

TABLE OF CONTENTS
LIST OF FIGURES ... 5

LIST OF TABLES ... 7

Chapter 1 .. 8

1. INTRODUCTION .. 8

1.1 Scheduling ... 8

1.2 Scheduling Levels ... 8

1.3 Scheduling Algorithms .. 9

1.4 Scheduling Disciplines ... 9

1.5 History and Importance .. 10

1.6 Scheduling Objectives .. 11

1.7 CPU Scheduling Algorithms Comparison Criteria .. 12

1.8 Scope of the Thesis ... 13

1.9 Thesis Objective ... 14

1.10 Research Contribution .. 14

1.11 Thesis Structure ... 14

Chapter 2 .. 16

2. LITERATURE SURVEY .. 16

2.1 Process ... 16

2.1.1 Process States ... 17

2.1.2 Process Control Block ... 17

2

2.2 Scheduling Queues ... 19

2.2.1 Job Queue ... 19

2.2.2 Ready Queue .. 19

2.2.3 I/O Device Queues ... 19

2.3 Schedulers ... 20

2.3.1 Long-term scheduler .. 20

2.3.2 Medium-term scheduler ... 20

2.3.3 Short-term scheduler .. 21

2.4 Scheduling Disciplines ... 21

2.4.1 Non preemptive Scheduling .. 21

2.4.2 Preemptive Scheduling .. 21

2.5 Burst Time .. 22

2.6 Dispatcher ... 22

2.7 Goals of Scheduling Algorithm for Different Systems [16, 19] 22

2.8 CPU Scheduling Algorithms ... 23

2.8.1 First Come First Served (FCFS) Scheduling ... 23

2.8.2 Shortest Job First (SJF) Scheduling ... 27

2.8.3 Round Robin (RR) Scheduling .. 32

2.8.4 Priority Scheduling .. 37

2.8.5 Multiple-Level Queues (MLQ) Scheduling ... 41

2.8.6 Multilevel Feedback Queue Scheduling .. 43

2.9 Additional Algorithms ... 44

2.9.1 Fixed Priority Scheduling Algorithm .. 44

2.9.2 Rate Monotonic Scheduling Algorithm ... 44

2.9.3 Rate Monotonic with Delayed Preemption Scheduling Algorithm 44

3

2.9.4 Deadline Monotonic Scheduling Algorithm .. 44

2.9.5 Dynamic Priority Scheduling Algorithm ... 45

2.9.6 Earliest Dead Line First Scheduling Algorithm .. 45

2.9.7 Least Slack Time First Scheduling Algorithm .. 45

2.10 Summary ... 45

Chapter 3 .. 46

3. PROPOSED CPU SCHEDULING ALGORITHMS ... 46

3.1 Introduction .. 46

3.2 Explanation of SJRR and Combinatory Algorithms .. 46

3.3 Steps of SJRR Scheduling Algorithm ... 48

3.4 Pseudo Code of SJRR Scheduling Algorithm .. 50

3.5 Flow Chart of SJRR Scheduling Algorithm .. 52

3.6 Example of SJRR Scheduling Algorithm ... 52

3.7 C# Code of SJRR Scheduling Algorithm ... 57

3.8 Steps of Combinatory Scheduling Algorithm .. 60

3.9 Pseudo Code of Combinatory Scheduling Algorithm ... 60

3.10 Flow Chart of Combinatory Scheduling Algorithm ... 61

3.11 Example of Combinatory Scheduling Algorithm .. 62

3.12 C# Code of Combinatory Scheduling Algorithm .. 65

3.13 Performance Parameters ... 66

3.14 Summary ... 67

4

Chapter 4 .. 68

4. IMPLEMENTATION AND RESULTS ... 68

4.1 Introduction .. 68

4.2 Software Details.. 68

4.3 Experiments: .. 73

4.4 Results: .. 74

4.4.1 Comparison of SJRR and Combinatory Algorithms with First Come First Served

(FCFS) Algorithm ... 74

4.4.2 Comparison of SJRR and Combinatory Algorithms with Shortest Job First (SJF)

Algorithm .. 76

4.4.3 Comparison of SJRR and Combinatory Algorithms with Round Robin (RR)

Algorithm .. 78

4.4.4 Comparison of SJRR and Combinatory Algorithms with Priority Algorithm......... 79

4.4.5 Comparison of SJRR and Combinatory Algorithms ... 81

4.5 Summary: ... 84

Chapter 5 .. 85

5. CONCLUSIONS AND FUTURE WORK .. 85

5.1 Conclusions ... 85

5.2 Future Work .. 87

References .. 88

5

LIST OF FIGURES

Figure 1: Diagram of Process States .. 17

Figure 2: Process Control Block (PCB) ... 18

Figure 3: Queuing Diagram representation of Process Scheduling .. 19

Figure 4: Diagram of Midterm Scheduler .. 20

Figure 5: Flow Chart of First Come First Served Scheduling Algorithm using Simulator 24

Figure 6: Graphical Representation of FCFS Gantt chart .. 27

Figure 7: Flow Chart of Shortest Job First Scheduling Algorithm using Simulator 28

Figure 8: Graphical Representation of SJF Gantt chart .. 31

Figure 9: Flow Chart of Round Robin Scheduling Algorithm using Simulator 33

Figure 10: Graphical Representation of RR Gantt chart .. 37

Figure 11: Flow Chart of Priority Scheduling Algorithm using Simulator 38

Figure 12: Graphical Representation of Priority Gantt chart ... 41

Figure 13: Multilevel Queue Scheduling ... 42

Figure 14: Multilevel Feedback Queue Scheduling ... 43

Figure 15: Flow Chart of SJRR CPU Scheduling Algorithm using Simulator 52

Figure 16: Graphical Representation of SJRR Gantt chart .. 57

Figure 17: Flow Chart of Combinatory CPU Scheduling Algorithm using Simulator 61

Figure 18: Graphical Representation of Combinatory Gantt chart... 65

Figure 19: Block Diagram of CPU Scheduling Algorithm Simulator .. 69

Figure 20: CPU Scheduling Algorithms Simulator .. 70

Figure 21: Add Process Information Window.. 71

Figure 22: Previous Process Status .. 71

Figure 23: Gantt chart representation using SJRR and Combinatory Algorithms 72

Figure 24: Results of SJRR Algorithm ... 73

Figure 25: Results of Combinatory Algorithm ... 73

6

Figure 26: Graph FCFS Vs SJRR & Combinatory (Avg Waiting Time) 74

Figure 27: Graph FCFS Vs SJRR & Combinatory (Avg Turnaround Time) 75

Figure 28: Graph SJF Vs SJRR & Combinatory (Avg Waiting Time) .. 76

Figure 29: Graph SJF Vs SJRR & Combinatory (Avg Turnaround Time) 77

Figure 30: Graph RR Vs SJRR & Combinatory (Avg Waiting Time) ... 78

Figure 31: Graph RR Vs SJRR & Combinatory (Avg Turnaround Time) 79

Figure 32: Graph Priority Vs SJRR & Combinatory (Avg Waiting Time) 80

Figure 33: Graph Priority Vs SJRR & Combinatory (Avg Turnaround Time) 80

Figure 34: Graph SJRR Vs Combinatory (Avg Waiting Time) ... 81

Figure 35: Graph SJRR Vs Combinatory (Avg Turnaround Time) ... 82

Figure 36: Cumulative comparison of Average Waiting Time of Scheduling Algorithms 83

Figure 37: Cumulative comparison of Average Turnaround Time of Scheduling Algorithms 83

7

LIST OF TABLES

Table 1: Comparison of Average Waiting Time of FCFS with SJRR and Combinatory 74

Table 2: Comparison of Average Turnaround Time of FCFS with SJRR and Combinatory 75

Table 3: Comparison of Average Waiting Time of SJF with SJRR and Combinatory 76

Table 4: Comparison of Average Turnaround Time of SJF with SJRR and Combinatory 77

Table 5: Comparison of Average Waiting Time of RR with SJRR and Combinatory 78

Table 6: Comparison of Average Turnaround Time of RR with SJRR and Combinatory 78

Table 7: Comparison of Average Waiting Time of Priority with SJRR and Combinatory 79

Table 8: Comparison of Average Turnaround Time of Priority with SJRR and Combinatory 80

Table 9: Comparison of Average Waiting Time of SJRR and Combinatory 81

Table 10: Comparison of Average Turnaround Time of SJRR and Combinatory 82

Table 11: Performance Metrics of Scheduling Algorithms .. 84

8

Chapter 1

1. INTRODUCTION

1.1 Scheduling
“Scheduling concerns the allocation of the resources to tasks over given time

period and its goal is to optimize one or more objectives”[8]. In computer science,

scheduling defines a set of policies and mechanisms used in operating systems that

provides the sequence in which the tasks to be done by the computer are successfully

completed. It is the foundation of multiprogramming operating system. In

multiprogramming systems, number of processes may run at all the time that are used to

maximize the CPU utilization. In a uni-processor system, there is only a single process

that can run at a time and all the remaining processes have to wait for CPU to be free and

rescheduled. Scheduling is the basic function of operating system, mostly all the

computer resources are scheduled for use. As CPU is one of the main and important

resources of computer therefore its scheduling is essential for operating system. The

major objective of scheduling is to enhance performance of the system in accordance to

the criteria that are most important by the designer. A scheduler is an OS module that

selects the next job to be admitted into the system and the next process to run [1].

1.2 Scheduling Levels

 There are three important levels of scheduling; they are:

• High Level Scheduling It is also called job scheduling; it finds out which job

shall be permitted to compete for the resources of the system. It is also called

admission scheduling because it finds out which jobs are permitted to get

admission to the system. Once jobs got admission to the system, they become

processes.

• Intermediate Level Scheduling It finds out which processes shall be permitted to

compete for the CPU. It behaves as a buffer between the admission of the jobs to

the system and assigning the CPU to these jobs.

• Low Level Scheduling It is also called CPU scheduling. It finds out the processes

that are ready for execution and assign the control of the CPU to one of them.

9

This level of scheduling is carried out by the dispatcher; a module that allocates

CPU to the process selected using low level scheduling.

1.3 Scheduling Algorithms

 When there is more than one process in processes ready queue, the operating

system is supposed to decide which processes is to be run before which process. The

operating system’s part that makes this decision is called scheduler and this mechanism is

called CPU scheduling. There are different properties of the algorithms that are used for

the selection of algorithm for a given set of processes in a particular situation.

Fundamental assumptions behind most scheduling algorithms are [5, 23]:

• A set of processes in the ready queue competing for the CPU.

• Processes are independent.

• Processes are competing for set of resources.

• The job of the scheduler is to allot the CPU fairly to different processes and in a

way that optimizes performance criteria.

There are several approaches for solving this problem. Some of them are as

follows:

 First Come First Served (FCFS)

 Shortest Job First (SJF)

 Round Robin (RR)

 Priority Scheduling

 Shortest Remaining Time First Scheduling (SRTF)

1.4 Scheduling Disciplines

 Generally, there are two types of scheduling discipline; preemptive and non-

preemptive. In preemptive scheduling, CPU is taken away from the running process when

the process having higher priority becomes ready for execution. At the completion of

higher priority process, CPU is given back to the first process. Preemptive scheduling is

useful in systems in which rapid attention is given to the higher priority processes. In

non-preemptive scheduling, CPU cannot be taken away from the running process until its

completion. After completing execution, the process relinquishes the CPU and it is

10

allotted to the next process. Non-preemptive scheduling is useful in batch systems in

which a selected job runs to completion.

1.5 History and Importance

 Scheduling is basic function of operating system. About all computer resources

have to schedule for use. Scheduling is the basis of multiprogramming. In early systems,

there was only the concept of batch processing or uni-processor system in which a single

process may run at a time; and all the other processes have to wait for CPU to be free. In

1950, there was no issue of CPU scheduling because of single user or batch processing.

Late 1960’s and early 1980’s concepts of multiprogramming and time sharing was

evolved. It was required to use concept of process scheduling to handle multiple users

and to swap jobs to avoid idleness.

 In mid 1980’s and early 1990’s: personal computers brought up in field, early

MS- DOS and Microsoft Windows systems were non-multitasking, therefore no need of

sophisticated CPU scheduling algorithms. Non-preemptive scheduler is used by Windows

3.1x. It depends on the program till end or notifies the OS that there is no need of the

CPU so that it could shift to the other process. It was generally known as cooperative

multitasking. Rudimentary Preemptive scheduler was introduced by Windows 95.

Threads in Windows 2000 are scheduled by using Priority based and Preemptive

scheduling algorithms. There are two classes of priorities: the variable class has threads

that reserve priorities range from 1 to 15, and the real time class has threads that reserve

priorities range from 16 to 31. Windows XP, NT and Vista uses multilevel feedback

queue [2, 7].

 Mac OS 9 uses cooperative scheduling. The kernel uses a Round-robin scheduling

algorithm to schedule the processes. There is a copy of the thread manager for each

process that is used to schedule each and every thread. Then preemptive scheduling

algorithm is used by the kernel to schedule all tasks to have processor time [7].

Linux uses two separate process scheduling algorithms. One is designed for fair

preemptive scheduling that is a time sharing algorithm and other is designed for real

tasks. Linux scheduler is preemptive, priority based. There two classes of priorities: One

is real time class ranging from 0-99 and other is for nice task level ranging from 100- 140

[7].

11

 In FreeBSD, multilevel feedback queue having priorities range from 0-255 is

used. There are four classes of priorities: interrupts reserves 0-63, top half of the kernel

reserves 64-127, real-time user threads use 128-159, time-shared user threads use 160-

223 and idle user threads use 224-255 [7].

 In NetBSD, multilevel feedback queue having priorities range from 0-223 is used.

Priorities are divided into five classes. First class is reserved for time sharing threads

ranging from 0 to 63, second class for user threads ranging from 64 to 95, third class for

kernel threads ranging from 96 to128, fourth class for user real-time threads ranging from

128 to 191 and fifth class for software interrupts ranging from 192 to 223 [7].

 In Solaris, multilevel feedback queue having priorities range from 0-169 is used.

There are four classes of priorities: the time-shared threads class has priorities from 0 to

59, the system threads class has priorities from 60 to 99, the real-time threads class has

priorities from 100 to159, and the low priority interrupts class has priorities from 160

to169 [7].

1.6 Scheduling Objectives

 Different objectives must be taken under consideration in the design of a

scheduling discipline. Various disciplines are [6]:

• Be fair. A scheduling discipline use fair policy for all processes and no process

can suffer indefinite postponement [2].

• Maximize throughput. A scheduling discipline should complete the largest

number of processes per unit time.

• Response time. Should be minimum

• Be predictable. Almost same amount of time and same cost should be required to

run the given job [2].

• Minimize overhead. Overhead is commonly considered as wasted resources.

Overall system performance can be greatly be improved by using certain portion

of system resources.

• Balance resource use. Scheduling mechanism should keep the system resources

busy.

12

• Enforce priorities. Scheduling mechanism should favor the higher priority

processes among processes of given priorities.

• Better services. Scheduling mechanism should give better services to processes

that show desirable behavior.

• Achieve a balance between response and utilization. The best way to obtain

good response time is to have efficient resources available whenever they are

needed.

• Degrade gracefully under heavy loads. A scheduling mechanism should not

collapse under the weight of a heavy system load. In one situation, when the load

is heavy, scheduling mechanism should not allow new processes to be created. In

other situation it should service the heavy load by providing some level of service

to all processes.

• Avoid indefinite postponement. In many cases, indefinite postponement can be

similar to deadlock. Indefinite postponement can be avoided by aging.

• Give preference to processes holding key resources. Sometimes a low priority

process may be holding a key resource; the resource can be in demand by high

priority processes. If the resource is preemptive then it is taken away from the low

priority process and allocated to the high priority process. If the resource is non-

preemptible, then the scheduling mechanism should give the better treatment than

it would ordinarily receive so that the process will release the key resource

sooner.

• Policy enforcement. Scheduling mechanism keeps track of policies that all the

stated policies are carried out in case of all systems.

• Proportionality. Scheduling mechanism should meet user’s expectation in case

of interactive systems.

• Meeting deadlines. Scheduling mechanism should avoid losing data in case of

real time system.

1.7 CPU Scheduling Algorithms Comparison Criteria
There are different criteria that have been used to compare CPU scheduling

algorithms. These characteristics make significant difference in determining the best

algorithm. The criteria contain the following [2, 3, 25]:

13

• CPU utilization To get the maximum CPU utilization, it is necessary to keep the

CPU as busy as possible. CPU utilization varies from 0% to 100 %. In real

system, it varies from 40% to 90%. For simulation purpose, CPU utilization is

considered as 100%.

• Throughput There is a direct relation between the work completed by the CPU

and CPU utilization. Number of processes that complete their execution per unit

time are called throughput; it is the measure of work completed by the CPU.

Algorithm provides maximum throughput is considered best algorithm.

• Turnaround Time The important criterion from a particular process is “how

much time is required to execute that process”. Turnaround time is defined as the

total time required to complete execution of the process. It is the sum of the time

spent waiting to get into memory, waiting into the ready queue, executing on the

CPU, and doing I/O.

• Waiting Time It is the amount of time process has been waiting in the ready

queue. Waiting time of the process can be affected by any algorithm but service

time cannot. Waiting time must be kept minimum.

• Response Time It is the amount of time from the submission of the process to the

ready queue until the process receives the first response is termed as response

time. Response Time must always be kept minimum.

In addition to the above criteria, a scheduling algorithm must also have the

following characteristics:

• Fairness

• Predictability

• Scalability

1.8 Scope of the Thesis

In this humble effort, it has been tried to cover at most all aspects of scheduling.

Initially, different concepts and methodologies of existing scheduling algorithms have

been discussed after which a new algorithm has been proposed. Having come up with the

new algorithm, next endeavor is to implement the proposed algorithm and compare its

14

performance with the existing scheduling algorithms on the basis of simulation and

results.

1.9 Thesis Objective

The objective was to study existing CPU scheduling algorithms then to propose a

novel CPU scheduling algorithm. The new algorithm was then implemented and

validated by comparing with other existing CPU scheduling algorithms. The comparison

was based on results obtained through simulation.

1.10 Research Contribution

 Proposed schemes improve existing CPU scheduling algorithms and provide

efficient results on the basis of the performance criteria. Thesis work has been supported

by the following Journal Papers those have been accepted and published in an

International Journal:

i. Saeeda Bibi, Farooque Azam, Sameera Amjad, Wasi Haider Butt, Hina Gull,

Rashid Ahmed, Yasir Chaudhry “An Efficient SJRR CPU Scheduling Algorithm”

International Journal of Computer Science and Information Security (IJCSIS),

Vol. 8, No. 2, 2010, pp. 222-230, ISSN: 1947-5500, Pittsburgh, PA 15213, USA

ii. Saeeda Bibi, Farooque Azam, Yasir Chaudhry “Combinatory CPU Scheduling

Algorithm” International Journal of Computer Science and Information Security

(IJCSIS), Vol. 8, No. 7, October 2010, pp. 39-43, ISSN: 1947-5500, Pittsburgh,

PA 15213, USA

1.11 Thesis Structure

 Chapter 2 discusses the Basic Concepts related to CPU scheduling. These include

process, scheduling queues, schedulers, disciplines etc. Existing CPU scheduling

Algorithms and their working are also explained in this chapter.

 Chapter 3 provides detailed description of Proposed CPU Scheduling Algorithms

such as steps, pseudo code and flow chart with examples and their performance

parameters.

15

Chapter 4 is specifically designed for Implementation and Results of proposed

algorithms and it also discusses comparison of proposed algorithms with existing

algorithms on the basis of performance parameters.

 Chapter 5 describes Conclusions and Future Work.

16

Chapter 2
2. LITERATURE SURVEY

2.1 Process

A program in execution is called a process that contains current value of the program

counter, variables and registers. It is also called unit of work in computer system. The

difference between program and process is that process is an activity and program is a

group of instructions [9]. There are two types of processes in computer system; one is

kernel process and other is user process. Kernel process is created by the kernel that looks

after various system tasks and user processes are created by the user. CPU is allotted to

each process by the operating system in order to perform computing work. In a uni-

program operating system there is only a single user process at a time that takes the

control of CPU. In a multiprogramming system, there are many independent processes at

a time competing for the control of CPU [1].

Operating systems perform different activities to manage processes. These activities

are [2]:

• To create and remove processes.

• To provide a means of communication among processes.

• To allocate hardware resources among processes.

• To act on exceptional conditions arise at the time of execution of the process;

these are interrupts and arithmetic errors.

• To control movement of the processes i.e. to make sure that each logically

enabled process makes progress towards its completion at a positive rate.

When a user job starts it execution a process is created and when the job terminates

that process is destroyed. Process can be static in nature when it gives rise to one or more

processes; on the other hand it is a dynamic concept that refers to a sequence of code in

execution, undergoing frequent state and attribute changes.

17

2.1.1 Process States

 The current activity of the process is called state of the process. A process can pass

through series of distinct process states. Due to different events a process can change its

states. Each process can be in one of these states; Start, Ready, Running, Waiting and

Halted [5].

Start: The process has just arrived.

Ready: The process is ready to take the control of CPU.

Running: Control of the CPU has been assigned to the process.

Waiting: The process is doing I/O work or blocked.

Halted: The process has completed its execution and is about to leave the control of

CPU.

 These state names can be different across operating systems. Figure 1 shows diagram

of process states.

2.1.2 Process Control Block

In operating system, all the information of a process is stored in Process Control

Block (PCB) or a Process Descriptor. When a new process is created, the operating

system creates its related PCB that is used to provide its run time description during the

life time of the process. When the process terminates, its PCB is released. The PCB is a

 Figure 1: Diagram of Process States

18

data structure that stores various aspects of process execution and resource usage

information. The information stored in PCB typically includes some or all of the

following parameters [1] and these are also shown in figure 2.

• Process State

• Process ID

• Program Counter Value

• Register Values

• Memory Management Information (base/ bound registers, page tables etc)

• Processor Scheduling Information (priority, last processor burst time etc)

• I/O status information

• List of open files

• Accounting information

Process Control Block (PCB) works as a repository for any information that has

different values for different processes [2].

Process State

Process Number

Program Counter

Registers

Memory Limits

List of open files

.

.

.

Figure 2: Process Control Block (PCB)

19

2.2 Scheduling Queues
Operating system maintains queues to keep record of current state of the processes.

These queues are used to figure out processes in the same state that are examined by

operating system resource allocation routines [5]. There are different types of queues that

are used by the operating system at various states of the processes. Three different types

of queues, generally needed for process scheduling [2] are listed below.

2.2.1 Job Queue
It consists of all the processes that enter into the system. All the processes that reside

on secondary storage and waiting for main memory allocation are stored in job queue.

2.2.2 Ready Queue
This queue consists of those processes that reside in main memory and are ready and

waiting for allocation of CPU for their execution. Generally, ready queue is stored in the

form of linked list.

2.2.3 I/O Device Queues
This queue consists of all those processes that are waiting for particular I/O devices.

There is a unique device queue for each device.

Figure 3: Queuing Diagram representation of Process Scheduling

20

2.3 Schedulers

Different scheduling queues come across the life time of the processes. Processes are

selected by the operating system from these scheduling queues in some way. The job to

be performed by the scheduler is to select processes from various queues. There are three

categories of schedulers that are used in the operating system. These are

2.3.1 Long-term scheduler
 The job of long-term scheduler is to select those processes from the pool of the

processes that should be brought into the main memory for execution. It is also called job

scheduler [2]. Long-term scheduler

• is invoked very infrequently

• controls the degree of multiprogramming

• can take more time to select a process for execution

• may be absent or use less on some systems like time sharing systems

• should do careful selection of I/O bound processes and CPU bound processes

2.3.2 Medium-term scheduler
 It performs an intermediate level of scheduling. Medium-term scheduler [2]

• presents in time sharing systems

• takes away processes from main memory therefore decreases degree of

multiprogramming

• improves the process-mix and change in memory requirements because of

swapping-in and swapping-out of processes.

Figure 4: Diagram of Midterm Scheduler

21

2.3.3 Short-term scheduler
 It decides to which process in main memory, CPU is allotted next for execution. It is

also called CPU scheduler. Whenever any event occurs that cause to block or preempt

current process; this scheduler is invoked [12]. Following are some events examples:

• clock interrupts

• I/O interrupts

• operating system calls

• signals

The main purpose of this scheduler is to maximize performance of the system in

accordance with the chosen set of criteria [5]. CPU scheduler [2]

• is invoked very frequently.

• must be very fast.

• wastes some time of CPU in process scheduling.

 2.4 Scheduling Disciplines

There are two categories of scheduling disciplines [25]: These are;

 2.4.1 Non preemptive Scheduling
 In non preemptive CPU scheduling algorithm, once the control of the CPU has been

given to any process, the process keeps the control of the CPU until it has completed its

execution or moved to its waiting state. In other words, when a higher priority process is

waiting to get charge of the CPU, the running process is not compelled to renounce

ownership of the processor. However, CPU is assigned to the other ready process when

the running process becomes suspended as a result of its own action [1, 2, 12]. As this

approach is intuitive therefore it is ordinary to use in process management. It also applies

in those systems that invoke the scheduler without using interrupts [13]. This approach is

good for “background” batch processes [18]. Examples of non preemptive scheduling

algorithms are FCFS, SJF and Priority without preemption [18].

2.4.2 Preemptive Scheduling
In preemptive scheduling algorithms, CPU is allocated to the highest priority process

among all processes in the ready queue. Whenever any high priority process becomes

ready to execute, the current process that is using the CPU is interrupted and CPU is

22

allotted to that process. Similarly, when the time slice of the process expires, it may

handover control of CPU to another process. Preemptive scheduling allows for better

service since any one process cannot take over the control of the processor for very long

[11]. Preemptive strategies provide quick response to higher priority processes or make

certain fair scheduling of the CPU among all processes [13]. There is overhead of context

switching in preemptive scheduling because each process rescheduling requires complete

process switch [1, 2, 12]. This approach is suitable for “foreground” interactive processes

[18]. Round Robin, Shortest Remaining Time First (SJF with preemption) and Priority

with preemption are various examples of preemptive scheduling algorithms [18, 23].

2.5 Burst Time

The two cycles in which an executing process swaps are CPU execution and I/O

waits. The time taken by the process to complete each CPU execution is called CPU

burst, and the time taken by the process to wait for an I/O to fulfill its I/O request is

called I/O burst. When any CPU algorithm is selected the data for burst time of

processes are taken. The reason behind it is that it prevents to take the control of the CPU

for those processes that have long burst time while short burst time processes are ready to

run [10].

2.6 Dispatcher

It is a component of the CPU scheduling function. It is a module that is used to

allocate the CPU to the process selected by the CPU scheduler. This involves [10]:

• saving state of currently running process

• loading state of selected process into registers

• executing the process at the location described by the program counter

The time taken for the dispatcher to stop one process and start another process is

called dispatch latency [2].

2.7 Goals of Scheduling Algorithm for Different Systems [16,
19]

All systems

• Fairness

23

• Policy enforcement

• Balance

Batch systems

• Maximize CPU utilization

• Minimize turnaround time

• Maximize throughput

Interactive systems

• Proportionality

• Minimize response time

 Real-time systems

• Predictability

• Meeting deadlines

2.8 CPU Scheduling Algorithms

CPU scheduling technique is used to allocate the CPU to the processes strategically

on the basis of specific criteria. Different approaches are used to select processes to

which control of CPU will be given. Each approach follows a scheduling algorithm for

this purpose and each algorithm has its own merits and demerits. The objective of CPU

scheduling is to maximize CPU utilization. For this purpose a process should be running

at all the times [11]. To choose algorithm in a particular situation, properties of

algorithms are used. Different performance parameters are used to compare the

performance of the algorithms [1, 2, 12]. Different scheduling algorithms are described

here:

 2.8.1 First Come First Served (FCFS) Scheduling
 First Come, First Served scheduling algorithm is the most simple and fundamental

scheduling technique. Control of the CPU is assigned to the process that requests it first.

The other processes are kept in the ready queue and are allocated the CPU to these

processes in the way in which they arrive. FCFS is non- preemptive scheduling

algorithm; process keeps the control of the CPU until it completes its execution or waits

for an I/O event [10]. This algorithm is easily implemented by using FIFO queue. When

the process comes into the ready queue, the PCB of the process is connected with the tail

24

of the ready queue. When the running process completes it execution, CPU is taken off

from that process and is allocated to the process at the head of the ready queue [20].

FCFS is not appropriate for time sharing systems [14]. In FCFS, if the process having

long burst time gets the control of the CPU, all the other processes having small burst

time will wait in the ready queue for the CPU until that process completes its execution.

This is called convoy effect [15, 16, 17]. FCFS is not used so far because its working is

not good enough under any specific set of system requirements [13]. As it is simple one

but there is smaller computational overhead in the execution of FCFS. FCFS scheduling

algorithm gives poor performance, lower throughput, longer average waiting time and

longer turnaround time. Figure 5 shows the flow chart of the FCFS algorithm:

Figure 5: Flow Chart of First Come First Served Scheduling Algorithm using Simulator

25

Consider the following example that describes the working of FCFS algorithms. Assume

the following set of processes with their burst time and arrival time:

Process
Name

P1 P2 P3 P4 P5

Burst
Time

10 29 3 7 12

Arrival
Time

0 1 2 3 4

Arrival Time of Processes on the basis of which Sorting is performed;

0 1 2 3 4

• Total Number of processes, count= 5
• I = 4 then total passes in which processes will sort in ascending order are 4.
• As j =1; control will be at first location in given list. Here the arrival time is 0;

which is compared with arrival time at second location. As 0<1, so in the next list
0 and 1 will be placed at the prior locations.

Original List

0 1 2 3 4

New List

0 1 2 3 4

• As j=2; control will be at second location in given list. The arrival time here is 1;
which is compared with arrival time at third location. As 1<2, therefore their
places will not be interchanged.

New List

• As j=3; control will be at third location in given list. Here the arrival time is 2;

which is compared with arrival time at fourth location. As 2<3, therefore their
places will not be interchanged.

0 1 2 3 4

0 1 2 3 4

26

New List

• As j=4; control will be at fourth location in given list. Here the arrival time is 3;

which is compared with arrival time at fifth location. As 3<4, so in the next list 3
and 4 will be placed at the prior locations.

New List

• Now I = 3, again iteration will start for j loop, it will check first four values

whether they are in ascending order or not. If they are not in ascending order then
arrange them in that order.

• Now I = 2, iteration will start third time for j loop and check values of first three

locations whether they are in ascending order or not. If they are in that order, they
remain left.

• Now I = 1, iteration will start fourth time for j loop and check the values of first

two locations whether they are in ascending order or not. If they are in ascending
order they remain at the places where they are.

• The resultant or final list will be

• According to the arrival time’s arrangement, process name and their burst times

are also arranged.

Process
Name

P1 P2 P3 P4 P5

Burst
Time

10 29 3 7 12

Arrival
Time

0 1 2 3 4

Sorting is completed here. Next step is to find the waiting time of each process.

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

27

• Find waiting time of each process;
Waiting time of P1, wtime[0] = 0
Waiting time of P2, wtime[1] = 10
Waiting time of P3, wtime[2] = 39
Waiting time of P4, wtime[3] = 42
Waiting time of P5, wtime[4] = 49

• Last step is to calculate total waiting time, average waiting time and average
turnaround time;

Total Waiting Time (tw_time) = 140
Average Waiting Time (avg_wt) = 28
Average Turnaround Time (avg_tatime) = 40.2

Gantt chart of above example

0 10 39 42 49 61

P1 P2 P3 P4 P5

Graphical Representation of FCFS Gantt chart

2.8.2 Shortest Job First (SJF) Scheduling
 Shortest Job First scheduling technique is a technique in which processes having

smallest burst time are executed first [13]. If processes have same burst time then FCFS

technique is used for execution of processes. SJF may be either preemptive or non-

preemptive. The choices are made when new process is arrived at the ready queue while

prior process is executing. If new process has smallest CPU burst time as compared to the

currently executing process then a preemptive SJF technique will preempt the currently

Gantt Chart of FCFS

0.00 20.00 40.00 60.00 80.00

P1

P2

P3

P4

P5

Pr
oc

es
se

s

Burst Time

Burst Time

Figure 6: Graphical Representation of FCFS Gantt chart

28

() .1 1 nnn t ταατ −+=+

executing process while non-preemptive SJF will not preempt the currently executing

process and allow the process to finish it CPU burst. Preemptive SJF is also known as

Shortest Remaining Time First (SRTF) [1, 2].

SJF scheduling is optimal because it provides minimum average waiting time,

average turnaround time [4, 15] but at the level of short term CPU scheduler it cannot be

implemented [2]. The main problem of SJF is to find out which of the presently running

process has shortest burst time [4, 24]. One approach is to compute approximate length of

the next CPU burst, in this way we can find the process with shortest predicted burst time

[2]. Generally, exponential average of the measured lengths of previous CPU bursts can

be used to predict next CPU burst. Here is the formula that defines an exponential

average forα , 0 ≤ α ≤ 1;

Here, nt be the length of the nth CPU burst and 1+nτ be our predicted value for the

next CPU burst.

Figure 7: Flow Chart of Shortest Job First Scheduling Algorithm using Simulator

29

 Non-preemptive SJF technique is not suitable for time sharing systems [6] while SRTF

is suitable for these systems. There is also a problem of starvation for long processes in

the SJF [13]. SRTF has higher overhead than SJF non-preemptive. SRTF has to keep

track of the elapsed service time of the running job and has to handle occasional

preemptions. Flow chart of SJF is shown above in Figure 7:

 Following example describes the working of Shortest Job First Scheduling algorithm.

Assume the following set of processes with their burst time and arrival time:

Process
Name

P1 P2 P3 P4 P5

Burst
Time

10 29 3 7 12

Arrival
Time

0 1 2 3 4

Burst Time of Processes on the basis of which Sorting is performed;

10 29 3 7 12

• Total Number of processes, count= 5
• I = 4 then total passes in which processes will sort in ascending order are 4.
• As j =1; control will be at first location in given list. Here the burst time is 10;

which is compared with burst time at second location. As 10<29, so in the next list
10 and 29 will be placed at the prior locations.

Original List
10 29 3 7 12

New List

10 29 3 7 12

• As j=2; control will be at second location in given list. The burst time here is 29;
which is compared with burst time at third location. As 29>3, therefore their
places will be interchanged.

New List

10 29 3 7 12

10 3 29 7 12

30

• As j=3; control will be at third location in given list. Here the burst time is 29;
which is compared with burst time at fourth location. As 29>7, therefore their
places will also be interchanged.

New List

• As j=4; control will be at fourth location in given list. Here the burst time is 29;

which is compared with burst time at fifth location. As 29>12, so in the next list
29 and 12 will be interchanged.

New List

• Now I = 3, again iteration will start for j loop, it will check first four values

whether they are in ascending order or not. If they are not in ascending order then
arrange them in that order. Then the list will become;

• Now I = 2, iteration will start third time for j loop and check values of first three

locations whether they are in ascending order or not. If they are in that order, they
remain left.

• Now I = 1, iteration will start fourth time for j loop and check the values of first

two locations whether they are in ascending order or not. If they are in ascending
order they remain at the places where they are.

• The resultant or final list will be

• According to the burst time’s arrangement, process name and their arrival time

are also arranged.

10 3 29 7 12

10 3 7 29 12

10 3 7 29 12

10 3 7 12 29

3 7 10 12 29

3 7 10 12 29

31

Process
Name

P3 P4 P1 P5 P2

Burst
Time

3 7 10 12 29

Arrival
Time

2 3 0 4 1

Sorting is completed here. Next step is to find the waiting time of each process.
• Find waiting time of each process;

Waiting time of P3, wtime[0] = 0
Waiting time of P4, wtime[1] = 3
Waiting time of P1, wtime[2] = 10
Waiting time of P5, wtime[3] = 20
Waiting time of P2, wtime[4] = 32

• Last step is to calculate total waiting time, average waiting time and average
turnaround time;

Total Waiting Time (tw_time) = 65
Average Waiting Time (avg_wt) = 13
Average Turnaround Time (avg_tatime) = 25.2

Gantt chart of above example

0 3 10 20 32 61

P3 P4 P1 P5 P2

Graphical Representation of SJF Gantt chart

Gantt Chart for SJF

0.00 20.00 40.00 60.00 80.00

P1

P2

P3

P4

P5

P
ro

ce
ss

es

Burst Time

Burst Time

 Figure 8: Graphical Representation of SJF Gantt chart

32

2.8.3 Round Robin (RR) Scheduling
 One of the oldest, simplest and most widely used scheduling algorithms is Round

Robin Scheduling algorithm. It is specially designed for time sharing system. The

working of RR is similar to FCFS, but in this algorithm to switch between processes

preemption is added [2]. A small unit of time called time slice or time quantum is

assigned to each process in this algorithm. All the ready processes are placed in the

queue. The CPU scheduler allocates CPU to the first process from the ready queue for the

time interval of assigned quantum. New coming processes are added to the tail of the

queue [30]. Here two situations occur; first is that when a process has completed its task

before the expiry of time quantum, its release the CPU voluntarily and is assigned to the

next process in the ready queue [26]. Second situation is that if the CPU burst of

presently running process is more than time quantum and the time quantum expires then

the control of the CPU is forcefully taken from that process [21]. Here context switching

occurs and the process will be stored at the tail of the ready queue [2]. In both cases, the

CPU scheduler allocates the control of CPU to the process next in the ready queue.

If there are n processes present in the ready queue and the time slice given to each

process is q, then preferably each process would take 1/n of the CPU time in chunks of q

time units, and each process would wait no longer than (n-1)q time units until its next

time slice [2].

The Round-Robin algorithm’s performance entirely depends on the size of the

quantum [17, 20, 24]. If the time quantum is too little then it causes a number of context

switches that affects the CPU efficiency. If the time quantum is too long then it causes

poor response time and estimates FCFS [24, 27, 29]. Single time quantum is required to

short processes for execution while several time quanta are used for execution of long

processes [5]. Size of the time quantum also affects the turnaround time [2]. In RR

algorithm average waiting time is high so deadlines are rarely met in RR policy [29].

Here is a flow chart of RR in figure 9;

33

Figure 9: Flow Chart of Round Robin Scheduling Algorithm using Simulator

 Given is the example of Round Robin Scheduling Algorithm that describes its working.

Assume the following set of processes with their burst time and arrival time:

Process
Name

P1 P2 P3 P4 P5

Burst
Time

10 29 3 7 12

Arrival
Time

0 1 2 3 4

Assume Time Quantum entered by the user is 10.

Arrival Time of Processes on the basis of which Sorting is performed;

0 1 2 3 4

• Total Number of processes, count= 5

34

• I = 4 then total passes in which processes will sort in ascending order are 4.
• As j =1; control will be at first location in given list. Here the arrival time is 0;

which is compared with arrival time at second location. As 0<1, so in the next list
0 and 1 will be placed at the prior locations.

Original List

0 1 2 3 4

New List

0 1 2 3 4

• As j=2; control will be at second location in given list. The arrival time here is 1;
which is compared with arrival time at third location. As 1<2, therefore their
places will not be interchanged.

New List

• As j=3; control will be at third location in given list. Here the arrival time is 2;

which is compared with arrival time at fourth location. As 2<3, therefore their
places will not be interchanged.

New List

• As j=4; control will be at fourth location in given list. Here the arrival time is 3;

which is compared with arrival time at fifth location. As 3<4, so in the next list 3
and 4 will be placed at the prior locations.

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

35

New List

• Now I = 3, again iteration will start for j loop, it will check first four values

whether they are in ascending order or not. If they are not in ascending order then
arrange them in that order.

• Now I = 2, iteration will start third time for j loop and check values of first three

locations whether they are in ascending order or not. If they are in that order, they
remain left.

• Now I = 1, iteration will start fourth time for j loop and check the values of first

two locations whether they are in ascending order or not. If they are in ascending
order they remain at the places where they are.

• The resultant or final list will be

• According to the arrival time’s arrangement, process name and their burst times

are also arranged.

Process
Name

P1 P2 P3 P4 P5

Burst
Time

10 29 3 7 12

Arrival
Time

0 1 2 3 4

Sorting is completed here.

• Next step is to find out the process having maximum burst time.
• Now calculate the maximum number of time longer burst time process will

execute.

Dim = (29/10) +1 = 3.9 =3

• Next step is to allocate ‘0’ value to arrays used to save the executed time of the
processes.

R_robin[0,0] = 0
r_robin[0,1] = 0
r_robin[0,2] = 0
r_robin[1,0] = 0
r_robin[1,1] = 0
r_robin[1,2] = 0

0 1 2 3 4

0 1 2 3 4

36

r_robin[2,0] = 0
r_robin[2,1] = 0
r_robin[2,2] = 0
r_robin[3,0] = 0
r_robin[3,1] = 0
r_robin[3,2] = 0

• Next find executed time, remaining burst time of processes and value of counter

that counts how many times a process will execute.
o For first process,

r_robin[0,0] = 10, btime[0] = 0 , counter[0] = 0

o For second process,
r_robin[1,0] = 10, btime[1] = 19
r_robin[1,1] = 10, btime[1] = 9
r_robin[1,2] = 9, btime[1] = 0, counter[1] = 2

o For third process,
r_robin[2,0] = 3, btime[2] = 0 , counter[2] = 0

o For fourth process,
r_robin[3,0] = 7, btime[3] = 0 , counter[3] = 0

o For fifth process,
r_robin[4,0] = 10, btime[4] = 2
r_robin[4,1] = 2, btime[4] = 0 , counter[4] = 1

• Second last step is to find waiting time of each process;

Waiting Time of P1, wtime[0] = 0
Waiting Time of P2, wtime[2] = 32
Waiting Time of P3, wtime[3] = 20
Waiting Time of P4, wtime[4] = 23
Waiting Time of P5, wtime[5] = 40

• Last step is to calculate total waiting time, average waiting time and average
turnaround time;

Total Waiting Time (tw_time) = 115
Average Waiting Time (avg_wt) = 23
Average Turnaround Time (avg_tatime) = 35.2

Gantt chart of above example

0 10 20 23 30 40 50 52 61

P1 P2 P3 P4 P5 P2 P5 P2

37

Graphical Representation of RR Gantt chart

2.8.4 Priority Scheduling
 In priority scheduling, externally assigned priority is used to allocate control of CPU

to the processes [13]. Process having higher priority takes the control of the CPU first and

then other processes having low priorities will take it. Processes having equal priorities

are executed on the basis of FCFS approach [21]. Priority can be assigned dynamically or

statically [4]. Generally there are fixed range of numbers that are used for priorities; such

as 0 to 7 or 0 to 4,095. There is no general agreement on lowest or highest priorities.

Some systems take low numbers as a highest priority and some take greater number as

highest priority. There are two ways to define priorities; these are internal and external. In

internally defined priorities there is some measurable quantity or quantities that are used

to compute the priority of a process and in externally defined priorities criteria external to

the operating system are set [2]. Priority scheduling may be preemptive or non-

preemptive. In non-preemptive priority scheduling, the running process will not

relinquish the control of CPU until it completes its execution. All the other processes

whether they have higher priorities or low priorities have to wait in the ready queue for

the processor. In preemptive priority scheduling, priorities of all incoming processes are

checked and if any process comes that have priority higher than the running process, the

running process has to preempt the CPU and CPU is allocated to the higher priority

process [2]. The major problem with this algorithm is indefinite blocking or starvation in

which low priorities processes wait indefinitely for the CPU [24]. This problem can be

Gantt Chart for RR

0.00 20.00 40.00 60.00 80.00

P1

P3

P5

P5

Pr
oc

es
se

s

Burst Time

Burst Time

Figure 10: Graphical Representation of RR Gantt chart

38

solved by using a technique called aging [24] in which priority of the lower processes

waiting for the CPU for long time is gradually increased [20]. In figure 11, flow chart of

priority scheduling algorithm is shown:

Figure 11: Flow Chart of Priority Scheduling Algorithm using Simulator

 In the following example, working of priority scheduling algorithm is described.

Assume the following set of processes with their burst time and arrival time:

Process
Name

P1 P2 P3 P4 P5

Burst
Time

10 29 3 7 12

Arrival
Time

0 1 2 3 4

Priority 6 8 2 1 4

39

Priority of Processes on the basis of which Sorting is performed;
6 8 2 1 4

• Total Number of processes, count= 5
• I = 4 then total passes in which processes will sort in ascending order are 4.
• As j =1; control will be at first location in given list. Here the priority is 6; which is

compared with priority at second location. As 6<8, so in the next list 6 and 8 will
be placed at the prior locations.

Original List

6 8 2 1 4

New List

6 8 2 1 4

• As j=2; control will be at second location in given list. The priority here is 8;
which is compared with priority at third location. As 8>2, therefore their places
will be interchanged.

New List

• As j=3; control will be at third location in given list. Here the priority is 8; which

is compared with priority at fourth location. As 8>1, therefore their places will
also be interchanged.

New List

• As j=4; control will be at fourth location in given list. Here the priority is 8; which

is compared with priority at fifth location. As 8>4, so in the next list 8 and 4 will
also be interchanged.

6 8 2 1 4

6 2 8 1 4

6 2 8 1 4

6 2 1 8 4

40

New List

• Now I = 3, again iteration will start for j loop, it will check first four values

whether they are in ascending order or not. If they are not in ascending order then
arrange them in that order. Then the list will become;

• Now I = 2, iteration will start third time for j loop and check values of first three

locations whether they are in ascending order or not If they are not in ascending
order then arrange them in that order. Then the list will become;

• Now I = 1, iteration will start fourth time for j loop and check the values of first

two locations whether they are in ascending order or not. If they are in ascending
order they remain at the places where they are.

• The resultant or final list will be

• According to the priority’s arrangement, process name and their arrival time are

also arranged.

Process
Name

P4 P3 P5 P1 P2

Burst
Time

7 3 12 10 29

Arrival
Time

3 2 4 0 1

Priority 1 2 4 6 8

Sorting is completed here. Next step is to find the waiting time of each process.

• Find waiting time of each process;

6 2 1 8 4

6 2 1 4 8

2 1 4 6 8

1 2 4 6 8

1 2 4 6 8

41

Waiting time of P4, wtime[0] = 0
Waiting time of P3, wtime[1] = 7
Waiting time of P5, wtime[2] = 10
Waiting time of P1, wtime[3] = 22
Waiting time of P2, wtime[4] = 32

• Last step is to calculate total waiting time, average waiting time and average
turnaround time;

Total Waiting Time (tw_time) = 71
Average Waiting Time (avg_wt) = 14.2
Average Turnaround Time (avg_tatime) = 26.4

Gantt chart of above example

0 7 10 22 32 61

P4 P3 P5 P1 P2

Graphical Representation of Priority Gantt chart

2.8.5 Multiple-Level Queues (MLQ) Scheduling
|All of the above scheduling disciplines are used for particular applications. But

the system in which different jobs are running concurrently good performance cannot be

obtained if the system uses only one scheduling discipline. This problem can be solved

by combining several scheduling algorithms in one system. This technique is called

multilevel queue scheduling. In multilevel queue scheduling ready queue is separated into

different number of queues. Each queue in multilevel queues scheduling has its own

scheduling algorithm [10]. These queues are separated on the basis of foreground

Gantt Chart for Priority

0.00 20.00 40.00 60.00 80.00

P1

P2

P3

P4

P5

Pr
oc

es
se

s

Burst Time

Burst Time

Figure 12: Graphical Representation of Priority Gantt chart

42

processes and background processes. Round Robin (RR) algorithm is used to schedule

foreground queue while First Come First Served (FCFS) algorithm is used to schedule

background processes. Processes are permanently assigned to the specific queue based on

their properties for example process type, process priority or memory size [2, 27]. The

scheduling among the queues is implemented as fixed priority preemptive scheduling.

For example, foreground queue may have higher priority than background queue. Figure

13 shows multilevel queue scheduling [2].

Figure 13: Multilevel Queue Scheduling

Processes might be divided into the following classes [2].

• High priority system processes

• Interactive programs

• Interactive editing processes

• Batch jobs

• Student processes

The subdivision of above classes may also exist. For example system processes can

be subdivided into these [20]:

• Service of hardware are high priority interrupts

• Services of system calls or traps.

If the hardware interrupts have higher priority then they may have a separate ready

queue. All the processes of highest priority queue are serviced first then processes of next

43

queue are served using its own scheduling technique. We can say that it is a preemptive

priority type scheduling discipline among the queues. When all the processes of higher

priority queues are completely executed, the process from the lowest priority queue may

be selected for execution. This process can be preempted by arrival of a process in one of

the higher priority queues [1, 12]. The other type of scheduling among the queues is to

time slice between the queues in which each queue is given a certain amount of CPU time

to schedule its processes [2].

2.8.6 Multilevel Feedback Queue Scheduling
It is similar to multilevel queue scheduling but it allows processes to move between

queues depending upon its CPU time [27]. Higher priority queues keep the processes

that are I/O-bound and interactive processes while lower priority queues hold the

processes requiring larger CPU-time [2, 15]. Processes from higher priority, non empty

ready queue are selected by the scheduler when CPU is available. It uses round robin

scheduling within the queues. Priority of the processes is adjusted by the scheduler

dynamically [22]. Problem of starvation can be removed by moving processes in the

lower priority queue into the higher priority queue. This scheme is called aging [10].

There are some parameters that are used to define multilevel feedback queue. These are

[28];

• Number of queues

• Scheduling algorithms for each queue

• Conditions for increasing or decreasing a process priority

• Methods used to decide which queue a process will enter first time

Figure 14 shows the working of multilevel feedback queues.

Figure 14: Multilevel Feedback Queue Scheduling

44

Multilevel Feedback Queue Scheduling is the most general as well as the most

complex scheduling technique.

2.9 Additional Algorithms

2.9.1 Fixed Priority Scheduling Algorithm
In this algorithm, initially a priority level that is permanent and unchangeable is

assigned to each process. It is easy to understand, manage and implement but it does not

remove starvation. A low priority process will always have to wait for higher priority

processes to relinquish the control of CPU and its priority always remains low [10].

2.9.2 Rate Monotonic Scheduling Algorithm
This scheduling algorithm is used in real time operating systems having static priority

class of scheduling. The priorities are assigned on the basis of duration of execution time

of the processes; shorter the duration of execution, higher will be priority of that process

[30].

The main problem with this algorithm is that CPU can never be used 100 percent

completely when we use this algorithm. Its main advantage is that it is optimal as

compared to fixed priority scheduling algorithms [10].

2.9.3 Rate Monotonic with Delayed Preemption Scheduling Algorithm
The central problem with Rate Monotonic is that there are a large number of context

switches in it which may be very expensive. The Rate Monotonic with delayed

Preemption reduces the number of context switches by allowing the process in execution

to delay in yielding the CPU to the higher priority processes [10].

2.9.4 Deadline Monotonic Scheduling Algorithm
In this algorithm priority of the process is calculated by the time interval between the

starting time of the process and the deadline of the process. Processes having shorter interval

of time are given higher priorities while processes having larger interval of time are given

lower priorities. This algorithm enforces the constraints to systems that each process deadline

must be less than or equal to its period [10].

45

2.9.5 Dynamic Priority Scheduling Algorithm
In this algorithm, changing can be made in the priority of the process; the reason that

makes it more complex and considerably more powerful than other algorithms. In this

algorithm starvation can be removed by using aging of the processes. These types of

algorithms are very helpful in real time systems. If any process wants to complete its

execution and its deadline is coming then the priority of that process can be increased so that

it can be able to complete timely. When there is heavy workload in the system, it will be very

difficult to predict dynamic algorithms [10].

2.9.6 Earliest Dead Line First Scheduling Algorithm
This algorithm uses the priority that is calculated on the basis of the deadline of the

process. Highest priority is given to the process that has shortest remaining time when its

deadline is scheduled. It is a preemptive scheduling algorithm that forcefully takes the control

of CPU from the currently running low priority process if any higher priority process is ready

to run. Its CPU utilization is not greater than 100 percent [10].

2.9.7 Least Slack Time First Scheduling Algorithm
Each process uses the priority based upon its slack time. The slack time of a process is

calculated by using this formula

 Slack time = absolute deadline – current time – remaining compute time.

Process with greater slack time has lower priority while process with smaller slack time

has higher priority. A large number of context switches are produced in this algorithm and it

always needs knowledge for execution time of tasks [10].

2.10 Summary
In this chapter an overview of the well known CPU scheduling techniques is provided.

All the necessary details of existing algorithms, their advantages and disadvantages have

been discussed. It is essential to mention here that the proposed SJRR CPU scheduling

algorithm is an improvement in Round Robin scheduling algorithm. Similarly,

Combinatory CPU scheduling algorithm is somehow extension of Shortest Job First

scheduling algorithm. Both of these proposed algorithms and their comparisons with

existing algorithms will be discussed in detail in the next chapters.

46

Chapter 3

3. PROPOSED CPU SCHEDULING ALGORITHMS

In this chapter proposed CPU scheduling algorithms “Shortest Job Round Robin

(SJRR)” and “Combinatory Algorithm” are presented. SJRR Algorithm sorts all

incoming processes according to their burst time in ascending order in the ready queue

and then uses the time quantum to execute processes. In Combinatory Algorithm, a new

factor F is suggested with each process. This factor adds two basic factors (arrival time

and burst time) of all incoming processes and then sorts all of the processes according to

this factor in ascending order. After sorting, execution of the processes is performed one

by one. Details, methodology and performance parameters are discussed in this chapter.

3.1 Introduction
Proposed SJRR CPU scheduling algorithm is based on sorting of processes with

respect to burst time in ascending order in the ready queue and then utilizing time

quantum to allocate processes to the CPU for execution. At the core of the proposed

algorithm work two well known and well practiced algorithms namely Shortest Job First

scheduling algorithm and the Round Robin scheduling algorithm.

Proposed Combinatory CPU scheduling algorithm adds two basic factors of

processes that are arrival time and burst time and store it into a new factor F. Processes

are sorted in ascending order in the ready queue according to this factor and after that

execution of processes start in the ascending order. Proposed scheduling algorithms are

efficient and have better performance as compared to other CPU scheduling techniques

which has been discussed in the upcoming sections.

3.2 Explanation of SJRR and Combinatory Algorithms
SJRR scheduling algorithm is based on two existing scheduling algorithms,

Shortest Job First algorithm and Round Robin algorithm. Shortest Job First algorithm is

non-preemptive technique that executes smaller burst time processes first and longer

processes at the end. Round Robin algorithm is preemptive in nature and uses the concept

of time quantum to execute processes. In proposed SJRR algorithm, an efficient sorting

technique is used to sort the number of processes according to their burst time in

47

ascending order in the ready queue. The time quantum is taken as mid value of the burst

time of the sorted list of the processes. If there are odd numbers of processes in the ready

queue then the burst time of middle most process is used as a time quantum otherwise

take the average of the burst time of the two middle most processes in the queue. This

time quantum is used to execute the processes like Round Robin Scheduling algorithm.

The calculated time quantum is given to the first smallest burst time process in the ready

queue for execution. Upon the completion of the time quantum, the process is preempted

and CPU control is transferred to the next smaller burst time process in the ready queue.

In this way, time quantum is assigned to each process in the ready queue for its

execution. Each process will execute according to the given time quantum. If any process

completes its execution in the given time quantum then it gets off the CPU and control of

the CPU is transferred to the next process in the queue otherwise that process will be

preempted and placed at the end of the ready queue.

Combinatory scheduling algorithm is based on a new factor F that is calculated by

taking sum of the two basic factors (arrival time and burst time). Here is the equation that

summarizes this relation:

F= Arrival Time + Burst Time

On the basis of this new factor F; sorting is performed that arrange the processes

in ascending order in ready queue i.e. the processes having lowest value of factor F are

placed at start of the ready queue and the processes having highest value of the processes

are placed at end of the queue. The process having lowest value of factor F will execute

first and the process having highest value of factor F will execute at last. Depend on this

new factor CPU executes the process that:

• Has shortest burst time

• Submit to the system at start

There are a number of factors used to measure the performance of the CPU

scheduling algorithms. These include CPU utilization, waiting time, turnaround time,

throughput, response time, fairness, context switching and starvation etc. CPU utilization,

waiting time, turnaround time, throughput and response time are low in first come first

served algorithm because longer processes can hog the processor. This algorithm does

not provide fairness between processes. As shortest job first algorithm minimizes waiting

time and turnaround time, maximizes throughput and response time; therefore it is

48

optimal. But there is a problem of starvation in SJF because longer processes have to wait

for a long time if upcoming processes have shorter burst time as compared to the present

processes so it does not provide fairness between processes. There is a problem of

context switching in round robin scheduling algorithm especially with the small time unit

but if the time unit is greater then it works like first come first served. In priority based

algorithm, processes having higher priorities are executed first. In this algorithm, problem

of aging occurs.

Proposed SJRR CPU scheduling algorithm not only gives minimum waiting time,

minimum turnaround time and also maximizes CPU utilization. As it provides fairness

between processes therefore no starvation occurs in it and it is suitable for time sharing

system. There is no more overhead of context switching in this proposed scheduling

algorithm like round robin scheduling algorithm.

Proposed Combinatory CPU scheduling algorithm gives minimum waiting time,

minimum turnaround time and maximizes CPU utilization as compared to the existing

CPU scheduling algorithms and proposed SJRR CPU scheduling algorithm. The problem

of starvation has been resolved at much more extent in this algorithm. It also resolves the

problem of context switching completely. In the upcoming sections, the steps, pseudo

code and flow chart of the proposed scheduling algorithms are presented that are used for

better understanding of new algorithms. Simple examples are also described here that

depict the actual working of the proposed algorithms.

3.3 Steps of SJRR Scheduling Algorithm
1. Take list of processes, their burst time, arrival time and time quantum.

2. Arrange processes and their relative burst time in ascending order using any

sorting technique.

3. Iterate through the given list of processes to find the processes having maximum

burst time and initialize waiting time of each process with zero.

a. If number of processes are odd then

b. Take burst time of the middle process and assign this value to the time

quantum

4. Else

49

a. Take the average of burst time of two middle most processes and assign

this value to the time quantum

5. Find maximum number of time each process will execute by dividing maximum

burst time with time quantum then add one in the result.

6. Initialize an array with zero that is used for storing the burst time that has been

completed.

7. Iterate through the given list of processes.

a. Initialize a variable with zero that is used as a counter.

b. Iterate until the burst time of the process is greater than zero.

c. If burst time is greater than or equal to time quantum then

i. Store remaining burst time

ii. Store completed burst time

iii. Increment counter

d. Else

i. Store completed burst time

ii. Assign zero to burst time variable

iii. Increment counter

e. Assign value of counter minus one in counter array

8. Iterate through the list of processes

a. Iterate through the length of counter array

i. If value of variable used for counter is equal to the counter of

processes then

1. Iterate through the process coming from the list of

processes

2. If value of that process is not equal to the upcoming

process then

50

a. Add the waiting time of the upcoming

process with the burst time completed.

ii. Else

1. Iterate through the list of processes

2. If that process is not equal to the upcoming process then

a. Add waiting time of the upcoming process with the

burst time completed.

9. Iterate through the list of processes

a. Add total waiting time with waiting time of each process to find total

waiting time

b. Add burst time and waiting time of each process to find turnaround time

c. Add total turnaround time and turnaround time of each process to find

total turnaround time

10. Average waiting time is calculated by diving total waiting time with total number

of processes.

11. Average turnaround time is calculated by dividing total turnaround time with total

number of processes.

3.4 Pseudo Code of SJRR Scheduling Algorithm
 burst 0

max 0
temp 0
total_tatime 0.0
tw_time 0.0
avg_wt 0.0
avg_tatime 0.0

For I process-1 to 0

 For j 1 to process
 IF btime[j-1] > btime[j]

 temp btime[j-1]
 btime[j-1] btime[j]

 btime[j] temp
 ptemp proname[j-1]

 proname[j-1] proname [j]
 proname[j] ptemp

For I 0 to process
 btime[i] bu[i]

51

 proname[i] pname[i]
 IF max < btime[i]
 max btime[i]
 b[i] btime[i
 wtime[i] 0

IF process%2!=0
 mid (process+1)/2
 t btime[mid]

ELSE
 mid process/2
 t (btime[mid]+btime[mid+1])/2

dim max/t + 1

For I 0 to process
 For j 0 to dim
 r [I,j] 0

For I 0 to process
 j 0
 While btime[i]>0
 IF btime[i] >=t
 btime[i] btime[i]-t
 r[I,j] t
 j j+1

 ELSE
 r[I,j] btime[i]
 btime[i] 0
 j j+1
 counter[i] j-1

For j 0 to process
 For I 0 to counter [j]
 IF I = = counter[j]
 For k 0 to j
 IF k != j
 wtime[j] wtime[j] + r[k,i]
 ELSE
 For k o to process
 IF k != j
 wtime[j] wtime[j] +r[k, i]

 For j 0 to process
 tw_time tw_time + wtime[j]
 tatime[j] b[j] + wtime[j]
 total_ tatime total_tatime+ tatime[j]

52

 avg_wt tw_time / process
 avg_tatime total_tatime/ process

3.5 Flow Chart of SJRR Scheduling Algorithm

Figure 15: Flow Chart of SJRR CPU Scheduling Algorithm using Simulator

3.6 Example of SJRR Scheduling Algorithm
Assume the following set of processes with their burst time and arrival time:

Process
Name

P1 P2 P3 P4 P5

Burst
Time

10 29 3 7 12

Arrival
Time

0 1 2 3 4

53

Original List
10 29 3 7 12

• Process having maximum burst time is P2 and maximum burst time i.e. max=29
• Burst time of each process;

b[1] = 10,
b[2] = 29,
b[3] = 3,
b[4] = 7,
b[5] = 12

• Waiting time of each process will be zero at start
wtime[1] = 0,
wtime[2] = 0,
wtime[3] = 0,
wtime[4] = 0,
wtime[5] = 0

• Total Number of processes, count= 5
• I = 4 then total passes in which processes will sort in ascending order are 4.
• As j =1; control will be at first location in given list. Here the burst time is 10;

which is compared with burst time at second location. As 10<29, so in the next list
10 and 29 will be placed at the prior locations.

Original List

10 29 3 7 12

New List

10 29 3 7 12

• As j=2; control will be at second location in given list. The burst time here is 29;
which is compared with burst time at third location. As 29>3, therefore their
places will be interchanged. Now in the next list 3 will be at second location and
29 will be at third location.

New List

10 29 3 7 12

10 3 29 7 12

54

• As j=3; control will be at third location in given list. Here the burst time is 29;
which is compared with burst time at fourth location. As 29>7, therefore their
places will be interchanged. Now in the next list 7 will be at third location and 29
will be at fourth location.

New List

• As j=4; control will be at fourth location in given list. Here the burst time is 29;

which is compared with burst time at fourth location. As 29>12, therefore their
places will be interchanged. Now in the next list 12 will be at fourth location and
29 will be at fifth location

New List

• Now I = 3, again iteration will start for j loop
• As j =1; control will be at first location in given list. Here the burst time is 10;

which is compared with burst time at second location. As 10>3, therefore their
places will be interchanged. Now in the next list 3 will be at first location and 10
will be at second location.

New List

• As j =2; control will be at second location in given list. Here the burst time is 10;
which is compared with burst time at third location. As 10>7, therefore their
places will be interchanged. Now in the next list 7 will be at second location and
10 will be at third location

10 3 29 7 12

10 3 7 29 12

10 3 7 29 12

10 3 7 12 29

10 3 7 12 29

3 10 7 12 29

3 10 7 12 29

55

New List

• As j =3; control will be at third location in given list. Here the burst time is 10;

which is compared with burst time at fourth location. As 10<12, so in the next list
10 and 12 will be placed at the prior locations.

New List

• Now I = 2, again iteration will start for j loop and check the values of first three

locations whether they are in ascending order or not. If they are in the ascending
order then they remain left otherwise arrange them in that order.

• Now I = 1, again iteration will start for j loop and check the values of first two

locations whether they are in ascending order or not. If they are in the ascending
order then they remain left otherwise arrange them in that order.

• The resultant or final list will be

• According to the burst time arrangement, process name and their arrival times are

also arranged.

Process
Name

P3 P4 P1 P5 P2

Burst
Time

3 7 10 12 29

Arrival
Time

2 3 0 4 1

Sorting is completed here. Next step is to find out the time quantum that is used to
execute processes.

• As number of processes i.e. count=5, count1 will be (5+1)/2 = 3
• Time quantum, t = btime[3-1] = btime[2] = 10

• Next step to calculate the maximum number of time longer burst time process will

execute.

3 7 10 12 29

3 7 10 12 29

3 7 10 12 29

3 7 10 12 29

56

Dim = (29/10) +1 = 3.9 =3

• Next step is to allocate ‘0’ value to arrays used to save the executed time of the
processes.

R_robin[0,0] = 0
r_robin[0,1] = 0
r_robin[0,2] = 0
r_robin[1,0] = 0
r_robin[1,1] = 0
r_robin[1,2] = 0
r_robin[2,0] = 0
r_robin[2,1] = 0
r_robin[2,2] = 0
r_robin[3,0] = 0
r_robin[3,1] = 0
r_robin[3,2] = 0

• Next find executed time, remaining burst time of processes and value of counter

that counts how many times a process will execute.
o For first process,

r_robin[0,0] = 3, btime[0] = 0 , counter[0] = 0

o For second process,
r_robin[1,0] = 7, btime[1] = 0 , counter[1] = 0

o For third process,
r_robin[2,0] = 10, btime[2] = 0 , counter[2] = 0

o For fourth process,
r_robin[3,0] = 10, btime[3] = 2
r_robin[3,1] = 2, btime[3] = 0 , counter[3] = 1

o For fifth process,
r_robin[4,0] = 10, btime[4] = 19
r_robin[4,1] = 10, btime[4] = 9
r_robin[4,2] = 9, btime[4] = 0, counter[4] = 2

• Second last step is to find waiting time of each process;

Waiting Time of P3, wtime[0] = 0
Waiting Time of P4, wtime[2] = 3
Waiting Time of P1, wtime[3] = 10
Waiting Time of P5, wtime[4] = 30
Waiting Time of P2, wtime[5] = 32

• Last step is to calculate total waiting time, average waiting time and average
turnaround time;

Total Waiting Time (tw_time) = 75

57

Average Waiting Time (avg_wt) = 15
Average Turnaround Time (avg_tatime) = 27.2

Gantt chart of above example

0 3 10 20 30 40 42 52 61

P3 P4 P1 P5 P2 P5 P2 P2

Graphical Representation of SJRR Gantt chart

3.7 C# Code of SJRR Scheduling Algorithm
To compare and contrast the working and performance of proposed SJRR CPU

scheduling algorithm with the existing scheduling algorithms, we implemented these

algorithms. Front end is implemented in C# and at back end Microsoft Access Database

is used. C# code of proposed SJRR algorithm is presented here to make it more

convenient.
 Public void SJRR()
 {
 //variables used
 int I, j, k, burst = 0;
 int[] btime = new int[count];
 int[] b = new int[count];
 int[,] r_robin = new int[1000, 1000];
 int[] counter = new int[count];
 int max = 0, temp = 0;
 int dim;
 double total_tatime = 0.0, tw_time = 0.0, avg_wt = 0.0;
 double[] wtime = new double[count];
 double[] tatime = new double[count];
 String[] proname = new String[count];
 String ptemp = “”;

Gantt Chart for SJRR

0.00 20.00 40.00 60.00 80.00

P1

P2

P3

P4

P5

P5

P2

P2

Pr
oc

es
se

s

Burst Time

Burst Time

Figure 16: Graphical Representation of SJRR Gantt chart

58

 //find maximum burst time
 for (I = 0; I < count; i++)
 {
 if (max < btime[i])
 max = btime[i];
 b[i] = btime[i];
 wtime[i] = 0;
 }

 //swap processes
 for (I = count – 1; I > 0; i--)
 {
 for (j = 1; j < count; j++)
 {
 if (btime[j – 1] > btime[j])
 {
 temp = btime[j – 1];
 btime[j – 1] = btime[j];
 btime[j] = temp;
 ptemp = proname[j – 1];
 proname[j – 1] = proname[j];
 proname[j] = ptemp;
 }
 }
 }

 //find time quantum
 int count1 = 0, t=0;
 if (count % 2 == 0)
 {
 count1 = count / 2;
 t = (btime[count1-1] + btime[count1]) / 2;
 }
 else
 {
 count1 = (count + 1) / 2;
 t = btime[count1-1];
 }
 MessageBox.Show(“” + t);

 //find maximum number of time,time quantum will be
 //assigned
 dim = max /t + 1;

 //initializing Round robin array
 for (I = 0; I < count; i++)
 {
 for (j = 0; j <= dim; j++)
 {
 r_robin[I, j] = 0;
 }
 }

 //allocating time quantum and placing value in the

 //Rrobin array
 I = 0;
 while (I < count)

59

 {
 j = 0;
 while (btime[i] > 0)
 {
 if (btime[i] >= t)
 {
 btime[i] = btime[i] – t;
 r_robin[I, j] = t;
 j++;
 }
 else
 {
 r_robin[I, j] = btime[i];
 btime[i] = 0;
 j++;
 }
 }
 counter[i] = j – 1;
 i++;
 }

 //find waiting time of each process
 for (j = 0; j < count; j++)
 {
 for (I = 0; I <= counter[j]; i++)
 {
 if (I == counter[j])
 {
 for (k = 0; k < j; k++)
 {
 if (k != j)

 wtime[j] += r_robin[k, i];
 }
 }
 else
 for (k = 0; k < count; k++)
 {
 if (k != j)
 wtime[j] += r_robin[k, i];

 }
 }

 }

 //calculating total waiting time, average waiting time

 //and total turnaround
 for (j = 0; j < count; j++)
 {
 tw_time = tw_time + wtime[j];
 tatime[j] = b[j] + wtime[j];
 total_tatime += tatime[j];

 }
 avg_wt = tw_time / count;
 total_tatime = total_tatime / count;

60

 //catch exception
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
 }

3.8 Steps of Combinatory Scheduling Algorithm
1. Take list of processes, their burst time and arrival time.

2. Find the factor F by adding burst time and arrival time of processes.

3. On the basis of factor, arrange processes and their relative burst time in ascending

order using any sorting technique.

4. Calculate waiting time of each process.

5. Iterate through the list of processes

a. Add total waiting time with waiting time of each process to find total

waiting time

b. Add burst time and waiting time of each process to find turnaround time

c. Add total turnaround time and turnaround time of each process to find

total turnaround time

6. Average waiting time is calculated by diving total waiting time with total number

of processes.

7. Average turnaround time is calculated by dividing total turnaround time with total

number of processes.

3.9 Pseudo Code of Combinatory Scheduling Algorithm
f 0
temp 0
total_tatime 0.0
tw_time 0.0
avg_wt 0.0
avg_tatime 0.0

For I 0 to process
 factor[i] btime[i] + atime[i]

For I process-1 to 0

 For j 1 to process
 IF factor [j-1] > factor[j]

61

 f f actor[j-1]
 factor [j-1] factor[j]
 factor [j] f

 temp btime[j-1]
 btime[j-1] btime[j]

 btime[j] temp
 ptemp proname[j-1]

 proname[j-1] proname [j]
 proname[j] ptemp

 wtime [1] 0
 For j 1 to count
 wtime[j] btime [j-1] + wtime [j-1]

 For j 0 to process
 tw_time tw_time + wtime[j]
 tatime[j] b[j] + wtime[j]
 total_ tatime total_tatime+ tatime[j]
 avg_wt tw_time / process
 avg_tatime total_tatime/ process
3.10 Flow Chart of Combinatory Scheduling Algorithm

Figure 17: Flow Chart of Combinatory CPU Scheduling Algorithm using Simulator

62

3.11 Example of Combinatory Scheduling Algorithm
Assume the following set of processes with their burst time, arrival time and factor:

Process
Name

P1 P2 P3 P4 P5

Burst
Time

10 29 3 7 12

Arrival
Time

0 1 2 3 4

Factor 10 30 5 10 16

 Factor (i.e. addition of Arrival Time and Burst Time) of Processes used for sorting;

10 30 5 10 16

• Total Number of processes, count= 5
• I = 4 then total passes in which processes will sort in ascending order are 4.
• As j =1; control will be at first location in given list. Here the factor is 10; which is

compared with factor at second location. As 10<30, so in the next list 10 and 29
will be placed at the prior locations.

Original List

10 30 5 10 16

New List

10 30 5 10 16

• As j=2; control will be at second location in given list. The factor here is 30;
which is compared with factor at third location. As 30>5, therefore their places
will be interchanged. Now in the next list 5 will be at second location and 30 will
be at third location.

New List

• As j=3; control will be at third location in given list. Here the factor is 30; which

is compared with factor at fourth location. As 30>10, therefore their places will be
interchanged. Now in the next list 10 will be at third location and 30 will be at
fourth location.

10 30 5 10 16

10 5 30 10 16

63

New List

• As j=4; control will be at fourth location in given list. Here the factor is 30; which

is compared with factor at fifth location. As 30>16, therefore their places will be
interchanged. Now in the next list 16 will be at fourth location and 30 will be at
fifth location

New List

• Now I = 3, again iteration will start for j loop
• As j =1; control will be at first location in given list. Here the factor is 10; which

is compared with factor at second location. As 10>5, therefore their places will be
interchanged. Now in the next list 5 will be at first location and 10 will be at
second location.

New List

• As j =2; control will be at second location in given list. Here the factor is 10;
which is compared with factor at third location. As 10=10, therefore their places
will not be interchanged.

New List

10 5 30 10 16

10 5 10 30 16

10 5 10 30 16

10 5 10 16 30

10 5 10 16 30

5 10 10 16 30

5 10 10 16 30

5 10 10 16 30

64

• As j =3; control will be at third location in given list. Here the factor is 10; which
is compared with factor at fourth location. As 10<16, so in the next list 10 and 16
will be placed at the prior locations.

New List

• Now I = 2, again iteration will start for j loop and check values of first three

locations whether they are in ascending order or not. If they are in ascending
order then they remain left otherwise arrange them in that order.

• Now I = 1, again iteration will start for j loop and check values of first two

locations whether they are in ascending order or not. If they are in ascending
order then they remain left otherwise arrange them in that order.

• The resultant or final list will be

• According to the factor’s arrangement, process name and their burst times are also

arranged.

Process
Name

P3 P1 P4 P5 P2

Burst
Time

3 10 7 12 29

Factor 5 10 10 16 30

Sorting is completed here. Next step is to find the waiting time of each process.

• Find waiting time of each process;

Waiting time of P3, wtime[0] = 0
Waiting time of P1, wtime[1] = 3
Waiting time of P4, wtime[2] = 13
Waiting time of P5, wtime[3] = 20
Waiting time of P2, wtime[4] = 32

• Last step is to calculate total waiting time, average waiting time and average
turnaround time;

Total Waiting Time (tw_time) = 68
Average Waiting Time (avg_wt) = 13.6
Average Turnaround Time (avg_tatime) = 25.8

5 10 10 16 30

5 10 10 16 30

5 10 10 16 30

65

Gantt chart of above example

0 3 13 20 32 61

P3 P1 P4 P5 P2

Graphical Representation of Combinatory Gantt chart

3.12 C# Code of Combinatory Scheduling Algorithm
public void Combinatory()
 {
 //variables used
 int I, j, k;
 int[] btime = new int[count];
 int[] atime = new int[count];
 int[] factor = new int[count];
 int temp = 0, f = 0;
 double total_tatime = 0.0, tw_time = 0.0, avg_wt = 0.0;
 double[] wtime = new double[count];
 double[] tatime = new double[count];
 String[] proname = new String[count];
 String ptemp = “”;

 //find factor
 for (I = 0; I < count; i++)
 {
 factor[i] = btime[i] + atime[i];

 }
 //swap processes
 for (I = count – 1; I > 0; i--)
 {
 for (j = 1; j < count; j++)
 {

Gantt Chart for Combinatory

0.00 20.00 40.00 60.00 80.00

P1

P2

P3

P4

P5

Pr
oc

es
se

s

Burst Time

Burst Time

Figure 18: Graphical Representation of Combinatory Gantt chart

66

 if (factor[j – 1] > factor[j])
 {
 f = factor[j – 1];
 factor[j – 1] = factor[j];
 factor[j] = f;
 temp = btime[j – 1];
 btime[j – 1] = btime[j];
 btime[j] = temp;
 ptemp = proname[j – 1];
 proname[j – 1] = proname[j];
 proname[j] = ptemp;
 }

 }
 }
 //calculate waiting time
 wtime[1] = 0;
 for (j = 1; j < count; j++)
 {
 wtime[j] = btime[j – 1] + wtime[j – 1];

 }

//calculate total waiting time, average waiting time //and total turnaround
 for (j = 0; j < count; j++)
 {
 tw_time = tw_time + wtime[j];
 tatime[j] = btime[j] + wtime[j];
 total_tatime += tatime[j];
 }
 avg_wt = tw_time / count;
 total_tatime = total_tatime / count;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
 }

3.13 Performance Parameters
There are two orientations of performance criteria; these are user oriented criteria

and system oriented criteria. Waiting time and turnaround time come under user oriented

criteria and CPU utilization comes under system oriented criteria. Proposed algorithms

has been implemented using C# and executed many times using different processes sets

and it was analyzed that proposed SJRR algorithm gives minimum average waiting time

and minimum average turnaround time as compared to other existing CPU scheduling

algorithms. It also maximizes CPU utilization. Some other criteria like starvation,

fairness, context switching were also tested. There is no problem of starvation in the

proposed SJRR algorithm because it gives equal time unit to each process for execution.

67

It is appropriate for time sharing system because it provides fair share of CPU to each

process. It does not incur much overhead of context switching as compared to round

robin scheduling algorithm because in the proposed algorithm, time quantum is not

generated randomly rather a specific formula is used to calculate it by keeping in mind

the process burst time. Combinatory algorithm gives minimum average waiting time and

minimum average turnaround time as compared to existing CPU scheduling algorithms

as well as SJRR scheduling algorithm. In Combinatory scheduling algorithm, starvation

has been removed to a great extent and there is no problem of context switching in it. In

next chapter results and comparisons of new proposed algorithms are discussed.

3.14 Summary
The proposed SJRR CPU scheduling algorithm is a new algorithm which can be

viewed as an improvement in round robin scheduling algorithm. It is a simple algorithm

which uses concept of sorting to arrange the element in proper order then uses calculated

time quantum to execute the processes. The proposed Combinatory CPU scheduling

algorithm is also a new algorithm that uses a new factor F by adding two basic factors of

scheduling algorithms (arrival time, burst time) and on the basis of that factor arranges

the elements in ascending order in ready queue. After it, CPU is assigned one by one to

each process. Performance parameters of both of these proposed algorithms have been

discussed to observe the performance and efficiency of the new CPU scheduling

algorithms. The strengths and weaknesses have also been discussed to present an overall

picture. The implementation and experimental results of these algorithms will be

presented in next chapter.

68

Chapter 4

4. IMPLEMENTATION AND RESULTS

To compare and contrast the performance of the proposed SJRR and Combinatory CPU

scheduling algorithms, software named CPU Scheduling Algorithms Simulator was

developed and used to check the performance of the proposed methodologies. In the

forthcoming sections the details and results along with observations are presented.

4.1 Introduction
CPU Scheduling Algorithms Simulator was implemented using C#.Net and MS Access.

Following are system requirements to run the developed software:

a. Windows XP or later

b. Dot Net Framework 2.0 or later

c. MS Access 2000 or later

All well known CPU scheduling algorithms have been implemented and are integrated

in this software. List of the processes along with their arrival time, burst time and priority

are entered by the users and saved into the database. After that users can select any of the

two implemented algorithms. The software uses same list of processes their arrival time

burst time and priority by both of the selected algorithms to schedule the processes.

Scheduled list of processes is displayed in the form of Gantt chart along with the total

waiting time, average waiting time and average turnaround time in milliseconds required

to the processes for scheduling. Following sections give the detail description of the

software.

4.2 Software Details
The CPU Scheduling Algorithms Simulator has been developed for detail study and

evaluation of CPU scheduling algorithms. It is a comprehensive software tool that runs

simulation, generates useful data for performance evaluation of algorithm and provides

user friendly environment. A user friendly and mouse driven graphical user interface

(GUI) is designed so that users can easily understand the environment and interact with

69

the system. The system is designed to simulate the selected algorithms. Block Diagram of

this system is given below:

Figure 19: Block Diagram of CPU Scheduling Algorithm Simulator

70

Figure 20: CPU Scheduling Algorithms Simulator

Figure 20 shows the main window of the CPU Scheduling Algorithms Simulator. Here,

three menu items are shown that are New, Open and Close. When user clicks on ‘New’

menu item, a window named ‘Add Process Information’ will open that is used to enter all

the input related to process. Process Information includes:

• Process Name

• Arrival time

• Burst Time

• Priority

71

Two menu items are present on this window. One is Add and other is Cancel. When

user want to add the given information into the database, he/ she will click on ‘Add’

menu item, all the information will save into the database. If user does not want to add

the information of the process into the database, he/ she simply clicks ‘Cancel’ menu

item, textboxes will be empty and no record will save into the database.

Figure 21: Add Process Information Window

When user clicks on Open menu item in main window i.e. CPU Scheduling

Algorithms Simulator, a window named ‘Previous Process Status’ will open that contains

all the record of the processes. Figure 22 shows Previous Process Status window.

Figure 22: Previous Process Status

72

Third menu item in the main window is ‘Close’ that is used to close the main window.

After entering new processes and their related information, user needs to select two

algorithms by using two drop down lists from the main window. ‘Schedule’ button is

used for scheduling the list of processes using two selected scheduling algorithms. Output

of the scheduling is represented in the form of Gantt chart in the panels. First panel is

used for the Gantt chart of the first selected algorithm and second panel is used for the

Gantt chart of the second selected algorithm as shown in the Figure 23. In this figure

comparison of two algorithms SJRR and Combinatory is displayed. If the list of

processes is large then complete Gantt chart will not be displayed in both panels, users

have to move the scroll bars to see the complete Gantt chart.

Figure 23: Gantt chart representation using SJRR and Combinatory Algorithms

73

The waiting time, average waiting time and average turnaround time of both selected

algorithms are represented in milliseconds in two message boxes respectively.

Figure 24: Results of SJRR Algorithm

Figure 25: Results of Combinatory Algorithm

The CPU Scheduling Algorithms Simulator is designed only to evaluate the

performance of new proposed scheduling algorithms and compare it with the

performance of existing algorithms. Therefore no actual computing work that is essential

in real multiprogramming environment is required in it.

4.3 Experiments:
Developed software was used and simulator was run to check the performance of the

proposed SJRR and Combinatory CPU Scheduling Algorithms on a computer with

following specifications

d. 1. GHz Intel Processor or later

e. 512 MB of RAM

74

4.4 Results:
New proposed CPU scheduling algorithms, SJRR and Combinatory algorithms are

compared with all implemented scheduling algorithms. For each comparison, different

number of processes along with their arrival time, burst time and priority are taken and

then they are scheduled. The numbers of processes in each list were 5, 10, 15, 20, 25, 30,

50, 100 and 200. In the upcoming section results of these experiments in the form of

graphs as well as textual description is given

4.4.1 Comparison of SJRR and Combinatory Algorithms with First
Come First Served (FCFS) Algorithm

As discussed earlier, First Come First Served (FCFS) scheduling algorithm is the

simplest technique used so far. Therefore, we start our comparison with FCFS. Here in

Table 1, average waiting time of FCFS, SJRR and Combinatory algorithms are taken for

comparison.
No of

Processes
5 10 15 20 25 30 50 100 200

FCFS (ms) 28 69.1 260.47 193.2 3730.4 7850 1316 5470.96 10260.39

SJRR (ms) 15 68.2 266.87 184.55 2782.8 6122.5 1092.06 3138.04 8004.37

Combinatory

(ms)
13.6 52.5 221.3 159.5 2096.4 4495 838.06 2443.1 6162.34

Table 1: Comparison of Average Waiting Time of FCFS with SJRR and Combinatory

Figure 26: Graph FCFS Vs SJRR & Combinatory (Avg Waiting Time)

In Table 2, average turnaround time of FCFS and SJRR are taken for comparison.

0

2000

4000

6000

8000

10000

12000

Av
er

ag
e

W
ai

tin
g

Ti
m

e
(m

s)

5 10 15 20 25 30 50 100 200
No of Processes

FCFS Vs SJRR & Combinatory

FCFS
SJRR
Combinatory

75

No of

Processes
5 10 15 20 25 30 50 100 200

FCFS (ms) 40.2 87.4 299.5 212.75 3992.4 8315 1366.9 5582.63 10366.97

SJRR (ms) 27.2 86.5 305.9 204.1 3044.8 6587.5 1142.76 3249.71 8109.95

Combinatory

(ms)
25.8 70.8 260.4 179.05 2358.4 4960 888.76 2554.77 6267.93

Table 2: Comparison of Average Turnaround Time of FCFS with SJRR and Combinatory

Figure 27: Graph FCFS Vs SJRR & Combinatory (Avg Turnaround Time)

In above two graphs of Figure 26 and 27, at x- axis number of processes are placed that

we want to schedule. At y-axis of the first graph average waiting time of FCFS, SJRR

and Combinatory in milliseconds is taken and of the second graph average turnaround

time of FCFS, SJRR and Combinatory in milliseconds is taken. It is depicted from the

above two graphs that the difference between average waiting time and average

turnaround time of FCFS and SJRR is not more clear from 5 to 20 processes but it

become quite large from up to 20 processes which makes SJRR more efficient than

FCFS. The difference between average waiting time and average turnaround time of

FCFS and Combinatory is quite large which makes Combinatory Algorithm much more

efficient as compared to FCFS that is clear from above graphs.

0
2000
4000
6000
8000

10000
12000

A
ve

ra
ge

 T
ur

na
ro

un
d

Ti
m

e
(m

s)

5 10 15 20 25 30 50 100 200
No of Processes

FCFS VS SJRR & Combinatory

FCFS
SJRR
Combinatory

76

4.4.2 Comparison of SJRR and Combinatory Algorithms with Shortest
Job First (SJF) Algorithm

In earlier discussion it has been seen that SJF is an optimal CPU scheduling algorithm.

Here we compare the performance of SJF with the performance of SJRR and

Combinatory Algorithms. In Table 3, we take average waiting time of the SJF, SJRR and

Combinatory algorithms and in Figure 28, graph show the comparison of the average

waiting time of the algorithms.

No of

Processes
5 10 15 20 25 30 50 100 200

SJF (ms) 13 51.2 213.67 152.15 2096.4 4495 800.66 2180.86 5900.25

SJRR (ms) 15 68.2 266.87 184.55 2782.8 6122.5 1092.06 3138.04 8004.37

Combinatory

(ms)
13.6 52.5 221.3 159.5 2096.4 4495 838.06 2443.1 6162.34

Table 3: Comparison of Average Waiting Time of SJF with SJRR and Combinatory

Figure 28: Graph SJF Vs SJRR & Combinatory (Avg Waiting Time)

In Table 4, we take average turnaround time of the SJF, SJRR and Combinatory

algorithms and in Figure 29 graph show the comparison of the average turnaround time

of the algorithms.

No of 5 10 15 20 25 30 50 100 200

0

2000

4000

6000

8000

10000

A
ve

ra
ge

 W
ai

tin
g

Ti
m

e
(m

s)

5 10 15 20 25 30 50 100 200

No of Processes

SJF Vs SJRR & Combinatory

SJF
SJRR
Combinatory

77

Processes

SJF (ms) 25.2 69.5 252.73 171.7 2358.4 4960 851.36 2292.53 6005.83

SJRR (ms) 27.2 86.5 305.9 204.1 3044.8 6587.5 1142.76 3249.71 8109.95

Combinatory

(ms)
25.8 70.8 260.4 179.05 2358.4 4960 888.76 2554.77 6267.93

Table 4: Comparison of Average Turnaround Time of SJF with SJRR and Combinatory

Figure 29: Graph SJF Vs SJRR & Combinatory (Avg Turnaround Time)

In above two graphs, at x-axis, we take number of processes, average waiting time at y-

axis of graph of Figure 28 and average turnaround time at y-axis of graph of Figure 29. It

has been cleared from the above data and graphs that SJRR shows small difference of

average waiting time and average turnaround for small number of processes but this

difference increase for large number of processes. Combinatory algorithm has almost

same result like SJF. The difference between results of SJF and Combinatory algorithms

is negligible for small number of processes but this difference slightly increases for larger

list of processes. Combinatory algorithm also removes the overhead of starvation at much

extent because it combines arrival time and burst time in the form of Factor F and on the

basis of that factor arranges the processes in ascending order. But starvation is a great

overhead in Shortest Job First (SJF) algorithm.

0

2000

4000

6000

8000

10000

A
ve

ra
ge

 T
ur

na
ro

un
d

Ti
m

e
(m

s)

5 10 15 20 25 30 50 100 200

No of Processes

SJR Vs SJRR & Combinatory

SJF
SJRR
Combinatory

78

4.4.3 Comparison of SJRR and Combinatory Algorithms with Round
Robin (RR) Algorithm

In this section, performance of Round Robin is compared with SJRR and Combinatory.

Table 5 shows average waiting time of RR, SJRR and Combinatory algorithms and

comparison is shown in the form of graph in Figure 30.

No of

Processes
5 10 15 20 25 30 50 100 200

RR (ms) 23 86.2 332 242.5 4261.2 9051 1471.5 3787.76 8731.23

SJRR (ms) 15 68.2 266.87 184.55 2782.8 6122.5 1092.06 3138.04 8004.37

Combinatory

(ms)
13.6 52.5 221.3 159.5 2096.4 4495 838.06 2443.1 6162.34

Table 5: Comparison of Average Waiting Time of RR with SJRR and Combinatory

Figure 30: Graph RR Vs SJRR & Combinatory (Avg Waiting Time)

Table 6 shows average turnaround time of RR, SJRR and Combinatory algorithms and

comparison is shown in the form of graph in Figure 31.
No of

Processes
5 10 15 20 25 30 50 100 200

RR (ms) 35.2 104.5 371.07 242.5 4523.2 9051 1522.2 3899.43 8836.82

SJRR (ms) 27.2 86.5 305.9 204.1 3044.8 6587.5 1142.76 3249.71 8109.95

Combinatory

(ms)
25.8 70.8 260.4 179.05 2358.4 4960 888.76 2554.77 6267.93

Table 6: Comparison of Average Turnaround Time of RR with SJRR and Combinatory

0

2000

4000

6000

8000

10000

A
ve

ra
ge

 W
ai

tin
g

Ti
m

e
(m

s)

5 10 15 20 25 30 50 100 200

No of Processes

RR Vs SJRR & Combinatory

RR
SJRR
Combinatory

79

Figure 31: Graph RR Vs SJRR & Combinatory (Avg Turnaround Time)

At x-axis of both above graphs, no of processes are taken, at y-axis of the first graph,

average waiting time and of the second graph average turnaround time is taken. It is

obvious from the graphs that average waiting time and average turnaround time of Round

Robin is greater than SJRR and Combinatory which makes both of these algorithms more

efficient than Round Robin algorithm.

4.4.4 Comparison of SJRR and Combinatory Algorithms with Priority
Algorithm

Now we compare the performance of priority algorithm with proposed algorithms.

Following are the tables and graphs that show the relationship of average waiting time

and average turnaround time of the priority algorithms with SJRR and Combinatory

algorithms.

Table 7: Comparison of Average Waiting Time of Priority with SJRR and Combinatory

No of

Processes
5 10 15 20 25 30 50 100 200

Priority (ms) 30.6 81.4 265.5 202.1 2991.6 6428 1314.7 5800.4 10567.89

SJRR (ms) 15 68.2 266.87 184.55 2782.8 6122.5 1092.06 3138.04 8004.37

Combinatory

(ms)
13.6 52.5 221.3 159.5 2096.4 4495 838.06 2443.1 6162.34

0

2000

4000

6000

8000

10000

A
ve

ra
ge

 T
ur

na
ro

un
d

Ti
m

e
(m

s)

5 10 15 20 25 30 50 100 200

No of Processes

RR Vs SJRR & Combinatory

RR

SJRR

Combinatory

80

Figure 32: Graph Priority Vs SJRR & Combinatory (Avg Waiting Time)

No of

Processes
5 10 15 20 25 30 50 100 200

Priority (ms) 42.8 99.7 304.6 221.6 3253.6 6893 1365.42 5912.07 10673.47

SJRR (ms) 27.2 86.5 305.9 204.1 3044.8 6587.5 1142.76 3249.71 8109.95

Combinatory

(ms)
25.8 70.8 260.4 179.05 2358.4 4960 888.76 2554.77 6267.93

Table 8: Comparison of Average Turnaround Time of Priority with SJRR and Combinatory

Figure 33: Graph Priority Vs SJRR & Combinatory (Avg Turnaround Time)

In Table 7 average waiting time of Priority, SJRR and Combinatory algorithms is taken

and in Figure 32, no of processes are taken along x-axis and average waiting time is taken

along y-axis. In Table 8 average turnaround waiting time of Priority, SJRR and

0

2000

4000

6000

8000

10000

12000

A
ve

ra
ge

 W
ai

tin
g

Ti
m

e
(m

s)

5 10 15 20 25 30 50 100 200

No of Processes

Priority Vs SJRR & Combinatory

Priority
SJRR
Combinatory

0

2000

4000

6000

8000

10000

12000

A
ve

ra
ge

 T
ur

na
ro

un
d

Ti
m

e
(m

s)

5 10 15 20 25 30 50 100 200

No of Processes

Priority Vs SJRR & Combinatory

Priority

SJRR

Combinatory

81

Combinatory algorithms is taken and in Figure 33, no of processes are taken along x-axis

and average turnaround time is taken along y-axis. As shown in the graphs SJRR and

Combinatory algorithms show better readings of average waiting time and average

turnaround time as compared to Priority. There is a small difference between the results

of average waiting time and average turnaround time of SJRR and the results of average

waiting time and average turnaround time of Priority. This difference increases when we

move towards large number of processes. This shows the performance of SJRR and

Combinatory algorithms over Priority algorithm.

4.4.5 Comparison of SJRR and Combinatory Algorithms
In this section comparison of both the proposed algorithms SJRR and Combinatory is

represented. Table 9 represents average waiting time of both of these algorithms and in

Figure 34 graph is drawn to show the graphical comparison of these algorithms.

Table 9: Comparison of Average Waiting Time of SJRR and Combinatory

Figure 34: Graph SJRR Vs Combinatory (Avg Waiting Time)

Table 10 represents average turnaround time of both of these algorithms and in Figure

35 graph is drawn to show the graphical comparison of these.

No of

Processes
5 10 15 20 25 30 50 100 200

SJRR (ms) 15 68.2 266.87 184.55 2782.8 6122.5 1092.06 3138.04 8004.37

Combinatory

(ms)
13.6 52.5 221.3 159.5 2096.4 4495 838.06 2443.1 6162.34

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

A
ve

ra
ge

 W
ai

tin
g

Ti
m

e

(m
s)

5 10 15 20 25 30 50 100 200

No of Processes

SJRR Vs Combinatory

Combinatory
SJRR

82

No of

Processes
5 10 15 20 25 30 50 100 200

SJRR (ms) 27.2 86.5 305.9 204.1 3044.8 6587.5 1142.76 3249.71 8109.95

Combinatory

(ms)
25.8 70.8 260.4 179.05 2358.4 4960 888.76 2554.77 6267.93

Table 10: Comparison of Average Turnaround Time of SJRR and Combinatory

Figure 35: Graph SJRR Vs Combinatory (Avg Turnaround Time)

Along x-axis, different set of processes are taken for SJRR and Combinatory and along

y-axis average waiting time and average turnaround time spend for scheduling these set

of processes is taken. As shown from above graphs, Combinatory algorithm shows better

reading of average waiting time and average turnaround time as compared to SJRR.

Below in the Figure 34 and 35 is the graphical description of cumulative comparison of

average waiting time and average turnaround time of proposed SJRR and Combinatory

Algorithms with FCFS, SJF, RR and Priority scheduling algorithms. Using these analysis

results, it is concluded that SJRR shows marked improvement as compared to First Come

First Server (FCFS), Round Robin (RR) and Priority algorithms. Combinatory algorithm

also shows noticeable improvement as compared to FCFS, RR, Priority and SJRR. Along

it, results of Combinatory algorithm is almost close to Shortest Job First (SJF).

0
2000

4000
6000

8000
10000

A
ve

ra
ge

 T
ur

na
ro

un
d

Ti
m

e
(m

s)

5 10 15 20 25 30 50 100 200
No of Processes

SJRR Vs Combinatory

Combinatory
SJRR

83

Figure 36: Cumulative comparison of Average Waiting Time of Scheduling Algorithms

Figure 37: Cumulative comparison of Average Turnaround Time of Scheduling Algorithms

These experimental results have been used to derive performance metrics of

scheduling algorithms. These metrics are given below in Table 11. This table gives detail

information about performance of each scheduling algorithm.

 FCFS SJF RR Priority SJRR Combinatory
Selection
Function

min[a] min[s] constant min[p] constant min[f]

Decision
Mode

non pre-
emptive

non pre-
emptive

pre-emptive non pre-
emptive

RR non pre-
emptive

Turnaround
Time

high less less for short
processes

average slightly higher
than SJF

Almost equal
to SJF

Waiting
Time

high less less for short
processes

average slightly higher
than SJF

Almost equal
to SJF

CPU
Utilization

less less High less high higher than
SJF

Starvation no possible No possible no

possible but
less than SJF

0

2000

4000

6000

8000

10000

12000

A
ve

ra
ge

 W
ai

tin
g

Ti
m

e
(m

s)

5 10 15 20 25 30 50 100 200

No of Processes

Comparison of CPU Scheduling Algorithms

FCFS
SJF
RR
Priority
Combinatory
SJRR

0

2000

4000

6000

8000

10000

12000

A
ve

ra
ge

 T
ur

na
ro

un
d

Ti
m

e
(m

s)

5 10 15 20 25 30 50 100 200

No of processes

Comparison of CPU Scheduling Algorithms

FCFS
SJF
RR
Priority
Combinatory
SJRR

84

Overhead minimal can be

high
Low can be

high
can be high low

Context
Switching

no no Yes no yes but less
than RR

no

Time
Sharing
System

no no Yes no yes no

 Where a= arrival Time, s= total service time required by the process,
 p= priority number , f= burst time + arrival time

Table 11: Performance Metrics of Scheduling Algorithms

4.5 Summary:
All of well known CPU Scheduling Algorithms were implemented with proposed SJRR

and Combinatory algorithms to compare and contrast the performance of proposed CPU

scheduling algorithms with existing CPU scheduling algorithms and derive performance

metrics for all of these scheduling algorithms. These experiments were also made to

check the position of proposed CPU scheduling algorithms in the entire community of

CPU scheduling algorithms. In the next chapter conclusion and future work is presented

in detail.

85

Chapter 5

5. CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

 In multiprogramming operating system, number of programs execute concurrently.

The main objective of multiprogramming operating system is to share system resources

among multiple users and system processes in order to maximize CPU utilization. In

operating system functions, scheduling is an important one. Scheduling of resources

plays a central role in efficient resource sharing. All computer resources are scheduled

before use. CPU is the main computer resource; therefore its scheduling is vital.

CPU scheduling is a fundamental discipline which helps us to obtain clear

understanding of complex set of policies and mechanisms used to govern the order in

which tasks are executed by the processor. Different algorithms have been used to

implement CPU scheduling. Each algorithm has its own properties that differentiate it

from others.

 Different evaluation methods have been used to evaluate various algorithms. These

methods include Deterministic Modeling, Queuing Models and Simulations.

Deterministic Modeling and Simulations are commonly used because they provide

accurate evaluation of scheduling algorithms. A particular predetermined workload is

taken in Deterministic Modeling that is used to determine performance of each algorithm.

In Simulations, a model of the computer system is programmed.

In this work two new scheduling algorithms are proposed. One is for time sharing

system and other is for multiprogramming system. The proposed algorithm that is used

for time sharing system is SJRR scheduling algorithm. SJRR algorithm sorts all the

incoming processes according to their burst time and then apply time quantum on these

sorted processes to execute them. Time quantum is calculated by using formula not given

by the user. The proposed algorithm that is used for multiprogramming system is

Combinatory scheduling algorithm. In this algorithm a new factor F is attached with each

incoming process that sums the effects of two basic factors (arrival time and burst time)

of the process. The processes are arranged in ascending order on the basis of that factor

and then CPU is assigned to each process for execution. The purpose of developing these

86

algorithms was to develop efficient algorithms that can overcome the limitations of

existing algorithms. These proposed algorithms have achieved the aim at some level.

Implementation and results in Chapter 4 has shown the performance and position of

the proposed algorithms. Results have shown that FCFS algorithm is simplest one that is

easy to implement and have smaller computational overheads but its performance is poor,

gives low throughput and long average waiting time and turnaround time. There is a

problem of convoy effect in FCFS because small processes have to wait for longer

processes to get off the CPU. Shortest Job First is an optimal scheduling algorithm that

gives minimum average waiting time and turnaround time but there is problem of

knowing the length of next CPU request. Round Robin algorithm is suitable for time

sharing. It uses time quantum given by the user to execute the processes. Its performance

completely depends on time quantum. If time quantum is large it gives results similar to

FCFS but if time quantum is very small then there is a problem of context switching. In

Priority scheduling algorithm, priority is associated with each process and on the basis of

that priority each process is executed. There is a problem of starvation in this algorithm.

Now see the performance of the proposed algorithms. The performance of SJRR is not

very good as compared to the optimal SJF scheduling algorithm but when it is compared

with other algorithms it gives good performance that can be seen in Chapter 4. It gives

minimum average waiting time and turnaround time as compared to other algorithms.

There is no problem of starvation in it and it also removes context switching at much

extent. CPU utilization in this algorithm is also high. As working of this algorithm is

same as Round Robin so from comparison of proposed algorithm with Round Robin it

can be clearly seen that SJRR is a good enhancement. When performance of

Combinatory algorithm is compared with other existing algorithms and SJRR it has been

seen that it gives good results than FCFS, RR, Priority and SJRR but its performance is

slightly less than SJF. It gives minimum average waiting time, turnaround time and

maximum CPU utilization. In this algorithm, problem of starvation has been removed at

much extent. It has been cleared from the results and whole discussion that proposed

algorithms have got its position above than the middle algorithms.

In this work a simulator called CPU Scheduling Algorithm Simulator for proposed

scheduling algorithms as well as existing scheduling algorithms has also been developed.

Deterministic evaluation of CPU scheduling algorithms can be performed by using this

87

simulator. Along with performance of proposed and existing scheduling algorithms can

be measured with this simulator. This simulator can be used in the class room for students

to understand CPU scheduling algorithms in detail. Following are the CPU scheduling

algorithms that are simulated using this simulator:

• First Come First Served (FCFS) Scheduling Algorithm

• Shortest Job First (SJF) Scheduling Algorithm

• Round Robin (RR) Scheduling Algorithm

• Priority Scheduling Algorithm

• SJRR Scheduling Algorithm

• Combinatory Scheduling Algorithm

A user friendly Graphical User Interface has been developed that provides an

opportunity to the user to save all the input of the process in the database and then select

the algorithm from given choice for execution. The Gantt chart of all the processes has

been displayed in GUI. A message box is also shown against each algorithm to display

average waiting time and average turnaround time.

5.2 Future Work
This scheduling system has been designed to analyze the performance of proposed

scheduling algorithms and existing scheduling algorithms. As in this system resources of

single physical machine have been used; software module can be developed to analyze

CPU scheduling in multiprocessing system.

In this system only non-preemptive scheduling algorithms are implemented,

preemptive scheduling algorithms can be included in this system. The system is static (no

process can enter into the system at run time); it can be made dynamic with some

improvements.

88

References

1. Milan Milenkovic, “Operating Systems Concepts and Design”, Second Edition, McGraw Hill,

IBM Corporation

2. Silberschatz A., Galvin P., and Gagne G., “Operating System Concepts”, Sixth Edition

3. Sonal Sood, Pramod Barthwal, “Simulation of Process Scheduling Algorithms”, Florida

International University, Miami’s Public Research University

4. Andrew S.Tanenbaum, Albert S. WoodHull, “Operating Systems Design and

Implementation”Second Edition

5. Akhtar Hussain, “Optimized Performance of CPU Scheduling”, College of Electrical and

Mechanical Engineering, National University of Science and Technology, Islamabad

6. H.M. Deitel, “Operating Systems” , Second Edition, Addison- Wesley Publishing Company

7. http://en.wikipedia.org/wiki/Scheduling (computing).html

8. Michael Pinedo, “Scheduling:theory, algorithms and systems”

9. http://www.eee.metu.edu.tr/~halici/courses/442/Ch2%20Process%20Scheduling.pdf

10. http://people.msoe.edu/~taylor/cs384/mellottk.pdf

11. www.cs.rutgers.edu/~iftode/cs416_08_10.ppt

12. Beck L.L, Addison Wesley, “System Software”.

13. Gary Nutt, “Operating Systems, A Modern Perspective”, Second Edition

14. http://ece.ut.ac.ir/Classpages/S89/ECE443/slides/5.CPU_Scheduling.pdf

15. www.cs.duke.edu/~chase/cps210-archive/slides/cpu.pdf

16. http://itcs322.almahdi.cc/chap5.doc

17. http://www.scribd.com/doc/7010227/CPU-Scheduling-1

18. http://www.cs.mcgill.ca/~cs310/lect_notes/cs310_lecture06.pdf

19. http://www.cse.buffalo.edu/~bina/cse421/spring02/SchedulingFeb8.pdf

20. Maj. Umar Saleem Butt, “Simulation of CPU Scheduling Algorithms”, College of Electrical and

Mechanical Engineering, National University of Science and Technology, Islamabad

21. Saeeda Bibi, Farooque Azam, Sameera Amjad, Wasi Haider Butt, Hina Gull, Rashid Ahmed,

Yasir Chaudhry “An Efficient SJRR CPU Scheduling Algorithm” International Journal of

89

Computer Science and Information Security, Vol. 8, No. 2,2010, pp. 222-230, ISSN: 1947-5500,

Pittsburgh, PA 15213, USA

22. Sukanya Suranauwarat, “A CPU Scheduling Algorithm Simulator”, 37th ASEE/IEEE Frontiers in

Education Conference

23. E. O. Oyetunji, A. E. Oluleye, “Performance Assessment of Some CPU Scheduling Algorithms”,

Research Journal of Information Technology 1(1): 22-26, 2009, ISSN: 2041-3114

24. Rami J. Matarneh, “Self Adjustment Time Quantum in Round Robin Algorithm Depending on

Burst Time of the Now Running Processes”, American Journal of Applied Sciences 6(10): 18311-

1837, 2009, ISSN 1546-9239

25. Mohammed A. F. Husainy, “Best-Job-First CPU Scheduling Algorithm”, Information Technology

Journal 6(2): 288-293, 2007, ISSN 1812-5638

26. Syed Nasir Mehmood Shah, Ahmad Kamil Bin Mahmood, Alan Oxley, “Hybrid Scheduling and

Dual Queue Scheduling”, 2nd IEEE International Conference on Computer Science and

Information Technology, 2009 (ICCSIT 2009), Beijing

27. Bashir Alam, M. N. Doja, R. Biswas, “Finding Time Quantum of Round Robin CPU Scheduling

Algorithm Using Fuzzy Logic”, 2008 IEEE Internal Conference on Computer and Electrical

Engineering

28. Sami Khuri, Hsiu-Chin Hsu, “Visualizing the CPU Scheduler and Page Replacement Algorithms”,

Thirtieth SIGCSE Technical Symposium on Computer Science Education, 1999, New Orleans,

Louisiana, United States, ISSN: 0097-8418

29. Sindhu M., Rajkamal R., Vigneshwaran P., "An Optimum Multilevel CPU Scheduling

Algorithm", ACE, pp.90-94, 2010 IEEE International Conference on Advances in Computer

Engineering, 2010

30. http://en.wikipedia.org/wiki/Rate-monotonic_scheduling

