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Chapter 1           INTRODUCTION AND MOTIVATION 

 

The wireless communication has developed enormously in past five decades in terms 

of high data rates, security, reliability, installation times and cost of cabling. It provides a new 

level of flexibility or system design, reconfiguration and agility. The wireless technology is 

very common in our daily life e.g. the use of cellular phone, wireless internet etc. The most 

recent research is based on wireless technology for providing broadband communication to 

high speed vehicles. The processing power of the digital hardware plays important role in this 

success of wireless communication which now makes it possible to implement sophisticated 

algorithms achieving better performance and high data rates.  The transmitted signal suffers 

with the impairments introduce by wireless channels. These impairments include frequency 

selectivity, time selectivity and noise. The channel needs to be estimated or equalized for the 

coherent detection of the transmitted signal. Channel equalization and channel estimation is 

used in this regard depending on the system model and feasibility. Orthogonal Frequency 

Division Multiplexing (OFDM) which is multi carrier communication system employs 

estimation because of the one to one relationship between the transmitted and received signal. 

After the estimation, simple channel inversion can retrieve the transmitted signal. On the 

other hand Single Carrier (SC) communication uses channel equalization. The equalizer is a 

transversal filter which tries to approximate an inverse channel so that it nullifies the effect of 

the channel when the received data passes through it. The ultimate goal of these techniques is 

to try to estimate or equalize within overhead, processing power and time.  

Different types of equalization techniques exist including Data Aided and blind equalization. 

The data aided schemes use training data while blind equalizers don’t use training data rather 

they depend upon the signal constellations and channel statistics. Data aided schemes take 

relatively less time to converge to the solution. These are imperative in presence of high time 

selectivity (less coherence time or more Doppler spread) in which periodic transmission of 

training is used to track the variations of the channel. On the other hand, blind equalizers are 

generally used in situations where the channel remains constant for relatively longer periods 

of time and changes very slowly (low Doppler spread). The blind equalizer/estimators take 

relatively more time to converge to the solution. These are usually employed in scenarios 
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where delays in the start up time do not matter much and users are static, e.g. Digital Audio 

and Video Broadcasting, surveillance applications, asynchronous transfer mode (ATM), local 

area network (LAN), broadband access on copper in fiber-to-the-curb (FTTC) and very high-

rate digital subscriber line (VDSL) networks.[1]-[3].      

The transmitted signal is formed of bits mapped on constellations to be used for the 

modulation/demodulation. Different types of modulation schemes exist e.g. Pulse Amplitude 

Modulation (PAM). Phase Shift Keying (PSK),Quadrature Amplitude Modulation (QAM) 

etc. QAM has been widely used in digital communication systems due to its high bandwidth 

efficiency. When the number of bits per symbol is even, transmission can be implemented 

easily by using square QAM. However, when the transmitted symbol statistics are of 

quadrature amplitude modulation (QAM) non-square constellations for which the number of 

bits per symbol is odd, the N-points constellations ( N = 2
2i+1

, i Integer and i ≥ 0 ) can be 

arranged into Cross QAM given by Smith [4] and Rectangular QAM (RQAM) constellations 

so long as 2 2[ ( )] [ ( )]R IE s n E s n   is satisfied. The use of RQAM in equalization [5] shows that 

it provide faster convergence rate due to its ability of correcting any phase error within 180
o
. 

This is because the four saddle points existing in the square and cross constellations along 

 
3 5 7

, , ,
4 4 4 4

k
   

   are absent when using RQAM. Consequently, the frequency of being 

attracted toward the vicinity of the saddle points, around which it exhibits slow convergence, 

before converging to the desired minimum, is significantly diminished when using RQAM. 

Therefore, the use of RQAM may accelerate the magnitude equalization process during the 

transient operation.  

Current focus of the research in the blind equalization schemes is to develop such algorithms 

that minimum time to converge and at the same time require less computational power. Also 

the existing algorithms for blind equalization are based on mostly using Square QAM e.g. 

Square Contour Algorithm (SCA), Improved SCA etc and Cross QAM e.g. Modified Multi 

Modulus Algorithm (MMMA), Generalized Cross Contour Algorithm (GCrCA) etc and 

modifications have been done on these algorithms to provide better performance and also to 

be used for RQAMs, however no such algorithm to best of my knowledge specifically for 

RQAM using odd number of bits per symbols exists, thus this is the first motivation for the 

thesis to develop the algorithm which is based on RQAM thus providing faster convergence 
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rate as can be seen through simulation results over the existing algorithm using Cross QAM 

(GCrCA) [6] or RQAM (MMA) [5].  

The existing blind equalization algorithms are mostly QAM specific e.g. SCA, ISCA works 

best with Square QAM. On the other hand, MMMA, GCrCA works best for the Cross QAM. 

To best of my knowledge no algorithm performs well simultaneously for both types of QAM, 

thus motivating for the development of the algorithm that performs well for both types of 

QAMs. This is the second motivation for the thesis. To develop such algorithm that provide 

ease in implementation, RQAM and constellation parameters are used, the detail of which is 

provided in the coming chapters. This algorithm is named as Rectangular Contour Algorithm 

(RRECTCA). The tool used for the simulation purpose is MATLAB. The performance of the 

algorithm has been tested and verified through simulations on MATLAB. 

The proposed algorithm provide better convergence rate, low steady state error and less 

computational complexity as compared to MMA, GCrCA. 

The rest of the thesis has been organized as follows: 

Chapter 2 discusses the concept of QAM constellations, their analysis in general and in 

particular analysis of RQAM in terms of average energy and symbol error probability SEP 

over AWGN and fading channels including Rayleigh, Nakagami-m, Nakagami-q (Hoyt) and 

Nakagami-n (Rice). Chapter 3 describes the concept of blind equalization and major blind 

equalization algorithms along with system and channel modelling. Chapter 4 describes the 

RRECTCA and its simulation results and finally there are conclusion and future 

recommendations. 
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Chapter 2     QAM CONSTELLATIONS 

 

QAM has been widely used in digital communication systems due to reducing or 

eliminating inter modulation interference caused by a continuous carrier near the modulation 

sidebands and its high bandwidth efficiency. Different QAMs exist e.g. Square QAM where 

number of bits per symbol is even and Cross QAM where number of bits per symbol is odd.  

The Square QAM and Cross QAM are common and have been thoroughly investigated in 

terms of symbol error probability, blind equalization techniques etc. In [7] the author has 

discussed and analysed the Square QAM and Cross QAM in detail in terms of average 

energy, minimum distance between the symbols in the constellation, symbol error probability 

(SEP ) etc. 

2.1 M-ary Square QAM (M-SQAM) 

For Square QAM M is defined as 2
k
 where k is number of bits per symbol and is even 

integer ( 2k  ) for Square QAM i.e. M = 4,16,64,..... Fig 2.1 shows 16-Square QAM, the 

average energy required by M-ary Square QAM is given by [7] 

 

2

( 1)
6

av

d
M  

 (1) 

The SEP expression is  

 

2

21 1
4 1 4 1

2 2
SEP

d d
P Q Q

M M 

      
         

      
 (2) 
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The rest of the expressions derived in terms of equ (1) and equ (2) are summarized in 

Table.2.1 

Parameters Expressions 

Minimum Distance d 6

1

avd
M





 

Average Energy 
av  2

( 1)
6

av

d
M    

Energy per dimension 
av  2

( 1)
12

av

d
M    

Bit per dimension k  
2 2

1
log 12 1

2

avk
d

 
  

 
 

Symbol error probability 
SEPP  2

21 1
4 1 4 1

2 2
SEP

d d
P Q Q

M M 

      
         

      
 

Table 2.1 Mathematical Expressions for M-SQAM 

 

 

Fig.2.1 16-Square QAM 
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2.2 M-ary Cross QAM (M-XQAM) 

Since in Cross QAM we are dealing with odd number of bits per symbol so we define 

M as 2
2k+1

 where 2k  .Fig.2.2 shows 32-Cross QAM. It should be noted here that Cross 

QAM deal with M = 8 as a special case for which separate expressions for average energy, 

SEP etc are required. The average energy associated with Cross QAM is given by [7] as 

 
2 31

( 1)
6 32

av

d
M    (3) 

and SEP as 

 

2

21 2
4 1 4 1

2 22
SEP

d d
P Q Q

MM  

      
                

 (4) 

  

 

Fig.2.2 32-Cross QAM 
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Table 2.2 summarizes the rest of expressions in term of equ (3) and equ (4)  

Parameters Expressions 

Minimum Distance d 

 
6

31 1
32

avd
M





 

Average Energy 
av  2 31

( 1)
6 32

av

d
M    

Energy per dimension 
av  2 31

( 1)
12 32

av

d
M    

Bit per dimension k  
2 2

1 32
log 12 1

2 31

avk
d

  
   

  
 

Symbol error probability 
SEPP  2

21 2
4 1 4 1

2 22
SEP

d d
P Q Q

MM  

      
                

 

Table 2.2 Mathematical Expressions for M-XQAM 

 

2.3 M-ary Rectangular QAM (M-RQAM) 

Rectangular QAM is defined where number of bits per symbol is odd. Fig.2.3 shows             

32-Rectangular QAM. M-RQAM is being investigated in the thesis for its utilization in the 

blind equalization algorithms. However before proceeding to the algorithm, we perform the 

complete analysis of the Rectangular QAM and verified that the resulting expressions so 

derived are in excellent agreement with the one found in literature [8]-[10]. The exact 

expression of SEP of the Rectangular QAM over AWGN and fading channel including, 

Rayleigh, Nakagami-m, Nakagami-q (Hoyt) and Nakagami-n (Rice) is derived. 
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Fig.2.3 32-Rectangular QAM 

 

Since we are dealing with QAMs with odd number of bits per symbol so we again define 

2 12 kM   with 1k  , that is, M = 8,32,128,512,2048,..... It is worth noting here that 

Rectangular QAM deal k = 1, M = 8 as an ordinary case for which no separate SEP 

expression is required  as compared to Cross QAM which require separate SEP expression. 

The block parameter for M-RQAM is given as 

 

 
8

M
P  (5) 

  

Thus Rectangular QAM constellation is constructed by P x 2P rectangular block in each 

quadrant. According to the symmetry, only first quadrant of general M-RQAM constellation 

is shown in Fig.2.4. 
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Fig.2.4 First Quadrant of General M-RQAM  

 

It can be seen that optimal decision regions are square where dots represent signal symbols 

while the lines indicates decision boundaries. There are three types of symbols: inner, corner 

and edge. According to the symmetry, it is enough to consider the symbols in one quadrant in 

the Rectangular QAM constellation. The total number of these three type of symbols in       

M-RQAM are respectively given as 

 

 

 

 

2

2

2 2 12

4

2 8

k k

inner

corner

k

edge

N

N

N





    



 

 (6) 

Let d be the minimum Euclidean distance between the adjacent symbols in the constellation, 

and let No /2 denote the two sided power spectral density of zero mean AWGN (i.e. its 

variance
2

2

oN
  ). The exact SEP expressions will be written in terms of the Gaussian       

Q-Function 

 
2

2
1

( )
2

t

x

Q x e dt





   (7) 
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and well known integral function related to the alternate representation of one and two 

dimensional joint Gaussian Q-function [11]-[14]  

 

 

2

22sin

0

1
( , ) , 0

2

x

aQ x e d x



 




   (8) 

                             

In particular ( ) ( , ) 2 ( , 2)a aQ x Q x Q x   [12, equation 2] and 2( ) 2 ( , 4)aQ x Q x                  

[13 equation 12], both for 0x  . It should be noted that in addition to the advantage of having 

finite integration limits, the above function has the argument x contained in the integrand 

rather than in the integration limits and it also has an integrand that is exponential in the 

argument x, so that it can be evaluated with more accuracy. Moreover, the above function has 

some interesting implications with regard to simplifying the evaluation of performance 

results related to communication problems, for example, the SEP performance evaluation 

over fading channels, wherein the argument of the 
aQ  function is dependent on random 

system parameters and, thus, requires averaging over the statistics of these parameters. The 

argument x of equ.(7) and equ.(8) is expressed as a multiple of  

 

 
2 2o

d

N
  (9) 

which denotes the normalized least distance (in noise standard deviation) from a symbol to an 

adjacent symbol. Assuming that the signal points are equally probable and according to the 

symmetry of the constellation, it can be shown that the average symbol energy for 

Rectangular M-QAM constellation is given by  

 

 

   
2 2

22

1 1

2 1 2 14 10
2 1

2 2 6 8

P P

av

m n

d m d n d M
P P

M


 

                         
             

   (10)   
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Since symbol’s signal to noise ratio SNR can be written as   

 

 

2 2

2

10 10 10
1 1 1

8 8 8

6 2 3 3

av

o o o

M M M
d

d
SNR

N N N




      
        

         
 
 
 

 (11) 

   

Thus 
3

2 2
10

1
8

SNR DSNR D
M

   
 

 
 

where 
10

1.5 1 ,
8

M
D SNR 

 
   

 
 

The SEP expressions will be derived in term of  . 

 

2.3.1 Symbol Error Probability in AWGN Channel   

 

Due to independence of quadrature and inphase components the SEP expressions of            

M-RQAM can easily derived by using the same lines as in [7] therefore probability of correct 

symbol reception of any inner, corner and edge symbol can be written, respectively, as 

  

    

 

 

 

  

2 2

2 2

2

1 2 ( ) 1 4 ( ) 4 ( )

1 ( ) 1 2 ( ) ( )

1 ( ) 1 2 ( ) 1 3 ( ) 2 ( )

inner

corner

edge

P Q Q Q

P Q Q Q

P Q Q Q Q
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   

    

    

     

 (12) 

 

The exact average probability of correctly receiving symbol for M-ary Rectangular QAM is 

given therefore as 

1
( )correct inner inner corner corner edge edgeP N P N P N P

M
       

 

                                      

 215 64 7 8
1 1 ( ) 1 ( )

4 15 2
Q Q

M M
 

   
       

   
 (13) 
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Since 1SEP correctP P   thus average exact SEP for M-ary Rectangular QAM is given as 

 

 215 64 7 8
( ) 1 ( ) 1 ( )

4 15 2
SEPP Q Q

M M
  

   
      

   
 (14) 

   

Equ.(14) gives the exact SEP expression for M-RQAM. The results in Fig.2.5 through Fig 2.9 

confirms that the expression so derived is in complete agreement with the one find in 

literature using different approaches [8]-[10] and simulations. These figures from 5-9 shows 

the results for M = 8,32,128,512,2048. 

 

 

 

Fig 2.5 Symbol Error Probability of 8-RQAM over AWGN Channel 
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Fig 2.6 Symbol Error Probability of 32-RQAM over AWGN Channel 

 

Fig 2.7 Symbol Error Probability of 128-RQAM over AWGN Channel 

 

 

Fig 2.8 Symbol Error Probability of 512-RQAM over AWGN Channel 
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Fig 2.9 Symbol Error Probability of 2048-RQAM over AWGN Channel 

 

2.3.2 Symbols Error Probability in Fading Channels. 

 

The fading channels, including Rayleigh, Nakagami-m, Nakagami-q (Hoyt) and 

Nakagami-n (Rice) channels are considered. The probability density function (pdf) of the 

instantaneous received SNR γ in these channels can be written, respectively as [11] 

 

 2 2
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


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
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 


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 
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  
     

 (15) 

 

where  2

0sr E N  is the instantaneous SNR of the received symbol, r is the instantaneous 

fading amplitude of the channel, Es is the energy of each transmitted symbol, No is the one-

sided power spectral density of the zero mean AWGN,  E   is the average received 

SNR per symbol, and E{-} denotes the expectation operator. Io (-) is the modified Bessel 
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function of the first kind and zeroth order. The moment generator functions MGF 

 ( ) ss E e 



 corresponding to above pdfs are respectively given by [11] 
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 (16) 

 

Averaging the 
SEPP expression of AWGN over the fading distribution of the received SNR , 

induces the average SEP of arbitrary M-ary Rectangular QAM over fading channel as given 

by 

 

 
_

0

15 64 7 8
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where ( )p   denotes the pdf of   and  
0

( , ) 2 2 , ( )aI D Q D p d    
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   

The relationships ( ) 2 ( , 2)aQ x Q x  and 2( ) 2 ( , 4)aQ x Q x  for 0x   are applied to obtain 

_F SEPP .It is possible to re-express above integral in terms of MGF of   as given by 
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Substituting the MGF of equ.(16) in the equ.(18) , the corresponding expression of ( , )I D   

of equ.(19) for Rayleigh, Nakagami-m, Nakagami-q (Hoyt) and Nakagami-n (Rice) channels 

are    
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Using the above four integral expressions, the average SEP equ.(17) over fading channels can 

be conveniently evaluated through numerical integration since these formulae are single 

integrals with finite limits and an integrand composed of elementary (exponential, 

trigonometric, and/or power) functions. The results in Fig.2.10-Fig.2.14 for 

M=8,32,128,512,2048 show that these expression are in an excellent agreement with one 

found in literature [8]-[10] derived by using different approaches and simulation. For fading 

channels, the Rayleigh channel is chosen as a special case since the results of the other type 

channels are similar to that of Rayleigh channel.    

 

Fig.2.10 Symbol Error Probability of 8-RQAM over Rayleigh Channel 
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Fig.2.11 Symbol Error Probability of 32-RQAM over Rayleigh Channel 

 

 

Fig.2.12 Symbol Error Probability of 128-RQAM over Rayleigh Channel 

 

Fig.2.13 Symbol Error Probability of 512-RQAM over Rayleigh Channel 
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Fig.2.14 Symbol Error Probability of 2048-RQAM over Rayleigh Channel 

 

Table 2.3 summarizes the expressions obtain for the M-RQAM 

Parameters Expressions 

Minimum Distance d 

 
6

10 1
8

avd
M





 

Average Energy 
av  2 10

1
6 8

av

d M


 
  

   

Energy per dimension 
av  2 10

1
12 8

av

d M


 
  

   

Bit per dimension k  

   

2 2

1 8
log 12 1

2 10

avk
d

  
   

  
 

Symbol error probability 
SEPP  215 64 7 8

( ) 1 1
4 15 2 2 2

SEP

d d
P Q Q

M M


 

       
         

       
 

Table 2.3 Mathematical Expressions for M-RQAM 
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2.4 Equal Energy Case: 

The problem associated with the M-RQAM is that it requires more average energy 

than the M-XQAM however this problem can be overcome by reducing the distance between 

the symbols in the constellation from 2 to 1.75, thus making the average energy almost the 

same of M-RQAM and M-XQAM, e.g. 32-XQAM with d = 2 requires average energy of 20 

while 32-RQAM with d = 1.75 requires 19.90625 which is almost same as 32-XQAM. It is 

important to note here that the reducing the d in M-RQAM will not affect its SEP this is 

because ( 2)10^ ( 10)av SNR    therefore ( 2)10^ ( 10)avd SNR    and by 

equ.(10) increasing d will increase 
av  and vice versa thereby keeping   approximately the 

same. Fig.2.15-Fig.2.16 confirms this for M=8,32,128,512,2048 for AWGN and Rayleigh 

Fading channels respectively. 

 

 

Fig.2.15     Symbol Error Probability of M-RQAM for Equal Energy over AWGN Channel  
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Fig.2.16      Symbol Error Probability of M-RQAM for Equal Energy over Rayleigh Channel 

 

 

 

 

 

 

 

 

 

 

 



21 

 

Chapter 3   BLIND EQUALIZATION 

 

In communication, inter-symbol interference (ISI) is a form of distortion of a signal in 

which one symbol interferes with subsequent symbols. ISI degrades the communication 

system performance as the previous symbols have similar effect as noise, thus making the 

communication less reliable. ISI is caused by multipath propagation a channel causing 

successive symbols to "blur" together. Channel equalization is the process of reducing 

amplitude, frequency and phase distortion in a radio channel with the intent of improving 

transmission performance. In digital communication channel equalization is used to minimize 

the effect of ISI. We need to know channel statistics and initialize and adjust equalizer 

coefficients to set a channel. For unknown and time varying channels adaptive algorithms are 

used. For many applications a training sequence of known data is used to perform 

initialization as channel settings are determined on the basis of feedback of training sequence. 

Such equalization is called Training Equalization. A cost function is formed based on the 

output of the equalizer and statistical characteristics of the transmitted data and this cost 

unction is minimized with the help of stochastic gradient algorithm [15]. Disadvantage of this 

process is that sending sequence data occupies bandwidth and hence reduces channel 

capacity. Adaptive/Blind channel equalization without a training sequence is known as blind 

equalization. The major advantage of such a technique is that no training sequence is required 

to start or restart the system when the communication unexpectedly breaks down. The first 

blind equalization was presented in 1975 by Sato [16]. Since then large number of these blind 

equalization algorithms have proposed. Out of these, Multi Modulus Algorithm (MMA), 

Square Contour Algorithm (SCA), Generalized Cross Contour Algorithm (GCrCA) and 

Constant Modulus Algorithm (CMA) are notable. 
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3.1 System Model 

The base band equivalent system model has been considered. The source at the 

transmitter generates independent and identically distributed (i.i.d) bits which are mapped to 

the constellation symbols. The symbols are inserted with noise and then passed through the 

channel to form the received signal. This received signal is then used as an input to the 

equalizer to obtain the channel taps. 

3.2 Channel Model 

The channel is like a linear time varying filter. The channel considered here is 

baseband equivalent [17] with complex impulse response. This impulse response is 

formulated as 

       
1

,
L

k k

k

h t t t t   


   (3.1) 

Where  k t are the complex amplitudes and  k t are the multi paths. L is the total number 

of the multi paths of the channel. The channel impulse response is characterized by its [18] 

maximum excess delay i.e. 
max  and coherence time.  

max  determines the total number of 

taps of the sampled channel impulse response and the coherence bandwidth of the channel. 

The coherence bandwidth of the channel is the frequency range over which the frequency 

response of the channel I highly correlated. The more the 
max , lesser will be the coherence 

bandwidth and more distortion will the channel cause in the frequency spectrum of the 

transmitted signal. These multi paths as mentioned above introduce the ISI. The delayed 

impulses of the channel impulse response create multiple copies of the transmitted signal thus 

causing sum of the several delayed images of the transmitted signal to be received at the 

receiver. The mobility of the receiver or transmitter causes the values of  k t  to be changed 

with time. The counterpart of the coherence bandwidth is coherence time. It’s the time for 

which the impulse response of the channel remains correlated. More the mobility of the user, 

lesser will be the coherence time. It is important to note that in small fading [5gul] the values 

of  k t changes much faster than the position of the multi paths. Since blind equalization is 

used for static terminals, the channel impulse response remains constant over the time of 
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interest thus the coherence time of the channel is very large. If the channel is constant over 

the transmission time, the sampled channel impulse response I given as 

    
1

,
L

k k

k

h t t   


   (3.2) 

Which in the vector notation can be written as      [ 0 , 1 ,..., 1 ]Th h h h L  . It is evident that 

static impulse response is the function of multi path only.  Different channel models based on 

this model exists in literature e.g. voice Band Communication Channel [4gul], outdoor 

wireless channels “chan 1” – “chan 15 ” at http://spib.rice.edu/spib/microwave.html. The 

complex impulse response of voice band channel is shown in Fig 3.1 

 

Fig.3.1 Impulse Response of the voice band channel  

3.3 Equalizer model and Square contour Algorithm (SCA) 

Consider the  baseband representation for digital data transmission in Fig.3.2, where 

s(n) are the independently identically distributed (i.i.d.) transmitted symbols, v(n) is the 

additive white Gaussian noise (AWGN), x(n) are the equalizer’s inputs and a(n) are the 

estimated outputs at the decision device. The equalizer’s N-tap weight vector and input vector 

are defined as W(n)  = [w0(n), w1(n) ……., wN-1(n)]
T
 and X(n) = [x(n), x(n-1), ……,x(n-

N+1)]
T
 respectively. We define y(n) = W

T
(n)X(n) as the equalizer output. The channel h(n) is 

possibly a non minimum phase linear time invariant filter.  

http://spib.rice.edu/spib/microwave.html
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Fig. 3.2. Simplified baseband communication system 

The objective is to achieve an estimate of s(n) using y(n) without using a training  signal 

available at the receiver. To achieve the aforementioned objective, the SCA proposed by 

Thaiupathump and Kassam [19] combines the benefits of the well known reduced 

constellation algorithm (RCA) and the constant modulus algorithm (CMA). The SCA 

algorithm combines the reliable convergence benefit of CMA and the phase recovery feature 

of RCA.  The generalized SCA cost function is: 

 2[((| ( ) ( ) | | ( ) ( ) |) ( ) ) ]p p

SCA R I R I SCAJ E y n y n y n y n R      (3.3) 

                 

where  yR(n) and yI(n) are the real and imaginary components ot the equalizer y(n) . RSCA is 

the constellation dependent dispersion constant, and p is the positive integer. The higher 

values of p enhance the algorithm at the cost of increased complexity. The corresponding tap 

update equation is obtained by differentiating the mean cost function in equ.3.3 with respect 

to equalizer tap weight w and then approximating the expectation with instantaneous values. 

 *( 1) ( ) ( ) ( )SCAW n W n e n X n    (3.4) 

where W(n+1) and W(n) are the vectors comprising the next and current tap updates, 

respectively. X(n) is the vector of equalizer input samples, * denotes complex conjugate and 

eSCA(n) is the tap update error given by  

1((| ( ) ( ) | | ( ) ( ) |) ( ) )(| ( ) ( ) | | ( ) ( ) |)p p p

SCA R I R I SCA R I R Ie y n y n y n y n R y n y n y n y n          

         x (sgn( ( ) ( ))(1 ) sgn( ( ) ( ))(1 ))R I R Iy n y n j y n y n j                                             (3.5) 
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where sgn is the real signum function. For p = 1, the SCA error term in equ. (3.5) can be 

reiterated in the following form: 

 

((| ( ) ( ) | | ( ) ( ) |) )(sgn( ( ) ( ))(1 ) sgn( ( ) ( ))(1 ))SCA R I R I SCA R I R Ie y n y n y n y n R y n y n j y n y n j         

                                                                                                                                        (3.6) 

Dispersion constants in blind equalization algorithm play a critical part in adjusting the gain 

of the equalizer such that the statistics of the equalizer output is matched with the source 

constellation. The constant RSCA is calculated by assuming the perfect equalization, i.e, y(n)  

= s(n) and by setting the gradient 
w SCAJ  to zero [19]. 

 
'

'

[(| ( ) ( ) | | ( ) ( ) |) ]

[ ]

R I R I
SCA

E s n s n s n s n R
R

E R

  
  (3.7) 

Where ' (| ( ) ( ) | | ( ) ( ) |)(sgn(| ( ) ( ) |) sgn(| ( ) ( ) |)R I R I R I R IR s n s n s n s n s n s n s n s n        

                    *(sgn(| ( ) ( ) |) sgn(| ( ) ( ) |))) ( )R I R Ij s n s n s n s n s n                                          (3.8)  

where sR(n) and sI(n) are the real and imaginary components of source alphabet s(n). At 

perfect equalization, SCA forces equalizer output to settle on a single on a single square 

contour of distance RSCA /2 (2.95, 6.38 and 12.98 for 16, 64 and 256-QAM, respectively) 

from the origin. The zero-error contour at distance 2.95 from the origin for 16-QAM is shown 

in Fig.3.3. It has been revealed through simulation results in [19] that for 16-QAM signal 

constellation, the performance of SCA is better than that of its parent algorithms i.e. RCA and 

CMA. Moreover, like MMA , SCA  is capable of recovering and correcting the phase offset 

due to square modulus, but SCA is outperformed by MMA is terms of convergence speed and 

constellation eye opening. MMA is discussed in next section. 

 

Fig. 3.3. Zero-error contour for SCA for 16-SQAM 
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3.4 Multi Modulus Algorithm (MMA) 

The performance of RCA was improved by its generalization by Wesolowski [20], Oh 

et al [21] and Yang et al [22] and was termed as modified-CMA. The cost function of 

MCMA is given as 

 2 21
[(| ( ) | ) (| ( ) | ) ]

2

p p p p

MCMA R R I IJ E y n R y n R
p

     (3.9) 

A member of MCMA for p = 2 is popular as multi modulus algorithm (MMA) [20],[23]. The 

cost function of MMA is: 

 
2 2 2 2 2 21

[(| ( ) | ) (| ( ) | ) ]
4

MMA R R I IJ E y n R y n R     (3.10) 

The corresponding MMA weight tap updating equation is: 

 2 2 2 2 *( 1) ( ) [ ( )( ( ) ) ( )( ( ) )] ( )R R R I I IW n W n y n y n R jy n y n R x n       (3.11) 

  

where 
4

2

2

[ ( )]

[ ( )]

R
R

R

E s n
R

E s n
  and 

4
2

2

[ ( )]

[ ( )]

I
I

I

E s n
R

E s n
  are dispersion constants. The corresponding 

zero-error points of MMA for 32-QAM is shown in Fig 3.4.     

 

Fig.3.4 Zero-error Points for MMA for 32-XQAM  

The MMA algorithm is more suitable for square QAM. For cross QAM blind equalization 

algorithms have been obtained by tailoring RCA and MMA. In [23], [24] MMA is tailored to 

make it suitable for cross QAM as follows: 

 2 2 2 2 *( 1) ( ) [ ( )( ( ) ) ( )( ( ) )] ( )R R R I I IW n W n y n y n R jy n y n R x n       (3.12) 

where 
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2 2

2 21 1

2 2

2 2

,| ( ) | ,| ( ) |
{ , , {

,| ( ) | ,| ( ) |

R I
R I

R I

R y n k R y n k
R and R

R y n k R y n k

 
 

 
 (3.13) 

       

The method for the evaluation of 2

1R  and 2

2R  is described in [23], [24]. In spite of its 

improved performance over equ.(3.11). There is problem associated with selecting the 

suitable value of threshold k in Eq.(A). The extensive simulation study shows that k value 

depends on size of cross QAM signal, ISI level of channel, phase-offset of channel and 

additive and convolutive noise. It is obvious that expect for the first factor remaining are not 

known a priori. Thus, it is not trivial to use cross QAM tailored MMA [21],[22]. The MMA 

when used for rectangular QAM however perform well [5] because it is less attracted to 

saddle points (thus increasing convergence speed) than the MMA that uses cross QAM 

because former has fewer saddle points than the latter. 

3.5. Generalized Cross Contour Algorithm (GCrCA) 

In this section we will be discussing another blind equalization algorithm tailored for 

cross QAM known as General Cross Contour Algorithm (GCrCA) Shafayat Abrar [6]. In the 

algorithm the author tailored the Generalized Square Contour Algorithm (GSCA) to have the 

cost function of GCrCA given as: 

,

1
[((| ( ) ( ) | | ( ) ( ) | | ( ) ( ) |

2
GCrCA k R I R I R IJ E ky n y n ky n y n y n ky n

p
       

 2| ( ) ( ) | | ( ) ( ) | | ( ) ( ) |) 2 ) ]p p p

R I R I R Iy n ky n y n y n y n y n R        (3.14) 

The corresponding tap weight update equation for this algorithm is obtained by 

differentiating the cost function (3.14) with respect to w and approximated the expectation 

with the instantaneous value. The equalizer tap weight vector is given as: 

( 1) ( ) {(| | | | | | | | | | | |) 2 }
Cr

p p pW n W n A B C D E F R          

1.(| | | | | | | | | | | |) { sgn( ) sgn( ) sgn( ) sgn( )pA B C D E F k A k B D E         

 *sgn( ) (sgn( ) sgn( ) sgn( ) sgn( ) sgn( ) sgn( ))} ( )F j A B k C k D E F x n        (3.15) 

where { ( ) ( )}, { ( ) ( )}, { ( ) ( )}, { ( ) ( )},R I R I R I R IA ky n y n B ky n y n C y n ky n D y n ky n         
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{ ( ) ( )}, , { ( ) ( )}R I R IE y n y n and F y n y n    , p

CrR  and k are constellation dependent 

parameter given as 

 
21 [(| | | | | | | | | | | |) ]

2 [(| | | | | | | | | | | |) ]

p
p

Cr p p

E A B C D E F
R

E A B C D E F

    


    
 (3.16) 

where  { ( ) ( )}, { ( ) ( )}, { ( ) ( )}, { ( ) ( )},R I R I R I R IA ks n s n B ks n s n C s n ks n D s n ks n         

 { ( ) ( )}, , { ( ) ( )}R I R IE s n s n and F s n s n     and for p =2 the value of k, kopt is given as 

 
6 2 4 4 2

1 2 3

2 2

4

[ ] [ ] [ ]
arg min

[ ]

R R R
opt

k
R

G E a G R E a G R E a
k

G E a R

  
  

 
 (3.17) 

where 7 5 3

1 2 34( 1), 8( 1), 4( 1)G k k G k k G k k           and 3

4 3( 1)G k k   . 

In spite of its improved performance over its parent algorithm, the GCrCA work only with 

Cross QAM and is not flexible for square QAM thus hindering the ease of implementation, 

secondly the value of kopt is difficult to obtain as there is no close form equation to do so. The 

equ.(3.17) for kopt needs to minimize the arguments on all possible values of k i. 

Thus a new blind equalization algorithm is required which will provide ease of 

implementation for both non square (rectangular) QAM for odd bits and Square QAM for 

even bits. In next chapter Rectangular Contour Algorithm is proposed in this regard. The 

simulation results in chapter 4 confirm that the proposed algorithm outperform the above 

mentioned algorithms in term of mean square error (MSE) and residual ISI.  
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Chapter 4   RECTANGULAR CONTOUR ALGORITHM 

 

 The main advantage of using Rectangular QAM is that it is better able to recover the 

phase rotation introduced by channels than can Square and Cross QAM constellations, 

accordingly any phase error within 180
o
 can be correctly detected thus giving advantage in 

blind equalization [5]. Secondly the implementation and calculation of the average symbol 

error probability (SEP) of Cross QAM are more complicated compared to that of Square and 

Rectangular QAMs since the inphase and quadrature components of Cross-QAMs cannot be 

demodulated independently. So, the calculation of SEP of Cross QAM cannot be reduced to a 

one dimensional problem by using independence of the inphase and quadrature components 

as can be done for Square and Cross QAMs [25]. Third the Gray Coding can be done more 

easily when using Rectangular QAM then the Cross QAM of same order which can provide 

an ease in improving the performance of Personal Area Network (PAN) systems [26] where 

this gray coding is required for QAM with odd bits. The reason that that the Rectangular 

QAM is being neglected so far is because it requires more energy to transmit symbols 

however this problem can be overcome by reducing distance between two adjacent points in 

the rectangular constellation to 1.75 instead of 2 so that the average transmitted power for 

both cross and rectangular become almost identical and its SEP remains same as shown in 

chapter 2. It is also shown in section 4.3 that even with equal transmitted power blind 

equalizers using Rectangular constellation outperforms the equalizers using cross QAM in 

terms of MSE and ISI.  

   

4.1 Rectangular Contour Algorithm (RRECTCA) 

The SCA discussed in chapter 3 can be modified to achieve better results by further  

reducing the mismatch between the cost function and the transmitted constellation 

consequently accomplishing fast convergence rate for Rectangular QAM for odd k. From the 

most popular constant modulus algorithm (CMA) we have 

 2 2 2[| ( ( ) | ) ]CMA R CMAJ E y n R   (4.1) 

And its zero-error contour is shown in Fig.4.1. It is clear that minimizing the CMA cost 

function in equ.(4.1) is equivalent to minimize the dispersion of the equalizer output around 
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circle of radius RCMA similarly minimizing SCA cost function in equation (3.3) of chapter 3 is 

equivalent to minimize the dispersion of the equalizer output around square of side RSCA /2 

 

Fig.4.1. Zero-error contour for CMA for 64-SQAM  

For a circle of radius RCMA , we have the relationship as 

 | ( ) | CMAy n R  (4.2) 

                                         

For square we have the relationship 

 max[| ( ) |,| ( ) |] 'R Iy n y n R  (4.3) 

                     

which may be rewritten as 

max[| ( ) |,| ( ) |] | ( ) ( ) | | ( ) ( ) | 2R I R I R Iy n y n y n y n y n y n         

         | ( ) ( ) | | ( ) ( ) | 2 'R I R Iy n y n y n y n R      (4.4) 

                          

For simplicity of notation, let RSCA  = 2R’ 

 max[| ( ) |,| ( ) |] | ( ) ( ) | | ( ) ( ) |R I R I R I SCAy n y n y n y n y n y n R      (4.5) 

      

For rectangle, we have the relationship   

 
| ( ) | | ( ) |

max ,
| | | |

R Iy n y n
R

a b

 
 

 
 (4.6) 
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    which may be rewritten as 

( ) ( ) ( ) ( )
| | | |

| ( ) | | ( ) |
max ,

| | | | 2

R I R I

R I

y n y n y n y n

y n y n a b a b

a b

  
 

 
 

 

 
| ( ) ( ) | | ( ) ( ) |

2 | |

R I R Iby n ay n by n ay n
R

ab

  
   (4.7) 

         For simplicity of notation, let RRECT  = 2R then 

 
| ( ) | | ( ) |

max , | ( ) ( ) | | ( ) ( ) | | |
| | | |

R I
R I R I RECT

y n y n
by n ay n by n ay n ab R

a b

 
     

 
 (4.8) 

   

We then obtain the cost function of the rectangular contour algorithm as 

 2[(| ( ) ( ) | | ( ) ( ) | | | ) ]RECT R I R I RECTJ E by n ay n by n ay n ab R      (4.9) 

with RRECT a positive real constant which will be discussed shortly in the section, with a and 

b also are Rectangular QAM constellation dependent parameters defining spread along in-

phase and quadrature axis e.g. for 32-QAM in Fig.4.2  a = 7 and b = 3. The zero-error 

contour of the rectangular contour algorithm is shown in Fig.4.2. Since the cost function 

employs both modulus and phase of the equalizer output, carrier phase recovery can also be 

accomplished along with the blind equalization process. 

 

Fig.4.2. Zero-error contour for RRECTCA with a = 7, b = 3 for 32-RQAM  

To obtain the tap update equation for the proposed algorithm, we differentiate the mean cost 

function in equ. (4.9) with respect to equalizer tap weight w.  
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[(| ( ) ( ) | | ( ) ( ) | | | )w RECT R I R I RECTJ E by n ay n by n ay n ab R     
 

.{ sgn[ ( ) ( )] sgn[ ( ) ( )]R I R Ib by n ay n b by n ay n  
 

   *( sgn[ ( ) ( )] sgn[ ( ) ( )])} ( )]R I R Ij a by n ay n a by n ay n x n   
            

(4.10) 

Approximating the expectation with the instantaneous value yields 

(| ( ) ( ) | | ( ) ( ) | | | )w RECT R I R I RECTJ by n ay n by n ay n ab R       

         .{ sgn[ ( ) ( )]) sgn[ ( ) ( )]R I R Ib by n ay n b ay n ay n    

 *( sgn[ ( ) ( )] sgn[ ( ) ( )])}. ( )R I R Ij a by n ay n a by n ay n x n     (4.11) 

    The equalizer tap weight vector is adapted according to 

( 1) ( ) {(| ( ) ( ) | | ( ) ( ) | | | )R I R I RECTw n w n by n ay n by n ay n ab R        

.( sgn[ ( ) ( )] sgn[ ( ) ( )]R I R Ib by n ay n b by n ay n    

 *( sgn[ ( ) ( )]) sgn[ ( ) ( )]))}. ( )R I R Ij a by n ay n a by n ay n x n     (4.12) 

     

The constant RRECT can now be evaluated by assuming perfect equalization, i.e. y(n) = s(n) 

and by setting the gradient 
w RECTJ  to zero 

[(| ( ) ( ) | | ( ) ( ) | | | )R I R I RECTE bs n as n bs n as n ab R     

.{ sgn[ ( ) ( )] sgn[ ( ) ( )]R I R Ib bs n as n b bs n as n    

 *( sgn[ ( ) ( )] sgn[ ( ) ( )])}. ( )] 0R I R Ij a bs n as n a bs n as n x n      (4.13) 

    

Solving for RRECT we have 

 
[(| ( ) ( ) | | ( ) ( ) |). ]

| | [ ]

o

R I R I
RECT o

E bs n as n bs n as n R
R

ab E R

  
  (4.14) 

        where 
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{ sgn[ ( ) ( )] sgn[ ( ) ( )]o

R I R IR b bs n as n b bs n as n     

 *( sgn[ ( ) ( )] sgn[ ( ) ( )])}. ( )R I R Ij a bs n as n a bs n as n s n     (4.15) 

       

It should be worth noting that just putting a = 1 and b = 1 the RRECTCA reduces to SCA thus 

providing ease of implementation for both odd and even bits QAM signals.  

4.2 Generalized Rectangular Contour Algorithm (GRRECTCA) 

The section provides a family of blind equalization algorithms that has a rectangular zero-error 

contour. The Rectangular Contour Algorithm introduced in the previous section is generalized by 

using additional parameter p in the same way as defined for the Square contour algorithm family 

in [5]. The mean cost function of the generalized Rectangular Contour Algorithm is given by 

 2[((| ( ) ( ) | | ( ) ( ) |) (| | ) ) ]p p

GRECT R I R I GRECTJ E by n ay n by n ay n ab R      (4.16) 

where p is a positive integer. In practice, p will generally be limited to 1 and 2, thus for p = 1 we 

obtain cost function of RRECTCA defined in equ (4.9) and for p = 2 it is given by 

 
2 2 2

, 2 [((| ( ) ( ) | | ( ) ( ) |) (| | ) ) ]GRECT p R I R I GRECTJ E by n ay n by n ay n ab R       (4.17) 

To obtain the update equation for the Generalized Rectangular Contour Algorithm, 

differentiate the cost function in equ (4.16) with respect to w and approximate the expectation 

with the instantaneous values yields  

((| ( ) ( ) | | ( ) ( ) |) (| | ) )p p

w GRECT R I R I GRECTJ by n ay n by n ay n ab R       

                                         1(| ( ) ( ) | | ( ) ( ) |) p

R I R Iby n ay n by n ay n     

.{ sgn[ ( ) ( )]) sgn[ ( ) ( )]R I R Ib by n ay n b ay n ay n    

 *( sgn[ ( ) ( )] sgn[ ( ) ( )])}. ( )R I R Ij a by n ay n a by n ay n x n     (4.18) 

The constant p

GRECTR can be evaluated by assuming perfect equalization, i.e. y(n) = s(n) and 

setting the gradient 
w GRECTJ  to zero. Then, solving for p

GRECTR  

 
[(| ( ) ( ) | | ( ) ( ) |) . '']

| | [ '']

p
p R I R I

GRECT p

E bs n as n bs n as n R
R

ab E R

  
  (4.19) 
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where 

1'' (| ( ) ( ) | | ( ) ( ) |) p

R I R IR bs n as n bs n as n      

.{ sgn[ ( ) ( )] sgn[ ( ) ( )]R I R Ib bs n as n b bs n as n    

 *( sgn[ ( ) ( )] sgn[ ( ) ( )])}. ( )R I R Ij a bs n as n a bs n as n s n     (4.20) 

 Table 1 shows values of constants RGRECT of GRRECTCA (p = 1,2) along with parameter a 

and b for Rectangular QAM. 

 8RQAM (4x2) 32RQAM (8x4) 128RQAM (16x8) 

RGRECT (p=1) 2 1.7927 1.6445 

RGRECT (p=2) 2 1.9122 1.7827 

a 3 7 15 

b 1 3 7 

 

Table 4.1         Values of  RGRECT of GRRECTCA (p = 1,2) & parameter a and b 

 

4.3 Steady-state error analysis for the Rectangular Contour Algorithm 

Now we will be studying the steady-state MSE performance of Rectangular contour 

algorithm in the noise free case by following the approach proposed in [27]-[28]. For an 

adaptive algorithm of the form  

 *( 1) ( ) ( ) ( )RECTw n w n e n x n    (4.21) 

  

Let ( )w n be the difference between the current equalizer w(n) and the optimum equalizer 

weight wopt. The condition 

 
   2 2|| ( 1) || || ( ) ||E w n E w n   

 (4.22) 
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Holds in steady state ( n ). By defining a priori estimation error ( ) ( ) ( )T

ae n w n x n  , for 

the adaptive algorithm, we have in general 

 
2

2

2 2

| ( ) | 1
| ( ) || ( ) || ( ) |

|| ( ) || || ( ) ||

a
a

e n
E E e n x n e n

x n x n


   
    

  
 (4.23) 

 For simplification in the calculations we drop the time index n thus equ (4.23) becomes 

    
2 2

* * 2 2 2

2 2

| | | |
|| || | |

|| || || ||

a a
a a

e e
E E E e e e e E x e

x x
 

   
      

   
 (4.24) 

 We assume that  

 

 

* *

1

2 2 2

2

,

|| || | | .

a aQ E e e e e

Q E x e





 


 

Putting values of 
1Q and 

2Q  the equ (4.24) becomes 

 
2 2

1 22 2

| | | |

|| || || ||

a ae e
E E Q Q

x x

   
     

   
 (4.25) 

  

Clearly the terms 
1Q and 

2Q  are identical, so an appropriate expression for steady-state MSE 

 2| | .aE e following are the assumptions [27] made in the analysis of the steady-state MSE 

for RRECTCA: 

 The step size parameter  is sufficiently small and the value of 2| |ae  is reasonably 

low at steady-state 

 The transmitted symbols s(n) and the estimated error ( )ae n are independent in the 

steady-state and  ( ) ( ) 0aE s n e n  since s(n) has zero mean. 

 The scaled regressor energy is independent of y(n) and ( )ae n in steady state. 

 

 

 

The error function of RRECTCA with elimination of time index is given as: 
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             2 2 2 2 2 24 4 (| | 2 ) 4 4 (| | 2 ) .RECT R R RECT I I RECTe by b y ab R A j ay a y ab R B              (4.26) 

   Where 

 

 

sgn( )
sgn( ) sgn( ) .

2

sgn( )
sgn( ) sgn( ) .

2

R
R I R I

I
R I R I

by
A by ay by ay

ay
B by ay by ay

   

   

 

After some simplification and replacing 2

RECTR  with R we have: 

                   2 2 2 2 2 216 | | 16 | | .RECT R R I Ie by b y ab R A j ay a y ab R B                      (4.27) 

where a and b are constellation dependent parameters. We can replace y by s + 
ae , where s is 

transmitted symbol and 
ae  is a priori estimation error. Similarly the real and imaginary 

components of equalizer outputs 
Ry  can be replaced with 

R aRs e and 
Iy  with 

I aIs e . 

Consequently, for 
R Ie e je  thus equ (4.22) can be decomposed as 

2 2 2

2 2 2

16 ( )( ( ) | | ) .

16 ( )( ( ) | | ) .

R R aR R aR

I I aI I aI

e b s e b s e ab R A

e a s e a s e ab R B

   

   
 

Computing 
1Q , we obtain 

       
  

  

3 3 2 2 3 2 2 3 3 3 4

1

3 3 2 2 3 2 2 3 3 3 4

32 ( | | ) (3 | | ) 3

....... 32 ( | | ) (3 | | ) 3 .

aR R R aR R R aR aR

aI I I aI I I aI aI

Q E e b s bs ab R e b s b ab R b s e b e A

E e a s as ab R e a s a ab R a s e a e B





     

     
 (4.28) 

Using the assumed independence of s and 
ae  and neglecting  3 42 aRb E e  and  3 42 aIa E e for 

small   and small 2

aRe and 2

aIe  we obtain the approximation  

            
 2 3 2 2 2 3 2 2

1 2 16 (3 | | ) 16 (3 | | )aR R aI IQ E e b s b ab R A e a s a ab R B   
                      (4.29)  

Letting    2 2 ,aR aIE e E e equ (4.29) can be written as 

 

               
   3 2 2 3 2 2 2

1 2 16(3 | | ) 16(3 | | )R I aRQ E b s b ab R A a s a ab R B E e   
                 (4.30) 

Now for obtaining 
2Q we assumed that the statistics of 

Rs  and 
Is are the same. Using the 

assumed independence of 2 2|| ||x  and y(n) and ignoring the terms with 

     4 4 6, ,aR aI aRE e E e E e and  6

aIE e , the value of 
2Q  can be computed as 
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      2 6 6 4 2 4 2 4 2 2 6 6 4 2 4 2 4 2 2 2

2 256 2 | | | | 2 | | | | || ||R R R I I IQ E b s b ab Rs b ab R s A a s a ab Rs a ab R s B E x     

               2 2 6 4 4 2 2 2 4 2 2256 15 12 | | | | || ||aR R RE e b s b ab Rs b ab R E x    

                2 2 6 4 4 2 2 2 4 2 2256 15 12 | | | | || ||aR I IE e a s a ab Rs a ab R E x               (4.31) 

Letting    2 2

aR aIE e E e ,we get further approximation of equ.(4.31) 

      2 6 6 4 2 4 2 4 2 2 6 6 4 2 4 2 4 2 2 2

2 256 2 | | | | 2 | | | | || ||R R R I I IQ E b s b ab Rs b ab R s A a s a ab Rs a ab R s B E x     

         

        2 6 4 4 2 2 2 4 2 6 4 4 2 2 2 4 2 2 2256 15 12 | | | | 15 12 | | | | || ||R R I I aRE b s b ab Rs b ab R a s a ab Rs a ab R E e E x     

                                                                                                                                            (4.32) 

since 
1 2Q Q and 2

RECTR R  the steady state MSE for the Rectangular Contour Algorithm can 

be approximated as 

 2| |a RECTE e   

    
        

6 6 4 2 4 2 4 2 2 6 6 4 2 4 2 4 2 2

3 2 2 3 2 2 2 6 4 4 2 2 2 4 2 6 4 4 2 2 2 4 2

256 2 | | | | 2 | | | |

16(3 | | ) 16(3 | | ) / || || 128 15 12 | | | | 15 12 | | | |

R R R I I I

R I R R I I

E b s b ab Rs b ab R s A a s a ab Rs a ab R s B

E b s b ab R A a s a ab R B E x E b s b ab Rs b ab R a s a ab Rs a ab R

    

        

                                                                                                                                          (4.33) 

Fig.4.3 shows  the Steady State MSE and simulation for different values of µ. 

 

Fig.4.3 Steady-State Mean Square Error of RRECTCA  
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4.4 Simulation Results and Discussions 

The computer simulation is provided in this section. We use the 32-RQAM and 128-RQAM 

signal constellations with a minimum distance between symbols of 2 and then to have equal 

transmitted power as 32-XQAM and 128-XQAM, we use 32-RQAM and 128-RQAM with 

minimum distance between symbols of 1.75 thus giving 19.9 and 81.66 of energies respectively 

which are almost identical to energies of 32-XQAM and 128-XQAM, 20 and 82 respectively. A 

7-tap equalizer is initialized with value 1 for the centre tap, the other being zero. A typical voice-

band communication channel is used. Fig 4.4 represents the steady state performance of 

RRECTCA, SCA, MMA and GCrCA for 32-QAM signal constellation. For fair comparison 

GCrCA, SCA and MMA are simulated with 32-XQAM while RRECTCA with 32-RQAM. MMA 

is also simulated with 32-RQAM for the improved performance over MMA using 32-XQAM. 

The noise power is adjusted such that it gives rise to a channel signal-to-noise ratio (SNR) of 

30dB. The adaptive gain for RRECTCA is taken as µRECT= 2.5e-9 , for MMA with32-RQAM 

µMMARQAM = 2e-6, for GCrCA it is taken to be µGCrCA = 3.4e-6, for MMA with 32-XQAM, 

µMMAXQAM = 6e-6 to achieve the same MSE floor level of approximately  -10dB. However the 

SCA is not able to achieve the same error floor in current environment thus for SCA µSCA = 0.4e-

6 so that it can be as much close to error floor of -10dB as possible.  It is evident from the Fig 4.4 

that the RRECTCA is achieving faster convergence than those of MMA with 32-XQAM and 32-

RQAM, GCrCA and SCA for same steady-state performance. The experimental values are 

generated as an average over 40 trials. 

 

Fig.4.4 MSE traces for 32-XQAM and 32-RQAM (2 distance b/w symbols) 
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Fig.4.5 MSE traces for 32-XQAM and 32-RQAM (1.75 distance b/w symbols) 

Fig 4.5 shows the steady-state performance of above mentioned blind equalization algorithms 

under the same environment as mentioned above but with 32-RQAM having minimum distance 

of 1.75 between adjacent symbols to have equal energy as 32-XQAM. Again we use 32-

XQAM with minimum distance of 2 between symbols for GCrCA, SCA and MMA while 32-

RQAM with 1.75 as distance for MMA and RRECTCA. The adaptive gain for RRECTCA is taken 

as µRECT= 10e-9, for MMA with 32-RQAM µMMARQAM = 6e-6 and MMA with 32-XQAM 

µMMAXQAM = 6e-6 while for GCrCA it is taken to be µGCrCA =3e-6 to achieve the same MSE 

floor level of approximately -10dB. µSCA = 0.4e-6 again for the above stated reason for SCA.  It 

is again evident from Fig 4.5 that RRECTCA outperforms MMA (32-RQAM & 32-XQAM), 

SCA and GCrCA in terms of convergence while keeping the MSE floor same as approximately   

-10dB.  

The performance of GCrCA and MMA  with 32-XQAM and MMA, RRECTCA with 32-R QAM 

with minimum distance between symbols of 2 and 1.75 in Fig 4.6 and Fig 4.7 respectively in 

terms of suppression of residual inter symbol interference ISI is evaluated in computer 

simulations. SCA is not considered because of it undesirable performance in the current 

environment. The residual ISI at the output of the equalizer and SNR at the input of the 

equalizer are calculated by Eqs .(38) and (39) in [14]. The noise power is adjusted such that it 

gives rise to a channel signal-to-noise ratio (SNR) of 30dB. The adaptive gain for RRECTCA is 

taken as µRECT= 0.5e-9, for MMA with RQAM µMMARQAM = 2e-6, for GCrCA it is taken to be 
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µGCrCA = 3e-6 and for MMA with XQAM µMMAXQAM = 5e-6 so that all the equalizers get 

approximately same convergence rate. Fig 4.6 depicts the residual ISI traces for all the schemes 

in which the superior behavior of RRECTCA blind equalizer is evident. Fig 4.7 shows the same 

residual ISI plot but for 32-RQAM with minimum of 1.75 distance between symbols for MMA 

and RRECTCA and 32-XQAM for GCrCA and MMA with adaptive gain for RRECTCA is taken 

as µRECT= 2e-9 ,for MMA with RQAM µMMARQAM = 4e-6, for GCrCA it is taken to be µGCrCA 

= 3e-6 and for MMA with XQAM µMMAXQAM = 5e-6. Again it is evident that RRECTCA 

outperforms other blind equalizers. 

 

 

Fig.4.6 Residual ISI traces for 32-XQAM and 32-RQAM (2 distance b/w symbols) 

 

Fig.4.7 Residual ISI traces for 32-XQAM and 32-RQAM (1.75 distance b/w symbols) 
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Now we compare the performance of the MMA, RRECTCA, SCA and GCrCA blind equalizers 

using 128-QAM using voice band communication channel. Fig 4.8 and Fig 4.9 show the 

steady-state performance of RRECTCA, MMA, GCrCA and SCA. We use 128-XQAM for 

GCrCA, SCA and MMA in both figures while 128-RQAM with minimum distance of 2 

between symbols in Fig 4.8 and 128-RQAM with minimum distance of 1.75 in Fig 4.9 for 

MMA and RRECTCA. The noise power is adjusted such that it gives rise to a channel signal-to-

noise ratio (SNR) of 30dB. The adaptive gain for RRECTCA is taken as µRECT= 1.5e-12 , for 

MMA with RQAM µMMARQAM = 6e-8, for GCrCA  µGCrCA = 7e-8, for SCA µSCA = 1e-8 and for 

MMA with XQAM µMMARQAM = 2e-7 to achieve the same MSE floor level of approximately -

5dB in Fig 4.8 while µRECT= 4e-12, µMMAQAM=  10e-8, µGCrCA= 4e-8, µSCA = 1e-8 and 

µMMAQAM=  1e-7   in Fig 4.9 to have MSE floor level of approximately -6 dB . In Fig 4.8 and 

Fig 4.9 it is quite evident that the RRECTCA outperforms the MMA (with 128RQAM & 

128XQAM) , GCrCA and SCA in term of convergence rate. The experimental values are 

generated as an average over 40 trials. 

 

Fig.4.8 MSE traces for 128-XQAM and 128-RQAM (2 distance b/w symbols) 
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Fig.4.9 MSE traces for 128-XQAM and 128-RQAM (1.75 distance b/w symbols) 
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Conclusions and Future Work 

In this thesis, Rectangular QAM is analyzed and mathematical expressions for average energy, 

minimum distance dmin and symbol error probability (SEP) over AWGN and fading channels 

including Rayleigh, Nakagami-m, Nakagami-q (Hoyt) and Nakagami-n (Rice) are derived. A 

family of new blind equalization algorithm for rectangular QAM constellations namely 

Generalized Rectangular Contour Algorithm has been proposed. The proposed algorithm gives 

fast convergence rate and low mean squared error than those of its counterparts proposed for 

both cross and rectangular QAM constellations to accommodate the transmission of odd 

number of bits. The reason for this better performance is that GRRECTCA generates a 

rectangular zero error contour which is in match with the shape of the constellation and ability 

of the rectangular constellation of correcting any phase error within 180 degrees in contrast to 

cross and square QAM constellations which correct the phase error up to 90 degrees. 

Moreover, the rectangular zero error contour of the proposed algorithm can be modified to 

square zero error contour by mere change of two constellation dependent constants a and b. As 

a result the algorithm can be used in equalizing both rectangular and square QAM 

constellations facilitating the transmission of even and odd number of bits in any 

communication system. Simulation results for 32 and 128 QAM constellations validate the 

effectiveness of the proposed blind equalization scheme over SCA, GCrCA and MMA for non-

square constellations. 

 This improved performance calls for the modification of other blind equalization using 

Rectangular QAM. The modification of the proposed algorithm can also be done by bring the 

decision device output into the cost function as done in case of Improved SCA. 

 Finally, all the modifications done on SCA as (Modified-SCA, Constellation Matched-

SCA, Improved-SCA, Modified Constellation Matched-SCA) can be done on the proposed 

algorithm to further improve the performance in terms of low steady-state error and fast 

convergence rate.  
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