Web Services Security in Pervasive Environment

Author

Muhammad Shoaib
MS-07 (Software Engineering)

Supervisor

Dr.Ghalib AsadUllah Shah

Assistant Professor

DEPARTMENT OF COMPUTER ENGINEERING
COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING
NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD.
August, 2010

Web Services Security in Pervasive Environment

Author

Muhammad Shoaib

MS-07 (Computer Software Engineering)

A thesis submitted in partial fulfillment of the requirements for the degree of

MS (Computer Software Engineering)

Thesis Supervisor:

Dr. Ghalib AsadUllah Shah
Assistant Professor,

Department of Computer Engineering.

Thesis Supervisor Signature:

DEPARTMENT OF COMPUTER ENGINEERING
COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

AUGUST, 2010

ABSTRACT

Several security solutions including open source protocols and specifications have been
proposed in Pervasive Environment. Most of these schemes rely on intermediate servers
for authentication and security provision for end to end secure communications between
devices. This might be suitable for certain scenarios but broad range of users are not
comfortable with it. End to end secure communication is among the most important

requirement in pervasive environment.

Due to heterogeneous nature of the pervasive operating environment and ubiquity of
communication devices, service adaptation is required at run time by inferring
environment state. Dealing with security issues in such diverse conditions becomes a real
challenge. In the pervasive environment, the security framework needs to be context-
sensitive and services being provided in the pervasive environment also needs secure
mechanisms for access control. So every single service need secure channel or some

mechanism to provide scalable and efficient environment to operate in.

There are four security features that should be provided by any system called,
Confidentiality, Integrity, Authentication, and Non repudiation. In the scheme we have
chosen available secret key algorithms for confidentiality, PKC for authentication and
non repudiation, and one way encryption schemes (Hash Functions) for integrity

provision among communicating entities.

In this work, we have aim to provide security mechanism for end to end users without
intervention of intermediate servers using secret key and public key cryptography with
REST services. We will provide a comparison study of security algorithms already being

used in industry in this environment too.

UNDERTAKING

I certify that research work titled “Web Services Security in Pervasive Environment”
is my own work. The work has not been presented elsewhere for assessment. Where

material has been used from other sources it has been properly acknowledged / referred.

Muhammad Shoaib,

REG NO: 2007-NUST-MS PhD-CSE (E)-08

ACKNOWLEDGEMENTS

First of all I am grateful to all mighty Allah for his blessings and continuous inspirations

without those | am nothing.

I admit my supervisor Dr. A. Ghalib patience and continuous effort right from start. |
salute you sir and really appreciate your coordination and guidance throughout my

research work.

Few people you meet very few times but you never forget them in rest of your life, Mr.
Nazir Malik is that kind of person. He gave me lot of confidence and of course ideas how
to research and seek knowledge.

DEDICATION

To my parents for their support and trust

Vi

TABLE OF CONTENT

Chapter 1. INtrOTUCTIONeeieieeie ettt e e ae e nnees 6
1.1 OVEIVIBW ..ttt et 6
1.2 Pervasive/Ubiquitous COMPULINGccveieiieiieie e 6
1.3 Service Oriented ArChItECIUIE........ccoiiviiiiiie e 7
1.4 Problem STatEMENTcooiiiiie e 8
1.5 ODbjJectives and GOAlS........cccuuuiiiiiiiie et 8
1.6 Thesis OrganizZatiOn.........cccceuiieeiiiieiienie ettt st ae e nre e e 8

Chapter 2. Science of Cryptography in Context of RESTccccoviiiiiiiininnieicc 10
2.1 OVEIVIBW ..ottt bbbkt b bbbttt 10
2.2 Cryptograpny TYPESottt et 11

2.2.1 Secret Key Cryptography ... 11
2.2.2 Symmetric Cryptographic Algorithms............ccocviviiininiisceeeeees 12
2.2.3 Public Key Cryptography (PKC)ccoiveieiieieeir e 13
224 HAaSh FUNCHION ..o 14
2.3 Representational State Transfer (REST)cccoveiviieiieeiicie e 15
2.4 REST EIBMENES ..oiiiiiiitiieese et 16
2.5 REST PrINCIPIES ..ottt 17
2.6 URI and Resource Modeling........ccccoveiiiiiiiiie e 17
2.7 REST MENOUScviiiiiiiiiiiieieece e 19
2.7.10 GET e 19
2.7.2 PO T ettt n et naee s 19
2.7.3 DELETE .ot 20
2.7.4 PUT ettt bbb e e b naee s 20
2.8 CONCIUSTON.....uiiiiiiett ittt bbbttt 20

Chapter 3. Web Services in Pervasive ENVIrONMEeNt...........cccooeveieienininencseeee, 22

Bl OVEIVIBW ..ottt b et b bttt 22
3.2 Distributed COMPULINGcccveiieieiieieeie e sre e enes 22
3.3 WeD Services ant SOAP ...t 26
3.4 Web Services Security (WS-SECUFILY)ccvvveieeieiie e 28
3.4.1 Security Assertion Markup Languagecccccveveevueeiieseeneeie e se e 30
3.4.2 XML Key Management Specification (XKMS) [13]ccceevvevveveiiernennn 31
3.4.3 XML Access Control Markup Language (XACML)........cccceevvvveivenieannnn, 31
3.5 Pervasive Computing FrameWorkK............cccoveviiiieiieeie e 31
3.5 1 Access Control MOGUIE..........ccoviiiiiieieice e 32
3.5.2 Security PoliCYy ENfOICErccouiiiiiiee e 33
Chapter 4. Proposed Methodologycccoiieiieiiiiinine s 34
A1 OVEIVIEW .ottt b bbbt b e bbbt e s 34
4.2 SAML and Serialization..........ccccueiiieiiieiese e 34
4.2.1 Classes GENEIALION..........cciiiruiriiriisiieieeie ettt 35
4.2.2 SAML ReSPONSe GENEratioNcccveveieerieeiesiesieeieseesie e srae e eee e neeens 36
4.2.3 SAML ATIDULES ..o 37
B |V (=T SF: o TN [] (=T | 1 YOS 40
4.4 CoNFIdeNtiality........ccoviiieiiee e e 41
4.5 REST SEIVICES.....iiuiiitiitiieiiite sttt sttt sttt sttt et b e nn e nne e 41
4.5.1 Service HOSHINGocoiiiiiiecie et 41
4.5.2 Service DeSCrIPLION......c.coiieii ettt 43
4.6 Hybrid Security APPrOaChccooiiiiiiiiie i 43
4.6.1 Trusted Third Party (TTP) HOSEING.......cceiiiiriieieiiesieie e 43
4.6.2 REST Service HOSHINGcoiuiiieiiiieiiesiie e 44

4.6.3 Secure CoOMMUNICATIONcoee e 44

Chapter 5. Performance ANAIYSISccovuiiiiiiie e 46
5.1 OVEIVIBW ..ottt et 46
5.2 Symmetric Schemes and Hashingcccccevviiiiieene e 46
5.3 Performance of REST VS SOAP ..o 47
5.4 Conclusion and FUtUre RESEAICN..........c.ccoieiiiiiiiisieees e 48

LIST OF FIGURES

Figure 2-1: Field OF Cryptologycccooeiiriiinieiiieiee s 11
Figure 2-2: Symmetric EnCryption SCheme. ... 11
Figure 2-3: Hybrid SECUTItY SYSTEIMoiiiiiiiiiiieieee e 21
Figure 3-1: CORBA ORB ArcChiteCture [3]cocooiiieiiie e 23
Figure 3-2: Overall Architecture 0f DCOM [3]....ccviiiiiiiiiiiieerie s 24
Figure 3-3: Protocol Layer and SOAP SecUrity [4]...c.ccovveieiieiieiecie e 27
Figure 3-4: Secure Pervasive ArchiteCturecoovveeiieie i 32
Figure 4-1: XSD SWILCNESc.eoiieiiece et sae s 35
Figure 4-2: SAML Classes Generated through XSD Utilityccccovvivevviieiieeieiienn, 36
Figure 4-3: BindiNg OVEr SOAPc.oo oottt 36
Figure 4-4: Abstract SAML Request/Response StrUCTUIe..........ccevvevveieeveerieseese e 37
Figure 4-5: SAML ReSpONSe GENEIALIONcvuieieieieiteiie st 38
FIQUre 4-6: SAML UTHITYoovoiiiiiice s 39
Figure 4-7: AuthentiCation REQUESTcoueiiiiiieeieee e 39
Figure 4-8: Authentication Statement in Response Bodyccccvvvevieieiinnenniesie s, 40
Figure 4-9: Hashing INtErfacecceoiiiii i s 40
Figure 4-10: Secret Key ENCryption SYStEMcccvveiiiiieieeie e 41
Figure 4-11: REST Services HOSING........ccovoiiiiiiicie et 42
Figure 4-12: REST Service Greeting IMESSA0E........ccvveueiieieeiieeie e sie e sree e se e 42
Figure 4-13: REST Service Status in Window Task Managercccecvevvviveresiienieennnns 42

Figure 4-14: TTP Service HOSted iN TIS7oouiiiiiiiie e 44

Figure 4-15: Hybrid Scheme for Secure Communicationccoccovvveveiinneniesenseennn, 45
Figure 5-1: Hashing Schemes COmMPariSON..........cccocvoieiieieiie s 46
Figure 5-2: Secret Key Encryption Schemes Comparisoncccccvevveveeiieseeneeiee s 47
Figure 5-3 : Fiddler Startup SCrEEEN..........cciiieieei et 48
Figure 5-4 REST Service Response in FIddIer..........cccoovvveiv e 49
Figure 5-5: SOAP Service Response in FIddIercccooveviiiiieiicie e 49

Chapter 1. Introduction

1.1 Overview

The development of information technology has great impact on human social and
habitual aspects of life. Now people can communicate, share information and even trade
irrespective of their locality. Technology Analysts predicts that pervasive computing is
the next stage in the development of information technology arena. Vendors around the
globe are investing to build tools to assist pervasive computing. PDAs, mobiles and
pagers are far outnumbering desktops and laptops computers and trend is still going on. It
is true for other equipments like vehicles, home appliances and surveillance systems or

almost anything that was dump once, but not anymore.

Today applications are being develop in services oriented way, because this
approach provides platform independency and lot more features those were dreams.
When talk about pervasive environment it consist of different kind of devices so services
oriented architecture is suitable for such platforms. Pervasive/Ubiquitous (for being

everywhere) is among the hot research area in computing nowadays.

Diversity of platforms demands a framework of communication, computing and
more importantly security. Security is one of the most important factor determine the
success of any system. Such a framework will provide security via authenticating the
users / services, define authorization rules and policies for available resources,

confidentiality and message integrity.

1.2 Pervasive/Ubiquitous Computing

With the advancement of electronics particularly wireless and internet technology,
pervasive computing is a trend toward increasing ubiquitous connected computer devices
in environment. Pervasive devices are not personal computers but very tiny, even
invisible devices either mobiles or embedded in any object imaginable like including
home appliances, cars, clothing and various consumer goods. According to Dan Russell,
director of the User Sciences and Experience Group at IBM's Almaden Research Center,

by 2010 computing will have become so naturalized within the environment that people

6

will not even realize that they are using computers [16]. These devices will no more be
dump and will keep track of their location, environment context and user information.

User will not keep track of them; they will find and update users.

Several pervasive computing frameworks like [1] have been proposed so far but
still lot more research is required in this area to choose the best among all. For any secure
distributed system there are at least four security features needs to be provided including
Authentication, Confidentiality, Integrity, and non-repudiation. These all will be
discussed in details in later chapters.

1.3 Service Oriented Architecture

Nowadays applications are built by using concept of Service Oriented Architecture
(SOA) for several reasons [17], it reduces development and maintenance cost
exponentially, provides cross platform neutrality, better scalability and security features.
Large systems may consist of number of services provided by different vendors from
different operating environment. It is common to authenticate service or user accessing
some other resource or service in SOA environment like other distributed systems.
Likewise in pervasive environment authentication is required to know the user of service.
One enhancement has made in this case is that user identities may be transferred across
domains by using special central authorizes to keep the user information. Security
Assertion Markup Language (SAML) is used for exchanging securities tokens among

different service domains.

Simple Object Access Protocol (SOAP) is an xml based protocol was introduced
in late 90s for developing distributed services. It uses xml messages for transfer data
between intended entities. Before exchanging data entities need to agree on format of
messages, mode of communication and encoding etc. SOAP specification does not
provide mechanism to secure communication. End users use some other security schemes
for that purpose. SOAP revolutionized the world of distributed computing. But it also
suffers with some drawbacks those make it unsuitable for some environment like
pervasive environment. For remedy of SOAP problem new architectural approach is
introduced called Representational State Transfer (REST) for building web services. It is

more like a mind set to build distributed services using world most widely used protocol

7

i.e. http. REST is based on the concept of resource centric approach to build services
rather traditional API libraries based programming approach.

1.4 Problem Statement

Pervasive environment is post desktop model of computing. It has several distinguishing
features and constraints as compare to corresponding desktop computing paradigm. In
pervasive environment devices have numerous limited hardware factors like memory,
power, processor and bandwidth etc. due to the these basic constrains software solutions
proposed in desktop environment can be simply adopted in ubiquitous systems and

devices.

Another very common issue is that these small devices outnumber corresponding
desktop computing devices along with diversity of different vendors. These diversities
require adopting some standard to follow to make compatible and interoperable

components.

So there are two main research aspects those are still need lot research focus
including how to deal diversities of pervasive devices and corresponding security

infrastructure.

1.5 Objectives and Goals

As stated above to deal with the diversity of devices and building web services over these
devices need common framework. Several such frameworks are proposed but we are

concentrating on one that was proposed by N. A. Malik [1].

For secure communication over unsecure channel symmetric and asymmetric

schemes are used together with hashing.

Most of the systems use hybrid approach to provide security to their users. In this
work one such scheme is used. PKC is basically used for Authentication and non

repudiation, secret key cryptography for confidentiality, hashing for integrity.

1.6 Thesis Organization

This thesis is organized in following chapters;

Chapter 1 introduces the basic idea of pervasive devices and computing

along with its future trends.

Chapter 2 highlights encryption techniques, hashing schemes in context of
REST based services. Hybrid approach is described that how to secure our
services with these available schemes while communicating over unsecure

channel.

Chapter 3 includes some history of distributing computing and modern
approaches as well. SOAP is described briefly in context of WS-Security
that how security is provided in desktop environment. at the end Pervasive

environment framework is discussed shortly.

Chapter 4 provides the details of our approach and details building of test
cases and Application.

Chapter 5 highlights performance evaluation of our application. At the end

conclusion are made and futures research areas are mentioned.

Chapter 2. Science of Cryptography in Context of
REST

2.1 Overview

Writing in secret codes is a science being used since 2000 BC. Secure communication via
message disguise is very common nowadays. Security is one of the prime factors that
determine success of any system available in the world. Cryptography defined in

advanced Oxford dictionary as;

“A secret manner of writing, either by arbitrary characters, by using letters or
characters in other than their ordinary sense, or by other methods intelligible only to
those possessing the key; also anything written in this way. Generally, the art of writing

or solving ciphers.”

Within the context of application to application communication there are certain

security requirements listed as follow;
o Authentication determines one’s identity.
e Privacy/Confidentiality ensures no one can read message except intended party.
o Integrity ensures message received at other end is unaltered.
e Non-Repudiation is a mechanism that sender actually sent the message.

There are basically three types of cryptography schemes used to accomplish these
goals; Symmetric (secret key), public key (asymmetric) and hashing. As shown in figure
3-1, protocol is in fact application using these schemes to ensure secure communication
e.g. TLS/SSL.

In all subsequent section there will two common communication parties will be
involved called Alice and Bob. If there are third and fourth parties are involved then
those will be Carol and Dave. Mallory is malicious user, Eve is eavesdropper and Trent is

trusted party.

10

2.2 Cryptography Types

There are three types of cryptographic schemes to provide essential security requirements
including authentication, confidentiality, integrity, and non-repudiation. In the following
sections all of these are described briefly with some examples.

o Secret Key uses a single key for both encryption and decryption
o Public uses one key for encryption and another for decryption
e Hashing uses a mathematical transformation to irreversibly "encrypt™" information

|
Cryptology

\.

e l

\ '
Cryptography J L Cryptanalysis

-

.

: ¢ ¢

|” Symmetric ‘ " i “‘ ‘” Asymmetric “‘ ()

Ciphers Ciphers L Protocols)

s

Figure 2-1: Field of Cryptology

2.2.1 Secret Key Cryptography
Single key is used for encryption and decryption purposes. Plain text is encrypted with
some well known key to both communicating parties. Because single key is shared

between interested parties so this scheme is known as Symmetric Encryption Scheme.

_ Ciphertext
Flaintext — Encrypt » Decrypt — Plaintext
I I
Ke Kg

Figure 2-2: Symmetric Encryption Scheme

11

With this scheme it is obvious that key must be shared between two parties in order to
encrypt and decrypt messages successfully. Key sharing is one of biggest problem in this
scheme. Secret key cryptography is further classified into Stream ciphers and Block

ciphers.

Stream ciphers will operate on single bit or word at a time with some feedback
mechanism. There are several stream ciphers available but among all are Self
Synchronizing Stream ciphers. It actually considers previous n bits while calculating

current bit.

One the other hand Block cipher works on fixed sized blocks of data. In general
keeping key and plain text same resultant cipher text will be always same in the case of

Block ciphers.

2.2.2 Symmetric Cryptographic Algorithms
There are number of commercially available cryptographic algorithms including DES,
AES, Blowfish, Rivest Cipher (RC2, RC4, RC5 and RC6), Twofish, Camellia and many

more. In following section some of these are briefly described.

i. Data Encryption Standard (DES)

It is block cipher selected by National Bureau of Standards as an official standard for
Federal Information Processing Standard (FIPS) in 1976 in United States. It uses 56bit
key and 64bit encryption block. It is now considered as a weak crypto system because of
its smaller key size. In 1999 distributed.net and Electronic Frontier Foundation publicly
break DES in 22 hours and 15 minutes.

ii. Triple DES
The weakness of DES was its smaller key size. In order to secure it a new variant was
proposed called Triple DES. In this scheme each data block is undergoes DES scheme

three times. But now Triple DES is superseded by Advanced Encryption Scheme (AES).

12

iii. Advanced Encryption Standard (AES)

AES is another symmetric key encryption standard that is adopted by US government as
standard encryption scheme. It has 128 bits block size with variable key sizes are
supported like 128, 192, and 256 bits.

It is based on a different design pattern from DES and use Substitution
Permutation Network rather Feistel network. It is faster in both software and hardware

implementation compare to DES and Triple DES.

2.2.3 Public Key Cryptography (PKC)

Public key cryptography was proposed by a professor Martin Hellman and graduate
student Whitfield Diffie in 1976 of Stanford University. In this scheme two parties
engage each other over an unsecure channel without using a shared secret key. PKC is
basically based on a mathematical function that is easy to computers but its inverse is
difficult to compute. There are several schemes to elaborate this concept like
factorization and exponentiation etc. one important property of this scheme is that
message encrypted with one key can only be decrypted with other one and vice versa.

One key is known as public key and other is called as private. As names suggests
that public key is published in intended audience whereas private is kept secret always. It
is really important to note that knowing one key does not reveal information to determine
second one. If two parties Alice and Bob want to communicate with each other then Alice

will send message to bob encrypted with his own private key. It serves three purposes;

e Aauthentication of Alice (she is only person who has private key to encrypt the

message)

e It also provide confidentiality (information is not disclosed except to users having

corresponding public key) and

e Non repudiation (Alice cannot deny that she did not send that message because
she is the only person keeping secret key)

13

PKC systems being used for key exchange and digital signatures are listed and briefly
described in following sections;

i. RSA

It was first proposed and implemented by three MIT mathematicians Ronald Rivest, Adi
Shamir, and Leonard Adleman. RSA is being used in number of software and hardware
applications to provide secure communication mechanism. It is used for key exchange,
digital signature and small messages encryption (as it is computation hungry compare to
symmetric encryption schemes). Key pair is derived from a very large number, n (product
of two prime number chosen by special rules). Basically there two prime numbers are
very large number consists of more than hundred digits most of the time. Public key
include one of prime factor and number n and it is difficult enough to compute
corresponding factor from this information. Difficulty lies in computing private key
because of larger key space. RSA security lies into this whole idea. As RSA support
variable sized encryption block and key size so users can easily increase number n to

make system more secure and difficult to break.

ii. Diffie — Hellman

After RSA Diffie and Hellman came up with new scheme. It is used only for secret key
exchange, but not for digital signatures and authentication.

iii. Digital Signature Algorithm (DSA)

It is specified in NIST Digital Signature Standard (DSS) and used for message
authentication via digital signatures.

2.2.4 Hash Function

It is also called message digest or one way encryption. It is basically based on one way
encryption function with fixed length. So it makes impossible to perform reverse process
for actual plain text. Hash functions are used to provide digital fingerprint for a file in
order to make sure that file is not altered or corrupted. Number of operating systems use
hash functions to secure passwords. In order words hash functions measure the file

integrity. Commonly used hash functions are briefly described below;

14

i. Message Digest (MD)

It is a 128 bit hash values producing scheme and has number of variations like MD2,
MD4, and MD5.

e MD2 is used for only limited memory systems like smart cards.
e MD4 was developed by Rivest and it is designed to work fast in software.

e MD5 removes the weakness of MD4 and slower than the MD4 because it

performs more manipulation on data. It was designed by Rivest.

ii. Secure Hash Algorithm (SHA)

It is National Institute of Standards and Technology (NIST) standard hash scheme and
produces 160 bits value. SHA has five variations including SHA1, SHA224, SHA256,
SHA384, and SHA512 with 160, 224, 256, 384, and 512bits hash values.

Two files may have same hash value called collision. In case of MD scheme there is
128bit hash length. But there may be lot more than 2 128. In real worlds there may be
way more than that values. But it is really very difficult to create a file with same hash
values. Hashing is extensively being used to provide message integrity. In most of

situations people use multiple hashing schemes at the same time like SHA1 and MD5.

2.3 Representational State Transfer (REST)

Distributed systems can be consider as a system that consist of resources each referenced
via some standard way (URI), use standard way to access (HTTP). Every resource may
have some representation and metadata modeling (XML), reference to other related
documents (XPointers, XLink), and description how it can be accessed (WSDL).

Distributed systems may employ common authentication and authorization mechanism.

Representational State Transfer (REST) based services got lot of attentions due to
their simplicity in last few years. It isn’t a standard rather an architectural style to build
services. Due to its resource centric approach it suits the environment where data
manipulation is common [12]. Service-oriented computing promotes the idea of

assembling application components into a network of services that can be loosely coupled

15

to create flexible, dynamic business processes and agile applications that span

organizations and computing platforms [6].

REST stands for Representational State Transfer, and it was first time coined by
Roy Fielding in his doctoral dissertation. REST encompasses a simple philosophy for
modeling problem domains: “give a URI to everything that can be manipulated by a
limited set of operations and let the client software determine the usage metaphor” [15].
Major concern in development of REST type architecture was how to use existing infra

structure without destroying or adversely impact widely deployed setup.

2.4 REST Elements

In traditional distributed systems key processing aspects of systems are encapsulated into
processing components. REST style is an abstraction of architectural elements in

distributed system and there are six such elements are identified including;

e Resource is a key abstraction of information. Any information that can have a
name is a resource. Every resource has identity, state and behavior.

e Resource ldentifier is used to identifies a resource through some standard way.

URI are used for that purpose.
e Resource metadata describes the resource.

e Representation is something (web page or document) that is generated by
resource. Some resources may be static their representation does not change.

e Representation metadata describes the representation.
e Control data defines the purpose of messages between components.
Every resource has some identified via some URI as follow;

http://www.goolge.com/searchengin/help.php

When some resource is accessed, its representation is returned. A resource may

have multiple representations in different context of usage like it may represent in HTML

16

format or some other markup language like XML. Each representation place client
application in some state when some link in that representation is traversed different
representation is returned. In result client application undergoes number of state transfer.

It is reason why the term Representation State Transfer is used.

2.5 REST Principles

There are certainly some principles that REST architectural styles follow [15].
1. Arresource is anything that has identity.

2. Every resource has a URI.

3. A URI is “opaque,” exposes no details of its implementation.
4. GET operations are “idempotent,” free of side effects.

5. Any request that doesn’t have side effects should use Ger.

6. All interactions are stateless.

7. Data and metadata formats are documented.

8. Data is available in multiple flavors.

9. Representations include links to other resources.

10. Document and advertise your service API.

11. Use available standards and technology.

12. Refine and extend architecture, standards and tools.

2.6 URI and Resource Modeling

URI are used to identify resources uniquely. There are generally two schemes of URISs;
hierarchical and non hierarchical. Hierarchical schemes can represent both absolute and
relatives URIs (Http :); whereas a non hierarchical scheme only represents absolute URIs

(mailto:).

17

Absolute scheme is consists of three elements; scheme, scheme specific part, and
fragment. Scheme specific part is further divided into three elements; authority, path, and

query as shown below (first two are for absolute addresses and third is for relative);
<scheme>:<scheme-specific-part>#<fragment>
<scheme>://<authority><path>?<query>#<fragment>
<path>?<query>#<fragment>

Real strength and flexibility of REST comes from pervasive usage of URIs.
Resources are exposed via URI instead of some messaging interface like in traditional
web services implementation. Exposed resources support well defined actions to transfer
representation from server to client. Modeling problem domain into a set of resources is
called Resource Modeling. Putting any kind of action, method name or process in URI is
considered to be bad practice. URI actually represent some noun or resource on that some

action is performed.

Resources can be modeled via some hierarchical way easily. For example there
are two entities Class and Student. These entities can be modeled in several ways. In

following example URI are represented relative.
/Class=6B/Student=Shoaib
/6B/Shoaib
/Classes/6B/Students/Shoaib
/School?Class=6B;Student=Shoaib

There may be different variations of resource modeling as mention above. But one that is

seems more convenient is;
/Classes/6B/Students/Shoaib

It can easily be extended to solve some other resource collection mystery. Following URI

represents Class collection in a given context of Scheme and authority;

18

[/Classes/

This part represents a particular class in all classes
/Classes/6B/

Following part represents collection of students in particular class
/Classes/6B/Students

Particular student in any particular class can be access via;
/Classes/6B/Students/Shoaib

Further particular resource can also be extracted via using fragment of the URI;
/Classes/6B/Students/Shoaib/?age=20

It is strongly recommended that to put only required information that identifies the

resource.

2.7 REST Methods

There are number of methods available in HTTP specification but most common among
all are; GET is used to retrieve resource, POST is used to update and insert and extends
existing resource and may affect state of other resources, PUT is for creating new or
replace resource, DELETE to delete resource, and HEAD is used to retrieve resource
representation and metadata. All of the methods are briefly described in the context of
REST.

271 GET
It is an idempotent method to access resource representation without affecting resource

state. Great advantage comes when results can be cached for performance boosting.

2.7.2 POST
It is used to modify the resource represented in corresponding URI. Usually it is misused

and even deletes resources.

19

2.7.3 DELETE
It is used to delete a resource given at valid URL. It is suppose to delete one resource at a

time. If more than one resource is involved then POST method is used.

2.7.4 PUT

To change the resource representation client uses PUT method. There is a major
difference between PUT and POST. PUT and DELTE methods operate on resource
representation as a whole. It may also include CONTENT-RANGE headers to modify
only a portion of the entity.

2.8 Conclusion

In most of the cases Secret key, Public key cryptography, and hashing is used all together
to proved all essential elements of any secure system i.e. Authentication, Confidentiality,

Integrity, and non repudiation.

Alice use PKC to for hash security and Secret key scheme to encrypt message for
confidentiality. PKC can also use for encryption but it is rarely used for that because it is

1000 times slower then secret key cryptography.

Alice use a randomly generated session key in secret key scheme and share that
session key via PKC using Bob public key. On receiving end Bob will get will session
key by using his private key and decrypt message then compute hash values of that
message. Computed hash will be matched with decrypted hash values from Alice sent
digital signature using her public key. If two hash values matches the message it came

altered otherwise corrupted.

20

Sender Private Key

Sender Message

Random Session Key

Receiver Public Key

Digital Signature

Encrypted Messagd

LY

Encrypted Session
Key

Figure 2-3: Hybrid Security System

21

Send to Receiver

—=>

Chapter 3. Web Services in Pervasive Environment

3.1 Overview

Pervasive computing is an open research area. several aspects needs more attention like
security provision between end-end devices without intervention of third party servers,
optimized bandwidth utilization, platform neutral communication framework, context
aware computing and services adaptation etc. In this case only the first issue is
highlighted. Lot of published work and material is reviewed as categorized below;

e Distributed computing
e Web Services and SOAP
e Web Services Security (WSS)

e Security Assertion Markup Language (SAML)

Pervasive Security Frameworks

Let’s have a look on each one by one along with pros and cons.

3.2 Distributed Computing

Systems in which hardware or software components are distributed on different machines
over networks and they communicate and coordinate their actions via messages [3]. Most
prominent distributed object technologies or middleware are DCOM of Microsoft,
CORBA of OMG, and RMI of JavaSoft. These are extension of traditional object
oriented systems in a way that they allow objects to be distributed in heterogeneous
environments. Distributed objects may reside in separate address space independent of
application or computer and still can be accessed in application on other computers over

network or same machine.

Let’s take a look on these distributes object technologies or middleware one by one.

22

i. Common Object Request Broker Architecture (CORBA)

It is an open distributed object computing infrastructure and standardized by Object
Management Group (OMG). OMG was founded in 1989 to promote the adaptation of
object technology and reusable software components. CORBA is widely used in non-
window platforms. It has own object extension model CORBA Component Model
(CCM).

INTERFACE IDL IMPLEMENTATION
REPOSITORY COMPILER REPOSITORY

O—Fm
operation() OBJECT
(SERVANT)
out args + return value

-0 -
KELETON
mL ORB @
STUBS INTERFACE

O .m

Q STANDARD INTERFACE QSTANDARD LANGUAGE MAFPPING
. ORB-SPECIFIC INTERFACE C:)STANDaRD PROTOCOL

Figure 3-1: CORBA ORB Architecture [3]

Object Request Broker (ORB) is a core component of CORBA architecture. It hides
complexities from programmers; CORBA objects interact with ORB whether requesting
object is located locally or remotely. It provides basic messaging, communication,
directory, security and location transparency and insulates applications from details about

hardware, networking and system.

Internet Inter-ORB Protocol is a specialization of General Inter-ORB Protocol and
works over TCP/IP. It was developed according to CORBA 2.0 specifications and for
communication of ORBs from different vendors. CORBA relies on IIOP or other
specialization of GIOP for remoting objects. The CORBA object is a programming entity
that consists of an identity, an interface, and an implementation, which is known as a

Servant. The servant is an implementation programming language entity that defines the

23

operations that support a CORBA IDL interface. OMG has defined an interface definition
language (IDL) that declares the interfaces and methods of a CORBA server object.
Every CORBA object must be declared in IDL. The IDL compiler creates stubs and
skeletons that serve as the “glue" between the client and server applications respectively,
and the ORB.

ii. Distributed Component Object Model (DCOM)

It is an extension of Component Object Model and standard of Microsoft for distributed
computing. Most of desktop computer using window are based on COM. Software
components communicate with each other locally or remotely using DCOM approach.
DCOM use Microsoft Transaction Server (COM+/MTS) as extension model.

class

O—_
Client , factory boasic
d Serlrer programming
: I: object architecture
|
1
/7
1

Ty .
o—| Inter. |stubi| COM remoting
stub i library architecture

ohj. Inter. COM SCM(\B)
proxy |prozy || library & redjistry
[T H

\\—_ SCM |—=0——o SCM

registry E registry

wire
protocol
architecture

OHID
object

RPC ¢hannel

Dhject exporter

ORID ___:D O¥ID

resolver resolver

Firg client l—-D—' Fing server

Client machine Server machine

Figure 3-2: Overall Architecture of DCOM [3]

DCOM runs over protocol Object Remote Procedure Call (ORPC). ORPC is built over
DCE/RPC and interact with runtime COM services. Dispatch tables are maintained to
keep the function pointers each represent some interface. Client use these function
pointer of the sever interface and start calling exposed methods as that method resides in

client own address space.

24

Microsoft Interface Description Language (MIDM) is used to define interface for
DOM/RPC objects. As every COM object has IUnknown interface implemented which
has three essential methods Querylnterface(), AddRef(), and release(). There is another
interface IDispatch that is extension of COM IUnknown and it acts as a gateway for
many more interfaces. Both these interfaces are supported by MIDL for interface

descriptions.

In order to call objects implementing IDispatch interface, MIDL generates type
libraries to store the object type information. Unique Universally Identifier (UUID)

identifies each class and interface in COM.

iii. Java/Remote Method Invocation (Java/RMI)

RMI standard is developed by JavaSoft. Java is promoted from merely a programming
language to three compatible platforms like J2SE (Java to Standard Edition), J2EE (Java
to Enterprise Edition), and J2ME (Java to Micro Edition). J2SE is standard toolkit for
programming; J2EE is for enterprise and internet applications development whereas
J2ME is for embedded, mobiles devices and mobiles etc. JavaBean and Enterprise

JavaBean are being used for Java/RMI extension model.

RMI supports remote objects by running on a protocol called the Java Remote
Method Protocol (JRMP). Object serialisation is heavily used to marshal and unmarshal
objects as streams. Both client and server have to be written in Java to be able to use the
object serialisation. The Java server object defines interfaces that can be used to access
the object outside the current Java virtual machine (JVM) from another JVM on for
instance a different machine. A RMI registry on the server machine holds information of
the available server objects and provides a naming service for RMI. A client acquires a
server object reference through the RMI registry on the server and invokes methods on
the server object as if the object resided in the client address space. The server objects are
named using URLs and the client acquires the server object reference by specifying the
URL.

25

iv. Problems with Traditional Distributed Computing

All three middleware technologies use client/server approach for communication and use
transport levels protocol like TCP for communication. To abstract the networking calling
conventions and details proxies or stubs are used so that programmer can only
concentrate business logic implementations. All the heavy lifting like Marshalling of
parameters is done by these underlying proxies. Marshaling / Unmarshaling actions
convert local data into network format and remote system format. It also includes the
byte ordering and number representation on different machines.

These technologies opened a new ways to distributed services but suffer number
of problems like lack of interoperability between different distributed technologies,
firewall restriction, deployment and debugging problems. E.g. in the case DCOM
components dynamic ports opening is required to access the services and it is true for
both client and server. It may be possible when applying this methodology in Intranet
environment because firewalls may configure in that case easily to allow those ports but
in Internet environments corporate firewalls does not allow that facility. Allowing
dynamic port opening may be a security problem for enterprises. Likewise due to
heterogeneous nature of platforms different parameter and result marshaling is required

in order to make communication possible.

3.3 Web Services and SOAP

XML (eXtensible Mark-up Language) and SOAP have together with application servers
shown a great promise for interoperability between the different object models. Microsoft
and OMG as well as many other vendors have adopted XML as standard messaging
format. XML is a true platform independent standard and can be used by any type of
application or object model on any hardware platform. XML-files are ASCII-files and
can be transported by the HTTP-protocol avoiding problems with for instance firewalls.
A disadvantage with XML is to define agreed meta-models between suppliers and
consumers of XML messages. In addition is XML quite space-intensive with possible
very large overhead of descriptive information. It is however possible to use style-sheet
translators as XSLT, to translate a given XML-file from an XML-model to another XML-
model. SOAP satisfies the need to exchange structured data by the Web independently of

26

the underlying platforms. SOAP does not, in contrast to CORBA, offer any services or
management tools. The firewall argument in favour of SOAP is maybe dubious by
making SOAP perform RPC calls through firewalls. This subverts the security regime
because the firewall thinks that it is just harmless Web traffic that passes through it.
Microsoft’s .NET is promised to implement both XML and SOAP giving the Windows

applications opportunity easily to interact with non-Windows applications.

In order to reduce maintenance cost of distributed applications XML data
representation language was introduced. Introduction of XML with Simple Object Access
Protocol (SOAP) gives a birth to new web application paradigm. This technique was far
more superior because it solved all the major problems like platform dependency and
firewall restriction. SOAP envelop enclosed with XML messages deliver over HTTP as
transport protocol. SOAP flexibility of adding custom security headers, binding on any
transport protocol including SMTP and TCP/IP along with its platform and language

neutrality are very important features.

WS-Security

SOAP
r

—
] -

Limy

== HTTPS

=
point-to-point point-to-point

HTTPS

Cul
< 5

T

L
L

|

Figure 3-3: Protocol Layer and SOAP Security [4]

SOAP does not provide any message level security mechanism rather we need to
some other ways to secure our communication. We can use other security models like
WS-Security and its specifications [4]. Firewalls are bypassed usually when use SOAP
over HTTP. The second problem is that connection based security like SSL/TLS only

provide point to point security and fails when there are number of intermediate nodes.

27

WS-Security proposed message based security mechanism for SOAP. It defines
security specifications how different security standards are like digital signature,
encryption and SAML [8] for protecting whole or part of message and even insert
security tokens can be used for all SOAP messages. Several application level security
mechanisms are proposed. In order to provide better and maintainable security model we
need better one like web services security proxy [4]. Its main advantage is that it will

integrate with existing web services as well.

3.4 Web Services Security (WS-Security)

There is still no security testing methodology adopted specifically for web services
implementing applications. WS-Security must be independent of underlying
communication protocol e.g. authentication of both service provider and service invoker,
end to end message content security not only transport level security. These are among

the most important requirements in WS-Security models.

WSS was developed as an extension of the SOAP standard, describing the
mechanism for using XML Encryption and XML signature to secure SOAP messages.
Each messaging option has its own strengths and weaknesses. Its describe how to attach
digital signature and encryption in soap headers. WSS also specify different security
tokens like KERBOROS, X509 and SAML for security information exchange.

WSS is used for construction of variety of security models like PKI, Kerberos and
SSL. It also supports multiple security tokens, multiple trust domains, signature formats,

and encryption techniques as well as provide mechanism to secure a single envelop.

The core security mechanisms like XKMS, SAML, WSS (XML Encryption and
Signing) are directly integrated with XML, thus provide fine grain integrity, data origin
authentication and selective field confidentiality to all applications which use XML for

data storage and exchange.

WSS is as Microsoft's strategy for dealing WS-Security. It’s a comprehensive
security model that support and integrates and unifies several popular security models,
mechanisms and technologies (both symmetric and public and private techs) makes WS

interposable and platform neutral. WS security challenges;

28

e End to end message content security not just transport level security

e Authorization is more difficult to write when environments are more

loosely coupled
e Methodologies for secure WS

e Clients and services do not have a way to negotiate their mutual

constraints and capabilities before interacting
e Securing WS infrastructure needs XML's granularity
e Multiple security tokens

WSS is message level standard that is based on securing SOAP messages via XML
digital signature, confidentiality via XML encryption, and credential propagation via

security tokens.

In fall 2002 Microsoft, IBM, and VeriSign moved their web service security
standard to OASIS in order to provide the baseline security for web services. This
standard includes encryption and digital standard for message confidentiality and
integrity respectively along with authentication. For authentication different security
tokens were introduced like user Name token, Kerboros token, X.509 certificate token,
and SAML token [5]. For each token there is token profile specification that describes

how to actually implement it.

WSS defines set of SOAP headers to implement security measures in web

services. WS-Security also defines the standard how to passing around security tokens.

The ultimate goal of WS-Security is to enable the secure SOAP messages
exchange. The deriving WSS specifications includes multiple security tokens, multiple
trust domains, multiple encryption and digital signatures, and end to end message content
security instead of transport level security. At this point SOAP and SAML are working
together. WSS defines how to insert security information in SOAP and SAML define
what that information is. Overall thrust of WSS is to build the protocol stack similar to
web services like SOAP, WSDL, and UDDI etc.

29

WSS support wide variety of security models like PKI, Kerboros and SSL etc. It
also support multiple security tokens, trust domains, signature formats and encryption

technologies.

3.4.1 Security Assertion Markup Language

SAML [8] is a specification that allows passing security tokens defining authentication
and authorization rights in XML format. WSS use SOAP header to send security tokens
and it support multiple security tokens. We can use different security tokens e.g. X.509
Certificates, Kerboros and SAML token [7] to authenticate users and services. In order to
make communication possible SAML profiles requires agreement between system
entities regarding entities identifiers, binding support, certificates information, and end
points [9]. There are several SAML profiles define the usage of SAML assertions and

request-response in communication protocols and frameworks [10].

SAML is an open standard that encodes security assertions and corresponding
protocols messages in xml messages. Currently it defines authentication, authorization
and attributes assertions. It also encodes security assertions and corresponding protocols
messages in xml messages. Furthermore it specifies a request response protocol which
can be used by the services provider to request assertions from identity provider. Binding
defines how to send SAML protocol messages using SOAP over HTTP. Profiles
determine how SAML can be used in standard web browsers. It also provides extension
mechanism e.g. XACML (Extensible Access Control Markup Language) for fine grain
access control being used in grid computing.

SAML standard includes descriptions of the use of SAML assertions in
communication protocols and frameworks called profiles contains protocol flows and
security constraints for applications of SAML. There are three types of SAML statements

are supported,;
e Authentication Assertion
e Authorization Assertion

e Attribute Assertion

30

WSS is a messaging language and SAML is security language. It is expected that
both these provide the solid foundation for stable and flexible web services architecture.

3.4.2 XML Key Management Specification (XKMS) [13]

It is a joint venture of Microsoft, VeriSign and webmethods as open standard to simplify
the securing of XML based internet transactions using PKI and digital certificates.
XKMS describes the protocols for distributing and registering public keys, suitable for
use in conjunction with the standards for xml signature and xml encryption. It overcomes
the WS PKI complexity by treating the WS as client of key management services. Key
objective of XKMS design is to minimize the complexities from client application
implementations by shielding them from the complexity and syntax of underlying PKI

used to establish trust relationship. It has two parts;
e XML KEY INFO SERVICES SPEC AND
e XML KEY REGISTRATION SERVICE SPEC

XKISS is responsible for maintaining public part of public private key
combination and XKRSS is for private part.

3.4.3 XML Access Control Markup Language (XACML)

It is standard language that specifies schemas for authorization policies and authorization
decision request response. It also specifies how to evaluate policies against requests to
compute response. XACML has three top level elements <Rule>, <Policy>, and
<PolicySet>. Using XACML enterprise can define platform independent rules for how its
resources can used by those inside and outside the enterprise. Enterprises can

communicate without aligning their computing platform, just has to align access policies.

3.5 Pervasive Computing Framework
Generally we use same protocols for pervasive environment as being used for
corresponding desktop environment with little precautions due to certain hardware

constraints.

31

As proposed in paper [1], general framework for secure service architecture in
pervasive environment. But if we further elaborate it we can divide it into following

categories.

Access Control Module (ACM) is responsible for access of requested resource by

the corresponding user.

e Access Control Module
o0 Authentication
= Trusted Third Party
0 Authorization
= Context Awareness
0 Service Provider
e Security Policy Enforcer
0 User Policies
o Enterprise Policies

Enterprise
Policies

User Policies

User Data Security Policy M Enterprise Data
Enforcer W

I

Authorization Access Control U Trusted Third
Module/Signature <:> Module ser Party

Verification

Figure 3-4: Secure Pervasive Architecture

3.5.1 Access Control Module
Access Control Module (ACM) is basically have two important parts may be three

sometime if we consider Service as part as well.

32

i. Authentication

Authentication is done through SAML Response. It is for identifying user, whether
legitimate or not. It includes the participation of Trusted Third Party for registration and
Assertions. TTL will be a reliable server who will keep the user profiles and

authentication information. There may be several TTL servers for single organization.

ii. Authorization

Authorization is for the purpose of granting access to requested resource. It is more
complex then authentication, it depends upon number of factors in pervasive environment

most importantly context and security levels in different conditions.
iii. Services

It may be a separate part but here we are considering it as part of ACM. It keeps the
resources in hand and provides different operations to authorized users.

3.5.2 Security Policy Enforcer
There may be two types of policies in pervasive environment generally. All other may be

categories in these if necessary.

i. User Policies

Define user policies for services access and manipulation.

ii. Enterprise Policies

Define enterprise policies can override user policies.

33

Chapter 4. Proposed Methodology

4.1 Overview

Several encryption and hashing schemes are available for message confidentiality and
integrity respectively. REST is an architectural style of building services using well

known protocol like HTTP. This chapter is classified in following sections;
e SAML Response Generation
e Hashing
e Encryption
e REST Services

4.2 SAML and Serialization

There are three available versions (v1.0, v1.1, and v2.0) of SAML and version 2 is latest
and used in current case. SAML is built upon number of existing protocols and standards

including;
e XML Schema
e XML Encryption
e XML Signature

e Hyper Text Transfer Protocol (HTTP)

Simple Object Access Protocol (SOAP)

W3C has defined and standardized each one of above mentions building blocks in
separate documents. In order to generate and consume SAML messages, it is essential to
convert schemas to classes. But at the end we have to serialize the whole or part of the

content in order to communicate across the boundary of application domain. .Net

34

platform is being used for implementation of all steps and running simulation but can be

ported to any platform independent of language.

4.2.1 Classes Generation
The very first step of implementation is to generate classes from corresponding schema
files. In .Net the procedure is quite simplified and can be done using utility XML Schema

Generation (xsd.exe).

XSD utility has several switches used for configuring the behavior of the utility.
XSD utility can be accessed via going Programs Files -> Visual Studio 2008 -> Visual

Studio Tools -> Visual Studio Command Prompt and typing xsd.

E Visual Studio 2008 Command Prompt

IC:~Program Files {(xB&6>~Microsoft Uiswual Studioc ?_8~UCH>xsd
Microsoft (B> Hml Schemas~-DataTuypes support utility
[Microsoft <(R> .MET Framework. Uersion 2.8.58727.14321]
Copyright {C»> Microsoft Corporation. All rights reserved.

s |

xsd.exe —
Utility to genewrate schema or class filez from given ODuPrCe _

-exe <schema>.xsd ~classes idataset [-e:1 [-1:1 L[n:z]1 [f0:=1 L[rs1 L[Louri=1
-exe Cassembly>.dlli.exe L[soutputdi»:-]1 L[type=z [...11

-exe <instance?.xml L[outputdir:

-exe <schema?.xdr» L[Aoutputdir:=]

— OPTIONS —

l-classes
Generate classes for this schema. Short form is ‘/c’ .

L dataset
Generate sub—classed DataSet for this schema. Short form is *.-d’ .

“enableLingDatafet
Gen?rate,LINQ—enahled sub—classed Dataset for the schemas provided. Short f
orm is ‘e

lelement :<element >
ement from schema to process. Short form is "~re:z’” _

L~F ie Lds
Generate fields instead of propertiez. Showrt fowrm is

0 e
Generate explicit order didentifiers on all particle mg [j

Figure 4-1: XSD Switches

xsd /c /language:CS XSDSchemaFile.xsd

When the above command run it will create corresponding class (XSDSchemaFile.cs) in
C# language in schema directory. It is also possible to specify multiple .xsd files as well.
In current case following command created corresponding types. As shown in figure

below.

xsd xmldsig-core-schema.xsd xenc-core-schema.xsd saml-schema-assertion-2.0.xsd saml-schema-protocol-2.0.xsd /classes

/namespace:saxxxon.common.Security.Saml20 /outputdir:..

35

=d| Properties

<= References

= [£= Schemas

RunXsd.bat

él saml-schema-assertion-2.0.sd
- | 2] saml-schema-protocol-2.0.5xsd
e |£] xenc-core-schema.xsd

e [&] xmldsig-core-schema.xsd

-] ReponseType.cs

- 7] ResponseHashing.cs
-] samlHelper.cs

-] SamlSchemas.cs

Figure 4-2: SAML Classes Generated through XSD Utility

4.2.2 SAML Response Generation

SAML is used primarily for security tokens delivery across application domains and it
define the way how security relevant information is packaged. But how SAML response
will be sent over network is described in other protocols like SOAP and usually details

are part of SAML binding. Its overall structure is shown in figure 3.1;

HTTP Header

HTTP Body

S0AP Header

SOAP Body

SAML request
or response

Figure 4-3: Binding over SOAP

SAML request and response has very similar format and structure as shown in figure 3.2.

36

Response

Assertion

AttributeStatement

J

Figure 4-4: Abstract SAML Request/Response Structure
Loosely speaking, a relying party interprets an assertion as follows:

Assertion A was issued at time t by issuer R regarding subject S provided conditions C are

valid.

A SAML assertion contains the security information and enclosed in following way

<saml:Assertion ...>

</saml:Assertion>.

There are several attributes of an assertion including information about issuer, recipient,
target, domain, subject and custom key values paired attributes. Additionally it also
contains other conditional statements as well like expiration, audience and dependencies
on other statements. As shown in following figure, our application contains a simple
interface for SAML response generation. Following information is required to generate
SAML response.

4.2.3 SAML Attributes

A SAML assertion is a package of information including issuer of SAML response and
subject, conditions and advice, and/or attribute statements, and/or authentication
statements and/or other statements. Statements are optional. The SAML assertion

"container" itself contains the following information:

37

e Issuer is the Trusted Third Party (TTP) who is response for SAML

response generation
e Recipient is end point where this response is entertained
e Target specify the targeted resource for being assertion is made
e Mention domain of SAML response

e Subject is the user/service for which assertion is made

SAML Response

Issuer S TS Name Value

Recipient
Target

Domain

Subject

| Senzlze SAML Response |

Figure 4-5: SAML Response Generation
There are three types of SAML statements

e Authentication statement assert about some subject on behalf of some

third trusted party

e Authorization statement contains user privileges and resource access

information

e Attribute statement contain custom information in the form of key value

pair format

In this case when SAML response is sent by this application will be an
authentication statement (Asserting about some subject). And when authentication
statement is processed at the end point, it will generate an Authorization statement
specifying whether requested resource is accessible or not. Entities can exchange custom

information via attributes statement but it is optional.

38

o= Secure Communication Provider

SAML Request | REST Services Hosting | Secure Communication

=T E=R =50
SAML Authentication Query
|zsuer www.yahoo.com
Subject Muhammad Shoaib
Deestination hitp:/iwww.ttp.com. pk
Domain

www.yahoo.com

SAML Authentication Query

<AuthnRequest xmins xsi="http:/Awww w3.0rg/2001/XMLSchemadnstance" xmins xsd="http./ /www w3.org/ 2001/ XMLSchema" 1D="00000000-0000-0000-0000-
000000000000 Version="2.0" lssuelnstant="2010-07-07T11:46:11.9676357Z" Destination="http:/www ttp com pk" xmins="um oasis namestc:SAML:2 0:protocol" >
<lssuer xmins="um:oasis:names tc:SAML:2 0:assertion " >www yahoo .com</Issuer
<Subject xmins="um oasis:namesic:SAML:2 D:assertion”>
<NamelD NameQualfier="www yahoo com":Muhammad Shoaib</NamelD
<SubjectCorfimmation Method="um:oasis namestc:SAML:2 0:cmbearer>

SAML Authentication Response
<%l version="1.0" encoding="utf-16" 7>

<Response xmins xsi="http//www w3 org,/ 2001/ XMLSchemadnstance” xmins xsd="http -/ /www w3 org/ 2001/ XMLSchema" |D="_0ae1220a-8dfd-4e05-a855-40a0d 1dbSe 02"
InResponseTo="_x0030_0000000-0000-0000-0000-000000000000" Version="2.0" Issuelnstant="2010-07-07T11:46:12 04664037" Destination="Recipient"
xmins="um:oasis:names tc:SAML:2 Dprotocol ">

«lssuer xmins="um:oasis names tc:SAML:2. 0:assertion "> T TP </lssuer:
«Status>

Figure 4-6: SAML Utility

In above SAML utility when user pass mentioned parameters then it will issue an
authentication request to TTP. In response of that request TTP will send back response

consists of an assertion if request is valid. Corresponding request and response are;

When client send this request to TTP, it will be validated for tempering if request
is not tempered and user credential are matched then a valid response with success status

will be generated. Otherwise failure message or blank message will be send back.

t xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"” xmlns:xsd="http://www.w3.o0rg/2001/XMLSchema"
000000-0000-0000-0000-000000000000"

Version="2.0" IssueInstant="2010-07-05T06:01:35.58304062"
Destination="www.serverl.com.pk” xmlns="urn:ocasis:names:tc:SAML:2.0:protocol">
xmlns="urn:oasis:names:tc:SAML:2.0:assertion">www.serverl.com.pk</I
t xmlns="urn:oasis:names:tc:S52ML:2.0:assertion">
NameQualifier="www.server2.com.pk">shoaib</NamsID>
Method="urn:ocasis:names:tc:SAML:2.0:cm:bearer">
ata NotOnOrAfter="2010-07-05T06:06:35.58404062" Recipient="

www.serverl.com.pk™ />

Figure 4-7: Authentication Request
Corresponding response is;

39

«<?xml wversion="1.0" encoding="utf-16"7?>

< xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance™ zmlns:xsd="http://www.w3.org/2001/XML5chema™
ID="_ aBbab30l-lcec-4c4l-ale7-75al4bf9cfcc”™ InResponselo=" x0030 0000000-0000-0000-0000-000000000000" Version="2.0"
Izsuelnstant="2010-07-05T06:01:36.0670682Z" Destination="Recipient" xmlns="urn:casis:names:tc:5AML:2.0:protocol™>

< ¥xmlns="urn:oasis:names:tc:SAML:2.0:assertion">http://wWwww.ttp.com.pk< -3
< >
< Value="urn:oasis:names:tc:53ML:2.0:status:Success" />
< >
<. Version="2.0" ID="_ 95c86da83-d93b-446c-ada8-cTedbaelfaaf” Issuelnstant="2010-07-05T06:01:36.0670682Z"
xmlns="urn:casis:names:tc:S5AML:2.0:assertion">
< >http://www.ttp.com.pk< >
< >
< NameQualifier="www.serverz.com.pk">shoaib< >
< Method="urn:ocasis:names:tc:SAML:2.0:cm:bearer">
< NotOnOrAfter="2010-07-05T06:06:36.0670682Z" Recipient="Recipient™ />
< >
< >
< HotBefore="2010-07-05T06:01:36.0670682Z" NotOnOrAfter="2010-07-05T06:06:36.0670682Z">
< >
< >WWW . Server2 . com.pk< 3
< >
< >
< AuthnInstant="2010-07-05T06:01:36.0670682Z">
< >
< >AuthnContextClassRef< >
< >
< >
< >
<Attribute Name="email™ NameFormat="urn:ocasis:names:tc:S5AML:2.0:attrname-format:basic™>
< xsi:type="x=d:string">ttplwww. server?.com.pk< >
</Attribute>
< >
< >
< >

Figure 4-8: Authentication Statement in Response Body

4.3 Message Integrity

For message integrity there are number of pre existing one way encryption or hash
functions are available. Hash functions generate fixed length value for a given input;
minor change in file can have drastic change in hash values. Hash functions are used

along with Public Key Cryptography (PKC) to secure communication.

There are several hash functions available for signing the documents. E.g.
Message Digest (MD) and Secure Hash Algorithm (SHA) are commonly used. MD has
128bit hash length whereas SHA has five variation including SHA1, SHA224, SHA256,
SHA384, and SHA512 with 160, 224, 256, 384 and 512bits hash length respectively.
Greater length of hash value takes more time to compute. SHA1 is computed in less time
compare to SHA512. SHA512 is more secure then SHAL.

Hashing

Algonithm: MD3 - Computed Hash (Basef4 Fomat):

[compuetiash | [AuachHash

Figure 4-9: Hashing Interface

40

Message can be hashed via MD5, SHAL, SHA256, or SHA512. Then hashed value in bit
format is encoded in Base64 in order to display it in printable characters and send across

wire.

Generally different application uses multiple hash function to ensure integrity of

messages. €.g. SHA1 and MD5 are common pair of use.

As shown in above Figure 6-6. When Attach button is clicked it will attach

corresponding hash value with already generated SAML response.

4.4 Confidentiality
PCK system is commonly used for authentication and small messages encryption. It is
1000 slower then corresponding Secret Key Crypto system. It is the reason Secret key

algorithms are used for encryption to provide confidentiality.

Encryption

Algonithm: =8 - Key
Enerypt ==
Drecrypt =

Figure 4-10: Secret Key Encryption System

4.5 REST Services
REST services are built using Microsoft WCF technique. This part can be further divided

into two parts i.e. Service Hosting and Service Description.

45.1 Service Hosting
WCF services can be hosted in separate application, window service or in Internet
Information Server (11S) provided .NET framework 3.0 or later is installed. In this case

Service is hosted in separate window service.

41

- Secure Communication Provider EI@

REST Service Hosting

Server Base Address http:/Awww server2.com phk Port 8090

Stat Server

Figure 4-11: REST Services Hosting

When service is running at that specified address and port then its services can be
accessed through web browser for testing easily. But whole testing is performed on local
machine and all addressed are mapped to 127.0.0.1 so port being assigned should not
collide. For testing whether service is working type following setting; for Server base

Address is http://www.server2.com.pk and port is 8080.

& http:/fwww.server2.com.pk:8080/ greet/Muhamms%20Shoaib - Windows Internet Explorer EIIEI
@ '\,../I L4 |§, http:/fwww.server2.com.pk:8080/greet/Muhamms®:205hoaib = | b | + | A | |@ Ask Search R -
7.7 Favorites & hitp:/www.server2.com.pk:8080/greet/Muham... & = 3 Eéé v Page~ Safety~ Tools~ '@"

a
<string xmins="http:/ /schemas.microsoft.com/2003/10/Serialization/">Welcome back: Muhamms
Shoaib</string=

Done €D Internet | Protected Mode: On 45 v ®|100% -

Figure 4-12: REST Service Greeting Message
Service status can also check in Services tab of Window Task Manager.

o= wWindows Task Manager [| |
Fale Optiomns Wi Help

#qﬁmtwslprm Services. Perﬁrml“ebwﬁkrygiLkﬁs

Mame Py Descaipbon Slahes W
Metman B3 M wsnrie Connectons Burmdng
TFPBusEmam PP =X TP Bus Erormerator Stopped
hidssry Human Intsrfacs Dewicos Access Stopped
dot3Iswe Whired AutoConifig Stopped
CscService 258 Ol Files RurrEng
AudioEndpontSuider BS54 Windoes Audio Endpoint Buider RLmmeng | =
{RESTServicestiostng 6080 REST Serwvices Hostng Envenenent _ Runoing
WSeardh ZEO0S wWindows Search RLrring
PP e bworkeSw e =58 Windows Media Flayer Me btwork Shanng Servios Bunmng
mLAEST e WM Performance Adapier Stopped
sedEngine Siock Lewel Badap Engine Serwioe Stopped
WWatAdmmSec Windows Activetbon Tedolopies Servioe Stopped
VES Violume Shadow Copry Stopped
Virmare MNAT Servioe 1530 Wiivrare MAT Service Rrng -
F " 3

Processes: 67 CPU Usage: 105 Physical Memornys 525

Figure 4-13: REST Service Status in Window Task Manager
42

4.5.2 Service Description
Current version of REST service implemented here only support GET operation and only
few sample resources are modeled e.g. Student. Only relative URL are mentioned here

with short description;

/Students It will return all students collection stored.

/Students/Muhammad Shoaib It will return single specified resource.

/ Another way of getting All students.

/Muhammad Shoaib Another way of getting single specified
resource.

/Students/Shoaib/?Age=20 All Student with name Shoaib and Age 20

Resources can be modeled in variety of ways as described in REST section.
Beside GET operation other methods like POST, PUT, and DELETE can also be

implemented similarly.

4.6 Hybrid Security Approach

In this scheme different available security standards are used. In order to main trust
between enterprises it digital certificates (x509) are being used. Sender sign messages
with his private key for authentication and integrity of message being sent out. It also use
random session key for encryption and session key is encrypted using receiver’s public
key. Receiver uses his private key to decrypt session key and decrypt message using that
session key. Message hash is validated against sender signature, if both match then

message is received unaltered.

4.6.1 Trusted Third Party (TTP) Hosting
TTP is hosted in ISS for access remotely. When user send Assertion request this service
will return a SAML assertion on valid request as shown in figure 5-6. Web server for

hosting is 11S 7 as shown in figure 5-14.

43

4.6.2 REST Service Hosting
REST service is used to access modeled resources using standard HTTP methods. This
service is hosted in separate window service that can be started and stop from user

interface provided as shown in figure 5-11.

N Tnkernet IfGrmation Sevices (15 Manager =N
@.‘ @ » SACCON » Stes » Ip » M W -
File View Help
Connectians Actions
q Idp Home

483 SAXICION (SaX00eM\Muhsmmad Shoal

‘ e Filter: - o - g7 ShowAll | Groupby: Ares
} Application Pools T . Edit Site
£ NET Authorization Rules ¥ NET Compilation & | NET Eror Pages
| -
& NET Globalization NET Profile o~ NET Rales
| NET Trust Levels P NET Users 9= | Application Settings : =
v » b ¥ Sie
i Connection Strings J'I Machine Key <[5 Pages and Controls
,:3 Praviders i Session State & SMTP E-mail]
" e Web Site =
@ acp R suthentication car 0]
. Db
& compressin & Orfoult Document 52| Directory Browsing Configure
L | Error P | T Rul] Handies Mapping
4, | Emor Pages iy Foited Request Tracing Rules . andles Mappings
bE - ¥, . i
== HTTP Response Headers U IS4P1 Filters i8] Lessing 7]
] = p
T MIME Types = Modules g output Caching - 5
3 = Request Filtering f_% §5L Settings
Management
Configuration Editor
q Features View | Content View
Ready L]

Figure 4-14: TTP Service Hosted in 11S7

4.6.3 Secure Communication

A hybrid approach is used for secure messaging over insecure channel. AES is used as
secret key encryption scheme because it more secure and faster in both software and
hardware implementations as compare to corresponding block ciphers. And SHAL (hash
length with 160 bits) is used for digital signatures. Digital certificates are used for

maintain trust across corporate.

REST response is generated in specific format. On client side format is tear off to
separate different parts of information. Traffic travelled over in secure channel i.e. http
protocol, security is provided via end to end process without intervention of third party
server involvement. REST Service sends back response in format shown below. Content

is encoded in Base64 format to transmit across wire.

44

- Secure Communication Provider EI@

SAML Request | REST Services Hosting | Securs Commurication

URL hitp:/Awww server? com pk:8090/students Action GET -

Response Body «<string xmins="http://schemas microsoft.com./ 200310/ Senalization." > < %ml version="1.0" encoding="utf-16"? -
»<Message »<Digital Signature *0p T3nyRGNdaP Hry 3zC0IvMs L22ZmCrP JB0F U 2nzd 2EE+x S 3 Sy L Eboc BMB
+2TLv4PJaTNelcn00b4k./rZh)Ne Fty5BnZzf VMK Wbs 3FPkOt Z19bh EpcTPaP 7W2nVavars 8 IVIJIPRZ6950cpozd S828c HnXbt 227 | =
8RBwkichD=</Digital Signature ><Message Digest ><EncryptedMessage=flov lsny THUiUMGHKGnp TnUS ¥y BGZETMwGRhiBzL
+DCmeGzLKJNNrXdPNhDdojoB2mAiquVa0GvEW 4fbw 3pWo Zx3Kd6s KIb Soa ¥ im &dba'Y 8S5x 5N 2refme 51V T 9LwIhheiCy Rb MfBXKES
TYiJ515J 2 Vw4 PBSIHBZRN2m TN4=</EncryptedMessage »<Encrypted Session Key >HNFPaGv2/b 1 TJkc SRYLY

Digital Signature OpT3nyRQNdxa P Hry3zQv MsL22ZmCrPJ 80 FU2nzd 2EE+x 5 3¢Sy ElocBMB+ 2T Lv4P Ja TNelen B0b 4k /rZhJNe Py 5 BnZzf VMK ANbs 3FPE
Encrypted Message flevleny TRLi UMGHKGnp Tn US¥yBGZETMwGRhiBzL -

+DCmeGzLKJNNrXd P NhDdojaB 2mAiquVs0Gv EW 4fbw 3pWo Zx5Kd6s Klb Soa 3 Im Bdkba'Y 8 5x 5N Zrefme 51V T9Lw IhheiGy Rb MFBXKGS
TYiJ515) 2 VwdIPBSIHBZRNZm TN4= =

Encrypted Session Key HNFPaGv2/b i TlkcSRYLY+mn TOv ZImrFRMID ZgAkQZ+ T8hwBh L6 T 18nt 6OvRIH7)+gQBb NO 53tk L 68z 34eCAWO 22+ 4IF 1 BAWF Nt

Message <Students><Student >Muhammad Shoaib</Student ><Student =Asif Ali</Student ><Student >Ahmad Jahanzeib</Student ></Students> -

Figure 4-15: Hybrid Scheme for Secure Communication

<Message>

<DigitalSignature></DigitalSignature>

<MessageDigest>
<EncryptedMessage></EncryptedMessage>
<EncryptedSession></EncryptedSession>

</MessageDigest>

</Message>

1l

<Message><DigitalSignature>OpT3nyRQNdxaPHry3zQIvMsL22ZmCrPJ8OFU2nzd2EE+xSY 3x9yL EKX5MB+2TLv4PJaTN
elcn00b4k/rZhINcFty5BnZzfIVMK/Whs3FPKOtZI9bhEjx TPgP7W2nV2v9r58rbIVOJIPRZ69S0cpgzdS828cHNX5t22Z8RBwk
kh0=</DigitalSignature><MessageDigest><EncryptedMessage>fkvIsry TFfuilUMGHKQnpThnUSXyBGZETMwGRhiBzL+DC
meGzLKINNrXdPNhDdojgB2mAiquV50GVvEW4Thw3pWoZx9Kd6sK Ib50a3flm8xkbaY8Sx5N2refmc91VTILwlhheiQyRb
MfBXK6STYiJ515JZtVw41PBIIHbZRN2rnTN4=</EncryptedMessage><EncryptedSessionKey>HNFPaGv2/b1fTIKCORY /Y
+mnTOvZIMrFRM9DZgAKQZ+jT8hwBhLt6 T18nt6QVRiH7J+gQ6bNOSItkL68z94eCAWO;j2Z+k4IF1BAWFNt/KW3M1Swa
kfyGafLO/TAuZNxIly3jBIx+3mK4kyFpU61Tv1u0GuOoNAIfkieQAxFsIf8=</EncryptedSessionKey></MessageDigest></Me

ssage>

45

Chapter 5. Performance Analysis

5.1 Overview
First of all performance of some well known symmetric schemes and hashing are

discussed. After that overall performance of our methodology is briefly described.

5.2 Symmetric Schemes and Hashing

All the communication is made over unsecure channel that is HTTP. It is obvious to
make sure message security we need some mechanism. In our hybrid scheme symmetric,
public key and hashing all being applied. Different simulations are run with same data

size and average of those values is then taken.

3500 g s MD5
3125 Shal
3000 EEl Shabl2

2500

2030

2000

Tima

1500

1000

500 —

882 10882 20882 30852 40882 50882
Length (Bytes)

Figure 5-1: Hashing Schemes Comparison

MD5 has digest size of 128 bits smaller then corresponding Sha scheme. Its performance
IS better as compare to two variations of Sha with 160 and 512 bits digest size. As size of
digest increase computation requires to compute the result also increase. But size of
digest determines the effort required to find collision. Smaller the size more chances are
there for collision to occur. So MD5 is more unsecure then corresponding Sha512

because of digest space.

46

8000 I DES
TripleDES

N AES

Il EBlowFish

6000

4000 i

b _:l—]: i
0 L

168 2168 4168 6168 3168 10168

Length (Bytes)

Time

Figure 5-2: Secret Key Encryption Schemes Comparison

AES is out performing in almost all cases. It is based on special finite fields to compute
the encrypted text. It is designed to work in both software and hardware in the same way.
DES has as data size increase, performance difference between DES and Triple DES is

obvious as compare to AES. Triple DES is most computation hungry in all cases.

5.3 Performance of REST VS SOAP

Two services are built one over REST and other over SOAP. Services are hosted in
separate window services to avoid the need of installation of 1IS or any web server

dependency.

We used fiddler as HTTP debugging utility in order to intercept and evaluate
requests and response sizes and others features. Fiddler is shown in [figure 5-3]. By using
Fiddler we intercept all HTTP requests and responses sent by any application. We can
change response and request and replay them later as well. Fiddler is useful utility for
monitoring other features like content type, response time, compression techniques and

security information like certificates etc.

We have modeled some resources like Persons and Examination for testing
purposes. When we send some resource using REST service then response is sent back

over HTTP as shown in [Figure 5-4].

When same resource is requested via SOAP service the bandwidth consumption is
more than corresponding REST service [Figure 5-5]. Performance table is given below

for number of requests.

47

Serial # Type Resource Request Size Response Size
1 SOAP /Persons/Shoaib 398 686

2 REST /Persons/Shoaib 61 391

3 SOAP /Persons/Khan 420 686

4 REST /Persons/Khan 59 391

5 SOAP /Persons/Shahid 398 688

6 REST [Persons/Shahid 61 391

7 SOAP /Examination 457 783

8 REST /Examination 59 646

Table 1: REST VS SOAP Performance

; e [E=EEE
a;ec.,;dminffhtz: ;:m:jﬁ P Resume Al \; Streaming [AutoDecode \@ Process Filter 34 Find [Save |:3Laun(hlE € Clear Cache 3% Encoder ‘E_—,Teamff \ MSDN Search... (@) Help &) Online x

Transformer | Headers | TextView | ImageView | HexView | Webliew | Auth | Caching | Privacy | Raw XML

g | |
— | | e

{{f Capturing = All Processes 0

Figure 5-3 : Fiddler Startup Screeen

5.4 Conclusion and Future Research

Secure communication between services and applications in ubiquitous environment is
one of the essential requirements. Such environment operates and coordinates with each
other without intervention of any third party. Devices and services access each other and

authenticate each other seamlessly.

In this work we proposed security mechanism using REST services and some well
known secret key and PKC in pervasive environment. Trusted Third Party (TTP) is

responsible for user’s assertions and provides trust services between different services,

48

applications or users. Services providers just look for valid assertion and upon
authorization of requested resource give access to it.

1% Fiddler - HTTP Debugging Proxy = |2 |3
File Edit Rules Tooks View Help
%) Comment 4 Reissue X Remove + b Resume All | § Streaming [AutoDecode | @) Process Fiter 4 Find [Save | @ Lounch E ¢k Clear Cache 3t Encoder @ Help & Online x
IHeRErE S =2 11 6) statstics | £ nspectors | £ | @ Reguest Bulder | 1 Log [[Fiters | = Timeine
g Reicy Etocl flostjju Body Cachng | peaders | Textiew | WebForms | Hexvien | Auth |[Raw | XML
@1 0 HITP . server Leom.p - /Service,asmx A58 private... | [GET Rrrp: //wiw. server. com. pk: 8090/Exanination/ RTTR/L.1
[EF M0 HITP www.server2.com.p... [Personsfchosib 23 Host: waw.Server2. com.pk: 8050
[#a 0w wam server Leom.pk /Service Lasmx 858 private...
[Es 200 HITP www.server2comp... fPersonsfkhan 239
(96 M HITP Wi, Server Leompk jService1,asmx 0 private...
Ez 200 HITP www.server2comp... Persons/shahid 241
(48 M HITP Wi, Server Leompk /Service1,asmx 555 private...
[EF] 307 HTTR WWw,Server2,com.p... fExamination 1,314
Elto 200 HITP wewserverZcomp... [Examination/ 94
Find... [viewinnotepad

Transformer | Headers | TextView | ImageView | HexView | WebView | Auth | Caching | Privacy ||Raw | XML

HTTP/1.1 200 OK

Content-Length: 494

[Content-Type: application/xml; charset=utf-8
server: Microsoft-HTTPAPT/2.0

Date: Mon, 16 Aug 2010 07:29:27 GMT

<Exam xmIns="http: //schemas.datacontract.org/2004/07 /RESTService” xmins:i="http://www.n3.org/2001/XML5chema-instance”>
au:hnrmuhammad shoaib</Authors<DescriptionsFinal Terms 2010</Descriptions<questions
emas . microsoft. cum/znna/m/samahzamun/Arrays"><a anyType i type="b string”
/wew.w3 . 0rg/2001/XMLSchema">Q1 here</a: anyType><a: anyType 1: type="
/we w3 . 0rg/2001/XMLSchema">q2 here</a: any‘rypa(/questlnns><‘r1t'IE>F1na1s</Tlt1E></Exam>

xm1n: htt
Nm'lns b="http:

ol i]

»
. et

g capturing = AllProcesses 1/9 nttp: fjww. server2, com, pk:8090/Examination/

Figure 5-4 REST Service Response in Fiddler

% Fiddler- HTTP Debugging Proxy [E=E ==

File Edit Rules Tools View Help
%) Comment 43 Reissue X Remove -~ b Resume All | § Streaming [T AutoDecode || Process Filter 4 Find [Save | & LaunchIE < Clear Cache 35 Encoder | [Tearoff | MSDN Sesrch.. (@ Help &) Orline x

Web Sessions << I @) statstics | B mepectors | £ | # request puider | [Log | [Fitters | = Timeline

g ResigiBtcd i T Body Cacing [Headers | TextVien | WebForms | Hexview | Auth | [Raw | XML

1 0 HITP [ServiceL.asmx 458 private... N [BOST htp: //www. serverd. com. pk/Serviced. asmx HTTP/1.1

E2 a0 e .server2.com.p... [Persons/shoalb 239 Type: text/xml; charset=utf-a
: p: p a/a

[#]a 20 HIP serverl.com,pk [Servicel.asmx 458 private... N e L e T

Es 220 wme server2.comp... [Personsikhan 239 : 27

[#)s 00 HTP serverl.com.pk [Servicel,asmx a0 private.,

Elz 200 HT wwwserverzcomp... [Personsfshahid 241 pe xmins:s="http: //schemas.xm150ap. org/s0ap/envelopk,/"><s: Body»<getexam xmlns="http: //tempuri.org/"
http://schemas.datacontract. 0I’Q/2DD4/D7/W1ndowsFar’msAnphcat'\am Ser’v'\::Refel’eﬂ:el”

s 200 HTTP www.serverl.com.pk [Servicel.asmx 555 private... http://wew. w3, 0rg/2001/XMLSchena-instance” /></5: Body></s: Envelo)

[2E] W07 HTTP www.server2.com.p... [Examination 1314

EHwo 20 HP www server2.com.p... [Examinationf 94

Bl z2 wP go.microsoft.com [fwlink Plinkid=84795... 183 private...

El12 200 WP services.community.... [feedsffeed/CSharp... 102,033

Bz 2 wP go.microsoft.com [fwlink Plinkid=84795... 183

El1# 200 WP services.community.... [feedsffeed/CSharp... 102,033

Find... [viewinnotepad

Transformer | Headers | TextView | ImageView | HexView | WebView | Auth | Caching | Privacy |[Raw | XML

HTTP/1.1 200 OK

cache-contro vate, max-agest
Content-Type: text/xml; charset=utf-g
Server: Microsoft-IIS/7.5
x-AspNet-Version: 2.0.50727
X-Powered-By: ASP.NET
Date: Mon, 16 Aug 2010 07
Content-Length: 555

9126 QAT

<7xml versio
xm1ns: xsi="htt
<getExarResponse xnﬂ
<QuesTions><anyType Type="X5di STFING">Q1 here</anyTypea<anyType Xsi:type="xsdiSTring"sqz here</anyryj

</Questi uns><9=s:mptwn>;mal Terms 2010</Description></getExarkesu]t></getExaTRespons e></30ap: Body></5uap Envelope»

nvelope xnlns: soap="ntcp: //schenas. xal soap. org/soap/envelope,

"1.0" encoding="utf-8"7><s0a
/. " xm1ns: xsd="nTTp: //waw. w3.0rg,/2001 /XML Schema”><s0ap: B

] 0]

;
fe e [e

i Capturing All Processes 113 httpsjrww serverd.com.ph/Service Liasmx

Figure 5-5: SOAP Service Response in Fiddler

49

One of the major advantages of this approach is that business logic is separate from the
access control mechanism. It is less risky now to communicate with remote services and
when these services demands identity of user assertion is posted instead of actual user
credentials. Application can compose of several vendors’ services with one or more
Identity Providers. SAML is used for transfer of identities and other user credentials. All
the communication takes place over simple HTTP protocol that is most widely used and
supported. Resources are modeled and accessed via uniform URLs. As HTTP support
number of methods but most important among all are GET, POST, DELETE, PUT.

These methods are used to access, manipulate, delete and create new resources.

REST services are preferred over SOAP services because these are light and need
no toolkit to deal. In the later case small response is usually ten times of former one and
obviously it is not suitable in the case of pervasive computing. We have limited resources

like memory, processor and bandwidth etc.

In order to main trust between enterprises it digital certificates (x509) are being
used. Sender sign messages with his private key for authentication and integrity of
message being sent out. It also use random session key for encryption and session key is
encrypted using receiver’s public key. Receiver uses his private key to decrypt session
key and decrypt message using that session key. Message hash is validated against sender

signature, if both match then message is received unaltered.

AES is used as secret key encryption scheme because it more secure and faster in
both software and hardware implementations as compare to corresponding block ciphers.
And SHAL1 (hash length with 160 bits) is used for digital signatures; it is also possible to
use multiple hashing algorithms for more security.

50

References

[1] Nazir, A. M., Tomlinson, A. and Javed, M. Y., “Web-Services Architecture for
Pervasive Computing Environment”, Pakistan Journal of Sciences, Vol. 61, No 3,
September 2009

[2] Nazir, M., Umar, M. and Javed, M.Y., “Future Challenges in Context-Aware
Computing”, Proceedings of the IADIS International Conference on WWW/Internet
2007, Volume-I1, October 5-8, 2007

[3] C. F. Sorencen. A Comparison of Distributed Object Technology, Norwigian
university of Science and Technology

[4] G.Brose. Securing Web Services using SOAP Security Proxies

[5] P. H. Baker, C. Kaler, R. Monzillo, A. Nadalin. (2004). Web Services Security:
SOAP message security (v1.0), OASIS

[6] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-Oriented

Computing: State of the Art and Research Challenge

[7] P. H. Baker, C. Kaler, R. Monzillo, A. Nadalin. (2004). Web Services Security:
SAML Token Profile, OASIS

[8] S. Cantor, J. Kemp, R. Philpott, E. Maler. (2009). Assertions and Protocols for
OASIS Security Assertion Markup Language (SAML) V2.0, (Working Draft 06), OASIS

[9] H. Lockhart, T. Wisniewski, S. Cantor, P. Mishra. (2005). Metadata for Security
Assertion Markup Language (V2.0), OASIS

[10] J. Hughes, S. Cantor, J. Hodges, F. Hirsch, P. Mishra, R. Philpott, E. Maler. (2009).
Profiles for OASIS Security Assertion Markup Language (SAML) V2.0, (Working Draft
06), OASIS

[11] M. S. Mokbel, and J. Jiajin. Integrated Security Architecture for Web Services and

its Challenges, Journal of Theoretical and Applied Information Technology

o1

[12] D. Szepielak. REST-based Service Oriented Architecture for Dynamic Integrated
Information Systems

[13] W. Ford, P. Hallam-Baker,B. Fox, B. Dillaway, B. LaMacchia, J. Epstein, J.
Lapp. (2001). XML Key Management Specifications (XKMS 1.0), W3C

Recommendation

[14] M. Bartel, J. Boyer, B. Fox, B. LaMacchia, E. Simon. (2008). XML Signature

Syntax and Processing (2™ Edition), W3C Recommendation

[15] R. J. Ray, P. Kulchenko. (2002). Programming Web services with Perl (1 Edition),
O'Reilly Media

[16] Pervasive computing, Available:
http://searchnetworking.techtarget.com/sDefinition/0,,sid7 qci759337,00.html

[17] Services Oriented Architecture, Available: http://en.wikipedia.org/wiki/Service-

oriented architecture

[18] Block Cipher modes of Operations, Available:

http://en.wikipedia.org/wiki/Block cipher modes of operation

52

