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Abstract

Pakistan, like many developing countries, faces several challenges in providing standard health-

care facilities, particularly in less privileged and least developed areas. Cardiovascular diseases

(CVDs) are a leading contributor to the reported mortality rate in Pakistan, constituting approx-

imately 30-40 percent of all documented deaths. Unfortunately, the late response in providing

specialized health emergency services exacerbates the problem. Cardiologists, who are respon-

sible for providing specialized care to CVD patients, spend a significant amount of time diag-

nosing the condition, leaving them with less time to focus on treatment, which can be a matter

of life and death. To address this issue, an AI-aided system has been proposed that focuses on

swift and accurate diagnosis of CVDs and Cardiac Arrhythmias. The system employs an en-

semble model that consists of a machine learning (ML) model and a deep learning (DL) model.

The proposed ensemble model only takes non-invasive cardiac parameters as an input. The ML

model assesses cardiac parameters such as temperature, blood pressure (BP), oxygen saturation

(SpO2), and heart rate (HR), while the deep learning model analyzes electrocardiogram (ECG)

signals. This combination of cardiac parameters and ECG analysis can provide accurate diagno-

sis and treatment recommendations in a specific context. To develop a complete cardiac dataset,

the ECG dataset from MIT-BIH was extended by using another dataset consisting of temper-

ature, BP, SpO2, and HR. The proposed ensemble paradigm was evaluated by using various

evaluation measures including accuracy, F1-score, recall, precision, specificity, and sensitivity.

Our findings indicate that the proposed framework outperformed other cutting-edge models for

the given cardiac dataset. Moreover, this research promises to predict maximum CVDs and

Arrhythmia classes by applying smart AI techniques. Ultimately, the proposed AI-aided sys-

tem can significantly reduce the workload of cardiologists by enabling them to focus more on

treatment rather than diagnosis.
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CHAPTER 1

Introduction

This chapter offers a comprehensive exploration of the pertinent backgrounds and fields of

knowledge that are relevant to this study. It commences by elucidating the historical context

of the issue the research seeks to tackle and the driving factors behind undertaking the study.

The problem statement is identified and research objectives are presented, along with the pro-

posed approach to address the identified problem. Additionally, the chapter highlights the key

contributions and novelty of the study. Overall, this introduction sets the foundation for the

subsequent chapters and provides a clear outline of the research objectives and approach.

1.1 Background

In today’s contemporary society, our fast-paced lifestyle and dietary habits have detrimental

effects on our health. A rapid increase in the health issues has been observed due to modern

lifestyle. Consequently, a remarkable raise in heart diseases has been noticed. AI modeling

in healthcare is considered a highly challenging research domain, primarily due to the criti-

cality of acquiring valuable data [3]. The recent surge in AI methodologies has established

a robust foundation for a diverse array of applications within the healthcare sector. Artificial

Intelligence (AI) is significantly contributing to various aspects of healthcare, such as disease

diagnosis/prognosis, pattern recognition, and more cost-effective treatments [6, 7]. Undeni-

ably, AI empowers the system to enhance its cognitive capabilities and achieve more accurate

predictions.

The prediction of cardiovascular diseases (CVDs) is a highly discussed and researched topic

within the medical industry. AI-based prediction systems have the potential to greatly assist

1



CHAPTER 1: INTRODUCTION

in early disease detection, thereby reducing associated risks. The application of AI in cardiac

electrophysiology and automated ECG interpretation is not a new concept, having existed in

various forms since the 1970s [1].

Figure 1.1: AI-based Cardiac Care Unit

Artificial Intelligence (AI) encompasses cognitive functions similar to those of humans, such

as perceiving information from the environment and executing actions using algorithms, uti-

lization of pattern matching, cognitive computing, and deep learning in machines (computer

systems) aims to accomplish particular goals [39]. Machine Learning (ML), which falls under

the umbrella of AI, entails the process of training computers to swiftly, precisely, and effectively

analyze extensive datasets through the utilization of intricate computational and statistical algo-

rithms [21]. In the realm of predictive modeling, supervised ML techniques have demonstrated

greater success in survival prediction and possess higher prognostic value in contrast to con-

ventional clinical risk scores [31]. Deep Learning (DL), which falls under supervised machine

learning, is dependent on neural networks (NN) and automated algorithms that extract mean-

ingful patterns from extensive data collections [32]. In the medical domain, numerous widely

adopted deep learning algorithms are utilized, including Artificial Neural Networks (ANN) such

as Multilayer Perceptron (MLP), and Convolutional Neural Networks (CNN/ConvNet). It also

includes Recurrent Neural Networks (RNN), deep belief networks (DBN), Radial Basis Func-

tion Network (RBFN), and deep neural networks (DNN) [39]. Figure 1.1 shows an AI-based

cardiac care unit.

2
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Unlike conventional supervised machine learning (ML) techniques, DL models can effectively

and automatically learn complex representations of data without the need for manual feature

engineering. This makes DL particularly useful for problems involving raw input data that are

difficult to manually process and analyze.

One area where DL has demonstrated significant success is in the field of automated electro-

cardiogram (ECG) interpretation. Early supervised ML methods for ECG analysis relied on

manually defined ECG features, such as amplitude, duration, and morphology of specific ECG

components. However, these methods were limited in their ability to capture the full complexity

of ECG signals, which can contain subtle patterns and relationships that are difficult to extract

using hand-crafted features. In contrast, DL models can automatically learn to extract meaning-

ful features from raw ECG data, allowing for more accurate and comprehensive analysis. For

example, a modern DL model can be trained to detect sinus rhythm and various arrhythmias

directly from raw ECG signals, without the need for manual feature engineering. This approach

has been shown to achieve performance that is comparable to, or even exceeds, that of human

experts in detecting and diagnosing cardiac abnormalities[29]. ML/DL techniques offer signif-

icant advantages in several key domains of cardiac healthcare, encompassing prognostication,

diagnostic procedures, categorization, therapeutic interventions, and the optimization of clinical

workflows.

Figure 1.2: AI-based CVD Classification

Utilizing AI, a cardiac system ensures effective monitoring of the physical symptoms [4] expe-

rienced by cardiac patients, including temperature, systolic and diastolic blood pressure (BP),

Oxygen Saturation (SpO2), Electrocardiogram (ECG), and heart rate (HR) [5]. Furthermore, it

seamlessly integrates with relevant environmental factors, enabling comprehensive monitoring

3
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without any lapses. Figure 1.2 illustrates AI-based CVD classification. By leveraging the power

of AI, the cardiac care framework can provide continuous monitoring and early detection of car-

diac abnormalities, enabling timely intervention and treatment. This personalized and proactive

approach to cardiac care can significantly improve patient outcomes and reduce the burden on

healthcare systems. In summary, AI-based cardiac care frameworks offer a promising solution

for pervasive and effective cardiac healthcare, providing personalized and proactive monitoring

of physical symptoms and environmental parameters, and ensuring compliance with medicinal

and safety standards.

Figure 1.3: Types of Arrhythmia

The Electrocardiogram (ECG) serves as a crucial diagnostic tool in the medical field for de-

tecting various cardiac abnormalities. It captures the cardiac muscle’s electrical signals during

contraction, and an electrocardiograph is employed to record the patient’s ECG. This diagnostic

test offers valuable insights into heart rate and rhythm, aiding physicians in identifying potential

current or past heart attacks experienced by the patient. Due to its proven reliability, ECG is

commonly used as the initial test for assessing heart conditions. It can also detect abnormali-

ties in heart rhythm, known as arrhythmias. Arrhythmia pertains to irregularities in the pace or

pattern of the heart’s pulsations. Figure 1.3 illustrates waveforms representing different types

of arrhythmias, like atrial fibrillation, atrial flutter, and premature beats. Atrial fibrillation is

distinguished by a disorganized, rapid, and unpredictable heart rhythm, with multiple impulses
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competing to travel through the atria and AV node. Atrial flutter, on the other hand, is a more

organized and regular. Atrial arrhythmia arises from the presence of a rapid electrical pathway

within the atrium. It is important to analyze and diagnose cardiovascular diseases (CVDs) ac-

curately to reduce associated risks. While CVDs are a significant cause of concern, they can be

treated and prevented with appropriate measures [18].

This study targets the impact and utilization of various AI models for ECG analysis along with

other vital cardiac parameters. Therefore, one can say that this study is covering the combination

of most of the vital parameters for the diagnosis/prognosis of specific heart maladies including

different types of Arrhythmia. Physicians have shown substantial interest in the progress made

in the domain of computational intelligence, specifically in machine learning (ML) and deep

learning models. This has led to the development of integrated, reliable, and powerful methods

to elevate the standards of healthcare within the crucial domain of cardiology. While deep learn-

ing techniques have gained attention in smart cardiology, it is evident that hybrid approaches are

likely to yield more reliable outcomes instead of relying solely on specific AI models.

1.2 Research Motivation

The high prevalence of cardiovascular diseases (CVDs) and their associated mortality rates have

been a major concern for healthcare professionals worldwide, including in Pakistan. The World

Health Organization (WHO) has confirmed that CVDs are responsible for approximately 80%

of sudden deaths, and it is projected that approximately 23.6 million individuals will succumb

to mortality due to heart ailments by 2030 [13]. In Pakistan, an estimated 30-40% of all deaths

are attributed to CVDs, which amounts the lives of approximately 200,000 individuals annu-

ally. According to certain statistics coronary heart disease emerges as the primary contributor to

mortality [56]. Despite the advancements in medical science, the diagnosis of CVDs in Pakistan

primarily relies on the assessment of physicians. However, the lack of AI-aided cardiac care

units in Pakistan prevents doctors from fully exploiting the potential of technology for enhanced

diagnosis and treatment of CVDs. Past studies have predominantly focused on analyzing elec-

trocardiogram (ECG) signals and classifying arrhythmias, neglecting other significant cardiac

parameters that could contribute to diagnosing various cardiovascular diseases (CVDs). Several

studies have predicted five arrhythmia classes using only ECG, including Shadmand et al. [14],

Raj et al. [12], Pengfei Li et al. [10], Azariadi et al. [8], Houssein et al. [44], Li et al. [45],

and Mohonta et al. [47]. Three arrhythmia classes were predicted in [46]. However, since car-
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diology is a vast field, it is crucial to explore the impact of other vital indicators in diagnosing

CVDs. Hybrid approaches have been investigated in various studies to improve the accuracy of

disease detection. As an example, Elhaj et al. [9] presented a hybrid approach for the detection

of five arrhythmia classes, while Mathews et al. [22] used a hybrid technique to detect two CVD

classes. Rai et al. [25] proposed an innovative hybrid approach for the automated identification

of three distinct categories of cardiac arrhythmias Jackins et al. [41] also used a hybrid machine

learning approach, combining Naive Bayes (NB) and Random Forest (RF) algorithms for the

classification of datasets pertaining to various medical conditions including diabetes, cancer,

and coronary heart malady.

Despite some studies attempting to incorporate additional parameters beyond ECG to predict

CVDs, their success has been limited [15, 33]. For example, Wolterink et al. [15] put forward

a deep learning framework that combined ECG and non-ECG features, but the results were

not significantly better than those obtained using ECG alone. Similarly, Subhadra et al. [33]

proposed a neural network approach with additional features such as age, gender, and medical

history, but the model accuracy was not improved significantly. However, the hybrid model

proposed in [36] successfully detected five types of arrhythmia based on both ECG and heart rate

(HR), demonstrating that incorporating HR as an additional parameter can improve the accuracy

of arrhythmia detection. Additionally, it is also observed that most of the available ECG datasets,

like MIT-BIH Arrhythmia Database [49], Challenge ECG dataset [50], PTB Diagnostic ECG

Database [51], for predicting cardiovascular diseases (CVDs) do not incorporate other crucial

cardiac parameters of the patient, limiting the accuracy and effectiveness of CVD prediction

models. Therefore, it is essential to explore the impact of other vital indicators beyond ECG

and incorporate them into hybrid approaches to enhance the accuracy of CVD diagnosis.

Unfortunately, there is currently no AI-aided Cardiac Care System available in Pakistan that

can assist doctors in making quick and accurate diagnoses. Despite having access to the latest

medical machinery [52], [53], such as ECG, ECHO, Angiography, and Angioplasty, we heavily

rely on cardiologists for prognostic and diagnostic tasks. This dependency on cardiologists be-

comes particularly problematic in remote regions with limited access to medical professionals.

Thus, the integration of AI in healthcare holds the potential of transforming the diagnosis and

treatment of CVDs. AI-based systems can accurately diagnose and classify different types of

CVDs, including coronary artery disease, arrhythmias, heart failure, and other unexplored heart

maladies. This would significantly reduce the workload of cardiologists and enable them to fo-

cus more on treatment and patient care. Moreover, shifting to a ubiquitous healthcare mode [43]
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could help promote cardiovascular healthcare and reduce the high incidence of sudden deaths

due to CVDs.

1.3 Problem Statement

Cardiovascular diseases (CVDs) have a high prevalence and associated mortality rates, making

them a significant concern for healthcare professionals worldwide, including in Pakistan. De-

spite the advancements in medical science, the diagnosis of CVDs in Pakistan primarily relies

on the assessment of physicians, and there is a lack of AI-aided cardiac care units in the country.

This prevents doctors from fully exploiting the potential of technology for enhanced diagnosis

and treatment of CVDs. Additionally, past studies have predominantly focused on analyzing

electrocardiogram (ECG) signals and classifying arrhythmias, neglecting other significant car-

diac parameters that could contribute to diagnosing various CVDs. Furthermore, most available

ECG datasets for predicting CVDs do not incorporate other crucial cardiac parameters of the pa-

tient, limiting the accuracy and effectiveness of CVD prediction models. Therefore, the problem

addressed in this thesis is the need to develop an AI-aided cardiac care system that incorporates

additional vital indicators beyond ECG to accurately diagnose and classify different types of

CVDs, including coronary artery disease, arrhythmias, heart failure, and other unexplored heart

maladies. This system can significantly reduce the workload of cardiologists and enable them

to focus more on treatment and patient care, particularly in remote regions with limited access

to medical professionals. Moreover, this thesis proposes exploring the impact of other vital

indicators beyond ECG and incorporating them into hybrid approaches to enhance the accu-

racy of CVD diagnosis. By addressing this problem, this thesis aims to promote cardiovascular

healthcare and reduce the high incidence of sudden deaths due to CVDs in Pakistan.

1.4 Research Objectives

The primary goals of the research being conducted are as follows:

• To develop an AI model for a hybrid combination of CCU parameters and ECG analysis.

• To predict maximum number of cardiovascular diseases and arrhythmia classification us-

ing appropriate AI techniques.

• To integrate ECG along with other parameters.
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• To develop and implement an AI-based cardiac solution in Pakistan for the accurate di-

agnosis and classification of various cardiovascular diseases. The introduction of such a

system has the potential to revolutionize the healthcare industry in Pakistan.

1.5 Novelty and Contributions

Some significant contributions made by the conducted study are mentioned below:

• A hybrid computational model has been developed to perform an analysis of the maxi-

mum non-invasive cardiac parameters (five).

• A novel dataset has been developed consisting of ECG along with other vital cardiac

parameters. The inclusion of additional cardiac parameters alongside ECG data in the

dataset can potentially enhance the quality and scope of cardiac analyses and aid in the

development of improved diagnostic and prognostic models.

• The model has been designed to accommodate a significant number of cardiovascular and

non-cardiovascular conditions (seven).

• The model proposed in this study has been employed for the classification of a wide range

of cardiovascular diseases (thirteen CVDs) using the novel dataset.

1.6 Research Scope

This study focuses on the impact and utilization of AI models for ECG analysis, as well as other

vital non-invasive parameters, in the Cardiac Care Unit. These parameters include tempera-

ture, systolic and diastolic blood pressure, oxygen saturation, ECG, and heart rate. Therefore,

this study covers a combination of essential parameters for diagnosing and prognosing specific

heart conditions, including various types of arrhythmia. However, it does not involve acquiring

invasive parameters. Single-lead recordings are used for ECG analysis in our study. In this

research study, we specifically address instances of high blood pressure, as it is considered a

more life-threatening scenario for cardiovascular patients based on discussions with cardiolo-

gists. Additionally, for high and low heartbeats, we treated them as a single case of "abnormal

heart rate".
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1.7 Thesis Outline

The subsequent chapters of the thesis are organized as follows:

• "Literature Review" explains the work done in AI-aided Cardiac Healthcare from 2016

till 2022. The categorical research done in the field of Cardiac Care by using different

Machine Learning and Deep Learning methodologies is presented in intricate detail.

• "Methodology" describes the proposed model for ECG analysis, arrhythmia detection and

prognosis/diagnosis of heart maladies using other vital parameters in detail. It also ex-

plains different datasets, data pre-processing steps, and development of the Hybrid model.

• "Results & Discussion" elaborates the working of our proposed model by using different

graphical representations and evaluation measures.

• "Conclusion" summarises brief description of this research work along with possible tasks

that can be carried out in later stages for further research purpose.

The upcoming chapter 2 provides a comprehensive overview and critical analysis of prior studies

in this field.
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Literature Review

A comprehensive review of the available literature on AI-based cardiac healthcare from 2016

to 2022 is presented in this chapter. Specifically, it examines and compares different ma-

chine learning and deep learning models to predict and classify various cardiovascular diseases

(CVDs). In Section 2.1, various studies that employ machine learning models for CVDs pre-

diction are discussed, while Section 2.2 focuses on deep learning models. Section 2.3 discusses

some hybrid approaches whereas Section 2.4 presents a critical analysis of the past studies in

the field of AI-based cardiac care, highlighting their strengths and limitations.

2.1 Machine Learning Models in Predictive Cardiac Care

Machine learning (ML) is a specialized branch of artificial intelligence (AI) that utilizes so-

phisticated statistical models and advanced computational techniques to facilitate precise and

efficient analysis of data. This powerful tool enables computers to perform complex tasks, such

as pattern recognition and anomaly detection, with remarkable accuracy and speed.

The study presented in the research conducted by Saxena et al. [13] centers around the de-

velopment of an Efficient Heart Disease Prediction System using a Decision Tree approach.

This system aims to provide valuable assistance to medical professionals by facilitating efficient

decision-making based on specific parameters. To train and evaluate the system, the researchers

employed a 10-fold technique, attaining an accuracy level of 86.7% during the testing stage and

87.3% during the training stage. The proposed system generates a set of prioritized rules, in-

cluding Original Rules, Pruned Rules, Rules without duplicates, Classified Rules, Sorted Rules,

and Polish, thereby enhancing its overall functionality.
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The methodology proposed by Raj et al. [12] introduces a PSO-tuned SVM model for cardiac

signal analysis. The study focuses on feature representation using symmetrical features, which

leads to improved accuracy. In the category-based assessment scheme, the implemented ap-

proach attained an outstanding accuracy of 99.18%, highlighting its remarkable performance.

while in the patient-based assessment scheme, it attained an accuracy of 89.10% when assessed

using the MIT-BIH arrhythmia dataset. Another study conducted by Li et al. [11] introduces a

method that combines wavelet packet entropy (WPE) with random forests (RF) for the catego-

rization of ECG records. The primary emphasis of the research lies in the extraction of distinc-

tive features and the classification process applied in the ECG analysis, employing the publicly

available MIT-BIH dataset. Furthermore, Azariadi et al. [8] devised a computational algorithm

for the examination and categorization of electrocardiogram data, specifically focused on di-

agnosing heartbeats, and successfully implemented it on an embedded platform based on the

Internet of Things (IoT) technology. The algorithm employed the Discrete Wavelet Transform

(DWT) to analyze the ECG and utilized a Support Vector Machine (SVM) for classification.

The study reported a remarkable classification accuracy of 98.9%.

In the paper by Sahoo et al. [20], an enhanced algorithm is presented for the feature detection

of QRS complex through the utilization of multi-resolution wavelet transform. The objective of

this algorithm is to categorise four different kinds of ECG beats: normal (N), left bundle branch

block (LBBB), right bundle branch block (RBBB), and Paced beats (P). Features extracted from

the QRS complex are employed for the classification of cardiac abnormalities. Both a neural

network (NN) and a support vector machine (SVM) classifiers are employed to accomplish the

classification task. The effectiveness of this framework is assessed using a set of 48 ECG signals

extracted from the MIT-BIH arrhythmia dataset. Performance evaluation measures, including

sensitivity, specificity, and accuracy, are utilized to assess the algorithm’s efficacy. The results

demonstrate that the SVM classifier outperforms the NN classifier, with an average accuracy

of 98.39% for SVM and 96.67% for NN. The proposed method shows superior performance in

detecting ECG arrhythmia beats compared to the NN classifier with extracted parameters.

Nguyen et al. [23] introduced a technique for identifying shockable rhythms utilizing SVM,

a machine learning algorithm. The algorithm is trained and tested on publicly available elec-

trocardiogram (ECG) databases. The study incorporates two distinct databases: the Creighton

University Ventricular Tachyarrhythmia Database (CUDB) & the MIT-BIH Malignant Ventric-

ular Arrhythmia Database (VFDB). The proposed algorithm was evaluated on the complete

database, resulting in an average accuracy of 95.9%, sensitivity of 91.7%, and specificity of
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96.8%. Another study conducted by Yang et al. [28] aimed to extract features from noisy ECG

signals using the principal component analysis network (PCANet). The classification speed was

improved by employing a linear support vector machine (SVM). A set of experiments was car-

ried out on the MIT-BIH arrhythmia dataset, focusing on five categories of imbalanced ECG

signals that were also noise-free. The algorithm proposed in the study achieved accuracies of

97.77% and 97.08% for the respective scenarios.

In the paper [26], a method for automated ECG signal classification is proposed. The proposed

approach aims to develop a robust classifier model for the categorization of ECG recordings

by employing the least-square twin-SVM algorithm and a feature set. The implementation of

the classifier involves the utilization of the radial basis function (RBF) kernel. The method’s

evaluation includes both category-based and personalized schemes, with validation performed

on the MIT-BIH ECG dataset. The experimental findings demonstrate notably higher overall

accuracy. An accuracy rate of 99.21% was achieved in the category-based approach, while the

personalized approach yielded an accuracy rate of 90.08%.

The research article by Raj et al. [37] introduces a novel methodology for real-time monitoring

of ECG signals. The proposed methodology uses discrete wavelet transform (DWT) for feature

extraction from heartbeats. These extracted features are combined with a Twin Support Vector

Machines (TSVM) classifier, fine-tuned using Particle Swarm Optimization (PSO), for accurate

recognition. The TSVM classifier demonstrates a significant improvement in speed, outper-

forming the standard SVM classifier by four times. Additionally, the PSO technique gradually

optimizes the classifier parameters, leading to enhanced accuracy. The methodology is vali-

dated on the Physionet dataset, comprising 16 categories of ECG signals. When an abnormality

is detected, the system generates a warning message as a notification. The proposed platform

achieves an impressive overall accuracy of 95.68%, surpassing the performance of previous

studies in this field.

2.2 Deep Learning Models in Predictive Cardiac Care

In the past few years, there has been a growing trend of utilizing deep learning models to var-

ious aspects of cardiac care, including diagnosis, risk prediction, and treatment planning. The

ability of deep learning models to analyze and process large volumes of medical images, ECG

signals, and clinical data has shown great potential in improving the accuracy of cardiac disease

detection and prediction, as well as optimizing treatment plans. Despite their promising results,
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deep learning models still face some challenges in the context of cardiac care, such as the lack

of sufficient high-quality data and interpretability.

Li et al. [10] implemented a GPU-based heartbeat classification method in their paper. The

researchers utilized a parallel DOM (Document Object Model) for extracting heartbeat features

and a parallel GRNN (Generalized Regression Neural Network) for classifying the heartbeats.

The accuracy achieved on the MIT-BIH dataset, following the AAMI (American Association of

Medical Instrumentation) standard, was 95%. When the approach was applied to real patient

holter data, the classification accuracy was found to be 88%. In a different study conducted

by Shadmand et al. [14], the focus was on classifying ECG heartbeats into five types based

on the AAMI recommendation. They utilized a Block-based Neural Network (BBNN) as the

classification model, where a feature vector extracted from the ECG signals was utilized as

input. Through performance evaluation conducted on the MIT-BIH arrhythmia database, an

exceptional classification accuracy of 97% was achieved.

Wolterink et al. [15] they introduced a novel approach for the automated scoring of coronary

artery calcium (CAC) in coronary CT angiography. This method leveraged convolutional neural

networks (CNN) to accomplish the task. Unlike existing methods that require coronary artery

extraction, this approach employed a supervised learning technique to directly detect and mea-

sure coronary artery calcium (CAC). The study incorporated cardiac CT examinations from

250 patients, achieving sensitivity of 71% for the developed model. The study discussed in [16]

aimed to implement a deep learning (DL) technique that is simple, reliable, and easily applicable

for classifying different cardiac conditions. To evaluate the efficacy of the proposed approach,

three distinct conditions of ECG waveforms were chosen from the MIT-BIH ECG dataset. The

highest achieved accuracy rate for correct recognition reached 98.51%, while the testing phase

exhibited an approximate accuracy of 92%.

In the study conducted by Sahoo et al. [19], a method was proposed to detect and extract in-

formative features for the classification of six types of ECG beats collected from the MIT-BIH

arrhythmia dataset. The extracted feature set was then subjected to classification using proba-

bilistic neural network (PNN) and radial basis function neural network (RBF-NN) to identify ar-

rhythmia beats. The achieved classification accuracy for the arrhythmia conditions was 99.54%

with PNN and 99.89% with RBF-NN. Likewise, Oh et al. [24] proposed an automated approach

in their research paper that combined a convolutional neural network (CNN) and long short-term

memory (LSTM) for diagnosing five types of arrhythmia in ECG recordings. The uniqueness of
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their research contribution was the incorporation of ECG segments with varying lengths gath-

ered from the MIT-BIH arrhythmia physiobank dataset. The proposed system demonstrated out-

standing classification capabilities in managing data of varying lengths, achieving a remarkable

accuracy rate of 98.10% through the implementation of a ten-fold cross-validation methodology.

The study presented by Sannino et al. [27] introduced an approach centered around a Deep Neu-

ral Network (DNN) for automatically classifying abnormal ECG beats and distinguishing them

from normal beats. The architecture of the DNN encompassed seven hidden layers, with varying

numbers of neurons in each layer: 5, 10, 30, 50, 30, 10, and 5. The experiments were carried out

utilizing the well-known MIT-BIH arrhythmia dataset. The attained outcomes demonstrated that

the implemented DNN achieved the highest accuracy across all datasets, including the training,

testing, and complete datasets, with values surpassing 99%.

In the research conducted by Hannun et al. [29], a Deep Neural Network (DNN) was intro-

duced for the purpose of classifying 12 rhythm classes. The dataset used in the study comprised

a substantial collection of 91,232 single-lead ECGs obtained from 53,549 patients through am-

bulatory single-lead ECG recording. This dataset served as a valuable resource for the detection

and classification of arrhythmias. The DNN model employed in the research consisted of 34

layers, showcasing a sophisticated architecture. The DNN exhibited promising performance, as

evidenced by an average area under the receiver operating characteristic curve (ROC) of 0.97.

Moreover, the proposed DNN attained an average F1-score of 0.837, surpassing the average F1

score of 0.780 achieved by cardiologists. Additionally, the DNN demonstrated higher sensitiv-

ity compared to the average cardiologists across all arrhythmia classes. It is noteworthy that the

proposed model exhibited relatively high complexity.

The research study described in [30] Lin et al. proposed a framework for cardiac disease di-

agonosis and single-lead ECG analysis. The system comprised an IoT-based hardware on the

front-end, sensors, a smart device application interface, a cloud database, and an AI platform

utilizing a CNN model for the analysis of abnormal ECG recordings and the diagnosis of four

specific types of arrhythmia. The accuracy of the system was reported to be 95.73%. The system

was evaluated using the MIT-BIH dataset. In this methodology, the encoded data was accom-

panied by time stamps and stored on both local mobile devices and a cloud storage server. The

system also allowed for the retrieval of a patient’s history. However, it should be noted that

to improve and train the model, a more extensive dataset from various clinical sources would

be required. Additionally, it was acknowledged that certain types of arrhythmia could not be
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analyzed by this particular system.

The research presented in Subhadra et al. [33] introduced a diagnostic system using a Multi-

layer Perceptron Neural Network with Back-propagation (MLPNN-BP) as the training algo-

rithm. The goal of this work was to formulate a system capable of predicting five categories of

heart diseases. The diagnostic system utilized 14 significant attributes, including blood pressure

(BP), ECG readings, glucose levels, cholesterol levels, chest pain, and others, based on relevant

medical literature. The proposed system was evaluated and compared with other classification

techniques, revealing that it surpassed alternative approaches in the accurate prediction of the

heart maladies. The CVD dataset utilized in the research was acquired from the UCI Repository.

Cardiac attack, particularly Myocardial Infarction (MI), is a prevalent cardiac condition charac-

terized by the obstruction of one or more coronary arteries. In the study conducted by Alghamdi

et al. [34], an automated framework was introduced for the diagnosis of MI signals within

the context of urban healthcare in smart cities. The proposed system utilized a Convolutional

Neural Network (CNN) and was tested using the Physikalisch-Technische Bundesanstalt (PTB)

standard ECG dataset. The framework achieved a remarkable accuracy of 99.02% in accurately

detecting MI signals. The CNN network implemented in the proposed method comprised six

convolutional layers, three pooling layers, two fully connected layers, and concluded with one

softmax layer, thus totaling 12 layers. Notably, the proposed method demonstrated excellent

performance in detecting MI signals even in the presence of noise within the ECG beats.

In the study conducted by Ribeiro et al. [38], a methodology was presented that involved training

a Deep Neural Network (DNN) model by utilizing a dataset comprising over 2 million labeled

examinations acquired from the Telehealth Network of Minas Gerais (TNMG) as part of the

CODE study (Clinical Outcomes in Digital Electrocardiology). The DNN model exhibited ex-

cellent performance, outperforming the ability of cardiology resident physicians in accurately

detecting and classifying six distinct abnormalities present in 12-lead ECG recordings. The

model achieved F1 score exceeding 80% and the specificity above 99%. In Grogan et al. [40],

a DNN model was developed for the identification of cardiac amyloidosis (CA) using standard

12-lead electrocardiograms (ECG). In the study, experiments were performed using subsets of

single-lead and 6-lead ECG data. The single-lead model with the best performance exhibited

an AUC of 0.86 and a precision of 0.78, while the performance of other single leads was com-

parable. On the other hand, the 6-lead model, specifically utilizing bipolar leads, achieved an

AUC of 0.90 and a precision of 0.85. Mehmood et al. [42] proposed a method named Cardio-
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Help for heart failure (HF) prediction, employing convolutional neural networks (CNN). The

implemented model achieved an accuracy of 97% in HF prediction. These studies collectively

demonstrate the effectiveness of DNN models in cardiac diagnosis and prediction, surpassing

human performance in certain tasks and showcasing high accuracy levels.

The investigation carried out by Houssein et al. [44] had the objective of automating the en-

hancement of parameters in Convolutional Neural Networks (CNNs) for the classification of

electrocardiogram (ECG) data. The researchers proposed a hybrid model named IMPA-CNN,

which integrated an updated version of the Marine Predators algorithm (MPA) with CNN. The

CNN paradigm was employed to classify various types of ECG rhythmias, including non-

ectopic (N), ventricular ectopic (V), supraventricular ectopic (S), and fusion (F). To evaluate

the performance of various optimization approaches, the study conducted experiments using

well-known datasets such as the MIT-BIH ECG database, European ST-T dataset, and St. Pe-

tersburg INCART dataset. By utilizing the IMPA-CNN hybrid model, the researchers aimed to

enhance the accuracy and efficiency of ECG classification tasks, leveraging automated parame-

ter optimization techniques.

The article presented by Li et al. [45] introduced an enhanced deep residual CNN to classify

various arrhythmia types. The proposed methodology utilized a CNN architecture consisting of

9 layers. Through experimentation on the MIT-BIH arrhythmia dataset, the proposed system

demonstrated significant performance metrics. Notably, it accquired a sensitivity of 94.54%,

positive predictive value of 93.33%, and specificity of 80.80% specifically for normal cases.

The study classified arrhythmias into 15 classes based on the AAMI standard and grouped them

further into 5 parent classes: normal (N), Supraventricular Ectopic beat (SVEB), Ventricular

Ectopic beat (VEB), Fusion beat (F), and Unknown beat (Q). The objective was to accurately

classify ECG recordings based on these arrhythmia categories using the developed deep residual

CNN model.

The research paper presented by the authors in [46] introduced an automated approach for

studying cardiac arrhythmias utilizing a 2D-CNN-LSTM model with 20 layers. The proposed

methodology involved transforming the 1D ECG signal into 2D Scalogram colored images to

create an optimal input for the network. In this hybrid model, the CNN component was lever-

aged for effective feature engineering, while the LSTM component was utilized for accurate

classification. Preliminary results obtained from the MIT-BIH dataset demonstrated the supe-

rior efficacy of the proposed paradigm compared to other existing methods. The 2D-CNN-
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LSTM model showcased improved performance in terms of efficiency and accuracy in the

classification of cardiac arrhythmias. In another study conducted by Mohonta et al. [47], an

8-layer 2D-CNN model was introduced for classifying five types of arrhythmic beats employ-

ing ECG measurements from the MIT-BIH arrhythmia dataset. To generate the scalogram of

short-length ECG segments, the authors utilized continuous wavelet transform (CWT). The de-

veloped model showcased remarkable mean accuracy, sensitivity and specificity with values of

99.65%, 98.87%, and 99.85% respectively.

2.3 Hybrid Models in Predictive Cardiac Care

The application of hybrid AI models in predictive cardiac care has shown promising results

in improving patient outcomes. These models combine different Artificial intelligence (AI) ap-

proaches like machine learning, deep learning, and rule-based paradigms are utilized to examine

vast amounts of data and identify patterns and trends that can be used to predict the risk of car-

diac events in patients. In general, the utilization of hybrid AI models within predictive cardiac

care holds tremendous potential for a groundbreaking transformation in the approaches to di-

agnosing and treating cardiovascular conditions thus leading to better patient outcomes and a

reduction in healthcare costs.

The research article presented by Elhaj et al. in [9] introduces an effective system for ECG

arrhythmia classification. This system combines two unique classifiers, namely SVM-RBF and

NN, in a hybrid fashion. A series of experiments conducted on the proposed framework demon-

strated that when PCA-DWT, ICA, and HOS models for feature extraction were combined with

SVM-RBF and NN, it resulted in equal mean accuracy, sensitivity, and specificity of 98.9%.

The study focuses on analyzing five categories of arrhythmia by utilizing the MIT-BIH ECG

dataset. In a related work discussed in the article by Mathews et al. [22], a hybrid framework

is presented based on the utilization of Restricted Boltzmann Machine (RBM) and deep belief

networks (DBN) for the categorization of single-lead ECG recordings. Experimental evalua-

tions on the MIT-BIH dataset reveal that the proposed deep learning framework accquired an

accuracy of 93.78% for SVEB beat category and 96.94% for VEB class. The hybrid model

demonstrates promising performance in the accurate classification of arrhythmias.

In the research article [25], a novel hybrid technique is introduced for the automatic detection

of cardiac arrhythmia. The proposed approach utilizes Multiresolution Discrete Wavelet Trans-

form (MRDWT) for feature extraction, while arrhythmia classification is performed using a
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Multilayer Probabilistic Neural Network (MPNN) classifier. By applying this technique to the

MIT-BIH arrhythmia dataset, accurate detection of LBBB, RBBB, and normal heartbeats are

achieved. The system demonstrates an impressive overall accuracy of 99.07% using the MPNN

classifier. This innovative approach shows promising results in the accurate identification of

cardiac arrhythmias.

In the research article [36], a comprehensive framework is presented for heartbeat classification,

consisting of two modules: Dynamic Heartbeat Classification with Adjusted Features (DHCAF)

and Multi-channel Heartbeat Convolution Neural Network (MCHCNN). The DHCAF module

utilizes feature engineering techniques, while the MCHCNN module employs a deep-learning

approach. The effectiveness of the proposed framework is assessed using the MIT-BIH-AR

database, with DHCAF achieving an accuracy of 91.4% and MCHCNN achieving an accuracy

of 93%. This model effectively detects and classifies five types of arrhythmia based on ECG

signals and heart rate (HR) information. The combined approach of DHCAF and MCHCNN

offers a promising solution for accurate heartbeat classification.

The research study [41] explores the application of artificial intelligence in disease classifica-

tion, specifically using Naive Bayes (NB) and random forest (RF) classification algorithms.

The study aims to categorize various disease datasets such as diabetes, coronary heart disease,

and cancer, to determine whether a patient is suffering from the respective disease or not. The

Bayesian Classification network achieved an accuracy of 82.35%, while the Random Forest

model attained an accuracy of 83.85% for the coronary heart disease dataset. This research

demonstrates the potential of AI-based classification techniques in accurately diagnosing differ-

ent diseases.

2.4 Critical Analysis

The critical analysis of the past literature presented in sections 2.1, 2.2, and 2.3 provides insights

into the use of various machine learning and deep learning and hybrid techniques in the field

of AI-based predictive cardiac care. As indicated in Table 2.1, the comparative analysis of 32

previous studies (from the year 2016 to 2022) highlights the different AI models employed in

the detection of various cardiovascular diseases (CVDs) using different cardiac parameters.

Previous research has mainly focused on the analysis of electrocardiogram (ECG) signals and

the classification of arrhythmias, while other significant cardiac parameters have been neglected,
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which may contribute to the diagnosis of various cardiovascular diseases (CVDs) [48]. In 2016,

Shadmand et al. [14] proposed a model for the prediction of five arrhythmia classes, while Raj et

al. [12] and Pengfei Li et al. [10] also resulted in the diagnosis of five arrhythmia classes using

ECG as an input parameter. Both studies predicted five arrhythmia classes, but Li et al. [11]

used a machine learning approach, while Pengfei Li et al. [10] used a deep learning approach.

Azariadi et al. [8] resulted in the prediction of two arrhythmia classes, whereas Houssein et al.

[44] predicted four classes, and Li et al. [45] and Mohonta et al. [47] successfully predicted five

classes. Three arrhythmia classes were predicted in [46]. All of the studies mentioned above

used only ECG as an input parameter. Nevertheless, cardiology is a vast field, and it is crucial

to explore the impact of other vital indicators in the diagnosis of CVDs.

In the literature, various studies have explored the use of hybrid approaches to improve the

accuracy of disease detection. For example, Elhaj et al. [9] used a hybrid approach to detect

five arrhythmia classes, while Mathews et al. [22] used a hybrid technique to detect two CVD

classes. Rai et al. [25] proposed a novel hybrid technique for the automatic detection of three

cardiac arrhythmia classes. Jackins et al. [41] also used a hybrid machine learning approach,

combining Naive Bayes (NB) classification and random forest (RF) classification algorithms, to

classify several disease datasets including diabetes, coronary heart disease, and cancer.

Although some studies have attempted to incorporate additional parameters beyond ECG to

predict CVDs, they have achieved limited success [15, 33]. For instance, Wolterink et al. [15]

proposed a deep learning-based framework that combined both ECG and non-ECG features,

but the results were not significantly better than those obtained using ECG alone. Similarly,

Subhadra et al. [33] used a neural network-based approach with additional features such as age,

gender, and medical history, but the accuracy of the model was not significantly improved. On

the other hand, the proposed hybrid model in [36] successfully detected five types of arrhythmia

based on both ECG and heart rate (HR). The study demonstrated that incorporating HR as an

additional parameter can improve the accuracy of arrhythmia detection.

Upon analysis, it is evident that most of the previous studies have focused on arrhythmia detec-

tion using electrocardiogram (ECG) analysis on the MIT-BIH dataset. However, there is a lack

of research in the use of other cardiac parameters for the detection of heart maladies. Moreover,

the critical analysis suggests that hybrid models are sometimes used to improve the accuracy

of the AI-based predictive cardiac care system. However, there is a need for more research to

explore the use of hybrid models and their potential benefits in the detection of CVDs.
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In summary, the analysis of past literature indicates that while there have been advancements in

the use of AI-based predictive cardiac care systems, there are still gaps in the research that need

to be addressed. Future research should focus on exploring the use of other cardiac parameters

and the potential benefits of hybrid models to improve the accuracy of the system.
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Table 2.1: Comparative Analysis of Previous Studies

Ref # Year AI Methodology
Prognosis /

Diagnosis Task

Types of

CVDs

Cardiac

Parameter/s

Cardiac

Dataset
Accuracy

[13] 2016 DT Heart Disease N/A N/A UCI 86.7%

[14] 2016 BBNN Arrhythmia 5 ECG MIT-BIH 97%

[9] 2016 SVM-RBF, NN Arrhythmia 5 ECG MIT-BIH 98.9%

[12] 2016 PSO tuned SVM Arrhythmia 5 ECG MIT-BIH 89.10%

[10] 2016 GRNN Arrhythmia 5 ECG MITBIH 95%

[11] 2016 RF Arrhythmia 5 ECG MIT-BIH 94.61%

[8] 2016 SVM Arrhythmia 2 ECG CT 98.9%

[15] 2016 Paired-CNN
Coronary Artery

Calcification
N/A CCTA CT Sens.=71

[20] 2017 SVM Arrhythmia 4 ECG MIT-BIH 98.39%

[19] 2017 RBF-NN Arrhythmia 6 ECG MIT-BIH 99.89%

[16] 2017 DL Arrhythmia 3 ECG MIT-BIH 92%

[23] 2018 SVM Arrhythmia 3 ECG
CUDB

VFDB
95.9%

[28] 2018 SVM Arrhythmia 5 ECG MIT-BIH 97.77%

[26] 2018 Twin LS-SVM Arrhythmia 16 ECG MIT-BIH 99.21%

[25] 2018 MPNN Arrhythmia 3 ECG MIT-BIH 99.07%

[24] 2018 CNN, LSTM Arrhythmia 5 ECG MIT-BIH 98.10%

[27] 2018 DL Arrhythmia 2 ECG MIT-BIH 99.68%

[22] 2018 DBN Arrhythmia 2 ECG MIT-BIH 93.78%, 96.94%
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Table 2.1: Cont.

Ref # Year AI Methodology
Prognosis /

Diagnosis Task

Types of

CVDs

Cardiac

Parameter/s

Cardiac

Dataset
Accuracy

[30] 2019 CNN Arrhythmia 4 ECG
CT

MIT-BIH

94.96%

95.73%

[33] 2019 MPNN-BP Heart Disease 5
ECG, HR, BP,

Glucose, Cholestrol
UCI 94%

[29] 2019 DNN Arrhythmia 12 ECG CT
ROC=97

F1=83.7

[34] 2020 CNN Myocardial Infarction N/A ECG PTB 99.02%

[38] 2020 DNN Arrhythmia 6 ECG TNMG
F1=80

Spec. = 99

[37] 2020 TSVM Arrhythmia 16 ECG
CT

MIT-BIH
95.68%

[36] 2020
DHCAF

MCHCNN
Arrhythmia 5 ECG, HR MIT-BIH

91.4%

93%

[40] 2021 AI Cardiac Amyloidosis N/A ECG MC 90%

[42] 2021 CNN Heart Failure N/A N/A CT 97%

[41] 2021 RF, NB
Coronary Heart

Disease
N/A N/A OR

83.85% (RF)

82.35% (NB)

[44] 2022 MPA-CNN Arrhythmia 4 ECG

MIT-BIH

European ST-T

St. Petersburg INCART

N/A

[45] 2022 DNN Arrhythmia 5 ECG MIT-BIH 88.99%

[46] 2022 2D-CNN-LSTM Arrhythmia 3 ECG MIT-BIH 99%

The following chapter, Chapter 3, presents a detailed overview of the proposed research method-

ology. It outlines the steps that will be taken to ensure the accuracy and validity of the research

findings, and highlights the significance of the chosen approach.
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Methodology

This chapter involves an in-depth discussion of the characteristics of datasets, techniques, and

models used to address the underlying problem. The proposed methodology explains the process

of collecting datasets, including the preprocessing steps, feature extraction techniques, and the

assembling of cardiac parameters. Furthermore, the chapter also elaborates the use of a hybrid

model that combines both Deep Learning and Machine Learning approaches. The frameworks

used during the implementation of the hybrid model are also explained in detail, providing a

comprehensive understanding of the methodology.

3.1 Sequential Workflow Overview

This section outlines the key stages involved in implementing the research study. The first step

is to collect data on five different non-invasive parameters used in cardiac care units (CCUs),

which is obtained from two different datasets. Preprocessing steps are then performed on the

collected data to clean it, including handling missing data, scaling the data, and removing noise

or irrelevant data. The cleaned data is then divided into training and testing subsets with 80:20

ratio, which ensures that the models are trained and tested on different data. For ECG analysis

and arrhythmia classification, a deep learning approach is proposed, given the importance of

ECG analysis in diagnosing arrhythmias and the effectiveness of deep learning in processing

complex medical data. For the other four parameters, machine learning model is used, selected

based on the ability to accurately predict these parameters. The final prediction of cardiovascular

disease depends on the combined predictions made by both the deep learning and machine

learning models, which are then used to make a final diagnosis of the patient’s condition.
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Figure 3.1: Sequential Workflow
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The process flowchart offers a holistic depiction of the sequential stages involved in implement-

ing this research, providing a thorough understanding of the procedural steps. The flow diagram

in Figure 3.1 helps to visualize the sequence of steps involved in this study, from data collection

to final diagnosis, and highlights the critical role played by deep learning and machine learning

models in predicting the patient’s condition.

3.2 Dataset

In the context of predictive cardiac care, two distinct datasets are utilized, and this section aims

to provide a comprehensive explanation of both datasets.

In the proposed model, the CCU parameters are utilized, and their format is presented in Table

3.1. This table provides a comprehensive overview of the specific format that is employed for

these parameters within the proposed model.

Table 3.1: Description of CCU Dataset

Dataset

Attribut Name Attribute Description

ECG Format: Signal

Temperature (T)
Value0: A (Abnormal)

Value1: N (Normal)

Oxygen Saturation (SpO2)
Value0: A (Abnormal)

Value1: N (Normal)

Blood Pressure (BP)

Value0: H (High)

Value1: L (Low)

Value2: N (Normal)

Heart Rate (HR)

Value0: H (High)

Value1: L (Low)

Value2: N (Normal)

Format of T, SpO2, BP, HR: Numeric
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3.2.1 ECG- Dataset 1

An electrocardiogram (ECG) is a diagnostic procedure to analyze the heart’s electrical impulses.

This painless and non-invasive test in which small electrodes are affixed on the chest, arms, and

legs. These small electrodes are capable of detecting the heart’s electrical activity during each

heartbeat and record them as waveforms on a graph. Within the ECG waveform, there are dis-

cernible elements comprising the P wave, QRS complex, and T wave. The P wave signifies

the electrical behavior of the heart’s atria, during their contraction phase, which facilitates the

movement of blood into the heart’s lower chambers called ventricles. The QRS complex refers

to the electrical behavior of the ventricles during their contraction, playing a vital role in pump-

ing blood out of the heart. Finally, the T wave represents the electrical recovery of the ventricles

preparing for the next pulse. Figure 3.2 represents the typical ECG waveform.

Figure 3.2: Typical ECG-Waveform

[35]

ECG tests are usually used to identify a variety of heart maladies, including arrhythmias, heart

attacks, and cardiac arrest etc. By analyzing the patterns and characteristics of the ECG wave-

form, healthcare professionals can determine whether there are any abnormalities in the electri-

cal behaviour of the heart, and develop appropriate treatment plans.

MIT-BIH dataset is used for the analysis of ECG in our proposed model. The MIT-BIH Ar-

rhythmia dataset [49] is a collection of electrocardiogram (ECG) recordings of patients with

various cardiac arrhythmias. It was created by the Massachusetts Institute of Technology (MIT)

and Beth Israel Hospital (BIH) and is extensively used for research purposes. The dataset con-

tains 48 records, each of which includes two ECG signals (double-lead) with a duration of 30
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minutes. The signals are digitized at a sampling rate of 360 Hz and have 11-bit resolution. The

recordings were obtained from patients with a variety of arrhythmia classes, including atrial

fibrillation, supraventricular tachycardia, and ventricular tachycardia. The upper signal in most

records can be observed as a modified limb lead II (MLII) that is acquired through the affixing

of electrodes on chest skin. Whereas, the lower signal is usually a modified lead V1 (though

it may sometimes be V2, V5, or in rare cases V4). Typically, normal QRS complexes can be

easily identified in the upper signal.

Another ECG dataset is the "Challange ECG Dataset". The objective of the 2017 PhysioNet/CinC

Challenge [50] is to promote the creation of computer programs that can categorize a brief elec-

trocardiogram (ECG) single lead recording, lasting between 30 to 60 seconds, based on whether

the recording displays regular heart rhythm, atrial fibrillation (AF), a different rhythm, or if

the recording is too unclear to classify accurately. As we are utilizing only one lead from the

MIT-BIH dataset, we employed two distinct datasets for our testing purposes, namely: 1) the

MIT-BIH ECG Dataset, and 2) the Challenge ECG Dataset consisting of a single lead record-

ing. Table 3.2 displays the various arrhythmia classes sourced from the MIT-BIH ECG database

used in this research study, as well as the corresponding output labels that are expected to be

generated by our proposed model.

Table 3.2: ECG Class Description and Output Labels

Arrhythmia Class MIT-BIH Beat Type Output Label

Normal beat (N) Normal beat N

Supraventricular ectopic beat (S) Atrial premature beat A

Ventricular ectopic beat (V) Premature ventricular contraction V

Fusion beat (F) Fusion of ventricular and normal beat F

Paced beat (P) Paced beat /

Unknown beat (Q) Unclassified beat Q

Preprocessing of ECG-Waveform

Preprocessing is an essential step in analyzing ECG signals, as it can help remove noise and

artifacts, enhance the signal quality, and prepare the data for further analysis. Our proposed

methodology for analyzing ECG signals involves a set of preprocessing steps which are as

follows:
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• Peak Detection: Peak detection involves the process of determining peaks or local maxima

in the ECG signal. Peak detection is an important preprocessing step because it enables

the detection of arrhythmias and other abnormalities in the signal. We used:

scipy.signal.find_peaks()

for this purpose. This function is designed to process a one-dimensional array and identify

all local maxima by comparing each value with its neighboring elements.

• Segmentation: In this step ECG signals are divided into segments, each representing a

single heartbeat consisting of 256 points. The ECG waveform for each subject is 30

minutes long consisting of 660000 samples. We segmented this long signal for each

subject into the chunks of 256 points (i.e one complete PQRST wave) after shuffling the

660000 points for all subjects. Segmenting the ECG signal into individual heartbeats is an

essential preprocessing step for heart rate variability analysis and arrhythmia detection.

Segmented beat is shown in the figure 3.3.

Figure 3.3: ECG Signal Segmentation

• Normalization/Standardization: In normalization/standardization, scaling of the ampli-

tude of the ECG signal is done to a common range. The sklearn.preprocessing package

provides several common utility functions for this purpose [54].

sklearn.preprocessing.scale()

is one of them. It can be used to standardize a dataset along any axis. Thus, each ECG

feature has been transformed to have a mean value of 0 and a standard deviation of 1

along x-axis. This is useful for comparing signals from different patients or for comparing

signals acquired using different devices.
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• Splitting: After the segmentation of the ECG signal we left with 22000 samples. In this

step we split the data into training and testing with the ratio of 80:20 i.e. 18000:4000

samples respectively.

sklearn.model_selection.train_test_split()

We used sklearn splitter as mentioned above for this purpose. By dividing the dataset in

this way, we could ensure that the model was effectively trained and accurately assessed

for its predictive capabilities on new, unseen data.

3.2.2 Additional CCU Metrics-Dataset 2

There are many vital invasive and non-invasive cardiac parameters that can be of great help

in the diagnosis of various cardiovascular diseases. This research study explores the affect of

various non-invasive cardiac parameters in predictive cardiac care along with ECG. In the above

section we have already discussed ECG dataset. This section discusses the various non-invasive

parameters being used in our proposed methodology.

• Temperature is a critical factor in cardiac care because it can affect both the function of the

heart and the body’s response to cardiac treatments. In particular, maintaining the body’s

core temperature within a specific range is essential for ensuring optimal cardiac function

and preventing complications during cardiac procedures. For instance, high body temper-

atures can be problematic in cardiac care. Fever can be a sign of infection or inflamma-

tion, both of which can impair cardiac function and increase the risk of complications. In

some cases, fever may also be a side effect of certain cardiac medications, such as beta-

blockers. Thus, maintaining a stable, healthy body temperature is essential for optimal

cardiac function and successful cardiac treatment outcomes. Typically, a healthy adult is

regarded to have a normal body temperature of approximately 98.6 degrees Fahrenheit

(37 degrees Celsius) when measured orally using a thermometer.

• Oxygen Saturation (SpO2) is a critical measure of cardiac and respiratory function and is

commonly used in cardiac care to monitor the oxygen levels in a patient’s blood. Oxygen

is essential for proper heart and organ function, and a drop in oxygen saturation levels

can be a sign of underlying cardiac or respiratory problems. In cardiac care, oxygen satu-

ration levels are typically monitored using a non-invasive device called a pulse oximeter,

which measures the percentage of hemoglobin molecules in the blood that are carrying
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oxygen. Normal oxygen saturation levels are typically between 95 and 100 percent, and

levels below 90 percent are generally considered low and may require intervention. Low

oxygen levels can be a sign of heart failure, pulmonary embolism, or other serious cardiac

conditions.

• Blood Pressure (BP) is an essential measure of cardiac function and is commonly used

in predictive cardiac care to assess a patient’s risk of developing cardiovascular disease.

Elevated blood pressure, known as hypertension, poses a significant risk for heart disease,

stroke, and other critical cardiovascular conditions. It has the potential to harm blood ves-

sels and organs over time. The unit to measure blood pressure is mmHg and it consists of

two values i.e. for systolic and diastolic pressure. Systolic pressure reflects arterial pres-

sure during heartbeats, while diastolic pressure depicts the pressure between heartbeats

when the heart is at rest. Generally, normal blood pressure is considered to be below

120/80 mmHg, while high blood pressure is equal to or higher than 140/90 mmHg.

• Hear Rate (HR) is an important measure of cardiac function and is commonly used in

predictive cardiac care to assess a patient’s risk of developing cardiovascular disease.

Heart rate is referred to the frequency of heartbeats per minute. In adults, the resting heart

rate is commonly considered to fall within the range of 60 to 100 beats per minute (bpm).

A high resting heart rate is often an indicator of a higher risk of cardiovascular disease,

while a lower resting heart rate is generally considered a positive indicator of cardiac

health. For example, an elevated heart rate at rest can be a sign of an underlying heart

condition such as atrial fibrillation or heart failure, which can increase the risk of stroke

or heart attack.

The dataset2 used in this study is a dataset that initially belonged to a disease Sepsis [55].

We used it for the collection of non-invasive parameters relevant to cardiac health care. To

ensure the most relevant and informative data for our proposed study, we carefully selected and

preprocessed only a subset of the available parameters. This approach allowed us to optimize the

dataset for our specific research objectives and minimize any potential confounding variables.

The table labeled as 3.3 displays the labels associated with different classes of CVD that are

identified based on cardiac parameters other than ECG abnormalities.

Preprocessing of Dataset2:

As previously mentioned, dataset2 was originally intended for sepsis, which meant that prepro-

cessing was necessary to ensure it was suitable for our ML model designed for cardiac care. To
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Table 3.3: CVD Class Description and Output Labels

Sr. # Cardiovascular Disease Label

1 Normal Normal

2 Unknown Unknown

3 Some Other Disease Some_Other_Dis

4 Respiratory Disease Repiratory_Dis

5 Less Likely CDV Less_Likely_CVD

6 Hypertension Hyper_Tension

7 Hypertension/Some Other Disease Hyper_Tension_SO1

8 Hypertension/Some Other Disease Hyper_Tension_SO2

9 Hypertension/Some Other Disease Hyper_Tension_SO3

10 Mitral Valve Prolapse Mitral_Valve_Prolapse

11 Valvular Heart Disease with Vegetation Valular_Heart_Dis_Vegetation

12 Heart Failure Heart_Failure

13 Tetralogy of Fallot Tetralogy_Of_Fallot

14 Coarctation of Aorta Coarctation_Of_Aorta

15 Hypertension Hyper_Tension_HR1

16 Hypertension Hyper_Tension_HR2

17 Decompensated Heart Failure Decompensated_Heart_Failure
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accomplish this, we followed a series of preprocessing steps for dataset2, which are as follows:

• Data Cleaning: The first step in preprocessing dataset2 involved identifying and removing

incomplete and duplicate records, correcting erroneous data entries, and handling missing

data values.

• Data Balancing: This is the process of adjusting the distribution of classes or categories

in a dataset so that they are more evenly represented. For example, in dataset 2 we ob-

served that Blood pressure data was primarily skewed in the sepsis data were primarily

skewed towards low values. So, we used various techniques for data balancing, such as

oversampling, undersampling and generating synthetic data. Data balancing is important

in machine learning and predictive data analysis. Datasets with imbalanced distribution

can result in models that exhibit bias and demonstrate inadequate performance when it

comes to the minority class(es). The skewed dataset initially intended for the Sepsis dis-

ease is visually depicted in Figure 3.4. The graph reveals that the occurrence of Low BP is

substantially high among patients diagnosed with sepsis. Specifically, the figure indicates

a significant frequency of Low BP instances in the dataset, as compared to other medical

indicators. The effectiveness of the Data Balancing techniques applied to the dataset is

illustrated in Figure 3.5. The graph clearly depicts the successful balancing of the dataset,

as the frequencies of the various medical indicators are now evenly distributed. It is ev-

ident from the figure that the dataset is now in a balanced form, which is essential for

accurate and unbiased analysis.

• Normalization: The next step in preprocessing dataset2 involved normalizing the vital

signs, including blood pressure, heart rate, oxygen saturation, and temperature, to a stan-

dard range. By standardizing the vital sign data and adjusting for any irregularities, we

were able to optimize the dataset for our ML model.

• Data Categorization: In this step, we converted the numeric data of dataset2 into cate-

gorical data. This process involved dividing continuous variables into a set of discrete

categories or bins based on specific criteria. Categorization is a useful technique for

simplifying data, making it easier to analyze and visualize. Since dataset2 contained nu-

merical data, there was a need to convert it into categorical data for the classification of

CVDs. By performing data binning, we were able to categorize the data and facilitate the

classification of CVDs using our ML model designed for cardiac care. Figure 3.6 shows

the binning of continuous data into categorical data.
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Figure 3.4: Skewed Dataset

• Label Encoding: Label Encoding is a technique used to transform categorical labels into

numerical values, enabling them to be processed by machine learning algorithms. By

converting labels into a machine-readable format, it allows algorithms to make better

sense of the data and perform more effectively. This preprocessing step is particularly

valuable when working with structured datasets in supervised learning tasks.

• Data Splitting: To assess the performance of the analysis, we partitioned the dataset2

into separate training and testing subsets. This involved splitting the dataset into two

subsets of patient records, with one subset used for training our machine learning model

and the other for testing its performance with the ratio of 70:30. This step was crucial in

optimizing the accuracy and reliability of our ML model designed for cardiac care.

Oxygen Saturation consists of two labels i.e. Normal (N), and Abnormal (A) based upon certain
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Figure 3.5: Balanced Dataset

ranges as shown in the figure 3.7. Figure 3.8 shows the categorization of "blood pressure" into:

Normal (N), High (H), and Low (L). We replaced various numeric ranges of "temperature" with

two categories: Normal (N) and Abnormal (A) as shown in the Figure 3.9. Various numeric

ranges of "heart rate" were replaced with three categories: Normal (N), High (H), and Low (L)

as shown in the Figure 3.10.

3.3 Proposed Model Architecture

Our proposed hybrid model comprises two distinct components: a deep learning model for ECG

analysis, and a machine learning model for the analysis of non-invasive cardiac parameters. In

the following subsections, we provide a detailed architectural discussion of each model.
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Figure 3.6: Categorization of Numeric Data

3.3.1 Deep Learning Model

Deep Convolutional Neural Networks (CNNs) with numerous hidden layers and a vast number

of parameters have emerged as the predominant tool in the realm of Deep Learning (DL). The

appeal of deep learning paradigms lies in their ability to automate feature engineering. In the

context of ECG analysis, these algorithms enable an end-to-end mapping of input signals to var-

ious types of arrhythmias and cardiovascular diseases. This deep learning model is specifically

designed to analyze ECG data, leveraging the power of neural networks for relevant feature ex-

traction and pattern recognition from the input signal. This model is trained by utilizing a huge

dataset of ECG recordings, allowing it to learn complex relationships between different ECG

features and the corresponding cardiac conditions.
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Figure 3.7: Bar Chart for Oxygen Saturation

The primary operations performed by a Deep Neural Network (DNN) include max pooling,

convolution, classification, and non-linearity. In the context of this analysis, the DNN is respon-

sible for extracting temporal features and capturing relevant parameters for the classification

of various arrhythmias. Figure 3.11 gives the pictorial representation of our proposed DNN

architecture.

Now, the details of our proposed DNN architecture are given below:

• Convolution Layer: A 1-D convolutional layer is responsible for applying sliding convo-

lutional filters to a 1-D input. Its purpose is to extract the necessary features and generate

a feature map. By moving the filters along the input, the layer performs convolutions by

calculating the dot product between the weights and the input, and subsequently adding

a bias term. The proposed architecture incorporates five convolutional layers (including

one input layer) for this purpose.

• Activation Function: Activation plays a vital role in neural networks, since it helps deter-

mine the significance of the information received by a neuron. Its function is to decide

whether the received information is valuable or should be disregarded. In this research,

the Rectified Linear Unit (ReLU) is employed which is a non linear activation function.

ReLU introduces non-linearity by deactivating some of the neurons with the values below

zero.
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Figure 3.8: Bar Chart for Blood Pressure

Y = ReLU(
n∑

i=1
(Wi ∗ Xi) + b)

where, X are inputs (ECG), W depicts weights and b shows bias whereas Y representing

output value. Note that the Σ symbol denotes summation over all the elements of the input

vector, and the multiplication of the weight and input vectors is represented by (W*X)

and the dot product of W and X is obtained by taking the summation of the element-wise

product.

• Batch normalization: The characteristics of the previous layer’s parameters can have a

substantial influence on the input distribution of the following layer. To address this,

batch normalization plays a crucial role by normalizing the output of the preceding layer.

It serves as a regularizer to prevent overfitting by estimating the mean and variance of

input batches and subsequently normalizing, scaling, and shifting them. This particular

study, batch normalization is implemented after applying the activation function. The

batch normalization can be calculated as follows:

For each batch of size m: Compute the batch mean:

µB = 1
m

m∑
i=1

xi (3.3.1)

Calculate the batch variance:

σ2
B = 1

m

m∑
i=1

(xi − µB)2 (3.3.2)
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Figure 3.9: Bar Chart for Temperature

Normalize the batch:

x̂i = xi − µB√
σ2

B + ϵ
(3.3.3)

Scale and shift the normalized batch using learnable parameters γ and β:

yi = γx̂i + β (3.3.4)

where xi is the input to the i-th neuron in the layer, x̂i is the normalized input, yi is the

output of the i-th neuron after scaling and shifting, µB is the mean of the batch, σ2
B is the

variance of the batch, ϵ is a small constant (0.001) added for numeric stability, and γ and

β are learnable parameters used to scale and shift the normalized input.

• Max pooling: In this study, max pooling is employed as a technique for reducing the

dimensionality or downsampling of input matrices. It involves dividing the input into non-

overlapping distinct patches and applying a maximum filter to each sub-region, selecting

the highest value within each sub-region.

• Optimization Function: Optimization techniques are used to calculate the weights for

your model. They update the weights in the learning process until you reach towards your

desired output. We used Adam [17] in out architecture.

• Softmax layer: In the context of a multi-class classification task, the softmax layer is

utilized to calculate the probability of an event occurring across n distinct events. It cal-

culates the probability distribution associated with each desired class within the entire set
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Figure 3.10: Heart Rate Categorization

of classes, assigning values between 0 and 1. These probabilities are subsequently utilized

to determine the target class with the highest likelihood for a given input.

• Dense Layer/Classification layer: These are the feed forward neural networks. The first

dense layer collects the data from the last convolution Layer to compute the classification

and the last dense layer i.e. classification layer provides the final probabilities calculated

for each label. In other words, it is used for classifying different categories. The proposed

model consists of five dense layers.

• Dropout Regularization: During the training of the model, overfitting is a common chal-

lenge that can occur. To address this issue, dropout regularization is employed, which

involves randomly deactivating certain nodes within the network and reducing interde-

pendencies among them. In our model, a dropout rate of 50% was applied before the final

fully connected layer to mitigate overfitting.

• Cost Function: The cost function evaluates the dissimilarity between the provided test

sample and the predicted output, serving as a metric for assessing the proficiency of the

neural network. By employing an optimizer function, the cost function is minimized to

enhance the network’s performance. In the realm of deep learning, various forms of cross-

entropy functions are commonly utilized to minimize the cost function and optimize the

network’s training process. Mathematically, the cost function L can be defined as:
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Figure 3.11: Architecture of Proposed DNN

L = −
n∑

i=1
yi log(ŷi) + (1 − yi) log(1 − ŷi)

where L is the cross-entropy loss, y is the true label (either 0 or 1), ŷ is the predicted label

(a value between 0 and 1), and n is the number of examples. In this equation, the first

term evaluates the error when 1 is the true label, whereas, the second term measures the

error when the true label is 0. The logarithm function is used to penalize the paradigm

more severely when the difference is higher between the predicted label and the true label,

as the logarithm function grows very quickly as its argument approaches zero. Using an

optimizer function (Adam in our case) with a learning rate, we can minimize the cost

function.

The specific setup information of the proposed architecture is presented in the table 3.4, eluci-

dating the configuration details:

Figure 3.12 provides the summary of our proposed deep learning architecture.

The next section describes our machine learning model in detail.
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Table 3.4: Proposed Architecture Configuration

Convolutional Layers

5 Layers

3 (with 5*5 filters & (128) feature maps

2 (with 3*3 filters & (128) feature maps

Max Pooling 2 (with stride of 1)

Dropout 0.5

Learning Rate 0.001

Training Algorithm Adam

Activation Function ReLU

Batch Size 256

Dense Layers 5 Layers (along with one classification layer)

Dataset Distribution 80:20

No. of Epochs 100
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Figure 3.12: Summary of Proposed Architecture
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3.3.2 Machine Learning Model

The machine learning model is applied to non-invasive cardiac parameters that are typically

measured in a clinical setting, such as blood pressure, heart rate variability, oxygen saturation,

and temperature. This model is used to analyze these parameters and predict various cardiac

conditions based upon above mentioned parameters. After the preprocessing of the non-invasive

parameters as discussed in subsection 3.3.2 the ML model was employed.

We used Decision Tree (DT) for the prediction of various CVDs depending upon non-invasive

parameters. Decision trees are a popular and tool in machine learning and data mining. They

provide an intuitive and visual representation of decision-making processes and are useful for

solving classification and regression problems. Decision trees are well-suited for various ap-

plications as they can effectively handle both categorical and numerical data. One notable ad-

vantage of decision trees lies in their interpretability, enabling users to comprehend and clarify

the inherent decision-making procedure. This ML model is used for the classification of seven

CVDs. Furthermore, this model also provides some additional information if the patient is not

suffering from any heart malady.

3.3.3 Hybrid Architecture

Based on the factors outlined below, it was necessary to adopt a hybrid model:

• The ECG data and other related parameters were not available for the same patient during

the data collection process. This unfortunate circumstance may limit the scope of the

analysis and conclusions that can be drawn from the available data.

• Additionally, It is important to highlight that the two datasets employed in this study were

not of the same type, namely the ECG dataset and the Sepsis dataset. This difference in

dataset types may have implications for the analysis and interpretation of the results.

• The dataset for other medical indicators is relatively straightforward and could be handled

using a simple machine learning model. Given the nature of this dataset, it may not require

complex algorithms or techniques to yield meaningful insights.

By combining the two models as described in section 3.3.1 and 3.3.2 , our proposed hybrid

approach offers a comprehensive and accurate analysis of cardiac health, providing clinicians

and researchers with a powerful tool for diagnosis and prognosis.
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Figure 3.13: Architecture of the Proposed Hybrid Model
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Figure 3.13 shows the architecture of our proposed hybrid model. Deep Learning (DL) frame-

work presents the complete working of Arrhythmia classification through 10 layers presented

in Table 3.4 and visualized through Figure 3.11. In this study, the ECG waveform sequence

data, with dimensions of 256X256, is inputted into a sequence input layer. The input features

undergo processing through the first 1-D convolutional layer, which employs 128 filters of size

5X5, with "same" padding and a stride of 1. Convolutional layers 4 & 5 employe 128 filters of

size 3X3 with a stride of 1. This convolutional operation generates output data values. Subse-

quently, the ReLU function is applied to add non-linearity to the output. The ReLU function,

represented by Equation (a), assigns values in the range of 0 to 1 and helps in the deactivation

of the neurons with values lower than zero. Next hidden layer performs Max Pooling. Here we

have taken the pool size =10 with stride 1 for first pooling layer and pool size of 5 with stride 1

for second Max Pooling layer. In addition, the extracted features from five convolutional layers

are fed into five fully connected layers to classify the data. To address overfitting, a dropout of

50% is applied, which randomly deactivates nodes during training to enhance generalization.

The resulting values are then passed to the final classification layer, functioning similarly to an

Artificial Neural Network (ANN). Subsequently, the data is processed by the Softmax activation

function, enabling multi-class classification by determining the probability distribution of events

among a set of ’n’ distinct events. This function assigns probabilities to each target class within

the set, with values ranging from 0 to 1. To identify the target class with a higher likelihood, we

use these probabilities thus enabling the classification of six different beat types: N, V, A, F, /,

and Q as discussed in table 3.2.

Our machine learning model which is a Decision Tree in our case takes four parameters as

an input that have already passed through various preprocessing steps. The machine learning

model classifies the data into 17 different classes including CVDs and non-CVDs classes. It is

capable of predicting 12 classes related to 8 CVDs and 5 other classes. Arrhythmia disorder will

be identified by the DNN using ECG. In, case the ECG is normal, the heart abnormality will

be predicted by our proposed ML model as described in the figure 3.13. The proposed model

exhibits higher recall performance and is characterized by enhanced user-friendliness, making

it a favorable option for implementation.
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3.4 Evaluation Metrics

In order to quantitatively evaluate the proposed hybrid model, six metrics have been utilized, as

suggested by Bengio (1994) [2]. These metrics have been selected for their ability to assess both

the machine learning (ML) and deep learning (DL) models. The following section describes

each of these metrics in detail:

1. Accuracy: This metric determines the correctly classified samples of the dataset. Accu-

racy is measured in percentage and is therefore a measure of the overall performance of

the model. The formula for accuracy is given below:

Accuracy = True Positives + True Negatives
True Positives + True Negatives + False Positives + False Negatives

2. Precision: This metric measures the number of patients correctly identified by the pro-

posed model, and is therefore an indicator of the model’s predictive power. Precision can

be calculated by the following formula:

Precision = True Positives
True Positives + False Positives

3. Sensitivity: This metric determines the model’s ability to accurately identify the presence

of positive cases in the dataset. Equation of Sensitivity is as follows:

Sensitivity = True Positives
True Positives + False Negatives

4. Specificity: This metric is used to measure the model’s ability to correctly classify nega-

tive samples in the dataset. Mathematically, it can be computed as:

Specificity = True Negatives
True Negatives + False Positives

5. F1-Score: The F1-measure is a commanly employed used metric to assess the effective-

ness of a classifier. It serves as a comprehensive measure by combining precision and

recall through their harmonic mean. By considering both precision and recall, the F1-

score provides a single score that indicates the overall balance between the two metrics.

A higher F1-score reflects a better equilibrium between precision and recall in the model’s

performance. F1-score can be measured as:

F1Score = 2 × Precision × Recall
Precision + Recall
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True positive (TP) refers to the number of correctly diagnosed patients with cardiovascular dis-

eases (CVDs). Conversely, true negative (TN) indicates patients who have been accurately

identified as not having CVD. These two measures (TP and TN) signify precise classification.

In contrast, false positive (FP) denotes the proportion of patients with wrong classification as

having heart malady, while false negative (FN) represents those who have been incorrectly iden-

tified as not having CVD. Both FP and FN indicate classification errors. To assess the perfor-

mance of a classification model in diagnosing cardiovascular disease (CVD), three metrics are

commonly employed: accuracy, sensitivity, and specificity. Accuracy quantifies the proportion

of accurately classified patients, providing an overall measure of the model’s correctness. Sen-

sitivity evaluates the model’s ability to correctly identify actual positive patients, capturing the

proportion of positive cases correctly detected. Conversely, specificity measures the model’s

capability to accurately identify actual negative patients, indicating the proportion of negative

cases correctly recognized. Together, these metrics offer a comprehensive evaluation of the

model’s performance in CVD diagnosis. A higher value for all three metrics indicates better

classification results. It is important to consider the specific objectives of the classification task

when interpreting these metrics. It is essential to prioritize specific objectives, such as identify-

ing all positive patients or minimizing false positives, when interpreting these metrics.

Chapter 4 provides a comprehensive and detailed discussion of the results obtained from various

perspectives.
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Results and Discussion

In this chapter, we present the insights gained from implementing the approaches discussed in

the previous chapter. In Section 4.1, we discuss the significant results obtained from the formu-

lated dataset for non-invasive parameters, including the comparison of different machine learn-

ing (ML) models. We also highlight the results for various evaluation measures, as discussed

in the previous chapter. Section 4.2 focuses on the results of our proposed deep learning (DL)

model for electrocardiogram (ECG) analysis. We present the various results obtained during the

tuning of hyper-parameters, for our proposed DL model. Lastly, in Section 4.3, we elaborate on

the performance of our proposed model. We also discuss all the above results in this section,

which lead to the formation of some significant conclusions.

4.1 Experimental Analysis of Various Machine Learning Models

After formulating and preprocessing the dataset, we divided it into a 70:30 ratio for training and

testing. Subsequently, we applied three state-of-the-art machine learning techniques, namely

Random Forest, Gradient Boosting, and Decision Tree, to our dataset. To evaluate the perfor-

mance of the models, we used various metrics discussed in the previous chapter. Based on our

analysis, we concluded that the Decision Tree classifier outperformed the other models. Our

dataset consists of 17 classes, out of which 12 classes belong to eight cardiovascular diseases

(out of which three are overlapping classes). Whereas, the remaining five are associated with

other diseases, along with the ’Normal’ and ’Unknown’ classes. Whereas Figure 4.1 shows the

classification summary for the Decision Tree classifier and Figure 4.2 illustrates the sensitiv-

ity report. Our dataset yielded an accuracy of 99.9% for the four indicators excluding ECG.
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This suggests that our model is highly effective in predicting these four indicators. Overall,

our findings demonstrate the effectiveness of the Decision Tree classifier for disease classifica-

tion, particularly for cardiovascular diseases. These results have important implications for the

development of predictive models for disease diagnosis and management.

Figure 4.1: Evaluation Results for Decision Tree

Accuracy represents the proportion of correctly classified true positives (TP) and true negatives

(TN) among all samples, making it an intuitive measure of classification effectiveness. Sensi-

tivity, on the other hand, quantifies the rate of missed diagnoses, with higher values indicating

a lower rate of missed positive cases. Similarly, specificity measures the rate of misdiagnosis,

with higher values indicating a lower rate of falsely identified negative cases. When evaluating

the performance of a classification model, it is crucial to consider not only accuracy but also

sensitivity and specificity. These metrics provide a comprehensive understanding of the model’s

ability to correctly classify different sample types and can help identify areas for improvement

in both the model’s design and implementation.
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Figure 4.2: Sensitivity Report for Decision Tree
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4.1.1 Analyzing and Comparing the Performance of Machine Learning Models

In this section, a detailed comparison of three machine learning models is presented. The perfor-

mance of each model is assessed using confusion matrices, which are shown in Figures 4.3, 4.4,

and 4.5, for the Decision Tree, Gradient Boost, and Random Forest classifiers, respectively. The

results demonstrate that Decision Tree achieved the highest accuracy, with a score of 99.9%,

while Random Forest under performed with an accuracy of only 80.1%. These findings provide

valuable insights into the effectiveness of each model in predicting the target variable, and can

inform future research and decision-making in this field.

Figure 4.3: Confusion Matrix for Decision Tree

To compare the performance of three machine learning models, namely Decision Tree, Gradient
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Figure 4.4: Confusion Matrix for Gradient Boost
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Figure 4.5: Confusion Matrix for Random Forest
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Table 4.1: Performance Analysis of Various Machine Learning Algorithms on Dataset

Sr.# Model Sensitivity Specificity Precision Accuracy

1 Decision Tree 0.999917 0.999977 0.998512 0.999720

2 Gradient Boosting 0.999670 0.999906 0.993313 0.998479

3 Random Forest 0.232755 0.985529 NaN 0.801578

Figure 4.6: Comparison Graph for Three Models

Boosting, and Random Forest in predicting cardiovascular diseases (CVDs), we employed four

evaluation metrics, namely precision, accuracy, sensitivity, and specificity.

The results of our analysis are tabulated in Table 4.1 and graphically in Figure 4.6, which dis-

plays the mean values of each metric for each classifier. The horizontal axis signifies the dif-

ferent models, whereas the vertical axis represents the evaluation metric values in the graphical

representation. Our analysis revealed that model Decision Tree performed significantly better

than models Gradient Boost and Random Forest in predicting CVDs. These findings suggest

that Decision Tree may be the best choice for predicting CVDs in this context. Figure 4.7

summarizes the "sensitivity" comparison of the three models.

Section 4.2 elaborates the empirical evaluation of the proposed deep learning model.
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Figure 4.7: Sensitivity Comparison for Three Models
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4.2 Experimental Analysis of the Proposed Deep Learning Model

& Findings

To evaluate the efficacy of the DL paradigm we have proposed, an assessment of its performance

was conducted for classifying six types of beats. A sequence of experiments was carried out on

a particular dataset. We divided the dataset into two portions, by allocating 80% for training

purposes and reserving 20% for testing purpose. We varied hyperparameters, including the

number of layers, learning rate, and number of epochs, to identify the optimal configuration.

After conducting several experiments, we found that a learning rate of 0.001, a batch size of

256, and 100 epochs with a dropout rate of 50% yielded the highest accuracy of 91.59% for

classifying the six types of beats using our proposed DL model with 10-layers. Our model

achieved a precision of 0.928, F1-score of 0.917, sensitivity of 0.986, and specificity of 0.936,

as indicated in Table 4.2. The experimental results provide strong evidence of the efficacy of

our proposed DL model in accurately classifying the six kinds of beats, with high accuracy and

performance measures. The detailed results are shown in Figure 4.8. Whereas, figure 4.9 shows

the training and testing loss.

Figure 4.8: Accuracy Graph during Training of the Proposed Model
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Figure 4.9: Model Loss of the Proposed Model

Table 4.2: Evaluation Metrics for Proposed Model

Proposed Model Accuracy Precision Sensitivity Specificity F1-Score

91.59% 0.928 0.986 0.936 0.917

To check the effectiveness of the proposed paradigm for classifying six types of beats from the

MIT-BIH ECG dataset, we constructed a confusion matrix based on the training results. The

confusion matrix, presented in Figure 4.10, shows the classification results for each beat type

and the number of correct and incorrect classifications.

4.2.1 Hyperparameter Optimization

We obtained the optimal hyperparameters for training our models by leveraging a maximum

test score of 91.59. These hyperparameters included a learning rate of 0.001, 100 epochs, a

batch size of 256, a dropout regularization rate of 0.05, and the Adam optimizer. Table 4.3

shows optimised hyperparameters with different test-scores using different activation functions

and keeping learning rate and batch size constant.
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Figure 4.10: Confusion Matrix for the Proposed Model

Here are some accuracy graphs obtained during the hyperparameter tuning process. Each graph

is accompanied by a descriptive title that summarizes its experimental details.
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Table 4.3: Visualization of Optimal Hyperparameters and Corresponding Test Scores

No. of Layers Learn-Rate Batch-Size Activation-Func Epochs Test-Score (%)

7 0.001 256 Relu 40 89.7

7 0.001 256 Leaky Relu 40 85.99

7 0.001 256 Elu 40 87.18

7 0.001 256 Tanh 40 90.29

7 0.001 256 Relu 100 90.65

10 0.001 256 Relu 100 91.59

10 0.001 256 Leaky Relu 100 90.06

10 0.001 256 Elu 100 85.24

10 0.001 256 Tanh 100 87.53

Figure 4.11: Accuracy Graph with Batch Size 256, Epochs 40, and Lr rate 0.01
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Figure 4.12: Accuracy Graph with Batch Size 256, Epochs 40, and Lr rate 0.001, Acc = 87.1%

Figure 4.13: Accuracy Graph with Batch Size 128, Epochs 40, and Lr rate 0.001, Acc = 87.6%
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Figure 4.14: Model Accuracy for LeakyRelu with 7 Layers and 40 Epochs

Figure 4.15: Model Accuracy for Elu with 7 Layers and 40 Epochs
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Figure 4.16: Model Accuracy for Tanh with 7 Layers and 40 Epochs

Figure 4.17: Model Accuracy for ReLu with 7 Layers and 100 Epochs
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Figure 4.18: Model Accuracy for Leaky Relu with 10 Layers and 100 Epochs

Figure 4.19: Model Accuracy for Elu with 10 Layers and 100 Epochs
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Figure 4.20: Model Accuracy for Tanh with 10 Layers and 100 Epochs
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Table 4.4 shows optimised hyperparameters with different test-scores using different layers for

varying batch sizes but constant no. of epochs.

Table 4.4: Visualization of Optimized Hyperparameters and Associated Test Scores

Learn-Rate Batch-Size No. of Layers Epochs Test-Score

0.001 256 7 100 90.65

0.001 128 7 100 90.82

0.001 128 10 100 88.50

0.01 256 10 100 55.68

0.001 256 10 100 91.59

0.0001 256 10 100 81.18

4.2.2 Performance Analysis of Various AI Models for ECG Analysis

Various AI- Models were used for the evaluation of ECG analysis. Table 4.5 shows the results

obtained from different experiments.

Table 4.5: Performance Analysis of Various AI Models for ECG Analysis

Sr.# AI Model Layers Epochs Accuracy Training Database Testing Database

1 CNN (1 D) 4 30 36% MITH-BIH (Single lead) MITH-BIH (Single lead)

2 DNN 7 40 87% MITH-BIH (Single lead) MITH-BIH (Single lead)

3 DNN 9 40 89.03% MITH-BIH (Single lead) MITH-BIH (Single lead)

4 DNN 10 40 90.35% MITH-BIH (Single lead) MITH-BIH (Single lead)

5 DNN 11 40 89.98% MITH-BIH (Single lead) MITH-BIH (Single lead)

6 DNN 7 100 90.65% MITH-BIH (Single lead) MITH-BIH (Single lead)

7 DNN 10 80 90.27% MITH-BIH (Single lead) MITH-BIH (Single lead)

8 DNN 10 100 91.59% MITH-BIH (Single lead) MITH-BIH (Single lead)

9 DNN 34 80 (early stopping at 40) 85.04% MITH-BIH (Single lead) MITH-BIH (Single lead)

The accuracy graph for the 4-Layer CNN (1 D) with 30 epochs is presented in Figure 4.21.

The results indicate a relatively low accuracy rate of 36%. The accuracy graph for the 7-Layer

DNN (1 D) with 100 epochs is presented in Figure 4.22. The results indicate an accuracy rate

of 90.65%. Whereas the accuracy graph for 10-Layer DNN (1 D) with 100 epochs is presented

in Figure 4.8.

Based on the experimental analysis, it can be observed that there is a general trend of increasing

accuracy with an increase in the number of epochs and layers. However, it is noteworthy that
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Figure 4.21: Accuracy Graph with Batch Size 256, Epochs 30, and Layers=4

Table 4.6: Results from Proposed Hybrid Model

AI-Model Non-Invasive Parameter/s No. of Classes Accuracy

DNN ECG 6 91.59%

Decision Tree T, BP, SpO2, HR 17 99.97%

unnecessarily increasing the complexity of the model by adding more layers may not necessarily

lead to a remarkable improvement in accuracy. Therefore, it is essential to achieve a balance

between model complexity and accuracy in order to achieve optimal performance.
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Figure 4.22: Accuracy Graph with Batch Size 256, Epochs 100, and Layers=7
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4.2.3 Comparative Analysis with Prior Research Studies

To validate the efficacy of the proposed approach, an investigation was conducted to ascertain

its effectiveness. We performed a comparison with existing standard methods, evaluating as-

pects such as the technique, accuracy, and other statistical parameters, as detailed in Table 4.7.

It is noteworthy that our proposed approach demonstrates significant advantages with respect to

accuracy and computational cost over other cutting-edge paradigms. This highlights the poten-

tial of our implemented approach and suggests that it could be utilized for diagnosing various

critical diseases in both CCUs and ICUs.

Table 4.7: Comparison of Proposed Study with Existing State-of-the-Art Models

Study Year AI-Model Database No. of Classes Accuracy Sensitivity Specificity F1-Score

[29] 2019 DNN (34-Layers) CT 12 - - - 83.7%

[30] 2019 CNN MIT-BIH 4 95.73% - - -

[36] 2020 MCHCNN MIT-BIH 5 93% - - -

[45] 2022 DNN MIT-BIH 5 88.99% 52.10% 94.75% -

[46] 2022 2D-CNN-LSTM MIT-BIH 3 99% 99.33% 98.35% -

This Study 2023 DNN MIT-BIH 6 91.59% 98.67% 93.63% 91.7%

4.3 Discussion

We aimed to devise an optimised ensemble model in this research study which combines a

machine learning paradigm with a deep learning framework to enhance the classification per-

formance of arrhythmia and various cardiovascular diseases. Specifically, we used the Decision

Tree algorithm for the categorization of 17 classes, including 8 CVD classes, a Normal case, an

unknown case and other classes for non-cardiovascular conditions. We created a new dataset

by combining non-invasive parameters extracted from Sepsis dataset in addition to our ECG

dataset. The performance of various machine learning algorithms was then evaluated on this

dataset, and the results are presented in Table 4.1. Our findings indicate that Decision Tree

yielded an impressive accuracy of 99.99%, while Gradient Boosting outperformed all other

algorithms, achieving an accuracy of 99.96%. In contrast, the Random Forest algorithm per-

formed poorly, exhibiting no precision at all. For the classification of arrhythmia, we employed

a deep learning approach using the MITH-BIH single-lead database for ECG analysis. We con-

ducted a series of experiments and performed hyperparameter tuning to optimise our proposed

model. The DNN framework was trained with a learning rate of 0.001, a batch size of 256,
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and 100 epochs. To prevent overfitting, we incorporated 0.5 of dropout regularization, which

permitted the retention of only half (50%) of the information for the learning process. Our pro-

posed DL paradigm achieved an accuracy of 91.59%, sensitivity of 98.6%, and specificity of

93.6%, respectively, as reported in Table 4.2. In our study, we also explored the impact of var-

ious activation functions to determine the efficacy of our proposed model, as outlined in Table

4.3. Our findings indicate that the Rectified Linear Unit (ReLU) activation function produced

the optimum results, while the model’s accuracy was least with the Elu function for 10 layers.

Moreover, we observed that by increasing the number of epochs, the proposed model’s perfor-

mance improved further. In this thesis, we offer a comprehensive analysis of the efficacy and

outcomes of the implemented deep learning and machine learning techniques for electrocardio-

gram (ECG) analysis and other non-invasive parameters respectively. The findings are presented

in Table 4.6. Furthermore, we compare our proposed study with some existing techniques, and

the comparison results are presented in Table 4.7. One of the key contributions of our work is

the collective diagnosis of 13 cardiovascular diseases (including 5 arrhythmia classes), made

possible through the combined use of the machine learning and deep learning approaches. The

proposed hybrid model holds the potential to augment the precision of disease detection, which

is mandatory for timely and effective treatment.

The concluding chapter 5 of this thesis presents a comprehensive summary of our research

findings and provides recommendations for future research directions
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Conclusion

The final chapter of this dissertation serves as a succinct yet comprehensive synthesis of the

research conducted, emphasizing its significant contributions to the field of study. Addition-

ally, this section addresses the challenges encountered throughout the investigation, delves into

potential avenues for future research, and recognizes the limitations that persist in the present

work.

5.1 Summary

As per the guidelines of the World Health Organization (WHO), cardiac diseases account for

around 80% of sudden deaths. By the year 2030, an estimated 23.6 million individuals are pro-

jected to experience fatalities attributable to cardiovascular conditions. In Pakistan, CVDs are

responsible for 30-40% of all deaths, with coronary heart disease being the leading cause, result-

ing in approximately 200,000 deaths per year, equivalent to 12 people dying every hour due to

heart attack. Unhealthy diet, physical inactivity, tobacco use, and hypertension are some of the

risk factors for these diseases. AI technology holds the immense potential to revolutionize the

identification and treatment of cardiovascular ailments, leading to better care services, improved

quality of life, and cost-effective systems. By using AI-based systems, healthcare professionals

can accurately diagnose and classify various types of CVDs, such as coronary artery disease, ar-

rhythmias, and heart failure, reducing the workload of cardiologists and allowing them to focus

more on patient care. Additionally, promoting cardiovascular healthcare is crucial to reduce the

incidence of sudden deaths due to heart diseases. An AI-aided system has been proposed to ad-

dress the issue of swift and accurate diagnosis of Cardiovascular Diseases (CVDs) and Cardiac
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Arrhythmias. The system employs an ensemble model consisting of a machine learning (ML)

model and a deep learning (DL) model, which take non-invasive cardiac parameters as input.

The ML model assesses parameters like blood pressure, temperature, oxygen saturation, and

heart rate, while the DL model analyzes electrocardiogram signals. This combination provides

accurate diagnosis and treatment recommendations. A complete cardiac dataset was developed

by extending the ECG dataset from MIT-BIH with another dataset of temperature, BP, SpO2,

and HR. The proposed framework outperformed various other cutting-edge models for the given

cardiac dataset, as evaluated by various measures. This research promises to predict maximum

CVDs and Arrhythmia classes by applying smart AI techniques, which can potentially save

lives by enabling instant and accurate diagnosis. The proposed ensemble model can be used

in various healthcare settings to improve the diagnosis and treatment of CVDs and related con-

ditions, ultimately reducing the workload of cardiologists and allowing them to focus more on

treatment.

5.2 Contributions

Some significant contributions made by the conducted study are mentioned below:

• A hybrid computational model has been developed to perform an analysis of the maxi-

mum non-invasive cardiac parameters (five).

• A novel dataset has been developed consisting of ECG along with other vital cardiac

parameters. The inclusion of additional cardiac parameters alongside ECG data in the

dataset can potentially enhance the quality and scope of cardiac analyses and aid in the

development of improved diagnostic and prognostic models.

• The model has been designed to cater a large variety of cardiovascular and non-cardiovascular

conditions (seven).

• The model proposed in this study has been employed for the classification of a wide range

of cardiovascular diseases (thirteen CVDs) using the novel dataset.

5.3 Challenges

The following are the challenges that were encountered during the execution of this research.
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• An adequate dataset comprising both ECG data and essential non-invasive cardiac pa-

rameters from the same patients was not readily accessible. Such a dataset is essential for

effectively conducting tasks like arrhythmia classification and predicting other cardiovas-

cular diseases.

• Due to the formulation of the BP data from the ’Sepsis’ dataset, the data was found to be

skewed, presenting a challenge that necessitated data cleaning and balancing.

• The training of our model was conducted utilizing a single-lead of MIT-BIH ECG dataset,

which was challenging due to the dataset’s double lead nature. Despite this, we success-

fully trained the model to accurately predict ECG signals using only one lead. To test the

model’s performance, we evaluated it on the "Challenge" dataset, which also comprises

single lead ECG recordings.

5.4 Future Recommendations

There are opportunities for improvement in this study in terms of:

• This research study has the potential to be beneficial for the investigation and analysis of

EEG signals in the future.

• To enhance accessibility and user-friendliness, it is possible to save the AI model on a

cloud platform and create a web interface that can be easily accessed by end-users in the

future.

• The proposed model has the potential to be integrated into a real-time environment which

would enhance the ubiquitous access to healthcare, particularly in rural areas.

5.5 Limitations

There are few limitations associated with this study.

• The dataset we used in our study consists of single-lead ECG recordings, which offer a

narrower signal scope compared to the more extensive information available in a standard

12-lead ECG. It remains uncertain whether our algorithm’s performance would exhibit

similar results when applied to 12-lead ECGs.
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CHAPTER 5: CONCLUSION

• Although our study is restricted to non-invasive parameters, a comprehensive smart car-

diac system can be developed by integrating other vital invasive cardiac parameters such

as glucose, cholesterol, etc. within an advanced Cardiac Care Unit (CCU). By adding

these attributes we can obtain a more comprehensive assessment of the patient’s cardio-

vascular health.

• The hybrid approach of our proposed study may not be necessary when cardiac parameters

are available for a single patient, and a single AI model can be used instead. This could

potentially simplify the model and reduce computational complexity. Further research

is needed to explore the feasibility and effectiveness of using a single AI model in this

context, and to assess its performance in comparison to the hybrid model.
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