLEMENTATION 14

Figure 4.1: Effect of Background

CHAPTER 4. IMPLEMENTATION 15

Figure 4.2: Methodology

CHAPTER 4. IMPLEMENTATION 16

4.1.1 MVT

This application is developed using model-view-Template software design
pattern. However Django is based on MVC(Model-view-controller) but con-
troller is handled by framework itself. In MVT model is responsible for
carrying data and view carries business logic and then results are rendered
on template.

Models

Models used in this application are User, CredentialsModel, CredentialsAd-
min, DataSource, Task and TaskMessages. User model is used for user
signup, sign in. User model is imported from django.contrib.auth.models.
Credentials Model is used to carry data retrieved from authorization server.
Access token and refresh token are saved in credentailsfield which is sup-
ported by oauth2client library. Id from User model is used to create a one-
to-one relationship. Model is shown in following figure.

Figure 4.3: Credential Model

CHAPTER 4. IMPLEMENTATION 17

Datasource model is used to store information of given mailbox.
History Id and total messages are used to save and then look for changes of
user’s mailbox. If there is change in history Id then cron job is executed and
mails are fetched using access token. Model is shown in following figure.
Task model is carrying parameters used to fetch mails from user’s mailbox.

Figure 4.4: DataSource Model

Fields sender, search and subject are used to create query which will be sent
in request. User can create query as much as specific he wants by supplying
values to all three variables or can create only one filter (sender, subject,
search query). Model is shown in following figure.

Figure 4.5: Task Model

TaskMessages is model where results are saved after processing. Currently
start date end date sender and description are being saved as per require-
ments. Model is shown in following figure.

CHAPTER 4. IMPLEMENTATION 18

Figure 4.6: Messages Model

Views

Django offers function-based and class-based views. Function-based views
have been used in this application. There are two important views one is
responsible for handling Http Requests for OAuth and other is responsible
for processing emails.

Authentication view starts from creating Flow from Client secrets down-
loaded from Google console with parameters of scope, redirect uri and
prompt. Scope defines level of grant application needs from user to access
its resources. After defining scope it check Credentials model if user has
already been authorized our application with credentials, if credentials have
been found then it creates a http object for sending request to user resource
and then build service object by defining Api, version and http. For new
users it generates a URL for authorization by using flow created in first step.
If user has granted access then it redirects to redirect URI defined in flow.
Authentication view’s Flowchart is shown in following Figure 4.6.

CHAPTER 4. IMPLEMENTATION 19

Second View will be run as cron job and flowchart is shown in figure 4.7.
It is dedicated for getting all task ids and make list.messages request to
Gmail API.

response = service.users().messages().list(userId=’me’, q=query

↪→).execute()

Response may have one or multiple messages, however Get request is made
for each id in response.

message = service.users().messages().get(userId=’me’,id=’12159

↪→ b98531c9853c5’, format=’raw’, alt = ’json’).execute()

After getting message in raw format it is decoded by using following code.

decoded_message = base64.urlsafe_b64decode(message[key].encode

↪→ (’UTF8’))

Once message is decoded it is traversed using email [3] and html conten types
will be saved. Then these images are extracted using beautiful soup [1].
Images are then filtered out to find useful images so that vision requests
could be minimized. Images are then sent to cloud and response is returned
as json format. Preprocessing is done to extract information and align text.

vision_client = vision.ImageAnnotatorClient()

with io.open(image_path, ’’rb’) as image:

vision_content = image.read()

image_type = vision.types.Image(content=vision_content)

ocr_response = vision_client.document_text_detection(image=

↪→ image_type)

CHAPTER 4. IMPLEMENTATION 20

Templates

Templates are pages where requests and responses have been shown. Tem-
plates are coded in django templating language.Templates will be further
explained in Section 4.1.2.

CHAPTER 4. IMPLEMENTATION 21

Figure 4.7: Application Authorization Flow

CHAPTER 4. IMPLEMENTATION 22

Figure 4.8: Cron View

CHAPTER 4. IMPLEMENTATION 23

4.1.2 Interface

This section contains description of front-end of application.

User module

This module have registration module has signup and login pages. Signup
view is created using Django generic views.

Signup Page

Signup page is used for creating users other than admin while admin is cre-
ated by using this command python manage.py createsuperuser. Sign up
page is shown in following.

Figure 4.9: Sign up Page

CHAPTER 4. IMPLEMENTATION 24

Login Page

Login page for admin and user is shown following figure.

Figure 4.10: Login Page

Configuration page

This page is used to configure Source of data. Only authorized users can
access this page. Authorize account is link for authorizing this application
with Gmail credentials. Users can verify settings by clicking on Test Fetch
after filling input boxes. For example a user can input address of sender
and click on test fetch then snippet of first email from that sender will be
shown on this page. Authorization and testing requests are sent through
ajax, authorization steps are shown in figure 4.10. Once user grant access
than application redirected to redirect URI.

4.2 Admin Module

This module consists of administrative site of application. Admin have dash-
board where he can add, delete and update models. Dashboard page is shown
in figure 4.11 Admin can also see number of deals which have been created

CHAPTER 4. IMPLEMENTATION 25

Figure 4.11: Configuration Page

Figure 4.12: Authorization steps

CHAPTER 4. IMPLEMENTATION 26

till date. Deals are being saved in both databases one is website’s database
and other is parse-server. Admin can change and edit text in case of OCR
errors form following page figure 4.12.

Figure 4.13: Administrative Site

Figure 4.14:

CHAPTER 4. IMPLEMENTATION 27

4.3 Database Design

This section shows that database structure for the website. E-R Diagram of
website is given below figure 4.13

Figure 4.15: E-R Diagram

CHAPTER 4. IMPLEMENTATION 28

4.4 Pricing and Quotes

Pricing includes charges incurred for document text detection feature of
google cloud vision API. Google cloud vision API is providing free OCR
service for 11000 images per month but if our images cross this limit then
Google will charge 1.50$ for 5 million images per month. Google Cloud vision
gives free trial of 300$ and 6.93$ of free trial have been used in development.
Gmail API defines quota for each user. It allows 250 quota units per user
per seconds.

Chapter 5

Conclusions

5.1 Summary

In this research we have implemented a web application which will automate
manual process of Huntasale. This application will make Huntasale app
efficient in terms of timely deals updates. This automation creates com-
pounding effects for Huntasale because cost has become an efficiency, which
frees up people, resources and time.

Moreover, we showed that Google cloud vision API can be easily
used for processing image-rich emails without having to run exorbitant ma-
chine learning models on emails. In essence, we also found that google cloud
vision API can extract large fonts if we upscale images. We also showed that
background issues can be resolved by applying vision API on binary images
rather than original images.

5.2 Future Directions

We plan to extend our system beyond extraction of information from pro-
motional emails for extraction from scanned documents received in emails
such as reports and receipts. However, algorithm for text extraction will be

29

CHAPTER 5. CONCLUSIONS 30

required for relevant information extraction according to domain of docu-
ments.

Bibliography

[1] Beautiful Soup, https://www.crummy.com/software/BeautifulSoup/bs4/doc/,
2019.

[2] Django, https://www.djangoproject.com, 2019.

[3] Email Library, https://docs.python.org/3/library/email.html, 2019.

[4] Gmail, https://developers.google.com/gmail/api/, 2019.

[5] Google Cloud Vision, https://cloud.google.com/vision/, 2019.

[6] Huntasale, http://huntasale.com/, 2019.

[7] IETF, https://tools.ietf.org/html/rfc6749/section-1.3.4, 2019.

[8] IFTTT, https://ifttt.com/, 2019.

[9] MailParser, https://mailparser.io/, 2019.

[10] Microsoft WorkFlow, https://flow.microsoft.com/en-us/, 2019.

[11] Then Radicati Group.2019.Email Statistics report, 2019-2023.
https://www.radicati.com/?p=16037.

[12] Zapier, https://zapier.com/,2019.

[13] Zapier Parser, https://parser.zapier.com, 2019.

[14] Nir Ailon, Zohar S Karnin, Edo Liberty, and Yoelle Maarek. Threading
machine generated email. In Proceedings of the sixth ACM international
conference on Web search and data mining, pages 405–414. ACM, 2013.

31

BIBLIOGRAPHY 32

[15] Shih-Hsin Chen and Yi-Hui Chen. A content-based image retrieval
method based on the google cloud vision api and wordnet. In Asian Con-
ference on Intelligent Information and Database Systems, pages 651–
662. Springer, 2017.

[16] Stanford CoreNLP. a suite of core nlp tools. URL http://nlp. stanford.
edu/software/corenlp. shtml (Last accessed: 2013-09-06), page 3, 2016.

[17] Meghali Das and Vijay Prasad. Analysis of an image spam in email
based on content analysis. In Proc. Int. Conf. On Natural Language
Processing And Cognitive Computing, volume 201, 2014.

[18] Giorgio Fumera, Ignazio Pillai, and Fabio Roli. Spam filtering based
on the analysis of text information embedded into images. Journal of
Machine Learning Research, 7(Dec):2699–2720, 2006.

[19] Hossein Hosseini, Baicen Xiao, and Radha Poovendran. Google’s cloud
vision api is not robust to noise. In 2017 16th IEEE International Con-
ference on Machine Learning and Applications (ICMLA), pages 101–105.
IEEE, 2017.

[20] Anjuli Kannan, Karol Kurach, Sujith Ravi, Tobias Kaufmann, Andrew
Tomkins, Balint Miklos, Greg Corrado, Laszlo Lukacs, Marina Ganea,
Peter Young, et al. Smart reply: Automated response suggestion for
email. In Proceedings of the 22nd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pages 955–964. ACM,
2016.

[21] Bernard Kress. Optics for smart glasses, smart eyewear, augmented re-
ality and virtual reality headsets. Fundamentals of Wearable Computing
and Augmented Reality, pages 85–124, 2015.

[22] Rafsanjany Kushol, Imamul Ahsan, and Md Nishat Raihan. An android-
based useful text extraction framework using image and natural lan-

BIBLIOGRAPHY 33

guage processing. International Journal of Computer Theory and Engi-
neering, 10(3), 2018.

[23] Shunji Mori, Ching Y Suen, and Kazuhiko Yamamoto. Historical review
of ocr research and development. Proceedings of the IEEE, 80(7):1029–
1058, 1992.

[24] Tribhuvanesh Orekondy, Mario Fritz, and Bernt Schiele. Connecting
pixels to privacy and utility: Automatic redaction of private information
in images. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 8466–8475, 2018.

[25] Navneet Potti, James B Wendt, Qi Zhao, Sandeep Tata, and Marc Na-
jork. Hidden in plain sight: Classifying emails using embedded image
contents. 2018.

[26] Julia Proskurnia, Marc-Allen Cartright, Llúıs Garcia-Pueyo, Ivo Krka,
James B Wendt, Tobias Kaufmann, and Balint Miklos. Template in-
duction over unstructured email corpora. In Proceedings of the 26th
International Conference on World Wide Web, pages 1521–1530. Inter-
national World Wide Web Conferences Steering Committee, 2017.

[27] Amir Rahmati, Earlence Fernandes, Jaeyeon Jung, and Atul Prakash.
Ifttt vs. zapier: A comparative study of trigger-action programming
frameworks. arXiv preprint arXiv:1709.02788, 2017.

[28] Olarik Surinta, Mahir F Karaaba, Lambert RB Schomaker, and Marco A
Wiering. Recognition of handwritten characters using local gradient
feature descriptors. Engineering Applications of Artificial Intelligence,
45:405–414, 2015.

[29] James B Wendt, Michael Bendersky, Lluis Garcia-Pueyo, Vanja Josi-
fovski, Balint Miklos, Ivo Krka, Amitabh Saikia, Jie Yang, Marc-Allen
Cartright, and Sujith Ravi. Hierarchical label propagation and discovery

BIBLIOGRAPHY 34

for machine generated email. In Proceedings of the Ninth ACM Inter-
national Conference on Web Search and Data Mining, pages 317–326.
ACM, 2016.

	Introduction
	Motivation
	Prior State of Art
	Problem Description
	Proposed Solution
	Huntasale Application as Real Client

	Literature Review
	Trigger-Action Model
	OCR (Opticle Character Recognition)
	Comparison between Tesseract and Google Cloud Vision

	Framework and APIs
	Django
	OAuth 2.0
	Gmail API
	Google Cloud Vision API
	 Email and MIME Package
	bs4

	Implementation
	Methodology
	MVT
	Interface

	Admin Module
	Database Design
	Pricing and Quotes

	Conclusions
	Summary
	Future Directions

