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Abstract 

 

Intracellular Ca2+ ([Ca2+]i) serves as a critical regulator of various cellular processes and plays a 

vital role in cellular growth, development, differentiation, and apoptosis. Several studies have 

reported imbalanced Ca2+ expression under pathophysiological conditions, suggesting that 

targeting [Ca2+]i could be a potential therapy for regulating cellular responses. In this study, we 

extended the work of Wacquier et al., 2016 and predicted that Ca2+ oscillatory patterns in 

tumorigenic cells exhibit higher Ca2+ amplitude compared to normal cells. The predicted Ca2+ 

oscillatory pattern is then incorporated into the cell growth model of Wallace et al., 2016 to observe 

its effect in both normal and SK-N-SH cells. A combined deterministic model, integrating data 

from both Ca2+ signaling and cell growth, is extended to a 15-day duration to observe the long-

term effects of Ca2+ oscillation on growth patterns. The graphical illustrations of the simulations 

reveal the uncontrolled growth of SK-N-SH cells. The model is further modified to predict an 

optimal treatment protocol to consider the impact of different therapeutic drugs and Ca2+ 

modulators. The model results demonstrated that combined chemotherapy treatments lead to 

improved outcomes compared to using single chemotherapy. Similarly, the graphical 

representation of the growth patterns shows the sinusoidal behavior of the curves, indicating that 

the proposed chemotherapy does not completely eradicate tumorigenic cells but helps maintain the 

cell count at a reduced level. Our results also highlight the significant influence of Ca2+ oscillation 

on cell count when considering chemotherapeutic treatments.  
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Chapter 1 

1 Introduction 

1.1  Neuroblastoma 

Neuroblastom (NB), a pediatric heterogeneous disease of the sympathetic nervous system, arises 

in the adrenal glands or in the sympathetic ganglia. NB is the most common fatal disease in infancy 

with 25-50 cases per million individuals [1]. The common metastatic sites for NB are bone 

marrow, lymph nodes, bone, liver, and orbital organs. Approximately 15% of all pediatric cancer 

death are caused by NB. The prognostic factors that determine the risk of disease are the age of 

the patient at diagnosis, tumor histology, tumor ploidy, recurrent segmental chromosomal copy 

number alteration, and amplification of proto-oncogene (MYCN).  The NB patients are classified 

into four categories (very low, low, intermediate, and high risk) based on their prognostic clinical 

and biological features as suggested by the international Risk Group (INRG) [2]. The survival rate 

of low and intermediate NB patients is 90% and the 5-year survival rate of patients with high-risk 

NB is less than 50 %. In general, children diagnosed with a localized tumor before one year of age, 

is curable with surgery or little or no adjuvant treatment. But in those cases where there are 

extensive hematogenous metastases, most of the patients die despite the extensive treatment [3].  

Cancer is mainly caused by the heritable sets of genes that regulate the cell division, 

differentiation, proliferation, and apoptosis. The underlying genetic factors of NB is the 

amplification of MYCN, copy number alteration, numerical and segmental chromosomal 

aberration, mutations and rearrangement in genes such as ALK, ATRX, p53, RAS/MAPK pathway 

genes, and TERT [4] [5].  

1.2 Potential Therapies 

The current treatment options available for NB include surgery, radio therapy, chemotherapy, 

myeloablative chemotherapy with stem cell transplant, biological targeting, and immunotherapy 

[6]. At present there is no surgical treatment, that can assure the complete resection of the tumor 

while avoiding damage to the surrounding organs and tissues. It mainly depends on the surgeon’s 

expertise and confidence in the proposed treatment. So more extensive and randomized clinical 

trials are necessary for the standardized protocol of these tumor treatments [7]. 
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1.3 Late Effects of the Treatment 

Survivors of NB experience significant late effects that are directly linked to the severity of their 

treatment. The incidence and severity of late effects has increased as treatment has become more 

aggressive. One of the most common side effects is the hearing loss and caused primarily by 

platinum compound exposure. Up to 73% of the patients are effected by hearing loss[6]. Platinum 

compounds are responsible for approximately 10-40% of the patients experiencing renal toxicities 

including hypertension, hematuria, tubular dysfunction, and chronic renal failure. Dental disease 

is another side effect [8]. High-risk treatment may also cause a range of neurological conditions, 

from sensory deficits to overt epilepsy. These conditions are directly caused by surgical 

intervention or radiotherapy. 

Musculoskeletal changes such as scoliosis and osteoporosis occur as a result of various 

endocrine and non-endocrine etiologies, reducing the linear growth of NB survivors[6].  Endocrine 

system effects mostly seen in the high-risk NB patients and result in growth hormone deficiency, 

premature ovarian failure, insulin resistance and hypothyroidism. Chemotherapy and radiation 

therapy effect other organ including pulmonary and cardiac system. 

The increased use of many new therapies, such as MIBG therapy, for children with high-

risk NB complicates the ability to predict and prevent future side effects. Early research has linked 

MIBG therapy to new-onset of thyroid dysfunction, myelodysplastic syndrome, and secondary 

leukemias [9]. In 2-7% NB survivors, high risk therapies are the potential cause of developing a 

second malignant neoplasm [10]. Alkylating agents, platinum compounds, radiotherapy, and 

topoisomerase II inhibitors are risk factors for secondary malignancies. Various types of secondary 

malignancies are observed including thyroid carcinoma, sarcomas, acute myeloid leukemia, renal 

cell carcinoma and lymphoma. High-risk patients require continuous monitoring and persistent 

follow-up to avoid the late effect of any therapy. This further necessitates understanding the cell 

regulation mechanistic of different cellular entities and their impact on the cell response. Which 

might assist in cellular response mediated potential therapeutic intervention for future therapy. 

1.4 Ca2+ and Cell Metabolism 

Many cells in living organism shows oscillatory behavior, examples include lung respiration, heart 

beating, sleep-weak cycle, and movement of bird wings and fish trail. Similarly, at microscopic 
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scales, mechanisms like cell cycle related enzymes, cAMP, or Ca2+ concentration within the cell 

shows the oscillatory behavior. Ca2+  oscillations observed in mid-1980s in non-excitable cells, 

but it has been observed a long time ago in periodically contracting muscles cells, such as heart 

cells, and in neuron [11]. The oscillation frequency ranges from 10-3 to approximately 1 Hz. The 

detailed process of Ca2+ signaling is described in Figure 1.  

 

Figure 1. The concentration of Ca2+ in the extra-cellular medium is 1mM, much higher than the Ca2+ ion 

concentration within the cytosol,100 nM. The cytosolic Ca2+ increases due to the influx from extra-cellular 

medium via membrane channels including, VGCC, a membrane Ca2+ permeable ion channel, or TRP 

(transient receptor potential), SOCE, or ROCE, and internal stores including ER/SR and mitochondria. Ca2+ 

release from internal stores mediated by IP3. IP3 is produced due to the stimulus from G-protein coupled 

receptor (GPCR) or the receptor tyrosine kinase including epidermal growth factor receptor (EGFR) by the 

activation of phosphoinositide-specific phospholipase Cβ (PLCβ) and PLCγ, respectively. The Ca2+ 

channel, RyR, is activated by cyclic ADP lipase. The IPR and RyR are also stimulated by Ca2+, known as 

Ca2+-Induce-Ca2+-Release (CICR). The store depletion is detected by STIM1 (Ca2+ Sensor Stromal 

Interaction Molecule 1) which in turn activates Ca2+ release activated Ca2+ channel protein 1 (Orai 1) and 

initiates the store refilling mechanism by SERCA (Sarcoplasmic/ER Ca2+ ATPase) pump. Like SERCA, 

PMCA is also an ATPase pump. Mitochondria, another important organelle, contributes significantly to the 

exclusion of Ca2+ from the cytosol. The inner mitochondrial membrane contains different transport 

processes such as permeability transition pores PTP, NA+/Ca2+ and H+/Ca2+ exchangers, and Ca2+ uniporters 



 

4 

 

Chapter 2 | Literature Review 

(MCU) that function as export pathways. The Ca2+ released by ER is indeed sequestered by mitochondria. 

MCU release Ca2+ from the cytosol into mitochondria while Na+/Ca2+ and H+/Ca2+ exchanger transport Ca2+ 

against the concentration gradient. Permeability transition pores (PTP) export the Ca2+ outside of the 

mitochondria. Note that some of the transporters have multiple isoforms and not all the Ca2+ pumps, 

exchangers, and ion channels are illustrated here [12]. 

There is little information available about how cells can exhibit Ca2+ oscillation with a 

period of less than a second while other cells can exhibit such oscillation with a period of hundreds 

of seconds. This oscillation time can be adjusted by varying the rate at which crucial internal 

variables move throughout the dynamic structure and the rate at which Ca2+ stimulates Ca2+ efflux 

from internal storage and influx from the extracellular region. The bulk of cells' signaling 

processes, such as gene expression and cell differentiation, can be investigated using changes in 

oscillation frequency. In other cells, the oscillation frequency is less relevant than the mean Ca2+ 

concentration. It appears that the signal is delivered by a frequency shift rather than the absolute 

oscillation frequency, resulting in a signaling method that is resistant to intercellular variability, 

even within the same cell type. 

1.5 Intracellular Ca2+ Mediated Signaling Pathways and Cellular Responses 

in NB 

In NB, intracellular Ca2+ concentration ([Ca2+]i) plays a vital role in maintaining cell proliferation, 

apoptosis, and differentiation. [Ca2+]i within the cell is lower as compared to the extracellular fluid. 

The signaling pathways involved in NB growth and proliferation are regulated by various growth 

factors including nerve growth factor (NGF), epidermal growth factors (EGF), vascular endothelial 

growth factors (VEGF), insulin-like growth factors (IGF), and platelet-derived growth factors 

(PDGF), as shown in the Figure 2. These growth factors further activate the downstream proteins 

by intermediate kinases (PI3K/AKT, ALK, and FAK) as well as transcription factors (MCN, NF-

KB, and p53). The [Ca2+]i regulates these kinases via the calmodulins and CaM-dependent kinase. 
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Figure 2: Signaling pathways involved in NB cell’s proliferation, differentiation, and apoptosis, the image 

is taken from [13]. 

1.5.1 Protein Kinases 

PI3K/AKT is the major pathway involve in NB growth [14] and has been described in NB’s cell 

lines (SK-N-BE, SH-SY5Y , SK-N-EP, IMR32, and SK-N-SH) [15]. Different studies reported 

that by inhibiting the PI3K/AKT pathway, NB cells can undergo apoptosis. The MYCN amplified 

NB cells showed the greater inhibition of PI3K/AKT, which is thought to be a major factor in NB 

prognosis. AKT inhibitors such as temsirolimus and perifosine are currently being studied in 

clinical trials for their safety in children. 

ALK (Anaplastic lymphoma kinase) is an insulin receptor that plays a key role in cell 

growth and development via the central nervous system [16]. The expression of ALK protein was 

observed in 90% of NB cases and it is associated with the mutation in ALK gene [16]. The 

downstream signaling cascade of ALK involves AKT, ERK1/2, and STAT3, which are 

phosphorylated by Ca2+ (AKT, ERK, and FAK) and are involved in NB cell survival signaling. 

The intermediate kinases involved in cell survival are regulated by [Ca2+]i. In NB, NGF 

signaling is a dominant signaling pathway which is regulated by Trktyrosine receptor family (Trk). 

TrkA is a receptor of NGF, TrkB for brain-derived neurotrophic factor (BDNF) and TrkC for 
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neurotrophin-3(NT-3) [17]. Another receptor for NGF is p75NTF but its affinity is less than TrkA. 

In NB cell lines, NGF signaling leads to the activation of ERK-MAP kinases that exert their role 

in cell functioning. 

ERK signaling cascade is associated with the increase in cellular growth, differentiation, 

and development. Both the ERK signaling and raised [Ca2+]i are the important regulators for 

initiation of the intracellular signaling by extracellular ligands. Higher [Ca2+]i initiate the ERK 

cascade via calmodulin-dependent kinases 1 and 2 [18]. Studies on the PC12 cell line confirm that 

[Ca2+]i and CAM control ERK activation by NGF signaling [19]. An elevated level of [Ca2+]i 

activate the CAMPKK which activates the protein kinase B or AKT by phosphorylating the BAD 

and promote cell proliferation. FAK have an important role in cellular growth and proliferation of 

NB. [Ca2+]i activates CAMKII which activate the FAK by its phosphorylation. 

NB causes occlusions of cell differentiation process. One of the possible treatments is to 

induce cell differentiation. In NB cell lines, a high level of [Ca2+]i is linked with induction of 

differentiation. [Ca2+]i of NB cell lines can be increased either through the influx from the 

extracellular space via VGCC [20] or from intracellular stores with several GPCR ligands. GPCR 

ligands like retinoic acid, sigma 2 factor, trimethyl-tin chloride (TMT), arsenic trioxide and 

cisplatin are used to induce apoptosis or cell differentiation [21]. 

The programmed cell death (PCD) is an important step in cell maintenance, regression, and 

development.  It can be either intrinsic or extrinsic, with both activating caspase 3, 6, and 7, which 

trigger the DNase and cleave other proteins, resulting in cell death [22]. Membrane induced 

apoptosis depend on the extracellular ligands including tumor necrosis factors alpha (TNF-alpha) 

and first apoptosis signal ligands (FAS) and their receptors TNFR and FAS. These receptors induce 

the death inducing signaling complex (DISC) which stimulate the caspase and activate the 

executioner caspase 3, 6 and 7. The caspase initiates the cleavage of hundreds of cellular targets. 

1.5.2 Ca2+ Transport Channels 

Intracellular apoptosis also known as mitochondria centered apoptosis. The mitochondrial Ca2+ 

Uniporters (MCU) support the Ca2+ uptake and create the negative potential across the membrane 

which helps to move Ca2+ across membrane without the hydrolysis of ATP or transport of other 

ions. Several mitochondrial proteins are released due to mitochondrial osmotic imbalance and 
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mitochondrial outer membrane permeabilization. One of the mitochondrial protein, cytochrome c 

binds with the Apoptotic proteinase activating factors (APAF1) forming the apoptosome, a multi-

protein complex, that activate the caspase 3 and 7 which causes apoptosis [23]. Mitochondrial Ca2+ 

overload is another regulatory mechanism of apoptosis. Under stress conditions like hypoxia, 

unbuffered ROS production, alteration or poising of electron transport chain, and imbalance 

mitochondrial protein hemostasis leads to the opening of mitochondrial transition pores (MTP). 

Due to the opening of permeability transition pores several apoptogenic factors are released. 

Cancer cells can evade apoptosis by downregulating Ca2+ signaling necessary to start the apoptotic 

mechanism. The release of Ca2+ from ER regulates mitochondrial apoptosis [24]. BCL-2 protein 

members control apoptosis and cell growth, by altering the release of ER-Ca2+ into mitochondria. 

P53, a tumor-suppressive protein, causes the inactivation of tumorigenesis.  In NB with 

MYCN-amplified cell lines, p53 initiates cell apoptosis and is a direct transcriptional target of 

MYCN [25]. By turning on the pro-apoptotic targets Bax and PUMA, which are transactivated by 

p53, MYCN also triggers apoptosis. 

1.6 Intracellular Ca2+ Modulation with Chemotherapy Drugs 

Different chemotherapeutic drugs modulate the [Ca2+]i including cisplatin (CDDP), arsenic 

trioxide (As2O3), and tri-methyl-tin chloride (TMT). These drugs induce apoptosis by meddling 

with [Ca2+]i hemostasis. Cisplatin is one of the most efficacious chemotherapies for NB. Cisplatin's 

anti-therapeutic role is induced by cytotoxicity and apoptosis (increased caspase 8 and 9 activity) 

[26]. Cisplatin combines with Ca2+ signaling, p53, ROS, and apoptosis by increasing caspase 8 

and 9 activities and increasing p53 expression. The studies showed that the increase in [Ca2+]i is 

dependent on CDDP concentration. CDDP induces apoptosis by activating calpain, which is 

controlled by inositol triphosphate IP3. The increase in [Ca2+]i concentration due to the activation 

of IP3 increases the efficacy of cisplatin thus increasing the apoptosis. Cisplatin-induced Ca2+ 

influx through the IP3 receptors induces cellular apoptosis via calpain activation rather than 

caspase-8 activation, showing that cisplatin-induced Ca2+ influx through the IP3 receptors induces 

cellular apoptosis through calpain activation [27]. 
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Table 1: Increase of [Ca2+]i in NB cell line in human due to two main types of receptors, G protein-

coupled receptor (GPCR) and sigma factor 2 [13] via IP3. IP3 is produced due to the stimulus from GPCR 

by the activation of phosphoinositide-specific phospholipase Cβ (PLCβ). 

Sr. no. Treatment Cell line Receptor Ca2+ release Basal 

[Ca2+] 

Increased 

[Ca2+] 

1 Oxotremorine-M SH-SY5Y Muscarinic 

Receptor 

(GPCR) 

Store 

Release(IP3R) 

50nM 2-fold 

2 Methacholine SH-SY5Y Muscarinic 

Receptor 

(GPCR) 

Store Release 

(IP3R) 

98 nM 2-fold 

3 Carbachol SH-SY5Y Muscarinic 

Receptor 

(GPCR) 

Store release -- 2.5-fold 

4 Carbachol SK-N-SH Muscarinic 

Receptor 

(GPCR) 

Store release 59nM 2-fold 

5 Bradykinin SH-SY5Y Bradykinin 

receptor (GPCR) 

Store release 

(IP3R) 

98nM 1-fold 

6 Bradykinin SH-SY5Y Bradykinin 

receptor (GPCR) 

Store release -- 2-fold 

7 Orexin-A(GPCR) IMR-32 Orexin type 1 

receptor (GPCR) 

Store 

release(IP3R) 

50nM 4-fold 

8 Retinoic acid SH-SY5Y Retionic X 

receptor 

Store release 98nM No 

increase 
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(Nuclear 

Receptor) 

9 Retinoic acid SH-SY5Y Retionic X 

receptor 

(Nuclear 

Receptor) 

Store operated 

Ca2+ channel 

10nM 4-fold 

10 Arsenic trioxide SH-SY5Y -- Store 

operated(IP3R and 

RyR) 

75nM 2-fold 

11 Trimethyltin SH-SY5Y -- Store release 

(IP3R and RyR) 

-- 2-fold 

12 Chloride SH-SY5Y -- Store release -- 2-fold 

13 Cisplatin SH-SY5Y -- Extracellular 

space 

75nM 2-fold 

14 Ibogaine SK-N-SH Sigma 2 receptor Thapsigargin 

insensitive Ca2+ 

store 

-- 1-fold 

15 Haloperidol SK-N-SH Sigma 2 receptor Thapsigargin 

insensitive Ca2+ 

store 

-- 1-fold 

16 BD1008 SK-N-SH Sigma 2 receptor Thapsigargin 

insensitive Ca2+ 

receptor 

-- 1-fold 

17 LR172 SK-N-SH Sigma 2 receptor Thapsigarian 

insensitive 

receptor 

-- 1-fold 
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18 BD737 SK-N-SH Sigma 2 receptor Thapsigarian 

insensitive 

receptor 

-- 1-fold 

19 JL-II-147 SK-N-SH Sigma 2 receptor Thapsigarain 

insensitive Ca2+ 

receptor 

-- 2-fold 

20 CB-64D SK-N-SH Sigma 2 receptor Thapsigarian 

insensitive Ca2+ 

receptor 

-- 4-fold 

 

1.7 Mathematical Model 

The Ca2+ toolbox is used to determine the frequency of the oscillations of Ca2+ signaling. It 

includes Voltage-gated channels, ATPase pumps, and Ca2+ channels in the 

endoplasmic/sarcoplasmic reticulum (ER/SR) membrane. Cells can adjust Ca2+  concentration by 

modifying the spatial and temporal expression of these components [28]. These complex cell 

signaling mechanisms can be explained using interaction diagrams or cartoon models that depict 

the set of components and how they interact. The disadvantage of these models is that they include 

ambiguous information on system behavior, particularly when the interaction network includes 

feedback. Classical dynamic simulation or quantitative models can be used to gain an in-silico 

understanding of these processes. Classical dynamic simulation is a collection of software 

programs used to simulate an entire network. Because these interaction diagrams contain a large 

number of elements, the simulation of these networks is a time-consuming and computationally 

expensive operation. Mathematical or quantitative models also have the potential to generate 

intricate signaling mechanisms. 

Due to the availability of experimental observation in system biology, mathematical 

modelling can be utilized to examine intracellular processes. Mathematical modelling is a 

generalization of reality that focuses on specific elements of the designed objects while removing 

others. The resulting dynamical mathematical model is made up of equations that describe how 

the system changes over time. These models aid in simulation by predicting system behavior under 
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specific conditions and are also used to analyze possible system behavior. These models will never 

be able to replace lab tests, but they can be used to forecast system behavior that cannot be 

predicted in the lab. Model simulation provides results in less time compared to classical dynamic 

simulation and at no real cost, as well as allowing us to investigate circumstances that could never 

be achieved in the lab. Furthermore, model analysis assists us in understanding why the system 

performs the way it does, so providing a link between the system and its behavior. 

1.8 Problem Statement 

In NB, intracellular Ca2+ plays a vital role in maintaining cell’s proliferation, differentiation, and 

apoptosis. Excess Ca2+ intake in cells due to GPCR may promote cell proliferation and apoptosis 

under pathophysiological conditions. By maintaining the intracellular Ca2+ concentration, the 

uncontrolled cellular division can be controlled. In the current research, a mathematical model is 

proposed to predict the effect of Ca2+ on the rate of tumor growth and subsequently the impact of 

different chemotherapeutic drugs on respective tumor growth and inhibition. The generated 

quantitative model could help us in comprehending the disease's complex dynamics and probing 

the effective regulating or therapeutic mechanism. These models will forecast the drug 

concentration and schedule necessary for a timely and efficient treatment. 

1.9 Objectives 

The objectives of this study is the use of Mathematical models: 

a. To analyze the dynamic of NB. 

b. To evaluate the effect of perturbed and normal Ca2+ intake on NB growth. 

c. To demonstrate the effect of different chemotherapeutics and Ca2+ regulators on 

NB growth and inhibition.  

d. To predict the optimized dosage against NB. 
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 Chapter 2 

2 Literature Review 

2.1 Ca2+ Signaling 

Ca2+ physiology is a vast field and has a crucial role in maintaining cellular physiology.  Ca2+ in 

every cell exhibits complex spatiotemporal behavior, including scholastic spiking, regular Ca2+ 

oscillation, periodic waves, and spiral oscillations. These waves control the majority of cellular 

functions. Total Ca2+ in the human body weight around 1300g, and 99% is located in bones, 0.1% 

in extracellular fluid (ECF), and 1% in cells. Three hormones: calcitonin, parathyroid hormone 

(PTH), and calcitriol, are responsible for controlling the flow of Ca2+ between these compartments 

as well as its secretion and excretion, shown in Figure 3. PTH, which is produced by the 

parathyroid gland, increases the kidney's ability to reabsorb Ca2+ from the bones and stimulates 

the creation of calcitriol.  The proximal tubules of the body produce the hormone calcitriol, which 

boosts gastrointestinal intake of Ca2+ and promotes bone resorption. Calcitonin increases the Ca2+ 

movement into the bones. All three inhibit Ca2+ excretion from the kidney by promoting 

reabsorption [29] [30].  

Intracellular Ca2+ concentration regulates cellular processes like cell growth, 

differentiation, and metabolism. The ECF has a Ca2+ concentration of 1mM while plasma 

membrane pumps, exchangers, and internal stores maintain a lower range of cytosolic Ca2+ 

concentration of around 0.1µM. A small influx either from external pumps/channels or internal 

stores causes a rapid increase in Ca2+ concentration therefore, the concentration of Ca2+ in the 

cytosol is tightly maintained. Cells need to expand a considerable amount of energy to maintain a 

reasonable amount of Ca2+ concentration for normal physiology. Long-term, elevated intracellular 

Ca2+ concentration is extremely hazardous. One of the reasons is that in cells, it controls various 

effectors molecules like kinases and phosphatases which control a number of critical activities, 

including cell proliferation, secretion, differentiation, apoptosis, and gene transcription.  
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Ca2+ as a secondary messenger controls a wide number of cellular functions. It regulates 

the coupling of excitation and contraction in muscle cells, secretion and stimulation at synapses, 

and fluid transport in exocrine epithelia. It functions in gene regulation and cell type 

differentiation, regulates plasticity in pre- and post-synaptic neurons, and is crucial for cell 

mobility [31].  

 

 

Figure 3. Ca2+ hemostasis in whole body. Most of the Ca2+ absorbed in bones with only 1% in extracellular 

fluid. The movement of Ca2+ across intestine, ECF, and bones is regulated by three hormones, that is, 

Calcitonin, PTH, calcitriol [32]. 

2.2 Ca2+ and Metabolism in Cancer 

Ca2+ as a secondary messenger involved in many metabolic pathways, a term named as ‘Ca2+ 

transportome’, refer to the channels and transporter involved in efflux and influx of Ca2+ across 

the membrane as well as internal stores such as endoplasmic/sarcoplasmic reticulum and 

mitochondria. After the influx of Ca2+ into the cell, the SERCA pump causes the Ca2+ to move into 

the ER/SR and similarly the receptors present on the surface of ER/SR, that is, IP3R and RyR  
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moves the Ca2+ out of the internal store. The Voltage dependent anion selective channel protein 

(VDAC) and the Mitochondrial Ca2+ uniporter (MCU) protein transport Ca2+ into the 

mitochondria. Elevated Ca2+ in the cytosol regulates and activates various Ca2+ binding proteins, 

enzymes, transportome activities, and gene expression.  

Ca2+ pumps and transporters have a wide range of tissue dispersion and selectivity. 

Abnormal expression of these pumps and channels, as well as other Ca2+ binding proteins (such as 

STIM, Calpains, Calmodulin, TRPM, and calnexin), has been linked to the start and progression 

of various cancer types.  

Changes in Ca2+ concentration govern the signaling pathways and metabolic processes that 

control cell proliferation and cell cycle in cancer cells. Different transcription factors (such as 

cAMP response element binding protein CREB, nuclear factor of activated T cells NFAT-1, and 

Activating transcription factor-1 ATF-1) and oncogenes such as MYC, FOS, and JUN control the 

expression of CDKs and cyclin [33]. The passage through the G1/S checkpoint is caused by the 

activation of CDK complexes. These nucleus transcription factors are activated by calcium. 

Localized Ca2+ entry via calmodulin, ERK, and GPCR all play key roles in cell proliferation. Ca2+ 

phosphorylates retinoblastoma protein, a transcription factor involved in the G1-S shift. 

Calmodulin kinase is responsible for the G2/M shift, is also regulated by Ca2+ [34].  

The quantity of Ca2+ in the ER and mitochondria regulates cell apoptosis. In cancer cells, 

apoptosis is prevented by various pre-apoptotic (bad, bax, and bak) and post- apoptotic (bcl-xl/bcl-

2) markers. Bad is phosphorylated by PKA, MAPK, or PKB, which causes it to dissociate from 

mitochondria and attach to the 14-3-3 protein. Bad is unable to suppress bcl-xl/bcl-2 after binding 

and thus promotes apoptosis [35]. In contrast, calcineurin dephosphorylates bad, causing it to bind 

to bcl-xl/bcl-2 and prevent apoptosis. Ca2+ transport proteins like IP3R, SERCA, MCU, and PMCA 

are also influenced by pro- and anti-apoptotic factors. These apoptotic proteins control the IP3R 

and SERCA, reducing Ca2+ uptake by mitochondria and Ca2+ release from the ER membrane. This 

signaling mechanism could decrease calcium-mediated cell death and eventually lead to apoptosis 

resistance [36].   

 

 



 

15 

 

Chapter 2 | Literature Review 

Ca2+ signaling also helps in Tumor cell angiogenesis. The SOCE component proteins Orai 

and STIM1 mediate vascular endothelial growth factor (VEGF), which triggers cancer cell 

migration and angiogenesis [37]. By phosphorylating PLC-gamma, the VEGF factor induces the 

production of DAG and inositol 1,4 5 triphosphate (IP3). Increased IP3 levels enhance signal 

transduction via the MPAK-regulated pathway [38].  Similarly, activation of transient receptor 

potential cation channel 4 (TRPV4) by basic fibroblast growth factor (BFGF) induces endothelial 

cell proliferation, migration, and angiogenesis via Ca2+ influx [39].  

The activation of SOCE by a hypoxic tumor microenvironment increases the expression of 

hypoxia inducible factor-1 (HIF-1) which supports the expression of angiogenic factors such as 

stomal-derived factor, angiopoietin-2, and placental growth factor. Upregulated HIF-1 promotes 

tumor growth by increasing STIM1 expression, which enhances HIF-1 transcription [40]. By 

regulating nuclear factor k beta (NF-kB) and the production of reactive oxygen species, this 

pathway promotes tumor progression [41].  

Tumor associated macrophages (TAM) promote tumor development by synthesis of the 

calcium-dependent chemokine ligand 18. TAM also aids tumor cells in evading the defense system 

[42]. Cytokines and chemokines are released by T cells and macrophages via STIM1 and ORAI1, 

which are SOCE components. These channels also help CD4+ and CD8+ T lymphocytes 

differentiate [43].  

2.3 Ca2+ Signaling Toolbox 

The Ca2+ signaling toolbox include the following components [44]. The Modeler can construct the 

model by picking which component to include. 

G Protein-Coupled Receptors (GPCR) 

Ca2+ signaling in many cells begins with the binding of an agonist to a GPCR, present on the 

surface of the membrane. The agonist binds to the receptor, triggering various signaling pathways 

over timescales varying from milliseconds to hours. Linderman provided a thorough and 

comprehensive discussion of GPCR (15). Mahama and Linderman developed a simpler model for 

GPCR in which the agonist binds to the receptor and forms an agonist receptor complex [45]. The 

model equation of the complex formation is: 
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𝐴 + 𝑅 
𝑘1
↔ 

𝑘−1
↔ 𝑅∗ 2.1 

Where R shows the receptor bound to the agonist A to form complex R*. The differential 

equation for this reaction is represented as: 

𝑑[𝑅∗ ]

𝑑𝑡
=  k1[𝑅][𝐴] − k−1 [𝑅

∗ ] 2.2 

Assuming that the total amount to receptor R* is fixed.  

𝑑[𝑅∗ ]

𝑑𝑡
=  k1([𝑅]𝑡𝑜𝑡 − [𝑅

∗ ]) − k−1 [𝑅
∗ ] 2.3 

This is the basic model of receptor activation, ignoring receptor dimerization, diffusion, 

conformational changes and binding to other molecules. More detailed work on GPCR is presented 

by Falkenburger et at. [46] [47], shown in Figure 4. The model equation and parameters are present 

in the original paper of Falkenburger presents the six states, between the ternary complex model 

and cubic ternary complex model. The ternary complex model presented by De Lean et al. [48], 

assuming the receptor can reside in one of the four states: R (the base form), RG (Receptor bound 

to the G protein), RA (Receptor bound to the agonist) or RGA (Receptor bound to the agonist and 

G protein). Weiss et al. further extended this model to the cubic ternary model, which has eight 

states [49]. According to this model, a receptor may be in an active or inactive condition depending 

on whether an agonist A and G protein are bound or not. The equations of Falkenburger et al. 

model is then compared with the experimental data, where an optimum concentration of agonist is 

applied (10 µM Oxo-M).  
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Figure 4. A systematics diagram for GPCR activation. Activated receptor R* binds with G protein and 

dissociates into βγ and α-GTP. The α-GTP then binds with PLC to form an activated PLC*. The activated 

PLC by the hydrolysis of α-GTP dissociates into PLC and α-GDP. The α-GTP can be directly hydrolyzed 

to α-GDP which then reassociate with βγ subunit to reform the inactivated G protein. PLC- α-GDP 

intermediate complex exist after GTP has been converted to GDP, but before the intermediate complex 

dissociate. 

Another model presented by Lemon et al. also included the desensitization and recycling 

of the receptor [50].  

SERCA and PMCA Pump 

SERCA and PMCA are the Ca2+ ATPase efflux pathways in Ca2+ signaling toolbox. Since both 

these models are not identical ATPase, it’s difficult to make difference between these two 

pathways. SERCA pump transfer 2 Ca2+ ion from cytosol to ER/SR at each ATP consumption 

[51].The simplest equation based on law of mass action would be: 

2𝐶𝑎2+(𝑐𝑦𝑡) + 𝐸   
𝑘
→       2𝐶𝑎2+  (𝐸𝑅) + 𝐸 2.4 

The differential equation will be: 
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𝑑𝑐

𝑑𝑡
=  −2𝑘[𝐸]𝑐2 = −𝑘῀𝑐2 2.5 

Where E shows the SERCA pump, and c denotes the cytoplasmic Ca2+. For convenience, 

modeler equation can be written as: 

𝐽𝑠𝑒𝑟𝑐𝑎 = −𝑘῀𝑐
2 2.6 

Where Jserca denotes the Ca2+ flux due to SERCA pump. One disadvantage of this flux is 

that it cannot saturate as c rises, which is not physiological. Another model presented by Kenner 

and Snyed [52], where they use Michaelis-Menten theory of enzyme reaction.   

2𝐶𝑎2+(𝑐𝑦𝑡) + 𝐸   
𝑘1
↔      𝐶 

𝑘2
→   2𝐶𝑎2+  (𝐸𝑅) + 𝐸 2.7 

Where C is an intermediate complex formed when cytoplasmic Ca2+ binds with pump, and 

dissociate to release Ca2+ into ER/SR. The differential equations of the following equation will be: 

𝑑𝑐

𝑑𝑡
=  2𝑘−1𝛾 − 2𝑘−1𝑒𝑐

2 2.8 

𝑑𝑒

𝑑𝑡
=  𝑘−1𝛾 − 𝑘1𝑒𝑐

2 + 𝑘2𝛾 2.9 

𝑑𝑐𝑒
𝑑𝑡
=  2𝑘2𝛾 2.10 

Where ce is concentration of Ca2+ is ER/SR, e denotes [E], and 𝛾 denotes the concentration 

of intermediate complex [C]. The Michaelis-Menten enzymatic reactions are based on either the 

equilibrium approximation or the quasi-steady-state estimates [52]. The flux obtained by applying 

the equilibrium approximation to the enzymatic reaction of the SERCA pump would be: 

𝐽𝑠𝑒𝑟𝑐𝑎 =
𝑒𝑡𝑜𝑡𝑘4𝑐

2

𝑐2 + 𝐾2
 2.11 

etot = e + 𝛾 is total concentration of SERCA. This equation is called Hill function, has a 

positive cooperativity. In general, the Hill function is used to describe enzymatic reactions that 

exhibit cooperative behavior. One drawback of this model is that it does not include the 

bidirectionality of the ATPase pump; as Ca2+ concentrations in the ER rise, the net pump flux falls  
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to zero. One method for making the pump bidirectional is to include the reverse reactions, in this 

case the flux would be: 

𝐽𝑠𝑒𝑟𝑐𝑎 = 𝑒𝑡𝑜𝑡 
𝑘1𝑘2𝑐

2 − 𝑘−1𝑘−2𝑐𝑒
2

𝑘1𝑐2 + 𝑘−1
 2.12 

Another method for making pumps reversible is to use the Markov model developed by 

MacLennan et al. [51]. The schematic diagram is presented in the Figure 5. 

 

Figure 5. The pump present in two basic conformation E1 and E2. In E1 conformation, the pump binds with 

two Ca2+ ions and after its phosphorylation, it switches to E2 state where Ca2+ binding site is exposed to 

RE lumen. The Ca2+ is released into the ER, dephosphorylation occur, and pump switches back to E1 

conformation. MacLennan assumed that binding and release of Ca2+ occur quickly, so both states S1 and 

S2 are grouped together with a dotted box. For each transition, the whole process repeated. The differential 

equation and parameters values are given is original paper  [51]. 

Since SERCA and PMCA are ATPase pumps, two H+ ions are transported in the opposite 

way for each Ca2+ transfer. The inclusion of these factors results in enormous complexity.  
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However, Trans et al. [53] reduced a pH and ATP-dependent model of the SERCA pump from 12 

to 3 states without losing the model's capacity to replicate the data of Ji et al [54]. 

Sodium Ca2+ Exchanger NCX 

The Na+/Ca2+ exchanger is referred to as an active pump because it uses the Na+ concentration 

gradient to move Ca2+ out of the cell. The Na+/Ca2+ exchanger is an essential transport mechanism 

in many cells, including neurons and cardiac ventricular cells. In these cells, Ca2+ enters by the 

action potential is removed by the cell through Na+/Ca2+ exchanger. Different models are present 

to show the transport mechanism of Na+/Ca2+ exchanger [55] [56]. NCX, like SERCA pump, is 

available in two forms: unidirectional with two substrates as shown in Figure 6, one is cytosolic 

Ca2+, and other is exterior Na+. Another option is the bidirectional Markov model.

 

Figure 6. Shows the schematic diagram for unidirectional NCX. ci is cytosolic Ca2+ concentration, ne shows 

the extracellular sodium concentration. E1 is the state where complex has one bound calcium, E2 state has 

3 Na+ bound, E3 state has one Ca2+ and three Na+ bound. 

The flux through NCX is as follow: 

𝐽𝑁𝐶𝑋 = 𝑉𝑚𝑎𝑥  (
𝑐𝑖

𝐾1 + 𝑐𝑖
) (

𝑛𝑒
3

𝐾2 + 𝑛𝑒
3) 

 

  

2.13 
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Figure 7: Bidirectional NCX Markov model 

NCX can also be represented as a bidirectional Markov model, as shown in the Figure 7, 

where Ei represents the conformation of exchanger protein exposed to the interior side of the cell 

and Ee represents the conformation of protein exposed to the exterior side of the cell. In the X1 

condition, the exchanger protein binds to one Ca2+ ion inside the cell and releases three Na+. When 

the exchanger's conformation changes to Ee, it releases Ca2+ to the outside and bonds with three 

external Na+. The cycle is completed when the conformation changes to the Ei condition. The 

flow through NCX is calculated as follows: 

𝐽𝑁𝐶𝑋 = 𝑘4𝑦1 − 𝑘−4𝑥1 

⇒ 
𝑐𝑖𝑛𝑒

3 − 𝐾1𝐾2𝐾3𝐾4𝑐𝑒𝑛𝑖
3

𝛽1𝑐𝑖 + (𝛽2 + 𝛽3𝑐𝑖)𝑐𝑒 + (𝛽4 + 𝛽5𝑐𝑒)𝑛𝑖
3 + (𝛽6 + 𝛽7𝑐𝑖 + 𝛽8𝑛𝑖

3) 𝑛𝑒
3 

2.14 
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Where Ki = k-1 / ki. NCX is measured in 1/time. This is due to the fact that the variables xi 

and yi are the probabilities (fractions) of the exchanger in a given state, rather than the number of 

exchangers in a given state. In this case, the flux is the number of times the exchanger repeats the 

cycle per unit time. If the exchanger concentration is known, it can be transformed to concentration 

per time. 

The NCX is electrogenic, generating an electric current, by transferring two positive 

charges out and three positive charges in at each cycle. This demonstrates that a portion of the rate 

constant must be a function of membrane potential. Consider NCX, where the reaction starts with 

3 Na+ outside the cell and 1 Ca2+ ion inside and lasts with 3 Na+ inside and 1 Ca2+ ion outside the 

cell. 

3 𝑁𝑎𝑒
+ + 𝐶𝑎𝑖

2+  → 3 𝑁𝑎𝑖
+ + 𝐶𝑎𝑒

2+ 2.15 

The change in free energy of this reaction is (for more detail see [52]). 

∆𝐺 = 𝑅𝑇𝑙𝑛 (
𝑛𝑖
3𝑐𝑒

𝑛𝑒
3𝑐𝑖
) + 𝐹𝑉 2.16 

At equilibrium, ∆G =0, in this case, 

𝑛𝑖,𝑒𝑞
3 𝑐𝑒,𝑒𝑞

𝑛𝑒,𝑒𝑞
3 𝑐𝑖,𝑒𝑞

= exp  (−
𝐹𝑉

𝑅𝑇
)    2.17 

According to the principle of detailed balance, the rate of forward reaction is equal to rate 

of reverse reaction. We get,  

𝐾1𝐾2𝐾3𝐾4 =exp  (
𝐹𝑉

𝑅𝑇
) 2.18 

For NCX, a net transfer of one positive charge into the cell is equal to the transfer of one 

negative charge out of the cell. The flux through NCX is given as. 

𝐽𝑁𝐶𝑋 = 
𝑐𝑖𝑛𝑒

3 − exp (
𝐹𝑉
𝑅𝑇) 𝑐𝑒𝑛𝑖

3

𝛽1𝑐𝑖 + (𝛽2 + 𝛽3𝑐𝑖)𝑐𝑒 + (𝛽4 + 𝛽5𝑐𝑒)𝑛𝑖
3 + (𝛽6 + 𝛽7𝑐𝑖 + 𝛽8𝑛𝑖

3) 𝑛𝑒
3 

2.19 
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Mitochondria 

Mitochondria, an intracellular Ca2+ store, receive Ca2+ via Uniporters (MCU) and discharge Ca2+ 

into the cytosol via NCX, a membrane NCX isoform. The energetic balance of mitochondria is 

tightly regulated by the cell's Ca2+ homeostasis. There is little research on the function of Ca2+ 

signaling in mitochondria. According to the present count, mitochondria are most likely to regulate 

Ca2+ signaling in microdomains, a region between the ER and the mitochondria [28] [57]. Mangus 

and Keizer presented the first mitochondrial model [58] which was later described in detail [59]. 

Recent studies on mitochondria include a model presented by Cortassa et al. [60], and Nguyen and 

Jafri [61] with a particular focus on cardiac cells, while Patterson et al. investigated the effect of 

Ca2+ fluxes from the ER, mitochondria, and from the outside [62]. Marhl et al. studied the 

involvement of mitochondria in complex Ca2+ oscillation [63].  

Ca2+ uptake in mitochondria occurs via mitochondria Ca2+ uniporters (MCU), sensitive to 

the Ca2+ concentration on the cytosolic side, and the potential difference across the inner 

mitochondrial membrane, indicated by the symbol ψ, drives the current through this channel. 

Potential difference (ψ)  =𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡 = -180 mV, and according to the Nernst equation, the Ca2+ 

would continue to penetrate across the membrane until the cytosolic to mitochondrial ratio is 

approximately 10-6. The uniporter alone would produce a concentration of 100nM in the 

mitochondria at a cytosolic concentration of 100nM. Since the uniporters open when cytosolic 

Ca2+ concentration is high, this shows that uniporters rely on the spatially restricted Ca2+ micro-

domain [64]. Uniporters are ion channels that open as a result of ligand binding, which is in this 

case is Ca2+. The flux through uniporters is defined as the product of two terms: the open 

probabilities of uniporters and flux through uniporters when they are open. 

𝐽𝑢𝑛𝑖 = 𝑁𝑔(𝑐)∅(ψ, c) 2.20 

Here N denote the number of uniporters, g shows the fraction of uniporters that are open. 

g can be a function of Numerous factors including potential difference across the membrane or the 

concentration of ligand. ∅ denotes the current through single open channel. The current through 

single open channel can be modelled in different ways, one is Goldman-Hodgkin-Katz (GHK) 

[52]. The equation gives a simple model of uniporters, similar to the model constructed by Magnus 

and Keizer [58].  



 

24 

 

Chapter 2 | Literature Review 

 

Figure 8. Model of uniporters presented by Dash et al. there is three states of uniporters: first S00, no Ca2+ 

bound, S20, two Ca2+ binds to the cytoplasmic side, and S02, two Ca2+ bounds to the mitochondria side. C 

denotes the concentration of Ca2+ in the cytoplasm, while cm shows the concentration of Ca2+ in 

mitochondria. S00 is supposed to be in equilibrium with respect to two other states. 

Figure 8 shows another model of uniporters given by Dash et al. [65], where they merged 

the barrier model of ion channel and the Markov model of channel activation. Model equations 

and parameters are discussed in detail in original paper. 

The mitochondrial Na+/Ca2+ exchanger (NCLX), an isoform of NCX of the plasma 

membrane, works in a similar fashion. The exchanger works as ratioanl function of sodium and 

Ca2+ ion in cytoplasm and mitochondria. Wingrove and Gunter [66] provided an early model of 

NCXL by fitting their experimental results to a unidirectional enzyme model. The Flux through 

the channel is given as: 

𝐽𝑁𝐶𝑋𝐿 = 𝑉𝑚𝑎𝑥  (
𝑐𝑚

𝐾𝑐 + 𝑐𝑚
) (

𝑛𝑐
2

𝐾𝑛2 + 𝑛𝑐2
) 2.21 

Where nc is Na+ cytosolic concentration. Magnus and Keizer [58] also uses this expression 

to studied the flux changes with the inner membrane potential difference by multiplying voltage 

dependent pre factor with flux equation.  The recent studies presented by Nguyen and Jafri [61], 

Dash and Beard and Pardhan at al. [67] have use the reversible NCX model. 
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Receptor Operated Ca2+ Channel (ROCC) 

Ca2+ entry through ROCC is supposed to be an increasing function, a linear function, of agonist 

concentration. Flux through channel is: 

𝐽𝑖𝑛 = ∝𝑜+ ∝1 𝑆 2.22 

Where S is the agonist concentration. For models having GPCR activation, the influx could 

be considered as a linear function of G protein activation [68].  

Voltage-Gated Ca2+ Channels (VGCC) 

One of the most important pathways for Ca2+ flux is the VGCC, present in different cell types such 

as in cardiac cells, the flux of Ca2+ from the L-type voltage channel causes the release of Ca2+ from 

SR, which causes contraction. Different types of VGCC are present such as N-type, R-type, L-

type, P/Q-type, and T-type. L-type VGCC is present mainly in cardiac, smooth, and skeletal 

muscle cells. On the base of α1 subunits, the VGCC is described precisely. The L-type channel 

includes Cav1.1-Cav1.4, similarly, N, P/Q, and R-type include Cav2.1-Cav2.3, respectively, and 

T-type channels include Cav3.1 – Cav3.3 [69]. The underlying model structure for different types 

of VGCC models is similar, only the choice of different parameters shows their different behavior. 

The equation for the simplest model of VGCC is: 

𝐼𝐶𝑎 = 𝑁𝐶𝑎𝑔𝐶𝑎(𝑉, 𝑡)∅(𝑉, 𝑐) 2.23 

Where Nca is the total number of channels, V is the membrane potential, gca denotes the 

open probability of a single channel, c is the [Ca2+]i, and  ∅ denotes the current through a single 

open channel. 

A model example for electrical bursting in pancreatic beta cells was modeled by Chay and 

Keizer  [70] in a similar way as the Na+ channel was modeled by Hodgki and Huxely. They put 

𝑔𝐶𝑎(𝑉, 𝑡) =  𝑔𝐶𝑎 𝑚
3 ℎ, where h and m satisfy the equation in Hadgki-Huxely model, and ∅ = 𝑉 −

 𝑉𝐶𝑎 , where 𝑉𝐶𝑎 is the Ca2+ Nernst potential. This approach with minor adaptation was widely 

used by many other researchers. Another example of the neuroendocrine model, modeled by 

LeBeau et al. [71] studied the bursting in GTI neurons. They modeled the two Ca2+ currents, a T-

type current is modeled as: 
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𝐼𝐶𝑎𝑇 = 𝑔𝐶𝑎,𝑇 𝑚𝐶𝑎,𝑇
2  ℎ𝑐𝑎,𝑇(𝑉 − 𝑉𝐶𝑎) 2.24 

And an L-type current is modeled as 

𝐼𝐶𝑎𝐿 = 𝑔𝐶𝑎,𝐿 𝑚𝐶𝑎,𝐿
2  ℎ𝑐𝑎,𝐿(𝑉 − 𝑉𝐶𝑎) 2.25 

In their model, the T-type VGCC channel inactivates, while L-type VGCC does not.  

The model built by Destexhe and Huguenard [72], used a similar expression for their model 

of T-type VGCC, the only difference is that they used the GHK expression for ∅, as compared to 

the linear expression used by LeBeau et al. [71]. A lot of literature is present on how to model the 

I-V curve, ∅(V) for Ca2+ channel [73] .  

Store Operated Ca2+ Channel (SOCC) 

SOCC causes the Ca2+ entry into the cell when ER Ca2+ decreases [74], yet a few detailed models 

are present on the underlying mechanism. Ong et al. [75] first tried to fit experimental data to 

SOCC model. The Model assume that the decrease of Ca2+ concentration in ER leads to the 

activation of SOCC and vice versa. However, the [Ca2+] in bulk ER does not effects the channel, 

instead model split the channel into two regions. One is under the membrane and other is the bulk 

ER. The [Ca2+] in ER sub-membrane region (denoted by ce) affects the SOCC activation or 

inactivation.  Another significant aspect of the model is the inclusion of a time dependent variable, 

h, via heuristic inactivation. The variable h is determined solely by fitting to the experimental data; 

it has no mechanistic base. The flow through the model is: 

𝐽𝑠𝑜𝑐 = 𝑓(𝑐𝑒)ℎ 2.26 

𝜏ℎ
𝑑ℎ

𝑑𝑡
=  ℎ∞(𝑐) − ℎ 2.27 

The variables, f and h, are the decreasing functions. As there is no mechanistic explanation 

of these function, only their shapes matters. 

The model of binding of STIM to Orai was constructed by Hoover and Lewis [76].  
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Figure 9. Model of Orai binding with STIM. C denote the close configuration of Orai and O denotes the 

Open configuration of Orai. Each configuration can bind upto 4 STIM molecule. 

The Orai molecule, as shown in the Figure 9, can have up to ten states. In closed 

conformation of Orai C, STIM can bind at any four binding site, having equilibrium constant for 

each site is Ka. The equilibrium constant of transition from 𝐶 ↔  𝐶1 is Ka. Similarly, the 

equilibrium constant for second STIM binding is aKa, demonstrating the direct cooperativity of 

STIM binding with Orai. The value of a is either less than or greater than 1 shows the positive or 

negative cooperativity. A similar binding process exists for the open configuration of Orai, but the 

equilibrium constant is modified by a factor f. Hoover and Lewis calculated the values of the 

factors by fitting them to the experimental data. There model predict that STIM binds to Orai with 

negative cooperativity, but because of its binding at open configuration leading to the positive 

cooperativity due to the preferred open configuration.  
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Inositol Triphosphate Receptor (IP3R) and Ryanodine Receptor (RyR) 

 IP3R and RyR are the two most important channels observed in many cell types for Ca2+ 

oscillation and waves. The open probability of channels is affected by various factors such as IP3, 

Ca2+, ATP (an essential modulator of IP3R), and there is also a substantial time dependency in 

ligand binding. There are different reviews available for IPR in the literature [77] [78]. IPR exists 

in homotetrameric form, a combination of four subunits, each of the same type. Dupont and 

Combettes constructed the model to study the effect of different subtypes’ properties on oscillatory 

behavior [79]. The open probability Po of IPR is an increasing function of [Ca2+] when [IP3] is 

fixed, that is, Po increases at low [Ca2+] and decreases at high [Ca2+]. Similarly, at fixed [Ca2+], 

Po is an increasing function of [IP3]. Studies show that the estimated value of Po is less than 0.1 

[80] but in recent studies, it is estimated to be between 0.3 and 0.8 [81]. IPR has two Ca2+ binding 

site and one IP3 binding site. One Ca2+ binding site is activating, while the other is inactivating. At 

low [Ca2+], slow release of Ca2+ from IPR initiates the positive feedback loop, increases the Po 

and cause increase in [Ca2+]. This positive feedback loop is Calcium-Induced-Ca2+ Release 

(CICR).  

The earliest model of IPR that incorporates the sequential activation ad inactivation of 

channel is given by De Young and Keizer [82] as shown in Figure 10.  

 

Figure 10. Schematic diagram of IPR model presented by De Young and Keizer. C shows [Ca2+] and p 

shows [IP3]. 

 



 

29 

 

Chapter 2 | Literature Review 

De Young and Keizer assumed that IPR consist of three independent subunits, one for 

activating calcium, one for inactivating Ca2+ and one for IP3 binding. All of three subunits must in 

in active form of Ca2+ flux. Each subunit is labelled as  𝑆𝑖𝑗𝑘 where i, j, and k can be either 1 or 

zero. One indicates binding site is occupied and zero shows the binding site is not occupied. i refers 

to IP3 biding site, j for Ca2+ activating site and k shows Ca2+ inactivating site. The flux through 

channel starts only when three subunits (Ca2+ and IP3) are in state S110 (one IP3 and one activating 

Ca2+ is attached). The original article by De Young and Keizer is referred to for model parameters 

and equations. 

The model of De Young and Keizer is simplified by Li and Rinzel [83]. Since the binding 

of IP3 and Ca2+ at activating site is simultaneous, they infer that the receptor is in quasi-steady-

state w.r.t IP3 and Ca2+ ion. The model parameters and equations are present in the original paper 

of Li ad Rinzel [83].  

RyR is involved in excitation-contraction coupling in heart and skeletal muscles, as well 

as in other cell types such as airway smooth muscles, neurons, exocrine acinar cells, oocytes. RyR 

behaves similarly to IPR in that it is triggered by high [Ca2+] and thus mediates CICR [84]. The 

simplest model for RyR was constructed by Friel to view the [Ca2+] oscillation in sympathetic 

neurons [85]. The Ca2+ flux in this model is an increasing function of [Ca2+].  

The flux through the channel is: 

𝐽𝑅𝑦𝑅 = (𝑘1 + 
𝑉𝑟𝑐

3

𝐾3 + 𝑐3
) (𝑐𝑒 − 𝑐) 2.28 

The cytosolic and ER Ca2+ concentrations are represented by c and ce, respectively. The 

first term in the equation denotes the channel's open probability, which increases as Ca2+ increases, 

and can be read as CICR. The second word is simply a force that drives Ca2+ flux through the 

channel. 
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Ca2+ Buffers 

Almost in all the cells, Ca2+ is heavily buffered. Approximately 99% of the available Ca2+ binds 

with the binding proteins. Most prevalent Ca2+ buffers are calretinin, calsequestrin, calbindin and 

parvalbumin.  

A simple chemical reaction for Ca2+ buffering is: 

𝑃 + 𝐶𝑎2+  
𝑘+
↔  𝐵 2.29 

P a buffering molecule and B is a buffered molecule. The differential equations for Ca2+ 

bound to buffer and concentration of free Ca2+ is: 

𝜕𝑐

𝜕𝑡
=  𝐷𝑐∆

2𝑐 + 𝑓(𝑐) + 𝑘−𝑏 − 𝑘+𝑐 (𝑏𝑡 − 𝑏) 2.30 

𝜕𝑏

𝜕𝑡
=  𝐷𝑏∆

2𝑏 − 𝑘−𝑏 + 𝑘+𝑐 (𝑏𝑡 − 𝑏) 2.31 

Where, bt is the total buffer concentration, 𝑘−1 is the rate of Ca2+ release from buffer, 𝑘+1  

is the rate of Ca2+ uptake by the buffer, 𝑓𝑐  shows all other reaction involving free calcium. 𝐷𝑐∆
2𝑐 

and 𝐷𝑏∆
2𝑏 model the diffusion of Ca2+ and buffer, having diffusion coefficient of 𝐷𝑐  and 𝐷𝑏.  
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2.4 Mathematical Models for Ca2+ Signaling in Cancer 

 

Sr. No Objective Model type Parameters Results Ref. 

1. The objective of this study was 

to: 

1. Understand the 

cytosolic Ca2+ 

oscillation applied in 

both electrically 

excitable and non-

excitable cells. 

2. The model has split into 

two parts: the minimal 

model and the extended 

model. The minimal 

model has two 

parameters out of six, 

whereas the expanded 

model has three or four 

parameters out of six. 

Deterministic 

models 

containing 

ODEs. 

The following parameters were 

included in the model: 

1. Concentration of IP3 

2. Concentration of cytosolic 

calcium 

3. Concentration of ER 

calcium 

4. Concentration of 

mitochondrial calcium 

5. Ca2+ binding sites occupied 

by the buffer in the cytosol 

6. Fraction of IPR in a 

sensitized state 

Results include: 

1. A self-sustaining oscillation exists 

if any of the variables has an 

activatory impact on itself, i.e., 

positive feedback caused by 

CICR, exhibited by IP3R and RyR 

Ca2+ release channels. 

2. By removing external calcium, the 

cessation of oscillation will occur 

in most cells like Hela cells. For 

most cells, external Ca2+ is not 

required like in salivary glands.  

3. Oscillation amplitude along with 

frequency is necessary to explain 

the behavior of Ca2+ signaling in 

the cells. 

[86] 
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2.  To develop an integrative 

model for Ca2+ signaling and 

metabolism in mitochondria in 

non-excitable cells. Their 

objective is to study the:  

1. Trajectory analysis of 

the relationship of Ca2+ 

changes in the cytosol, 

ER, and mitochondria. 

2. The impact of changes 

in cytosolic Ca2+ on 

mitochondrial 

metabolites.  

3. The effect of Ca2+ 

variation on 

cytosolic/mitochondrial 

Ca2+ exchanges and 

mitochondrial 

metabolism. 

 

 

 

Deterministic 

model, consist of 

ODEs.  

The model parameters consist of seven 

ODEs and 4 conservation equations,  

1. Cytosol Ca2+ concentration 

2. Mitochondrial Ca2+ 

concentration 

3. Fraction of inactivated IP3R 

4. Mitochondrial NADH 

concentration 

5. Mitochondrial ADP 

concentration  

6. Cytosolic ADP concentration  

7. Voltage difference across the 

inner mitochondrial membrane 

Conservation equations 

1. Conservation of total NADH 

2. Conservation of ADP/ATP in 

mitochondria 

3. Conservation of ADP/ATP in 

cytosol  

1. Ca2+ release from mitochondria 

raises [Ca2+] in the cytosol, which 

activates the IP3R, resulting in 

Ca2+ release from the ER. 

2. Cytosolic Ca2+ achieves its 

maximum value just before ER 

Ca2+ reaches its minimum value.  

3. The concentration of Ca2+ in 

mitochondria only rises during the 

rising period of the cytosolic Ca2+ 

peak. [Ca2+] in mitochondria does 

not return to baseline. 

4. Complete inhibition of NCX 

activity reduces the frequency of 

Ca2+ spikes, which occurs due to 

slower Ca2+ release from 

mitochondria and thus delayed 

priming of the IP3R to produce the 

cytosolic Ca2+ spike. 

5. Changing the rate constant of the 

MCU forecasts a biphasic effect: 

increasing the activity of the MCU 

[87] 
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first increases, then reduces the 

frequency of oscillations. 

6. When both NCX and MCU are 

inactive, their model includes a 

reversible flux whose direction is 

determined by the electrochemical 

gradient. The possible candidate is 

mPTP. According to the model 

results, its reduction reduces the 

frequency of Ca2+ oscillation. 

7. Cytosolic Ca2+ spikes result in a 

huge and long-lasting increase in 

NADH, which stimulates the 

Krebs cycle and raises 

mitochondrial potential. 

However, Ca2+ entry from the 

cytosol to the mitochondria 

reduces the voltage difference 

across the mitochondrial 

membrane. The biphasic voltage 

shifts causes ATP synthesis. 
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3. Their objectives were to study 

the:  

1. Different cells with 

varying periods of Ca2+ 

oscillations have a 

common dynamical 

structure. 

2. To suggest a testable 

mechanism for how 

cells produce 

oscillations based on 

their dynamic structure. 

Deterministic 

model consisting 

of ODEs 

The following parameters were 

present in the respective study: 

1. Concentration of Ca2+ in the 

cytosol 

2. Concentration of Ca2+ in ER 

3. IP3 Concentration 

4. Variable that controls the rate 

of activation and inactivation 

by calcium 

The following fluxes were 

present: 

1. Ca2+ flux through SERCA 

2. Flux Through plasma 

membrane 

3. Efflux through PMCA 

The Model predicted the following 

results: 

1. By increasing the Ca2+ flux or 

concentration of IP3, the 

oscillation frequency increases. 

2. Ca2+ influx influences oscillation 

frequency but is not required for 

oscillations to exist. 

[88] 

4. Build a mathematical model to 

study the: 

1. HYS cells, a cell line of 

the human parotid, 

when stimulated with 

ATP and carbachol 

(CCh), exhibit the 

Deterministic 

mathematical 

model of ODEs 

The Model contains three main 

compartments: 

1. The Region inside ER, Region 

near IPR (small micro-

domain), and the cytosol 

The following fluxes were 

included in the model: 

The model results showed that: 

1. When the external Ca2+ flux is 

removed, the oscillation 

frequency steadily decreases until 

it stops.  

2. Although IP3 oscillation is not 

required to cause Ca2+ oscillation 

[89] 
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coupled Ca2+ oscillation 

preceding IP3 spike 

peaks.  

1. The flux through IPR 

2. The flux from the 

microdomain to the cytosol 

3. Some leak flux across the ER 

membrane 

4. The re-uptake flux through 

SERCA pump. 

5. Influx through the membrane 

via ROCC and SOCC 

6. Ca2+ efflux through PMCA 

in HSY cells, a transient increase 

in Ca2+ frequency was observed 

due to the photolysis of caged IP3. 

3. When calcium-induced PLC 

activation was blocked, the 

amplitude and frequency of the 

oscillation decreased. 

5. Their Objective was to: 

1. Understand the impact 

of MAMs 

(mitochondria-

associated-membrane) 

Ca2+ dynamic on cell 

Ca2+ activities. 

2. To validate the 

experimental findings 

of MAMs and obesity in 

mouse liver cells, as 

well as obesity-related 

Deterministic 

model consisting 

of ODEs 

The model was divided into two sub-

models: 

               Model for intracellular Ca2+ 

dynamic, consist of following 

parameters: 

1. Total intracellular Ca2+ 

concentration 

2. ER Ca2+ concentration 

3. Ca2+ concentration in MAM 

4. Ca2+ concentration in 

mitochondria 

The model results showed that:  

1. At lower Ca2+ concentrations, as 

the stimulus dosage rises, the liver 

of obese mice reaches saturated 

cytosolic Ca2+ concentrations 

faster than the cells from healthy 

mice. 

2. The model reproduces the 

experimental finding that 

hepatocytes with higher MAM 

show an ATP-induced Ca2+ 

transient with higher peaks in 

[89] 
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cellular changes that are 

closely linked to Ca2+ 

signaling. 

5. Concentration of IP3 in cytosol 

and MAM 

6. Activation variables of IPRs in 

cytosol and MAM 

Model for mitochondria 

metabolic pathways and membrane 

potential, consist of following 

parameters and fluxes: 

1. Concentration of ADP in 

mitochondria and cytosol 

2. Concentration of NADH in 

mitochondria 

3. Voltage difference across the 

inner mitochondrial membrane 

mitochondria, whereas 

hepatocytes from obese animals 

generate higher mitochondria 

Ca2+ peaks than hepatocytes from 

lean animals. 

3. Obese mice have greater levels of 

IPR and MCU, as well as higher 

levels of MAMs, so they exhibit 

quicker Ca2+ oscillation. 

6. The objective of this study was 

to:  

1. Recognize the 

spatiotemporal 

dependency of Ca2+ and 

IP3 in cardiac myocytes. 

2. Determine the set of 

parameters that govern 

Partial 

differential 

equations solved 

with finite 

element method. 

The parameters studied were: 

1. Concentration of Ca2+ in 

cytosol. 

2. Concentration of IP3 in the 

cytosol. 

The spatial effects of the 

parameters are also considered, x is 

the position variable, distance from 

The model result showed: 

1. The relationship between Ca2+ and 

IP3 is nonlinear in cardiac 

myocytes.  

2. IP3 diffuses to the cytosol from the 

membrane, binds to IP3R, opens 

the channel, and releases calcium; 

Ca2+ binds to PKC, which is 

[90] 
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the Ca2+ concentration 

in the cytosol. 

the Ca2+ source and t is the time 

variable.  

The model contains the 

following fluxes: 

1. Flux for IP3 receptor 

2. Flux for Leak 

3. Flux for SERCA pump 

4. Flux for IP3 production 

5. Flux for kinase and 

phosphorylation 

triggered by DAG; activated PKC 

regulates cellular processes. 

Shows that Ca2+ and IP3 

concentrations are interdependent 

and that Ca2+ and IP3 

concentrations in cells are needed 

for cardiac myocytes. 

3. Source channels, including leaks 

and pumps, work in concert to 

maintain Ca2+ and IP3 

concentration at optimal levels for 

the initiation and termination of 

different processes in cardiac 

myocytes.  

7. Objective of this study was to: 

1. Build a mathematical 

model to demonstrate 

the effect of Ca2+ 

concentration in 

Alzheimer’s disease. 

Three 

dimensional 

mathematical 

equation 

consisting of 

ODEs solved by 

finite element 

technique. 

Following parameter were discussed 

in this paper: 

1. Ca2+ dynamic in the presence 

of buffer 

2. VGCC mediated Ca2+ dynamic 

3. NCXL mediated Ca2+ dynamic 

4. Ca2+ dynamic in ER and 

mitochondria 

Model results showed that: 

1. The two major Ca2+ influx 

channels involved in Alzheimer's 

disease are VGCC and NCLX. 

2. Any change in VGCC and NCLX 

causes an increase in cytosolic 

Ca2+ concentration; similarly, a 

reduction in buffer and defects in 

[91] 
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 ER and Mitochondria cause an 

increase in cytosolic Ca2+ 

concentration. 

3. The addition of exogenous buffers 

such as EGTA and BAPTA 

regulates the increased Ca2+ 

fluctuation. 

8. They use mathematical 

modeling and live-cell 

intracellular measurement to: 

1. investigate Ca2+ 

signaling dysregulation 

in KYSE-150, a human 

esophageal squamous 

cell cancer cell line. 

2. Determine whether the 

combination of afatinib 

(an FDA-approved 

treatment for 

esophageal cancer) and 

RP4010 (a SOCC 

Deterministic 

model consisting 

of ODEs 

The parameters discussed for model 

building include: 

1. Ca2+ concentration in the 

cytosol. 

2. Ca2+ concentration in ER 

3. Concentration of IP3. 

4. Rate at which Ca2+ activates 

IP3R. 

The following fluxes were 

included: 

1. Flux of Ca2+ from ER through 

IP3R channel 

2. Flux of Ca2+ from cytosol to 

ER through SERCA pump 

1. The mathematical and 

experimental results indicate that 

both drugs reduce the frequency 

of Ca2+ oscillations synergistically 

and have a significant impact on 

cell viability in an esophageal cell 

line. 

2. 2. Afatinib, a TRI, inhibits the 

P13K/Akt and MEK/ERK 

signaling pathways, while 

RP4010 inhibits intracellular Ca2+ 

oscillation in a dose-dependent 

fashion. 

[92] 
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blocker) is helpful for 

the treatment. 

3. Determine the optimal 

concentration of both 

drugs for combined 

treatment.  

3. Flux through leaks includes 

entry via unspecified channel 

plus SOCC mediated Ca2+ 

entry 

4.  The flux through plasma 

membrane pump. 

 

 

2.5 Mathematical Models for NB 

 

9. The objective of this study 

was to: 

1. Create a mathematical 

model to determine an 

optimal 

chemotherapeutic 

schedule that 

minimizes toxicity 

while maximizing 

effectiveness. 

ODE model for 

pharmacodynamics 

and 

pharmacokinetic of 

Topotecan 

There are four mathematical models 

discussed in this paper, 

1. Topotecan plasma 

pharmacokinetics, include 

following parameters: 

Clearance, volume of 

the central compartment, and 

inter-compartmental 

parameters.  

2. Tumor growth include 

following parameters: 

The model Results showed that: 

1. Protracted schedule of topotecan 

to obtain systematic exposure 

between 80 and 120 ng/mL 

h/dose in high-risk NB patients is 

highly effective.  

2. Increasing the duration of 

therapy was essential and 

resulted in a higher response rate. 

[93] 
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2.  Determine the 

cytotoxic impact of 

Topotecan, a 

topoisomerase 

inhibitor, on tumor 

tissue as well as the 

hematopoietic system. 

3. Compare different 

topotecan systematic 

exposure and schedule 

of treatments. 

Tumor proliferating 

cells, and tumor Quiescent 

cells. 

3. Neutrophil dynamic, include 

following parameters: 

Topotecan plasma 

concentration, concentration 

of different proliferating cells, 

concentration of non-

proliferating cells, and 

concentration of circulating 

neutrophils. 

4. Platelet dynamic include 

similar parameter sets as that 

of neutrophil dynamic.  

10. Their objective was to: 

1. Study the role of 

VEGF in tumor 

growth and 

progression in IMR-

32. 

Compartmental 

mathematical 

model, consisting 

of ODEs 

The model contains 10 quantities: 

1. Rate of change of cells in the 

G1 phase 

2. Rate of change in the S phase 

3. Rate of change in the G2 

phase 

The Model results showed that: 

1. Bevacizumab concentration is 

inversely linked to tumor growth 

and VEGF level. 

2.  Bevacizumab has no impact on 

tumor suppression when 

administered in a single large 

[94] 
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2. Study the effect of 

bevacizumab 

(Avastin; a humanized 

anti-VEGF-A 

antibody), the first 

angiogenesis 

inhibitor, against NB.  

 

4. Rate of change in 

Q(quiescent) phase 

5. Rate of change in the N 

(necrosis) phase 

6. VEGF signaling (R) 

7. Concentration of TNF-α (A) 

8. Vasculature (V) 

9. Drug kinetics of Bevacizumab 

(E, X) 

dose or in smaller doses on a 

regular basis.  

 

11. Their objective was to: 

1. Create a mathematical 

model that describes 

the connection 

between immune 

cells, cancer cells, and 

viral cells in paediatric 

NB patients.  

2. Create a Mathematical 

model both for 

continuous and 

periodic therapy  

Non-linear 

ordinary 

differential 

equations  

The following parameters were 

considered in this model: 

1. NB tumor cells 

2. Tumor suppressor cells: are 

the immune cells that 

suppress the action of tumor 

cells 

3. Immune suppressor cells: are 

immune cells that suppress 

the activation or proliferation 

of tumor suppressor cells. 

4. Oncolytic Virus : Celyvir, the 

therapy used. 

1. Stability and bifurcation analysis 

are used to determine whether 

treatment induces tumor free 

equilibrium or tumor 

progression. 

2. The model shows the existence 

of a viral load threshold value 

that could ensure the patient's 

recovery. 

3. The model insists that both the 

duration of treatment and the 

intensity of the viral load must be 

adequate to guarantee the 

[95] 
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therapy's success. Failure to 

provide appropriate treatment 

may result in viral recurrence. 

4. The combination of Celyvir and 

other chemotherapies may be 

helpful for tumor eradication. 



 

43 

 

Chapter 2 | Literature Review 

2.6 Cell Cycle Phases Model 

Carcinogenesis may result in the loss of control over cell cycle leading to the abnormal cell 

population. Cell cycle can be used as an object for the treatment against cancer. Different control 

models for the cell cycle are formulated for analysis and optimization of different protocols of 

drug administration [96] [97]. Cell cycle is the sequence of phases that are repeated by each cell 

from its birth to division. It consists of G1 (growth phase), S (synthesis phase), G2 and M phases 

(division phase). After division two progeny reenter the G1. It might possible that either one of 

both the progeny becomes dormant and enters the G0 phase and after some or long duration it 

might re-enter the G1 phase [98]. There is multiple regulatory mechanism that controls the 

progression of cells from each phase. Any disturbance in these mechanism may lead to the error 

that propagates through the signaling networks and leads to the cancer development [99]. 

The effect of drug either as a killing agent or blocking agent can be considered by 

introducing the control variables. In compartmental model, the application of killing and blocking 

agents is equals to the death of a fraction of cells in the flow between compartments. For example, 

if 𝑓𝑎 denotes the drug action, only a fraction (1- 𝑓𝑎(t)) of the outflow from the compartment 

contains live cells (0 ≤ 𝑓𝑎 ≤ 1). 

2.7 Research Gap 

Based on a comprehensive literature review, it has been observed that there is a lack of studies 

utilizing mathematical modeling to examine the influence of Ca2+ signaling on NB cells. To 

address this research gap, our intention is to utilize preexisting mathematical models for Ca2+ 

signaling to gain insights into the dynamics of NB. We aim to assess the impact of the rate of Ca2+ 

intake on cell growth and explore the effects of various chemotherapeutic agents and Ca2+ 

regulators on NB growth and inhibition. By employing this approach, we seek to provide a deeper 

understanding of the role of Ca2+ signaling in NB and propose potential therapeutic interventions 

that target this signaling pathways
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Chapter 3 

3 Methodology 

Our study extended the work conducted by Wacquier et al.[100], which focused on investigating 

the role of [Ca2+]i in three cellular compartments: cytosol, endoplasmic reticulum (ER), and 

mitochondria. Additionally, we have incorporated modifications to the model presented in Wallace 

et al.'s study [101] in order to simulate the impact of various chemotherapeutic agents and Ca2+ 

regulators on cell growth. The model developed by Wacquier et al. for Ca2+ signaling is rooted in 

prior experimental studies and incorporates kinetic expressions of various channels and pumps. 

They adjusted multiple parameters to assess intracellular Ca2+ expression in three compartments, 

using HeLa cells as a reference. Likewise, Wallace et al. focused on studying the cell cycle 

dynamics of both monolayer and spheroid models of a NB cell line. They utilized data from 

monolayer treatment of SK-N-SH NB cells with 15-deoxy-PGJ2 and expanded it by incorporating 

growth rate data from untreated SK-N-SH NB spheroids. These two studies serve as the basis for 

the development of a comprehensive model that integrates Ca2+ signaling into the process of cell 

growth and assesses its combined influence with different chemotherapeutics. Likewise, to depict 

the effect of chemotherapy on cell death or apoptosis, a pharmacodynamics term is introduced in 

the cell cycle phases model. In pharmacodynamics, the effect of drug concentration on cell growth 

and apoptosis is checked. MATLAB, specifically the ode15s solver, is employed to execute all the 

necessary computations. 
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= 

Figure 11: Diagrammatic illustration of the methodology followed for this study. A conceptual model 

representing the metabolic pathways involving NB dynamics was constructed. The extracted experimental 

data of NB-specific in vitro and in vivo studies was subjected to the ODEs, representing the mathematical 

formulation of a conceptual model. The model was simulated under different conditions to analyze the NB 

growth dynamics along with different therapeutics. The local sensitivity analysis revealed the relative 

sensitivity of model parameters, which helps in parameter extraction and optimization. Parameter 

Extraction and Optimization 

The model parameters of Wacquier et al. are optimized to mimic the simulated Ca2+ dynamics 

observed in normal and cancerous cells. Two key parameters, namely, the total Ca2+ concentration 

(𝐶𝑡) and the fraction of free over buffer bound Ca2+ in the cytosol, mitochondria, and ER (𝑓𝑐), are 

optimized based on the researchers' best understanding to produce the oscillation pattern of normal 

and tumorigenic condition like observe in Stewart et al.'s study. Additionally, the parameters 

related to cell cycle dynamics such as the Ca2+ concentration in G1, S, and G2/M phases are also 

optimized to replicate the observed behavior [102]. During the simulations, it is assumed that in 

tumorigenic conditions the concentration of Ca2+ is doubled and the rate of transitions between 

phases is also doubled compared to normal cells, parameter values are reflected in Table 2.  



 

46 

 

Chapter 3 | Methodology 

Additionally, local sensitivity analysis of different parameters is performed to assess the 

relative significance of each parameter in predicting cell growth, detailed explanation is provided 

in Appendix A.  

Table 2 

Summary of cell growth model parameters and initial conditions. The parameter values extracted 

from the SK-N-SH monolayer culture [101].   

Cell line   Normal cell line SK-N-SH 

Source material Wallace et al. [101] Wallace et al. [101] 

Observed G1 62.87 62.87 

Observed S 26.93 26.93 

Observed G2/M 10.20 10.20 

Transition rates  Optimized values Wallace et al. [101] 

𝑐1 0.42 0.85 

𝑐𝑠 0.79 1.59 

𝑐2 1.92 3.85 

Cytosolic Ca2+ concentration Pande et al. [102] Optimized values 

𝑥1 0.75 1.51 

𝑥2 0.72 1.44 

𝑥3 

𝐶𝑡 

𝑓𝑐 

0.74 

1000 

0.01 

1.49 

1200 

0.02 

 

3.1 Model Building 

A mathematical model for Ca2+ dynamics is built in MATLAB with the help of built in ODEs. The 

optimized Wacquier et al. model of Ca2+ signaling consists of seven ODEs, four conservation 

equations, and eleven chemical equations for fluxes.  The ODEs include cytosolic Ca2+ 

concentration, inactivated IP3 receptor, mitochondrial Ca2+ concentration, mitochondrial NADH 

concentration, mitochondrial ADP concentration, cytosolic ADP concentration, Voltage 

difference across inner mitochondrial membrane, and ER Ca2+ concentration. Similarly, chemical 
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equations for the fluxes include: Ca2+ flux through IP3, Ca2+ flux through unidirectional SERCA 

ATPase pump, flux from cytosol to mitochondria through MCU, rate of Ca2+ extrusion out of 

mitochondria through NCX, bidirectional Ca2+ leaks between cytosol and mitochondria (Jx), rate 

of NADH production by pyruvate dehydrogenase (PDH), rate of NADH production induce by the 

MAS NADH shuttle (AGC), rate of NADH oxidation (J0), rate of ATP/ADP translocator (ANT), 

rate of ATP synthesis by FIFO-ATPase (FIFO), rate of ATP consumption by cytosol (HYD), and 

Ohmic mitochondrial proton leak (JH, leak).  

3.2 Model Equations  

Following are the ODEs for Ca2+ signaling in three compartments including cytosol, ER, and 

mitochondria. 

1. Cytosolic Ca2+ concentration 

  
𝑑𝐶𝑐
𝑑𝑡
 =  𝑓𝑐 (𝛼 𝐽𝐼𝑃𝑅 − 𝐽𝑆𝐸𝑅𝐶𝐴 −  𝛿𝐽𝑀𝐶𝑈 + 𝐽𝑁𝐶𝑋 −  𝛿𝐽𝑥 ) 

(1) 

 

2. Fraction of inactivated IP3 receptor 

𝑑𝑅𝑖
𝑑𝑡
=  𝑘+ 𝐶𝑐

𝑛𝑖  
1 − 𝑅𝑖

1 + (
𝐶𝑐
𝐾𝑎
)𝑛𝑎
− 𝑘−𝑅𝑖 

(2) 

The equation shows the regulation of Ca2+ oscillation due to IP3 and Ca2+. 

3. Mitochondrial Ca2+ concentration 

 

𝑑𝐶𝑚
𝑑𝑡
 =  𝑓𝑚 (𝐽𝑀𝐶𝑈 − 𝐽𝑁𝐶𝑋 + 𝐽𝑥 ) 

(3) 

4. Cytosolic ADP concentration 

𝑑[𝐴𝐷𝑃]𝑐
𝑑𝑡

 =  𝐽𝐻𝑌𝐷 − 𝛿 𝐽𝐴𝑁𝑇 
(4) 

5. Mitochondrial ADP concentration 

𝑑[𝐴𝐷𝑃]𝑚
𝑑𝑡

 =  𝐽𝐴𝑁𝑇 −  𝐽𝐹𝐼𝐹𝑂 
(5) 

  

6. Voltage difference across inner mitochondrial membrane 
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𝑑∆𝜓

𝑑𝑡
 =  

𝑎1 .  𝐽𝑜 − 𝑎2 . 𝐽𝐹𝐼𝐹𝑂 − 𝐽𝐴𝑁𝑇 − 𝐽𝐻,𝑙𝑒𝑎𝑘 − 𝐽𝑁𝐶𝑋 − 2.  𝐽𝑀𝐶𝑈 − 2.  𝐽𝑥 − 𝐽𝐴𝐺𝐶 
𝐶𝑝

 
(6) 

𝐶𝑝 include both membrane capacitance and faraday’s constant.  

 

7. ER Ca2+ concentration 

𝑑𝐶𝐸𝑅
𝑑𝑡

=  
𝑓𝐸𝑅
𝛼
 ( 𝐶𝑡𝑜𝑡 − 

𝐶𝑐
𝑓𝑐
−  𝛿 

𝐶𝑚
𝑓𝑚
 ) 

(7) 

For the comprehensive information regarding conservation equations, fluxes, and detailed 

terminology, it is recommended to consult the original paper of Wacquier et al [100]. Likewise, 

the mathematical model of cell cycle phases is built in MATLAB. It consists of three phases, G1 

phase, S phase, and G2/M phase. In this study, we extend the work done by Wallace et al. [101],  

 

Figure 12: Flow diagram representing general model of cell cycle without G0 phase. 

The overview of general cell cycle phases is representing in Figure 12, G1 shows the 

average number of cells in G1 phase and 𝑐1 is the transition rate of the cells from G1 phase to S 

phase. Likewise, S and G2/M denotes the initial number of cells in the respective phases and 𝑐𝑠  

and 𝑐2 are the transition rate in the respective cell cycle phases. Each cell cycle phase is represented 

as a separate compartment. Usually, G2 and M phases are combined as one compartment. If G0 

phase is not considered, then according to the exponentiality assumption, the number of cells in 

different cell cycle compartment is represented by a system of ODEs.  
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𝐺1
′ = 2 𝑐2 𝐺2 − 𝑐1𝐺1 (8) 

𝑆′ =  𝑐1 𝐺1 − 𝑐𝑠𝑆 (9) 

𝐺2
′ = 𝑐𝑠 𝑆 − 𝑐2𝐺2 (10) 

The model equation can incorporate the effect of drugs, either as cytotoxic agents or 

blocking agents, as control variables to represent the chemotherapeutic effect. In a compartmental 

model, the application of cytotoxic and blocking agents can be represented as the death of a 

fraction of cells in the flow between compartments. This allows for the simulation of the impact 

of these agents on the overall dynamics of the system. For example, if 𝑓𝑎 denotes the drug action, 

only a fraction (1- 𝑓𝑎(t)) of the outflow from the compartment contains live cells (0 ≤ 𝑓𝑎 ≤ 1) [97].  

To describe the effect of a drug on cells, a saturation equation without cooperativity is 

employed. This mathematical equation delineates the relationship between the concentration of 

the drug and the fraction of cells in arrest. One commonly used saturation equation is modeled by 

the Michaelis-Menten equation, (Equation 11). 

𝑓𝑎 = 
𝐶

𝐾𝑎 + 𝐶
 

(11) 

  C denotes the drug concentration and parameter 𝐾𝑎 is the concentration effect (IC50 or 

EC50) of drug. For example, consider the effect of drug on G2/M phase, the ODEs for this case 

will be: 

𝐺1
′ = 2 (1 − 𝑓𝑎(𝑡)) 𝑐2 𝐺2 − 𝑐1𝐺1 (12) 

𝑆′ = 𝑐1 𝐺1 − 𝑐𝑠𝑆 (13) 

𝐺2
′ = 𝑐𝑠 𝑆 − 𝑐2 (1 − 𝑓𝑎(𝑡)) 𝐺2 (14) 

 

𝑓𝑎(𝑡) =0 represents no action of drug and 𝑓𝑎(𝑡)=1, represents maximum action of drug. 

One limitation of this model is its failure to incorporate the quiescent phase, which is 

crucial in real-life scenarios. When cells are exposed to drugs, they may survive but lose their 

ability to proliferate or experience delayed proliferation. This aspect adds complexity to the 

process of parameter estimation, making it more challenging. This limitation can be particularly 

problematic in certain cancer types such as breast and ovarian cancer  [103] [104] and leukemia 

[105]. In leukemia cases, cells remain in a quiescent state and are not affected by cytotoxic agents. 
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Thus, neglecting the insensitivity of dormant cells to anticancer drugs can lead to significant issues. 

Despite of these limitation, the ODEs presented here for the compartmental cellular growth model 

accurately describe the quantitative behavior of cellular growth of SK-N-SH observed in Wallace 

et al. [101]’s study of monolayer SK-N-SH cells.  

3.3 Trajectory Analysis 

The trajectories of Ca2+ signaling model are analyzed to understand the Ca2+ oscillation pattern in 

three compartments: cytosol, ER, and mitochondria in both normal and the diseased conditions. 

Likewise, the qualitative pattern of cell growth is also analyzed by the trajectories of cell growth 

model in the presence and absence of therapies. This analysis provides valuable insights into the 

efficacy and potential synergistic effects of the drugs in inhibiting NB cell growth.
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Chapter 4 

4 Results and Discussion 

In non-excitable cells, the Ca2+ oscillations are supposed to be regulated by the different Ca2+ 

channels or pumps notably by the internal stores IP3R and SERCA. The opening of IP3R generate 

Ca2+ oscillations or repeated spikes. The respiratory chain reaction in mitochondria generate the 

negative potential across the inner membrane, creating a charge difference (known as membrane 

potential (∆ψ)) that allows the MCU to transport Ca2+ into mitochondria, which causes the 

depolarization of mitochondrial membrane and reduce the driving force for further Ca2+ entry. The 

mathematical model of Ca2+ signaling produces an oscillatory pattern of Ca2+ in cytosol, ER, and 

mitochondria with initial concentration of 0.45, 107.71, and 0.29 (units in µM) respectively, shown 

in Figure 13. When the cytosolic Ca2+ returns to its basal level, mitochondria release Ca2+ through 

NCX or Ca2+ proton exchanger. Initially, Ca2+ increases slowly both in cytosol and in ER, while 

Ca2+ in mitochondria decreases. When cytosolic Ca2+ reaches its peak, it stimulates the IP3Rs and 

ER Ca2+ starts to decrease. The Ca2+ in mitochondria starts to increase only during the first rising 

phase of cytosolic Ca2+. When ER Ca2+ reaches its minimum value, cytosolic Ca2+ reaches its 

maximum value. During the period of high cytosolic Ca2+, ER starts to refill. The slop began to 

change when the rate of ER Ca2+ increase is imposed by the rate of Ca2+ release form mitochondria. 

As long as mitochondrial Ca2+ is concerned, it keeps accumulating when the cytosolic Ca2+ reaches 

its peak value. The Ca2+ in mitochondria finally decreases until the onset of second cytosolic Ca2+ 

peak, but it does not return to its basal level during the inter-spike interval. The ODEs for Ca2+ 

signaling model is present in methodology section from equations 1 to 7 and the detailed 

oscillatory pattern is shown in Figure 13. The model equations, fluxes and parameters values are 

discussed in detail in Wacquier et al.’s study [106].  
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Figure 13: Ca2+ oscillation between cytosol, mitochondrial and ER. Curve in black shows the simulated 

waves of Ca2+ oscillation in cytosol, red shows the Ca2+ oscillation in ER, and blue shows the Ca2+ 

oscillation in mitochondrial. The image shows the sustained oscillation of by constant supply of IP3 = 1 

µM.  

The tumorigenic cells exhibit characteristics pattern of Ca2+ signaling compared to the 

normal cells. Baldi et al. [107] studied the effect of SOCE in tumorigenic SKBR3 (luminal human 

epidermal growth factor receptor 2 positive cell line) and HBL100 (normal breast epithelial) cell 

line. The Ca2+ influx from SOCE due to Tg mediated ER depletion differed in both cell lines. The 

peak amplitude and initial rate of Ca2+ influx is same in both cell lines but the return of Ca2+ 

oscillation to the baseline Ca2+ in tumorigenic cell was more sustained and lowered as compared 

to the normal cell line. In a separate study, it was demonstrated that cultured human primary 

malignant glioblastoma multiforme cells exhibited a two-fold increase in the amplitude of SOCE 

compared to non-malignant human primary astrocyte control cells [108]. Similarly, store depletion 

causes the increased influx due to SOCE showed higher intracellular Ca2+ peak amplitude, and 

corresponding to increased Orai 1 protein expression showed in four metastatic melanoma cell  
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lines compared to the control melanocyte cell lines [109]. Similarly, KYSE-150, esophageal 

squamous cell carcinoma derived cell line studied by Zghu et al., identified the altered expression 

of SOCE relative to the HET-100, a non-tumorigenic esophageal epithelial cell line [110]. The 

difference in global Ca2+ signaling using live cell imaging in the absence of stimulus showed that 

the esophageal squamous cell carcinoma cells showed a higher degree of spontaneous intracellular 

Ca2+ oscillations when compared to the normal cells.   

We optimized 𝐶𝑡 and 𝑓𝑐 of the mathematical model for Ca2+ signaling to generate similar 

oscillation patterns in both normal and tumorigenic condition as observed in literature. The model 

was simulated for a duration of 120 seconds, allowing a comparison of oscillations behavior in 

normal and tumorigenic scenarios. The simulation results are presented in Figure 14, demonstrated 

distinct behaviors of (Ca2+)i oscillations between normal (depicted by the red curve) and 

tumorigenic (represented by the black curve) conditions. In normal conditions, the frequency and 

amplitude of Ca2+ oscillations were tightly regulated, ensuring controlled cellular growth. 

Conversely, tumorigenic cells displayed abnormal Ca2+ oscillations with increased amplitude, 

leading to irregular cellular behavior and uncontrolled proliferation. The graphical outputs of 

simulated results revealed that tumorigenic cells manifest two oscillations per minute, whereas 

normal cells exhibit a reduced frequency of one and a half oscillations per minute. Furthermore, 

the predicted oscillation amplitude in normal cells measured 0.44, while tumorigenic cells 

demonstrated an increased amplitude of 0.50. The predicted behavior of Ca2+ signaling aligns with 

the findings presented by Teneale et al.’s study [111]. 
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Figure 14: Simulated results of Ca2+ homeostasis in tumorigenic (black) and non-tumorigenic (red) 

cells. These changes occur due to the release from internal stores via IP3 or [Ca2+], contributing to 

the excessive cell proliferation in NB (SK-N-SH). The simulated behavior is in agreement with 

the observations provided in [111].  

To assess the effect of Ca2+ signaling on SK-N-SH cells, ([Ca2+]c) from Ca2+ signaling 

model was added to a mathematical model of cellular growth with the parameter values derived 

from the study of Wallace et al. [101]. The parameter values and initial condition for cell growth 

in normal and tumorigenic cells are given in Table 2. The parameters 𝑥1, 𝑥2, 𝑥3 shows the phase 

specific Ca2+ concentration. These parameters were taken from the study of Pande et al. [102], 

they conducted an experiment on viable rat fibroblast to check the intracellular level of free (Ca2+)c 

in the G1, S, and G2/M cell cycle phases using flow cytometry. The graphical results of the 

mathematical model of cellular growth incorporating the effect of tumorigenic and non-

tumorigenic ([Ca2+]c) on cell count is shown in Figure 15. The viable cells will be the sum of all 

cell cycle phases i.e, 𝑣𝑖𝑎𝑏𝑙𝑒_𝑐𝑒𝑙𝑙 (𝑉𝑡)  =  𝐺1𝑡 + 𝑆𝑡 + 𝐺2/𝑀𝑡. On day 1 the cell counts in G1, S, 

and G2/M phases are 62.87, 26.93, and10.20 both in normal and tumorigenic condition, 

respectively. The simulation duration is 15 days and after 15 days both the normal and tumorigenic 

cell showed exponential growth. After simulation duration, the predicted cell count in normal  
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condition is 1912.77 while in tumorigenic condition, it is 34,324.81, showed that tumorigenic cells 

exhibit uncontrolled division, results are presented in Table 3. The unit of cell counts in cellular 

growth model is 106 µm3. 

Table 3 

A comparison of cell count between tumorigenic and non-tumorigenic cell lines (parameters 

values were chosen from a neuroblatoma SK-N-SH cell line [101]) after 15 days.  

Sr. no  Non-tumorigenic cell count Tumorigenic cell count 

1 1912.77 34324.81 

 

 
(a) 

 
(b) 

Figure 15: Simulated results of mathematical model of cell growth incorporating the effect of non-

tumorigenic and tumorigenic [Ca2+]i in normal (a) and in SK-N-SH cell count (b). Blue curve 

shows the G1 phase, red curve shows the S phase, and green curve shows the G2/M phase. 

 

After simulating cell growth in normal and tumorigenic cells, we incorporated the behavior 

of cancer therapeutics to examine their impact on cell growth and to identify optimal treatment 

schedules. The response data for the drugs were obtained from the study of Fulda et al. [112]. They 

conducted an in-vitro analyses of different cancer drugs and checked the cytotoxic activities of 

these drugs against six NB cell lines using monolayer proliferation assay. They identified the most 

effective and least effective drugs based on their ED50 (in-vitro drug concentration for 50% growth 
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inhibition) values and drug’s plasma level concentration, provided in Table 4. These drugs also 

possess anti-therapeutic activity against other cancer as well, detail of each drug’s cytotoxic 

activity is provided in Table 4. Since these drugs have already demonstrated effectiveness against 

NB cells, we further studied their behavior using our methodology.  

Table 4 

Mean ED50 values and mean plasma level of drug concentration effective against six NB  cell lines 

named as: IMR-5, Kelly, CHP-134, GI-CA-N, CHP-100, and SK-N-SH [112]. More effective 

drugs have ED50 values less than human plasma level while less effective values have ED50 values 

≥ to human plasma level.  

 

Sr. no  Drugs  Mean ED50 

(nmol/ml) 

Mean Plasma level 

(nmol/ml) 

1 Mitoxantrone 0.06 1.655 

2 Bleomycin 0.196 2.75 

3 Carboplatinum 9.25 42.33 

4 Cytarabine 1.63 10 

5 6-thioguanine 3.37 2.66 

6 Ifosfamide 5.58 2.16 

7 6Marcaptopurine 18 2.0 

8 CNUU 26.83 2.133 

9 Procarbazine 190 0.55 

 

According to Fluda et al., Mitoxantrone, Belomycin, and Cisplatinum are highly effective 

drugs while Carboplatinum, Cytarabine, 6-thioguanine, and Ifosfamide exhibit intermediate effect 

and drugs including 6-Marcaptopurine, CCNU, and Procarbazine showed least effect against six 

NB cell lines indicated in the Table 4. Mitoxantrone, a synthetic anthracenedione, is an 

antineoplastic agent. It inhibits the activity of topoisomerase II, causes late S phase or G2/M phase 

cell arrest [113]. It was first developed in 1980s having decreased cardiotoxicity activity, effective 

against adult acute myeloid leukemia, symptomatics hormone-refractory prostate cancer, and 

relapsing multiple sclerosis [114]. Bleomycin, an antitumor drug, interfere with DNA synthesis 
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and causes DNA damage. It is highly cell cycle phase specific mainly effecting the late G1 phase 

or S phase of cell cycle [115]. It is effective against lymphoma, neck and head malignancy, and 

testicular tumor. 

Carboplatinum inhibit the DNA synthesis by cross-linking of DNA strands, interferes with 

RNA transcription and causing the growth imbalance that eventually leads to cell death. It is used 

against ovarian cancer, other types of cancer include head and neck, lung, bladder, endometrial, 

esophageal, and cervical; osteogenic sarcoma, CNS or germ cell tumors [117].  Cytarabine, an 

antineoplastic agent belongs to the category of anthracyclines, used against leukemias and 

lymphomas. Cytarabine is pyrimidine analog, it competes with cystidine to incorporate itself into 

DNA and hinder the rotation of the molecule within DNA. It ceases the replication process during 

the S phase. It also stop the DNA replication process due to the inhibition of DNA polymerase 

[118]. 6-thioguanine, an antineoplastic anti-metabolite chemotherapy, used against acute 

myelogenous leukemia. It also exhibited anti-inflammatory and immunosuppressive effects. It is 

a purine analog of guanine that incorporate into DNA and RNA results in blockage of synthesis 

and metabolism of purine nucleotide [119]. Ifosfamide, an alkylating and immunosuppressive 

agent, cause the cell death by inter and intra strands ross-linking in DNA by binding with nucleic 

acid or other intracellular structures, also inhibit the DNA and protein synthesis. It is commonly 

used against lung cancer, bladder cancer, cancer of ovaries, certain soft tissues of brain sarcomas, 

and cervix cancer [120]. 

6-Marceptopurine, an antineoplastic anti-metabolite and immunosuppressive agent, inhibit 

the DNA synthesis by interfering with nucleic acid synthesis. It is commonly used to treat acute 

lymphocytic leukemia [121]. CCNU, an alkylating agent, stop the cell division by sticking to one 

of the cell’s DNA strand. It is commonly used to treat brain tumors and also used in combination 

with other drugs to prepare people for stem cell or bone marrow transplant [122]. Procarbazine, an 

alkylating agent, used in combination with other drugs for stage III and IV Hodgkin’s disease. 

Procarbazine is cell phase specific, causing S phase arrest. It stops the DNA replication by cross-

linking guanine bases in DNA stands. The strands are unable to uncoil and separate, making them 

unable to divide [123]. 

In addition to incorporating drug effects, we also considered the impact of Ca2+ modulators 

on both Ca2+ signaling and cell growth. Thapsigargin (Tg), a SERCA pump inhibitor, is used in 
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this study. While Ca2+ plays a crucial role as a second messenger in cellular proliferation and 

differentiation, it also possesses the ability to act as a potent inducer of cell death. Various Ca2+ 

channels and pumps collaborate to ensure proper cellular function. SERCA, one of the Ca2+ pump, 

plays a critical role in maintaining a compartmentalized distribution of Ca2+ within the cell, thereby 

influencing Ca2+ signaling dynamics. Previous studies have examined the role of SERCA activity 

in cell proliferation and apoptosis, employing Tg as a valuable tool. It has been reported that by 

inhibiting the SERCA pump by Tg may leads to rapid depletion of the ER, subsequently triggering 

a cascade of secondary events. These events contribute to the activation of caspases, ultimately 

leading to cell death. 

To examine the impact of Tg-mediated apoptosis, Nath et al. in 1997 used the NB cell line 

(NH-SY5Y) and fetal rate cortical cultures. They demonstrated that the loss of cell viability occurs 

within 24 to 48 hours when applying Tg at various concentrations (10nM to 1µM). After eight 

hours of Tg treatment, the DNA of these cells displayed the characteristic laddering pattern of 

oligonucleotides. One hour prior to the administration of Tg, they administered Dantrolene, an 

inhibitor of Ca2+-induced Ca2+ release from ER, which lowers apoptosis by 40%. The exact 

mechanism causing apoptosis is unknown, although Nath et al. hypothesized that Tg-mediated ER 

Ca2+ depletion causes an increase in cytosolic Ca2+, which triggers cell death pathways. 

Additionally, they also mentioned that Tg apoptosis is highly cell dependent [124]. Mary et al. did 

a further investigation into Tg-mediated cell death in 2005. They studied that Tg-induced ER stress 

activates caspase 2,3 and 7 in SH-SY5Y cells. They further examined the effect of cell-permeable 

caspase inhibitors on Tg-induced cell death. Among the caspase inhibitors used (Z-VDVAD-FMK, 

Z-DEVD-FMK, Z-LEHD-FMK, Z-VAD-FMK), Z-VAD-FMK was a potent inhibitor of Tg-

stimulated cell death and showed 100% response, while other inhibitors showed 33, 11, and 16% 

response respectively [125].  

Herein, we evaluated the response of drugs using the saturation equation, with data 

obtained from Fluda et al.'s study [112]. Likewise, the response of the modulator was derived from 

Sehgal et al.'s study [126]. They investigated the effects of Tg and its analogs on cell death through 

the inhibition of the SERCA pump. The study reported that Tg and its analogs, within various 

concentration ranges, inhibit SERCA 1a activity, leading to cell death caused by ER depletion. 
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The results of simulating the addition of drug and modulator responses in different cell 

cycle phases are presented in Table 5. Among the tested drugs, mitoxantrone exhibited the highest 

response, with a drug plasma level of 1.655 nmol/ml and an ED50 value of 0.06 nmol/ml. Following 

15 days of treatment, the drug reduced the cell count from 34,324.81 to 398.04. On the other hand, 

when Tg response was simulated alone, the cell counts only decreased slightly from 34,324.81 to 

34294.02, indicating that Tg alone had a negligible effect on the cell count. However, when both 

the drug and modulator were applied simultaneously, the cell count significantly decreased from 

34,324.81 to 367.24. This suggests that the combined effect of the drug and modulator led to a 

substantial reduction in the cell count. The response of all the mentioned drugs, alone and in 

combination with Tg, was examined and is provided in Table 5. These findings highlight the 

effectiveness of mitoxantrone and the synergistic effect of combining the drug and modulator in 

achieving a significant reduction in cell count. 

The graphical view in Figure 16(a) illustrates the sinusoidal behavior of mitoxantrone alone 

and in combination with Tg. Initially, mitoxantrone exhibits its maximum response by arresting 

cells in the G1 and G2/M phase, resulting in a reduction of the initial malignant cell count from 

269.94 to 134.76 within approximately 72 hours. After 72 hours, the response of mitoxantrone 

started to decline, and an increased cell count of 361.00 was observed. When considering the 

synergistic effect of mitoxantrone and Tg, the cell count increased to 233.54 as the therapy's effect 

was minimized. This indicates that mitoxantrone alone showed slightly higher cell count, while 

when combined with Tg, the cell count decreases. The remaining cells then begin to proliferate as 

the response to chemotherapy reduces. This implies that as the chemotherapy’s response decreases, 

the medication dose should be repeated after regular interval. The sinusoidal behavior of the curves 

demonstrates that the proposed chemotherapy does not completely eradicate the tumorigenic cells 

but helps to maintain the cell count at a reduced level. These curves also highlight the significant 

influence of Ca2+ signaling oscillation on the cell count when considering chemotherapeutic 

treatments. 

Bleomycin, the second highest active drug, exhibited a similar sinusoidal behavior in terms 

of the cell count. The synergistic effect of bleomycin and Tg reduced the cell count from its initial 

value of 34,324.81 to 564.15, while bleomycin alone reduced the cell count to 594.94. The 

sinusoidal illustration in Figure 16(b) emphasizes the need for continuous chemotherapy 
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intervention to maintain the cell count at the lowest stable level. Carboplatinum, another 

chemotherapeutic drug, its inhibitory potency is less compared to the bleomycin, reduces the cell 

count from 34,324.81 to 1499.59 when administered alone, while in combination with Tg, the 

observed cell count is 1468.79. Figure 16(c) provides a graphical representation of the reduction 

in cell growth. 

 
(a) 

 
(b) 

 
(c) 

Figure 16: Graphical representation of the output of cell growth model while studying the effect of highly 

effective drugs and Ca2+ modulator Tg on SK-N-SH, both individually and in combination. (a) shows the 

effect of mitoxantrone alone and combined with Tg. The cure in black shows the effect of mitoxantrone on 

cell growth (represented as cell count) while the brown curve shows the combined effect of drug 

(mitoxantrone) and Ca2+ modulator (Tg) on cell growth. (b) represents the cell growth curves for drug 

bleomycin alone and in combined with Tg. The black curve represents the cell growth of drug only while 

brown curve shows the effect of bleomycin and Tg on cell growth. The effect of carboplatinum (shown in 

black curve) alone and in combined with Tg (shown in brown color) is represented in (c). 
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Similarly, drugs such as Cytarabine, 6-thioguanine, and Ifosfamide exhibit intermediate 

responses on cell growth in SK-N-SH cells. The reduction observed in the cell count is presented 

in Table 5, while Figure 17(a), (b), and (c) provide graphical visualizations of the respective drugs 

alone and in combination with Tg. Cytarabine and Tg changes cell count from 34,324.81 to 

1076.37. Similarly, 6-thioguanine and Ifosfamide, along with Tg, result in decreases from 

34,324.81 to 8117.50 and 17,964.93, respectively. As the drug's response diminishes, the curves 

in the graphical representation transitions to an exponential behavior. The decrease in sinusoidal 

curves suggests that as the impact of the drug on cell count decreases, the influence of Ca2+ 

signaling on the growth pattern of cells also decreases. The reason for this may be the diminished 

effectiveness of the Ca2+ modulator as the drug's activity decreases. Similar behavior is observed 

for the remaining two intermediate drugs, 6-thioguanine and ifosfamide. The graphical illustration 

of drug’s response curves shows that as the drug’s potency against SK-N-SH cells decreases, an 

approximate exponential behavior is observed, presented in Figure 17. 

 

 

 

 

 

 

 



 

62 

 

Chapter 4 | Results and Discussion 

 
(a) 

 
(b) 

 
(c) 

Figure 17: Graphical representation of the output of cell growth model while studying the effect of drugs 

with intermediate activity and Ca2+ modulator Tg against SK-N-SH, both individually and in combination. 

(a) shows the effect of cytarabine alone (black curve) and in combined with Tg (brown curve). The images 

(b) and (c) shows the cell growth curves for drugs 6-thioguanine and Ifosfamide alone (black curve) and in 

combined with Tg (brown curve) on SK-N-SH cells. 

Lastly, drugs such as 6MP, CCNU, and procarbazine exhibited the lowest response when 

administered alone or in combination with Tg. The cell count decreased from 34,324.81 to 

27,950.35, 27,049.38, and 34,139.12 when 6MP, CCNU, and Procarbazine were applied alone, 

respectively. Similarly, when combined with Tg, the cell count was 27,919.55, 27,018.59, and 

34,108.32 respectively. These numbers indicate that there was no remarkable difference in the cell 

count before and after the application of chemotherapy. The graphical visualization in Figure 

18(a), (b), and (c) illustrates the absence of significant differences in the response of the drugs 

alone and in combination with Tg. The exponential curves in these figures indicate that due to the 
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minimal response of the drugs, the modulator Tg also had no significant effect in reducing the 

growth of NB cells. 

 
(a) 

 
(b) 

 
(c) 

Figure 18: Graphical representation of the output of cell growth model while studying the effect of least 

active drugs and Ca2+ modulator Tg on SK-N-SH, both individually and in combination. The image (a) 

shows the effect of 6-MP (black curve) on cell growth alone and in combined with Tg (brown color). 

Similarly, the images (b) and (c) shows the effect of CCNU and Procarbazine (black curve in both cases) 

alone and in combined with Tg (brown curve) on cell growth in SK-N-SH cells. 

Based on these results, we infer that drugs with a high response against SK-N-SH cells 

along with Tg improve the therapeutic effects. Highly active drugs along with Tg showed the 

sinusoidal growth depicting the dose repetition to maintain cell count as lower stable number. As 

the cytotoxic response of drug diminishes, a substantial decrease in sinusoidal pattern is observed. 

We depict that as the cytotoxic effect of drug decreases, the influence of Tg on cell growth pattern 

also decreases, thus changing the growth pattern from sinusoidal to exponential with increased cell 
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count. This shows the influence of Ca2+ signaling in regulating cellular growth. The proposed 

treatment approach can help maintain malignant cells at their lowest count and prevent metastasis 

to other organs. Surgical treatments may be applied after chemotherapy to eliminate tumor cells 

from the affected organ. 

Table 5 

Summary of cell count after drugs response only, modulator response only, and drug & modulator 

response on SK-N-SH cell line after 15 days of treatment. 

4.1 Local Sensitivity Analysis (LSA) 

To access the relative significance of each kinetic parameter on cell growth, in the presence and 

absence of treatment, we performed local sensitivity analysis by perturbing the kinetic parameter 

of the cell growth model. The effect of the local perturbation on the kinetic parameters of the cell 

growth model keeping initial values fixed is presented in subsection A.1 while subsection A.2 

contains the perturbation in initial conditions keeping other kinetic parameters fixed. 

Sr. 

no 

Drug name Drug 

response  

Modulator 

response 

Cell count after 

Drug response 

Cell count after 

Ca2+ modulator 

response 

Cell count 

after drug & 

modulator 

response 

1 Mitoxantrone 0.96 0.80 398.04 34294.02 367.24 

2 Bleomycin 0.93 0.80 594.9475 34294.02 564.1505 

3 Carboplatinum 0.82 0.80 1499.593 34294.02 1468.796 

4 Cytarabine 0.85 0.80 1107.172 34294.02 1076.375 

5 6-thioguanine 0.44 0.80 8148.301 34294.02 8117.503 

6 Ifosfamide 0.27 0.80 17995.72 34294.02 17964.93 

7 6MP 0.10 0.80 27950.35 34294.02 27919.55 

8 CNUU 0.07 0.80 27049.38 34294.02 27018.59 

9 Procarbazine 0.01 0.80 34139.12 34294.02 34108.32 
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4.1.1 LSA of Kinetic parameters  

The local sensitivity analysis for the kinetic parameters given in Table 2 is conducted by perturbing 

each parameter individually by a small amount and predicting its effect on cell count. The 

following formula is used to calculate relative sensitivity.   

 

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒔𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 =  
(𝒑𝒆𝒓𝒕𝒖𝒓𝒃𝒆𝒅𝒐𝒖𝒕𝒑𝒖𝒕 − 𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆𝒐𝒖𝒕𝒑𝒖𝒕)

𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆𝒐𝒖𝒕𝒑𝒖𝒕
 ∗ 𝟏𝟎𝟎 

(22)  

  

𝒑𝒆𝒓𝒕𝒖𝒓𝒃𝒆𝒅𝒐𝒖𝒕𝒑𝒖𝒕 is the predicted output when the perturbed input parameters are applied, 

while 𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆𝒐𝒖𝒕𝒑𝒖𝒕 is the nominal output when no perturbation is applied. The kinetic 

parameters in Table 2 are perturbed one by one and their influence on cell count is checked both 

in the normal and cancerous condition. The graphical illustration given in Figure 20 shows that the 

cell growth model is more sensitive to the parameters representing the transition rates between 

phases in normal and tumorigenic conditions. It is observed from the figure that in tumorigenic 

condition, 𝒄𝟏 shows an increased sensitivity compared to 𝒄𝒔and 𝒄𝟐. Likewise, in normal cell 

growth, the increased and decreased perturbation in transition parameters increases the relative 

sensitivity to the growth model but the observed percentage increase is less than the tumor cells. 

From the graphical illustration, we infer that the transition parameters in tumor cells are more 

sensitive to perturbation compared to normal cells. Parameters 𝒙𝟏, 𝒙𝟐, and 𝒙𝟑  are perturbed by a 

10% increase and decrease from their baseline values, a negligible sensitivity to the growth model 

is observed in both the normal cells and the SK-N-SH cells.   
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Figure 20: Local sensitivity analysis of the kinetic parameters used in ODEs (from 8-10) for cellular 

growth prediction in the normal cells and Nb SK-N-SH cell line. The parameters are presented on the x-

axis while the y-axis shows the relative sensitivity. (a) represented the 10% decreased perturbation in 

kinetic parameters for normal cell growth while (b) shows the 10% decreased perturbation in SK-N-SH 

cell growth. Likewise, (c) and (d) represented the 10% increased perturbation in kinetic parameters of 

cellular growth models in normal and SK-N-SH cell line.  

In the next section, we perturbed growth parameters when highly active, intermediate, and 

least active drugs are given in the presence and absence of a Ca2+ modulator. Figure 21 shows the 

relative sensitivity of cell growth parameters when 10% increased (a) and decreased (b) 

perturbations are applied. It is clear from the figure that the parameters 𝒙𝟏, 𝒙𝟐, and 𝒙𝟑 are more 

sensitive to the perturbation when the highly active drug is given alone or in combination with Tg. 

Likewise, the negative perturbation in growth parameters shows negative sensitivity to the cellular 

growth model. However, 𝒙𝟏 demonstrates a  slight positive effect on tumor growth in 10% 

decreased perturbation. The produced behavior is opposite when compared with SK-N-SH’s 

growth in the absence of treatment (Figure 20(b)(d)), which depicts the higher relative sensitivity 

of the parameter showing Ca2+ concentration in cell cycle compartments.  
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(a) 

 

(b) 

Figure 21: Sensitivity analysis of cell growth parameters in the presence of highly active drug mitoxantrone 

(green color) and in the presence of both mitoxantrone and Tg (blue color). (a) showed when parameters 

are perturbed by 10% increase in its baseline values while (b) showed the 10% decrease in parameter values 

form its baseline value.  

The effect of local sensitivity analysis in the presence of 6-thioguanone alone and in 

combined with Tg is presented in Figure 22. The increased (a)(b) and decreased (c)(d) 

perturbations in growth parameters shows that 𝒄𝟏, 𝒄𝒔and 𝒄𝟐 have significant effect on SK-N-SH 

cells compared to other growth parameters.  
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(a) 

 

(b) 

Figure 22: Sensitivity analysis of growth model parameters when 6-thioguanine drugs (in green color) is 

applied alone or in combination with Tg (blue color). (a) showed the 10% increase in cell growth parameters 

values from its baseline value while (b) showed 10% decrease in cell growth parameters values.  

Lastly, we checked the effect in parameter perturbation when procarbazine alone or in 

combined with Tg is applied. The Figure 23 shows that during the 10% increased perturbations, 

the SK-N-SH’s growth is more sensitive to  𝑐1, 𝑐𝑠  while 𝑐2  has no impact on growth. Likewise, 

during the 10% decreased perturbation, parameter 𝑐1 shown more sensitivity compared with 𝑐𝑠  

while 𝑐2. Other growth parameters including 𝑥1, 𝑥2, and 𝑥3 have no impact on SK-N-SH growth.  
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(a) 

 

(b) 

Figure 23: Sensitivity analysis of cell growth model in the presence of least effective drug, procarbazine. 

The green color showed the relative sensitivity (10% increases or decrease) of parameters in the presence 

of drug only while purple color showed the relative sensitivity (10% increases or decrease) of parameters 

in the presence of combined therapy.  

From these results, we infer that when highly active drugs are given, the growth model 

becomes more sensitive to the Ca2+ regulating parameters as compared to the other growth 

parameters, depicting the strong influence of Ca2+ signaling on cell’s growth. Similarly, when 

drugs with low response against SK-N-SH are applied to the cell growth model, the sensitivity of 

parameters showing transition rates between phases increases compared to the other growth 

parameters.  

4.1.2 LSA of Initial Conditions 

In this section, we analyze the effect of perturbation in the initial conditions of the cell growth 

model when no treatment, single therapy, and combined therapy is applied. Each initial condition 

is perturbed by 10% increase and decrease keeping all other kinetic parameters constants. Equation 

22 is used to compute the model’s relative sensitivity to the initial conditions. The graphical 

illustration is presented in Figure 24 showed the increased or decreased perturbation leads to 
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different sensitivity of each initial condition to the SK-N-SH’s growth. The perturbations in G 

phase showed the significant sensitivity to the tumor growth as compared to other phases.  

Figure 24: Local sensitivity analysis in the initial conditions of growth model keeping other growth 

parameters constant in the absence of treatment. (a) shows the 10% decreased perturbation in initial 

conditions while (b) shows the 10% increased perturbation in initial conditions.  

We also observed effect of increased or decreased perturbation in initial conditions when 

highly active, intermediate, and least active drugs are applied to check their cytotoxic effect on 

cellular growth. 
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Figure 25: Local senistivity analysis of initial conditions when highly active drug (mixantrone) is applied 

along with Tg as cytotoxic agent on SK-N-SH cells. X-axis represnets the parameters while y-axis shows 

the relative sensitivity of pertrubed parameters.  
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Figure 26: Local senistivity analysis of initial conditions when drug showing intermediate effect (6-

thioguanine) is applied along with Tg as cytotoxic agent on SK-N-SH cells. X-axis represnets the 

parameters while y-axis shows the relative sensitivity of pertrubed parameters. 
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Figure 27: Local senistivity analysis of initial conditions when least active drug (procarbazine) is applied 

along with Tg as cytotoxic agent on SK-N-SH cells. X-axis represnets the parameters while y-axis shows 

the relative sensitivity of pertrubed parameters. 

The graphical illustration presented in Figure 25 shows that there is a significant impact of 

perturbing parameters when comparing the treatment versus no treatment (see Figure 24(a) and 

(b)). The 10% increased perturbation in G1 phase, when mitoxantrone (b) alone and combined 

with Tg (d) is applied, demonstrate greater sensitivity to the SK-N-SH growth than the S phase, 

while G2/M phase remains insensitive after perturbation. Similarly, a 10% decreased perturbation 

shows that G1 phase has more impact on SK-N-SH growth compared to S and G2/ M phases 

(Figure 25(a) and (b).  

Similarly, the local sensitivity analysis of drug having intermediate response on SH-N-

SH’s growth is presented in Figure 26 shows that the growth model is more sensitive to the 

perturbation in G1 and G2/M phase as compared to the S phase. The effect of 10% deceased and 

increased perturbation in the presence of 6-thioguanine (a)(b) demonstrate that perturbation in G1 

and G2/M phases are more sensitive to SK-N-SH growth compared to the S phase. When the local 
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sensitivity analysis of increased and decreased perturbation is studied in combined chemotherapy 

that is 6-thioguanine and Tg (Figure 26(c) and (d)), slightly different response is observed 

compared to the 6-thioguanine alone. It is observed that decreased perturbation in S phase is more 

sensitive to SK-N-SH growth compared to G1 phase while G2/M phase demonstrate positive effect 

on SK-N-SH growth.  

Lastly, we studied the impact of decreased and increased perturbation when the least 

sensitive drug procarbazine alone (Figure 27 (a)(b)) and in combined with Tg (Figure 27(c)(d)) is 

applied. The figure shows that in decreased perturbation, the S phase is more sensitive compared 

to G1 and G2/M phases while during the increased perturbations, the G1 phase imparts a 

significant impact compared to the G2/M phase and the S phase has no impact on SK-N-SH 

growth. From the local sensitivity analysis of different growth parameters in the presence and 

absence of chemotherapy (single and combined), we can get an idea of important and sensitive 

parameters that impart a significant impact on the relative growth of SK-N-SK and normal cells. 

This process could help in parameter extraction and optimization.  

4.2 Applicability of the proposed methodology 

Lead optimization programs help in the refinement of potential hits to the leads that possess 

the drug-like properties, safety profiles, and selectivity to progress from preclinical and clinical 

testing and to be used as a potential drug candidate. Currently, different methodologies like 

molecular docking and simulation, SAR, 2D/3D QSAR, pharmacophore modeling, and machine 

learning/deep learning methods are employed to predict drug efficacy against specific targets. Lead 

optimization programs help in the structure and dose optimization process ensuring the maximum 

response of drug with less toxicity. The predicted optimized dose is then tested in preclinical and 

clinical trials to study its effect against specific cell lines. The proposed mathematical model can 

be used as a tool for dose optimization against specific cell lines (NB, in our case). The predicted 

potency of potential leads could be screened from the proposed mathematical model and their 

response on the cellular growth of NB could be evaluated.  

4.3 Limitations and Future Directions 

This study has several limitations that should be taken cautiously. Firstly, the simulated results 

obtained through the proposed methodology provide valuable insights into the general behavior of 
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disease dynamics and the predicted outcomes of drugs and Ca2+ modulators with different 

responses against SK-N-SH cells. However, due to the in-silico nature of the process, these 

simulated results cannot be directly utilized for making medical decisions. They should be 

interpreted as theoretical predictions that can inform and guide medical professionals in designing 

optimal treatment protocols. Furthermore, while the models are built upon parameter values 

derived from in-vitro or in-vivo results, it is important to note that they are not patient-specific. 

Personalized mathematical models can be developed by incorporating patient-specific data, which 

could assist in making decisions regarding optimal treatment strategies based on an individual's 

specific genetic makeup. 

Another limitation of the proposed methodology is that the deterministic mathematical 

model used was unable to accurately simulate the shape of Ca2+ oscillations. In future research, it 

would be beneficial to enhance the model by incorporating spatial effects, stochasticity, and 

additional biochemical reactions. These modifications would allow for a more precise simulation 

of Ca2+ oscillations and cell cycle growth. Despite these limitations, the proposed models hold 

promise for evaluating the impact of Ca2+ signaling and combined therapeutics. The present study 

could aid in the selection of drugs and Ca2+ modulators that achieve the desired efficacy at lower 

concentrations. It is important to continue refining and expanding these models to improve their 

accuracy and applicability in clinical decision-making processes.
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Chapter 5 

Conclusions 

 

Previous studies extensively define the role of intracellular Ca2+ in regulating cellular processes. 

Additionally, various therapeutics targeting Ca2+ dynamics are being explored to address different 

pathophysiological conditions. In this study, we modified the previously proposed Ca2+ dynamic 

model and optimized their parameters to capture the general behavior of Ca2+ signaling under 

normal and diseased conditions. Tumorigenic cells displayed elevated Ca2+ amplitude compared 

to normal cells. These results were integrated into the cellular growth model of Wallace et al., 

extending the study duration to 15 days. The model predicted uncontrolled growth in SK-N-SH 

cells, with cell counts reaching 34,324*106, while normal cells contained 1912*106 cells after 15 

days. When incorporating the response of chemotherapeutic drugs and Ca2+ modulators, a 

significant decrease in cell count was observed. The simulation results showed that in NB, 

chemotherapy of anti-cancer drugs along with a modulator of Ca2+ concentration may demonstrate 

superior outcomes compared to individual chemotherapy approaches. Furthermore, highly active 

drugs were found to be crucial for Ca2+ modulators to induce notable effects on cell growth. The 

local sensitivity analysis revealed the importance of Ca2+ regulating parameters in the growth 

models of SK-N-SK NB cells and normal cells. Likewise, kinetics parameters showing the 

transition rates between phases hold significance when the least active drugs were used.  
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