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Abstract 

 
This study explores the use of deep learning to predict the optimal optical design for the top 

cell in tandem solar cells, to maximize power conversion efficiency. The study also investigates 

the effects of metasurfaces on tandem solar cell architecture, including the use of active layers as 

metasurfaces. The study proposes three stacked layers of metasurfaces, each with a specific 

function. Computational techniques are developed to analyze the optical responses of 

metasurfaces, including using simulation tools and algorithms. The study uses Artificial Neural 

Networks (ANN) and 2D Convolutional Neural Networks (CNN) to analyze a dataset of 10,578 

TiO2/CH3NH3PBr3/ZnO metasurfaces. Nine different CNN models were used with different 

architectures to identify the best hyperparameters that give the low mean square error. The results 

show that CNN shows high prediction accuracy of resonator geometry aside from the training 

dataset. The CNN-based predictions were generated much faster, taking an average of 0.3 ± 0.05 

seconds per prediction, whereas each FDTD simulation (n=9) took approximately 25 minutes 

hence, the CNN is 85 times faster than conventional solvers. The Deep SHapley Additive 

Explanations (SHAP) framework was used to gain insights into CNN's predictions and understand 

the behavior of complex nanophotonic devices. The designed metasurfaces were integrated into a 

typical reference tandem solar cell architecture, and the study concludes that the proposed 

metasurfaces can significantly enhance the efficiency of tandem solar cells. The active layer 

comprises of near 90% absorption of solar spectrum. The average absorption of the top cell 

increased in the UV-vis region (650-800nm) up to 93.4%. The bandwidth of absorption in the the 

Silicon bottom cell also increased which shows that metasurface transmits or scatters the 

unabsorbed NIR light to bottom cell. The estimated Jsc of the top and bottom cell is 19.5mA/cm2 

and 20mA/cm2 respectively. The Jsc in the top cell increased by 2mA/cm2 by integrating 

optimized metasurface with the bottom cell. The recorded Voc of the solar cell is 0.7397V. The 

total Jsc of 35.91 mA/cm2. The fill factor observed is 82.2% 

 

Key Words: Tandem solar cells, Metasurfaces, Deep Learning, Convolutional Neural Networks, 

Numerical modeling, and simulation
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Chapter 1:  

Introduction 

 
This dissertation is split into two parts. The first part focuses on the optical optimization of 

metasurfaces for light management in Tandem solar cells (TSC). The objective is to employ deep 

learning to predict the optimal optical design for the top cell, maximizing power conversion 

efficiency. The second part involves studying the effect of metasurfaces on solar cell architecture. 

By integrating the findings of the optical optimization section with experimental data, this research 

searches for the impact of metasurfaces on solar cell performance.  

1.1 Background 

The world has recently seen the applications of several renewable energy sources that have 

assisted in resolving the energy crisis. The high demand for fossil fuels, which are expensive, rare, 

and have significant environmental issues, has decreased as a result [1]. The five main types of 

renewable power are wind, solar power, geothermal, hydro, and bioenergy. They are all abundant 

in nature and are reliable, inexpensive, clean, and safe. Implementing these resources, however, 

poses some practical difficulties, including high maintenance costs, transmission costs, and the 

need for large devices for conversion of energy from one form to another. In addition, energy 

sources including hydropower, geothermal, tidal, and biomass can increase atmospheric pollution 

brought on by greenhouse gases. Therefore, it is imperative to create technologies and 

infrastructure that will enable the construction of renewable energy sources while lowering the 

usage of fossil fuels and other sources of energy that are not sustainable. 

Photovoltaic (PV) technology is widely considered the most viable method to harness solar 

energy and meet the present and future needs for clean energy, while also minimizing carbon 

dioxide emissions. About 48% of the solar energy that reaches the Earth is visible, 44 percent is 

infrared spectrum and seven percent is ultraviolet. At the core of any PV technology lies the solar 

cell. Over the last 20 years, the field of PV technology has experienced remarkable progress, 

expanding from its niche applications to becoming a mainstream source of energy. The Silicon 
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(Si)-based single junction cells (SJCs) have a dominant market share among the various types of 

solar power cells that are offered on the market. 

These cells boast a power conversion efficiency (PCE) till 26.7%, making them an 

attractive option for various applications [2]. The current and voltage potential of solar cells are 

governed by bandgap. The bandgap is the gap between the electron affinity at the bottom of the 

band of conduction and the ionisation potential at the apex of valence band. A photon can only be 

absorbed if its energy is higher or equal that of the bandgap value by the semiconductor as shown 

in Figure 1.1. The solar spectrum comprises photons of a broad range of energy, mostly situated 

between 1 and 4 electron-volts (eV). Decreasing the bandgap of the absorbing semiconductor can 

help generate more current. However, the bandgap also restricts the voltage at which the current 

can be extracted. In practice, it is impossible to extract the current at a voltage higher than the 

bandgap. This limit is called Shockley Queisser Limit [3], [4] 

The performance of SJC is constrained by several other factors, including the second law 

of thermodynamics, indirect bandgap, and low power yield. These cells can only absorb photons 

with energy greater than their bandgap, and even then, not all the energy can be converted into 

electrical energy due to recombination losses [5]. As a result, their overall efficiency is limited. 

 

 

 

 

 

 

 

 

 

1.2 Tandem Photovoltaics and Nanomaterials   

In the 1980s, research into multi-junction solar cells (MJC) emerged as a potential 

replacement for SJCs, and TSC are now seen as the next phase in solar cell development. TSCs 

are designed to absorb high and low-energy photons using wide-bandgap and low-bandgap active 

layers, respectively, thereby outperforming the Shockley Queisser Limit as shown in Figure 1.2. 

Figure 1.1. Shockley Queisser Limit in Solar cells Figure 1.1: Shockley Queisser Limit of Solar cells [68]   
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TSCs are also cost-effective since Si can act as a substrate material. However, achieving efficient 

optical design in TSCs is a major challenge as advanced control over light management is required. 

The performance of TSCs is limited by reflective and parasitic losses, which ultimately decrease 

their efficiency and cause current mismatching.  

  

 

 

 

 

 

 

 

 

 

 

The best combination for highly efficient double-junction Top cells in TSCs have a 

bandgap between 1.7 and 2 eV, and rear-end cells have a bandgap energy of 1.12 eV [6]. So, 

crystalline Si and perovskite are the best choices for the bottom and top cells, respectively, in 

tandem configuration [7]. The experimental PCE, on the other hand, is significantly lower than the 

theoretically calculated potential (i.e., 42-45%). With  n++/p++ tunnel junction, Mailoa et al [8] 

demonstrated a homojunction c-Si rear cell with a stable PCE-equipped perovskite the top cell of 

13.8 percent. Wu et al [9] used a two terminal (2T)-mesoscopic perovskite top cell and 

homojunction Si cell to create a tandem device. Due to homojunction Si-sub-cell perovskite's high-

temperature tolerance, mesoporous TiO2 was used in tandems to reduce the Si subcell’s optical 

losses and achieve a PCE of 22.5 percent. Another group used NiO as carrier transporting layer 

between the Si perovskite sub-cell and the perovskite upper cell 2T tandem, achieving a stable 

efficiency of 21.19 percent (Kim et al., 2019).  

1.2.1 Light Management 

           Nanomaterials employ two primary strategies to improve light management. The first 

involves reducing surface reflection using textured antireflective coatings [11]–[14], while the 

Figure 1.2: Si-perovskite TSC absorbs high and low-energy photons 
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second involves increasing the optical path in the photoactive layer using resonant or diffractive 

effects by metamaterials [30–34]. More recently, the use of metasurfaces has gained popularity in 

TSCs. The active layer can also be used as metasurfaces by introducing gratings in the charge 

carrier transporting layers to increase the optical performance of the TSC by cumulative effect and 

guide longer wavelength photons to the bottom cell. Furthermore, can also confine short-

wavelength light in the wide-bandgap cell, hence increasing the absorbance. 

1.2.2 Metasurfaces 

             Metasurfaces are 2D- structures composed of resonators or scatterers with subwavelength 

sizes intended to control the propagation of light. Metamaterials allow for the customization of the 

dispersed light field, resulting in enhanced light trapping, coupling, and steering within 2T or 4T 

perovskite/Si. This approach increases light absorption near the top cell's bandgap and enhances 

near-infrared spectral band transmission to the bottom cell thereby increasing PCE by 6-10% [22], 

[23] The metasurfaces proposed in the study include three stacked layers. Metamaterial cells at the 

upper layer alter the electromagnetic wave's refractive index. Incoming light is trapped in a cavity 

within the intermediate active layer. A near-infrared spectrum is transmitted from the bottom layer 

to the bottom cell. By adjusting the design of the resonator, the EM properties such as permittivity 

(ε) and relative permeability (μ) of the metasurface can be achieved, resulting in improved 

parameters such as impedance (z) and refractive index (n). A significant amount of absorption 

results from the minimization of both the transmission coefficient and the reflectance. The Drude-

Lorentz model or the EM properties are extracted from the resonator structure using the S-

parameter. [24].  

𝑧 = ±√
(1 + 𝑆11)2 − 𝑆21

2

(1 − 𝑆112)2 − 𝑆21
2

 
 

𝑒𝑖𝑛𝑘𝑜𝑑 = ±
𝑆21

1 − 𝑆11
𝑧−1

𝑧−2

 

𝑛 =
1

𝑘𝑜𝑑
[{[ ln𝑒𝑖𝑛𝑘𝑜𝑑]

′′
+ 2𝑚𝜋]} − 𝑖 [ ln (𝑒𝑖𝑛𝑘𝑜𝑑)′] 

          Where ′′ is the complex conjugate, S11 and S21 are reflections and transmission’s coefficients, 

ko is the range of wavenumber, and d is dimensions of the unit cell. 

(1.1) 

(1.2) 

(1.3) 
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1.3 Optical Optimization 

Several computational techniques have been developed to analyze the optical responses of 

metasurfaces in solar cells, because to the intricate tandem construction and expensive fabrication. 

Using simulation tools and algorithms is essential as experimental techniques often use a costly 

and time-consuming trial-and-error approach, given the many parameters involved. Calculations 

based on the first principle [25], [26], density function theory [27], and Monte Carlo have been 

effectively used in the design areas, despite requiring excessive time and computation [28]. To 

improve the PCE, key factors such as nano-optical design, thickness, and number of 

active/intermediate layers, materials engineering, and configuration play a crucial role. These 

parameters can be optimized using exhaustive search, and local, and global optimization 

techniques as shown in figure 1.3. 

 

Figure 1.3: Classification of Optical Optimization technique 

 

Optimization methods search the local or global optimum with/without gradient 

information. Non-linear functions are approximated to near convex values and various parameters 

can be computed at the same time. An exhaustive search method is used for searching all possible 

sets of parameters that are sampled uniformly with each step size. Furthermore, larger optimization 

space can be achieved than exhaustive searches as more samples can be used in the investigation 

of materials properties and thickness of the active layer to determine thermalization losses [29]–

[31] 
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A learning-based optimization is an offshoot of the Global Optimization technique which 

uses a data-driven approach to solve complex non-linear optical problems and predict the design 

space by identifying the best input and unidentified regions with previous information. Artificial 

Neural Networks (ANN) learn complicated patterns from large amounts of data. There are several 

layers in which nodes are linked and aggregated which are referred to as the hidden nodes, the 

input data nodes, and the output neurons. The neuron in the input nodes acquires the datasets that 

are sent into the system, and the neuron in the hidden layers processes it. Different algorithms and 

models exploit various complex parameters which are not easily resolved by conventional 

techniques. 

1.4 Problem Statement 

          TSCs are composed of multiple layers of materials with varying bandgaps to facilitate the 

absorption of a wider range of solar energy. However, the performance of TSCs is hampered by 

several factors, including reflective losses, interface losses, and parasitic losses, which ultimately 

decrease their efficiency and lead to current mismatching. To overcome these limitations, TSCs 

often require the use of mirrors and lenses to properly concentrate light and achieve optimal 

efficiency. Recently, the use of nanoscale 2D meta-materials has emerged as a promising 

alternative to traditional mirrors and lenses. However, the optical optimization of these meta-

materials can be both time-consuming, resources, and space-intensive, posing a challenge to their 

implementation in TSCs. 

1.5 Objectives 

            The research aims to use deep learning for the optical optimization of metasurfaces design 

and structure optimization of the 2T-Si/Perovskite TSC with less computing power. The main 

objectives of the research are to: 

➢ Employ deep learning to predict the optical design for the perovskite top cell metasurfaces 

by forward propagation. 

➢ Search the optimum meta- absorber surface by (opening the ANN black box) inverse 

design. 
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➢ Integrate the findings of the meta-absorber surface with the bottom cell and calculate the 

current density. 

➢ Compare the efficiency of ANN-generated metasurface design with state-of-the-art 

literature. 

1.6 Significance and Contribution 

            The integration of Deep Learning in the optimization of TSCs is a relatively new research 

area that has emerged in the past four years. Despite being in its initial stages, this study offers 

significant potential in providing accurate and efficient computational solutions that can serve as 

excellent predictors for optimization. By optimizing the optical parameters theoretically, this 

approach will facilitate the efficient synthesis of TSCs with high power conversion ability, 

ultimately reducing the cost of trial and error in solar cell fabrication. 

1.7 Thesis Organization 

       In Chapter 2, the history of metasurfaces is explored along with their application in TSCs and 

the optimization of metasurfaces through deep learning techniques. By literature review the 

understanding of state-of-the-art metasurfaces and decision of choosing parameters became 

clearer. Chapter 3 outlines the research design and methodology employed in the study, including 

the techniques, tools, and equipment used. The methodology is divided into five steps, which 

include data collection, processing, forward propagation, inverse design, and explanation, as well 

as the integration of findings with the solar cell. The first four steps are related to optical 

optimization of metasurfaces for light management. 

      In Chapter 4, the mathematical calculations and derivations for simulations are provided, along 

with details of the simulation setup, material properties, and design of nanophotonic metamaterials 

operating in the wavelength range of 400nm-1200nm. Ten thousand different structures were 

simulated using 3-D FDTD simulations in ANSYS Lumerical v202. Several CNN architectures 

were used to find the best hyperparameters that give low mean square error. Chapter 5 focuses on 

the 2D-CNN architecture, mathematical calculations, and derivations for the layers of neural 

network, learnable parameter considered for forward propagation and predictions of nanophotonic 

structures. Finally, Chapter 6 presents the results and discussions of the FDTD simulations, 
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including the model architecture, the best-performing hyperparameters, the simulation setup, 

material properties, and design of nanophotonic metamaterials. 
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Chapter 2:  

Literature Review 

 
            This Chapter focuses on the history of metasurfaces, their application in TSC, optimization 

of metasurfaces by deep learning. and The best combination for highly efficient double-junction 

TSCs is top cells 1.7–2.3eV bandgap and rear cells 1.12eV [6]. So, c-Si and perovskite are the best 

choices for the bottom and top cells, respectively, in tandem configuration [7]. The experimental 

PCE is significantly lower than the theoretically calculated potential. Recent advancements in PV 

technology have introduced a new type of absorber that optimizes solar energy's ability to be 

absorbed across the whole spectrum. While traditional solar cells require the use of mirrors and 

lenses to properly concentrate light and achieve maximum efficiency, this approach is both time-

consuming and space intensive [32].  

2.1. Review of Metasurfaces 

            Other highly efficient solar cell structures made from perovskites have been developed, but 

they suffer from low durability, instability, and narrowband absorption, resulting in decreased 

efficiency. To address this challenge, researchers have turned to metasurface structures made from 

metal or dielectric materials, which have shown promising results for broadband absorption [33]. 

Two-dimensional metasurfaces have proven to be a better option for absorbing incoming 

electromagnetic waves within a specific frequency band. The efficiency of solar cells can be 

improved by modifying the metasurfaces' dimensions, form, distance, and substrate medium 

properties. 

            Resonant behavior in metasurfaces enables them to achieve special EM properties over 

constrained frequency ranges. A metallic split ring resonator (MSRR)  was used to demonstrate 

the first-ever ideal absorber operating across a specific frequency range and a thin wire sandwiched 

between a dielectric substrate was performed by Landy in 2008 [34]. To boost bandwidth in the 

Gigahertz frequencies range, researchers have examined several configurable split-ring resonator 

topologies. 
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            Frequency-reconfigurable MSRRs and a pair of directors were designed to have a wide 

frequency band of operation (microwave region) and can be reconfigured by changing the 

orientation of the SRRs [35]. Huang proposed the optical design of broadband metasurfaces for 

permittivity-sensitive solar cell applications. The design comprises three layers of metamaterials 

with varying refractive indices to increase the absorption in the terahertz frequency range 

optimized by using a genetic algorithm [36]. Wang characterized and designed an ultra-broadband 

resonator displaying a near-infrared (NIR) frequency range insensitive to polarization and incident 

beam angle [37]. Matsumori and Fujimara Over a wide spectrum of visible wavelengths, 

experimentally observed absorption spectra demonstrate a high absorbance efficiency that is up to 

90% from 300 nm to 1500 nm, which is attributed to the localised surface plasmon resonators are 

excited in the semi-shell MIM structure [38]. Cao simulated absorber composed of a tungsten layer 

deposited on top of a SiO2 substrate, with a periodic arrangement of meander-ring resonators. The 

simulation results demonstrate the excellent performance of the proposed absorber, which can 

potentially be used in various optoelectronic devices [39].  

           There has recently been a rise in interest in TSC and metasurfaces working together over 

the past few years. Metasurfaces have shown the potential in improving light absorption and 

enhancing the efficiency of solar cells. As per Hossain et al [40],  metal-oxide metasurfaces is a 

revolutionary method for raising perovskite TSC's effectiveness. The authors demonstrate that the 

use of non-resonant metasurfaces can enhance light absorption and reduce the reflection losses in 

perovskite solar cells. The metasurfaces are designed using titanium dioxide and silver, which 

exhibit high refractive index and low reflectance, respectively. The proposed meta-surface design 

is experimentally demonstrated to increase the PCE of the perovskite TSC by up to 25%. Neder 

[41] presents the design, fabrication, and characterization of a 4T-perovskite/Si TSCs with an 

integrated meta-grating spectrum splitters. The meta grating acts as a wavelength-selective filter, 

allowing greater intensity photons to enter the Si cell and reflecting photons with lower energy that 

a perovskite cell will absorb. The TSC demonstrated a PCE of 23.6%, which is among the highest 

recorded efficiencies for perovskite/SiTSCs. Wang et al., [42] present a dual-layer meta surface 

with a subwavelength periodic array of gold nano disks on top of a thin HOIP film. The simulation 

findings conclude that the proposed metasurfaces exhibit a significant enhancement of the 

absorption of HOIPs across a broad spectrum of incoming angles and frequencies. 
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2.2. Review of Deep Learning in Optical Optimization of TSC 

           Hubel and Wiesel experimented in 1959 to investigate the processing of visual information 

in the cat’s visual cortex as they moved a bright line in front of it. They discovered that certain 

neurons known as simple cells responded to a particular angle of the bright line, while others, 

called complex cells, fired regardless of the light’s angle, indicating a detection of movement. It 

was discovered that complex cells have a hierarchy of functions and acquire inputs from numerous 

simple cells [43]. Their contribution to understanding the brain’s hierarchical structure was 

awarded a Noble Prize for their work in 1981. 

           In 1988, A multilayered neural networks called the Neocognitron was created by 

Fukushima designed for recognizing handwritten Japanese characters, which was motivated by the 

layered organization of both sophisticated and simple cells [44]. Initial CNN with an algorithm for 

training was the Neocognitron. Later, the approach known as backpropagation was presented by 

LeCun et al. [45], allowing for the training of CNNs. After outperforming competing models and 

algorithms in the Visual Recognition Challenge (ILSVRC), CNNs became incredibly popular 

[46]. Several CNN architectures that won the contest include AlexNet [47], GoogLeNet and VGG 

[48] [49], and ResNet [50].  

          Most of the examples of using learning approaches in TSC design challenges have only 

recently been put forward making the idea relatively fresh. One of the greatest optimization 

problems, the thickness of active layers and interfaces has been addressed previously by iterative 

searches [29]–[31], [51]. On the other hand, learning-based methods save optimization time 

compared to local search optimization. Several studies [52]–[54] have undertaken optimization of 

the thickness of interface layers and active layers of TSC. Chaudhary et al., [52] compared the 

PCE measures of the Si TSC cell’s output parameters generated by SCAPS and ANN (trained by 

BO). H. Q. Tan et al. [54] also reduced computational cost by concentrating on the crucial 

parameters and forecasting the ideal design for a bifacial 4T-perovskite TSC by using ANN trained 

by Bayesian optimization. C. Yi et al. [53] also reported an  quick, incredibly precise, and 

computational resource-saving approach to examine the efficiency of TSC. The experimental Jsc 

and PCE of TSC with the optimum active layer thickness can achieve up to 15.79 mA/cm2 and 

23% respectively, and PCE can be improved to 28%. Table 2-1 shows the comparison of recent 

state-of-the-art papers that use ANN to optimize the thickness, configuration, composition, and 
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design of TSC. 

 

Table 2-1: Learning-based Methods for TSC Optimization 

 

2.3. Critical Analysis 

The authors of the study [55]–[57] identified certain limitations in the optical optimization of 

TSCs considered when selecting parameters for current research. They found that by optimizing 

the metasurface, parasitic and reflective losses in 2T-perovskite/Si TSCs were reduced by an 

impressive 62%. However, it is important to note that the computational cost increases as the size 

and variability of the input vector f(x) increase. The optimization process requires exploring an 

extensive parameter space, including variables such as n, FF, (p/n), band gap, and more, which 

further adds to the computational burden. Moreover, incorporating multiple design parameters in 

a 3D-framework intensifies the computational load. Additionally, the computation of effective 

diffusion length is impacted by photo-induced carriers at the surfaces, leading to lower sub-cell 

performance. It is worth mentioning that the study did not consider the effects of defects, and 

instead, an ideal solar cell architecture was used as a reference point for comparison. 

 

Ref. Method Simulation Input Output MSE 

[52] ANN contains 1 

hidden layer and 

40 neurons. 

MATLAB and SCAPS 

for validation with 3600 

Training dataset, 1028 

Validation Set 

▪ Jsc 

▪ Temperature 

▪ Thickness  

Current Density 0.0037 

[53] ANN (15-layered) 

with 5 hidden 

layers.  

FDTD for numerical 

simulations with 12,500 

Training datasets. 

Thickness of  

▪ Glass, ITO  

▪ PCBM 

▪ Perovskite  

Current 

Properties 

0.052 

[54] ANN 2 hidden 

layers 

TMM and raytracing 

simulations 

Thickness of  

▪ Perovskite  

▪ ARC 

PCE  - 

[55] CNN (100 hidden 

fully connected 

neurons) 4 

convolutions 

Vienna Ab initio 

Package for structural 

parameters containing 

862 Training dataset 

▪ 380 different 

Perovskite  

▪ Crystal Structure 

▪ Lattice constant  

Band gap, lattice 

constants and 

crystal angles 

0.02  

[56] Bayesian 

optimization 

Local Optimization for 

thickness 

▪ Aspect ratio 

▪ ARC 

Textured 

interfaces. 

- 
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Chapter 3:  

Methodology 

 
          This chapter focuses on the research design, methodology, techniques, tools, and equipment 

used in the research work. The methodology is divided into 5 steps: Data collection, processing, 

forward propagation, inverse design, explanation, and integration of findings with the solar cell. 

3.1. Research Design 

          The methodology is comprised of 5 steps as shown in Figure 3-1. The first step is data 

collection which involves simulating the metasurfaces. The design parameters such as the 

resonator's width, length, and arm tips are chosen to achieve resonance and maximum absorption 

in the bandgap region. The parameter’s range is set comparable to the light's wavelength. The 

second step is data processing. The third step is the most crucial as hyperparameters are essential 

components for ensuring accuracy and low MSE. Nine model architectures were tested, and the 

best-performing model was used for predictions and SHAP (Shapley Additive Explanations) 

explanations. In the fourth step, the SHAP-validated design was integrated with the bottom low-

bandgap cell to find metrics such as Jsc, fill factor, etc. Lastly, the performance of the standard 

TSC with and without the metasurfaces was compared. 

 

Figure 3.1: Methodology Steps and Research Design 



 
 

14 
. 

 

 

3.2. Building Dataset 

            The dataset is composed of 10,578 different metasurfaces geometries. The parameters 

considered are the height, width, and arm lengths of the resonator. The parameters are defined in 

detail in Chapter 4. The 3D-FDTD simulations were performed to achieve 80-point absorption 

spectra of metasurfaces in ANSYS Lumerical v202. The geometry of the resonator was cross, 

square, L-shaped, window-shaped polygon and their inverted version consisting of 14, 4, and 29 

vertices respectively. The simulation mesh size and unit cells dimensions are given in table 3-1. 

The shapes were chosen because of the ease of fabrication by the lithography technique. Each meta 

structure contains a 100nm Titanium dioxide (TiO2) hole transporting layer (h1), 250nm wide band 

gap Perovskite (CH3NH3PBr) middle layer (h2), and 100nm top resonator Zinc oxide (ZnO) (h3) 

different designs parameter as shown in figure 3.2.  

 

Figure 3.2: Metasurface Design (Left) with the 3D view and xz view (Right) 

 

Table 3-1: Simulation Source, Unit cell dimension and Mesh setting 

Info Denotation Number 

Number 3D-FDTD Simulations 
 

n 10,578 

Unit Cell Dimensions L 100-3200nm2 

Simulation Mesh Step Size dx, dy 50nmx50nm 

Resonator Mesh number region dlx, dly, dlz 75nmx75nmx202nm 

Source Wavelength 𝜆 400-1200nm 
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Figure 3.3: Interface of ANSYS FDTD software (Left) with the 2D view xy and and xz view of 

metasurface 3D perspective view (Right) 

 

3.3. Dataset Pre-processing and Splitting 

           Data pre-processing is an essential step in deep learning, which ensures the quality of the 

input data, which ultimately impacts the accuracy of the model. Pre-processing involves various 

techniques such as data normalization, feature scaling, data augmentation, and dimensionality 

reduction. Normalization involves scaling the data to have zero mean and unit variance, while 

feature scaling scales features to the same range. Data augmentation techniques like flipping, 

rotating, or cropping the images can help increase the size of the dataset and prevent overfitting. 

The images were converted to a greyscale 40 x 40 x 1-pixel image. Each pixel contains the 

minimum feature size of 80nm which lies within the fabrication range. The dataset was split (9:1) 

ratio. 90% of the dataset was used for training CNN while 10% was used for validation. 

3.4. CNN Architecture and Forward Propagation 

The 2D-CNN architecture was chosen because of the 2D-input dimensions. A 2D-CNN has four 

basic layers: The input layer, the discrete Convolution layer, the pooling layer, and the fully 

connected layer. Different CNN architectures generate different feature map responses in 

corresponding layers. Nine models were used with different architectures to find out the best 

hyperparameters that gives low MSE. Each CNN architecture was coded in Python 3.6 and was 
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implemented in TensorFlow 1.14 and Keras library. The code was adopted from the study of 

Christopher Yeung’s study [58] and Raman Lab Github which was modified and executed for 

forward propagation.  The hyperparameter search was done in Google Collab and the best 

architecture was run in the deep learning laboratory, SEECS. The specs of the PC are given below 

in figure 3.4:  

 

Figure 3.4: Specs of Google Collab (Left) and PC used for training Dataset (Right) 

 

3.5. Inverse Design (Opening CNN Black Box) 

         For opening the black box of the best-performing model, the SHAP framework was used. It 

is derived from game theory which gives unified explanations. Detailed analytical expressions 

used for generating heat maps are discussed in Chapter 5. Deep SHAP incorporates DeepLIFT, a 

technique that was previously used to split predictions into outputs using Shap parameters and 

backpropagation. The validated top contributing SHAP values in the region 400-800nm were 

extracted and converted into binary maps which were imported in Lumerical for getting absorption 

spectra as shown in figure 3.5. 

 

Figure 3.5: Reconstructed image validated top contributing SHAP values  
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3.6. Integration of Metasurface with Solar cell 

            The designed metasurfaces were integrated into the typical reference TSC architecture. The 

optical model employed is examined by showcasing all the physical parameter values that can be 

extracted using the simulation model. Lastly, the performance of the standard TSC with and 

without the metasurfaces was compared. The solar simulations were carried out using SCAPS-1D 

with separate def file run by single tandem connection script as shown in figure 3.6.  

 

Figure 3.6: Top and Bottom cell def file of TSC in SCAPS-1D 

3.7. Software, Equipment, and Tools Details 

Details about the Equipment/ Software used are given below in table 3-2. 

Table 3-2: Details about Equipment/ Software 

Methods Software/Equipment Source 

3D-FDTD Simulations 
 

ANSYS Lumerical v202 University of Arizona 

2D image generation of resonator MATLAB - 

Image Pre-processing, CSV OpenCV, OS, Pandas - 

Model Architecture Execution 
Tensorflow 2.2.1, 1.14, Keras 

Library 2.3.0 
Jypyter Notebook 

GPU Information NIVIDIA K80/T4 SEECS, Collab 

XAI SHAP explanation SHAP 0.31.0 - 

Solar cell simulation SCAPS-1D v3310 Marc Burgelman 
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Chapter 4:  

Analytical Expressions and Numerical Methodology for 

Simulations 
 

This chapter focuses on the mathematical calculations and derivations for simulations, details 

of simulation set-up, material properties, and design of nanophotonic metamaterials operating in 

wavelength range 400nm-1200nm. 3-D Finite difference time domain (FDTD) simulations of ten 

thousand different structures were performed in ANSYS Lumerical v202.  

4.1. Mathematical Expressions for Simulations 

The calculation for the absorption per unit volume of the metasurfaces the surface integral of 

the Poynting vector is taken. The dimensions for the absorption per unit volume at a given 

wavelength are (x, y, z, w).  

4.1.1. Time-averaged Instantaneous Poynting Vector 

The Poynting vector is an energy flux vector for electromagnetic (EM) energy in space as a 

function of time. According to Poynting’s Theorem, the pointing vector is represented as: 

𝜕𝑢

𝜕𝑡
= −∇. 𝑆 − 𝐽𝑓 . 𝐸 

where S is the pointing vector, u is the energy density of the EM field, 𝐽𝑓 is the free charge 

current density and E is the electric field. Eq (4.1) can also be written as the following equation 

for electromagnetic energy density for dispersive materials with permittivity (∈) and permeability 

(𝜇). 

𝑢 =
1

2
(∈ 𝐸 + 𝜇𝐻) 

Sinusoidal electromagnetic wave propagation with varying amplitude and angular frequency 

(ω) can be notated in the form of phasor 𝑆𝑚. 

𝑆𝑚 =
1

2
𝐸𝑚. 𝐻𝑚

∗  

(4.1) 

(4.2) 

(4.3) 
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where, 𝐸𝑚 is phasor for instantaneous sinusoidal electric field propagation, * is a complex 

conjugate, and the real instantaneous sinusoidal electric field is denoted as 𝐸𝑚𝑒𝑗𝜔𝑡 while the real 

magnetic field 𝐻𝑚𝑒𝑗𝜔𝑡. The instantaneous pointing vector is derived as follows: 

𝑆𝑡 = 𝐸𝑡. 𝐻𝑡 

𝑆𝑡 = 𝑅𝑒(𝐸𝑚𝑒𝑗𝜔𝑡). 𝑅𝑒(𝐻𝑚𝑒𝑗𝜔𝑡) 

𝑆𝑡 =
1

2
 (𝐸𝑚𝑒𝑗𝜔𝑡 + 𝐸𝑚

∗ 𝑒𝑗𝜔𝑡).  
1

2
 (𝐻𝑚𝑒𝑗𝜔𝑡 + 𝐻𝑚

∗ 𝑒𝑗𝜔𝑡) 

𝑆𝑡 =
1

2
 𝑅𝑒(𝐸𝑚. 𝐻𝑚

∗ ) +   
1

2
 𝑅𝑒(𝐸𝑚. 𝐻𝑚𝑒2𝑗𝜔𝑡)   

For time-averaged instantaneous pointing vector Eq (4.4) is written as follows: 

〈𝑆〉 =
1

𝑇
∫ 𝑆𝑡𝑑𝑡

𝑇

0

 

〈𝑆〉 = ∫[
1

2

𝑇

0

 𝑅𝑒(𝐸𝑚. 𝐻𝑚
∗ ) +   

1

2
 𝑅𝑒(𝐸𝑚. 𝐻𝑚𝑒2𝑗𝜔𝑡)]𝑑𝑡 

Eq (4.6) can be written as follows when double frequency (𝐸𝑚. 𝐻𝑚𝑒2𝑗𝜔𝑡) = 0 

〈𝑆〉 =
1

2
𝑅𝑒(𝐸𝑚. 𝐻𝑚

∗ ) 

By substituting eq (4.6) with eq (4.3), the time-averaged instantaneous pointing vector can also 

be written as: 

〈𝑆〉 = 𝑅𝑒(𝑆𝑚) 

 

4.1.2. Divergence of Poynting Vector and Absorption per unit Volume Calculations 

For the calculation of absorption per unit volume, the surface integral of the Poynting vector 

is taken. The absorption per unit volume at a given wavelength and dimensions (x, y, z, w) is 

written as:  

𝐴

𝑉
= 〈𝑆〉 

The equation can also be expressed as: 

𝐴

𝑉
= −

1

2
𝑅𝑒(𝐸𝑚. 𝐻𝑚

∗ ) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9)

9 
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The negative sign in the equation is due to the surface integral of the Poynting vector, as the 

area is pointing outwards while the EM wave is going in the opposite direction. In FDTD 

simulations, absorption is calculated as a function of frequencies and space. The electric intensity 

and index of the material are needed to carry out simulations [59]. The calculation by divergence 

vector gets complicated numerically and requires much memory. So, a more numerically intensive 

equation is used to carry out the simulation: 

𝐴

𝑉
= −

1

2
𝑅𝑒(𝑖𝐸𝑚𝜔. 𝐻𝑚

∗ )Y 

4.2. Material Properties 

Table 4-1. shows the material properties used for simulations. different design parameters are 

given in section 4.2. The reason for selecting TiO2 and ZnO is that the materials have good thermal 

stability, high hole transportation capacity, and energy level matches incredibly with Perovskite as 

can be seen from the energy band diagram Figure 4.1. The material properties and real refractive 

indices of perovskite were taken from experimental data [60].  

 

 

Figure 4.1: Energy band diagram of Materials used in Perovskite Solar Cells [61] 

 
 

 

(4.10)

9 
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Table 4-1: Material Properties used for Simulations 

Materials Thickness 

(nm) 

Permittivity 

 (∈) 

Extinction co-

efficient (k) 

Reference 

CH3NH3PbBr3 250 4.6112 0.213 [60] 

 ZnO 100 5.23 0.04 [62] 

 TiO2 100 - 0.013 [62] 

 

 

4.3. Metasurface Simulation Set Up 

The 3D-FDTD simulations were performed to achieve 80-point absorption spectra of 10,578 

different metasurfaces in ANSYS Lumerical v202. The geometry of the resonator was cross, 

square, L-shaped, window-shaped polygon and their inverted version. The shapes were chosen 

because of the ease of fabrication by the lithography technique. The 2D- array images of these 

metasurfaces were generated in MATLAB. The mesh step size of 100nm was maintained in all 

three dimensions. Periodic boundary conditions were applied in x and y dimensions while PML 

condition was applied on the z-axis to absorb/ transmit maximum light with minimum reflection. 

Each shape was converted into a greyscale 40 x 40 x 1-pixel image. Each pixel contains the 

Figure 4.2: Refractive index of perovskite, zinc monoxide and titanium 

dioxide at wavelength (400nm-1200nm) 
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minimum feature size of 80nm which lies within the fabrication range. The plane wave source was 

injected along the z-axis with wavelength 400nm-1200 nm. The detailed parameters of the design 

were in the range of 100nm2-3200nm2 periodic arrays as shown in table 4-2.  

 

Table 4-2: 2D images of metasurface unit cell shapes and their design parameters 

 

Designs Inverted Versions Parameters Simulations 

 

 Length of shape (L1) = 

100nm-3200nm/100nm  

n=898 

 

 Length of shape (L1) = 

100nm-3200nm/100nm  

Length of arms (L2) = 

100nm-L1/100nm 

n =4390 

  

L1 = 100nm-3200nm/100nm     

 L2 = 100nm-L1/100nm 

Length of perpendicular 

arms (L3&L4) L3=L1+2l1          

L4=L2+2l 

n =4456 

 

 

- 

Length of shape (L1) = 

100nm-3200nm/100nm  

Length of shape (L1) = 

100nm-3200nm/100nm  

n =834 

 

4.4. Solar Cell Simulation Set Up 

The designed metasurfaces were integrated into the typical reference TSC architecture 

consisting of the following structure. The top cell consists of Transparent Conducting Oxide TCO 

(200nm), ZnO resonator (100nm), CH3NH3PBr3 (250 nm), and TiO2 (100 nm). The bottom cell 
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consists of n-Si (150nm), p-c- Si bulk (350nm), p+ Si rear Back surface field BSF (50nm), and 

gold contacts. Figure 4.3. shows the schematic representation of the 2T-TSC. The optical model 

utilized is evaluated by presenting all the physical parameters obtained through the simulation 

model. Table 4-3 shows the properties of materials used in TSC simulation. The calculations were 

performed in a Solar cell capacitance simulator (SCAPS-1D) and Lumerical. The experimental 

setup involved the use of a Solar spectrum AM 1.5G source, which provided a consistent 

electromagnetic field across the solar cell stack from 400 to 1200 nm wavelength range. For 

different simulated solar cell structures, the mesh size was adjusted based on their respective 

architectures, with larger mesh sizes employed for some structures. Override mesh regions were 

placed at critical interfaces and resonators to ensure high simulation accuracy. 

 

Figure 4.3: Schematic representation of the 2T-Si/perovskite TSC 

 

Table 4-3: Properties of materials used in TSC simulations 

 
Material Band gap 

(Eg)  

(eV) 

Electron 

Affinity 

(eV) 

Dielectric 

Permittivity 

(ꞓr) 

Electron 

Thermal 

velocity (m/s) 

Auger 

Capture Rate 

(cm-6) 

Reference 

TCO 3.2 4.3 9.7 1.2 x 107 2.7 x 10-31 [63] 

ZnO 3.4 4.3 8.6 1.5 x 107 2.0 x 10-31 [64] 

CH3NH3PbBr3 2.3 3.9 25 1.0 x 107 1.0 x 10-30 [65] 

TiO2 3.1 1.59 86 1.0 x 107 2.0 x 10-31 [65] 

p-Si 1.2 4.04 4 1.0 x 107 1.0 x 10-30 [66] 
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Assuming that all the dopant impurities in Si are ionized, for n-type 𝑛𝑜 ≈ 𝑁𝐷 which can be 

written as minority charge carriers 𝑝𝑜 = 𝑛𝑖
2/𝑛𝑝. At thermal equilibrium, fermi energy is expressed 

as: 𝐸𝑓 = 𝐸𝑖 + 𝑘𝐵𝑇𝑙𝑛 [
𝑁𝐷

𝑛𝑖
] where ND is the donor impurity for n-type. : 𝐸𝑓 = 𝐸𝑖 + 𝑘𝐵𝑇𝑙𝑛 [

𝑁𝐴

𝑛𝑖
] 

where NA is the acceptor impurity for p-type. The built-in potential can be expressed as the 

difference between the Fermi energies in the doped regions, resulting in a potential difference 

across the junction, denoted as Vbi. 

𝑒𝑉𝑏𝑖 = 𝐸𝑓
𝑛−𝐸𝑓

𝑝
=𝐸𝑔 − 𝑘𝑏𝑇𝑙𝑛 [

𝑁𝑐

𝑛𝑜
] − 𝑘𝐵𝑇𝑙𝑛 [

𝑁𝑣

𝑝𝑜
] 

Eq (4.11) ca also be written as: 

𝑒𝑉𝑏𝑖 ≈ 𝑘𝑏𝑇𝑙𝑛 [
𝑁𝐴𝑁𝐷

𝑛𝑖
2 ] 

The total optical power absorbed (Q) is measured by the expression:  

𝑄 = ∫ 𝐴𝑏𝑠(𝜆)𝐹(𝜆)𝑑(𝜆) 

Where 𝐴𝑏𝑠 is wavelength-dependent optical absorption. Absorption is dependent upon 

reflection |𝑆11|2
 and transmission |𝑆21|2. 𝐴𝑏𝑠(𝜆)=1-R(𝜆)-T(𝜆). By utilizing 𝐴𝑏𝑠(𝜆), a spectrum that 

indicates the absorption in each layer of the solar cell stack is derived. Based on this absorbed 

light, key quantities such as the charge carrier generation rate (𝐺) and short-circuit current density 

(𝐽𝑠𝑐) can be determined through appropriate calculations. 

 

𝐺 = ∫
𝜆

ℎ𝑐
𝐴𝑏𝑠(𝜆)𝐼𝐴𝑀1.5 (𝜆)𝑑𝜆

𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛

 

𝐽𝑠𝑐 = 𝑄𝐺 

where, The Planck’s constant (h), speed of light (c), AM1.5 (λ) solar spectrum, and elementary 

charge (Q) is used to calculate the charge carrier generation rate (G) and short-circuit current 

density (Jsc) from the absorbed light spectrum obtained using 𝐴𝑏𝑠(𝜆). The Jsc value is a measure 

of the solar cell's optical performance and represents the maximum current density that the 

Si/perovskite tandem solar cell can achieve based on its optical properties alone. The charge carrier 

generation rate (G) can be represented in the form of a one-dimensional (1D) or two-dimensional 

(2D) profile that is a function of position and/or incoming light wavelength values.  

 

(4.11)

9 

(4.12)

9 

(4.13)

9 

(4.14)

9 

(4.15)

9 
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Chapter 5:  

Arithmetic of CNN 

 
This chapter focuses on the 2D-CNN architecture, mathematical calculations, and derivations 

for the layers of neural network, learnable parameter considered for forward propagation and 

predictions of nanophotonic structures. 

5.1. 2D-CNN Architecture 

CNNs are heavily dependent on affine transformations. This procedure involves taking a vector 

as an input and multiplying it by a matrix to get an output. Typically, a bias vector is added before 

the result is passed through a function of nonlinear activation. This can be used for any form of 

input like images, videos, audio files, or a set of disorganized features - these can all be flattened 

into a vector before the transformation occurs. A 2D-CNN has four basic layers:  

• Input layer  

• Discrete Convolutional layer  

• Pooling layers  

• Fully connected layer  

5.1.1. Input Layer 

In a 2D-CNN, the input layer receives the input layer is multi-dimensional data array 

represented as width and height. The input is provided to the network in a 2D shape as a matrix 

rather than being reduced to a 1D vector, making it simpler to capture spatial correlations. The 

input data have the following features:  

• Input is converted into a multi-dimensional data array. 

• The dimensions of the array depend on the input data and in the case of images it’s 

represented as width and height. 

• A channel axis represents the color of input data. In the case of RGB images, the number 

of channels is 3 whereas in greyscale images there is 1 channel. 
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During the transformation, the axes of the input data array are handled equally, and the 

topological information is not considered. So, 2D images are used which represent the optical 

geometric design parameters. Color-encoded (RGB) 3D images can also be used which can 

represent the range of material and structural parameters, and geometric design. The dataset 

consists of 2D- images of 10,578 TiO2/MAPBI3/ZnO metasurfaces. Each shape was converted into 

a grey scale 40 x 40 x1 pixel image. The shape of the input layer is (10,578, 40, 40, 1). The inputs 

are denoted as x1, x2, x3, …, xn where, xn is the total number of inputs and weights applied to the 

inputs are w1, w2, w3, …, wn. The added intercept in an equation with linearity is analogous to bias. 

Along with the weighted aggregate of the input to the neuron, it is an extra variable in 

the neural network's algorithm that is used to change the output. The summation 

equation (5.1) of weight, biases, and input can be written as:  

𝑎𝑙 = ∑ 𝑤𝑙𝑛
1  𝑥𝑛 + 𝑏𝑙

1 

𝑛

𝑙=1

 

where, a is the summation function, l, and superscript 1 represent the first layer of the neural 

net while b represents the bias annotated to the neuron. The activation function transforms the 

summation function by using differential and non-linear functions and the hidden layers (z) are a 

function of these transformations. The most used activation functions are sigmoid, tanh, ReLu, and 

Leaky ReLu functions. The ReLu function is expressed as ReLu (x) = (y) = max (0, x). The values 

are combined to give a unit activation equation which can be written as equation (5.2) 

𝑎𝑘 = ∑ 𝑤𝑙𝑘
2  𝑧𝑙 + 𝑤𝑘𝑜

2  

𝑀

𝑙=2

 

The overall equation of the weighted sum of the neuron containing inputs, weights, and biases 

is written as:  

𝑦𝑘(𝑥, 𝑤) = 𝜎 ∑ 𝑤𝑙𝑘
2  𝑧𝑙 (∑ 𝑤𝑙𝑛

1  𝑥𝑛 + 𝑏𝑙
1 

𝑛

𝑙=1

) + 𝑤𝑘𝑜
2   

𝑀

𝑙=2

 

5.1.2.  Discrete Convolution 

A common technique for analyzing an image is to apply convolution using a filter, which is 

sometimes referred to as a kernel, to extract the significant features, such as the edges, from the 

original image. A discrete convolutional layer is a linear transform that uses several kernels in 

(5.1) 

(5.2) 

(5.3) 
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which a small number of input elements have a significant impact on a particular output elements 

and identical weights are applied to the input more than once. Figure 5.1. shows input feature map 

and output feature map. Despite the fact that many feature maps are frequently layered on top of 

one another, input feature map only depicts an input feature map. 

5.1.3. Kernel 

As it moves over the input feature map, an input kernel maintains a value slide. To obtain the 

result at the present site, the outcome of each kernel component and the overlapping input element 

is calculated at each point. The results are then combined. To produce many output feature map 

images, this process can be repeated with various kernels. Output map attributes are the end 

outcome of this technique as shown in figure 5.1. For 2D-input data the kernel is three dimensional, 

each output feature map is convolved with a separate kernel and the resultant is summed 

individually to produce an output feature map as shown in figure 5.1. The permutation of the shape 

of the kernel is expressed as (n, m, k1, …., kN), where:  

n= number of the output feature map  

m= number of the input feature map  

k= kernel size (k1, …., kN).  

The output size of a convolutional layer along the axis, width dimension (j), is influenced by: 

• ij, which represents the size of input along j-axis 

• kj, which refers to the size of kernel size along j-axis 

• sj, which is the stride or the range between the two successive kernel points along j-

axis 

• pj, which denotes the zero padding along the j-axis or the number of zeros added at the 

beginning and end of an axis. 

 

Figure 5.1: Example of a discrete convolution containing a single input and output feature map 

(n = m =1) for 2D-convolution N =2, i1 = i2 = 7, k1 = k2 =3 
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Figure 5.2 shows some layouts of the 2D-kernels used in the CNN models. The darker regions 

represent weight values close to zero while lighter regions represent higher weight values close to 

one. These values are applied to input data.   

 

Figure 5.2: Layouts of the 2D-kernels used in the CNN models 

 

Furthermore, in addition to the feature maps, there is a Receptive Field, which is the particular 

neuron's local three-dimensional patch in the receiving volume. The set of neurons known as the 

Depth Column all focus on the same region of the source data. Every neuron in a layer of 

convolution has a unique connection to its localised receptive field, and every neuron in each result 

feature map uses the same weights as shown in figure 5.3. The motivation for utilizing multiple 

output feature maps is that each weight can extract distinct features from the input image, such as 

horizontal or vertical edges.  

 

 

Figure 5.3: Receptive fields in feature map and Depth column 
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5.1.4. Strides and Padding  

Strides are an aspect of subsampling. Strides can alternatively be thought of as a measure of 

the proportion of the output that is kept, as opposed to how much of the kernel gets translated. For 

instance, shifting the kernel by two hops is identical to shifting it by one hop while keeping just 

the odd output parts as shown in figure 5.4. Padding is the number of zeros or numbers added at 

the beginning and end of an axis to derive output size as kernel slides across the input feature map. 

No-zero padding was used in CNN models to determine the size of the convoluted output. In this 

case, the output size is not equal to the input size.  

 

𝑜 = (𝑖 − 𝑘) + 2𝑝 + 1 

The zero-padding can be further classified into two major types: same padding and full 

padding. 

 

a) Same (Half) Padding:  

In the same padding, the size of output remains the same as the input’s size (i.e., o = i) as 

shown in figure 5.5. For any input size ‘i’ and for odd kernel size 𝑘 = 2𝑛 = 1, 𝑛 ∈ Ν, unit stride 

‘s = 1’ and half padding ‘𝑝 =
𝑏𝑘

2𝑐
= 𝑛’. The expression is derived by placing the values in equation 

(5.4) as:  

 

𝑜 = 𝑖 +
2𝑏𝑘

2𝑐
− (𝑘 − 1) 

𝑜 = 𝑖 + 2𝑛 − 2𝑛 = 𝑖 

 

b) Full padding:  

In full padding, the output size decreases concerning the input size or vice versa as shown in 

figure 5.6. For any input size ‘i’ and ‘k’, and for output size less than input size ‘p = k – 1’ and 

unit stride s = 1. The expression is derived by placing the values in equation (5.4) as: 

 

𝑜 = 𝑖 + 2(𝑘 − 1) − (𝑘 − 1) 

𝑜 = 𝑖 + (𝑘 − 1) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 
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Figure 5.4: a) showing generalized strides where kernel takes 2 steps to give output size 3x3 b) 

an alternative way of sampling where kernel slides 1 step and translated to 2x2 output 

 

 

 

Figure 5.5: showing half padding convolution of a 3×3 filter over a 5 × 5 input (i.e., i = 5, k = 3, 

s = 1 and p = 1) 

 

 

 

Figure 5.6: showing full padding convolution of a 3×3 filter over a 7 × 7 input (i.e., i = 5, k = 3, 

s = 1 and p = 2) 
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5.1.5. Pooling Layer 

Another crucial component of CNNs is the pooling process. By utilizing a function to split the 

subregions, by taking the maximum or average product, that reduces the size of feature map which 

is called avgpool and max pool respectively. Pooling is accomplished by dragging a window across 

the input to a pooling function. Since pooling involves non-zero padding following expression is 

used:  

 

𝑜 =
(𝑖 − 𝑘)

𝑠
+ 1 

5.1.6. Fully Connected Layer 

The final essential component in a CNN is the Fully Connected Layer, which is composed of 

completely linked neurons to every activation in the layer before. CNN has many thousands of 

learnable parameters and internal weights which are calculated for each type of layer. These 

parameters are represented by a hierarchy of available filters which are utilized to gather 

information from images. To calculate their activation, there is a matrix multiplication, then a bias 

offset. The RELU or Leaky RELU Function is the activation function that works best in the 

preceding layer. 

In Figure 5.7, the model's early layers effectively capture boundaries and edge connections. 

The feature maps, however, become harder to comprehend as the number of layers increases. 

Understanding the connection between the characteristics extracted and the network's final output 

gets more and more challenging as the network's layers get deeper. It is challenging to incorporate 

this information into a thorough justification of the algorithm's decision-making procedure. 

Analyzing individual filters inside a network to understand the model provides limited value for 

model interpretation and verification. It's because this method doesn't offer a logical justification 

for the whole framework or a particular prediction. 

(5.9) 
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Figure 5.7: Features maps in fully connected layers 
 

5.2. Model Details and Learnable Parameters 

The input layer only reads the images so, it has zero learnable parameters. The pooling layer 

also doesn’t have any learnable parameters as only image dimensional size is changed in this layer. 

In convolutional, fully connected layers the output nodes have separate weights and additional 

nodes applied so, the learnable parameters are given by 𝑛. 𝑚. 𝑘 … 𝑘1 and (𝑛 + 1). 𝑚 parameters 

respectively.  The output layer is fully connected so it’s represented by the same fully connected 

learnable parameters. The dimensionality of the first fully connected layer is unknown so, it is 

given by 𝑖𝑛𝑝𝑢𝑡 𝑠𝑖𝑧𝑒 − (𝑓𝑖𝑙𝑡𝑒𝑟 𝑠𝑖𝑧𝑒 − 1) parameters. To calculate the number of parameters the 

network learned (𝑛. 𝑚. 𝑘 + 1). 𝑓  

Different CNN architectures generate different feature map responses in corresponding layers 

and result in different validations, accuracy, root mean squared error (RMSE), and training time. 

Nine models were used with different architectures to find out the best hyperparameters that gives 

low mean square error. The stochastic gradient descent model (SGDM) was used to train and 

calculate metrics over certain epochs taking steps in every batch and keeping track of the metrics 

on each epoch as well as the overall best metrics in models 1-3. Table 5-1 shows details about 

models.  

Model 1-3 consists of three stacked convolutional layers each consisting of a batch 

normalization layer, ReLU and leakyReLU activation layer, and max-pooling layer. The CNN 
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models employed 3x3 filters in each convolutional layer, with 8, 16, 32, 64, and 128 filters in the 

successive layers. The pooling layer comprised of 2x2 windows dragging across the input feature 

map with the same (full) padding and stride of 2. Model 2-6 consists of four stacked architectures 

and model 7-9 consists of five stacked layers respectively trained with the adaptive moment 

estimation algorithm (ADAM). Additionally, during the training process, a learning rate of 0.001 

was utilized along with a β1 value of 0.9 and a β2 value of 0.99. A test dataset consisting of 10% 

of the overall data was also used. 

5.3. Black Box Opening and Model Prediction 

To gain insights into CNN’s predictions and open the black box of the best-performing model, 

the Deep SHapley Additive Explanations (SHAP) framework was used. The framework is derived 

from game theory which gives unified explanations. Deep SHAP incorporates DeepLIFT, a 

technique that was previously used to split predictions of outputs using Shapley values with 

backpropagation. These values are a measure employed to determine feature significance to 

generate heatmap-based explanations at the pixel level and express the contribution of each feature 

in generating the absorption spectra. The explanations generated by Deep SHAP shows that the 

CNN has picked up on key physical characteristics of metamaterials group under investigation, 

such as the relationships between structural components and optical outputs for basic and complex 

resonator topologies. So, the method is useful in determining specific geometric contributions to 

machine learning predictions of nanophotonic device properties, allowing a better understanding 

of the behavior of complex nanophotonic devices and identifying pathways to improving their 

designs. The shap values are calculated by SHAP algorithm is expressed as:  

Φ𝑖(𝑓, 𝑥) = ∑
|𝑧′|! (𝑚 − |𝑧′| − 1)!

𝑚!
[𝑓𝑥(𝑧′) − 𝑓𝑥 (

𝑧′

𝑖
)]

𝑧′⊆𝑥′
 

    where, Φ𝑖 represents the shap values, m represents the number of input features, 𝑥′ 

represents the binary values of input space (𝑥), 𝑧′ represents non-zero indices in binary values 𝑥′. 

The model trained with 𝑧′ is given by the expression 𝑓𝑥(𝑧′). The heatmaps are presented in the 

next chapter. 

 

 

(5.10) 
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Table 5-1: Layers, Parameters of trained CNN architectures 

 
Model 1 Model 2 Model 3 

Layer Parameter Option Layer Parameter Option Layer Parameter Option 

2D-conv. 

ReLU 

MaxPool 

2D-conv. 

ReLU 

MaxPool 

2D-conv. 

ReLU 

3x3, 16 

2x2, s=2 

            

3x3, 32 

2x2, s=2 

 

3x3, 64 

SGDM 

Batch=16 

Epoch= 

315 (ES) 

  

2D-conv. 

ReLU 

MaxPool  

2D-conv. 

ReLU 

MaxPool  

2D-conv. 

ReLU 

3x3, 32 

2x2, s=2 

           3x3, 

32 2x2, 

s=2 

           3x3, 

64 

SGDM 

Batch=16 

Epoch= 

235 

  

2D-conv. 

leakyReLU

MaxPool 

2D-conv. 

leakyReLU 

MaxPool  

2D-conv. 

leakyReLU 

3x3, 32 

2x2, s=2 

             

3x3, 32 

2x2, s= 2 

             

3x3, 64 

SGDM 

Batch=16 

Epoch= 

221 

  

Model 4 Model 5 Model 6 

Layer Parameter Options Layer Parameter Options Layer Parameter Option 

2D-conv. 

ReLU 

Avg Pool  

2D-conv.  

ReLU 

AvgPool  

2D-conv. 

ReLU 

AvgPool  

2D-conv. 

ReLU 

3x3, 8 2x2, 

s=2 

            

3x3, 16 

2x2, s= 2 

            

3x3, 32  

2x2, s=2 

            

3x3, 32   

  

ADAM 

Batch=16 

Epoch= 

332 

  

2D-conv. 

ReLU 

MaxPool  

2D-conv. 

ReLU 

MaxPool  

2D-conv. 

ReLU 

AvgPool  

2D-conv. 

ReLU 

3x3, 16 

2x2, s=2 

            

3x3, 32 

2x2, s=2 

                 

3x3, 32 

2x2, s=2 

            

3x3, 64 
 

Batch=16 

Epoch= 

308 

  

2D-conv. 

leakyReLU

MaxPool   

2D-conv. 

leakyReLU 

MaxPool   

2D-conv. 

leakyReLU

MaxPool   

2D-conv.  

leakyReLU 

3x3, 16 

2x2, s=2 

             

3x3, 32 

2x2, s=2 

                  

3x3, 32 

2x2, s=2 

              

3x3, 64 
 

Batch=16 

Epoch= 

320 

  

Model 7 Model 8 Model 9 

Layer Parameter Option Layer Parameter Option Layer Parameter Option 

2D-conv. 

ReLU 

Avg Pool  

2D-conv. 

ReLU 

AvgPool  

2D-conv. 

ReLU 

AvgPool  

2D-conv. 

ReLU 

AvgPool 

2D-conv. 

ReLU 

AvgPool 

3x3, 8  

2x2, s=2 

            

3x3, 16 

2x2, s= 2 

            

3x3, 32  

2x2, s=2 

            

3x3, 32  

2x2, s=2 

 

3x3, 64  

2x2, s=2 

Batch=16 

Epoch= 

300 

 

2D-conv. 

ReLU 

Avg Pool  

2D-conv. 

ReLU 

AvgPool  

2D-conv. 

ReLU 

AvgPool  

2D-conv. 

ReLU 

AvgPool 

2D-conv. 

ReLU 

AvgPool 

3x3, 8  

2x2, s=2 

            

3x3, 16 

2x2, s= 2 

            

3x3, 32  

2x2, s=2 

            

3x3, 64  

2x2, s=2 

 

3x3, 128  

2x2, s=2 

Batch=16 

Epoch= 

300 

 

2D-conv. 

ReLU   

Avg Pool  

2D-conv. 

ReLU 

AvgPool  

2D-conv.  

leakyReLU 

AvgPool  

2D-conv. 

leakyReLU 

AvgPool 

2D-conv.  

leakyReLU 

AvgPool 

3x3, 8   

2x2, s=2 

             

3x3, 16 

2x2, s= 2 

             

3x3, 32  

2x2, s=2 

             

3x3, 64  

2x2, s=2 

 

3x3, 128  

2x2, s=2 

Batch=16 

Epoch= 

300 
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Chapter 6:  

Results and Discussion 
 

This chapter focuses on the results and discussions of FDTD simulations, model architecture, 

best-performing hyperparameter, set-up, material properties, and design of nanophotonic 

metamaterials. 

6.1. FTDT Results Based on Resonator Shape 

The simulation results provide an understanding of the flow of energy between the resonator 

(ZnO) and the substrate (perovskite) layer. The absorption of energy in a resonator and active layer 

substrate is influenced by factors such as the resonant frequency, the resonator shape, size, and the 

surrounding medium's dielectric properties. The results were obtained by plotting the time-domain 

response of the resonator.  

 

 

 

 

a) b) 

c) d) 

Figure 6.1: Absorption spectrum of resonator w.r.t different shapes 
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Fig 6.1 (a) shows cross-shape resonators (L1=3000nm and L2=500nm width) display 6-8 

different absorption peaks in different wavelength regions among them the ones at 450nm, 600nm, 

and 750 nm reached the absorption efficiency above 70%. (b) shows square resonators display 3 

diffused peaks ranging from 400-900 nm and a sharp peak at 660nm with 87% absorption in this 

region. (c) shows window-shaped resonators display high resonance resulting in a single diffused 

absorption peak from a range 400-800nm with 70-96% absorption till 500nm and 10-50% 

absorption in 600-800nm window. (d) shows the absorption spectrum of an L-shaped resonator. 

6.2. FTDT Results Based on Resonator Size 

The absorption of energy in the nanostructured active layer increased as the size of the 

resonator increased from 100nm to 3500nm. The peaks shifted from high to low energy 

wavelength as the Length (L1) and width (L2) of the resonator increased. Figure 6.2 a), b), and c) 

shows the total absorption spectra of the cross-shaped, window-shaped, and square resonators of 

three incremental increasing sizes (500, 1500, and 2500nm) respectively.  

 

 

 

 

 

 

 

 

 

 

a) 
b) 

c) 

Figure 6.2: Absorption spectrum of resonator w.r.t different sizes 
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6.3. CNN- Forward Propagation Results 

All the CNN models successfully performed forward propagation of resonator design with low 

error values. As shown in table 6.1, Model 1-3, (3-layered stacked CNN) had the highest RMSE 

values which indicates that the ADAM optimizer performed well than the SGDM as it reduced the 

RMSE by 10x. Model 9 performed exceptionally well with the least error (RMSE=0.00375) and a 

validation accuracy of 68%. Figure 6.5. a) depicts the loss function of Model 9's validation and 

training phases over increasing epochs as a graph b) shows the graph of loss function of training 

and validation accuracy of the model. The training loss and accuracy graphs of Model 1-8 are 

given in Appendix A). 

 

Table 6-1: Outcomes of trained CNN with the associated RMSE values, validation accuracy, 

and training time 

 

CNN Model RMSE Validation Accuracy Training Time 

Model 1 0.069 0.407 10m 19s 

Model 2 0.0264 0.416 13m40s 

Model 3 0.016 0.4593 14m20s 

Model 4 0.0086 0.4488 15m20s 

Model 5 0.0045 0.4488 15m 

Model 6 0.00528 0.4734 14m26s 

Model 7 0.00449 0.5390 8m8s 

Model 8 0.00449 0.5390 23m6s 

Model 9 0.00375 0.6847 23m 
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6.4. Prediction Results 

The prediction results were obtained by comparison of the mean absolute accuracy of the CNN 

prediction spectrum and simulations. The results show that CNN shows high prediction accuracy 

of resonator geometry aside from the training dataset. The predicted absorption peaks display a 

wavelength and amplitude that closely match those of the simulated peaks. Some minor variations 

were observed in the intensity and regions outside of the peaks when compared to simulated 

results. The CNN-based predictions were generated much faster, taking an average of 0.3 ± 0.05 

seconds per prediction, whereas each FDTD simulation (n=9) took approximately 25 minutes 

hence, the CNN is 85 times faster than conventional solvers. The prediction results highlight the 

successful performance of CNN in accomplishing the forward propagation and resonator design 

task of TSC with a high level of accuracy. The structure analysis of resonator depicts that CNN 

has learned the ML-inspired physical relationship. The filters can be optimized further so, the mean 

absolute accuracy can be enhanced when comparing CNN’s prediction to the FDTD absorption 

spectra of the given resonator shape. 

a) b) 

Figure 6.3: Training Graphs showing a) CNN Model-9 Training and Validation Loss b) 

CNN Model-9 Training and Validation Accuracy 
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Figure 6.4: CNN Prediction and FDTD simulation of the 9-different resonator of the training 

dataset 

 

6.5. DeepShap Results 

The SHAP algorithm utilizes a selection of background samples to approximate the dependent 

targets of SHAP values in deep learning models. Even when a feature is missing, the method can 

nevertheless estimate its effect on the model output by substituting values from the backdrop. So, 

a white background was used to reduce the noise in the results.  

6.5.1. SHAP Explanations: 

A heatmap is used to illustrate the SHAP explanation, with red pixels indicating positive 

contributions of the base image towards the model's prediction, and blue pixels indicating negative 

contributions as shown in Figure 6.5. The SHAP values were captured at wavelengths 450, 650, 

850, 1050, and 1200nm with a single reference white background. The base images were 

resonators having 80-point absorption peaks.  
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Figure 6.5: SHAP CNN Explanations of metasurfaces (L1=2200nm, L2=300nm) Predictions 

at increasing wavelengths a) Window resonator b) Cross resonator c) L-arm resonator 

 

6.5.2. SHAP Cross-arm validation 

DeepSHAP depicts regions of pixels that travel from the centre of the base representation to 

its edges as the wavelength rises. This shows that to obtain resonance at longer wavelengths, the 

arm dimensions must be increased. 

 

Figure 6.6: SHAP CNN Validation at 450-800nm of a) L1=5200nm, L2=300nm b) L1 6800nm, 

L2= 500nm c) 8800nm, L2=700nm 
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The validation method helps identify the relationship between geometric structures and optical 

responses of every pixel embedded in the feature map. The diffused absorption and sharp peak 

resonance behaviors were studied to suppress the negative contributing pixels in the range of 600-

800nm. Figure 6.7. provide examples of validation where the explanations of a sharp-

peaked structure (cross-shaped) and a diffused absorption peaked resonator (window-shaped) 

were recorded at the peak wavelengths as pointed out in 6.7(a). The explanation heat maps are 

shown from wavelength 450-800nm in 6.7(b). The target is to replace the negative contributing 

pixel response with the positive pixels to obtain maximum absorption in the region. Figures 6.7 

(c) and (d) represent the target wavelength of the cross-base image as well as the 

explanations for cross-base imaging at respective wavelengths. The red dashed box represents the 

validated structure leading to the highest contribution to maximum absorption in the region while 

the blue dashed box represents the highest negative contribution. 

 

Figure 6.7: SHAP CNN Validation a) Absorption peaks of window and cross resonator at 

L1=2200nm b) SHAP explanations of the resonators at wavelength 450-800nm c), d) SHAP 

explanation of the validated cross-window base image at 600-800nm 

 

Figure 6.8. shows average SHAP validation values of the SHAP explanation at given 

wavelenths. A) represents the SHAP validation curves in graph 6.8 (a), (b), (c), and (d) represent 
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the target and base curves at 450, 600, 700, and 800nm respectively. The graphs show the highest 

negative SHAP values (blue pixels) have higher proportions which need to be replaced by 

contributing pixels in that specific wavelength. However, figure 6.8 (d) More negative maximum 

SHAP values (blue cells) are produced at 700–800 nm than at diffused–peak wavelengths 

according to SHAP explanations. The present results demonstrate that the presence of sharp 

absorption peaks at 600 and 750 nm is determined by the CNN by including the horizontal and 

vertical bars on the cross-resonator. 

 . 

 

Figure 6.8: Average SHAP validation values of SHAP explanation a) 450nm b) 600nm c) 

700nm d) 800nm 

The design's validation studies show how translating the pixels from the feature 

maps identified by the SHAP heat maps can help achieve complex spectral targets. As a result, the 

heatmaps themselves shed light on the relationship between geometric properties and 

EM response. The low-intensity diffused peak structure at 600-800nm was converted into a well-

defined peak structure by restricting the picture conversion procedure to the photons of a certain 

target wavelength. 

The SHAP explanations offer detailed insights into the specific regions of each resonator that 

contribute to individual resonance peaks. For example, for the sharp peaks in cross-shaped 
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structure, the explanation at each peak (600 nm and 700 nm) shows various regions that are 

dominated by red pixels. The spatial distribution of the heatmap is closely related to the spatial 

properties of the resonances on each peak. Particularly, at various resonance wavelengths, the 

electric field intensities within the structures vary. The resonance at different wavelength and 

electric field profiles are given in Figures 6.9 and 6.10. 

 

Figure 6.9: Resonance Profile of SHAP Validated Structures a) 450nm b) 600nm c) 700nm d) 

800nm 

 

 

Figure 6.10: Electric field Profile of SHAP Validated Structures a) 450nm b) 600nm c) 700nm 

d) 800nm 
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6.6. Solar Cells Absorption Result 

The validated metasurface designs were integrated with the Si bottom sub-cell to evaluate the 

optical performance of the TSC. The absorption plots evaluate the solar cell performance and 

display the optical losses in the various layers and cells at specific wavelengths. To compare the 

improvement in light absorption in perovskite/Si TSC, the typical reference TSC architecture was 

compared with metasurfaces integrated-TSC.  Figure 6.11 (a) shows the optical absorption in 

reference 2T- perovskite top and Si bottom cells without any top metasurface cell along with other 

conducting layers like TCO, and ZnO. The active layer comprises of near 90% absorption of the 

solar spectrum. The estimated Jsc of the top and bottom cells is 17.5mA/cm2 and 20mA/cm2 

respectively. There are significant optical losses in the Ultraviolet (UV) and NIR regions.  These 

losses may be due to parasitic or reflective losses.  

Figure 6.11 (b) shows the optical absorption in 2T- perovskite metasurface and Si bottom cell. 

The average absorption of the top cell increased in the UV-vis region (650-800nm) up to 93.4%. 

The bandwidth of absorption in the Si bottom cell also increased which shows that the metasurface 

transmits or scatters the unabsorbed NIR light to the bottom cell. The active layer comprises of 

near 92% absorption of the solar spectrum. The estimated Jsc of the top and bottom cells is 

19.5mA/cm2 and 20mA/cm2 respectively. The Jsc in the top cell increased by 2mA/cm2 by 

integrating the optimized metasurface with the bottom cell. This increase is due to enhanced light 

trapping, resonance, and electromagnetic response because of the designed metasurface. The 

optical losses have also decreased as compared to the reference TSC architecture. The absorption 

in the TCO layer also increased by 10%. The rest of the optical losses are mainly parasitic and 

interface losses which can be reduced by introducing an interlayer or modifying the absorber layer 

thickness. The recorded Voc of the TSC is 0.7397V. The total Jsc of 35.91 mA/cm2. The fill factor 

observed is 82.2% with eta 21.84%.  

The absorption curves were also plotted alongside the spectral irradiance AM 1.5 graph. Figure 

6.12 shows the optical absorption in 2T- perovskite/Si TSC. For reference, the AM 1.5 solar 

irradiance curves are represented in the black curve. The red portion displays the energy absorbed 

by the solar cell while the blue portion represents the unabsorbed spectrum. 
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Figure 6.11: Optical absorption in 2T-perovskite/Si TSC (a) reference configuration without 

metasurface (b) configuration with integrated metasurface top cell 
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Figure 6.12: Optical absorption in 2T- perovskite/Si TSC (integrated metasurface) with 

reference to the AM 1.5 irradiance spectrum 

 

6.7. Generation Rate and External Quantum Efficiency 

Jsc achieves considering only the optical properties of the solar cell architecture, disregarding non-

ideal effects on the transport and extraction of charge carriers. The G parameter may be represented 

in 1D or 2D profiles as a function of position and/or incoming light wavelength values. Figures 

6.13 show the generation rate of 2T- perovskite/Si TSC (integrated metasurface). 

 

Figure 6.13: Carrier Generation rate profile in 2T- perovskite/Si TSC (integrated metasurface) 
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Figure 6.14: EQE in 2T- perovskite/Si TSC (integrated metasurface)  

 

The use of deep learning for optimizing metasurfaces in TSC has yielded promising results in 

terms of EQE and current density. As this approach is relatively new and not yet widely adopted, 

direct comparison with similar studies is challenging. Nonetheless, the use of metasurfaces for 

light management in TSC has been explored in various research, and the current design was 

compared with recent studies, as seen in Table 6-2. 

 

Table 6-2: Comparison of the state-of-the-art Metasurface with recent studies and findings 

 

Study Solar Cell Metasurface  Absorption Jsc(metasurface

)/EQE 

[42] 2T-Hybrid organic-

inorganic perovskite 

TSC 

Nanohole array-Mie 

Resonant Metasurface 

>90% in wavelength 

(400-770nm) 

65.2% EQE 

[41] 4T- perovskite/Si 

TSC 

Mie Resonant 

spectrum splitting 

Metasurface 

92% in wavelength 

(400-800nm) 

22.1 mA/cm2 of 

top perovskite cell 

[22] 2T- perovskite/Si 

TSC 

Dielectric Hybrid 

Metasurface 

Low reflectivity in 

UV-vis region 

(<15%) 

19.55 mA/cm2 of 

top perovskite cell 

Current 2T- perovskite/Si 

TSC 

Dielectric Hybrid 

Metasurface  

>90% in wavelength 

(400-800nm) 

19.5 mA/cm2 of 

top perovskite cell 

87% EQE  
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Conclusion 
       

 In this study, the use of deep learning to predict the optimal optical design for the top cell, 

maximizing PCE, and the effect of metasurfaces on solar cell architecture were studied. The 

metasurfaces proposed in this study include three stacked layers. Several computational techniques 

have been developed to analyze the optical responses of metasurfaces in solar cells, which are 

essential as experimental techniques often use a costly and time-consuming trial-and-error 

approach given the many parameters involved. The use of learning-based optimization using CNN 

is an effective data-driven approach to solving complex non-linear optical problems and predicting 

the design space by identifying the best input and unidentified regions with previous information. 

       A dataset consisting of 10,578 TiO2/MAPBI3/ZnO metasurfaces was used. 3-D FDTD by 

ANSYS Lumerical v202 was used for simulations. The resonator was a cross, square, L-shaped, 

window-shaped polygon and its inverted version. The shapes were chosen because of the ease of 

fabrication by the lithography technique. The FDTD results display that cross-shape resonators 

(L1=3000nm and L2=500nm width) display 6-8 different absorption peaks in different wavelength 

regions among them the ones at 450nm, 600nm, and 750 nm reached the absorption efficiency 

above 70%. square resonators display 3 diffused peaks ranging from 400-900 nm and a sharp peak 

at 660nm with 87% absorption in this region.  Several CNN architectures were used to find the 

best hyperparameters that give the low mean square error, and the stochastic gradient descent 

model (SGDM) was used to train and calculate metrics over certain epochs, taking steps in every 

batch and keeping track of the metrics on each epoch, as well as the overall best metrics in models 

1-3. Model 2-6 consists of four stacked architectures, and model 7-9 consists of five stacked layers 

respectively trained with the adaptive moment estimation algorithm (ADAM). A test dataset 

consisting of 10% of the overall data was also used. 

       The results showed that the proposed SHAP framework can be used to gain insights into 

CNN’s predictions and open the black box of the best-performing model. The framework is 

derived from game theory, which gives unified explanations. Deep SHAP integrates DeepLIFT 

and Shapley values. These values are a measure employed to determine feature significance to 

generate heatmap-based explanations at the pixel level and express the contribution of each feature 
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in generating the absorption spectra. Deep SHAP shows that CNN has picked up on key physical 

characteristics of the metamaterials group under investigation, such as the relationships between 

structural components and optical outputs for elementary and complex resonator geometries. The 

prediction results were obtained by comparison of the mean absolute accuracy of the CNN 

prediction spectrum and simulations. The results show that CNN shows high prediction accuracy 

of resonator geometry aside from the training dataset. The CNN-based predictions were generated 

much faster, taking an average of 0.3 ± 0.05 seconds per prediction, whereas each FDTD 

simulation (n=9) took approximately 25 minutes hence, the CNN is 85 times faster than 

conventional solvers. The prediction results highlight the successful performance of CNN in 

accomplishing the forward propagation and resonator design task of TSC with a high level of 

accuracy. 

      The SHAP-validated metasurfaces designs were integrated with the Si bottom sub-cell to 

evaluate the optical capabilities of the TSC in SCAPS-1D. The active layer comprises of near 90% 

absorption of the solar spectrum. The average absorption of the top (metasurface-integrated) cell 

increased in the UV-vis region (650-800nm) up to 93.4%. The bandwidth of absorption in the Si 

bottom cell also increased which shows that the metasurface transmits or scatters the unabsorbed 

NIR light to the bottom cell. The estimated Jsc of the top and bottom cells is 19.5mA/cm2 and 

20mA/cm2 respectively. The Jsc in the top cell increased by 2mA/cm2 by integrating the optimized 

metasurface with the bottom cell. The recorded Voc of the solar cell is 0.7397V. The total Jsc of 

35.91 mA/cm2. The fill factor observed is 82.2%. 

      Overall, the study provides significant insights into the use of deep learning and metasurfaces 

in solar cell architecture. A better understanding of the behavior of complicated nanophotonic 

devices and the identification of avenues for enhancing their designs are made possible by the 

suggested method, which is effective in detecting specific geometric inputs to machine learning 

predictions of nanophotonic device features. The use of learning-based optimization using 2D-

CNN and the proposed SHAP-framework can help reduce the cost and time required for trial-and-

error methods and give a more thorough grasp of the functioning of sophisticated nanophotonic 

devices. This study provides an important step forward in the development of efficient, cost-

effective, and environmentally friendly solar cell technology. 
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Research Gaps 
     

 The optimization studies can now yield better information regarding the need for nanoscale 

structures for better light management and predict better design space to enhance PCE. The active 

layer can itself be used as light managing, directing, and restricting layers or metasurfaces. 

However, there are several opportunities and questions untapped in the realm of optical 

optimization. An extensive optimization space is needed to compute different parameters at the 

same time such as refractive index, band gap, donor/acceptor concentration ratio, fill factor, and 

internal morphologies to grasp a better understanding of active layer optimization for fabrication 

of lattice and current matched TSC to enhance its PCE [67]. When the gratings are periodically 

simulated in 2D, the processing needs of boundary value issues grow dramatically. Multiple design 

parameters introduced into the optimization process increase the computational load even further. 

As textured TSC simulation also takes a long time, the amount of free space design parameters 

is also limited. The choice of parameters needs to be made based on the optical performance of 

varying layers and thicknesses. So, only the length, width, and arm lengths of the resonator were 

considered for the study. 

Prospects 

 

In the future, this study can be improved. Generic 2D-CNN architecture (with 3–5-layer stacks) 

were trained for this study. Several other advanced Neural Network architectures can be studied 

for optimizing the TSCs. GANs, AlexNet, GoogLeNet, Federated Learning, and ResNet can also 

be used for the optical optimization of TSCs. The current study only used 2D images and 1 channel 

as input. Color-encoded (RGB) 3D images can also be used which can represent the range of 

material and structural parameters, and geometric design.  Furthermore, more parameters can be 

considered for optical design and optimization like Materials search, thickness, texturization, etc.  

 

 

 

 

 

 



 
 

51 
. 

 

 

 

References 

[1] A. Hepbasli, “A key review on exergetic analysis and assessment of renewable energy 

resources for a sustainable future,” Renew. Sustain. Energy Rev., vol. 12, no. 3, pp. 593–

661, 2008, doi: https://doi.org/10.1016/j.rser.2006.10.001. 

[2] K. Yoshikawa et al., “Silicon heterojunction solar cell with interdigitated back contacts for 

a photoconversion efficiency over 26%,” NatEn, vol. 2, no. 5, p. 17032, Mar. 2017, doi: 

10.1038/NENERGY.2017.32. 

[3] W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar 

cells,” J. Appl. Phys., vol. 32, no. 3, pp. 510–519, Mar. 1961, doi: 10.1063/1.1736034. 

[4] S. Rühle, “Tabulated values of the Shockley-Queisser limit for single junction solar cells,” 

Sol. Energy, vol. 130, pp. 139–147, Jun. 2016, doi: 10.1016/j.solener.2016.02.015. 

[5] A. Polman, M. Knight, E. C. Garnett, B. Ehrler, and W. C. Sinke, “Photovoltaic materials: 

Present efficiencies and future challenges,” Science, vol. 352, no. 6283. American 

Association for the Advancement of Science, Apr. 15, 2016. doi: 10.1126/science.aad4424. 

[6] Z. Yu, M. Leilaeioun, and Z. Holman, “Selecting tandem partners for silicon solar cells,” 

Nature Energy, vol. 1, no. 11. Nature Publishing Group, pp. 1–4, Sep. 19, 2016. doi: 

10.1038/nenergy.2016.137. 

[7] G. E. Eperon, M. T. Hörantner, and H. J. Snaith, “Metal halide perovskite tandem and 

multiple-junction photovoltaics,” Nat. Rev. Chem., vol. 1, no. 12, pp. 1–18, Dec. 2017, doi: 

10.1038/s41570-017-0095. 

[8] J. P. Mailoa et al., “A 2-terminal perovskite/silicon multijunction solar cell enabled by a 

silicon tunnel junction,” Appl. Phys. Lett., vol. 106, no. 12, p. 121105, Mar. 2015, doi: 

10.1063/1.4914179. 

[9] Y. Wu et al., “Monolithic perovskite/silicon-homojunction tandem solar cell with over 22% 

efficiency,” Energy Environ. Sci., vol. 10, no. 11, pp. 2472–2479, Nov. 2017, doi: 

10.1039/c7ee02288c. 

[10] K. J. Kim, C. U., Yu, J. C., Jung, E. D., Choi, I. Y., Park, W., Lee, H., & Choi, “Optimization 

of device design for low cost and high efficiency planar monolithic perovskite/silicon 

tandem solar cells,” Nano Energy, vol. 60, pp. 213–221, 2019. 

[11] D. Grant, K. Catchpole, K. Weber, and T. White, “Design guidelines for perovskite/silicon 

2-terminal tandem solar cells: An optical study,” Opt. Express, vol. 24, pp. A1454–A1470, 

2016, doi: 10.1364/OE.24.0A1454. 

[12] Y. Jiang et al., “Optical analysis of perovskite/silicon tandem solar cells,” J. Mater. Chem. 



 
 

52 
. 

 

 

C, vol. 4, no. 24, pp. 5679–5689, Jun. 2016, doi: 10.1039/C6TC01276K. 

[13] F. Sahli et al., “Improved Optics in Monolithic Perovskite/Silicon Tandem Solar Cells with 

a Nanocrystalline Silicon Recombination Junction,” Adv. Energy Mater., vol. 8, no. 6, p. 

1701609, Feb. 2018, doi: 10.1002/AENM.201701609. 

[14] F. Sahli et al., “Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% 

power conversion efficiency,” Nat. Mater. 2018 179, vol. 17, no. 9, pp. 820–826, Jun. 2018, 

doi: 10.1038/s41563-018-0115-4. 

[15] L. Mazzarella et al., “Infrared Light Management Using a Nanocrystalline Silicon Oxide 

Interlayer in Monolithic Perovskite/Silicon Heterojunction Tandem Solar Cells with 

Efficiency above 25%,” Adv. Energy Mater., vol. 9, no. 14, p. 1803241, Apr. 2019, doi: 

10.1002/AENM.201803241. 

[16] L. Mazzarella et al., “Infrared photocurrent management in monolithic perovskite/silicon 

heterojunction tandem solar cells by using a nanocrystalline silicon oxide interlayer,” Opt. 

Express, vol. 26, 2018, doi: 10.1364/OE.26.00A487. 

[17] S. Manzoor et al., “Improved light management in planar silicon and perovskite solar cells 

using PDMS scattering layer,” Sol. Energy Mater. Sol. Cells, vol. 173, 2017, doi: 

10.1016/j.solmat.2017.06.020. 

[18] M. H. Elshorbagy, K. Abdelhady, H. Kamal, and J. Alda, “Broadband anti-reflection 

coating using dielectric Si3N4 nanostructures. Application to amorphous-Si-H solar cells,” 

Opt. Commun., vol. 390, pp. 130–136, 2017, doi: 10.1016/j.optcom.2016.12.062. 

[19] J. Yang et al., “Plasmonic polymer tandem solar cell,” ACS Nano, vol. 5, no. 8, pp. 6210–

6217, Aug. 2011, doi: 10.1021/NN202144B/SUPPL_FILE/NN202144B_SI_001.PDF. 

[20] E. Tiguntseva et al., “Resonant silicon nanoparticles for enhancement of light absorption 

and photoluminescence from hybrid perovskite films and metasurfaces,” Nanoscale, vol. 9, 

no. 34, pp. 12486–12493, Sep. 2017, doi: 10.1039/c7nr01631j. 

[21] A. Mellor, N. P. Hylton, S. A. Maier, and N. Ekins-Daukes, “Interstitial light-trapping 

design for multi-junction solar cells,” Sol. Energy Mater. Sol. Cells, vol. 159, pp. 212–218, 

Jan. 2017, doi: 10.1016/j.solmat.2016.09.005. 

[22] M. H. Elshorbagy, B. García-Cámara, E. López-Fraguas, and R. Vergaz, “Efficient light 

management in a monolithic tandem perovskite/silicon solar cell by using a hybrid 

metasurface,” Nanomaterials, vol. 9, no. 5, May 2019, doi: 10.3390/nano9050791. 

[23] D. Chen et al., “Nanophotonic Light Management for Perovskite-Silicon Tandem Solar 

Cells,” arXiv, Jan. 2018, doi: 10.1117/1.JPE.8.022601. 

[24] A. B. Numan and M. S. Sharawi, “Extraction of Material Parameters for Metamaterials 

Using a Full-Wave Simulator [Education Column],” IEEE Antennas Propag. Mag., vol. 55, 



 
 

53 
. 

 

 

no. 5, pp. 202–211, 2013, doi: 10.1109/MAP.2013.6735515. 

[25] B. Hamza, B. Abdelkader, S. Meskine, M. Hadjab, M. Ziane, and A. Zaoui, “First principles 

investigation of optoelectronic properties of ZnXP2 (X = Si, Ge) lattice matched with 

silicon for tandem solar cells applications using the mBJ exchange potential,” Opt. - Int. J. 

Light Electron Opt., vol. Volume 159, 2018, doi: 10.1016/j.ijleo.2018.01.079. 

[26] U.-G. Jong, C.-J. Yu, Y.-H. Kye, Y.-G. Choe, W. Hao, and S. Li, “First-Principles Study 

on Structural, Electronic, and Optical Properties of Inorganic Ge-Based Halide 

Perovskites,” Inorg. Chem., vol. 58, no. 7, pp. 4134–4140, Apr. 2019, doi: 

10.1021/acs.inorgchem.8b03095. 

[27] J. Even et al., “Density Functional Theory Simulations of Semiconductors for Photovoltaic 

Applications: Hybrid Organic-Inorganic Perovskites and III/V Heterostructures,” Int. J. 

Photoenergy, vol. 2014, p. 649408, 2014, doi: 10.1155/2014/649408. 

[28] U. Neupane, B. Bahrami, M. Biesecker, M. F. Baroughi, and Q. Qiao, “Kinetic Monte Carlo 

modeling on organic solar cells: Domain size, donor-acceptor ratio and thickness,” Nano 

Energy, vol. 35, pp. 128–137, 2017, doi: https://doi.org/10.1016/j.nanoen.2017.03.041. 

[29] D. Chen and P. Manley, “Nanophotonic light management for perovskite–silicon tandem 

solar cells,” J. Photonics Energy, vol. 8, no. 02, p. 1, 2018, doi: 10.1117/1.jpe.8.022601. 

[30] M. Mousa, F. Z. Amer, R. I. Mubarak, and A. Saeed, “Simulation of optimized high-current 

tandem solar-cells with efficiency beyond 41%,” IEEE Access, vol. 9, pp. 49724–49737, 

2021, doi: 10.1109/ACCESS.2021.3069281. 

[31] R. I. Rabady and H. Manasreh, “Thicknesses optimization of two- and three-junction 

photovoltaic cells with matched currents and matched lattice constants,” Sol. Energy, vol. 

158, no. May, pp. 20–27, 2017, doi: 10.1016/j.solener.2017.09.016. 

[32] S. Sharma, K. Jain, and A. Sharma, “Solar Cells: In Research and Applications—A 

Review,” Mater. Sci. Appl., vol. 06, pp. 1145–1155, 2015, doi: 10.4236/msa.2015.612113. 

[33] H. Ullah, A. Khan, A. Ullah, I. Ullah, and M. Noman, “Plasmonic perfect absorber for solar 

cell applications,” 2016, pp. 1–5. doi: 10.1109/ICET.2016.7813268. 

[34] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. Padilla, “Perfect Metamaterial 

Absorber,” Phys. Rev. Lett., vol. 100, p. 207402, 2008, doi: 

10.1103/PhysRevLett.100.207402. 

[35] S. K. Patel, K. Shah, and Y. Kosta, “Frequency reconfigurable and high gain metamaterial 

microstrip radiating structure,” Waves in Random and Complex Media, vol. 29, 2018, doi: 

10.1080/17455030.2018.1452309. 

[36] H.-L. Huang, H. Xia, Z.-B. Guo, D. Xie, and H.-J. Li, “Design of Broadband Metamaterial 

Absorbers for Permittivity Sensitivity and Solar Cell Application *,” Chinese Phys. Lett., 



 
 

54 
. 

 

 

vol. 34, p. 117801, 2017, doi: 10.1088/0256-307X/34/11/117801. 

[37] W. Xin, Z. Binzhen, W. Wanjun, W. Junlin, and D. Junping, “Design and Characterization 

of an Ultra-broadband Metamaterial Microwave Absorber,” IEEE Photonics J., vol. PP, p. 

1, 2017, doi: 10.1109/JPHOT.2017.2700056. 

[38] K. Matsumori and R. Fujimura, “Broadband light absorption of an Al semishell-MIM 

nanostrucure in the UV to near-infrared regions,” Opt. Lett., vol. 43, pp. 2981–2984, 2018, 

doi: 10.1364/OL.43.002981. 

[39] C. Cao and Y. Cheng, “A broadband plasmonic light absorber based on a tungsten meander-

ring-resonator in visible region,” Appl. Phys. A, vol. 125, 2019, doi: 10.1007/s00339-018-

2310-1. 

[40] M. I. Hossain et al., “Non-resonant metal-oxide metasurfaces for efficient perovskite solar 

cells,” Sol. Energy, vol. 198, no. August 2019, pp. 570–577, 2020, doi: 

10.1016/j.solener.2020.01.082. 

[41] V. Neder, D. Zhang, S. Veenstra, and A. Polman, “Four-terminal perovskite/silicon tandem 

solar cell with integrated Mie-resonant spectral splitter metagrating,” arXiv, pp. 1–15, 2020. 

[42] C. Wang and Z. Zhang, “Broadband optical absorption enhancement in hybrid organic-

inorganic perovskite metasurfaces,” AIP Adv., vol. 11, no. 2, 2021, doi: 10.1063/5.0037367. 

[43] D. H. Hubel and T. N. Wiesel, “Receptive fields of single neurones in the cat’s striate 

cortex,” J. Physiol., vol. 148, no. 3, pp. 574–591, Oct. 1959, doi: 

10.1113/JPHYSIOL.1959.SP006308. 

[44] K. Fukushima, “Neocognitron: A hierarchical neural network capable of visual pattern 

recognition,” Neural Networks, vol. 1, no. 2, pp. 119–130, Jan. 1988, doi: 10.1016/0893-

6080(88)90014-7. 

[45] Y. LeCun et al., “Backpropagation Applied to Handwritten Zip Code Recognition,” Neural 

Comput., vol. 1, no. 4, pp. 541–551, Dec. 1989, doi: 10.1162/NECO.1989.1.4.541. 

[46] O. Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge,” Int. J. 

Comput. Vis., vol. 115, no. 3, pp. 211–252, Dec. 2015, doi: 10.1007/S11263-015-0816-

Y/FIGURES/16. 

[47] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep 

convolutional neural networks,” Commun. ACM, vol. 60, no. 6, pp. 84–90, May 2017, doi: 

10.1145/3065386. 

[48] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale 

Image Recognition,” arXiv 1409.1556, 2014. 

[49] C. Szegedy et al., “Going deeper with convolutions,” in 2015 IEEE Conference on 



 
 

55 
. 

 

 

Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1–9. doi: 

10.1109/CVPR.2015.7298594. 

[50] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in 

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 

770–778. doi: 10.1109/CVPR.2016.90. 

[51] K. Jäger, L. Korte, B. Rech, and S. Albrecht, “Numerical optical optimization of monolithic 

planar perovskite-silicon tandem solar cells with regular and inverted device architectures,” 

Opt. Express, vol. 25, no. 12, pp. A473--A482, Jun. 2017, doi: 10.1364/OE.25.00A473. 

[52] J. K. Chaudhary, J. Liu, J. P. Skön, Y. W. Chen, R. K. Kanth, and J. Heikkonen, 

Optimization of Silicon Tandem Solar Cells Using Artificial Neural Networks, vol. 11927 

LNAI, no. December. Springer International Publishing, 2019. doi: 10.1007/978-3-030-

34885-4_30. 

[53] C. Yi, Y. Wu, Y. Gao, and Q. Du, “Tandem solar cells efficiency prediction and 

optimizationviadeep learning,” Phys. Chem. Chem. Phys., vol. 23, no. 4, pp. 2991–2998, 

2021, doi: 10.1039/d0cp05882c. 

[54] H. Q. Tan, X. Zhao, A. Jiao, E. Birgersson, and H. Xue, “Optimizing bifacial all-perovskite 

tandem solar cell: How to balance light absorption and recombination,” Sol. Energy, vol. 

231, pp. 1092–1106, 2022, doi: https://doi.org/10.1016/j.solener.2021.12.040. 

[55] W. A. Saidi, W. Shadid, and I. E. Castelli, “Machine-learning structural and electronic 

properties of metal halide perovskites using a hierarchical convolutional neural network,” 

npj Comput. Mater., vol. 6, no. 1, pp. 1–7, 2020, doi: 10.1038/s41524-020-0307-8. 

[56] K. Jäger, J. Sutter, M. Hammerschmidt, P. I. Schneider, and C. Becker, “Prospects of light 

management in perovskite/silicon tandem solar cells,” Nanophotonics, vol. 10, no. 8, pp. 

1991–2000, 2021, doi: 10.1515/nanoph-2020-0674. 

[57] M. H. Elshorbagy, B. García-Cámara, E. López-Fraguas, and R. Vergaz, “Efficient Light 

Management in a Monolithic Tandem Perovskite/Silicon Solar Cell by Using a Hybrid 

Metasurface,” Nanomater. (Basel, Switzerland), vol. 9, no. 5, May 2019, doi: 

10.3390/NANO9050791. 

[58] C. Yeung, J. M. Tsai, B. King, Y. Kawagoe, D. Ho, and A. Raman, “Elucidating the physics 

of nanophotonic structures through explainable machine learning algorithms,” Opt. 

InfoBase Conf. Pap., pp. 1–17, 2020, doi: 10.1364/FIO.2020.FM2A.2. 

[59] “Calculating absorbed optical power - Simple method – Ansys Optics.” 

https://optics.ansys.com/hc/en-us/articles/360034915673-Calculating-absorbed-optical-

power-Simple-method (accessed Feb. 11, 2023). 

[60] A. D. C. A. Ishteev, K. Konstantinova, G. Ermolaev, D. Kiselev, D. Muratov, M. Voronova, 

T. Ilina, P. Lagov, O. Uvarov, Y. Pavlov, M. Letovaltseva, A. Arsenin, V. Volkov, S. 



 
 

56 
. 

 

 

Didenko, D. Saranin, “Investigation of structural and optical properties of MAPbBr3 

monocrystals under fast electron irradiation,” J. Mater. Chem. C, vol. 10, pp. 5821–5828, 

2022. 

[61] S. Li, Y. L. Cao, W. H. Li, and Z. S. Bo, “A brief review of hole transporting materials 

commonly used in perovskite solar cells,” Rare Met., vol. 40, no. 10, pp. 2712–2729, 2021, 

doi: 10.1007/s12598-020-01691-z. 

[62] S. S. I. Bodurov, I. Vlaeva, A. Viraneva, T. Yovcheva, “Modified design of a laser 

refractometer,” Nanosci. Nanotechnol., vol. 16, pp. 311–33, 2016. 

[63] E. Trushin, M. Betzinger, S. Blügel, and A. Görling, “Band gaps, ionization potentials, and 

electron affinities of periodic electron systems via the adiabatic-connection fluctuation-

dissipation theorem,” Phys. Rev. B, vol. 94, p. 75123, 2016. 

[64] K. B. Sundaram and A. Khan, “Work function determination of zinc oxide films,” J. Vac. 

Sci. Technol. A, vol. 15, no. 2, pp. 428–430, 1997, doi: 10.1116/1.580502. 

[65] B. Mahapatra, R. V. Krishna, Laxmi, and P. K. Patel, “Design and optimization of 

CuSCN/CH3NH3PbI3/TiO2 perovskite solar cell for efficient performance,” Opt. 

Commun., vol. 504, p. 127496, 2022, doi: https://doi.org/10.1016/j.optcom.2021.127496. 

[66] X. Liu et al., “Simulation of p-type c-Si solar cells with metal oxides as carrier-selective 

contacts,” Sol. Energy, vol. 240, pp. 84–89, 2022, doi: 

https://doi.org/10.1016/j.solener.2022.05.030. 

[67] F. Wei, L. Yao, F. Lan, G. Li, and L. Liu, “Tandem polymer solar cells: Simulation and 

optimization through a multiscale scheme,” Beilstein J. Nanotechnol., vol. 8, no. 1, pp. 123–

133, 2017, doi: 10.3762/bjnano.8.13. 

[68] Colin David Bailie, “Polycrystalline Tandem Photovoltaics,” Dr. Thesis,Department Mater. 

Sci. Eng. Stanford Univ., 2015. 

 

 

 

 

 

 

 

 

 

 

 



 
 

57 
. 

 

 

Appendix 

 
Training and Validation Losses of CNN Model 1-8 

   

 

  

 

  

 

 
 

 

 

 

 

a) b) c) 

Model 1 Model 2 Model 3 

Model 4 Model 5 Model 6 

Model 7 
Model 8 


