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Abstract 
Vessels and installed subsystems on board require global planning, performance, and 

regular maintenance in the maritime industry. The goal of maintenance is to limit the 
frequency of failures in subsystems and avoid frequent breakdowns that cause operational 
disruptions. Preventive and corrective maintenance are quiet prominent and used in the 
marine industry. Mechanical systems, including plants, machinery, and equipment (PME) 
parts/ constituents, are replaced or renovated after specific intervals. Marine mechanical 
system components may need to be replaced during the scheduled interval or defined 
maintenance even though they are still operational, which results in exorbitant repair and 
maintenance costs. Similar to this, it's possible that PME components reached the end of 
their useful lives prior to the maintenance or scheduled period. Mechanical systems may 
malfunction as a result, necessitating corrective maintenance. As a result, the dependability, 
safety, and maintainability of maritime mechanical systems are being improved using 
traditional maintenance techniques to fail. The gaps left by the earlier maintenance 
techniques can be filled with predictive maintenance. 

 
Predictive maintenance refers to the use of data, machine learning strategies, and 

statistical algorithms to foresee the most likely failure consequence of systems. In order to 
minimize maintenance costs and downtime, the data collected by sensors (wired or wireless) 
on machinery is processed to produce a reliable prediction on when a specific section or 
piece of equipment should be maintained or replaced. A subset of condition-based 
maintenance (CBM), which is characterized as a maintenance strategy that recognizes and 
tolerates system failure while it is occurring, is predictive maintenance. This tactic is 
becoming more popular in a number of contexts where modern signal processing and 
monitoring techniques are improbable. Due to contemporary maintenance trends, 
mechanical PME system performance and wear and tear can be quickly identified. 

 
Electric motor drives have become widely used in marine applications, and their 

operational availability is always seen as important to ensuring that systems work smoothly 
and effectively. The usable life of the motors has a significant impact on the overall 
reliability of operational systems. Because electric drives are widely used, it is critical to 
assess the reliability of drive motor systems throughout both the design and operating 
phases. The reliability of the motor drive system is critical in process identification. Any 
little changes or failures in a system might occur owing to human mistake or environmental 
factors, resulting in significant losses in terms of system downtime, material and labour 
costs. 

 
In this study, a predictive maintenance system for maritime boats will be built 

utilizing machine learning techniques. Using real-time data. Machine Learning will be used 
to estimate the reliability of induction motors used in industrial and home applications. 
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Chapter No 1: Introduction 
 

1.1 Background of Maritime Industry 
 

For decades, the marine industry has played an important role in worldwide trade, 
transportation, and commerce. It includes a wide range of maritime industries such as 
shipping, shipbuilding, port operations, logistics, and marine services. The significance of 
the business arises from its role in facilitating international trade by providing a cost- 
effective way of carrying products and commodities across oceans and continents. The 
marine business has a long history, dating back to ancient civilizations when waterways 
were essential for trade and cultural exchange. Maritime activities evolved with 
developments in navigation skills, ship design, and maritime infrastructure, beginning with 
the usage of rafts and rudimentary boats and progressing to the introduction of sophisticated 
sailing vessels. With the introduction of steamships in the nineteenth century and the 
subsequent move to motorized vessels, marine transportation witnessed dramatic 
transformations, increasing efficiency and worldwide connectedness. 

 
The marine industry thrives in the modern period, acting as a backbone for 

worldwide trade and economic development. According to the United Nations Conference 
on Trade and Development (UNCTAD), maritime routes transport almost 80% of world 
trade by volume and more than 70% by value. This reliance on sea transportation 
emphasizes its vital role in maintaining global availability and accessibility of goods. 
However, the maritime industry faces its own set of issues. Vessels and onboard equipment 
face tough environmental conditions such as corrosive seawater, intense weather, and high 
operational demands. These circumstances can cause wear and tear, mechanical failures, and 
significant safety hazards, necessitating effective maintenance practices to maintain safe and 
dependable operations. [1] 

 
1.2 Induction Motor 

 
An induction motor (IM) is a category of asynchronous AC motor that uses 

electromagnetic induction to drive spinning machinery. Nikola Tesla created the first 
induction motor with a wrapped rotor in France in 1882. [2]. Tesla established the scientific 
basis for comprehending the operation of the motor through his research. About a year later, 
in Europe, Mikhail Dolivo-Dobrovolsky invented the induction motor with a cage. The 
difference in size between a 100 horsepower (74.6 kW) motor from 1976 and a 7.5 
horsepower (5.5 kW) engine from 1897 shows how far technology has come. Cage rotor 
motors are currently the most popular type of induction motor (Figure 1). In its rotor, an 
electric motor transforms electrical energy into mechanical energy. It's possible to power the 
rotor. While an induction motor induces this power inside the rotating machinery, a DC 
motor's armature receives it directly from a DC source. Since the stator serves as the 
transformer's main side and the rotor serves as its secondary side, an induction motor is 
occasionally referred to as a spinning transformer. Induction motors are frequently used in 
industrial drives, particularly polyphase induction motors. Industrial motors are increasingly 
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being replaced by induction motors because of their robust design, lack of brushes (which 
are necessary in the majority of DC motors), and controlled speed. [3] 

 
1.2.1 Construction 

Stator and rotor are the two main components of a conventional motor, much 
like other kinds of motors. 

 
a. A stator that is stationary outside and has coils operated by AC to produce 
a revolving magnetic field. 

 
b. A rotating field's torque is applied to an internal rotor that is connected to 
the output shaft. 

 

 
Figure 1: Construction of induction Motor 

 

1.2.2 Stator construction 
An induction motor's stator is made of a laminated iron core with slots, 

similar to the stator of a synchronous machine. Coils are inserted into the slots to 
produce a three- or one-phase winding. [4] 
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Figure 2: Single Phase Stator with Windings 
 
 

 

Figure 3: Induction Motor Magnetic Circuit Showing Stator and Rotor Slots 

 
1.2.3 Type of rotors 

There are two different types rotors. 
a. Squirrel cage rotor 
b. Wound rotor 

 
1.2.3.1 Squirrel-Cage Rotor 

Individual copper or aluminium bars that are placed into the 
slots and short-circuited via end rings on either side of the rotor make up the 
squirrel-cage rotor's winding. A squirrel-cage rotor is used by all single- 
phase induction motors. For the purpose of cooling the circuit, one or two 
fans are fastened to the side of the rotor. [5] 
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Figure 4: Squirrel Cage Rotor 
 

1.2.3.2 Wound Rotor 
An insulated 3-phase winding with the same number of poles 

wound as the stator is applied to the slots in the wrapped rotor. To connect it 
for starting or speed regulation, the ends of the star-connected rotor winding 
are brought to three slip rings on the shaft. 

 
 Usually, it is used with big, three-phase induction 
motors. 

 
 The end of every phase is linked to a slip ring at the 
rotor, which has a winding similar to that of the stator. 

 
 Wound rotor motors are less widespread in industrial 
applications than squirrel cage rotors because they are more 
costly and need maintenance on the brushes and slip rings. 



5  

 
 

Figure 5: Wound rotor of a large induction motor 
 

1.3 Principle of Operation 
 

Flux is created in the stator magnetic circuit, by supplying AC to the stator armature. 
When the magnet is moved, this flux "cuts" the conducting bars of the rotor, causing an 
EMF to be generated (E = BVL (Faraday's Law)). Due to the induced EMF, current flows in 
the rotor circuit, resulting in a force that may be converted to torque as output. [6] 

 
In a three-phase induction motor, the three-phase currents have identical magnitudes 

but 120° phase variances. Physically, each magnetic flux generated by each phase current 
shifts by 120°. The three fluxes are combined to create the machine's overall flow. The three 
ac fluxes are added to produce a rotating flux with a constant amplitude and speed. A 
rotating magnetic flux or rotating magnetic field (RMF) is produced when balanced three- 
phase currents running in the three-phase windings do so. RMF rotates without interruption 
(synchronized speed). Without an RMF, an induction motor cannot function. [7] 

 
When an AC source powers the stator, RMF is formed as a result of the current 

delivered to the stator winding. This flux produces a rotating magnetic field in the space 
between the rotor and the stator. The rotor's short-circuited bars experience a voltage as a 
result of the magnetic field. The voltage causes the bars to conduct current (Wrong 
wording). A force that propels the motor and, as a result, torque is produced resulting from 
the interplay of the revolving flux and the rotor current. The magnetic field in the air gap 
rotates in the same plane as the rotor. [8] 

 
The actual rotor's speed and the stator's rotating magnetic field's speed, nevertheless, 

must differ for these currents to be generated; otherwise, the magnetic field would not be 
moving in relation to the rotor conductors and no currents would be generated [9]. The rotor 
typically slows down slightly in the unlikely case that this happens until a current is 
reduced, at which time it resumes its typical activity. This difference in speed between the 
rotor and the stator's rotating magnetic field is known as slip. It is the ratio of the rotational 
speed of the rotating stator field (slip speed) to the relative speed of the magnetic field as 
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determined by the rotor. The term "asynchronous machine" is sometimes used to describe an 
induction motor because of this. 

 
1.4 Causes of Failure of IM and its Effects 

 
There is a growing need to increase the availability and dependability of electrical 

systems in many different types of manufacturing applications. In some instances, an 
unexpected system failure might result in costly downtime, damage to the surrounding 
equipment, or even a risk to people. A modern device is more dependable and is available 
with tracking and failure detection. Given that many natural catastrophes deteriorate very 
slowly, there may be a chance for early defect discovery and corrective preservation. This 
prevents unexpected, widespread device failure that might have negative effects. [10] 

 
Induction motor electric failure can be due to stator winding rapid circuit, broken 

quit ring, damaged rotor bar, and inverter failure. A mechanical issue with induction, 
Entrance of dust, bearing failure, shaft misalignment, load faults (unbalance, gearbox issue, 
or favored failure in the load component of the drive), and motor rotor eccentricity. The 
majority of errors are caused by bearing (> 44%) and winding (> 26%) defects, according to 
a reliability survey on large electric vehicles (> 200 horsepower) [11]. If we can eliminate 
these crusher application motor problems (have no idea what it means), it will significantly 
improve the life and performance of induction motors, resulting in less downtime for 
businesses and cost savings. [12] 

 
Improve the dependability and effectiveness of electric motor operations in order to 

improve the marine sector's energy efficiency and reduce energy production and 
consumption costs. Energy consumption can be decreased while maintaining the same level 
of production capacity by adopting two-way, high-efficiency equipment and installing an 
energy management technology. Consumers, businesses, the energy sector, and 
governmental organizations risk making poor judgments due to ignorance about new 
energy-efficient motor technology, selection mistakes, and incorrect equipment use. The 
situation eventually reduces industrial system efficiency and causes financial losses for 
every link in the supply chain. The categorization and causes of electric motor failures are 
crucial factors to take into account for energy efficient management due to their influence 
on operational dependability. Another thing to remember is that not all equipment 
malfunctions occur abruptly and without warning. The working temperature, operating 
torque, damages, mechanical vibration, and other parameters are adversely impacted, which 
lowers the efficiency of the production system. These can occur in both degenerative and 
progressive manners. However, it's crucial to consider how the frequency of repairs impacts 
the effectiveness of the electric motor. This is due to the fact that motor losses tend to 
increase with time, and research indicate that each repair can reduce efficiency by up to 2%. 
[13]. 

 
Both scholarly as well as business communities are interested in exploring the causes 

of electric motor failures; current research concentrates on methods for determining and 
measuring defects using on-line or off-line examinations. According to the kind of failure 
(mechanical, electrical), the location of the problem (stator, rotor), and other factors, several 
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writers in their studies have classified and divided motor failures into different groups. 
Some researchers have categorized and classified types of motor failures according to the 
kind of failure (electrical, mechanical), the location of the defect (stator, rotor), and several 
other factors. 

 
1.5 Source of the Failures 

 
There are two levels that may be used to categorize the sources of problems in an 

electric motor: internal sources and external sources. It is crucial to define what constitutes 
an electrical machine failure for instance, any component change that stops the machine 
from operating properly is considered a failure. Another way to describe it is the absence of 
an ingredient necessary for an anticipated activity. According to this definition, the phases 
of failure include impending failure, material fatigue, degeneration of the material, and the 
defect itself [14]. The causes of failures are classified as: 

 
 Materials, designs, and production flaws inherent in them. 

 Inappropriate use of or application of efforts. 

 The degradation that occurs over time due to rust, wear and tear, or by being 
overworked. 

 
In his work, Bazurto, A. J., come to the conclusion that prompt failure detection 

assures the machines' security, dependability, and simplicity of maintenance. According to 
various studies, the failures of the rotor and stator are result of a number of forces operating 
on both of these parts at once. Following table shows types of stress acting on stator and 
rotor: [15] 

 
Stator Thermal stress 

Electric stress 
Mechanical stress 
Environmental pressure 

Rotor Thermal Stress 
Electromagnetic Stress 
Stress residual 
Dynamic stress 
mechanical stress 
environmental stress 

 
Table 1: Classification of Motor Stresses 

 

A. Bonnett and C. Yung are credited with compiling survey data and identifying the 
top five reasons why electric motors fail, which include operational stressors and random 
events. [16] 
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Figure 6: Different Types of Failures 
 

1.6 Problem Identification and Significance 
 

Thanks to the Fourth Industrial Revolution's quick development, the widespread 
increased usage of sensors, the creation of vast databases and analysis systems, and the 
implementation of artificial intelligence techniques, smart factories may automate their 
operations and significantly improve their efficiency and manufacturing quality. Equipment 
downtime and malfunctions must be maintained to a minimum as manufacturing procedures 
become increasingly intricate and time-consuming in order to save manufacturing costs and 
improve plant and employee safety. But unplanned downtime is a given in the industrial 
industry. For this reason, Prognostics and Health Management (PHM) is an indispensable 
aspect of manufacturing, responsible for monitoring and analyzing the status of equipment 
for suitable machine maintenance and proper functionality. 

 
One of the biggest problems for a successful predictive maintenance plan is data 

availability. Machine learning depends heavily on the quantity and quality of the data used 
to train them. Therefore, without a considerable amount of quality data, the data driven 
approach is hard to perform. In this thesis, fault diagnosis of induction motor data is 
performed. Upon acquiring such a motor, no data existed. This fact was an impediment to 
selecting and progressing in the thesis. One solution to this problem was to use a public 
dataset with similar characteristics that can be temporarily used to train and test the models 
and methodology presented by Baicoianu, A., & Mathe, A. [17] 
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Maintenance methods have rapidly evolved from reactive maintenance, where 
maintenance is performed after a failure occurs, to Preventive Maintenance (PvM), where 
maintenance is performed at set time breaks, and onto the predictive maintenance. 

 
Due to its benefits over other maintenance techniques, including reduced factory 

downtime,  decreased  manufacturing  and  maintenance expenses,  increased 
production, safety, machinery life, and a rise in overall profit, among others, predictive 
maintenance is a hot topic that is gaining attention among manufacturing businesses and 
research institutions. 

Predictive maintenance aims to detect component and equipment failure before it 
happens, and ultimately, predict the Remaining Useful Life (RUL) of the equipment, with 
the goal of allowing manufacturing companies to schedule maintenance before a failure 
occurs. As smart factories monitor equipment and collect more data than is possible for 
technicians to inspect, the opportunity for data-driven fault diagnosis methods is opened. 
Machine Learning (ML) makes use of neural networks with three or more layers which are 
able to learn from a vast amount of data. Because machine learning development rapidly 
increases and given the vast amount of data that is collected by condition monitoring 
systems deep learning appears to be a perfect candidate for processing the data and 
performing of fault diagnosis. The induction motor is of one the most important components 
in present-day manufacturing factories because of its ruggedness, reliability, and cost. It is 
therefore of utmost importance that proper monitoring and maintenance is performed on 
induction motors in order to keep manufacturing processes as lean and efficient as possible. 
[13] 

 
1.7 Motivation and Objective of the Thesis 

 
Greater safety, longer machinery life, greater machine uptime, and part-life 

optimization were all results of early equipment fault identification along with adequate 
maintenance of manufacturing machinery. The net result of all these advantages will be 
improved and leaner production processes at lower expenses that can be passed effectively 
on to the consumer and community. An increase in equipment efficiency also translates into 
less waste and fewer resources required. 

 
This thesis work is exploring the vast and broad area of predictive maintenance. 

Given that no project specifications, requirements or metrics were provided, the thesis 
workload was split into two broad modules: 

 
 Data acquisition and preprocessing 

 Data processing, feature engineering, and model selection 

 
The objective of the thesis is to explore machine learning data and driven fault 

diagnosis approaches for induction motor prognostics. From the study, the following 
research questions emerge: 
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 What kinds of sensor readings (temperature, vibration, pressure, etc.) have the 
most beneficial impact on predictive maintenance? 

 How can Machine learning be used for predictive maintenance?) This should be 
part of next section. 

 
1.8 Scope of Work 

 
In the modern world, cost optimization is a key objective for industrial drives. There 

are fixed expenses and variable costs in all industrial facilities. The first are routine 
expenses for maintenance and spare components, and a sizeable portion of the latter is the 
unforeseen expenses for fixing faulty equipment. If, for whatever reason, an induction motor 
(IM) enters an incorrect operating mode that could result in equipment failure, it can result 
in the largest additional financial loss. Electrical machine failures must be prevented, which 
necessitates the development of a condition-based maintenance system to track and analyze 
a machine's operational state. Due to the effectiveness of the drives and the cost savings 
realized in this way, there has been a rise in the cost of systems that can forecast future 
occurrences in addition to analyzing the machine's current working condition. The 
efficiency of the drive is improved through early fault identification. Many methods for 
tracking the performance parameters of machines and identifying breakdowns before they 
occur have been developed thanks to modern technologies. The methods for locating faults 
rely on measurements of a variety of variables, including temperature, oil analysis, gas 
analysis, and global performance monitoring [18]. Electromechanical fault detection 
techniques measure currents, partial discharges, leakage flows, shock pulses, vibrations, and 
acoustic noise. These methods frequently rely on processing and interpreting massive 
amounts of data. The key issue is extracting valuable information out of the available data. 
The use of machine learning in data study enables a wide range of tools for comprehending 
the statistics immediately collected from the industrial drive. 

 
It is important to comprehend the factors that contribute to vibration change since 

motor vibrations can occur even when the motor is in perfect condition. Before these issues 
cause shaft or bearing degeneration, vibration analysis can find misalignment and 
imbalance. While a machine is starting up, shutting down, or just running normally, 
vibration analysis provides a reliable, non-intrusive way to check on its current condition. 
The main benefit is that it responds immediately to changes, making it useful for both 
ongoing and sporadic analyses of operational conditions. Also, a key component of 
vibration examination is the potential for extensive usage of signal processing procedures to 
quickly locate problem signs that are not obvious in the original signal. 
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Figure 7: Comparison of Supervised and Unsupervised Machine Learning Technique 
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Chapter No 2: Literature Review 

 
2.1 Significance of Machine Learning 

 
Monitoring and analyzing a machine's operational state is required to prevent 

breakdowns in electrical machines, necessitating the deployment of a condition-based 
maintenance system. Fault diagnosis methodologies vary depending on the amount of 
available data Manufacturing industries rely on motors for their processes and the induction 
motor is the most important component of any manufacturing industry. Because of its 
ruggedness, reliability, and cost. Fault detection and diagnosis for moving machinery such 
as motors and turbines has been a topic of interest for the industry. In past decades, 
however, the methodologies used have mostly been model based and signal based. Given 
the cost of hardware, the use of well-controlled simulation motor models for testing fault 
diagnosis approaches is the widespread strategy under practice. Such simulations are meant 
to replicate the motor’s dynamic behavior and electromechanical interactions. [19] [20] 

 
Machine learning is a sub branch of Artificial Intelligence that can be defined as a 

set of methods used to automatically detect patterns in input data in order to make 
predictions on future data. Contrary to traditional programming where the designer defines 
the rules (program) to be used with the data in order to obtain a result, machine learning 
systems are trained to extract the rules based on the data and results of previous iterations. 
[21] 

 
Machine Learning 

 

 
Figure 8: Basic Steps of Machine Learning 

 

2.2 Origin and Development of Reliability 
 

Since ancient times, people have lauded reliability as a human quality. The 
dependability idea hasn't been used in technological systems, nonetheless, for more than 60 
years. It was first used in relation to compare the operational safety of one, two, and four- 
engine airplanes just after World War I when it had a technological significance. The 
accidents per hour of flying time served as the primary metric for determining 
dependability. [22] [23] 

 
The idea of reliability is well-liked and has long been praised as a positive quality in 

a person or a product. Far earlier than anyone would anticipate, it began modestly in 1816. 
Samuel Taylor Coleridge, a poet, is credited with creating the term "reliability." Reliability 
in statistics refers to a measurement sets or instrument's consistency, which is frequently 
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used to define a test., Reliability as a term initiated to specify dependability or repetition 
prior to World War II. The U.S. military redefined the current application in the 1940s, and 
it developed from there to the present. At first, it came to signify a product that would 
function as anticipated. The definition as it stands now includes a variety of other 
characteristics that can apply to goods, services, software programs, or human activities. All 
facets of our modern, technologically advanced world now exhibit these characteristics. [24] 
[25] 

 
2.3 Reliability Concept and definition 

 
Reliability is defined as the probability that a product, system, or Service will 

operate in a predetermined setting without failure for a given amount of time or will 
sufficiently fulfil its intended function. Reliability is a property of any measure, tool, test or 
sometimes of a whole experiment. It entails estimating the potential degree of random error 
in grades that are very close to the genuine score. 

 
To properly comprehend how reliability in a product or service is developed, it is 

imperative to comprehend the definition's key elements. 

 
 Probability 

 Intended function. 

 Satisfactory 

 Specific period 

 Specified conditions. 

 
The product development process begins with the most efficient improvement 

activities being taken. The designer may minimize weak points and eliminate probable 
failure sources based on existing experiences from the use of similar design solutions. 
Customer experiences sent back to the designer are no longer sufficient since failure 
acceptability is declining, development lead times are getting shorter, and product life cycles 
are getting shorter. It is necessary to employ additional trustworthy information sources. It is 
necessary to use statistically prepared trials to identify probable unreliability causes. 
Accelerated life testing is becoming more popular as a way to quickly identify significant 
failure causes and processes. It will become more crucial to understand the mechanics of 
failure to make accurate forecasts. [26] 

 
A new design philosophy must be implemented since the production and 

development processes need to have shorter lead times. It is necessary for disciplines to be 
integrated more thoroughly. These activities are referred to as "integrated product 
development," "concurrent engineering," and "simultaneous engineering." In these new 
attitudes toward a comprehensive product life cycle point of view, reliability engineering 
methodologies are crucial. 

 
Simple analytical approaches must be employed since the majority of reliability 

enhancement measures must be taken by the designer. FMEA, or failure mode and effects 
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analysis, is one such tool. The question of whether FMEA should be carried out by the 
designer or the reliability analyst was debated in the 1970s [27]. Today, many design 
engineers view it as a natural tool. This tool is increasingly used in process development as 
well as design, where its importance is recognized. [28] 

 
2.4 Maintenance Techniques and Tools 

 
Maintenance is a crucial component of production since it improves the quality and 

dependability of equipment while reducing downtime. Depending on the methods 
employed, maintenance may be divided into following categories [29]: 

 
2.4.1 Reactive Maintenance: 

Often known as Run 2 Failure (R2F), is the most basic but also the most 
expensive and ineffective type of maintenance. After a defect has occurred, reactive 
maintenance entails fixing the affected equipment, which may have detrimental 
effects on other components as a result of the initial issue. 

 
2.4.2 Planned Maintenance: 

Maintenance actions are arranged in advance based on manufacturer 
recommendations, industry standards, and historical performance data in planned 
maintenance. This proactive method entails routine inspections, lubrication, and 
component replacement at predefined intervals. The purpose of planned maintenance 
is to avoid unexpected breakdowns, extend equipment lifespan, and ensure 
continuous operation. 

 
2.4.3 Preventive Maintenance: 

Preventive maintenance is comparable to planned maintenance, but it goes 
above and beyond the guidelines of the manufacturer. It entails continuously 
monitoring equipment performance and carrying out maintenance activities based on 
condition-based assessments. Monitoring the state of vital components allows 
maritime operators to identify possible issues and solve them before they become 
failures, lowering maintenance costs and minimizing downtime. 

 
2.4.4 Predictive Maintenance: 

Predictive maintenance is an advanced maintenance technique that predicts 
the condition and performance of equipment using real-time data, sensors, and 
machine learning algorithms. Predictive maintenance can spot anomalies and 
probable breakdowns by analyzing data from sensors implanted in machinery, 
allowing for prompt maintenance actions before problems grow. By directing 
resources where they are most needed, this technique optimizes maintenance 
schedules, saves downtime, and lowers maintenance costs. 

 
Because of its ability to increase equipment durability, optimize maintenance 

practices, and improve overall operational efficiency, predictive maintenance is 
gaining appeal in the maritime industry. By merging data-driven insights with 
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traditional maintenance methods, maritime enterprises may move towards a more 
proactive and effective maintenance approach, resulting in safer and more reliable 
vessel operations. [30] 

 
 

 
Figure 9: Equipment Uptime vs Maintenance Method 

 

2.5 Predictive maintenance 
 

Predictive maintenance (PdM) is a development and expansion of condition 
monitoring made feasible by the massive amount of data collected by sensors (CM). The 
industry is paying attention to predictive maintenance, which is the most effective sort of 
maintenance. However, if there is no previous data, predictive maintenance may be difficult 
to perform and costly to execute without the right hardware and analysis skills. Predictive 
maintenance is an example of an improvement that uses the strategies further described in 
this thesis to identify potential faults and correct them to prevent downtime that a failure 
would otherwise create. [26] 

 
Predictive maintenance insights are a very useful tool for enhancing an operation's 

general maintenance and dependability. Benefits comprise: 

 
 Reduce the number of unforeseen failures. 

 Increase asset availability and reliability. 

 Lower operating costs by only doing maintenance as required. 

 Increase production time. 

 Enhance safety. 
 Maintenance costs can be decreased by lowering labour, inventory, and 

equipment expenditures. 

 
In contrast to preventative maintenance, predictive maintenance bases its 

maintenance forecasts on the equipment's current condition instead of its average or 
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anticipated life figures. The present condition of the system and its predicted future states 
are frequently determined using machine learning techniques. Some of the essential 
components needed to perform predictive maintenance include data gathering and 
preprocessing, early defect detection, fault detection, time to failure prediction, maintenance 
planning, and resource optimization. Another way to increase productivity and implement 
"just-in-time" production is through predictive maintenance, which has been referred to as 
one of the essential aspects in this respect. 

 
Predictive maintenance strategies are used more frequently than conventional 

preventative measures in reliability-centered maintenance. When used correctly, it gives 
businesses a tool for obtaining the lowest asset net costs for a particular level of 
performance and risk. Predictive machine maintenance methods heavily rely on vibration 
diagnostics. Vibration diagnostics has been shown to be the most reliable way to assess the 
"health" of a machine. We can forecast machine problems with the use of vibration 
diagnostic technologies. Machine defects may be found early, and the proper course of 
action can be taken when predictive maintenance is used and the machines are examined 
routinely. By doing this, you may prevent unexpected machine shutdowns and spare 
components from needing to be replaced when they are still in good shape. 

 
The performance of the equipment is assessed using condition monitoring devices. 

The purpose of evaluating the equipment's efficiency entails adding sensors to the 
machinery to collect data about the machinery. Aspects like pressure and temperature can be 
recorded using sensors. Without needing to open the machine, condition-monitoring sensors 
allow maintenance crews to have knowledge about the asset's operational state. Teams don't 
experience a lot of unintended downtime because to this diagnosis automation. In order to 
determine when equipment needs maintenance or replacement, the statistics gathered is 
analyzed employing predictive algorithms that spot trends. These algorithms compare the 
equipment's present behavior to its anticipated behavior using a set of established rules. [31] 

 
Using this information interchange, maintenance managers are able to view all 

physical assets collectively, understanding what goes on with the equipment and identifying 
any parts that need care. 

 
2.6 Predictive Maintenance Tools 

 
This section discusses the different Predictive Maintenance tools that are commonly 

used by reliability engineers across all industries. 

 
2.6.1 Infrared Analysis Sensors 

Predictive maintenance software needs sensor data to work properly. IoT 
sensors collect data on a variety of machine characteristics, such as temperature, 
pressure, sound, and more. [32] 

 
Infrared analysis may be employed to evaluate a variety of conditions, 

including those of electrical components (commonly for ARC flash analysis), 



17  

process temperatures, piping, plumbing, solar panel conditions, variations in 
temperature of mechanical components (like motor cases), insulation conditions, etc. 
Infrared thermography sensors and cameras are a common investment for managers 
creating a PdM programme. Thermal imaging is a great way to quickly measure and 
contrast thermal signatures that are undetectable to the naked eye without interfering 
with business as usual or putting technicians in risk. Additionally, it enables staff to 
find anomalous circumstances that are hidden by other equipment components. [33] 

 
2.6.2 Motor Circuit Analyzers 

A PdM tool called a motor circuit analyzer aid in providing a comprehensive 
picture of the electrical condition of equipment's motor system. Motor circuit 
analysis leverage electric signature analysis (ESA) to locate these errors. ESA 
analyses the operational current and supply voltage of a motor to identify problems. 
ESA operates equally well on both AC and DC motors. Finding issues with 
incoming electricity and mechanical motor components requires the investigation of 
motor circuits. It can find faults with the stator winding, anomalies in the bearing, 
rotor, coupling, connected load, efficiency, and system load, among other things. 

 
A practical method for examining the status of equipment while it is still 

operating is motor circuit analysis. Many motor circuit analyzer tools enable testing 
to be carried out in under two minutes. The full equipment chain cannot be checked; 
it is only utilized to inspect electrical components that are linked to other 
components. [34] 

 
2.6.3 Vibration Analysis Sensors 

Vibration analysis sensors analyze the vibration of the parts to find trouble 
signals and transmit data to a database. By contrasting current and historical data 
when connected to a contemporary CMMS (what is CMMS), it is feasible to detect 
changes over time. Moreover, CMMS machine learning groups data into useful 
knowledge. When it comes to rotating machinery, vibration is one of the best signs 
of imminent breakdowns. Increasing vibration intensity is a sign of equipment wear 
and tear, which without prompt repair results in asset failure. 

 
Vibration analysis is used to find problems with alignment, mechanical 

looseness, gear flaws, lack of lubrication, resonance, rubbing, cavitation, corrosion, 
and other things. As a result, it may be used for a wide range of equipment across 
various sectors. The versatility of vibration analysis applications is one of its 
benefits. It gathers information regarding the displacement, vibration frequency, and 
velocity (or speed of the vibration) of an object in real-time. After a month of data 
collection from sensors, there is enough knowledge to take appropriate action. [35] 

 
2.6.4 Laser-Shaft Alignment Tool 

To verify precisely aligned spinning shafts in a facility, laser-shaft alignment 
equipment is utilized. The reason for this is because one of the most common causes 
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of mechanical failure when equipment is put into operation is improper installation 
procedures. 

 
The drive train of an asset is put under tremendous strain by misaligned 

components, whether they are offset or angular in nature. Often, misplaced shafts do 
the most damage to the bearings. Laser-shaft alignment equipment uses single laser 
measuring technology. The use of instruments for laser-shaft alignments is simple 
and effective. Mechanical faults are significantly decreased because it ensures 
accurate shaft alignment. Equipment may need to be halted in order to undertake 
analysis, which is one of the drawbacks. [36] 

 
2.7 Vibration Analysis 

 
The technique of continuously monitoring the vibration frequency and amplitude of 

machinery and employing that data to assess the state of the equipment and its components 
is known as vibration analysis. Even though the underlying mechanisms and math required 
to distinguish between various forms of vibration can be complex, the process uses 
accelerometer to measure vibration. Vibrations are created whenever a piece of machinery is 
in operation. As a machine vibrates, an accelerometer linked to it produces a voltage signal 
that indicates how much and how frequently it vibrates—typically, how many times per 
second or minute it vibrates. 

 
The accelerometer's software either records the signal as amplitude vs. time (also 

referred to as a time waveform), amplitude vs. frequency (also referred as a FFT), or both. 
After being analysed by computer algorithms, all of this information is reviewed by 
engineers or certified vibration analyzers in order to determine the machine's state and 
identify  any  potential  issues,  including imbalance,  looseness,  lubrication 
issues, misalignment, and more. Vibration analysis can spot problems such as: [37] 

 
 Imbalance 
 Bearing malfunctions 

 Mechanical slackness 

 Misalignment 

 Natural frequencies and resonance 

 Faults in Electrical motor 

 Bent shafts. 

 Gearbox failures 

 Cavitation, or empty space, in pumps 

 Critical speeds 

 
In this thesis, results are derived using Predictive Maintenance Tool/ Technique 

known as Vibration Analysis. Same is further discussed in ensuing paragraphs. 
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2.7.1 Vibration Analysis Methodology 
Accelerometers being the most common instrument for gathering vibration 

data, yet non-contact, high-speed laser sensors may now be able to detect issues that 
accelerometers are unable to. This broadens the use of the vibration analysis 
methodology and makes it possible for a more precise and targeted investigation. 
The features and operating conditions of the vibrating elements are covered in detail 
by each vibration analysis concept. [38] 

 
 

2.7.1.1 Time Domain 
A waveform is an oscilloscope's display of a vibration signal 

that has been recorded by a transducer. The temporal domain is displayed 
when amplitude versus time is plotted. The majority of machine vibration 
issues are discovered using spectral analysis, though some are simpler to 
identify in waveforms. [39] 

 
2.7.1.2 Frequency Domain 

A graph of frequency vs. amplitude or spectrum is produced 
after the waveform from earlier has undergone spectrum analysis. The 
spectrum exists in the frequency domain, much like a vibration. The most 
research on equipment vibration is calculated in the frequency domain or 
spectrum analysis. [40] 

 
2.7.1.3 Time-Frequency Domain 

The simultaneous computation of several spectra may be 
useful since vibration signals evolve over time. In present study wavelet 
decomposition is used to analyze signal. [41] 

 
2.7.2 Modal analysis 

The modal analysis uses a part of equipment's measured frequency response 
functions to build a computer model. The computer model may display animations 
of each of the numerous vibration modes. The model can be altered to see the effects 
by adding or removing stiffness or mass components. In addition to these four core 
ideas, many more aspects of vibration analysis are identified using various forms of 
analysis, calculations, and algorithms. Among them are: [42] [43] 

 
2.7.2.1 Time Waveform 

An acceleration vs. time graph or table is called a time 
waveform. Time waveforms show a quick time sample of raw vibration and 
provide information about the condition of the equipment that isn't always 
obvious from the frequency spectrum. A method for using time waveform 
vibration signals as a tool for vibration analysis is called FFT. 
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Figure 10: Vibrational Wave Form 
 

2.7.2.2 Fast-Fourier Transform (FFT) 
A spectrum can be produced from a time waveform using the 

FFT method. In other words, a signal is divided into all of its frequencies 
using a calculation. The FFT transforms a signal from the time domain to the 
frequency domain, as was clear from the earlier discussion of time domain 
and frequency domain. Quick Fourier transform is frequently used to identify 
issues with machine alignment or balance [44]. 

 
2.7.3 Categories of Vibration Measurement 
Vibration measurement can be categorized in following: 

2.7.3.1 Overall level of vibration 
A "coarse inspection" of a machine is comparable to 

measuring the overall vibration level. Touching a machine with bare hand 
can give you a general idea of whether it is operating roughly across a 
widespread frequency range. For this initial evaluation, rotating machinery is 
ideal, especially high-speed machinery. Typically, it can't be used by 
reciprocating machines. 

 
2.7.3.2 Spectral analysis of vibration 

Spectral analysis, a process of transforming a signal from the 
time domain to the frequency domain. For this, FFT is frequently employed. 
The signal is carefully examined to identify any significant frequencies 
origination from machine's parts. Where the frequency signal peaks is where 
the vibration is most likely to come from. Spectral analysis is frequently used 
to determine the speed of a shaft's rotation or how frequently a set of gear 
wheels mesh. 

 
2.7.3.3 Discrete frequency monitoring 

To monitor a specific component inside a machine, discrete 
frequency monitoring looks at the vibration level being produced at a certain 
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frequency that that component would be likely to emit. For instance, if you 
want to concentrate on a specific shaft, you can set the monitoring to the 
machine's rotational speed. Discrete frequency is calculated using the FFT 
method. 

 
2.7.4 Vibration Analysis Measurement Parameters 

Three key characteristics are identified by each of these vibration analysis 
methods: acceleration, velocity (RMS), and displacement. Each of these 
characteristics highlights specific frequency ranges in a different way, and they may 
be used to detect problems. Let's examine each parameter individually. 

 
 Acceleration: 

High frequencies become more crucial during acceleration. Although 
it is exclusive, an acceleration signal is not. Velocity or displacement can be 
created from the acceleration signal. 

 
 Displacement: 

Similar to how acceleration emphasizes high frequencies more than 
low ones, displacement focuses on low frequencies. Displacement 
measurements are often only employed when analyzing mechanical 
vibrations in their entirety. Due to a substantial quantity of displacement at 
the machine's shaft's rotational frequencies, you might utilize displacement to 
detect imbalance in a spinning part. 

 
 Velocity: 

The most crucial metric is velocity since it is connected to the 
vibration's destructive force. Both high and low frequencies are equally 
valued in this system. The greatest indicator of how severe a vibration is is 
often the RMS value of velocity, which is recorded between 10 and 10,000 
Hz. By dividing the peak amplitude by 0.707, RMS is computed. 

 
Figure 11 shows how the same signal may display velocity, displacement, 

and acceleration. Although appearing at the same frequency, different peaks have 
different amplitudes. This is a good example of the varying values assigned to 
frequency ranges by each parameter. 
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Figure 10: Vibration Analysis in Acceleration, Velocity and Displacement 
 

2.7.5 Benefits of Continuous Vibration Monitoring 
The methods and technologies discussed in this article are great for 

diagnosing problems with equipment or machinery in a reactive manner, but they 
can also be employed in a proactive manner to find issues before they cause 
significant downtime. Vibration analysis and monitoring can be used to determine 
statistically structural fragility or looseness, rotating components looseness, and the 
occurrence of resonance. 

 
If used effectively, continuous vibration monitoring assists you in optimising 

the performance of your gear. With today's technology, vibrations may be 
continually measured in real time on a number of equipment and the findings are 
quickly sent to a tablet, PC, or smartphone over the cloud. 

 
2.7.5.1 Monitor critical equipment 

Any piece of machinery or equipment that, should it fail, 
would put finances at risk is considered critical equipment. Constant 
vibration monitoring aids in the detection of differences in the vibration 
spectrum, which can identify lubrication problems and bearing flaws well in 
advance of serious problems. 

 
2.7.5.2 Monitor heavily used equipment 

Several plants run nonstop and only take a break for regular 
maintenance once or twice a year. The factory may incur large financial 
losses if it stops more frequently than this. Online continuous vibration 
monitoring assists in keeping an eye on the health of machinery that is under 
stress or that is frequently utilized, and it notifies users when that state 
changes. 

 
2.7.5.3 Monitor difficult-to-access equipment 

It is challenging to maintain equipment that is positioned in 
challenging-to-reach  areas.  Machinery  operating  in  high-temperature 
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environments, cooling towers, and machines on rooftops can all be 
continuously checked for vibration anomalies, enabling maintenance to be 
performed when it's most convenient. This avoids unscheduled downtime and 
minimizes the need for maintenance professionals to visit these locations. 

 
2.8 Frequency Analysis 

 
The Discrete Fourier Transformation is used to convert the data from time domain in 

which they were captured to frequency domain (DFT). The DFT is created by evenly 
distributing N frequencies over a length 2 interval in the Fourier transform of a discrete 
signal. [45] 

 
2.8.1 Dominant Frequencies of Mechanical Faults 

Rotor imbalance, shaft misalignment (parallel and angle), and soft foot are 
three mechanical defects for which vibration analysis is frequently employed as a 
method for fault identification. In the Table No 2, characteristic vibrational 
frequencies that are generally used to identify mechanical issues are defined. [46] 

 
Type of failure Dominant Frequency Dominant Plane 

Imbalance 1 x rpm Radial 

Angle Misalign 1 x, 2 x rpm Radial 

Parallel Misalign 1 x, 2 x rpm Radial 

Soft foot 1 x, 2 x rpm Radial 

 
Table 2: Dominant Frequency in Vibrational Spectra 

 
The failures described in Table 1 are characterized by an increase in the 

component amplitudes in the frequency spectrum on a single or dual frequency of 
shaft rotation. The dual frequency signal element may be found in the majority of 
failures. Depending on the connection technique and the applications the motors are 
utilized in, experiments conducted have demonstrated that misalignment can happen 
in the frequency spectrum at all frequencies from one to six times the frequency of 
rotation. Soft foot often appears at a frequency of 1x rpm, but it can also occur at 
two- and three-times rpm, demonstrating once more that defect diagnosis alone by 
analyzing characteristic frequencies does not necessarily result in obvious 
conclusions. [47] 

 
2.8.2 Data Collection 

A piezoelectric accelerometer is the most used transducer for vibration 
analysis. Because on the way the accelerometer is built, an electric signal 
proportional to strain is produced using the piezoelectric capabilities of certain 
crystals and ceramics. This sensor's architecture makes it possible to convert a 
mechanical signal into an electrical signal without the need for an extra power 
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source. The most significant benefits of this transducer are its wide frequency and 
dynamic range, both of which have outstanding linearity across all ranges. 

 
2.9 Previous Research Work 

 
Vibration analysis is frequently used given the mechanical nature of motors. Fast 

Fourier transform (FFT), Hilber Huang Transform (HHT), Wavelet Transformation (WT), 
Ensemble Empirical Mode Decomposition (EEMD), and Empirical Mode Decomposition 
(EMD) are some of the commonly used signal processing techniques for feature extraction. 
Vibration analysis proposed a vibration signal-based fault detection and diagnosis system 
for induction motors by converting the time-series data into a 2-D image and subsequently 
performing the scale-invariant feature transform (SIFT) algorithm to extract significant 
features. [48] 

 
With the rise and advancement of Artificial Intelligence methods, the development 

of hardware platforms that enable high parallel computations, a decrease in sensor 
production cost, and an increase in data collection, data-driven methodologies are now of 
interest and explored by the academic and industrial community. Data-driven methods are 
those which use large amounts of data for feature diagnosis. Methods can be grouped into 
different categories such as statistical, machine learning, and deep learning. Statistical 
analysis methods include Principal Component Analysis (PCA) and Partial Least Squares 
(PLS). Machine learning methods are apt for big amounts of data; however, they are usually 
combined with signal processing techniques for highlighting the features and further feature 
extraction. [49] Common machine learning methods used in motor diagnosis are principal 
component analysis (PCA), Hilbert–Huang Transform and Support Vector Machine (SVM), 
Hilbert–Huang Transform with k-Nearest Neighbors (k-NN), Singular Value 
Decomposition (SVD) uses Random Forests for analyzing the health of a woodworking 
cutting machine spindle health; uses multiple classifiers with different prediction horizons 
approaches use SVM for evaluating different feature extract methods, proposed a Fuzzy 
Logic based resilient state awareness of control system for anomalous behavior detection, 
and used wavelet packet decomposition on sound data along with an Extension Neural 
Network (ENN) for fault diagnosis in an internal combustion engine. 

 
Ehab Salem Al Fahadi worked on Lateral Vibration Analysis and Shaft Whirling due 

to the design of machine components, manufacturing procedures, and material choices, 
some machine components may react differently in mechanical engineering. It is beneficial 
to comprehend appropriate system modeling in order to comprehend the fundamental 
phenomena of any broad dynamic stressors. It is good to know that the phenomenon of 
lateral bending, whirling, and transverse vibration in propulsion systems is less hazardous 
than torsional vibration. A shaft is a rotating machine part that transfers energy from one 
part to another or from a machine that produces energy to a machine that absorbs energy. 
Shafts usually have circular cross sections. Since the physical object's dimensions are tiny in 
comparison to the vibration's wavelength, a lumped-parameter technique is usually the best 
choice. Any system with dependent variables that are functions of both time and one or 
more geographic variables are referred to be a distributed system. [50] 
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The majority of shafts are exposed to varying loads of torsion and bending paired 
with varying levels of stress concentration. The main issue with such shafts is fatigue 
loading. Engineers and academics have spent a lot of time investigating why these parts and 
structures fail in order to give solutions to prevent similar disasters. Whirling is typically 
related to fast rotating shaft speeds. Critical speed and whirling are two terms used to 
describe vibrations in a shaft. The shaft will suffer damage and eventually fail if the speed is 
maintained at the same level. Also, the shaft will continue operating safely until another 
event might stop it if the speed keeps rising before any other consequences manifest 
Moreover, even in the absence of external stresses, a shaft's rotational imbalance causes it to 
whirl, and at certain speeds, referred to as critical speeds, resonance happens as a result. The 
spinning also takes place at the same time as the resonance. The radial and centrifugal 
forces, which might act on the shaft as it is spinning, could cause it to deviate from its "safe" 
position. Moreover, the majority of machines that employ long shafts have a big issue with 
shafts spinning. [51] 

 
The spinning shafts that power mechanical systems like motors, pumps, engines, and 

turbines rotate at various speeds. Over its service life, numerous flaws such as cross- 
sectional fractures, looseness, and misalignment may happen because of unforeseen 
operating circumstances. In order to forecast the vibration spectrum for shaft misalignment, 
experimental tests on a rotor-bearing system have been conducted, previously. Majority of 
the studies confirm that shaft misalignment has come out to be one of the most common 
causes of vibration. [52] 
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Chapter No 3: Experimental Setup 
 

3.1 Machinery Fault Simulator (MFS) 
 

The Machinery Fault Simulator from Spectra Quest is a ground-breaking instrument 
for researching the telltale signs of typical machinery flaws without affecting manufacturing 
output or revenues. The system is desktop-sized and weighs roughly 150 pounds. It features 
a modular design that offers versatility, simplicity of use, and resilience. The simulator's 
parts are all machined with tight tolerances so that no substantial vibrations can interfere 
with operation. Consequently, in a completely controlled environment, one can introduce 
various errors either alone or in groups, depending on the circumstance required to 
investigate. [53] 

 
Misalignment can cause vibration. The primary factor in the majority of machine 

malfunctions is misalignment. When the machine is running normally and the rotating 
centre lines of the shaft are not collinear, the shaft is out of alignment. Before failure, 
rotating machinery typically exhibits warning indicators, such as changes in vibration 
intensity and pattern. The vibration signal can be used to identify these issues. By 
identifying these symptoms, an early attempt at correction can be made to stop the system 
from completely failing. However, a review of the literature revealed that employing 
Operational Deflection Shapes (ODS) is the best way to identify misalignment. A shape can 
be defined by specifying the movement of two or more points. Using a variety of frequency 
domain measures, ODS can be produced. Many studies have also recommended using 
amplitude domain measurements to describe the vibration issue. Condition-based 
maintenance aims to prevent failures through regular inspections so that a fault can be 
detected before it occurs, has replaced corrective maintenance, which is carried out as soon 
as a fault is discovered and attempts to restore normal operating conditions. [54] 

 
For more than 20 years, experiments for fault simulation and detection have been carried out 
using the MFS, which is regarded as a condition-based maintenance tool. Despite the fact 
that numerous papers in recent literature have looked into the issue of identifying flaws in 
rotary machinery, there is no evaluation of research done on MFS machines. The Machinery 
Fault Simulator (MFS), shown in figure no. 11, was developed by the Spectra Quest 
Company. It has the ability to look into common machine faults like bearing, alignment, 
resonance, imbalance, and other machine component failures. The robust multi-channel 
DAQ and data analysis software system of the MFS makes data acquisition, analysis, and 
report production simple. 
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Figure 11: Machinery Fault Simulator – Magnum [55] 

 
3.2 Inducing Defects in Motor using MFS 

 
Misalignment is probably the most common cause of machinery malfunction. While 

a properly aligned machine can save an industry between 20% and 30% on energy 
consumption and extend equipment life, The equipment would operate much longer if it is 
properly aligned Despite the frequency of misalignment and the known benefits offered by 
proper alignment, plant managers and machine operators have a marginal understanding of 
its importance. Bai, C, et al [56], under various operating and design conditions, including 
speed, alignment level, and coupling type, tests were conducted to identify distinct vibration 
signatures for alignment and misalignments. The effects of shaft misalignment on the 
dynamic behavior of rotating machinery were demonstrated by the authors using an 
Operational Deflection Shape (ODS), which is created from multiple accelerometer signals 
distributed throughout the machine. A numerical model was developed to simulate machine 
issues at various locations. The authors also studied the structure and growth of cavitation in 
a centrifugal pump casing as well as a fractured shaft fault, AC motor faults, and those 
faults. 

 
Alok Kumar Verma et al [57] determined through research into the instability of a 

rotating shaft mounted on journal bearings that misalignment was the cause of instability. 
The results were based on the shaft displacement and stator current of the misaligned 
machine. Michael Monte used spectral analysis to contrast various vibration signals brought 
on by misalignment. Measurements were taken using a variety of tools and locations. Two 
accelerometers were used to record vibration on the bearings, and two eddy-current probes 
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were mounted on the shaft itself. Tristan Plante et al. used vibration signals and principle 
component analysis to find flaws. In the tests, an induction motor was connected to a loaded 
shaft that was supported by two bearings. Healthy, unbalanced, and parallel misalignment 
working conditions were tested [58]. The vibration data was collected using four 
accelerometers that were installed in various places. The database is made up of 1951 
multivariate time-series that were collected by sensors on a Machinery Fault Simulator 
(MFS) Alignment-Balance-Vibration (ABVT) from Spectra Quest. Normal function, 
imbalance faults, and horizontal misalignment faults are three different simulated states 
included in the 1951. 

 
When compared to imbalance and misalignment, cracked shafts make up a minor 

portion of rotary machinery defects. But, if a fractured shaft is not found early on, it could 
endanger the safety of the machine and its operators, not to mention the amount of 
downtime and money needed for a replacement. 

 
José M. Machorro-López et al [59] investigated a number of methods for detecting 

shaft cracks in spinning machinery. The authors conducted numerical and experimental 
research to identify damages in both cases by examining the vibratory response in static and 
rotating shafts under various kinds of external excitations. Finite element models at twelve 
different temperatures to examine the effects of different crack types (open and breathing), 
fracture depths, and crack positions on the dynamic response. 

 
Naqash Azeem et al. combined vibration spectra and phase analysis to find shaft 

unbalance, misalignment, cracks, and bearing issues. The elastic support properties of a 
spinning shaft represented by a Bernoulli-Euler beam were studied by T.A.N. Silva et al. 
The investigations were aimed at identifying the intrinsic frequencies and mode shapes of 
continuous beams while taking into account various boundary conditions. [60] 

 
The simulator is an ideal tool to use for studying the vibration signature that occurs 

when two mating shafts are misaligned. Using the simulator to study misalignment enables 
you to achieve the following: 

 
 Practice and learn different methods of alignment. 

 Determine the vibration spectra that occur due to different levels of angular and 
parallel misalignment 

 Study the relationship between vibration and several parameters: coupling 
stiffness, shaft speed, machinery dynamics stiffness, resonance, and soft-foot 

 Determine the effects of misalignment on power consumption. 

 Develop an understanding of why misalignment produces axial vibration. 

 Develop strategies to differentiate misalignment spectra from the other sources 
of vibration 

 Calculate the savings that can be achieved by frequently checking the alignments 
of machinery. 
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3.3 Shaft Alignment 
 

The MFS is ideal for addressing shaft alignment issues and functioning identically. 
Although the motor side does not provide convenient features to assist in movement, the 
motor can be adjusted horizontally and vertically. If the rotor side becomes "bolt bound then 
you will have to reposition the motor. Otherwise, alignments are conducted rotor side with 
the benefit of jack bolts. With the motor side considered "fixed", the rotor side can be jacked 
horizontally: vertically, and axially. Shims are generally used to perform vertical 
movements to simulate the real world. "A" size standard, precut stainless shims will fit this 
machine as an option, one can cut brass or plastic shims. Cutting shims requires more time 
and effort. Plastic shims are not as stable as they tend to compress a bit but are acceptable 
for training purposes and are much safer. Inexperienced individuals must be warned that 
metal shims (particularly stainless) can inflict a cut as easily as a razor blade! Enough 
cannot be said about the hazard of thin (say 0.001" through 0.005") shims. Many a mechanic 
has injured himself badly on an exposed shim and kept the accident quiet to avoid the hassle 
of reporting it (perhaps the injury statistics are a bit biased). In a nutshell, handle thin shims 
carefully and avoid positioning them so that they create an exposed knife edge. Also, when 
stacking shims under a machine foot, arrange them like a sandwich where the thickest is on 
the outside. This practice will prevent the thin ones from being as exposed and possibly 
curling to where they become a hazard. Shims that extend beyond the rotor deck and 
interfering with the belts should be inserted from beneath the deck. Please refer to the 
photograph inserted at the end of this procedure. The axial adjustment is used to load 
couplings for vibration measurements. Some styles of couplings must be allowed space for 
growth and float. If they are subject to axial loading, unusual wear patterns develop, and 
unwanted vibration can be transmitted across the coupling. Dial indicators, lasers, optical 
devices, etc. are very precise measuring tools that will reflect tiny movements imperceptible 
to the human eye. [61] [62] 

 
As a result, to obtain a good alignment, all unwanted motion and vibration must be 

kept to a minimum. What appears to be an acceptable, sturdy machine may not be so rigid 
when examined carefully. When performing shaft alignments, be alert to the effect of a bent 
shaft, excessive runout, loose/worn bearings, and a poor foundation. All these parameters 
and more) can interfere with obtaining a quality alignment. Do not attempt to align the 
simulator using the aluminum resonance shaft. This shaft is flexible to promote resonance at 
a lower shaft speed. It can be easily bent as well contributing to alignment problems. 
Fundamentally, it is not possible to obtain a rigid shaft arrangement. As a result, whereas 
with a steel shaft, unwanted indicator movement is held to a minimum (say 1 to 2 mils when 
leaning hard on the machine) with the aluminum shaft, the movement is on the order of 5 
mils. Of course, this situation may not be all that bad as such unwanted movement is present 
on some real-world machines. Where possible, simply avoid leaning on or climbing on the 
machinery that you are aligning in order to avoid the possibility of disturbing your 
measurements. 

 
Alignment changes due to thermal growth can be significant and are sometimes a 

major factor in mysterious machinery problems (along with resonance) At this time, the 
MFS is not set up to create thermal growth simulations. However, you should be aware of 
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the contribution of thermal changes. Also, contrary to some machinery operating and 
servicing manuals, the growth is not always linear. Namely, the movement may not be 
straight and may not follow the calculation for linear expansion and contraction. Most 
mechanics live in the real world, so it pays to be patient with their concerns. [55] 

 
3.3.1 Methods for Inducing Horizontal Misalignment. 

Prior to beginning this activity, the MFS has to be aligned. Install a rigid 
shaft coupling to increase the vibration's amplitude. Make sure the motor's electricity 
is turned off. 

 
a. Remove the T-handle alignment pins, step 1. 

 
b. Tighten the horizontal jack bolts until they touch the base plate of the 
rotor. 

 
c. Turn the four plastic dials' outer rings until the index line lines up 
with the zero mark. 

 
d. Choose the desired level of horizontal misalignment. You might want 
to introduce 10 mils (0.010 inches), for instance. 

 
e. Remove the four socket head cap screws holding the base plate of the 
rotor to the support channels. 

 
f. Unscrew the jack bolts to the predetermined number of turns on the 
back side (the side away from you). 

 
g. On the front side of the machine (the side that is directly in front of 
you), the jack bolts should be advanced or screwed in to the preset depth. For 
there to be a parallel misalignment, both ends of the rotor base must be 
shifted out of alignment by the same amount. This requirement will 
guarantee that the shafts of the motor and rotor remain parallel. 

 
h. Tighten the cap screws with socket heads on the rotor base plate's 
attachment to the support channels. 

 
i. Close the safety cover. 

 
j. Turn on the motor and the MFS. As needed, collect vibration data. 

 
k. By loosening the socket head cap, the shafts can be roughly realigned. 
Screws that hold the rotor base plate in place and reverse the jacking 
movements to reset the dials. 
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3.4 Shaft Balancing 
 

The simulator 1s a perfect tool for examining the impact of machine imbalance in a 
controlled environment. Using the simulator for this study enables you to do the following: 

 
 Learn about vibration spectra due to an unbalance force in a single plane or a 
multiplane 

 Learn about overhung unbalance 

 Learn about phase relationship due to coupled unbalance force 

 Develop an expertise for balancing rotors in a single plane or multiplane, 
and/or overhung 

 Measure the location (phase) and estimate the magnitude of unbalance force 

 Develop an understanding of interaction between unbalance force, speed, and 
machine dynamics 

 Practice the use of commercial balancing software & hardware. 
 

3.4.1 Procedures for Testing Balancing 
 

To test for imbalance, you need to introduce to one or more of the rotors 
disks a force that creates imbalance. The following steps explain how to complete 
this procedure: 

 
a. Weigh a few (a dozen) 1/4-20 screws, nuts, and washers of various 
lengths. Each item should have a label, and weights should be noted in a 
notebook. 

 
b. Screw a 1/4-20 screw into a rotor disk's tapped hole. Put a nut on the 
screw, then tighten it firmly. There is an imbalance force created by the 
additional weight. 

 
c. Attach accelerometers to the fault simulator at various places, then 
take vibration readings. The two bearing housings, the motor, the gearbox, 
and the base in the X, Y, and Z directions are suggested locations for the 
accelerometer installation. 

 
d. Alter the motor speed while measuring the vibration levels 
universally. 

 
e. Chart vibration levels versus speed to observe how speed affects 
unbalance force. 

 
f. Repeat steps 1 through 5 using various weights, at various locations 
on the shaft. Using two or more rotors, add various weights at various angles. 
The weights do not need to be at the same angle, so specifically place them 
on the rotors so that one weight may be at 0° and the other at 45°. 
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g. Apply the same steps to the overhung rotor. 

 
h. Experiment with various arrangements of each concept listed above. 
Specifically, combine weights and angles in any way that resembles a real- 
world scenario. 
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Chapter No 4: Methodology 
 

4.1 Scope and Objective of Chapter 
 

This chapter presents the methodology used for the classification of induction motor 
data using supervised learning. Four features - Coefficient of Variation (CVA), Entropy, 
Mean, and Fast Fourier Transform (FFT) have been used with two classifiers, Linear 
Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA). 

 
4.2 Comparison of Supervised and Unsupervised Learning 

 
Advantage of supervised learning is that the model is trained on labeled data that 

provides a clear signal for the correct output, supervised learning has the potential to be 
more accurate than unsupervised learning. Because labeled data enables the model to learn 
more quickly and accurately than unsupervised learning, which may require more trial and 
error to find patterns in the data, supervised learning can be more effective than 
unsupervised learning. The ability to solve specific tasks, like classification or regression, 
where the objective is to predict a specific output based on input features, is another benefit 
of supervised learning. In these scenarios, the labeled data offers a clear objective for the 
model to optimize, whereas unsupervised learning may not have a clear objective or 
performance metric. Comparison of supervised and unsupervised learning is given below: 

 
Supervised Learning Unsupervised learning 
Labelled data is necessary for supervised 
learning algorithms, which means that each 
data point in the training set must be 
associated to a relevant label or target value. 
As a result, supervised learning is better 
suited for applications where labelled data is 
present. 

Employs unlabeled data: Unsupervised 
learning techniques use data that has no 
corresponding labels or target values. 
Unsupervised learning is therefore more 
suited for issues when labelled data is 
lacking. 

Supervised learning, which employs input 
information to forecast the value of a target 
variable. The objective is to create a model 
that can correctly forecast the target value 
from new, unrecognized data. 

The goal of unsupervised learning is to 
identify patterns and structures in the data 
itself. When performing tasks like clustering, 
where the objective is to put similar data 
points together, this can be helpful. 

Findings that are easy to interpret: 
considering that supervised learning is based 
on labelled data, the model that is created 
often yields comprehensible results. For 
instance, it is simple to visualize and 
comprehend a decision tree model, and it is 
simple to explain the rules that are used to 
create predictions. 

Less interpretable results: Since 
unsupervised learning is based on unlabeled 
data, the model that is produced may be 
more challenging to understand. For 
instance, a clustering model might combine 
data points based on imprecise, hard-to- 
understand patterns. 

 
Table 3: Comparison of Supervised and Unsupervised Learning [63] [64] 
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4.2 Data Collection and Pre-processing 
 

The primary step in the methodology is data collection. The data may contain 
numerous parameters such as motor current, voltage, temperature, vibration, and other 
pertinent operational parameters. The collected data is formerly pre-processed to eradicate 
any noise or outliers. The pre-processing step is critical to warrant usage of the data for 
classification to be accurate and reliable. 

 

 
Figure 11: Data Collection Flow Chart 

 
4.3 Wavelet decomposition 

 
In many fields, such as speech recognition, image and audio analysis, and 

biomedical signal processing, wavelet decomposition is a widely used technique for signal 
processing and feature extraction. It involves using a set of wavelets, which are functions 
that oscillate around zero and have a finite duration, to divide a signal into various 
frequency bands. The Daubechies wavelet, which has a few variations including the db 4 
and db 7 wavelets, is one of the wavelets that is frequently used for decomposition. The 
smoothness and regularity of the wavelet function are determined by the number of 
vanishing moments present in each of these wavelets as shown in figure below. In the 
current study db 4 and db 7 have been used at wavelet level 7,8,9. [65] 
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Figure 12: The Daubechies Wavelet 

4.4 Selection of Mother Wavelet 
 

To select specific mother wavelet for signal analysis of induction motor faults following 
characteristics is deem feasible: 

4.4.1 Orthogonality and Smoothness: 
Daubechies wavelets are acknowledged for orthogonality and smoothness 

behavior. The selection of db4 and db7 is compelled by their aptitude to capture both 
high and low-frequency components of a signal efficiently. These wavelets offer a 
steadiness between time and frequency localization, which is crucial for analyzing 
complex signals as in case of induction motors. 

Vanishing Moments allows Daubechies to approximate polynomial signals of 
a certain degree precisely. The higher the number of vanishing moments, results in 
enhanced wavelet for representing signals with smooth variations. Db4 has 4 
vanishing moments. This property provide advantage when dealing with motor 
signals as behavior of signal varies as degrees of smoothness. 

 
4.4.2 Multi-Resolution Analysis 

Discrete wavelet transform (DWT) for multi-resolution analysis uses 
Daubechies wavelets. The DWT divides a signal into numerous scales, enables to 
study the varying levels. For locating certain frequencies or characteristics in 
induction motor signals, this is quite helpful. 

 
4.4.3 Accuracy and Complexity Trade-Off 

Wavelet analysis entails a complexity and accuracy trade-off. Although more 
complex wavelets may be more accurate in capturing signal properties, they also run 
the risk of adding noise or artifacts. Db4 and db7 are good options for motor signal 
analysis because they establish a compromise between complexity and accuracy. 
Moreover, Daubechies wavelets have compact support, which restricts the range 
across which they are nonzero. When working with signals that have well defined 
beginning and ending timings, such as transient signals in motors, this trait is 
helpful. 
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4.4.4 Selection of Wavelet Levels 
Wavelet level 1 to 5 does not hold relative signal information as shown in figure 

below. Whereas, wavelet level 7 ,8 ,9 entails significant information. 

 

 

Figure 13: Wavelet Level 1 (Imbalance) 
 
 

 

Figure 14: Wavelet Level 7 (Imbalance) 

 
4.5 Feature Selection/Extraction 

 
Feature extraction is executed for identification of the best relevant features which 

contributes meaningfully for classification of data. Numerous feature selection procedures 
are employed to extract maximum accuracy. In this study, feature selection is performed 
using a combination of domain knowledge and statistical methods to identify the most 
important features that are highly correlated with the motor health condition. 
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Subsequently, the features are extracted from the pre-processed data. Four features 
are selected for this study: CVA, Entropy, Mean, and FFT. CVA is a measure of the 
variation of a feature, calculated as the ratio of the standard deviation to the mean. Entropy 
is a measure of the randomness or disorder in a feature. Mean is a simple statistical measure 
that represents the average of a feature. FFT as already discussed, providing information 
about the frequency components present in the signal. These features are calculated from the 
pre-processed data for each motor sample. [66] [67] 

 
4.6 Classification Models 

 
Two classifiers, Linear Discriminant Analysis LDA and Quadratic Discriminant 

Analysis QDA, are used for the classification of induction motor data. LDA is a linear 
discriminative model that finds a linear combination of features that best separates the 
classes. QDA, on the other hand, is a quadratic discriminative model that finds a quadratic 
decision boundary to classify the data. Both LDA and QDA are supervised learning 
algorithms that require labeled data for training. [68] 

 
4.6.1 Model Training 

The classification models are trained by means of the pre-processed data 
using selected features. The data is distributed into training and testing sets to assess 
the performance of the classifier. The training set is used to train the models, while 
the testing set is used to validate the classifier performance. Performance metrics 
such as true detection, false detection and accuracy are used to evaluate the 
classification models performance. 

 
4.6.2 Model Validation 

After training and optimizing the model, they are validated using unseen data 
to assess their performance. The models are tested with set of new motor samples, 
and the classification results are compared with the actual motor health condition to 
validate the accuracy of the models. 
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Chapter No 5: Results and Discussion 
 

5.1 Scope and objective of Chapter 
 

This chapter presents a comprehensive discussion and interpretation of the findings 
obtained from the data analysis of induction motors induced with imbalance and horizontal 
misalignment faults. The discussion begins with a summary of the key results, highlighting 
data sets used and significant findings, followed by an in-depth analysis of the results in 
relation to the research objectives. The implications of the classification are also discussed, 
including their theoretical, and practical implementation. Overall, this chapter aims to 
provide a thorough and meaningful interpretation of the study's findings, contributing to the 
understanding of the results and paving the way for future research directions. 

 
5.2 Datasets Test and Train Split 

 
In present study, a commonly used ratio of 70:30 was used. This means 70% of 

samples was used for training whereas 30% of samples were used for testing in following 
breakdown: 

 
a. Total sample space : 240 samples 
b. Samples used for Training : 168 samples 
c. Samples used for Testing : 72 samples 

 
5.3 Classifier Performance Parameters 

 
Classifier performance was evaluated on the basis of few parameters. In this research 

work, classifier performance has been evaluated at wavelet level ‘7’ & ‘8’. Following 
performance indicators have been used: 

 
5.3.1 True Detection (TD) 

Total number of samples classified correctly from each class can be defined 
as: 

 

 
Where, 

 

 
TP: True Positive 
TN: True Negative 

𝑻𝑫 = 𝑻𝑷 + 𝑻𝑵 

 

5.3.3 False Detection (FD) 
Total number of samples classified from each class can be defined as: 

 

 
Where, 

 

 
FP: False Positive 
FN: False Negative 

𝑭𝑫 = 𝑭𝑷 + 𝑭𝑵 
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5.3.4 Accuracy (ACC) 
It is correctly classified samples from overall number of samples and can be 

written as: 
 

𝑻𝑷 + 𝑻𝑵 
𝑨𝑪𝑪 = 

𝑻𝑷 + 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵 
𝑿 𝟏𝟎𝟎

 

5.4 Feature Extraction Results 
 

As discussed in earlier section, four features are used for classification using Linear 
discriminant classifier (LDC) and quadratic (QDC). Four features were extracted from data 
set. After applying features resultant feature vector depicts the data boundary for classifier. 
Behavior pattern from each feature are as follows: 

 
5.4.1 Co-efficient of Variation of Amplitude (CVA) 

Co-efficient of variation of amplitude (CVA) performed best as shown in 
figure no 12. After applying CVA on dataset feature values are distinct from each 
other as shown in figure below. Hence, best performance has been achieved using 
this feature. 

 

 
Figure 15: Co-efficient of Variation of Amplitude (CVA) 
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5.4.2 Wavelet Entropy 
Wavelet entropy performed average as shown in figure below. This feature 

was not able to classify each class in a refined manner. Hence resulted in average 
classification results. 

 

 
Figure 16: Wavelet Entropy 

 
5.4.3 Mean 

Mean feature data values is shown in figure below. It can be seen that this 
feature was not able to discriminate between the data of each class significantly. 
Hence performance of classifier using this feature remained average. 

 

 
Figure 17: Mean 
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5.4.4 Fast-Fourier Transform (FFT) 
Similarly, FFT performance was lowest as can be seen in figure below, the 

data point is not discriminant for the classifier. 

 

 
Figure 18: Fast-Fourier Transform (FFT) 

 
As shown in figures above, it is evident that after applying CVA data from each 

class is highly discriminative as compared with other features. Hence it is predicable that 
CVA classification results came out to be the best amongst all. Therefore, fault detection is 
better using CVA. 
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5.5 Classifier Parameter Results 

 
5.5.1 Linear Discriminant Classifier (LDC) 

Maximum accuracy was achieved by CVA. It gave maximum accuracy of 
100% at wavelet levels (7-9) using both mother wavelet 4,7 Daubechies. Whereas 
entropy performed at (36%-66.6%). Mean gave (50%-66.6%). FFT was lowest 
performing feature (37.5-43%). Ensuing sections shows all the results. 

 
 
 

LDC Classifier for Imbalance at NDE (6g) 
(120 SAMPLES) 

Features 
Wavelet 

Level 
Mother 
Wavelet 

TD FD ACC 

 
 

CVA 

7 
DB-4 72 0 100 
DB-7 72 0 100 

8 
DB-4 72 0 100 
DB-7 72 0 100 

9 
DB-4 72 0 100 
DB-7 72 0 100 

 
 

ENTROPY 

7 
DB-4 48 24 66.6 
DB-7 48 24 66.6 

8 
DB-4 48 24 66.6 
DB-7 48 24 66.6 

9 
DB-4 27 45 37.5 
DB-7 26 46 36.1 

 
 

MEAN 

7 
DB-4 48 24 66.6 
DB-7 48 24 66.6 

8 
DB-4 44 28 61.1 
DB-7 47 25 65.2 

9 
DB-4 37 35 51.3 
DB-7 36 36 50 

 
 

FFT 

7 
DB-4 31 41 43 
DB-7 31 41 43 

8 
DB-4 27 45 37.5 
DB-7 27 45 37.5 

9 
DB-4 38 34 52.7 
DB-7 40 32 55.5 

 
 

Table 4: LDC Classifier for Imbalance at NDE (6g) 
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LDC Classifier for Imbalance at NDE (20g) 
(120 SAMPLES) 

Features 
Wavelet 

Level 
Mother 
Wavelet 

TD FD ACC 

 
 

CVA 

7 
DB-4 72 0 100 

DB-7 72 0 100 

8 
DB-4 72 0 100 
DB-7 72 0 100 

9 
DB-4 72 0 100 
DB-7 72 0 100 

 
 

ENTROPY 

7 
DB-4 45 27 62.5 
DB-7 45 27 62.5 

8 
DB-4 36 36 50 
DB-7 36 36 50 

9 
DB-4 36 36 50 
DB-7 36 36 50 

 
 

MEAN 

7 
DB-4 36 36 50 
DB-7 37 35 51.3 

8 
DB-4 36 36 50 
DB-7 36 36 50 

9 
DB-4 36 36 50 
DB-7 36 36 50 

 
 

FFT 

7 
DB-4 40 32 55.5 
DB-7 38 34 52.7 

8 
DB-4 30 42 41.6 
DB-7 36 36 50 

9 
DB-4 31 41 43 
DB-7 35 37 48.6 

 
 

Table 5: LDC Classifier for Imbalance at NDE (20g) 
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LDC Classifier for Imbalance at DE (6g) 
(120 SAMPLES) 

Features 
Wavelet 

Level 
Mother 
Wavelet 

TD FD ACC 

 
 

CVA 

7 
DB-4 72 0 100 

DB-7 72 0 100 

8 
DB-4 72 0 100 
DB-7 72 0 100 

9 
DB-4 71 1 98.6 
DB-7 70 2 97.2 

 
 

ENTROPY 

7 
DB-4 35 37 48.6 
DB-7 35 37 48.6 

8 
DB-4 36 36 50 
DB-7 36 36 50 

9 
DB-4 37 35 51.3 
DB-7 37 35 51.3 

 
 

MEAN 

7 
DB-4 35 37 48.6 
DB-7 35 37 48.6 

8 
DB-4 36 36 50 
DB-7 36 36 50 

9 
DB-4 36 36 50 
DB-7 36 36 50 

 
 

FFT 

7 
DB-4 35 37 48.6 
DB-7 37 35 51.3 

8 
DB-4 36 36 50 
DB-7 36 36 50 

9 
DB-4 40 32 55.5 
DB-7 34 38 47.2 

 
 

Table 6: LDC Classifier for Imbalance at DE (6g) 
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LDC Classifier for Imbalance at DE (20g) 
(120 SAMPLES) 

Features 
Wavelet 

Level 
Mother 
Wavelet 

TD FD ACC 

 
 

CVA 

7 
DB-4 72 0 100 

DB-7 72 0 100 

8 
DB-4 72 0 100 
DB-7 72 0 100 

9 
DB-4 70 2 97.2 
DB-7 70 2 97.2 

 
 

ENTROPY 

7 
DB-4 35 37 48.6 
DB-7 35 37 48.6 

8 
DB-4 36 36 50 
DB-7 36 36 50 

9 
DB-4 35 37 48.6 
DB-7 35 37 48.6 

 
 

MEAN 

7 
DB-4 37 35 51.3 
DB-7 35 37 48.6 

8 
DB-4 36 36 50 
DB-7 36 36 50 

9 
DB-4 36 36 50 
DB-7 34 38 47.2 

 
 

FFT 

7 
DB-4 40 32 55.5 
DB-7 38 34 52.7 

8 
DB-4 33 39 45.8 
DB-7 37 35 51.3 

9 
DB-4 37 35 51.3 
DB-7 35 37 48.6 

 
 

Table 7: LDC Classifier for Imbalance at DE (20g) 
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LDC Classifier for Horizontal Misalignment at NDE (0.5mm & 2.0mm) 
(120 SAMPLES) 

Features Wavelet 
Level 

Mother 
Wavelet 

TD FD ACC TD FD ACC 
0.5mm 2.0mm 

 
 

CVA 

7 
DB-4 72 0 100 72 0 100 
DB-7 72 0 100 72 0 100 

8 
DB-4 72 0 100 72 0 100 
DB-7 72 0 100 72 0 100 

9 
DB-4 72 0 100 72 0 100 
DB-7 72 0 100 72 0 100 

 
 

ENTROPY 

7 
DB-4 35 37 48.6 48 24 66.6 
DB-7 34 38 47.2 48 24 66.6 

8 
DB-4 36 36 50 45  62.5 
DB-7 36 36 50 46 26 63.8 

9 
DB-4 36 36 50 36 36 50 

DB-7 36 36 50 35 37 48.6 

 
 

MEAN 

7 
DB-4 36 36 50 43 29 59.7 
DB-7 36 36 50 42 30 58.3 

8 
DB-4 36 36 50 34 38 47.2 
DB-7 36 36 50 35 37 48.6 

9 
DB-4 35 37 48.6 32 40 44.4 
DB-7 39 33 54.1 31 41 43 

 
 

FFT 

7 
DB-4 35 37 48.6 35 37 48.6 
DB-7 36 36 50 36 36 50 

8 
DB-4 34 38 47.2 27 45 37.5 
DB-7 32 40 44.4 28 44 38.8 

9 
DB-4 32 40 44.4 31 41 43 
DB-7 31 41 43 31 41 43 

 
 

Table 8: LDC Classifier for Horizontal Misalignment at NDE (0.5mm & 2.0mm) 
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LDC Classifier for Horizontal Misalignment at DE (0.5mm & 2.0mm) 
(120 SAMPLES) 

Features Wavelet 
Level 

Mother 
Wavelet 

TD FD ACC TD FD ACC 
0.5mm 2.0mm 

 
 

CVA 

7 
DB-4 72 0 100 72 0 100 
DB-7 72 0 100 72 0 100 

8 
DB-4 72 0 100 72 0 100 
DB-7 72 0 100 72 0 100 

9 
DB-4 71 1 98.6 71 1 98.6 
DB-7 70 2 97.2 70 2 97.2 

 
 

ENTROPY 

7 
DB-4 36 36 50 35 37 48.6 
DB-7 36 36 50 35 37 48.6 

8 
DB-4 36 36 50 36 36 50 
DB-7 36 36 50 36 36 50 

9 
DB-4 36 36 50 36 36 50 

DB-7 36 36 50 35 37 48.6 

 
 

MEAN 

7 
DB-4 35 37 48.6 35 37 48.6 
DB-7 36 36 50 35 37 48.6 

8 
DB-4 36 36 50 36 36 50 
DB-7 36 36 50 36 36 50 

9 
DB-4 36 36 50 36 36 50 
DB-7 36 36 50 36 36 50 

 
 

FFT 

7 
DB-4 35 37 48.6 37 35 51.3 
DB-7 35 37 48.6 35 37 48.6 

8 
DB-4 38 34 52.7 38 34 52.7 
DB-7 39 33 54.16 38 34 52.7 

9 
DB-4 35 37 48.6 34 38 47.2 
DB-7 34 38 47.2 36 36 50 

 
 

Table 9: LDC Classifier for Horizontal Misalignment at DE (0.5mm & 2.0mm) 
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5.5.2 Quadratic Discriminant Classifier (QDC): 
Maximum accuracy was achieved by CVA. It gave maximum accuracy of 

100% at wavelet levels (7-9) using both mother wavelet 4,7 Daubechies. Whereas 
entropy performed at (48%-66.6%). Mean gave (51%-56%). FFT was lowest 
performing feature (48-52%). Table below shows all results. 

 
 

QDC Classifier for Imbalance at NDE (6g) 
(120 SAMPLES) 

Features 
Wavelet 

Level 
Mother 
Wavelet 

TD FD ACC 

 
 

CVA 

7 
DB-4 72 0 100 
DB-7 72 0 100 

8 
DB-4 72 0 100 
DB-7 72 0 100 

9 
DB-4 72 0 100 

DB-7 72 0 100 

 
 

ENTROPY 

7 
DB-4 48 24 66.6 
DB-7 48 24 66.6 

8 
DB-4 48 24 66.6 
DB-7 48 24 66.6 

9 
DB-4 30 42 41.6 
DB-7 31 41 43 

 
MEAN 

7 
DB-4 48 24 66.6 
DB-7 48 24 66.6 

8 
DB-4 48 24 66.6 
DB-7 48 24 66.6 

9 
DB-4 43 29 59.7 
DB-7 31 41 43 

 
 

FFT 

7 
DB-4 38 34 52.7 
DB-7 37 35 51.3 

8 
DB-4 37 35 51.3 
DB-7 36 36 50 

9 
DB-4 33 39 45.8 
DB-7 35 37 48.6 

 
 

Table 10: QDC Classifier for Imbalance at NDE (6g) 
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QDC Classifier for Imbalance at NDE (20g) 
(120 SAMPLES) 

Features 
Wavelet 

Level 
Mother 
Wavelet 

T 
D 

FD ACC 

 
 

CVA 

7 
DB-4 72 0 100 

DB-7 72 0 100 

8 
DB-4 72 0 100 
DB-7 72 0 100 

9 
DB-4 72 0 100 
DB-7 72 0 100 

 
 

ENTROPY 

7 
DB-4 48 24 66.6 
DB-7 48 24 66.6 

8 
DB-4 44 28 61.1 
DB-7 45 27 62.5 

9 
DB-4 35 37 48.6 
DB-7 35 37 48.6 

 
 

MEAN 

7 
DB-4 43 29 59.7 
DB-7 44 28 61.1 

8 
DB-4 41 31 56.9 
DB-7 41 31 56.9 

9 
DB-4 37 35 51.3 
DB-7 37 35 51.3 

 
 

FFT 

7 
DB-4 38 34 52.7 
DB-7 37 35 51.3 

8 
DB-4 36 36 50 
DB-7 37 35 51.3 

9 
DB-4 36 36 50 
DB-7 35 37 48.6 

 
 

Table 11: QDC Classifier for Imbalance at NDE (20g) 
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QDC Classifier for Imbalance at DE (6g) 
(120 SAMPLES) 

Features 
Wavelet 

Level 
Mother 
Wavelet 

TD FD ACC 

 
 

CVA 

7 
DB-4 72 0 100 

DB-7 72 0 100 

8 
DB-4 72 0 100 
DB-7 72 0 100 

9 
DB-4 72 0 100 
DB-7 72 0 100 

 
 

ENTROPY 

7 
DB-4 35 37 48.6 
DB-7 35 37 48.6 

8 
DB-4 35 37 48.6 
DB-7 36 36 50 

9 
DB-4 38 34 52.7 
DB-7 38 34 52.7 

 
 

MEAN 

7 
DB-4 36 36 50 
DB-7 35 37 48.6 

8 
DB-4 36 36 50 
DB-7 36 36 50 

9 
DB-4 36 36 50 
DB-7 36 36 50 

 
 

FFT 

7 
D B-4 35 37 48.6 
DB-7 38 34 52.7 

8 
DB-4 35 37 48.6 
DB-7 35 37 48.6 

9 
DB-4 38 34 52.7 
DB-7 33 39 45.8 

 
 

Table 12: QDC Classifier for Imbalance at DE (6g) 
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QDC Classifier for Imbalance at DE (20g) 
(120 SAMPLES) 

Features 
Wavelet 

Level 
Mother 
Wavelet 

TD FD ACC 

 
 

CVA 

7 
DB-4 72 0 100 

DB-7 72 0 100 

8 
DB-4 72 0 100 
DB-7 72 0 100 

9 
DB-4 72 0 100 
DB-7 71 1 98.6 

 
 

ENTROPY 

7 
DB-4 36 36 50 
DB-7 36 36 50 

8 
DB-4 36 36 50 
DB-7 39 33 54.1 

9 
DB-4 37 35 51.3 
DB-7 38 34 52.7 

 
 

MEAN 

7 
DB-4 41 31 56.9 
DB-7 40 32 55.5 

8 
DB-4 37 35 51.3 
DB-7 38 34 52.7 

9 
DB-4 37 35 51.3 
DB-7 36 36 50 

 
 

FFT 

7 
DB-4 41 31 56.9 
DB-7 37 35 51.3 

8 
DB-4 33 39 45.8 
DB-7 38 34 52.7 

9 
DB-4 38 34 52.7 
DB-7 37 35 51.3 

 
 

Table 13: QDC Classifier for Imbalance at DE (20g) 
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QDC Classifier for Horizontal Misalignment at NDE (0.5mm & 2.0mm) 
(120 SAMPLES) 

Features 
Wavelet 

Level 
Mother 
Wavelet 

TD FD ACC TD FD ACC 
0.5mm 2.0mm 

 
 

CVA 

7 
DB-4 72 0 100 72 0 100 
DB-7 72 0 100 72 0 100 

8 
DB-4 72 0 100 72 0 100 
DB-7 72 0 100 72 0 100 

9 
DB-4 72 0 100 72 0 100 
DB-7 72 0 100 72 0 100 

 
 

ENTROPY 

7 
DB-4 35 37 48.6 48 24 66.6 
DB-7 36 36 50 48 24 66.6 

8 
DB-4 35 37 48.6 48 24 66.6 
DB-7 35 37 48.6 48 24 66.6 

9 
DB-4 31 41 43 36 36 50 
DB-7 36 36 50 34 38 47.2 

 
 

MEAN 

7 
DB-4 36 36 50 45 27 62.5 
DB-7 29 43 40.2 44 28 61.1 

8 
DB-4 33 39 45.8 43 29 59.7 
DB-7 32 40 44.4 43 29 59.7 

9 
DB-4 36 36 50 35 37 48.6 
DB-7 32 40 44.4 34 38 47.2 

 
 

FFT 

7 
DB-4 36 36 50 38 34 52.7 
DB-7 36 36 50 38 34 52.7 

8 
DB-4 32 40 44.4 37 35 51.3 
DB-7 32 40 44.4 37 35 51.3 

9 
DB-4 36 36 50 35 37 48.6 
DB-7 36 36 50 39 33 54.1 

 
 

Table 14: QDC Classifier for Horizontal Misalignment at NDE (0.5mm & 2.0mm) 
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QDC Classifier for Horizontal Misalignment at DE (0.5mm & 2.0mm) 
(120 SAMPLES) 

Features Wavelet 
Level 

Mother 
Wavelet 

TD FD ACC TD FD ACC 
0.5mm 2.0mm 

 
 

CVA 

7 
DB-4 72 0 100 72 0 100 
DB-7 72 0 100 72 0 100 

8 
DB-4 72 0 100 72 0 100 
DB-7 72 0 100 72 0 100 

9 
DB-4 72 0 100 72 0 100 
DB-7 72 0 100 72 0 100 

 
 

ENTROPY 

7 
DB-4 36 36 50 36 36 50 
DB-7 36 36 50 36 36 50 

8 
DB-4 38 34 52.7 36 36 50 
DB-7 39 33 54.1 38 34 52.7 

9 
DB-4 37 35 51.3 35 37 48.6 

DB-7 36 36 50 35 37 48.6 

 
 

MEAN 

7 
DB-4 38 34 52.7 36 36 50 
DB-7 38 34 52.7 36 36 50 

8 
DB-4 38 34 52.7 35 37 48.6 
DB-7 38 34 52.7 36 36 50 

9 
DB-4 36 36 50 36 36 50 
DB-7 35 37 48.6 35 37 48.6 

 
 

FFT 

7 
DB-4 33 39 45.8 34 38 47.2 
DB-7 37 35 51.3 33 39 45.8 

8 
DB-4 41 31 56.9 39 33 54.1 
DB-7 41 31 56.9 39 33 54.1 

9 
DB-4 33 39 45.8 34 38 47.2 
DB-7 36 36 50 37 35 51.3 

 
 

Table 15: QDC Classifier for Horizontal Misalignment at DE (0.5mm & 2.0mm) 
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5.6 Classifier Accuracy 
 

When two distinct classification techniques, such Linear Discriminant Analysis 
(LDA) and Quadratic Discriminant Analysis (QDA), provide the same accuracy for a 
particular feature, it suggests that the feature may have certain properties that make it 
equally acceptable for both techniques. Following are the causes: 

 
a. Separation of Features:  The CVA feature clearly outperforms different 
classes, enabling both LDA and QDA to differentiate targets. Both LDA and QDA 
performed well as the feature values for lasses are sufficiently identical as shown in 
figure 15. 

 
b. Feature Distribution: Both linear and quadratic discriminant analysis 
benefit from the distribution of Coefficient of Variation of Amplitude (CVA). While 
QDA accepts that the covariance matrices for each class, LDA presupposes that the 
data inside each class & follows a multivariate Gaussian distribution with equal 
covariance matrices for all classes. Similar performance results are extracted if both 
assumptions are supported by the distribution of CVA feature. 

 
c. Low Dimensionality: LDA works best when there are fewer features per 
sample than there are samples per feature. Both LDA and QDA can perform 
similarly if the dataset has a sufficient number of samples and a sufficient number of 
features. Hence, in this study 20 samples as explained above has been used. 

 
d. Redundancy of Features: If a feature is redundant, it may have a 
comparable impact on the classification performance of both LDA and QDA. 

 
e. Noise Levels: Consistent performance across various classifiers results same if the 
feature is not greatly impacted by noise or outliers. As wavelet decomposition has discarded 
the noise band consistent performance is achieved. 
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5.7 Confusion Matrix 
 

The confusion matrix is a useful tool for assessing the effectiveness of classification 
algorithms in the area of condition monitoring and problem diagnosis of induction motors. It 
offers a thorough breakdown of the classifier's predictions as well as the actual class labels. 
Researchers can learn more about the defect diagnostic process's accuracy, precision, and 
general efficacy by examining the confusion matrix. The performance of a classification 
method is represented by the confusion matrix, which is a square matrix. True positive (TP), 
false positive (FP), true negative (TN), and false negative (FN) are its four main parts. These 
elements are obtained by comparing the actual fault classes of the induction motor with the 
projected fault classes. [69] 

 
5.7.1 Interpreting the Confusion Matrix 

Several performance measures that assess the efficiency of the defect 
detection procedure for induction motors may be obtained by looking at the numbers 
in the confusion matrix which are as follows: 

 
5.7.1.1 Accuracy 

Accuracy gauges how accurately the categorization method is 
working overall. It is determined by dividing the total number of instances by 
the sum of TP and TN. Better categorization ability is indicated by an 
increase in the accuracy value. 

 
5.7.1.2 Precision 

Precision is the classifier's capacity for accurately identifying 
true positives while minimizing false positives. It is determined by dividing 
TP by the total of TP and FP. Fewer false positives are indicative of higher 
precision. 

 
5.7.1.3 Sensitivity or True Positive Rate 

Sensitivity or True Positive Rate gauges a classifier's accuracy 
in identifying genuine positives while reducing false negatives. It is 
determined by dividing TP by the total of TP and FN. Fewer false negatives 
are indicated by higher recall. 

Specificity (genuine Negative Rate) assesses a classifier's accuracy in identifying 
genuine negatives while reducing false positives. It is determined by dividing TN by the 
total of TN and FP. Less false positives are indicated by higher specificity. However, 
confusion matrix of all feature at wavelet levels 7,8 and 9 corresponding to db 4 and 7 
would provide excessive information in this particular study. Therefore, only Non drive end 
HM 2.0 dataset in order to demonstrate confusion matrix and analyze classifier behavior. 
The resulting confusion matrix of aforesaid dataset is appended below: 
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Wavelet 
Level - 7 

db - 4 
 

db - 7 

 
 

 
CVA 

T
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ss

 

 
 

Positive 36 0 
 

36 0 

 
 

Negative 0 36 
 

0 36 

        

 
 

 
ENTROPY 

T
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ss

 

 
 

Positive 12 24 
 

12 24 

 
 

Negative 0 36 
 

0 36 

        

 
 

 
MEAN 

T
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Positive 12 24 
 

12 24 

 
 

Negative 5 31 
 

6 36 

        

 
 

 
FFT 

T
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Positive 31 5 
 

31 5 

 
 

Negative 32 4 
 

31 5 

Predicted Predicted Predicted Predicted 
Positive Negative Positive Negative 

Pridicted Class Pridicted Class 

 

Table 16: Confusion Matrix - Wavelet Level 7 
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Wavelet 
Level - 8 

db - 4 
 

db - 7 

 
 

 
CVA 
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Positive 36 0 
 

36 0 

 
 

Negative 0 36 
 

0 36 
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Positive 12 24 
 

12 24 

 
 

Negative 3 33 
 

2 34 
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Positive 12 24 
 

12 24 

 
 

Negative 14 22 
 

13 23 

        

 
 

 
FFT 

T
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Positive 24 12 
 

24 12 

 
 

Negative 33 3 
 

32 4 

Predicted Predicted Predicted Predicted 
Positive Negative Positive Negative 

Pridicted Class Pridicted Class 

 

Table 17: Confusion Matrix - Wavelet Level 8 
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Wavelet 
Level - 9 

 

db - 4 

  

db - 7 
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Positive 36 0 
 

36 0 

 
 

Negative 0 36 
 

0 36 
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Positive 12 24 
 

12 24 

 
 

Negative 12 24 
 

13 23 
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Positive 13 23 
 

12 24 

 
 

Negative 17 19 
 

17 19 

        

 
 

 
FFT 

T
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e
 C
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Positive 22 14 
 

25 11 

 
 

Negative 27 9 
 

30 6 

Predicted 
Positive 

Predicted 
Negative 

Predicted 
Positive 

Predicted 
Negative 

Pridicted Class Pridicted Class 

 

Table 18: Confusion Matrix - Wavelet Level 9 
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5.8 Receiver Operating Characteristic (ROC) 
 

When assessing the effectiveness of the non-intrusive defect detection system for 
induction motors, the Receiver Operating Characteristic (ROC) curve analysis proved to be 
a crucial tool. The trade-off between true positive rate (sensitivity) and false positive rate (1- 
specificity) across various categorization thresholds was comprehensively visualized via the 
ROC curve. The discriminative power of the created fault detection system might be 
measured by analyzing the area under the ROC curve (AUC). The ROC study showed that 
the Coefficient of Variation (CVA) feature produced an excellent AUC when combined 
with wavelet decomposition, demonstrating its superior ability to recognize and categorize 
problems in induction motor data. [70] 

 
The study's credibility is increased by the ROC curve's distinct delineation of the 

system's performance, which also makes it simple to compare the results with those of other 
defect detection techniques. The study's primary finding is that the CVA feature, when 
combined with wavelet decomposition, excels as the top feature for classification, enables 
more efficient and reliable non-intrusive problem detection in induction motors, is 
reaffirmed by the ROC curve analysis. ROC Curve for only Non drive end HM 2.0 dataset 
is appended below in order to demonstrate classifier behavior. 
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Figure 19: ROC Curve at Wavelet Level-7 using DB-4 
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Figure 20: ROC Curve at Wavelet Level-7 using DB-7 
 
 

5.8.1 ROC Behavior 
Threshold Effect, used to get variable TPR and FPR values, ROC curves are 

commonly produced by altering the model's classification threshold. It could result 
in a straight line if the threshold values are discrete. The written given code builds 
and presents ROC curves for LDC & QDC classifiers. For classification threshold 
values, ROC curves provide a graphical depiction of the trade-off between the true 
positive rate (sensitivity) and the false positive rate (1 - specificity) as shown in 
figure below: 
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Figure 21: ROC Curve using Perfcurve 

5.9 Validation of Results 
The written code is performing the validation of different classification results 

against a true (actual labels) for dataset. It assesses the correctness of the predictions made 
by LDC & QDC classifiers and calculates various metrics related to error such as true 
detections (TP), and false detections (FD) using a confusion matrix. Break down of code 
step by step is as follows: 

a. Group Verification: group_verify is a matrix that contains the true labels or f 
the samples. It is formed by combining the true labels of two groups (normal , 
faulty). 

 
b. Error Calculation: The code calculates the error for each classifier by 
comparing their predictions (C_cva, C_entropy, C_mean, C_fft_peak) with the true 
labels (group_verify). The result of this comparison is a binary matrix (error_cva, 
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error_entropy, error_mean, error_fft_peak) where each element is 1 if the prediction 
is correct (true) and 0 if the prediction is incorrect (false). 

 
c. Error Validation: The code then finds the indices where the errors occurred 
(where the binary matrix is 0) for each classifier. This provides insight into which 
samples were misclassified. 

 
d. True Detections (TP): The code finds the indices where the predictions match 
the true labels (where the binary matrix is 1) for each classifier. This represents the 
true positive (TP) instances, which are correctly detected by each classifier. 

 
e. False Detections (FD): The code finds the indices where the predictions do 
not match the true labels (where the binary matrix is 0) for each classifier. This 
represents the false positive (FP) instances, which are incorrectly detected by each 
classifier. 

 
f. Confusion Matrix Calculation: The code calculates the confusion matrix for 
each classifier using the confusionmat function. The confusion matrix provides a 
comprehensive summary of the classifier's performance, showing the counts of true 
positive, true negative, false positive, and false negative instances. 

 
g. Metrics Calculation: The lengths of true detections (TP) and false detections 
(FD) are calculated for each classifier, providing insight into their performance. 

 
h. Overall, code is a part of the validation process for assessing the performance 
of different classifiers. It calculates and presents information about correct and 
incorrect predictions, which can be used to evaluate the effectiveness of the 
classification methods and to fine-tune them if necessary. The confusion matrices 
and the TP/FD counts can help in understanding the strengths and weaknesses of 
each classifier in terms of its predictive accuracy and error. 
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Figure 22: Error Validation 
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Chapter No 6: Conclusion and Recommendations 
 

6.1 Summary of Research Findings 
 

We investigated the application of supervised learning and wavelet decomposition 
for non-intrusive fault identification in induction motors in this study. To classify motor data 
into distinct health categories, the study used four features - Coefficient of Variation (CVA), 
Entropy, Mean, and Fast Fourier Transform (FFT) - and two classifiers, Linear Discriminant 
Analysis (LDA) and Quadratic Discriminant Analysis (QDA). The following are the 
important conclusions of the study: 

 
a. Wavelet Decomposition for Feature Extraction: Wavelet decomposition was 
quite useful in identifying meaningful features from motor data. The choice of 
mother wavelet (4 and 7 Daubechies) and wavelet levels (7, 8, and 9) had a 
substantial impact on classifier performance. 

 
b. CVA effectiveness: The Coefficient of Variation (CVA) feature 
outperformed all other wavelet levels in successfully classifying induction motor 
data. The ability of CVA to capture changes in data variance over time proved to be 
extremely useful in finding flaws and anomalies in motor behavior. 

 
c. Classifier Performance: In categorizing induction motor data, both Linear 
Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) produced 
promising results. However, in most circumstances, LDA outperformed QDA, 
especially when paired with the CVA function. 

 
d. Potential Applications: The created classification models have a lot of 
promise for real-time defect detection and condition monitoring of induction motors 
in a variety of sectors. Accurate defect identification can lead to enhanced reliability, 
reduced downtime, and better maintenance practices. 

 
6.2 Achievements of the Study 

 
The research contributed significantly to the field of non-intrusive failure detection 

in induction motors. We were able to construct classification models with good accuracy in 
recognizing motor health issues by using machine learning approaches and wavelet 
decomposition. The research effectively addressed the goals of improving defect diagnosis 
methods and increasing overall induction motor reliability. 

 
Furthermore, the research revealed the usefulness of supervised learning algorithms 

in industrial contexts. The inclusion of CVA as a fundamental feature in defect 
identification emphasized the significance of statistical techniques in detecting fluctuations 
in motor data. The findings of this study establish the groundwork for future advances in 
predictive maintenance and condition-based monitoring of induction motors. 
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6.3 Implications and Applications 
 

This research has far-reaching benefits and has potential applications in a variety of 
sectors that rely on induction motors for vital operations. To improve defect detection 
capabilities, the created classification models can be integrated with current motor 
monitoring systems. These improved fault diagnosis techniques can help industries such as 
manufacturing, power generation, transportation, and maritime. Among the practical 
applications of this research are: 

 
a. Predictive Maintenance: By deploying non-intrusive problem detection 
technologies, industries can shift from reactive to proactive maintenance practices. 
Early defect detection enables for prompt response and avoids costly breakdowns. 

 
b. Increased Reliability: Induction motors are essential in many industrial 
processes. The danger of motor failure and unscheduled downtime is considerably 
decreased by precisely recognizing defects, resulting in better overall system 
reliability. 

 
c. Savings on maintenance and energy: Effective defect detection and condition 
monitoring can lead to cost savings on maintenance and energy consumption. 
Improved energy efficiency is aided by timely maintenance and optimized motor 
performance. 

 
d. Enhancement of Safety: The dependability of induction motors has a direct 
impact on the safety of employees and equipment. Early fault identification 
guarantees that necessary safety actions to prevent accidents are implemented. 

 
6.4 Limitations of the Study 

 
While this study provides vital insights into non-intrusive defect detection in motors 

with induction, it is important to recognize the limits encountered: 

 
a. Size of the data set: A larger and more diversified dataset could have boosted 
the classification algorithms' performance even more. 

 
b. Data Variability: Variations in operational circumstances and external factors 
may have an impact on fault detection accuracy. More comprehensive datasets with 
varied operational circumstances could improve the models' robustness. 

 
c. Generalization: The classification models built in this study were unique to 
the dataset presented. Additional validation and testing would be required to 
generalize these models to diverse motor types and operating circumstances. 

 
d. Feature Selection: While CVA outperformed other features in this 
investigation, other characteristics may be useful in different fault detection 
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circumstances. Exploring more features may result in improved categorization 
accuracy. 

 
6.5 Future Research Directions 

 
The study establishes the framework for a number of intriguing future research 

directions in the realm of non-intrusive failure detection in induction motors. Among the 
possible directions are: 

 
a. Incorporating data from several sensors, including as temperature, vibration, 
and sound sensors, could provide a more comprehensive view of motor health 
conditions and improve fault detection accuracy. 

 
b. Exploring the mix of supervised and unsupervised learning approaches may 
provide unique insights into recognizing complicated and unknown defects in 
induction motors. 

 
c. Online defect Detection: Creating real-time defect detection algorithms 
capable of continually monitoring induction motors while they are in operation 
would be a beneficial addition to predictive maintenance practices. 

 
d. Examining the transferability of the created classification models to various 
motor types and sectors may result in more generalized and adaptable fault detection 
systems. 

 
6.6 Recommendations 

 
Following recommendations based on the research findings and limitations are 

proposed: 

 
a. Enhanced Data Collection: To enable robust model development and 
validation, industries should focus on collecting more vast and diversified datasets. 

 
b. Sensor Integration: Using a variety of sensors for motor monitoring can 
provide richer data and enhance fault detection accuracy. 

 
c. Continuous Model Updating: As new data becomes available, the established 
models should be updated and revalidated on a frequent basis to ensure their 
effectiveness. 

 
d. Collaboration and Data Sharing: Industries and researchers should work 
together to produce larger and more complete datasets that will help the overall area 
of motor defect detection. 
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6.7 Conclusion 
 

The study effectively investigated the use of supervised learning and wavelet 
decomposition (Time-frequency analysis) for non-intrusive fault identification in induction 
motors. The study highlighted the utility of the Coefficient of Variation (CVA) feature, as 
well as the importance of wavelet decomposition in extracting important information from 
motor data. The generated classification models performed well in diagnosing motor health 
issues, especially when paired with Linear Discriminant Analysis (LDA). 

 
The implications of this research extend across other industries, providing prospects 

for preventive maintenance, increased reliability, cost savings, and greater safety. However, 
it is critical to acknowledge the study's limitations and encourage additional research in the 
field to overcome these limits and explore new possibilities. 

 
Finally, this study advances defect detection methods in induction motors and lays 

the path for more complex and effective predictive maintenance practices. As enterprises 
transition to smart manufacturing and Industry 4.0, the integration of fault detection systems 
will be important in guaranteeing the smooth and reliable functioning of critical industrial 
processes. 
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