
Multithreaded Fuzzy Logic based Web Services Mining Framework

A dissertation Presented by

Khurram Shehzad

(2007-NUST-MS PhD-CSE(E)-26)

Submitted to the Department of Computer Engineering in partial fulfillment of the
requirements for the degree of

Master of Science

in

Computer Software Engineering

Advisor

Brig. Dr. Muhammad Younus Javed

College of Electrical & Mechanical Engineering

National University of Sciences and Technology

2010

i

THE COMMITTEE

Multithreaded Fuzzy Logic based Web Services Mining Framework

A dissertation Presented by

Khurram Shehzad

Style and content approved by

Brig. Dr. Muhammad Younus Javed Supervisor

Dr. Assia Khanam GEC Member

Dr. Farooq-e-Azam GEC Member

Dr. Saad Rehman GEC Member

Brig. Dr. Muhammad Younus Javed

Associate Dean

Department of Computer Engineering

ii

DEDICATION

To my parents and family

iii

ACKNOWLEDGEMENT

First of all, I am extremely thankful to Almighty Allah for giving me courage and

strength to complete this challenging task and to compete with international research community.

I am also grateful to my family, especially my parents who earnestly prayed for my success,

which enabled me to brave the difficulties and overcome the crisis which I came across during

the whole process..

With a deep sense of gratitude I thank Dr. Muhammad Younus Javed for his valuable

suggestions and continuous guidance throughout my research work. I am highly grateful to Dr

Aasia Khanam, Dr. Farooq e Azam Khan and Dr Saad Rehman for their help and guidance. I

am also thankful to teachers who have been guiding me throughout my course work and

contributed in the enhancement of my knowledge and technical know how. Their knowledge,

guidance and training helped me a lot in the fulfillment of this research work.

I am thankful to my parents and family who earnestly prayed for my success which

enabled me to brave the difficulties and overcome the crisis which I came across during the

whole process.

iv

ABSTRACT

Multithreaded Fuzzy Logic based Web Services Mining Framework

Finding valuable and attractive web services is becoming difficult, due to massive

number of web services. Requirement of web services mining like data mining is vital these

days. Comparative study of web services composition with mining concepts is presented in this

report. A web services mining frame work, based on fuzzy logic, fuzzy set theory and fuzzy

matching algorithm is proposed. This framework helps in finding valuable services and

composing those services into composite web services. Mined services are further filtered in the

rules matching and evaluation phases where specified rules are matched. Framework is tested

with different UDDI registries of large sizes and the results are compared with existing

techniques.

The proposed model is divided into different steps and phases, to reduce the model

complexity and simplify different integrating processes. The problems, faced in mining process

are complexity of the search space and pattern matching. The complexity model is targeted by

introducing the concept of threading for parallel processing. A new thread is initiated for every

member of fuzzy set and mines the search space for required computation. This parallel

processing approach helps in optimizing the search and matching process and for efficient

discovery of individual web services and composition of web services.

The first step in proposed framework is scope and rules specifications. Scope and the

rules are specified by a web service domain expert and these are according to required mining

results. For example, domain expert is looking for web services, related to traveling or in the

field of medicine. Rules specified by the domain expert will be matched in constraint satisfaction

and evaluation phases for filtering and validating of found web services and their compositions.

Based on the scope, specified by the domain expert and weights, fuzzy set is generated and

accordingly assigned to each number of fuzzy set. Weights are calculated based on the

probability model and with the help of local database. This local database is used to store

members of fuzzy set and helps in calculating weights. Every member of the fuzzy set is used as

v

input to the next searching phase and after the phase of assigning weights, a new thread is

initiated for every member of the fuzzy set. Based on the fuzzy matching algorithm,this thread

explores the UDDI registry and looks for relevant services. Outputs of the found web services

are further used for discovery of web services, which are using these as their input parameters for

composing individual web services into composite web services.

Web service mining results sorted in the indexing phase based on weights assigned and

these sorted results are filtered in the rules satisfaction phase, where constraint specified in the

first phase are matched with the publisher’s constraint. Publisher specifies any service relevant

constraint in the web service description document and at this step of our proposed model, these

rules are satisfied for filtering and validation of found results. These filtered results are used as

input to evaluation phase where these results are gone through objective and subjective

evaluation.

The performance of the proposed approach is evaluated using different factors like

precision, recall and f-measure. Framework is tested for web services mining and the values for

precision, recall and f-measure are calculated. Also, these values compared with the existing

frameworks shown where proposed framework has improved the web services mining. After

discovery, the services are available for composition. Mining time for UDDI registries of

different sizes is recorded. At the end, comparison is given with an existing technique to present

the improvements of proposed framework.

vi

Table of Contents

THE COMMITTEE .. i

DEDICATION... ii

ACKNOWLEDGEMENTS .. iii

ABSTRACT .. iv

List of Abbreviations .. x

List of Figures ... xi

List of Tables ... xii

Chapter 1 : Introduction .. 1

1.1 Web Services .. 1

1.1.1 Web Service Architecture ... 1

1.1.2 Web Services Standards .. 2

1.1.3 Engaging a Web Service ... 2

1.1.4 Web Service Invocation .. 3

1.1.5 Web Services Addressing ... 5

1.2 Web Services Discovery .. 5

1.2.1 Web Services Discovery Approaches ... 6

1.3 Web Services Composition .. 7

1.3.1 Web Services Composition Steps ... 8

1.3.2 Web Services Composition Classification .. 8

1.3.3 Web Services Composition Drawbacks .. 9

1.4 Web Services Mining ... 9

1.4.1 Web Services Composition versus Web Services Mining .. 9

1.4.2 Web Services Mining Issues ... 11

1.5 UDDI .. 12

vii

1.5.1 How UDDI is used .. 13

1.5.2 UDDI Architecture .. 13

1.6 Motivation .. 15

1.7 Background .. 16

1.8 Problem Statement ... 17

1.9 Problem Solution .. 18

1.10 Organization ... 19

Chapter 2 : Related Work .. 20

2.1 Web Services Architecture ... 20

2.2 Service Mining on the Web .. 20

2.3 Service Pattern Discovery of Web Service Mining ... 22

2.3.1 Service mining in service registry-repository ... 22

2.3.2 System Architecture ... 23

2.4 An Improved Way to Facilitate Composition-Oriented Semantic Service Discovery ... 24

2.5 Service Mining for Web Service Composition .. 26

Chapter 3 : Proposed Approach .. 28

3.1 Proposed Web Services Mining Framework .. 28

3.1.1 Context and Rules Specification ... 29

3.1.2 Fuzzy Set Generation .. 30

3.1.3 Weights Calculation and Assignment ... 30

3.1.4 Fuzzy Rules ... 30

3.1.5 Multithreaded Model for Mining Services and Fuzzy Matching 31

3.1.6 Constraint Satisfaction .. 33

3.1.7 Evaluation ... 35

Chapter 4 : System Design ... 36

viii

4.1 System Flow Chart ... 36

4.2 Sequence Diagram .. 36

4.3 Use Cases ... 38

4.4 Use Case Diagram .. 44

Chapter 5 : Implementation ... 46

5.1 UDDI Server (Apache jUDDI) .. 46

5.1.1 Setting up UDDI Server .. 46

5.1.2 jUDDI Server Implementation Details ... 48

5.1.3 jUDDI Data Structures .. 48

5.1.4 Handling Publication Requests with jUDDI ... 49

5.1.5 Handling Inquiry Requests with jUDDI ... 51

5.1.6 Handling Authentication Requests with jUDDI ... 51

5.2 RUDDI ... 51

5.2.1 Ruddi Characteristics .. 51

5.2.2 Ruddi Usage .. 53

5.2.2.1 Querying an UDDI registry .. 53

5.2.2.2 Saving and updating information in an UDDI registry ... 53

5.2.2.3 Suppressing information from an UDDI registry ... 53

5.2.3 Various Ruddi™ API examples .. 54

5.3 Approximate String Matching .. 54

5.3.1 Levenshtein Algorithm ... 54

5.3.2 Dice’s coefficient Algorithm .. 55

5.3.3 Longest Common Subsequence Algorithm .. 56

5.4 WSDL4J ... 56

Chapter 6 : Results and Discussion ... 57

ix

6.1 System Requirements ... 57

6.2 Evaluation Criteria ... 58

6.2.1 Number of Services Discovered and Composed .. 58

6.2.2 Precision .. 59

6.2.3 Recall .. 59

6.2.4 F-measure .. 59

6.3 Dataset .. 60

6.4 Performance Evaluation ... 61

6.4.1 Number of Services Discovered and Composed .. 61

6.4.2 Average Precision ... 62

6.4.3 Average Recall .. 65

6.4.4 Average F-measure ... 66

6.4.5 Evaluation Time of Services ... 69

Chapter 7 : Conclusion and Future Work .. 72

7.1 Overview of Research .. 72

7.2 Achievements ... 72

7.3 Limitations ... 73

7.4 Future Work ... 73

APPENDIX A .. 74

References .. 88

x

List of Abbreviations

AI Artificial Intelligence

API Application Programming Interface

BPEL4WS Business Process Execution Language for Web Services

CSP Constraint Satisfaction Problem

DNS Domain Name System

HTML Hyper Text Markup Language

HTTP Hyper Text Transfer Protocol

JUDDI Java implementation of UDDI

OWL-S Ontology Web Language Semantics

SOAP Simple Object Access Protocol

UDDI Universal Description Discovery and Integration

URI Uniform Resource Identifier

WS Web Service

WSCI Web Service Choreography Interface

WSDB Web Service Database

WSDL Web Service Description Language

WSDL4J Web Service Description Language for Java

xi

List of Figures

FIGURE 1.1: WEB SERVICE ARCHITECTURE [1] .. 1

FIGURE 1.2: GENERAL PROCESS OF ENGAGING A WEB SERVICE [1] .. 3

FIGURE 1.3: WEB SERVICE INVOCATION [1] .. 4

FIGURE 1.4: WEB SERVICES COMPOSITION [9] .. 7

FIGURE 1.5: COMPARISON OF WEB SERVICES COMPOSITION AND MINING 11

FIGURE 1.6: THE UDDI INITIATIVE [4] .. 14

FIGURE 2.1: TOP-DOWN COMPOSITION VERSUS BOTTOM-UP MINING [3] 21

FIGURE 2.2: PATTERN-DISCOVERY ENABLED REGISTRY-REPOSITORY ARCHITECTURE [5] 23

FIGURE 2.3: STRUCTURE OF INVERTED INDEXING [6] .. 25

FIGURE 2.4: STANDARD WEB SERVICE MODEL [9] .. 26

FIGURE 2.5: WEB SERVICE MODEL EXTENDED FORM [9] .. 27

FIGURE 3.1: WEB SERVICES MINING FRAMEWORK .. 29

FIGURE 3.2: FUZZY RULES FOR WEB SERVICES MINING FRAMEWORK .. 31

FIGURE 4.1: FLOW CHART OF WEB SERVICES MINING FRAMEWORK ... 37

FIGURE 4.2: SEQUENCE DIAGRAM OF WEB SERVICES MINING FRAMEWORK 39

FIGURE 4.3: USE CASE DIAGRAM OF WEB SERVICES MINING FRAMEWORK 45

FIGURE 5.1: HIGH LEVEL ARCHITECTURE .. 46

FIGURE 5.2: JUDDI WELCOME PAGE ... 47

FIGURE 5.3: REQUEST PROCESS FLOW DIAGRAM .. 49

FIGURE 5.4: PROCESS FLOW FOR A SAVE_BUSINESS REQUEST .. 50

FIGURE 5.5: LEVENSHTEIN ALGORITHM .. 55

FIGURE 6.1: MINING RESULTS ... 63

FIGURE 6.2: AVERAGE PRECISION .. 65

FIGURE 6.3: AVERAGE RECALL .. 67

FIGURE 6.4: AVERAGE F-MEASURE .. 69

FIGURE 6.5: EVALUATION TIME OF WEB SERVICES ... 71

xii

List of Tables

TABLE 4.1: USE CASE FOR WEB SERVICES MINING ERROR! BOOKMARK NOT DEFINED.

TABLE 4.2: USE CASE FOR ADDING UDDI REGISTRY .. 41

TABLE 4.3: USE CASE FOR EDITING UDDI REGISTRY ... 42

TABLE 4.4: USE CASE FOR DELETING UDDI REGISTRY .. 43

TABLE 6.1: SYSTEM REQUIREMENTS ... 57

TABLE 6.2: LEVENSHTEIN ALGORITHM PARAMETERS ... 58

TABLE 6.3: DICE'S COEFFICIENT ALGORITHM .. 58

TABLE 6.4: LONGEST COMMON SUBSEQUENCE ALGORITHM ... 59

TABLE 6.5: STATIC EVALUATION FACTORS FOR WEB SERVICE ... 60

TABLE 6.6: DYNAMIC FACTORS FOR EVALUATION OF WEB SERVICE .. 60

TABLE 6.7: STATISTICAL FACTORS FOR EVALUATION OF WEB SERVICE 60

TABLE 6.8: MINING RESULTS... 62

TABLE 6.9: AVERAGE PRECISION ... 64

TABLE 6.10: AVERAGE RECALL ... 66

TABLE 6.11: AVERAGE F MEASURE ... 68

TABLE 6.12: EVALUATION TIME OF WEB SERVICES .. 70

1

Chapter 1 : Introduction

This chapter introduces the research work that has been taken in this thesis report.

Motivation for this specific research task is presented in detail. Moreover, the problem statement,

solution and objectives are also discussed in this chapter.

1.1 Web Services
Web Service is a software application, identified by a URI, whose interfaces and bindings

are capable of being defined, described, and discovered by XML artifacts and this supports

direct interactions with other software applications using XML-based messages via internet-

based protocols

 A web service is a software system designed to support interoperable machine-to-

machine interaction over a network. It has an interface described in a machine-processable

format (WSDL). Other systems interact with the web service in a manner, prescribed by its

description using SOAP messages, typically conveyed using HTTP with an XML serialization in

conjunction with other web related standards.

1.1.1 Web Service Architecture
Before going into details, take a closer look at the web service architecture given in Figure 1.1[1].

Figure 1.1: Web Service Architecture [1]

2

• Service Discovery: This part of the architecture helps in finding web services which

meet certain requirements. This part is usually handled by UDDI (Universal

Description, Discovery, and Integration).

• Service Description: One of the most interesting features of web services is that they

are self describing. This means that, once a web service is located, it can be described

and tells about what operations it supports and how to invoke it. This is handled by the

Web Services Description Language (WSDL).

• Service Invocation: Invoking a Web Service (and, in general, any kind of distributed

service such as a CORBA object or an Enterprise Java Bean) involves passing

messages between the client and the server. SOAP (Simple Object Access Protocol)

specifies how to format requests to the server, and how the server should format its

responses. In theory, other service invocation languages can be used (such as XML-

RPC, or even some ad hoc XML language).

• Transport: Finally, all these messages must be transmitted somehow between the

server and the client. The protocol of choice for this part of the architecture is HTTP.

1.1.2 Web Services Standards

Few web service standards are given in this section. This includes:

• BPEL4WS (a.k.a. BPEL) – Business Process Execution Language for Web Services

• IBM and Microsoft

• WSCI – Web Services Choreography Interface

• Sun, SAP, BEA, and Intalio

• BPML – Business Process Management Language

• BPMI.org (chartered by Intarlio, Sterling Commerce, Sun, CSC, and others)

1.1.3 Engaging a Web Service

There are many ways that a requester entity might engage and use a web service. In

general, the following broad steps are required, as illustrated in Figure 1.2[1].

• In step 1, the requester and provider entities become known to each other (or at least

one becomes known to the other).

3

• In step 2, the requester and provider entities somehow agree on the service

description and semantics that will govern the interaction between the requester and

provider agents.

• In step 3, the service description and semantics are realized by the requester and

provider agents.

• In step 4, the requester and provider agents exchange messages, thus performing

some task on behalf of the requester and provider entities. (I.e., the exchange of

messages with the provider agent represents the concrete manifestation of interacting

with the provider entity's Web service.)

Figure 1.2: General Process of Engaging a Web Service [1]

1.1.4 Web Service Invocation

 Web service invocation process is illustrated in Figure 1.3[1]. Explanation of each step

involved in web service invocation process is given below.

4

Figure 1.3: Web Service Invocation [1]

• A client may have no knowledge of what web service it is going to invoke. So, first

step will be to find a web service that meets requirements. For example, a person

might be interested in locating a public Web Service which can give the temperature

in US cities. This will happen by contacting a UDDI registry.

• The UDDI registry will reply, telling what servers can provide the required service

(e.g. the temperature in US cities).

• In above step, the location of a web service is known, but has no idea of how to

actually invoke it. Sure, it can give the temperature of a US city but what is the actual

service invocation? The method used to invoke might be called Temperature

getCityTemperature(int CityPostalCode), but it could also be called int

getUSCityTemp(string cityName, bool isFarenheit). For this, need to ask the web

service to describe itself.

• The Web Service replies in a language called WSDL.

5

• Finally, know about where the web service is located and how to invoke it. The

invocation itself is done in a language called SOAP. Therefore, first send a SOAP

request asking for the temperature of a certain city.

• The web service will reply with a SOAP response which includes the temperature

asked for, or maybe an error message if SOAP request was incorrect.

1.1.5 Web Services Addressing

In last step a web service invocation process is explained. At one point, the UDDI

registry 'told' the client where the web service is located. But, how exactly are web services

addressed? The answer is very simple; just like web pages use plain and simple URIs (Uniform

Resource Identifiers). For example, the UDDI registry might have replied with the following

URI:

http://webservices.mysite.com/weather/us/WeatherService

This could easily be the address of a web page. However, web services are always used

by software (never directly by humans). If a web service URI is typed into web browser, an error

message will receive or some unintelligible code (some web servers will show a nice graphical

interface to the web service, but that isn't very common). After finding a web service URI, next

step is to give that URI to a program. In fact, most of the client programs will receive the Grid

Service URI as a command-line argument.

1.2 Web Services Discovery

Web service discovery is a process of accurate matching of web service from UDDI and

it becomes hard to locate a web service which feeds the exact user requirements and usually a

single web service is not enough to meet the user requirements. Discovery process faces two

main challenges:

• Finding exactly matched web service

• Satisfying end user needs with a single web service

The current UDDI search mechanism can only focus on a single search criterion, such as

business name, business location, business category, or service type by name, business identifier,

or discovery URL. In fact, in a business solution, it is very normal to search multiple UDDI

6

registries or WSDL documents and then aggregate the returned result by using filtering and

ranking techniques.

 With the popularity of the web services technology, more and more software systems

functionalities become available by being published and registered as web services. Registered

web services need to be dynamically discovered and invoked to meet service requestor’s

complex service needs.

1.2.1 Web Services Discovery Approaches

Though the field of web service discovery is rather new, yet much work has been lately

devoted to the area. The effort in the bulk of the approaches is to enhance the discovery

mechanisms in order to overcome the inadequacy of the standard, keyword-based matching,

where often the user cannot discover the web service.

 Several approaches for web services discovery have been identified and are actually

deployed. There detailed discussion is given below.

• Manual Procedures versus Intelligent Automation: Under manual discovery, a

requester human uses a discovery service (typically at design time) to locate and

select a service description that meets the desired functional and other criteria. Under

intelligent automated discovery, a requester agent performs and evaluates this task,

either at design time or run time.

• Centralized versus Decentralized Solutions: A registry is an authoritative, centrally

controlled store of information. The recommended representative of this category is

the UDDI registry. A lightweight version of a registry is the centralized service of

indexes. Index is a compilation or guide to information that exists elsewhere. It is not

authoritative and does not centrally control the information that it references. The key

difference between the two approaches is not just the difference between a registry

itself and an index. Indeed, UDDI could be used as a means to implement an

individual index: just spider the web, and put the results into a UDDI registry. Rather,

the key difference is one of control: Who controls what and how service descriptions

get discovered? In the registry model, it is the owner of the registry who controls this.

In the index model, since anyone can create an index, market forces determine which

indexes become popular. Hence, it is effectively the market that controls what and

how service descriptions get discovered. There is one primitive, though well-known

7

and widespread, network decentralization approach. Publicly available UDDI nodes

connected together form a service that, while appearing to be virtually a single

component, is composed of an arbitrary number of operator nodes. They are called

the UDDI cloud or federation. More elaborated decentralized solutions have also

been proposed. These systems build on Peer-to-Peer (P2P) technologies and

ontologies to publish and search for Web Services descriptions. A Peep-to-Peer

solution (P2P) is also proposed in which they present a Peer-to-Peer (P2P) indexing

system and associated P2P storage that supports large-scale, decentralized, real-time

search capabilities. Agent based solutions aim to describe an environment called

DASD (DAML Agents for Service Discovery) where WS requesters and providers

can discover each other with the intermediary action of a matchmaking service.

1.3 Web Services Composition
 Web services composition provides an open, standards-based approach for connecting

web services together to create higher-level business processes. Standards are designed to reduce

the complexity, required to compose web services. Hence reducing time and costs, and increase

overall efficiency in businesses. In Figure 1.4[9] different entities are shown that are involved in

composition process.

Figure 1.4: Web Services Composition [9]

8

 Different methodologies of web services composition were presented to meet and find

required results of user’s query, where different web services are integrated and composed into a

composite web service. A user is planning for a trip and locates the appropriate web service to

execute plan. Different web services like hotel reservation web service, flight reservation service

are individually available and need to be integrated to fulfill the user requirement and in plan

execution. Composition technique will merge or integrate these individual services into a

composite service.

1.3.1 Web Services Composition Steps

 Following steps are used in web services composition process:

• A process model specifying control and data flow among the activities has to be

created.

• Concrete services to be bound to the process activities need to be discovered. The

service composer usually interacts with a broker, e.g. a service registry; in order to

look up services which match with certain criteria.

• The composite service must be made available to potential clients. Again the broker is

used to publish a description and the physical access point of the service.

• During invocation of a composite service, a coordinating entity may manage the

control flow and the data flow according to the specified process model.

1.3.2 Web Services Composition Classification

Web services composition is divided into following classes:
• Proactive composition: Offline composition of available services, when services are

stable and always running. For example ticket reservation service.

• Reactive composition: Dynamically creating a composite service when composite

service not often used and service processes not stable. For example tour manager

where the itinerary is not predefined

• Mandatory composition: All subcomponents must participate to yield a result. For

example service that calculates the averages of stock values for a company.

• Optional composition: Subcomponents are not obligated to participate for a

successful execution. For example services that include a subcomponent that is an

optimizer.

9

1.3.3 Web Services Composition Drawbacks

 Since the composer is typically only aware of and consequently interested in some

specific types of compositions, the scope of such a search is usually very narrow. Aiming at

exploring the full potential of the service space without prior knowledge of what exactly is in it,

another view that approaches service composition from the bottom-up is building up recently.

Instead of starting the search with a specific goal, a service engineer may be interested in

discovering any interesting and useful service compositions that may come up in the search

process.

 Despite the web service composition benefits, the composition process faces the

following drawbacks:

• For finding a specific web service or composite web service, user needs to provide

precise query which reduces the size of search space and end user is not getting the

advantage of complete search space.

• When user is looking for specific web service or composite web service the user may

find the required service or the result in empty set.

• Traditional web services composition is known as top down approach and the web

services queried by the composer must be available.

1.4 Web Services Mining

Web services mining provides benefits over compositions techniques and takes the full

advantage of search space. In mining process someone can find the relevant usage patterns which

are usually not explored in the composition process. Web services are being added to the web at

an accelerating rate and increasing the size of search space provides an opportunity for web

services mining process to discover and compose interesting web services from the existing web

services in unexpected ways which usually are not found in the traditional ways.

1.4.1 Web Services Composition versus Web Services Mining

A key characteristic, distinguishing web services mining from traditional web services

composition approaches as governed by standards such as WSFL, XLANG, BPEL4WS, DAML-

S and OWL-S is, that web services mining is driven by the desire to find any unanticipated and

interesting compositions of existing web services. Traditional composition approaches are

usually driven by a top down strategy, which first requires a user to provide a goal containing a

10

fixed set of specific criteria. It then uses these criteria to search for matching component web

services. Since the goal provided by the user already implies the type of compositions, the user

anticipates, the evaluation of composition interestingness is not a major concern in these

approaches. In the absence of such top-down query, web service mining techniques need to

address how interestingness of service compositions can be determined. The lack of specific

goals in web services mining also lends itself naturally to being carried out using the bottom-up

strategy. The simplest approach following this strategy would be an exhaustive search for

composability between all web services. This approach does not scale well since it would

inevitably result in a “combinatorial explosion” problem when faced with a large number of web

services.

Web services mining provides benefits over compositions techniques and takes the full

advantage of search space. In mining process relevant usage patterns are discovered which are

usually not explored in the composition process. The benefits offered by web services mining are

1) Walk around the complete web service search space without a specific target in mind 2)

Performance issues are solved by cutting down the search space at different levels and providing

more suitable search results efficiently.3) Web services mining results may include other

significant web services which are relatively important. 4) Unanticipated web services are

discovered in the mining process. 5) Bottom up process which results in unexpected interesting

and useful individual web services and composition of web services

In Figure 1.5 a picture of top down web services composition versus bottom up web

services mining process is given. Composition results in finding the required web service or

composition of web services or an empty set if no match is found where as mining process found

all the interesting and relative web services and the composition of web services which are of the

user’s interest. Web services are being added to the web at an accelerating rate and increasing

size of search space is providing an opportunity for web services mining process to discover and

compose interesting web services from the existing web services in unexpected ways which

usually are not found in the traditional ways.

11

Figure 1.5: Comparison of Web Services Composition and Mining

1.4.2 Web Services Mining Issues

 Web services mining process faces the following two main problems which are addressed

by using suitable techniques.

• Combinatorial explosion: As the number of registered web services increases at an

accelerating rate, such an approach can quickly become unfeasible due to the

overwhelming computation resulting from a “combinatorial explosion.” Large size of

the search space is the major obstacle in finding and composing web services in

efficient way. This problem is solved by cutting down the search space size at various

phases and by use of multiple threads for parallel searching of web services based on

a fuzzy set.

• Interestingness and Usefulness: Second main problem with the mining process is

finding useful and interesting patterns from the existing web services in the search

space. To cater for this problem, fuzzy based matching and constraint satisfaction is

applied at filtering and evaluation phases of the mining process.

12

1.5 UDDI
The Universal Description, Discovery, and Integration (UDDI) Project[4] provides a

standardized method for publishing and discovering information about web services. The UDDI

project is an industry initiative that attempts to create a platform-independent, open framework

for describing services, discovering businesses, and integrating business services. UDDI focuses

on the process of discovery in the service-oriented architecture.

This section presents an overview of UDDI and how to put it to work. It includes a

discussion about the information stored in a UDDI registry, the different potential uses of UDDI,

and its technical architecture; the specifications that comprise the UDDI effort, with a focus on

their relevance to developers and a list of different Java approaches for programming with

UDDI; and an introduction to interacting with a UDDI registry programmatically. The following

sections cover the UDDI data structures and XML APIs available for accessing a registry.

Prior to the UDDI project, no industry-wide approach was available for businesses to

reach their customers and partners with information about their products and web services. Nor

was there a uniform method that detailed how to integrate the systems and processes that are

already in place at and between business partners. Nothing attempted to cover both the business

and development aspects of publishing and locating information associated with a piece of

software on a global scale.

Conceptually, a business can register three types of information into a UDDI registry.

The specification does not call out these types specifically, but they provide a good summary of

what UDDI can store for a business:

• White pages: Basic contact information and identifiers about a company, including

business name, address, contact information and unique identifiers such as D-U-N-S

numbers or tax IDs. This information allows others to discover web services based

upon business identification.

• Yellow pages: Information that describes a web service using different

categorizations (taxonomies). This information allows others to discover web services

based upon its categorization (such as being in the manufacturing or car sales

business).

13

• Green pages: Technical information that describes the behaviors and supported

functions of a web service hosted by business. This information includes pointers to

the grouping information of web services and where the web services are located.

1.5.1 How UDDI is used

 UDDI has several different uses, based on the perspective of who is using it. From a

business analyst's perspective, UDDI is similar to an internet search engine for business

processes. Typical search engines, such as AskJeeves, organize and index URLs for web sites.

However, a business exporting a web service needs to expose much more than a simple URL. A

business analyst can browse one or more UDDI registries to view the different businesses that

expose web services and the specifications of those services. However, business users probably

won't browse a UDDI registry directly, since the information stored within it is not necessarily

reader friendly. A series of marketplaces and business search portals could crop up to provide

business analysts with a more user-oriented approach to browsing the services and businesses

hosted in a UDDI registry.

 Software developers use the UDDI Programmer's API to publish services (i.e., put

information about them in the registry) and query the registry to discover services matching

various criteria. It is conceivable that software will eventually discover a service dynamically

and use it without requiring human interaction.

 Both business analysts and software developers can publish new business entities and

services. Business analysts can use portals attached directly to a particular UDDI server or to a

more general search portal that supports UDDI.

1.5.2 UDDI Architecture

 Details of UDDI project are shown in Figure 1.6[4]. The UDDI Business Registry (UBR),

also known as the Public Cloud, is a conceptually single system, built from multiple nodes that

has their data synchronized through replication. A series of operator nodes, each hosts a copy of

the content. The global grouping of operator nodes is jointly known as the UBR. Operator nodes

replicate content among one another. Accessing any individual operator node, provides the same

information and quality of service, as any other operator node. Content inserted into the UBR is

done at a single node, and that operator node becomes the master owner of that content. Any

14

subsequent updates or deletes of the data must occur at the operator node where the data was

inserted.

Figure 1.6: The UDDI Initiative [4]

The scope of the UDDI project is much more than the UBR; a company can provide a

private operator node that is not part of the UBR. Private nodes do not have data synchronized

with the UBR, so the information contained within is distinct. A grouping of companies can also

create a "private cloud" of nodes that have information replicated between their private nodes,

but that replication sequence will not have any interaction with the UBR nodes.

The UBR has widely accessible inquiry services, but services may be published only by

authenticated entities. Any business can create an operator node and make it available over the

Internet and part of the UBR. Private operator nodes can define the access rules for their nodes

on a case-by-case basis. They can follow the same model as the UBR or make the restrictions

looser or tighter.

Companies will likely set up private UDDI nodes. Even though use of these nodes will

probably be limited in the near future, quite a few companies are showing interest in setting up

private registries for internal or B2B operations. Industry groups are also discussing options for

meeting the demands of their individual sector.

15

Many products have either been created or are being expanded to allow companies to

create their own public and private UDDI registries. For example, BEA WebLogic Server and

IBM WebSphere both intend to ship a fully compliant UDDI Server embedded within the

application server sometime in 2002. Other companies, such as Systinet, HP, Oracle, SAP, Cape

Clear, The Mind Electric, and Silverstream, have created J2EE-compliant UDDI

implementations that work with existing application servers, including Tomcat, BEA, and IBM.

Microsoft has an implementation based upon .NET. Additionally, two open source J2EE UDDI

projects are in development: Bowstreet's jUDDI (http://www.juddi.org/) and JP Moresmau's

pudding (http://www.opensorcerer.org/).

1.6 Motivation

All the information on the web is being presented in the form of web services. A large

number of web services are being added by different companies and other sources of web service

providers. Web services are being created and published by one company on the internet and are

used by the web service requestors.

The current service oriented architecture of the web requires automatic discovery of

individual web services and composition of interactive and useful web services into composite

web services. Web services users, who are looking for a single web service or composition of

web services, to satisfy their potential needs, face the problem of finding exciting web service

from the large space of available web services, same as user looking for static information on the

web. Instead of starting the search with a specific goal, a service engineer may be interested in

discovering any interesting and useful service compositions that may come up in the search

process

Similar to different data mining techniques, a web service mining framework is required

to cater these problems and to satisfy service mining requests. Web service mining process

explores the full potential of the service space, without prior knowledge of what exactly is in it.

Web service mining provides benefits over compositions techniques and takes the full advantage

of search space. In mining process you can find the relevant usage patterns which are usually not

explored in the composition process.

The benefits offered by web service mining are:

• Walk around the complete web service search space without a specific target in mind.

16

• Performance issues are solved by cutting down the search space at different levels

and providing more suitable search results efficiently.

• Web service mining results may include other significant web services which are

relatively important.

• Unanticipated web services are discovered in the mining process.

• Bottom up process which results in unexpected interesting and useful individual web

services and composition of web services.

1.7 Background

Web services are becoming the basis for electronic commerce of all forms. Companies

invoke the services of other companies to accomplish a business transaction. In an environment

in which only a few companies participate, managing the discovery of business partners

manually would be simple. After all, how difficult would it be to figure out if one of few

business partners has an access point that adheres to requirements? This model breaks down.

However, as the number of companies that need to interact grows along with the number and

types of interfaces they export. How to discover all the business partners that can do business? If

attempted to account for them manually, user could never be sure that user has discovered every

partner.

Information allied with the web services is categorized as “web service provider

information” like business details of the provider, protocol used to connect with the web service

like HTTP, any constraint specified for the web service and specific patterns associated with the

published web service. UDDI, Universal Description, Discovery and Integration has become the

de facto standard for publishing web services by web service providers and for discovering

information about web services in a standard way. UDDI project was initiated by Microsoft, HP

and IBM and provides standard interfaces for communication with the UDDI registries. Two

interfaces are provided by the UDDI specification, one for creating and storing information in

UDDI and other is the inquiry interface for finding web services. UDDI stores three types of

information:

• Company’s detail like contact information

• Web service description details

• Web service functions and supported features.

17

All the three types of UDDI information is used in the discovery, composition and

mining processes. Web service interfaces are described using Web Service Description Language

(WSDL) and used for specifying web service metadata description in UDDI registries.

Web service discovery is a process of accurate matching of web service from UDDI and

it becomes hard to locate a web service which feeds the exact user requirements and usually a

single web service is not enough to meet the user requirements. Discovery process faces two

main challenges:

• Finding exactly matched web service

• Satisfying end user needs with a single web service.

 Different methodologies of web service composition were presented to meet and find

required results of user’s query where different web services are integrated and composed into a

composite web service. A user is planning for a trip and locates the appropriate web service to

execute his plan. Different web services like hotel reservation web service, flight reservation

service are individually available and need to be integrated to fulfill the user requirement and in

plan execution. Composition technique will merge or integrate these individual services into a

composite service.

Despite the web service composition benefits, the composition process faces the

following drawbacks:

• For finding a specific web service or composite web service, user needs to provide

precise query which reduces the size of search space and end user is not getting the

advantage of complete search space.

• When user is looking for specific web service or composite web service the user may

find the required service or the result in empty set.

• Traditional web service composition is known as top down approach and the web

service queried by the composer must be available.

1.8 Problem Statement
Users, who request either simple or composite web services, face the problem of

identifying “what is out there on the web” that is similar to the search problem faced by the users

looking for available text content. Just as users looking for text content need web mining, users

looking for services need service mining. Web service users who are looking for a single web

18

service or composition of web services to satisfy their potential needs, face the problem of

finding exciting web service from the large space of available web services same as user looking

for static information on the web. Similar to different data mining techniques, a web service

mining framework is required to cater these problems and to satisfy service mining requests.

1.9 Problem Solution

A threaded model for web service mining based on fuzzy set and fuzzy logic with rules

satisfaction is proposed. The proposed model is divided into different steps and phases to reduce

the model complexity and simplify different integrating processes. The problems faced in mining

process are complexity of the search space and pattern matching. These problems are discussed

in detail in introductory part. The complexity model is targeted by introducing the concept of

threading for parallel processing. A new thread is initiated for the every member of fuzzy set and

mines the search space for required computation. This parallel processing approach helps in

optimizing the search and matching process and for efficient discovery of individual web

services and composition of web services.

The first step in proposed framework is scope and rules specifications. Scope and the

rules are specified by a web service domain expert and these are according to required mining

results. For example domain expert is looking for web services related to traveling or in the field

of medicine. Rules specified by the domain expert will be matched in constraint satisfaction and

evaluation phases for filtering and validating of found web services and their compositions.

Fuzzy set is generated, based on the scope specified by the domain expert and weights are

assigned to each member of the fuzzy set. Weights are calculated based on the probability model

and with the help of local database. This local database is used to stored members of fuzzy set

and helps in calculating weights. Every member of the fuzzy set is used as input to the next

searching phase and after the phase of assigning weights, a new thread is initiated for every

member of the fuzzy set. This thread explores the UDDI registry and looks for relevant services

based on the fuzzy matching algorithm. Outputs of the found web services are further used for

discovery of web services which are using these as their input parameters for composing

individual web services into composite web services.

Web service mining results sorted in the indexing phase, based on weights assigned and

these sorted results are filtered in the rules satisfaction phase, where constraint specified in the

19

first phase are matched with the publisher’s constraint. Publisher specifies any service relevant

constraint in the web service description document and at this step of our proposed model, these

rules are satisfied for filtering and validation of found results. These filtered results are used as

input to evaluation phase where these results are gone through objective and subjective

evaluation.

1.10 Organization

Current chapter comprises an overview of Web Services, Dynamic Web Services

composition and Web services composition approaches with brief explanation. Also the Problem

statement and contributions to work are briefly stated.

Chapter 2 This chapter is on the research papers that are used as references for our thesis.

Chapter 3 This chapter is about the Methodology and Techniques used in the thesis.

Chapter 4 This chapter is about the implementation of proposed algorithm.

Chapter 5 This chapter is concerned with analysis and Results.

Chapter 6 This chapter includes the conclusion and future work.

20

Chapter 2 : Related Work

Web mining is a process of retrieving useful information from the web using artificial

intelligence techniques. Whereas, focus of this report is on exploring the useful and interesting

patterns from web services called web services mining. The need for the dynamic web services

discovery and composing services is arising. In this chapter different relevant web service

mining techniques are discussed.

2.1 Web Services Architecture
Complete understanding of web service architecture creating, publishing and discovering

web services is suggested by [1]. Web services provide a standard means of interoperating

between different software applications, running on a variety of platforms and/or frameworks. A

Web service is a software system designed to support interoperable machine-to-machine

interaction over a network. It has an interface described in a machine-processable format

(specifically WSDL). Other systems interact with the Web service in a manner prescribed by its

description using SOAP messages, typically conveyed using HTTP with an XML serialization in

conjunction with other Web-related standards. More details about web services are already

discussed in chapter 1.

2.2 Service Mining on the Web
George Zheng, Athman Bouguettaya et al. “Service Mining on the Web” [3] propose a

web service mining framework that allows unexpected and interesting service compositions to

automatically emerge in a bottom-up fashion. As a novel application of this framework, authors

demonstrate its effectiveness and potential by applying it to service-oriented models of biological

processes for the discovery of interesting and useful pathways. This paper discusses the top

down web services composition versus bottom up web services mining techniques.

For an illustration, authors of this paper show Figure 2.1[3] that a service engineer sets

out to find any interesting and useful services with a general interest in Chinese medicine in

mind. What comes out of the search process, might be quite surprising. For example, in addition

to discovering the possibility of composing a service for translating Tsalagi1 to Chinese, the

21

engineer also discovers, with the help of a service mining tool, a service composition that takes

as input a biological sample from a subject, determines the corresponding genome and the

possible diseases, the subject is predisposed to, and finally generates a list of treatment

recommendations and/or life style suggestions. Thus, unlike the search process in the top down

approach that is strictly driven by the search criteria, the search process in the bottom-up

approach is serendipitous in nature, i.e., it has the potential of finding interesting and useful

service compositions that are unexpected.

Figure 2.1: Top-down Composition versus Bottom-up Mining [3]

22

2.3 Service Pattern Discovery of Web Service Mining

Qianhui Althea LIANG, Jen-Yao CHUNG, Steven MILLER and Yang OUYANG et al.

“Service Pattern Discovery of Web Service Mining in Web Service Registry-Repository“[5]

presents and elaborates the concept of web service usage patterns and pattern discovery through

service mining. Authors of this paper have defined three different levels of service usage data.

• User request level

• Template level

• Instance level

At each level, authors have investigated patterns of service usage data and the discovery

of these patterns. An algorithm for service pattern discovery at the template level is presented.

Authors of this paper have shown the system architecture of a service-mining enabled service

registry repository. Web service patterns, pattern discovery and pattern mining supports the

discovery and composition of complex services, which in turn supports the application of web

services to increasingly complex business processes and applications.

2.3.1 Service mining in service registry-repository
Service mining is defined as the automated discovery in this paper and analysis, of how

web services are used in a collective way. It aims at discovering services that meet the specified

requirements. How a web service is described is essential to service mining. If web services are

defined and described in a machine understandable manner, their discovery will be a much easier

job. Adopting OWL-S as the service description language, knowledge of web services consists

of four parts, which are listed below.

• Service Profile information, such as service provider’s contact information and

service operation input and output information.

• Service grounding information, such as the protocol used to interact with the service.

• Service constraint information, such as the conditions that limit the use of the service.

• Service usage data, such as patterns associated with the use of the service.

Service mining is meant to discover all four types of knowledge. In particular, goals of

service mining are as the followings:

23

• When constructing a new service for a business process by service composition,

predict the correct service functions to select.

• When building such services, predict the good-profiled service partners to collaborate

with.

• Optimize composite service execution for performance issue due to the scalability of

the composite service.

• Classify services.

2.3.2 System Architecture
Registry-repository architecture is shown in Figure 2.2 [5].

Figure 2.2: Pattern-Discovery Enabled Registry-Repository Architecture [5]

24

The registry-repository has a collection of artifact repositories. Each such repository,

holds one type of artifacts or similar types of architects. For example, all WSDL documents can

be stored in one repository and all OWL-S documents can be put in another. A metadata and

catalog repository is connected to all artifact repositories to facilitate catalog and metadata

management services of the contents in the repositories underneath it. These services are

provided by various functional components of the registry to be discussed shortly. The registry

also includes storages for the logs of executed business process instances, which make up one

important information source for service analysis. The registry repository primarily offers

registration service for businesses to publish services, responds to service queries of service

requesters, provides storage for all service-related artifacts, discovers and analyzes service usage

patterns and supports automated business process integration and engineering.

2.4 An Improved Way to Facilitate Composition-Oriented Semantic Service

Discovery

Gao Ting, Wang Haiyang, Zheng Naihui, Li Fei et al. “An Improved Way to Facilitate

Composition-Oriented Semantic Service Discovery” [6] simplify the web service discovery and

composition definition, and present an approach for automatic service discovery and composition

based on semantic description of web services, which is on the foundation of using inverted

indexing to facilitate composition-oriented semantic service discovery. Authors of this paper use

the inverted indexing to facilitate composition-oriented semantic service discovery. Inverted file

is the kind of index found in most commercial library systems. One type of lexicographyical

index, the inverted file, is drawn on in this paper. The concept of the inverted file type of index is

as follows. Assume, there is a set of documents. Each document is assigned a list of keywords or

attributes. An inverted file is then the sorted list of keywords (attributes), with each keyword

having links to the documents containing that keyword. Authors improve the technology based

on the characteristics of web services. It can be applied to the service discovery and service

composition, and the performance is greatly improved.

The structure of inverted indexing presented for the first time comes from inverted file

technology. An inverted file is the sorted list (or index) of keywords (attributes), with each

keyword having links to the documents containing that keyword. For the web service repository,

keyword is outputs of service. Each output has a corresponding list of service links and each

25

service pointed by the link in the list all has the output. Each link has a corresponding service.

Structure of inverted indexing is given in Figure 2.3[6].

Figure 2.3: Structure of Inverted Indexing [6]

The web service discovery algorithm based on inverted indexing has three major steps:

• Atomic service discovery,

• Breadth- Composite service discovery

• Depth- Composite service discovery

This paper presents an improvement of service discovery, which is on the foundation of

using inverted indexing to facilitate composition-oriented semantic service discovery.

Furthermore, the algorithm decreases searching space cost and increase the precision. The web

service providers register and advertise their services in an open repository. Applications find

and choose the appropriate services automatically. Given a repository of Web services and a

query requesting of a special service, the application should find one or some service that match

the query requirements.

26

2.5 Service Mining for Web Service Composition
Qianhui Althea LIANG, Steven MILLER and Jen-Yao CHUNG “Service Mining for

Web Service Composition” [9] propose the concept of service mining and show how this mining

helps in the automatic assemblage of services into complex aggregates, called composite

services. Differences of service mining with Web mining are explained in this paper. With a

framework for composite service processing as background, possible aspects of service mining

are also explored. Authors have introduced the concept of service constraint processing (SCP)

for service mining, and model it as a 2-tier constraint satisfaction problem (CSP) problem. An

algorithm for solving the SCP problem is also given.

In Figure 2.4[9] a standard web service model is given which is extended by authors.

Figure 2.4: Standard Web Service Model [9]

WSDL is extended with constraint specifications resulting in the exposure of more

business/technical details of the services. Service requestors’ requirements and service providers’

constraints are matched to effectively mine for useful services. In addition to basic operations

like “publish”, “find” and “save” given in the UDDI specification, the Intelligent (service)

Registry in the extended model provides supports for the construction, description and

invocation of composite Web Services as well. The other component, called Composite Service

27

Processor (Csp) as shown in Figure 2.5[9], follows the specification and schedules the enactment

of the composite service.

Figure 2.5: Web Service Model Extended Form [9]

In this paper, the Intelligent Registry uses a semiautomatic approach to dynamically

compose services, using service mining to identify appropriate component services. The iterative

and interactive composing process consists of mining existing Web Service interfaces to

construct a composite service template(s) for the approval, and mining service providers to

instantiate the template after the template is discovered and approved. The Intelligent Registry is

composed of five components: the Constraint-based Broker is an implementation of the UDDI

registry that answers service queries only with services not conflicting with requestors’

requirements. The Query Composer interacts with the requestor to produce a service query. The

SDG (service dependency graph) Generator builds an And-Or graph to describe the

interdependent relationship of services. The Service Composer forms a composite service by

searching the SDG and by solving a service constraint processing problem. The Composite

Service Specification (CSS) Generator generates the description document of the discovered

composite service.

28

Chapter 3 : Proposed Approach

In this chapter proposed system is discussed. The main focus of this chapter is to describe

different components of the system and design of the system. Initially, all of the components of

the architecture are mentioned after that their details i.e. their purpose and their working is

discussed.

3.1 Proposed Web Services Mining Framework
A threaded model for web service mining based on fuzzy set and fuzzy logic with rules

satisfaction is proposed. Figure 3.1 gives a complete picture of the projected idea and

demonstrates different phases involved in the mining process. The proposed model is divided

into different steps and phases to reduce the model complexity and simplify different integrating

processes. The problems faced in mining process are complexity of the search space and pattern

matching. The complexity model is targeted by introducing the concept of threading for parallel

processing. A new thread is initiated for every member of fuzzy set and mines the search space

for required computation. This parallel processing approach helps in optimizing the search and

matching process and for efficient discovery of individual web services and composition of web

services.

 The first step in proposed framework is scope and rules specifications. Scope and the

rules are specified by a web service domain expert and these are according to required mining

results. For example domain expert is looking for web services, related to traveling or in the field

of medicine. Rules specified by the domain expert will be matched in constraint satisfaction and

evaluation phases for filtering and validating of found web services and their compositions.

Fuzzy set is generated based on the scope specified by the domain expert and weights are

assigned to each member of the fuzzy set. Weights are calculated on the probability model and

with the help of local database. This local database is used to store members of fuzzy set and

helps in calculating weights. Every member of the fuzzy set is used as input to the next searching

phase and after the phase of assigning weights a new thread is initiated for every member of the

fuzzy set. This thread explores the UDDI registry and looks for relevant services based on the

fuzzy matching algorithm. Outputs of the found web services are further used for discovery of

29

web services which are used as their input parameters for composing individual web services

into composite web services.

 Web service mining results sorted in the indexing phase, based on weights assigned and

these sorted results are filtered in the rules satisfaction phase, where constraint specified in the

first phase are matched with the publisher’s constraint. Publisher specifies any service relevant

constraint in the web service description document and at this step of proposed model these rules

are satisfied for filtering and validation of found results. These filtered results are used as input

to evaluation phase where these results are gone through objective and subjective evaluation.

Figure 3.1: Web Services Mining Framework

3.1.1 Context and Rules Specification

Web services mining framework starts with the specifying scope by a web service

domain expert. This scope may include a generic domain, like mining in the field of traveling,

insurance or medicine. Web service domain expert will also specify a set of rules on the domain

30

of mining. These rules may include some generic specifications or specific rules to the input,

output parameters and web service description. These rules are matched in the filtering phase

with the web service description document. For example, looking for web services for books

where defined the upper bound and lower bound on the price of books or looking for some

insurance policy related web service of a particular period.

3.1.2 Fuzzy Set Generation

Fuzzy set is generated based on the context, specified by the domain expert. This set

contains the synonyms of the scope specified in the earlier stage and weights are assigned to this

set. Specified fuzzy set is

)...,,(321 nssssS =

Where)(iSi xS µ= and ix is element of X and X is the domain of the web services. For

original members of the search string we will assign weight 1 and it has the membership value as

1)(=•∈∃ xXx Sµ

And for all those members where degree of truth is non zero define the relationship as:

0)(>∈ xXx Sµ

3.1.3 Weights Calculation and Assignment

Value of degree of truth is assigned to every member of the fuzzy set. Degree of truth for

the actual specified string is 1 and for other fuzzy set members degree of truth is calculated on

basis of history of term used. A local database is maintained for storing the record of every term

when it is used, and lately, these records are used for weights calculation. For example, different

words like books, medicine, travel and insurance for web services mining are used and these

words have a relative number of occurrences in the database. Total numbers of occurrences of all

members of fuzzy set are added and number of occurrences of each member is divided with this

sum to calculate the weight. This weight is assigned to the member of fuzzy set.

Weight of a term = Number of occurrence of term / total occurrences

3.1.4 Fuzzy Rules

Two fuzzy sets have been defined based on which fuzzy rules are determined. W is a

fuzzy set of weights assigned in last step. It is defined as

31

W = {Short, Medium, High}

The other set D is the matching distance which will be used in distance or approximate

matching algorithm. This set is defined as

D= {Exact, Close, Approximate}

Based on these fuzzy sets the following rules are defined:

• IF W = Short THEN D = Exact

• IF W = Medium THEN D = Close

• IF W = High THEN D = Approximate

Distance is increased in fuzzy matching algorithm as long as weight of input parameter is

increasing. These weights and distances based rules are plotted in Figure 3.2.

Figure 3.2: Fuzzy Rules for Web Services Mining Framework

3.1.5 Multithreaded Model for Mining Services and Fuzzy Matching

Based on the fuzzy set, which we have created in earlier phase, a separate thread is

initiated for every member of the set which looks into the UDDI registry using public query

interfaces and matches the results with the found web services based on fuzzy matching.

Distance matching algorithms are implemented, which take service description, text pattern to

match and distance as input parameters. This distance parameter is computed, based on the fuzzy

rules, specified earlier using assigned weights to fuzzy set. Weights are calculated in earlier

phase and for higher weights, assign longer distances. All those web services which have

approximate matching greater than zero are stored in the database with their weights, distance

32

and matching value. These results are indexed in sorted order and constraint satisfaction is

applied for the further filtering of the mining results. For every found web service, a new thread

is initiated which will look output parameters as the input parameters of the other web services in

the UDDI registry to find out interesting and useful compositions of web services. These results

are also stored in the database and linked with the original web services in a connected way

using a graph. Algorithms for fuzzy matching and composing web services are given below:

S[1..n]: Fuzzy Set

W[1..n]: Weights Set

O[1..n]: Web service output parameters

I[1..n]: Web service input parameters

Algorithm: FuzzyMatching

Input: S[1..n], W[1..n]

Output: services, composedServices

1: for i ← 1 to n do

2: initiate new thread

3: member ←S[i]

4: weight ← W[i]

5: if weight is High then

6: distance ← Approximate

7: else if weight is Medium then

8: distance ← Close

9: else if weight is Short then

10: distance ← Exact

11: end if

12: service ← Fetch Web service

13: result ← call ApproximateMatchingAlgorithm(service, member, distance)

14: if result > 0 then

15: Store service in database

16: end if

17: Sort stored services

18: for each stored service

33

19: initiate new thread

20: O[1..n] ← service.outputParameters

21: service ← Fetch Web service

22: I[1..n] ← service.inputParameters

23: temp ← false

24: for i ← 1 to n do

25: if O[i] = I[i] then

26: temp ← true

27: else

28: temp ← false

29: break loop

30: end if

31: end for

32: if temp = true then

33: link services and store in database

34: end if

35: end for

36: end for

3.1.6 Constraint Satisfaction

Service requestor requirements are matched with service provider’s constraints and

constraints specified in first step are satisfied with web service input, output and operations.

Constraint matching model is presented as a 3-tuple of {I, O, OPR} where I = }...,,{ 321 niiii is a

set on input parameters of a web service, O = }...,,{ 321 noooo is a set of output parameters of a

web service and OPR = }...,,{ 321 ndddd is a set of operations of a web service. A set is specified

by the service requestor on the input parameters, output parameters and service operations and

constraints specified by the provider on these parameters and operations. Algorithm for

constraint satisfaction is as follows:

I[1..n]: Web service input parameters

O[1..n]: Web service output parameters

34

OPR[1..n]: Web service operations

IC[1..n]: Constraints on input parameters

OC[1..n]: Constraints on output parameters

OPRC[1..n]: Constraints on operations

Algorithm: ConstraintSatisfaction

Input: I[1..n], O[1..n], OPR[1..n], IC[1..n], OC[1..n], OPRC[1..n]

Output: Filtered Web Services

1: for all members from database do

2: service ← Fetch Web Service

3: I[1..n] ← service.inputParameters

4: O[1..n] ← service.outputParameters

5: OPR[1..n] ← service.operations

6: result ← false

6: for i=1 to n do

7: result ← Match I[i] with IC[i]

8: if result = false then

9: remove from database

10: break loop

11: end if

12: end for

13: for i=1 to n do

14: result ← Match O[i] with OC[i]

15: if result = false then

16: remove from database

17: break loop

18: end if

19: end for

20: for i=1 to n do

21: result ← Match OPR[i] with OPRC[i]

22: if result = false then

23: remove from database

35

24: break loop

25: end if

26: end for

27: end for

3.1.7 Evaluation

Evaluation process is used to finalize and fetch out interesting compositions of web

services from the resultant pool of web services. Evaluation process involves two phases which

are objective evaluation and subjective evaluation. Objective parameters like operation similarity

are used in the objective evaluation phase. Two operations are considered similar if they have

same input parameters and produce the same results for these input parameters. Objective

evaluation is based on operation similarity where mined web services are matched with the

required operations. Our final evaluation process involves taking subjective actions to find out

attractive web services compositions leads. The subjective process is based on the knowledge of

the domain expert and the requirements of end user. The size of web services pool is already

reduced in the constraint satisfaction and the objective evaluation phases. The final web services

and their compositions are selected by the domain expert based on experience and previous

knowledge.

36

Chapter 4 : System Design

4.1 System Flow Chart
Flow charts are easy-to-understand diagrams showing how steps in a process fit together.

This makes them useful tools for communicating how processes work, and for clearly

documenting how a particular job is done. Furthermore, the act of mapping a process in flow

chart format helps in understanding of the process, and helps about where the process can be

improved.

A flow chart can therefore be used to:

• Define and analyze processes;

• Build a step-by-step picture of the process for analysis, discussion, or

communication; and

• Define, standardize or find areas for improvement in a process

Figure 4.1 shows flow chart of the complete web services mining framework. All the

major modules and systems of proposed framework are covered in this flow chart. Proposed

framework is invoked by defining generic scope, and then rules are specified. Based on this

generic scope a fuzzy set is generated and weights are assigned to this fuzzy set. In next step, for

each member of generated fuzzy set, a new thread is initiated. This thread discovers services

from UDDI based on fuzzy set using appropriate fuzzy algorithm. All the services discovered at

this step are indexed and further used in composition process. Web service composition

algorithm is invoked at this step of proposed framework and all the discovered services are

passed as input parameter. Output parameters of each discovered web service are matched with

input parameters of other services and a link is formed where these parameters matched. In final

step all the composed and discovered web services are filtered.

4.2 Sequence Diagram
UML sequence diagrams are used to represent or model the flow of messages, events and

actions between the objects or components of a system. Time is represented in the vertical

direction, showing the sequence of interactions of the header elements, which are displayed

horizontally at the top of the diagram.

37

Figure 4.1: Flow Chart of Web Services Mining Framework

38

 Sequence Diagrams are used primarily to design, document and validate the architecture,

interfaces and logic of the system by describing the sequence of actions that need to be

performed to complete a task or scenario. UML sequence diagrams are useful design tools

because they provide a dynamic view of the system behavior which can be difficult to extract

from static diagrams or specifications.

 In Figure 4.2 a complete flow of proposed web services mining framework is given in the

form of sequence diagram. This sequence diagram shows all the interacting objects with respect

to time and events generated. Objects that interact in proposed approach are user, system, UDDI

registries and application server. In first step user specifies goal and rules. System generates

fuzzy set based on goal and sends a request to application server to calculate weights for each

member of fuzzy set. Application server calculates weights based on values in database and

sends results back to system. System initiates a new thread for each fuzzy member and discovery

process is called. Finally all the discovered web services are composed.

4.3 Use Cases
Use cases describe the system from the user's point of view. Use cases describe the

interaction between one or more actors (an actor that is the initiator of the interaction may be

referred to as the 'primary actor') and the system itself, represented as a sequence of simple steps.

Actors are something or someone which exists outside the system ('black box') under study, and

that take part in a sequence of activities in a dialogue with the system to achieve some goal.

Actors may be end users, other systems, or hardware devices. Each use case is a complete series

of events, described from the point of view of the actor.

 In Table 4.1 a use case for web service mining process is given. In this table all the minor

details of mining process are covered from the user’s point of view. In Table 4.2 a use case for

add a new UDDI registry is explained. Similarly in Table 4.3 a use case for editing a UDDI

registry is given and in Table 4.4 a use case for deleting a UDDI registry is explained.

39

Figure 4.2: Sequence Diagram of Web Services Mining Framework

40

Table 4-1: Use Case for Web Services Mining

Use Case Name Web Services Mining

Scenario Web Services Mining

Triggering Event User specify the generic scope for mining web services

Brief Description User specifies a generic scope for web services mining and

system process the use request and generates results. These

results are evaluated in different phases.

Actors User

Related Use Cases

Stakeholders User

Pre-conditions Database Server is up and UDDI registries are connected.

Post-conditions System generates a set of web services and composition of web

services.

Flow of Events Actor System

1. User specifies generic

scope.

2. User specifies rules.

3. User requests for web

services mining based on

scope and rules specified.

3.1 System generates fuzzy

set.

3.2 System calculates weights

for each member of fuzzy set.

3.3 System assigns these

weights.

3.4 System mines for web

services for each member of

the fuzzy set based on the

weights.

3.5 System looks for

composition for each result

41

4. User performs subjective

evaluation.

found in the above step.

3.6 System applies rules

satisfaction.

3.7 System performs objective

evaluation.

Exception

Conditions:

Table 4-2: Use Case for Adding UDDI Registry

Use Case Name Add New UDDI Registry

Scenario Adding new UDDI registry

Triggering Event User wants to add a new UDDI registry.

Brief Description In web services mining framework, we have tested it with

different UDDI registries. User need to add or edit different

UDDI registries connection information. For this given an

interface.

Actors User

Related Use Cases Edit UDDI Registry, Delete UDDI Registry

Stakeholders User

Pre-conditions Database Server is up.

Post-conditions UDDI registry connection information is saved in the database.

Flow of Events Actor System

1. User enters UDDI registry

name.

2. User enters information for

inquiry interface.

3. User enters information for

publish interface.

4. User enters username

42

information.

5. User enters password

information.

6. User saves the information

in database.

6.1 System validates the

information entered by user.

6.2 System checks for

duplication of information.

6.3 System saves information

in database.

Exception

Conditions:

6.2 If information already exists, system asks the user to review

information.

Table 4-3: Use Case for Editing UDDI Registry

Use Case Name Edit UDDI Registry

Scenario Editing UDDI registry

Triggering Event User wants to edit already added UDDI registry information.

Brief Description In web services mining framework, we have tested it with

different UDDI registries. User need to add or edit different

UDDI registries connection information. For this given an

interface.

Actors User

Related Use Cases Add UDDI Registry, Delete UDDI Registry

Stakeholders User

Pre-conditions Database Server is up.

Post-conditions UDDI registry connection information is updated in the

database.

Flow of Events Actor System

1. User updates UDDI registry

name.

2. User enters updated

information for inquiry

43

interface.

3. User enters updated

information for publish

interface.

4. User updates username

information.

5. User updates password

information.

6. User updates the

information in database.

6.1 System validates the

information updates by user.

6.2 System checks for

duplication of information.

6.3 System updates

information in database.

Exception

Conditions:

6.2 If information already exists, system asks the user to review

information.

Table 4-4: Use Case for Deleting UDDI Registry

Use Case Name Delete UDDI Registry

Scenario Deleting UDDI registry

Triggering Event User wants to delete already added UDDI registry information.

Brief Description In web services mining framework, we have tested it with

different UDDI registries. User need to add, edit or delete

different UDDI registries connection information. For this given

an interface.

Actors User

Related Use Cases Add UDDI Registry, Edit UDDI Registry

Stakeholders User

Pre-conditions Database Server is up.

Post-conditions UDDI registry connection information is removed from the

database.

Flow of Events Actor System

44

1. User selects a UDDI registry

from the list of already added

registries information.

2. User deletes selected UDDI

registry.

3. User confirms the delete

operation.

2.1 System shows a

confirmation message to user.

3.1 System deletes UDDI

registry information from the

database.

3.2 System shows updates list

of registries to user.

Exception

Conditions:

2.1 If user does not confirm the delete operation, system returns

control to main screen.

4.4 Use Case Diagram
A use case diagram in the Unified Modeling Language (UML) is a type of behavioral

diagram defined by and created from a Use-case analysis. Its purpose is to present a graphical

overview of the functionality, provided by a system in terms of actors, their goals (represented as

use cases), and any dependencies between those use cases. The main purpose of a use case

diagram is to show what system functions are performed for which actor. Roles of the actors in

the system can be depicted. Figure 4.3 shows the proposed system from user’s perspective.

Following use cases are plotted in use case diagram.

• Add UDDI Registry

• Edit UDDI Registry

• Delete UDDI Registry

• Specify Scope

• Specify Rules

• Web Service Mining

45

Figure 4.3: Use Case Diagram of Web Services Mining Framework

46

Chapter 5 : Implementation

This chapter covers the design and implementation details of the application. Different

supporting APIs used to develop this system are discussed in depth. Details about setting up a

UDDI server and creating a UDDI client using JAVA APIs are given in this chapter. Figure 5.1

shows a high level system architecture diagram.

Figure 5.1: High Level Architecture

5.1 UDDI Server (Apache jUDDI)
JUDDI (pronounced "Judy") is an open source Java implementation of the Universal Description,

Discovery, and Integration (UDDI v3) specification for Web Services. jUDDI is used with existing

authentication technologies, and with virtually any relational database including MySQL, DB2, Sybase,

and others.

5.1.1 Setting up UDDI Server

To set up UDDI registry using Java, install following:

• Java 2 SDK—Sun's Java 2 SDK SE, version 1.6.

• Web server and/or servlet container—Apache Tomcat, version 6.0.24.

47

• SOAP processing framework—Apache Axis that ships with JUDDI.

• Data storage mechanism—MySQL relational database, version 5.0.

• UDDI registry framework—jUDDI.

• Once the JUDDI server is setup properly in the tomcat, use the following link to

access the welcome page of the JUDDI.

http://localhost:8080/juddiv3

Screen shown in Figure 5.2 will appear.

Figure 5.2: jUDDI Welcome Page

48

5.1.2 jUDDI Server Implementation Details

Functions handle the actual logic for each UDDI invocation message. The

org.apache.juddi.function package defines the function classes—one for each logical UDDI

invocation message.The org.apache.juddi.registry.RegistryEngine class uses the

org.apache.juddi.function.FunctionMaker class to lookup functions, based on the class name of

the function. FunctionMaker keeps a cache of instances of the maker classes.

jUDDI uses Apache Axis to handle SOAP messaging. Axis defines a transparent

transport framework that allows different transport protocols to be used. For the HTTP protocol,

any servlet derived from the org.apache.axis.transport.http.AxisServlet class is a candidate for

handling HTTP requests. In jUDDI, three servlets extend the AxisServlet class:

• org.apache.juddi.transport.axis.AdminServlet

• org.apache.juddi.transport.axis.PublishServlet

• org.apache.juddi.transport.axis.InquiryServlet

This all seems quite straightforward, however, there is a slight twist—jUDDI registers

these three classes as servlets with an application server, but only uses them to determine the

type of request that is made. The actual processing is handled by the

org.apache.juddi.transport.axis.AxisHandler class which must be registered with the Axis

handler-chain. Figure 5.3 shows a flowchart that illustrates the process for a typical request.

5.1.3 jUDDI Data Structures

JUDDI encapsulates the primary UDDI data structures (businessEntity, businessService,

bindingTemplate and tModel) in classes following the ValueObject pattern. The classes are

found subordinate to the org.apache.juddi.datatype package as follows:

• org.apache.juddi.datatype.business.BusinessEntity

• org.apache.juddi.datatype.service.BusinessService

• org.apache.juddi.datatype.binding.BindingTemplate

• org.apache.juddi.datatype.tmodel.TModel

Instances of each of these classes (along with all other UDDI data types) are acted on by

jUDDI handlers and functions in order to process client requests, as shown in Figure 5.4.

49

Figure 5.3: Request Process Flow Diagram

5.1.4 Handling Publication Requests with jUDDI

The JUDDI framework dispatches request messages through an Axis handler object

named AxisHandler. The AxisHandler class uses the services of the RegistryEngine class to do

the actual request processing. A URL mapping for a specific child of AxisServlet is used to

classify inquiry requests, publish requests, and admin requests.

50

Figure 5.4: Process Flow for a Save_Business Request

The framework classifies each request according to the property value set in the request's

MessageContext object for the transport.http.servlet key. Thus, the framework maps the

following URL to the PublishServlet:

http://localhost:8080/juddiv3/publish

51

After receiving a request, the RegistryEngine class converts the XML-based UDDI

request to Java objects (a process called unmarshalling), invokes the appropriate Java objects,

and converts Java objects to XML-based responses (called marshalling).

5.1.5 Handling Inquiry Requests with jUDDI

As with a publish request, a URL mapping for a specific child of AxisServlet is used to

classify inquiry requests. The transport.http.servlet property of the request's MessageContext

object will return an instance of the InquiryServlet class and therefore be routed accordingly.

Thus, jUDDI will map the following URL to the InquiryServlet:

http://localhost:8080/juddiv3/inquiry

5.1.6 Handling Authentication Requests with jUDDI

JUDDI uses the org.apache.juddi.auth.AuthenticatorFactory object to create the desired

Authenticator instance in order to authenticate a client. AuthenticatorFactory is an

implementation of the Factory pattern. Use it to create an implementation of the

org.apache.juddi.auth.Authenticator interface. Retrieve the name of the specific Authenticator

implementation to create from the "juddi.auth" property value. If pass a null value, then the

AuthenticatorFactory creates a default Authenticator implementation

"org.apache.juddi.auth.DefaultAuthenticator." The DefaultAuthenticator class applies no

restrictions; therefore, it allows all requests.

Production systems should supply an implementation of the Authenticator interface that can

authenticate callers against an existing authentication system. The Authenticator implementation

class is registered in the juddi.properties file.

5.2 RUDDI

5.2.1 Ruddi Characteristics

Ruddi is UDDI client library. UDDI client library implemented by Ruddi™ currently has

the following characteristics:

• Ruddi™ provides access to UDDI registries using an expressive pure Java API. No

specific knowledge of XML, SOAP or UDDI messaging is required.

52

• Ruddi™ fully implements the publishing and inquiry UDDI APIs of UDDI V3, V2

and V1.

• Ruddi™ has a tested interoperability with the public Microsoft, SAP and IBM UDDI

Business Registries (UDDI V2 and V1 only, as far as V3 is not currently

implemented by the public nodes).

• Ruddi™ transparently manages UDDI V3, V2 and V1 messaging. The runtime uses

either UDDI V3, V2 or V1 messaging to communicate with a UDDI registry

depending on a user-defined profile. As a result, it is possible to write applications

that can alternatively interrogate UDDI V3, V2 or V1 registries with no code change.

• Ruddi™ has UDDI-specific collections library allowing writing expressive, strongly

typed UDDI applications.

• Ruddi™ has a validation library allowing validating all UDDI data structures

according to either the UDDI V2 or V1 specification (V3 under development). For

example, a business entity name of 150 characters will be detected as “too long” if the

library is configured for validation again the UDDI V1 specification but will be

considered valid if the library is configured for validation against the V2

specification.

• Ruddi™ internally automates low-level UDDI interactions. For example, an

authentication token will automatically be fetched using the appropriate information

defined in a profile whenever a method of the publishing API is invoked.

• Ruddi™ has an extended query API providing a level of interaction equivalent to

what JAXR proposes.

• Ruddi™ allows accessing UDDI registry replies as streams that can be used for

example as an input to an XSLT processor (for XML => HTML scenarios, for

example).

• Ruddi™’s message transport can be managed internally or be delegated to the

Apache Axis V1 SOAP engine.

• Ruddi™ has a logging facility allowing monitoring the XML conversation between

the UDDI client and the UDDI registry. System.out logging, as well as a Log4J-based

and an experimental XML-based logging are supported.

53

• Ruddi™ is easy to install. Get up to speed in less than 5 minutes. Learn by example

with the about 20 examples provided with the library.

• Ruddi™ has extensive documentation.

5.2.2 Ruddi Usage

The following examples demonstrate the most common uses of Ruddi™ to connect to

UDDI registries.

• Querying an UDDI registry

• Saving and updating information in an UDDI registry

• Suppressing information from an UDDI registry

• Various Ruddi™ API examples

5.2.2.1 Querying an UDDI registry

• Finds a business entity by name.

• Finds a business service by name.

• Finds the technical models of a business entity.

• Finds the binding details of a business service.

• Gets detailed information on a business entity.

• Searches for business entities belonging to a given NAICS category.

• Finds a business entity by name using the Axis 1.0 SOAP implementation.

5.2.2.2 Saving and updating information in an UDDI registry

• Saves a business entity.

• Saves a business service.

• Saves a binding template.

• Saves a technical model.

• Saves a business entity.

5.2.2.3 Suppressing information from an UDDI registry

• Deletes a business entity.

• Deletes a business service.

• Deletes a technical model.

54

• Deletes a binding template.

5.2.3 Various Ruddi™ API examples

• Shows how to use the Ruddi™ collections API.

• Shows how to enable and disable logging.

• Shows the validation capabilities of Ruddi™.

• Shows the capabilities of Ruddi™ with regard to keys.

• Shows how Ruddi™ UDDI structures serializers can be used.

• Shows how Ruddi™ can be used to convert V2 structures to V3 structures

5.3 Approximate String Matching
Fuzzy matching is a programmatic process of determining similarity between two strings,

such as names, addresses, drug names, materials (as in engineering), parts descriptions, etc. when

there is knowledge or suspicion that there is a difference between the two strings, and that they

may need to be merged, updated, purged, or simply identified.

Optimally, exact matching should precede fuzzy matching. Some of the anomalies between two

strings or bodies of text that call for approximate string matching are: Typing mistakes,

abbreviations, different data entry conventions, truncation, inconsistencies in data formatting,

and a number of others specific to the type of data.

Match entries with typing mistakes:

Divesh Srivastava vs. Divesh Shrivastava

Match entries with abbreviations:

Euroaft Corporation vs. Euroaft Corp.

Match entries with different conventions:

Comp. Sci. Dept. vs. Dept. of Comp. Sci.

Match entries with inconsistent formatting:

010104 vs. 01-01-04

5.3.1 Levenshtein Algorithm

The Levenshtein algorithm calculates the least number of edit operations that are

necessary to modify one string to obtain another string. The closeness of a match is measured in

terms of the number of primitive operations necessary to convert the string into an exact match.

55

This number is called the edit distance — also called the Levenshtein distance — between the

string and the pattern. The usual primitive operations are:

• insertion (e.g., changing cot to coat),

• deletion (e.g. changing coat to cot)

• substitution (e.g. changing coat to cost).

 Here is an example that features the comparison of "meilenstein" and "levenshtein":

Figure 5.5: Levenshtein Algorithm

5.3.2 Dice’s coefficient Algorithm

Dice's coefficient, named after Lee Raymond Dice and also known as the Dice

coefficient, is a similarity measure related to the Jaccard index. For sets X and Y of keywords

used in information retrieval, the coefficient may be defined as:

When taken as a string similarity measure, the coefficient may be calculated for two

strings, x and y using bigrams as follows:

Where nt is the number of character bigrams found in both strings, nx is the number of

bigrams in string x and ny is the number of bigrams in string y.

56

5.3.3 Longest Common Subsequence Algorithm

The longest common subsequence (LCS) problem is to find the longest subsequence. For

example, here are two sequences having the same last element: (BANANA) and (ATANA).

• Remove the same last element. Repeat the procedure till you find no common last

element. The removed sequence will be (ANA).

• The sequences now under consideration: (BAN) and (AT).

• The LCS of these last two sequences is, by inspection, (A).

• Append the removed element, (ANA), giving (AANA), which, by inspection, is the

LCS of the original sequences.

5.4 WSDL4J
The Web Services Description Language for Java Toolkit (WSDL4J) allows the creation,

representation, and manipulation of WSDL documents. Is the reference implementation for

JSR110 'JWSDL' (jcp.org).

The IBM reference implementation of JSR-110 (Java APIs for WSDL), Web Services

Description Language for Java Toolkit (WSDL4J) allows the creation, representation, and

manipulation of WSDL documents.

57

Chapter 6 : Results and Discussion

Measuring the performance of web services mining framework is non-trivial. Generally a

framework is evaluated by implementing the framework and then using a dataset to test the web

services mining based on calculating Precision, Recall and F-measure. The fundamental factors

for web service quality evaluation can be largely divided into static, dynamic and statistical

factors. Static factors do not change as long as no changes occur within the service since they are

dependent to the service in concern. Meanwhile, dynamic factors represent quality information

that changes according to certain situations such as network traffic. Statistical factors are

evaluated based on the statistical data of the service.

6.1 System Requirements
System prototype is developed using Netbeans 6.8 and java development kit 6 so for

running this software prototype there is a requirement of Java Runtime Environment 6 and

database handling is done using MySql 5.0 which must be installed and database should be

configured for proper running of this software. In tabular form ideal requirements for this

prototype are given in Table 6.1.

Table 6-1: System Requirements

System Processor 2.4 GHz

Hard Disk 40 GB

RAM 1 GB

Operating System Windows 2000 Server, Windows 2003

Server, Windows XP

Runtime Environment Java Runtime Environment 6

Database Server MySql 5.0

Application Server Tomcat 6.0

58

6.2 Evaluation Criteria
Following are main criteria on which proposed approach is evaluated and compared to

existing techniques:

• Number of Services Discovered and Composed

• Precision

• Fallout

• F Measure

• Mining time of Services

• Composition time of Services

6.2.1 Number of Services Discovered and Composed

Proposed framework is tested with different approximate string matching algorithms.

Following testing parameters are used for each algorithm:

• Levenshtein Algorithm: In Table 6.2 distances are defined for different weight

ranges which are used in testing of proposed framework.

Table 6-2: Levenshtein Algorithm Parameters

Weight Range Distance
0 – 0.3 0
0.3 – 0.6 1
0.6 - 1 2

• Dice's Coefficient Algorithm: In Table 6.3 different string matching ranges are

given for weight ranges. This table is used as input rules for testing of proposed web

service mining framework.

Table 6-3: Dice's Coefficient Algorithm

Weight Range String Matching
0 – 0.3 0.8 - 1
0.3 – 0.6 0.7 – 0.8
0.6 - 1 0.6 – 0.7

59

• Longest Common Subsequence Algorithm: Fuzzy rules for Longest Common

Subsequence Algorithm are given in Table 6.4 where string distance is given for

different weight ranges.

Table 6-4: Longest Common Subsequence Algorithm

Weight Range Distance

0 – 0.3 String Length - 0
0.3 – 0.6 String Length - 1
0.6 - 1 String Length - 2

6.2.2 Precision

Precision is the proportion of services that satisfies users’ request in all the discovered

services.

6.2.3 Recall

Recall is the fraction of the web services, which are relevant to the request, that are

successfully retrieved.

6.2.4 F-measure

This is the weighted harmonic mean of precision and recall. It trades off between

precision and recall.

• Where F is F-measure, P is precision and R is recall

60

• The default well adjusted F-measure that fairly weights precision and recall uses the

parameters

Table 6-5: Static Evaluation Factors for Web Service

Factor Description

Regulatory What is the standard that the web service follows?

Security Does the service abide by security factors such as WS-Security?

Table 6-6: Dynamic Factors for Evaluation of Web Service

Factor Description

Service Availability Is the service working properly?

Network Availability How fast is the service dynamic network speed?

Execution Duration How long does it take to receive a reply after requesting the service?

Table 6-7: Statistical Factors for Evaluation of Web Service

Factor Description

Service Reliability How stable is the operation of the service?

Network Reliability How stable was the service network?

Execution Reliability How frequently is the reply sent back within a standard period of

time?

Reputation How good is the reputation of the service compared with other

services of the same type?

6.3 Dataset
The framework is implemented in Java 6 using Netbeans 6.8 integrated development

environment. Apache jUDDI v3 is used to setup UDDIs. Apache jUDDI is an open source

universal description discovery and integration. Apache Tomcat 6 is used to host the JUDDI.

RUDDI API is used to access JUDDI from Java. WSDL4J (Web Service Description Language

for Java) is used to parse the WSDL files that are used to describe the web service choreography

and orchestration interfaces.

61

6.4 Performance Evaluation
The performance of the proposed approach is evaluated using all of the factors discussed

above. Framework is tested for web services mining and logged the values for Precision, Recall

and F-measure. Also, compared these values with the existing frameworks and show where

proposed framework has improved the web services mining. After discovery, the services are

available for composition. Mining time for UDDI registries of different sizes is recorded. At the

end, comparison is given with an existing technique to present the improvements of proposed

framework.

6.4.1 Number of Services Discovered and Composed

Following are the web services mining results using different fuzzy string matching

algorithm. Table 6.8 lists the results of services discovered and composed, using proposed

technique and compared it with the existing framework [7]. Table 6.8 provides results for

registries of different sizes and from the table it clearly depicts that proposed framework has

better results than existing approach.

In first column, total no of services are given that are used in testing of proposed

framework. When the total no of services are 500, services discovered using Levenshtein

algorithm are 6 and only 1 composition is formed. Similarly services discovered using Dice’s

Coefficient algorithm are 7 and only 1 composition is formed. Longest Common Subsequence

algorithm has discovered 9 services and again only 1 composition is formed using these

discovered services. Zheng approach [7] has discovered only 4 services and no composition is

formed. Finally, when the total no of services are 5000, services discovered using Levenshtein

algorithm are 19 and 3 compositions are formed. Similarly services discovered using Dice’s

Coefficient algorithm are 24 and 3 compositions are formed. Longest Common Subsequence

algorithm has discovered 28 services and 4 compositions are formed using these discovered

services. Zheng approach [7] has discovered only 8 services and 2 compositions are formed.

It is concluded from Table 6.8 that all the algorithms used in proposed approach gives

better results. Particularly, Longest Common Subsequence algorithm has best result as compared

to other algorithms and previous approaches.

62

Table 6-8: Mining Results

 Proposed Approach Zheng Approach
UDDI

Registry

Levenshtein Algorithm Dice's Coefficient

Algorithm

Longest Common

Subsequence Algorithm

Number

of

Services

Number of

Services

Discovered

Number of

Compositions

Formed

Number of

Services

Discovered

Number of

Compositions

Formed

Number of

Services

Discovered

Number of

Compositions

Formed

Number of

Services

Discovered

Number of

Compositions

Formed

500 6 1 7 1 9 1 4 0

1000 7 1 8 1 9 1 4 0

1500 7 1 8 1 11 2 4 0

2000 9 2 10 2 11 2 5 1

2500 10 2 13 2 15 3 5 1

3000 13 2 13 2 17 5 5 1

3500 15 3 16 3 20 5 6 2

4000 15 3 17 4 24 6 6 2

4500 18 4 20 4 26 7 7 2

5000 19 5 24 5 28 7 8 2

All the values given in Table 6.8 are plotted in Figure 6.1. On x-axis, total numbers of

services used in testing are given and on y-axis, numbers of services discovered and composed

are plotted.

On x-axis total numbers of services ranging from 0 to 5000 are plotted. Scale of 500 is

used on x-axis. While on y-axis different line formats are used to differentiate between plotted

values. The chart given in Figure 6.1 clearly shows that total numbers of services discovered by

longest common subsequent algorithm are higher than discovered service by other algorithms.

Finally, when these discovered services are further used in composition process, the numbers of

compositions formed are also higher than other approaches.

6.4.2 Average Precision

Various sets of services are taken and for each set 10 readings are made and then

computed an average for that set. Testing is started with a service set of 500 web services and

then keep on increasing the number of web services to 1000, 1500, 2000, 2500, 3000, 3500,

4000, 4500 and finally 5000. In Table 6.9 average precision of proposed framework is given.

63

Figure 6.1: Mining Results

64

Average precision is calculated by dividing number of relevant services retrieved with

number of retrieved services. The test is repeated on multiple sets of services and finally an

average value is calculated using following algorithms.

• Levenshtein Algorithm

• Dice’s Coefficient Algorithm

• Longest Common Subsequence Algorithm

Dice’s coefficient algorithm is more precise as compared to Levenshtien algorithm and

Longest Common Subsequence algorithm.

Table 6-9: Average Precision

UDDI Registry Levenshtein

Algorithm

Dice's Coefficient

Algorithm

Longest Common

Subsequence

Algorithm

Number of Services Average Precision

%

Average Precision

%

Average Precision

%

500 100 100 88

1000 100 100 88

1500 100 100 82

2000 88 100 82

2500 90 92 80

3000 84 92 76

3500 80 87 75

4000 80 87 75

4500 78 85 73

5000 78 83 71

All the values of average precision given in Table 6.9 are plotted in Figure 6.2. On x-axis,

total numbers of services ranging from 0 to 5000 are plotted. Scale used on x-axis is 500. On y-

axis average precision ranging from 0 to 100 is plotted.

65

Figure 6.2: Average Precision

6.4.3 Average Recall

Various sets of services are taken and for each set 10 readings are made and then

computed an average for that set. Testing is started with a service set of 500 web services and

then keep on increasing the number of web services to 1000, 1500, 2000, 2500, 3000, 3500,

4000, 4500 and finally 5000.

Average recall is calculated by dividing number of relevant services retrieved with

number of relevant services. The numbers of relevant services are calculated by the domain

expert based on knowledge of domain and expertise.

66

Average recall of proposed framework is given in Table 6.10. As already given that

proposed approach is based on fuzzy set and fuzzy rules. Also approximate string matching

algorithms are used that’s why average recall of proposed framework is 100%.

Table 6-10: Average Recall

UDDI Registry Levenshtein

Algorithm

Dice's Coefficient

Algorithm

Longest Common

Subsequence Algorithm

Number of

Services

Average Recall

%

Average Recall

%

Average Recall

%

500 100 100 100

1000 100 100 100

1500 100 100 100

2000 100 100 100

2500 100 100 100

3000 100 100 100

3500 100 100 100

4000 100 100 100

4500 100 100 100

5000 100 100 100

All the values of average recall given in Table 6.10 are plotted in Figure 6.3. In figure

6.3, average recall is plotted on y-axis and on x-axis total numbers of services are given. On x-

axis total number of services ranging from 0 to 5000 on a scale of 500 is plotted, whereas on y-

axis average precision ranging from 0 to 100 is plotted.

6.4.4 Average F-measure

F-measure is the weighted harmonic mean of precision and recall. It trades off between

precision and recall. Table 6.11 shows F-measure for UDDI registries of different sizes.

67

• Where F is F-measure, P is precision and R is recall

• The default well adjusted F-measure that fairly weights precision and recall uses the

parameters

Figure 6.3: Average Recall

68

Table 6-11: Average F Measure

UDDI

Registry

Levenshtein

Algorithm

Dice's Coefficient

Algorithm

Longest Common

Subsequence Algorithm

Number of

Services

Average F Measure

%

Average F Measure

%

Average F Measure

%

500 100 100 94

1000 100 100 94

1500 100 100 90

2000 94 100 90

2500 95 96 89

3000 91 96 86

3500 89 93 85

4000 89 93 85

4500 88 92 85

5000 88 92 85

In Table 6.11, it is given that average f-measure is 100% for small testing data set but as

data set size is increasing, value of f-measure is decreasing. Dice’s coefficient algorithm has

better f-measure value as compared to Levenshtein algorithm and Longest Common

Subsequence algorithm.

All the values of f-measure given in Table 6.11 are shown in graphical format in Figure

6.4. On x-axis total numbers of services ranging from 0 to 5000 are plotted using a scale of 500.

Whereas on y-axis average f-measure given in Table 6.11 ranging from 0 to 100 is plotted. A

scale of 10 is used on y-axis. Different colors are used to differentiate between values of Dice’s

coefficient algorithm, Levenshtein algorithm and Longest Common Subsequence algorithm.

69

Figure 6.4: Average F-measure

6.4.5 Evaluation Time of Services

WSDL4J is used to parse the WSDL file of the web service. Once the service is

discovered, one must know the methods that it presents to be used from outside world.

Evaluation time of web services is logged for various numbers of methods exposed by the web

services. Once again randomly evaluated the web services and then logged the timings.

Following is the analysis of the evaluation time given in Table 6.12.

70

Table 6-12: Evaluation Time of Web Services

 Proposed Approach Zheng

Approach
UDDI

Registry

Levenshtein Algorithm Dice's Coefficient Algorithm Longest Common

Subsequence Algorithm

Number

of

Services

Time (ms)

Single Thread

Time (ms)

Multithreaded
Time (ms)

Single Thread
Time (ms)

Multithreaded
Time (ms)

Single Thread
Time (ms)

Multithreaded

500 2250 500 2200 450 2400 600 2500

1000 2330 550 2270 500 2500 650 2850

1500 2410 610 2350 560 2610 720 3010

2000 2490 680 2420 630 2700 800 3200

2500 2600 750 2500 700 2820 900 3430

3000 2730 820 2600 780 2950 990 3600

3500 2855 900 2710 850 3050 1080 3915

4000 2970 1000 2820 930 3180 1150 4250

4500 3090 1080 2940 1000 3300 1280 4410

5000 3200 1150 3050 1080 3450 1350 4720

Proposed framework is tested using single thread and multithreaded approach and time is

calculated in mili seconds for Dice’s coefficient algorithm, Levenshtein algorithm and Longest

Common Subsequence algorithm. Time for all these algorithms is noted and compared with

Zheng approach [7]. Using multithreaded approach proposed framework has much better

computation time as compared to existing approach.

 All the values given in Table 6.12 are plotted in Figure 6.5. Again on x-axis, total

numbers of services ranging from 0 to 5000 are plotted and on y-axis web services mining time

is given in mili seconds.

71

Figure 6.5: Evaluation Time of Web Services

72

Chapter 7 : Conclusion and Future Work

7.1 Overview of Research
A mining framework for “web services based on fuzzy set and constraint satisfaction” is

proposed that proactively uncovers the interesting and useful individual web services and

composes existing web services into composite web services. Weights are assigned to fuzzy set

on the basis of probability calculation, in order to optimize the mining process and provide more

efficient results as long as system matures. The framework is scalable with the growing number

of web services repositories and provides efficient mining results. To mine huge web service

repositories efficiently, multithreaded approach is applied where a separate thread is initiated for

every member of the fuzzy set. This parallel processing approach for mining web services has

improved the performance and made the framework scalable with growing web service search

space. Mining queries and results are stored and managed locally with the system and are used

for future probability calculation and are first locally discovered. Web service mining results are

sorted and indexed based on weights assigned and further filtered in the evaluation phase. Future

works include adding the pre and post screening phases for mining more relevant web services

and includes the ontology based fuzzy mining of web services.

7.2 Achievements
In this thesis a “web services mining algorithm” is proposed to solve the mining issues

related to data distribution, reliability, availability and QOS. A framework is proposed by

combination of interface based rules. The proposed framework solves the issues related to

unavailability of updated information and inaccessibility of web services from

repository/databases due to any fault/failure. In proposed framework, multiple repositories and

WSDB’s have been introduced in order to make system more reliable and ensure data

availability. By using multiple registries, data availability is guaranteed , whereas, by using aging

factor user’s can retrieve up to date information. It solves unavailability of updated information

problem by adding aging factor in repository/WSDB(Web Services Database).Finally, algorithm

eliminates the dynamic service composition issues, supports web service composition

considering QOS(Quality of Services), efficient data retrieval and updating, fast service

73

distribution and fault tolerance. The proposed system is fault tolerant, reliable, performs fast data

retrieval and Quality of services based.

7.3 Limitations
In this short paper discussion is around distributed technologies, execute ability issues,

data distribution, QoS issues and how to avoid problems with execute ability issues. At this

stage, automated web services mining process is still under development, although some

automated tools and proposals are available. The full automation of this mining process is still an

ongoing research activity.

7.4 Future Work
Nothing is perfect in this world and no work is ever perfect and there is always room for

improvement. Similarly, in this, although a lot of hard work is done but still it can be further

optimized and improved, providing more functionality. This step opens the path for others to

march on. In future, the framework can be extended by Crawling the web for searching web

services instead of querying the UDDI registries. Also when looking into deeper details of every

component of the framework to ensure better and efficient mining.

Recent advancement in web services plays an important role in business to business and

business to consumer interaction. In order to find a suitable service, discovery mechanism is

used. Through discovery mechanism collaboration between service providers and consumers

becomes possible by using standard protocols. A static web service discovery mechanism is not

only time consuming but requires continuous human interaction. This paper presents a

framework for automatic, web services mining. The framework is flexible, scalable and new

services can easily be inserted and updated in local cache and UDDI registries.

74

APPENDIX A

User Manual
 Interfaces are necessary part of any system as these are used by the end users for

interaction with the system. Therefore the more interactive, easy and user friendly the interfaces

would be, the easier it would be for the end user to communicate use the system. In this section

the screen shots of proposed web services mining tool are given with details.

Main Screen
Double click the executable jar file to run the application or run it from Netbeans 6.8

IDE. The main page of the application appears as seen below. Left side of the main page shows

the menu with different available options. The right part of the screen shows the detail panel

where about page is displayed at start.

75

Scope Specification
Scope is specified by the domain expert on this screen. A screen shot of scope

specification in given below. User also defines constraints on the input and output parameters in

form of ranges. These rules are matched in filtering phase where services are filtered out.

76

Fuzzy Set
Below, screen shows a fuzzy set generated based on the scope specified by domain

expert. This screen shows a list of fuzzy members with their description. These fuzzy members

are used in the mining process.

77

Fuzzy Weights
Below, screen shows fuzzy weights for each member of fuzzy set. These weights are

calculated on basis of probability from the local database. In next step fuzzy rules are defined on

basis of these weights.

78

Fuzzy Rules
Fuzzy rules are defined using weights calculated in previous step. Below screen shows

fuzzy rules for different ranges of weights. These rules define acceptance criteria for fuzzy

matching algorithms which will be used in next step.

79

Fuzzy Algorithm

Different fuzzy based string matching algorithms are implemented in proposed system.

Below screen list these fuzzy algorithms. User will select a fuzzy algorithm and mining results

will be shown in next step.

80

Mining Results
Below screen shows the web services mining results. It has two sections. On left side all

the mined services are listed, whereas on right side details of the selected web service is given.

This web services list is further used in the composition of web services.

81

Composition Results
Services discovered in the mining step are composed using interface based composition

technique. Below screen shows the list of composed services where two or more services are

integrated.

82

Manage UDDI
Below, screen shows a list of already added UDDI registries. Currently connected UDDI

registry is show with a connector symbol. Different interface are available to manage these

UDDI registries. This screen only list already added and connected UDDI.

83

Add UDDI
A new UDDI can be easily added to the system. Provide the name, inquiry, publish and

security URLs with username/password (if applicable). After entering all the information into

below screen click the add button and it will save the data into database. After that UDDI list is

also updated.

84

Edit UDDI
Already added, UDDI registry can be easily updated. For editing a UDDI registry below

interface is provided. Select a UDDI registry from the drop down and it will populate all the

fields with stored information. User will change information in any field and click the edit

button; it will update information in database.

85

Delete/Connect UDDI
Delete and connect UDDI interfaces are same. Below is delete UDDI interface is given.

User will select a UDDI from down and click on the delete button. It will remove the UDDI data

from database.

86

Manage Services
All the businesses with their services are given on this screen. On left side business with

services are listed whereas on right side details are given for any selected business or web

service.

87

Add Service
User can add new services into UDDI. For this user needs to select an existing business

or need to provide a new business name. Service name and access point are provided by end user

to add new service.

88

References

[1] Web Services Architecture-http:// www.w3.org/TR/2004/NOTE-ws-arch-20040211/, Feb. 2004.

[2] Hong-Jie Dai1, Chi-Hsin Huang1, Jaimie Yi-Wen Lin, Pei-Hsuan Chou1, Richard Tzong-Han

Tsai2,Wen-Lian Hsu1 “A Survey of State of the Art Biomedical Text Mining Techniques for

Semantic Analysis” 2008 IEEE International Conference on Sensor Networks, Ubiquitous, and

Trustworthy Computing.

[3] George Zheng and Athman Bouguettaya, Senior Member, IEEE “Service Mining on the Web”

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 2, NO. 1, JANUARY-MARCH

2009.

[4] UDDI: Universal Description, Discovery, and Integration—http://www.oriely.com/.

[5] Qianhui Althea LIANG, Jen-Yao CHUNG, Steven MILLER and Yang OUYANG “Service

Pattern Discovery of Web Service Mining in Web Service Registry-Repository“ IEEE

International Conference on e-Business Engineering (ICEBE'06).

[6] Gao Ting, Wang Haiyang, Zheng Naihui, Li Fei “An Improved Way to Facilitate Composition-

Oriented Semantic Service Discovery” 2009 International Conference on Computer Engineering

and Technology.

[7] George Zheng and Athman Bouguettaya “A Web Service Mining Framework “2007 IEEE

International Conference on Web Services (ICWS 2007).

[8] Giuseppe Fenza, Vincenzo Loia, Sabrina Senatore “Concept Mining of Semantic Web Services

By Means Of Extended Fuzzy Formal Concept Analysis (FFCA)” 2008 IEEE International

Conference on Systems, Man and Cybernetics (SMC 2008).

[9] Qianhui Althea LIANG, Steven MILLER and Jen-Yao CHUNG “Service Mining for Web

Service Composition” IEEE 2005.

[10] Gao Ting, Wang Haiyang, Zheng Naihui, Li Fei “An Improved Way to Facilitate Composition-

Oriented Semantic Service Discovery” International Conference on Computer Engineering and

Technology, 2009.

[11] Shahab Bayati, Ali Farahmand Nejad, Sadegh Kharazmi, Ardeshir Bahreininejad “Using

Association Rule Mining to Improve Semantic Web Services Composition Performance” IEEE,

2009.

[12] George Zheng and Athman Bouguettaya “Mining Web Services for Pathway Discovery” VLDB

‘07, September 2328, 2007, Vienna, Austria. VLDB Endowment, ACM 9781595936493/07/09.

