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Abstract

In the rapidly evolving era of machine learning and deep learning, new algorithms are

constantly emerging, each built upon existing research and pushing the boundaries in

the field of medical imaging. However, one of the major challenges in the application

of these algorithms is the distributional shifts that occur in real-world datasets. This

research paper utilizes the expanded Shifts 2.0 dataset that was released for The Shift

Challenge 2022. It presents how to enhance the UNET model’s robustness and un-

certainty estimations in the segmentation of white matter lesions in Multiple Sclerosis

patients, using only the FLAIR modality. This approach examines the impact of mul-

tiple hyperparameters on the results of the Shift 2.0 dataset. The suggested model

yielded R-AUC scores of 1.12 and 1.60 on the Dev-out and Eval-out of the shift dataset,

in contrast to the baseline UNET method which registered scores of 4.66 and 7.40 on

those respective partitions. Moreover, the paper establishes that the performance of an

ensemble of UNET models can be comparable to that of a transformer-based ensemble

of UNETR models, offering promising implications for future research and applications.

Keywords: Multiple Sclerosis, Semantic Segmentation, Distributional Shift, UNET
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Chapter 1

Introduction

1.1 Overview

It’s often assumed in the realm of machine learning that training, validation, and test

datasets are separate and evenly distributed. This implies that strong test results are

a vital marker of the model’s efficacy in deployment. The distributional shift is the

incongruity between training and real-life dataset. It is one of the most common issues

faced by data scientists while implementing machine learning algorithms. Unknown

or uncontrollable factors cause most distributional shifts. Machine learning models

should ideally exhibit robust generalization across various distributional shifts. However,

because of the no-free launch theorem [2], it is impractical to resist all shifts.

Multiple Sclerosis (MS) is a persistent, untreatable, and advancing ailment of the central

nervous system that profoundly affects a person’s well-being and daily living. It is an

auto-immune disorder in which myelin is attacked resulting in scar tissue known as

sclerosis and hindering the nerve’s ability to translate impulses. The tissues of interest

are present as white in the FLAIR images, which can be seen in Fig 1. In the same

figure, the bottom row provides a visual representation of the truth labels, depicted in

red and superimposed onto the original image. MS lesion delineation pertains to the

process of creating a 3D pixel-by-pixel segmentation mask for brain abnormalities, using

either single or multimodal MRI images.
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Chapter 1: Introduction

Occasionally, medical institutions share patient information, and training pictures are

scarce for machine-learning purposes. No openly accessible dataset wholly captures the

disease’s variation in terms of intensity and progression, restricting the effectiveness and

resilience of machine learning frameworks in real-world scenarios. Moreover, alterations

in MRI machine manufacturers, magnetic field setups, or imaging programs can lead to

differences in MRI images in terms of pixel dimensions, signal-to-noise ratio, contrast

settings, slice thickness, non-linearity corrections, and so on. Variations in the image-

gathering and labeling procedure can also be exacerbated by changes in the clinicians

operating the devices. These disparities get worsened when the images acquired from

several medical centers are combined, constituting a substantial distributional shift for

ML-based algorithms.

Figure 1.1: A sample FLAIR image that shows the Multiple Sclerosis White Matter lesions
and their corresponding ground truth labels shown in red

1.1.1 Multiple Sclerosis

Multiple sclerosis impacts the central nervous system, encompassing the brain, spinal

cord, and optic pathways. While the precise origin of MS remains elusive, some factor

prompts the immune system to target the CNS. The breakdown of myelin, a protec-

2



Chapter 1: Introduction

tive sheath around nerve strands, disrupts communication to and from the brain. This

interruption of signal transmission results in an array of symptoms, such as sensations

of numbness, tingling, mood fluctuations, memory challenges, pain, fatigue, vision loss,

and/or paralysis. Each individual’s experience with MS is distinct, and these impair-

ments can either be transient or lasting.

Figure 1.2: Picture taken from National Multiple Sclerosis Society website

Multiple sclerosis is an unpredictable ailment of the central nervous system that hinders

the transmission of data within the brain and between the brain and the body. As

established by the International Advisory Committee on Clinical Trials of MS in 1996,

it may be classified into four categories or disease courses. They are as follows:

• Clinically isolated syndrome (CIS)

• Relapsing-remitting MS

• Secondary progressive MS

• Primary progressive MS

A clinically isolated syndrome (CIS) is the first incidence of neurologic symptoms pro-

duced by inflammation and demyelination in the central nervous system. CIS symptoms

differ from one to person, however, it typically includes, Eyesight and vision problems,

sensation loss in the face, arm and leg weakness, coordination and balance loss, and

problems with bladder control.

3



Chapter 1: Introduction

Relapsing-remitting MS (RRMS) is the most common form of MS, characterized by

clear episodes of new or worsening neurological symptoms, known as relapses, followed

by recovery periods or remissions where symptoms can either fade or become permanent.

The disease doesn’t progress during remissions. RRMS can be active, with relapses or

new MRI activity, or inactive; it can also be deteriorating post-relapse or stable. Initially,

around 85% of MS patients are diagnosed with RRMS, which can later progress to a

secondary stage.

Secondary progressive MS (SPMS) follows relapsing-remitting MS (RRMS), where some

individuals experience a gradual decline in neurological function or accumulating impair-

ments. SPMS can be active, marked by relapses or new MRI findings, or inactive, and

can either show the progression of disability over time, with or without relapses and

MRI changes or remain without such progression.

From the onset of symptoms in Primary Progressive MS (PPMS), neurological function

declines without initial relapses or remissions. PPMS can be active, showcasing occa-

sional relapses or new MRI activity, or inactive, and might exhibit continuous disability

progression, regardless of relapses or MRI changes. Approximately 15% of MS patients

are affected by PPMS.

Figure 1.3: Different types of Multiple sclerosis.
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Chapter 1: Introduction

1.1.2 Magnetic Resonance Imaging in Multiple Sclerosis

Magnetic resonance imaging (MRI) is currently the most advanced, non-invasive tool for

visualizing the brain, spinal cord, and other body regions. It is chiefly used to diagnose

MS and track its development. Through MRI, we’ve gained deeper insights into the

effects of MS and expanded our understanding of the disease.

In contrast to computed tomography (CT) scans or standard X-rays, MRI doesn’t rely

on radiation. Instead, it uses magnetic fields and radio waves to detect the amount of

water in the body’s tissues. Since the myelin sheath safeguarding nerve fibers contains

fat and repels water, areas damaged by MS, where this fat layer is lost, retain more

water. These regions appear as either bright white or dark spots on an MRI image,

based on the scanning method applied.

More specifically, the MRI functions as follows:

1. An intense magnetic field makes a minor portion of the hydrogen protons in water

molecules align with the field’s direction.

2. After alignment, radio waves and supplementary weaker magnetic fields disturb

this alignment.

3. Once these waves cease, the protons revert to their original alignment. During

this reversion, they emit signals that a computer interprets to produce an image.

Multiple MRI scan varieties are employed for MS. On occasions, gadolinium, a contrast-

ing medium, is infused into the bloodstream during the MRI process to pinpoint newly

inflamed regions. Since gadolinium consists of large molecules, it typically can’t breach

the blood-brain barrier, which acts as a shield preventing materials from transitioning

from the blood to the central nervous system. But if there’s active inflammation, this

barrier can be compromised, allowing gadolinium to seep through and emphasize the

inflamed spots.

Typical MRI methods utilized in MS encompass:

5
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1. T-1 weighted without gadolinium — might reveal darkened spots (hypointensities)

which possibly denote permanent nerve injuries.

2. T-1 weighted with gadolinium — could display luminous spots (enhancing lesions)

pointing to ongoing inflammation.

3. presents the comprehensive disease impact or the entirety of lesions, both ancient

and recent.

4. Fluid attenuated inversion recovery (FLAIR) — depicts MS dynamics by dimin-

ishing spinal fluid-related disruptions.

1.2 Distributional Shifts

Distributional shift refers to the disparity between data used for training and that during

actual use. Adapting to ’shifted’ data can be tough for machine learning models. As the

extent of this shift grows, the efficacy of ML models usually declines. For instance, both

AI and human drivers taught to operate vehicles on the right might face challenges in

territories where driving is on the left. Recognizing distributional shifts is prevalent in

machine learning and is particularly crucial in applications where safety is paramount.

predictability uncertainties have centered on compact image classification datasets.

These datasets often exhibit synthetic or non-authentic types of distributional changes.

Findings from such datasets infrequently translate to large-scale ML implementations.

The absence of expansive, varied, and industry-derived datasets showcasing genuine dis-

tributional changes hinders the validation of novel methods and the derivation of insights

that are relevant to practical applications.

Optimally, machine learning models ought to adapt effectively across various distri-

butional changes. If they don’t, these models should signal this through uncertainty

measurements, helping us implement strategies to enhance the system’s safety and

dependability. Methods promoting consistent or equivalent representations, averting

feature loss, and enabling more comprehensive data insights can boost adaptability.

6



Chapter 1: Introduction

Approaches producing metrics responsive to the magnitude of distributional alterations

will provide more accurate uncertainty assessments.

Figure 1.4: Difference between synthetic and Real Distributional shifts (Image from shifts
project)

7



Chapter 2

Methodology & Results

3D MRI segmentation of MS involves the delineation of white matter lesions from the

surrounding healthy tissue within the volumetric MRI data. This process aids in assess-

ing the disease’s progression and the patient’s response to treatment. The original paper

[1] introduced a foundational approach that relies on a 3D UNET framework [3] and

transformer-based architecture of the UNETR [4]. UNET, a seminal model in medical

image segmentation, functions via two distinct paths: an encoder, which progressively

reduces the resolution, and a decoder, which restores the resolution while simultaneously

reducing the number of features. This results in semantic segmentation. Several critical

parameters influence the output of a U-Net model, including the depth of convolutional

layers, strides, and the use of residual blocks, among others. On the other hand, UN-

ETR capitalizes on the power of the transformer as an encoder to capture global scale

information, incorporating skip connections to link the encoder and decoder at varying

resolutions, while also preserving the U-Net’s trademark U-shaped architecture. The

hyperparameters of the baseline method were tuned in accordance with [5]. A deep

ensemble [6] is created involving the aggregation of output probabilities from five dis-

tinct UNet and UNETR models. The baseline result shows that the performance of the

transformer-based model is much better than the U-Net model as exhibited in Table

2.4.

8



Chapter 2: Methodology & Results

2.1 Dataset

The Shifts Project MS segmentation dataset integrates numerous open-access datasets

under a unified data usage agreement (DUA). Included in these databases are PubMRI

[7], ISBI [8, 9], and MSSEG-1 [10]. However, the dataset supplied by the University of

Lausanne wasn’t made public because of patient security considerations. Instead, it was

utilized for assessment via Docker in the Shifts Challenge. Typically, machine learning

datasets are divided into training, evaluation, and test segments.

However, in this case, the dataset includes training, development-in, development-out,

evaluation-in, and evaluation-out sections. The ’in’ and ’out’ suffixes denote whether

the dataset falls within the domain or outside it (shifted). Regardless of whether the

subject belongs to an in-domain or out-domain dataset, each one includes two modalities:

FLAIR and T1w. Additionally, some datasets also incorporate T1w contrast-enhanced,

proton density, and T2w modalities. For training, both the baseline method [11] and

the method proposed in this research utilized exclusively the FLAIR modality, adhering

to the consensus recommendation [12]. An overview of the distribution and the number

of patients in each partition of the Shifts dataset is outlined in Table 2.1.

Type In-Domain Out-Domain
Data Train Dev_in Eval_in Dev_out Eval_out

Patients 33 7 33 25 74

Table 2.1: Shows the canonical distribution and the number of patients in each partition of the
Shifts dataset.

2.1.1 Pre-processing

The Shifts dataset, a composite of diverse sub-datasets featuring distinct resolutions,

scanning devices, and magnetic strengths, necessitated thorough preprocessing to stan-

dardize MRI images. This includes denoising [13], skull stripping [14], and bias field

correction [15]. To assist with precise segmentation, brain masks were generated by reg-

istering the T1 modality image to the FLAIR space [16]. Finally, all images underwent

interpolation to establish a uniform 1mm isovoxel space, ensuring consistency across the

dataset and enabling accurate analysis.

9
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2.2 Baseline architecture

Data augmentation is a technique employed in deep learning systems to introduce minor

modifications to the training data, helping prevent overfitting and enhancing results on

testing datasets. The image augmentation in this case is done by MONAI [17], in which

multiple transforms are applied to the training dataset. In this process, 32 samples

of size [96 x 96 x 96] voxels are cropped from each training image with the center

being the lesion voxel. The primary structure of the U-Net model is a symmetrical

architecture composed of five sets of encoding and decoding layers, each associated with

progressively escalating channel dimensions starting from 32, doubling to 64, then 128,

256, and finally peaking at 512. The model incorporates a strategy of stride-based

downsampling, wherein strides of 2 are uniformly applied in every dimension, aiming

to incrementally reduce the spatial dimensions while augmenting the depth of feature

maps. The model is designed with zero residual units, avoiding the potential complexity

and computational load brought by them.

The total trainable parameters in the model are 7,912,874. Overall 5 separate instances

of the models were trained, each for a total of 300 epochs. The results are tabulated and

detailed in Table 2.4, providing a comparative view of the performance metrics across

the different models and configurations like UNET, Monte Carlo dropouts, and UNETR

in Single form and in the ensemble of 5 models.

2.3 Proposed architecture

The performance of the proposed U-Net retains the symmetric architecture characteristic

of UNet models, with five encoding and decoding layers corresponding to the growing

channel dimensions: 32, 64, 128, 256, and 512. A significant change lies in the stride-

based downsampling strategy, where the initial layer adopts a stride of 1, followed by

strides of 2 for the subsequent layers, resulting in a more gradual reduction in spatial

dimensions. The model includes two residual units, which contrasts with the previous

model that had none, adding an additional level of complexity and changing the number

10
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of trainable parameters to 19,216,097.

The input size to this model has been reduced to a spatial dimension of 48x48x48, which

is a significant decrease compared to the previous model. This model is trained for a

duration of 20 to 30 epochs under a dynamic learning rate and early stopping. When

compared with the previous model, it is similar in overall structure but has notable

differences in the stride in the first encoding layer and the inclusion of residual units.

This potentially impacts on model performance, with the ability to capture more local

information due to the slower initial downsampling, and enhanced feature extraction

capacity from the inclusion of residual units. This model’s computational efficiency

might be higher due to reduced input size, but it is also reduced by the inclusion of

residual blocks. The training time per epoch is around 430 seconds. As an ensemble of

5 models is used therefore the total time for training is around 15 hours. The batch size

is the same for both baseline and proposed systems. The block diagram of the proposed

model is shown in Figure 2.1.

Figure 2.1: Difference between synthetic and Real Distributional shifts (Image from shifts
project)

2.4 Implementation

Hardware used for training includes NVIDIA GTX 1080 Ti 12GB GPU, Intel E5520 @

2.27 GHz x 8 processor, and 16 GB RAM. The coding language used is Python language

in the MONAI framework [17] based on Pytorch [18]). The code requires Python version

11
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3.9 along with CUDA and other libraries

2.5 Results

2.5.1 Evaluation and Matrices

Usually, the 3D MRI image segmentation is evaluated by the dice similarity coefficient

[19, 20]. But one of the major drawbacks of DSC is that its value depends on the

size of the lesion load. So baseline method proposed an adaptive (normalized) Dice

similarity coefficient (nDSC) which decouples the predictive accuracy from the size of

the lesion. Error retention curves [6, 21, 22] are used to examine both robustness and

uncertainty. These are error metrics that represent the error in decreasing order of

uncertainty when the predictions of a model are substituted by the ground truth labels.

The model’s predictive performance is determined by the area under the error retention

curves, which can be reduced by either enhancing the model’s ability to predict, resulting

in lower overall error, or by presenting better uncertainty estimates associated with an

error. Hence, the area below the error retention curves (R-AUC) is an indicator that

measures both resistance to the distributional shift and the quality of uncertainty.

DSC = 2|Y1 ∩ Y2|
|Y1| + |Y2|

= 2TP

FP + 2TP + FN
= 2 precision ∗ recall

precision + recall (2.5.1)

Prτ∗ = TPτ∗

TPτ∗ + kpFPτ∗
(2.5.2)

2.5.2 Hyperparameter Tuning

Shifts dataset only uses 33 patient’s data for training purposes which for deep learning

algorithms is still small. To cater to this issue a MONAI transform is used which crops

multiple samples of specified size from a single image. During tuning it is discovered

12
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that the best number of samples is around 128 per image and the size of each sample is

around 48x48x48 as shown in Table 2.2 and Table 2.3.

Sample Size Number of samples R-AUC (%)
48x48x48 64 1.5845 ± 0.8336
48x48x48 128 1.3098 ± 1.0751
48x48x48 160 1.3725 ± 0.8597

Table 2.2: Demonstrating the effect of different numbers of samples on the robustness and
uncertainty R-AUC(%).

Number of samples Size of sample R-AUC (%)
32 96x96x96 2.9190 ± 1.7687
128 32x32x32 1.4274 ± 0.8569
128 48x48x48 1.3098 ± 1.0751
128 64x64x64 1.3147 ± 0.8311
128 72x72x72 1.4385 ± 0.9586

Table 2.3: Robustness and Uncertainty R-AUC(%) of the ensembles of three models. Showing
the comparison of baseline 32 samples with 128 samples and different sizes.

Figure 2.2: Comparison of the baseline and the proposed architecture’s R-AUC results on
different shifts dataset partitions. Proposed Eval_out is compared with baseline
dev_out as the baseline Eval_out values were not available

2.6 Discussion

Recent advancements in deep learning have considerably simplified the diagnosis and

prognosis of Multiple Sclerosis (MS). Like many machine learning paradigms, deep learn-

ing techniques for MS are prone to distributional shifts due to disparities between train-

ing and test datasets. Although many deep learning algorithms show commendable

generalization across diverse datasets, the baseline method employed uncertainty esti-

mations to delineate the model’s performance over specific datasets.

13
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Figure 2.3: Comparison of the baseline and the proposed architecture’s nDSC results on dif-
ferent shifts dataset partitions. Proposed Eval_out is compared with baseline
dev_out as the baseline Eval_out values were not available

Figure 2.4: Comparison of the baseline and the proposed architecture’s F1-score results on
different shifts dataset partitions

The Shifts dataset, which this study utilized, possesses distinctive partitioning: it’s

segmented into in-domain and out-domain datasets. The in-domain segment comprises

the conventional train, evaluation, and test divisions. In contrast, the out-domain is

bifurcated into two test datasets, with one publicly available and the other designated

for online evaluations via Docker. Essential preprocessing steps, such as denoising, skull

stripping, and isovoxelation, were applied to the data.

In Baseline, [1] an ensemble of UNet and UNETR models was used. The findings, as

presented in Table 2.4, underscore the superior efficacy of the transformer-based model

(UNETR) over the conventional UNet model across all Shifts dataset partitions. The

14
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baseline UNet configuration incorporated 5 layers with channels 32, 64, 128, 256, and

512. Downsampling with a stride of 2 was executed in the encoder phase. Notably,

no residual units were integrated. The model utilized 32 samples derived from a single

input image of dimensions 96x96x96.

Conversely, our proposed model mirrors the U-shaped architecture of UNet but with

some notable modifications. While maintaining the same channel count, we integrated

residual blocks and adjusted the stride for the initial layer to 1. Dropout remained

unaltered at zero. Additionally, our model harnessed 128 samples extracted from an

input image sized 48x48x48. Both dynamic learning rate adjustments and early stopping

mechanisms (at a Dice similarity coefficient of 0.70) were implemented. Tables 2.2 and

2.3 further delve into the adjustments concerning sample size and number. A similar

sort of behavior can be seen from residual blocks in [23]

The cumulative results, presented in Table 2.4’s bottom row, spotlight the superior

performance of our model’s ensemble over the baseline UNet ensemble. When com-

pared with the UNETR ensemble, our method exhibited enhanced performance in every

partition of the dataset, with the exception of dev-in.

In alignment with consensus recommendations, our study solely utilized the FLAIR

modality for training. The potential of dual-modal training, incorporating both FLAIR

and T1W images, remained unexplored due to system constraints, particularly RAM and

GPU memory limitations. Combining various architectural approaches might lead to

enhanced outcomes[24]. Nonetheless, our research highlights the potential avenues and

implications this methodology can open up for future studies and real-world applications.

In this research paper, we present our participation in the Shifts Challenge 2022 con-

ducted by The Shifts Project. We opted for task 2 of the challenge where our proposed

model achieved an impressive 5th and 8th position on the leaderboard. The task was to

develop a deep-learning system that can demonstrate its robustness and also predicts

its uncertainty on a real-world problem like the segmentation of white matter lesions

in Multiple sclerosis. Furthermore, our findings highlight the importance of feature en-

gineering as a critical aspect of model development enabling us to extract maximum

15
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performance from the given dataset

2.7 Conclusions

In this research paper, we present our participation in the Shifts Challenge 2022 con-

ducted by The Shifts Project. We opted for task 2 of the challenge where our proposed

model achieved an impressive 5th and 8th position on the leaderboard. The task was to

develop a deep-learning system that can demonstrate its robustness and also predicts

its uncertainty on a real-world problem like the segmentation of white matter lesions

in Multiple sclerosis. Furthermore, our findings highlight the importance of feature en-

gineering as a critical aspect of model development enabling us to extract maximum

performance from the given dataset. The outcomes substantiate the effectiveness of our

proposed methods, affirming their potential to achieve performances that are compa-

rable to the existing baseline UNETR model. The proposed architecture is not only

accurate in segmenting the desired features but also provides reliable and consistent

predictions across different datasets.
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