
 
 

 

 

Secure Heterogeneous Cluster-based Newscast Protocol 

By 

Irum Kazmi  

2008-NUST-MS PHD-CSE(E)-20. 

MS-08 (SE) 

 

 

 

In fulfillment of the requirements for the degree of  

MS (Computer Software Engineering) 

 

Thesis Supervisor 

Brig. Dr. Muhammad Younus Javed 

 

College of Electrical & Mechanical Engineering  

National University of Sciences & Technology  

 

2011 

 

 

 



 
 

 

Secure Heterogeneous Cluster-based Newscast Protocol 

By 

Irum Kazmi  

2008-NUST-MS PHD-CSE(E)-20. 

MS-08 (SE) 

 

 

 

Submitted to the Department of Computer Engineering 

In fulfillment of the requirements for the degree of  

 

Master of Science  

In 

Computer Software Engineering 

 

Thesis Supervisor 

Brig. Dr. Muhammad Younus Javed 

 

College of Electrical & Mechanical Engineering  

National University of Sciences & Technology  

 

2011 



 
 

Declaration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

ACKNOWLEDGEMENTS 

In the name of Allah, the most merciful and the most beneficent 

In today’s tech-savvy world of rapid advancement in science and technology, keeping track of 
the latest inventions is difficult. For that, an environment conducive for research is a must. I am 
extremely thankful to Almighty Allah, who blessed me with the capability and good fortune of 
studying at an institute where dreams come true. My experience, as both a student, and a 
researcher at NUST, has been an unmemorable experience. I, not only had the best learning 
environment but I also had the privilege of working under an illustrious, competent and amiable 
team of research advisors.    

Foremost, I am extremely thankful to my patient research supervisor, Brig. Dr. Muhammad 
Younus Javed, who was available at all times. I admire his dedication and honesty towards both 
his profession and students. Such compassion for learning and sharing knowledge is hard to find 
in today’s world. 

Col. Dr. Khalid Iqbal not only encouraged me as a student, but helped to further nourish my 
interest in my field.  

Dr. Aasia Khanum has been a source of inspiration for me throughout my project. Dr. Saad 
Rehman has also been an amicable guide, who would cater to any queries that I would come up with. 

 My husband’s co-operation deserves special mention here. He has always been by my side, 
encouraging me and tolerating my absence while I would attend to my project. Moreover, my 
dear son, Rayyan, has also been very patient. 

I am also glad to have a supportive family that has always backed me. Thanks is also due to my 
honorable teachers and class fellows at NUST, for contributing to a beautiful period in my life.  

May Allah (SWT) be our constant Guide and Companion throughout our lives (Ameen). 

  

 

 

 

 

 

 



 
 

 

 

 

 

 

Dedication 
 

 

I dedicate my minute effort to my research team at NUST, and to my family, back home. 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Abstract 

The area of peer-to-peer overlay networks is gaining attention of researchers world-wide, due to 

its popularity and area of applications. Heterogeneous Cluster based Newscast Protocol (HCNP) 

is one of the many protocols available to design a peer-to-peer overlay network. The 

characteristic of HCNP is efficient topology generation by introducing completely non- 

hierarchical clusters with inherent capability of handling heterogeneity. Heterogeneity reflects 

differences in physical capabilities related to local resources of network nodes (e.g. RAM, 

storage space etc.). HCNP is one of gossip based protocols that regularly exchanges and updates 

its cache view with other neighbor nodes to get freshest nodes list. HCNP is vulnerable to attacks 

just like other unstructured Gossip based overlay network protocols (e.g. Newscast), and can 

easily be exploited by a malicious node leading to wrong clusters configuration. To avoid this 

situation, a malicious node should be either restricted outside the network or its interference 

should be blocked some way. Security measures (e.g. authorization, authentication, 

confidentiality and integrity) are mandatory to avoid different types of attacks by malicious 

nodes on the node cache. This research introduces a new version of HCNP that provides security 

to the overlay architecture. It secures HCNP architecture by restricting malicious nodes outside 

the overlay. The Secure-HCNP uses Key Assignment on the basis of Heterogeneous Capabilities 

(KAHC-RSA), a new version of standard RSA designed specifically for HCNP that has dynamic 

key configuration capability. Secure-HCNP provides heterogeneous security levels dependent on 

the nodes capabilities. Secure-HCNP is implemented and tested on a peer-to-peer simulation test 

bed PEERSIM (a simulation tool for peer-to-peer networks). The experiments, when compared 

with other researches in the same direction, have shown that Secure-HCNP can not only be used 

as a replacement of HCNP for secure exchange of protocol related information but also for other 

gossip based protocols security, without compromising much on efficiency. Similarly, KAHC-

RSA can be used as an efficient encryption scheme for any smaller piece of information (e.g. 

Identification number, capability level etc.). This research is a first step towards implementation 

of an encryption scheme for security of protocol specific information (a layer below application 

level) in gossip based protocols. The experiments also demonstrate that regardless of 

computational complexity of RSA, KAHC-RSA can be used in a densely populated environment 

with more efficiency as compared to the original RSA and CRT RSA.   



 
 

TABLE OF CONTENTS 

LIST OF FIGURES…………………………………………………………………………..viii 

LIST OF TABLES…………………………………………………………………………….ix 

LIST OF EQUATIONS……………………………………………………………………….ix 

 

CHAPTER 1: INTRODUCTION……………………………………………………………..1 

1.1 Motivation………………………………………………………………………….......1 
1.2 Background………………………………………………………………………….....1 
1.3 Methodology…………………………………………………………………………...1 
1.4 Scope of the Project……………………………………………………………………2 
1.5 Summary……………………………………………………………………………….2 

CHAPTER 2: PEER-TO-PEER NETWORS & PROTOCOLS…...………………………….4 

2.1 Peer-to-Peer Overlay Networks………………………………………………………..4 

 2.1.1 Peer-to-peer Networks…………………………………………………………...4 

 2.1.2 Peer-to-peer Overlay Networks………………………………………………….5 

 2.1.3 Advantages and Disadvantages………………………………………………….5 

2.2 P2P Overlay Network Protocols….………….………………………………………...6 

            2.2.1 Gossip based Protocols…………….…….………………………………………6 

 2.2.2 Security of Gossip based Protocols .…….……………………………………….8 

 

CHAPTER 3: RELATED WORK………………………………………………….………….10 

3.1 Literature Review………………………………………………………………………10 

3.2 Previous Work (HCNP)    ……………………………………………………………...13 

 3.2.1 Heterogeneous cluster based Newscast Protocol………………………………...13 

 3.2.2 HCNP with Single Physical Parameters……………...…………………………..19 

 3.2.3 HCNP with Multiple Physical Parameters….…………...………………………..21 

  

CHAPTER 4:  SECURE-HCNP……………..……………………………………………......23 

4.1 Secure HCNP Overview……………………………………………………………….23 

4.2  Secure HCNP Characteristics………………………………………….........................24 

4.3 Secure HCNP Architecture and Layers……………………..…………………………24 



 
 

 4.3.1 Standard HCNP Protocol Layer..………………………………………………..25 

 4.3.2 Secure HCNP Protocol Layer…………………………………………………... 25 

4.4 Standard RSA Implementation on HCNP…………………………………………......26 

 4.4.1 RSA Algorithm..…………………………………………………………………26 

 4.4.2 RSA Usage………….……………………………………………………………27 

 4.4.3 Standard RSA implementation on HCNP Examples…………………………….27 

4.5  KAHC-RSA Implementation on HCNP……………………………………………….34 

 4.5.1 Why Secure HCNP……………………………………………………….............34 

4.5.2 Why KAHC-RSA, Why not Standard RSA……….…………………….............35 

4.5.3 Basic Functionality & Steps………………...…………………………….............35 

4.5.4 Factors involved in determining key combinations……………………….............40 

4.5.5 Key Combination Examples...…………………………………………….............40 

4.6 Secure HCNP Data Structure…………………………….…………………..................42 

4.7 Secure HCNP Algorithm…….………………………………………………………….45 

4.8 Secure HCNP Procedure…….………………………………………………………….46 

4.9 Secure HCNP Efficiency…….………………………………………………………….47 

 

CHAPTER 5: SIMULATIONS AND RESULTS……………………………………………...49 

5.1 PeerSim Overview…………………………………………………………………….....49 

5.2 Simulations…………….………………………………………………………………...51 

5.3  Experiments and Results .…………………………………………………………….....51 

 

CHAPTER 6: CONCLUSION & FUTURE WORK…………………………………………..64 

6.1 Conclusion……………………………………………………………………………....64 

6.2 Limitations……………..………………………………………………………………..64 

6.3  Recommendations for Future Work…….……………………………………………....65 

  

REFERENCES………………………..………………………………………………………..66 

 

LIST OF FIGURES 

Fig. 2.1: Newscast Maintaining the Updated List of Nodes…….………………………………….………………...8 



 
 

 
Fig. 3.1: Node’s Data Structure…………………………………………………………………………...……....….15 
 
Fig. 3.2: Node’s Cache………………………….……………………………………………………………………15 
 
Fig. 3.3: Layered Architecture of HCNP……………………………………………..………………………….…...16 
 
Fig. 3.4: Cluster having Different Capability Levels of Nodes..…………………………………..……….…....…...20 
 
Fig. 3.5: No. of Clusters Formed in a Network at any Instant of Time ‘t’.……………………………………......…20 

Fig. 4.1: TCP/IP Layers Showing HCNP and Secure HCNP Layers….……………………………………......……25 

Fig. 4.2: Encryption using KAHC-RSA……………………………….……………………………………......……39 

Fig. 4.3: Decryption using KAHC-RSA……………………………….……………………………………......……39 

Fig. 4.4: Secure-HCNP Node Cache…….…………………………….……………………………………......…....42 

Fig. 4.5: Single Entry of Secure HCNP Node’s Cache…….………….……………………………………......……43 

Fig. 4.6: Secure HCNP Cache………………………………………….…………………………………….............43 

Fig. 4.7: Secure HCNP Node Data Structure.………………………….…………………………………….............44 

Fig. 4.8: Overall View of Secure HCNP Node’s Cache……………….……………………………………...... ......44 

Fig. 4.9: Secure HCNP Procedure……….…………………………….……………………………………......……46 

Fig. 5.1: Running Simulations on PeerSim…………………………….……………………………………......…...51 

Fig. 5.2 (a):Dynamic Assignment of Key Sizes in KAHC-RSA……….……………………………………......…..52 

Fig. 5.2 (b):Dynamic Assignment of Key Sizes in KAHC-RSA……….……………………………………......…..53 

Fig. 5.3: Key Size Distribution across a Cluster in KAHC-RSA……….………………………………………........53 

Fig. 5.4 (a):Level Distribution across a Cluster………………….…….……………………………………......……54 

Fig. 5.4 (b): Level Distribution across a Cluster ……………………….……………………………………......…..54 

Fig. 5.5 (a): Average Encryption, Decryption and Hashing Time of KAHC-RSA…………...………………......….55 

Fig. 5.5 (b): Average Encryption, Decryption and Hashing Time of Standard RSA………...………………......…..55 

Fig. 5.6: Comparison of Modulus Calculation Time with Total time in KAHC-RSA..……...………………............56 

Fig. 5.7 (a): Average Efficiency of Original RSA…………………………………………...………………......…...56 

Fig. 5.7 (b): Average Efficiency of KAHC-RSA…………………………………………...………………......……57 

Fig. 5.7 (c): Comparison of Average Efficiency of Original RSA vs KAHC-RSA………...………………......……57 

Fig. 5.8: Cluster-wise Average Total Time in KAHC-RSA………………………………...………………......……58 

Fig. 5.9: Cluster-wise Average Key Sizes in KAHC-RSA..………………………………...………………......…..58 

Fig. 5.10: Optimal Key Size in KAHC-RSA…………….…………………………………...………………......…59 



 
 

Fig. 5.11 (a): Effect of Network Size on Efficiency of KAHC-RSA….……………………...………………......…60 

Fig. 5.11 (b): Effect of Network Size on Efficiency of KAHC-RSA….……………………...……………….........60 

Fig. 5.12: Comparison of Original RSA on HCNP and High Speed RSA………………………...………………...61 

Fig. 5.13: Comparison of KAHC- RSA and High Speed RSA …………………..…………...……………….........62 

Fig. 5.14: Comparison of Decryption Time…………………………….……………………...……………….........63 

 

LIST OF TABLES 

Table: 4.1- Keys between 4 and 64 (Combination 1)…………………………………………….….……………….41 

Table: 4.2- Keys between 8 and 128 (Combination 2)..………………………………………….….……………….41 

Table: 4.3- Keys between 16 and 256 (Combination 3)………………………………………….….……………….41 

Table: 4.4- Keys between 32 and 512 (Combination 4)………………………………………….….……………….42 

Table: 4.5- Keys between 64 and 1024 (Combination 5)..………………………………………….…….………….42 

Table: 4.6- Comparison of KAHC-RSA with Original RSA……………………………………….…….………….47 

Table: 5.1- Comparison of Decryption Time……………………………………………………….…….………….62 

 

LIST OF EQUATIONS 

Equation  3.1: ICL (Integral Capability Level)……………………..…………………………….….………………21 

Equation  4.1: Range………………………………………………..…………………………….….………………37 

Equation  4.2: Optimal Key Size…………….……………………..…………………………….….……………….37 

 

 

 

 

Publications 



 
 

1. Irum Kazmi, Saira Aslam, & M. Y. Javed, “Cluster Based Peers Configuration using HCNP in 

Peer-to-Peer Overlay Networks”, CICSYN 2010, IEEE. 

2. Saira Aslam, Irum Kazmi & M. Y. Javed, “Cluster Based Peers Configuration with Multiple 

Physical Paramters using HCNP in Peer-to-Peer Overlay Networks”, ICCAIE 2010, IEEE. 

3. Irum Kazmi & Syed Fahim Yousaf Bukhari,”PeerSim: An Efficient and Scalable Test bed for 

Heterogeneous Cluster-based P2P Network Protocols”, UKSim 2011, IEEE. 

4. Irum Kazmi, Saira Aslam & Muhammad Younus Javed, “Secure- HCNP”, Journal of Computing, 

Vol. 3, Issue. 4, May 2011. 

5. Saira Aslam, Irum Kazmi & M. Y. Javed, “Heterogeneous Peers Configuration to Enhance 

Cooperation in Peer-to-Peer Overlay Networks”, Journal of Super Computing (Under Review). 

 

 

 

 



1 
 

CHAPTER 1: INTRODUCTION 

 
1.1  Motivation 
A complete survey of peer to peer networks tells that peer to peer network is basically an 

overlay network that can be used for searching and file sharing etc. Different types of peer 

to peer overlay networks are used for music sharing, multi-player games, and for 

distribution of different mirrored websites workload. Peer to peer systems have become 

very important part of internet and have a variety of applications for content sharing, 

distribution e.g. Iso-Hunt and other types of more advanced applications e.g. Internet 

telephony related applications i.e. Skype, VoIP, Usenet, and Instant messaging.    

This area has a lot of room for research related to many aspects e.g. security, cooperation 

between peers to avoid free riding and QoS related issues. All these issues motivated the 

author to work in this direction to explore some new facts and solve exiting problems faced 

by p2p networks.   

 

1.2 Background  
The current research is all about security of gossip based protocols. HCNP, is one of them. 

It is found that no work is done related to security of HCNP. HCNP exploits the major 

characteristics of P2P networks e.g. autonomy, by sharing its cache with neighboring 

nodes, without any restriction. This makes nodes prone to different types of cache attacks 

by malicious node/s. So, the security is mandatory to be implemented for reliable protocol 

specific information exchange by nodes. 

 

1.3  Methodology 

HCNP is the target gossip based protocol for the current research. To provide security to 

this protocol, a modified form of an existence public cryptographic technique, RSA is 

designed and implemented on PeerSim test bed. KAHC-RSA is specifically designed to 

work with HCNP as well as other gossip based protocol. KAHC-RSA is tested for 

efficiency by making its comparison with other fast implementations of RSA and with the 



2 
 

original one. Although, RSA is not still used practically for the security of protocol 

specific information but it can be used for securing a smaller piece of information, 

regardless of its computational complexity. This is factually proven in a research that RSA 

can be used efficiently on mobile phones.  

First of all, a variety of researches related to the area of the current research, have been 

studied in detail and the results are observed. Then, algorithm for the KAHC-RSA is 

written and tested on PeerSim and finally through simulations and experiments, conclusion 

is drawn. 

    

1.4  Scope of the Project 

The research is strictly restricted to HCNP security. But this can be used for other 

heterogeneous gossip based protocols e.g. HCGNP. The research considers protocol 

specific information for encryption, not the data exchanged between nodes for file sharing 

etc. The research is an initiative towards introducing the concept of protocol architecture 

level security and implementation of public key cryptographic techniques at this level.    

 

1.5  Summary 
Secure-HCNP is a modified version of HCNP which is designed to make HCNP secure 

from malicious activities. The basic problem with HCNP, that makes it insecure, is 

availability of nodes physical capability related information to all other nodes i.e. either 

participant or non-participant in cluster configuration, in the unstructured overlay network. 

This protocol specific information is stored in the cache associated with each node and can 

be accessed and tempered by any malicious node. This activity can lead to wrong cluster 

configuration. If clusters are not correctly configured then the basic property of the 

protocol is not preserved.  The issues to handle this situation are how to provide 

authentication, confidentiality and integrity. Authentication is already implemented for 

gossip based protocols [14] but it is a centralized solution and confidentiality and integrity 

is handled using a modified version of a public key cryptographic technique RSA. Public 

key cryptography is suitable here to avoid key exchange issue as in symmetric key 

techniques. Standard RSA is computationally quite expensive. So, it is modified to adjust 



3 
 

with HCNP. KAHC-RSA is found approximately five times more efficient than Standard 

RSA. It is more compatible with HCNP as compared to Standard RSA because it preserves 

the basic property of the protocol i.e. heterogeneity without compromising on efficiency. 

The concept of heterogeneous security makes it more appropriate in situations where 

highly diversified nodes are participant in cluster configuration. Optimal key size works 

well if uniform security is desired for all nodes instead of heterogeneous security. The 

important fact is, this technique of KAHC-RSA is not strictly restricted with HCNP 

protocol. This modified version of RSA can be used for encryption of any smaller piece of 

information exchanged between nodes e.g. node Identifiers. KAHC-RSA is also suitable 

for the applications or network architectures, dealing heterogeneity related issues. 

Moreover, KAHC-RSA is implemented with Java that is considered to be the fastest 

implementation language for RSA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 
 

 

CHAPTER 2: PEER-TO-PEER NETWORKS & PROTOCOLS 

 
         2.1Peer-to-Peer Overlay Networks  

2.1.1 Peer-to-peer Networks  

Peer to peer is a type of network in which all nodes are distributed across the network 

without any controlling authority. This type of network helps in resource sharing by 

maintaining node’s autonomy. Resources may include processing power, storage space, 

RAM and network bandwidth etc. There is no central coordination or control. There are 

types of networks in which semi-centralized coordination is used. In fact, the type of peer 

to peer network is dependent upon the type of its utilization by the applications.  There is 

no need of a server to keep track of each and everything. However, in semi centralized 

peer to peer networks, a server or a node among the group of nodes can be used as a 

super peer to keep track of node indices or to index nodes in the network to make it fast 

for searching.  

Peer to peer network is a type of overlay network that configures itself at the application 

layer of TCP/IP model. The applications specifically designed for the overlay, run at 

application layer on the top of the overlay. The lower layers structure remains the same. 

Overlays usually work on the top of the conventional layer 3 and 4.The physical network 

topology remains the same as in client server based networks. The peers are completely 

independent of the physical network topology. The standard Internet Protocol (IP) is used 

for communication underneath. 

The applications designed for the peer to peer overlay networks are usually completely 

dependent on the underlying topology. For example, Kaaza is an application that uses 

semi centralized peer to peer network topology, whereas, Gnutella, uses completely 

decentralized p2p network.  

There are two types of p2p networks: 

• Structured 

• Unstructured  



5 
 

In structured peer-to-peer networks, peers are arranged in following a specific topology. 

The peers are organized by following a specific algorithm. Whereas in un structured peer 

to peer networks, the peers organization is haphazard, and follows no specific protocol, 

algorithm or structure. 

2.1.2 Peer-to-Peer Overlay Networks 

In this type of peer-to-peer network, all peers who are willing to join the overlay work as 

network nodes. The links establish between any of the two nodes who know each other, 

means, if a node knows the location of the other node, a link between these two nodes 

will be established. There will be a directed edge between these two nodes, from first to 

the second. The set of such directed edges and links constitute an overlay network on the 

basis of how the nodes in the overlay network are linked to each other. Two different 

types are defined for that. One is structured overlay network and the other is unstructured 

overlay network. In an unstructured overlay graph, the network is configured using 

arbitrarily established links. These networks are very easy to construct because any node 

willing to join the network, can copy links from another node unless and until it 

constructs its own list of links existing in the network. In such type of network, the query 

is always flooded to all the nodes to find data, which is the main disadvantage because 

the nodes that do not have data, also receive the message and query may not be resolved. 

This query flooding creates congestion in the whole network. This type is very common 

in peer to peer overlay networks as compared to structure peer to peer overlays. In 

structured overlays, the query is not flooded; instead it is forwarded to a specific node or 

a group of nodes. This increases search efficiency. But this type of overlay has to 

maintain proper structure, which costs structure related information overhead. 

2.1.3 Advantages and Disadvantages 

As resource sharing is the basic purpose of any type of p2p network, so, whenever a peer 

joins the network, its resources are made available to all other nodes. This causes 

availability of so many resources. This is not possible in client server environment where 

resources are limited mostly. 

In peer to peer overlays, any node can join the network at any time. This introduces so 

many security threats to the whole network. Node authentication, data verification or 

signing, confidentiality of information exchanged and integrity of the data exchanged 



6 
 

between nodes, may easily be broken, if proper measures are not taken. This is very 

serious issue and needs to be handled. All the protocols used to define an overlay 

topology should have built-in mechanism to avoid such circumstances or make the 

protocol tolerant of such security problems to some extent. The peer to peer applications 

running on such overlays also need to have proper signing mechanism to avoid tempering 

of data exchanged. This is an extra overhead and needs to be handled. 

 

2.2 P2P Overlay Network Protocols 
To define the architecture/topology of the overlay, there are many protocols available. 

Here, only gossip based protocols are discussed because they are the base line for this 

research work. 

2.2.1 Gossip Based Protocols 

The concept of such type of protocols that use gossip based communication, is given by 

Demers et al in late 80's. Gossip protocols are very simple. They have fast convergence, 

high scalability and are quite robust to any benign failure. Nowadays, gossip protocols 

are applied in many areas e.g. data aggregation and information dissemination, peer to 

peer overlay networks and many other fields.  

The basic properties of gossip based protocols are as under: 

I. They handle inter-process interactions that are periodic and are always 

between pair of nodes.  

II. The size of the information exchanged during these inter process interactions 

between nodes, should be bounded.  

III. The peers interact in such a way that the state of at least one node changes to 

depict the state of the other node. If a peer pings the other in such a way that 

states are not exchanged, means no interaction took place between these two 

peers.  

IV. There is no surety of reliability in communication. 

V. The interactions are not so frequent, so protocol efficiency is faster, as 

compared to typical message exchanges.  



7 
 

VI. Peers are always selected randomly. Any peer can be selected from a group 

of nodes or the whole network.  

There are three main categories of gossip protocols:  

Information Dissemination protocols: These use gossip to spread information just 

as in case of Newscast protocol.  

Anti-entropy protocols: Such type of protocols calculate differences in the replicas 

to repair replicated data or information.  

Aggregation based Protocols: The basic characteristic of such protocols is that 

these compute aggregate of the whole network by information sampling at the 

nodes.  

2.2.1.1 Newscast Protocol  

The newscast protocol is commonly used for communication in usually agent-

based distributed systems. Newscast is one of the gossip-based protocols that 

makes use of the basic properties of gossip based communication as mentioned 

above. It designs and maintains an overlay on the basis of periodically selected 

random nodes from the network. The constructed topology is proven to be very 

stable and robust [20], [18]. Broadcast and aggregation are the examples of the 

protocols that are built upon the newscast protocol. In Newscast, neighbor nodes 

are randomly selected using selectpeer () method. After view exchange process, the 

views of both nodes are merged by update () method and finally, the views are 

truncated to adjust the basic view size ‘c’. This truncation is done by observing 

time descriptors. The node remained in the network is more likely to be truncated 

as compared to the node joined the network recently as shown in Fig. 2.1. Here, 

two nodes A and B, are exchanging states to get the freshest list of nodes in the 

cache. The views are merged and truncated. This procedure is repeated 

periodically. 

 



8 
 

 

                           Figure 2.1 Newscast maintaining the updated list of nodes 

  2.2.2 Security of Gossip Protocols 

Such protocols are very popular in designing peer to peer overlay because of its 

properties of randomness and scalability. But, there is a very little work found in the 

literature regarding its security. The literature review section shows the detail of the work 

done on security of gossip based protocols. Each research considered its own attack 

scenario and discovered the way to handle that scenario. HCNP is a newscast based 

gossip protocol that does not have any kind of security implemented in it. The attack 

model considered for the current research is given as under.  

  2.2.2.1 Attack Model 

The attack model for HCNP [2] and [3] is the same as the attack model assumed in [12]. 

The cache possessed by each node may become polluted easily by single or a group of 

malicious nodes. Cache pollution means that the cache will contain the ids of either 

nonexistent peers or the ids of other malicious peers. This will result in the configuration 

of clusters with nonexistent nodes or clusters consisting malicious nodes. The wrong 

capability related information will cause misleading clusters thus exploiting the property 



9 
 

of the protocol i.e. heterogeneity. The result could be the clusters containing nodes with 

either the same capabilities or incorrect resource information. This is a serious issue and 

needed to be considered to prevent the protocol from such attacks. The experiments with 

Newscast and other gossip based protocols, are shown in literature review portion of the 

document. The current research handles the above attack scenario by using modified 

RSA encryption.     

  2.2.2.2 Protocols Architecture Security  

This research is typically related to securing protocol architecture. The information that is 

specific to protocol e.g. capability level, is encrypted. This is of utmost importance 

because any p2p application, using such architecture, requires some security at 

architecture level. This will help the application in terms of security implementation in 

the application and correct functioning of the protocol underneath.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10 
 

CHAPTER 3: RELATED WORK 

 
3.1 Literature Review 
A complete survey of peer to peer networks [28] tells that P2P network is basically an 

overlay graph that is designed for searching, sharing of information and to work as a 

distributed objects store. Several p2p overlay protocols are applied for music sharing, 

replication of electronic address books, multi-player games, provisioning of mobile, 

location or ad-hoc services, and the distribution of workloads of mirrored websites [29]. 

Peer to peer systems have become very important part of the internet and have a variety of 

applications for content sharing, distribution (e.g. Iso-Hunt) and other types of more 

advanced applications such as Internet telephony (i.e. Skype, VoIP, Usenet, and Instant 

messaging).    

The basic characteristics of P2P networks are decentralization, autonomy and shared 

provision of resources and services [21]. As p2p overlays are highly decentralized, so the 

IP of the peer having the desired content is first located and then those contents are 

downloaded through another connection [30]. 

HCNP works on the top of NEWSCAST protocol. The newscast model is one of the gossip 

based protocols. Such protocols are largely used in agent based systems for the purpose of 

communication [20].However, these days this category of protocols is used widely to 

design other p2p networks topology. 

The current research is an initiative towards securing one of such protocols, HCNP [2] and 

[3]. HCNP is a new protocol and it is inevitable to provide security to the nodes. In pure 

peer to peer networks, it is very important to maintain the autonomy of nodes. In case of 

[2] and [3], this property is exploited to design clusters. There, the participant nodes need 

some architecture specific security implementation to prevent them from malicious attacks. 

HCNP works a level below application layer. So, some security is required at this level to 

make the protocol specific information secure.    

The current research uses a modified version of original RSA. The modified version is 

designed in a way to work well with the protocol basic properties and still remain efficient.    



11 
 

“RSA cryptography exploits properties and interrelations of numbers, constructed as large 

powers of huge numbers” [5], RSA uses modular exponentiation technique for key 

generation which is very popular and the most important operation in public key 

cryptography [15, 16] but is both complicated and time-consuming. Many researchers are 

devoted to finding ways to reduce the time such as binary method, signed-digit recoding 

method, common-multiplicand multiplication method, and high-radix method [5].  

The efficiency of RSA is also tested for use on modern mobile phones. For the said 

purpose, some fast variants of RSA are modified and tested using java based 

implementation with a usual RSA setup and timing for encryption and decryption. When 

those are compared for efficiency, it is found that both RSA encryption and decryption can 

be used efficiently on recent mobile phones [6]. This shows that RSA can be adjusted for 

efficiency, regardless of its computational complexity.   

The strongest known algebraic attacks e.g. factoring, and partial key exposure attacks [7] 

are collected for a fast variant of RSA.  

The attack model for HCNP is the same as described by [12]. According to [12], a 

malicious node could propagate wrong protocol- specific information by creating fresh 

timestamps of other colluding malicious nodes. When such poisoned cache is sent to the 

other non-malicious neighbouring nodes, their cache also gets poisoned. When this non-

malicious node exchanges its cache with another non-malicious node, the other node’s 

cache also gets polluted. In this way, in very small number of exchanges, the whole 

network can become polluted. Eventually, these non-malicious nodes cache will contain 

fake Ids of non-existent peers. This issue is handled by [12] by using Secure-Peer 

Sampling Service. It is implemented on Newscast. It drops malicious nodes and leaves the 

network partitioned. Secure-PSS is also vulnerable to attacks [12]. In case of HCNP, 

capability level information can be exchanged wrongly. The technique given by [12] 

cannot be implemented because it works on the basis of Trusted Prompt concept which is 

centralized to some extent rather them being completely decentralized. Secondly, it works 

on the basis of IPs. What if a peer is not accessible due to firewall etc. Moreover, the 

physical capability related information is more critical and cannot be distinguished from 

peer to peer. So, encrypting the potential information is a better idea. The certification 

Authority is not the part of the protocol [14] and does not cost overheads. It will be 



12 
 

required before joining an overlay. [13] gives the idea of SPSS with mosquito attack 

handling. It avoided CA and cryptography without mentioning any reason. Also, [13] 

handled particularly two groups with different roles and sizes.      

Another research suggests some design directions to prevent P2P networks from worm 

attacks or make the network resilient to worm attacks [17]. 

The solutions proposed by [23] and [24] can defend only if the cache is < 75 percent 

polluted whereas in another research on Puppetcast (a gossip based protocol using peer 

sampling service), the proposed protocol is found highly resistant to attacks by malicious 

nodes. PuppetCast continues to work even when 50% (or more) of the nodes in the system 

are malicious and attacking [22]. The attack model supposed by [22] is almost the same as 

considered in the current research i.e. protocol messages contain malicious contents or they 

are stopped to be accessed in some way. PuppetCast in contrast, is not 100% decentralized. 

It needs a central trusted authority. The Brahms [25] protocol is found to resist even when 

20% of the nodes in the system are malicious. The Brahms protocol is also fully 

decentralized [25]. 

None of the protocols with secure peer sampling service consider implementing any type 

of encryption technique. Similarly, neither of them gave 100% decentralized secure 

solution for securing gossip based protocols. If the proposed solution is decentralised, as in 

case of Brahms [25], it resists only 20% of malicious nodes. The current research 

implements public key encryption technique (RSA), with dynamic key assignment 

characteristic, which provides security by incorporating heterogeneity i.e. the basic 

property of this protocol. This concept of heterogeneous security is not implemented in any 

of the gossip-based protocols.  

An extensive experimental evaluation by the authors in [26] shows that their proposed 

solution is efficient in dealing with a large proportion of malicious nodes. They, 

specifically, experimented on Newscast and used public key cryptography but did not 

mention any details of the type of the encryption technique they used and its its 

implementation. Similarly, there was no information provided about the overheads caused 

by the encryption technique they used. 

RSA is not yet considered for encryption of protocol architecture-related data. In most 

recent researches, RSA is most widely used for encryption of application related data e.g. 



13 
 

text files, sequence of characters, integer strings as in [32], [33], [34] and [35] respectively. 

File sizes used in these researches are 394 to 4933 bytes [32], 128 bit to 10 k [33], 1-

10,000 characters [34], and 547 bytes to 2188 bytes [35], which are larger in length as 

compared to protocol-related data. 

Hence, the current research is not only a new idea to implement encryption techniques, 

KAHC-RSA in this case, at protocol architecture level. It not only prevents protocol 

specific information from being tempered, but also introduces a new version of a public 

key cryptographic technique, RSA, to handle smaller pieces of heterogeneous information 

more securely and more efficiently than standard RSA. The new technique can be tested 

for architecture security of any gossip-based protocol. The research uses the fastest 

implementation of RSA using Java. As Java is an object-oriented, cross-platform language 

and also provides lots of class libraries which are implemented with native programming 

language, its execution efficiency is very high [1].  

 

3.2 Previous work (HCNP) 
The current research is based on a peer to peer overlay network protocol known as 

Heterogeneous Cluster-based Newscast Protocol. HCNP [2] and [3] does not have any 

built-in mechanism to protect its architecture against any malicious activity by any of the 

nodes. Consequently, by introducing any malicious activity in the cluster, the basic 

properties of the protocol can be exploited very easily. This may lead nodes to sufferance 

from attacks like misleading cluster joining, wrong cluster formation and wrong 

information dissemination etc. The HCNP protocol may fail to work or the delays may 

exceed to infinity. This is a serious issue to be handled at this stage. At least some primary 

level security should be embedded in the protocol to protect cluster participants from 

architecture destruction attacks. More sophisticated security may be provided at later 

stages or might be embedded in the application layer protocols.  

 

3.2.1 Heterogeneous Cluster based Newscast Protocol 

HCNP is very close to [9] in terms of emphasis on optimal capacity-proportional 

distributions of random walks, except, it incorporates heterogeneous clusters. In another 

research, a scalable and quite simple mechanism for building random overlays and 



14 
 

performing random selection with the concept of heterogeneity is studied [11]. However, 

this does not introduce the concept of clusters as in case of HCNP [2] and [3]. HCNP 

works on the basis of the idea that the nodes high in resources such as capacity or storage 

space should be selected more often than the other nodes as proposed in [8]. HCNP does 

not incorporate any QoS-aware mechanism as suggested by [10]. The clusters configured 

using HCNP are not quality aware. 

HCNP focuses on P2P overlay networks, dealing with heterogeneity of the network 

participants. In P2P overlay networks, the nodes connected together are enriched in 

physical resources to be shared among the nodes other than files and applications like 

RAM, Extra storage, Processor cycles, etc. The nodes are connected with each other, 

normally on the basis of the contents to be shared. However, the physical resources of the 

nodes sometimes limit the content based file sharing, and other applications. The particular 

content may be available but its physical resources restrict the ability of sharing that 

content efficiently.  Decreasing costs for the increasing availability of these resources 

where the usage of the internet is also increased have created new directions for P2P 

network-based applications. This resulted in a rapid increase in the development of peer to 

peer applications in these directions along with controversial discussions regarding limits 

and performance and the economic, social, and legal implications of such applications. 

Moreover, with the rapid advancement in other fields of networks, P2P networks also 

require a study in step ahead. There are many ways to improve the functionality of P2P 

overlay networks. HCNP is a non-hierarchical cluster-based P2P overlay architecture. 

The main reason to introduce clustered approach is to deal with the heterogeneity of the 

physical resources, i.e. handling of nodes in the network with different storage capacity, 

RAM and processor speed etc. Physical resources such as available bandwidth of a node 

are out of the scope of this research, as currently the issues related to the overlay topology 

have been discussed. 

HCNP uses a clustered approach to design the topology of a P2P overlay network. 

These clusters are implemented using Newscast protocol which adopts a random approach 

to generate nodes to form an overlay P2P network. Physical parameters are the basis on 

which clusters are designed on the top of Newscast protocol and then the behaviour of 



15 
 

cluster-based overlay P2P networks is observed and conclusions are drawn. Hence, instead 

of using pure Newscast as the protocol for defining overlay graph; a Heterogeneous 

Cluster-based Newscast Protocol (HCNP) has been developed for overlay topology 

generation and maintenance. Such overlay architecture will be beneficial for applications 

needing high resources e.g. audio, video or data sharing applications. 

3.2.1.1 HCNP Components  

HCNP is comprised of the following two components: 

• Peers capability exchange and capability level assignment 

• Clusters-based peers configuration 

These two components of HCNP deal with measuring or calculating the node’s capability 

level values and assigning cluster-ID according to that capability level. Therefore, each 

node will have to maintain the data structure as shown in Figure 3.1  

Node id…………………………. 

Time stamp……………………. 

Capability level………………… 

Cluster ID………………………… 

Figure. 3.1 Node’s Data Structure 

Each node also maintains a cache of neighbouring nodes, as shown in Fig. 3.2; each node 

is identified by its descriptor (id, time stamp, Capability Level, Cluster Id) quite similar 

to the descriptor of Newscast Protocol. Every node maintains its data structure at the first 

index of the cache.  

1/0/3/2 2/5/5/3 6/1/2/5 8/1/3/2 10/2/5/2 

Figure. 3.2. Node’s Cache 

           
Node 



16 
 

A node’s cache view (n neighbour nodes in the cache). For example, in 1/0/3/2, 1 = Node 

Id, 0 = Time Stamp, 3 = Capability Level, 2 = Cluster Id  

    3.2.1.2 HCNP Architecture and Algorithm 

This section enhances the description of HCNP by elaborating its development in order to 

achieve efficient environment through clusters, in heterogeneous P2P overlay networks. 

To develop HCNP over NP, the very first step is to design clusters on the basis of 

capability levels exchanged between nodes. These clusters are designed on architecture- 

based topology. The clusters are formed so as to attain the maximum level of efficiency 

in the context of sharing a node’s physical parameters. These capability levels are based 

on purely physical parameters, where resources of the node, such as, Node’s secondary 

storage, RAM and Processor speed are the main parameters that should be considered. 

It is performed in a way to ensure heterogeneity of the node’s capability, and to increase 

cooperation as well. The layered architecture of HCNP is shown in Figure 3.3. 

 
Figure 3.3 Layered Architecture of HCNP 

   

The following steps are taken in cluster designing:  

Peers Capability  Exchange and Capability Level Assignment  

Each node will be assigned a distinct “Level ID” on the basis of its physical parameter 

(free storage space in this case) exchanged. Different levels of the physical parameter are 



17 
 

termed as capability levels, which are extracted implicitly from the node, where the node 

is unaware of the whole procedure. The capability level measurement procedure is 

embedded in HCNP. There will be a total of ‘N’ levels showing different capabilities 

where each node will have only one particular level at one time instant.  

Each node has to maintain the updated list of ‘c’ neighbors (a fixed parameter). This is 

achieved by using the Newscast protocol. Each node maintains its data structure as 

mentioned above, including the capability levels of neighboring nodes as well as its own. 

After updating the list of ‘c’ neighbors each node compares its capability level with all its 

neighboring nodes. 

A node exchanges its view with its neighboring nodes (depending on the cache size) and 

assigns a capability level to it on the basis of the extracted value of its physical parameter 

at that particular point in time. This capability level of the node is used for comparison 

and assignment of cluster Id.   

The algorithm for capability measurement and assignment of levels is as under: 

N node 

NC cache nodes 

N extract physical parameters of NC 

N Assign Cap_Levels to NC 

Each node willing to join the cluster will show its level and not the original parameters to 

ensure security of the node’s physical resources information. The total number of distinct 

capability levels handled by HCNP, are defined by a threshold value. Threshold value 

defines the total number of nodes with homogeneous capability levels allowed in a 

cluster. Larger threshold values depict decreased number of levels and less heterogeneous 

clusters and vice versa. This value is adjustable according to the required level of 

heterogeneity.  

Cluster-Based Peers Configuration  

On the basis of capability measurement and capability level assignment algorithm, each 

node (peer) can be configured to become a part of a particular cluster. The following steps 

are followed to assign cluster ID to a node: 



18 
 

• Every node maintains a cache where it resides the information related to the neighboring 

nodes. At the first index of the cache the node maintains its own data structure values i.e. 

its node ID, time stamp, capability level and cluster ID (which is initially set to 0). 

• Each node joining the network configures its cache nodes on the basis of predefined 

capability levels arranged in ascending and descending order. A cluster is composed of 

heterogeneous capability levels. 

• Every node assigns a Cluster ID (0 for non-participant and an integral value for participant 

node) to the nodes (node IDs) residing in the cache of a particular node showing its 

participation to a cluster. This is maintained by each node’s data structure and will be 

accessible to every node in the suburbs of a node.  

• The size (s) of a cluster can be configured dynamically according to the cache size which 

is again dependent on the network size.  

• The cluster size is less than or equal to the cache size to avoid cache-miss (occurs when a 

node is not found in the cache), conditionally the degree (size of views exchanged 

between the peers) is half of the cache size. As peer-sampling-service (PSS) is used in NP, 

the cluster size is restricted to one sample size. 

• Each node in the cache maintains only one Cluster ID at a time in its data structure to 

avoid multiple cluster participation. 

• The most important point is that one cluster can never contain all nodes of the same 

capability level, ensuring heterogeneity. 

• Each node will refresh both its neighbor’s list as well as its capability level after each 

cycle, which shows that there could be a change in the capability level of a node after a 

specific period of time. 

• The total number of active/ non-empty clusters formed is less than the total number of 

clusters formed in a cycle, due to a rapid change in data structure (Cluster ID) of a node 

on the basis of rapid changes in its capability level.  

• The overheads (Cluster ID & Capability level) are handled implicitly by maintaining the 

updated data structure in each cycle. 

The Algorithm for assignment of Cluster ID to a node on the basis of its capability 

parameters is as under: 

 



19 
 

for int  i = 1 to cache length 

{ 

N  check capability level of NC 

If  

   Current cluster size < = cache length &  

cluster has not more than ‘n’ nodes of same capability  level 

N Assign Cluster ID to NC 

   else  

Calculate next cluster ID 

N Assign next cluster ID to NC 

} 
Here n= Threshold value (larger value of n shows reduced heterogeneity and vice versa). 

Hence after performing the configuration on its cache, each node maintains a set of 

clusters based on the above conditions discussed earlier. The number of clusters depends 

upon the size of the network and the length of the cache associated with it. The cache 

length can be configured according to the network size.  The rate of change of cluster ID 

associated with a node depends on the rate of change in the capability levels, associated 

with each physical parameter of the node. 

    3.2.2 HCNP with Single Physical Parameter 

The algorithm associated with HCNP is tested on PEERSIM simulator [4]. On the basis 

of observations in the output files, it can be seen that as the node’s capability level 

changes, it is assigned a new cluster ID provided that changed capability level is not 

required in the previous cluster. At each cycle, the capability level is picked and clusters 

are adjusted accordingly, as shown in Figure 3.4. In Figure 3.4 it can also be seen that 

each cluster shows the number of nodes with different capability levels. Hence it would 

be easier for the node to locate its place according to its own capability level, e.g. in 

cluster ID: 6, the number of nodes with the lowest capability level is a maximum, and the 

number of nodes with the highest capability level is a minimum. The new node joining 

the network will, therefore, not become a part of cluster ID: 6, it may become a part of 

cluster ID :1 or cluster ID: 9. 
 



20 
 

1 2 3 4 5 6 7 8 9 10 11 12 13
0

1

2

3

4

5

6

7

8

9

10

CLUSTER ID (1-13)

O
C

C
U

R
AN

C
E 

O
F 

D
IF

FE
R

E
N

T 
C

AP
AB

IL
IT

Y 
LE

VE
L

OCCURANCE OF DIFFERENT CAPABILITY LEVELS NODES IN EACH CLUSTER

 

 

Capability level-1
Capability level-2
Capability level-3
Capability level-4
Capability level-5

 

Figure 3.4 Cluster having Different Capability Levels of Nodes 

The simulations further explain that the total number of clusters developed at any instant 

of time in one cycle depends upon the size of cluster configured according to the network 

size and length of the cache associated to a node.  In Figure 3.5 it can be seen that in a 

network of 8000 nodes, the total number of clusters developed at any instant of time (t) is 

approximately 115, where the cluster size is configured as 30 nodes. Hence, the number 

of clusters formed in a network at any instance of time t, is given as:  

No. of clusters (t) = network size/cluster size 

10002000 4000 8000 16000
0

20

40

60

80

100

120

140

160

180

200

NETWORKS SIZE

N
O

. O
F 

C
LU

S
TE

R
S

NO. OF CLUSTERS AT ANY INSTANT OF TIME (T) WITH DIFFERENT NETWORK SIZES

 

Figure 3.5 Number of Clusters Formed in a Network at any Instant of  Time (t)  

It can be useful at the application level when there is a need to observe a network state. A 

network state provides information related to specific nodes, i.e. the current cluster ID 

and capability level of a node. In addition, a cluster state can also be maintained by 



21 
 

observing the behavior of a particular cluster in the network, e.g. the vacancy for a new 

node with capability levels etc. 

3.2.3 HCNP with Multiple Physical Parameters 

Only level assignment step differs in case of multiple physical parameters. An integral 

capability level is calculated for the said purpose. The following steps show, how a 

capability level is assigned to a node in case of multiple physical parameters: 

• Assign “P” for physical parameters 

• Assign “ L” for cap levels 

• Total possible combinations are LP, where L is a constant value for all the nodes 

in the network.  

• L * P = max no. of capability levels 

Suppose 

Physical Parameter= Pm 

Where ‘m’ is from 1->n 

Capability Level=L 

Where L is from 1->k 

Then, 

ICL= m         

 Eq. 3.1 

Where Value of Pm =L                                                        

Equation 3.1 shows that the cluster is comprised of heterogeneous nodes having diverse 

physical parameters to provide maximum utility out of each node’s capability. An 

integral capability level (ICL) is assigned to a node which is the sum of all capability 

levels (L). These Capability Levels are assigned to the nodes on the basis of their 

physical parameter, e.g. if there are 5 ‘L’ to be assigned, then the capability level for 3.0 

GB RAM is 2, that for 80 GB secondary storage is 3 and capability level for 1000 MHZ 

processor speed is 4. The ICL would then be 9 (2+3+4=9), hence considering all possible 

combinations of these capability levels, ICL could be assigned to each node. 

On the basis of capability measurement and capability level assignment algorithm, each 

node (peer) can be configured to become a part of a particular cluster. The following 

steps are followed to assign cluster ID to a node: 



22 
 

• Every node maintains a cache where it resides the information related to the neighbouring 

nodes. At the first index of the cache, the node maintains its own data structure values i.e. 

its node ID, time stamp, capability level and cluster ID (which is initially set to 0). 

• Each node joining the network configures its cache nodes on the basis of predefined 

capability levels arranged in ascending and descending order. A cluster is composed of 

heterogeneous capability levels. 

• Every node assigns a Cluster ID (0 for nonparticipant and an integral value for participant 

node) to the nodes (node IDs) residing in the cache of a particular node showing its 

participation to a cluster. This is maintained by each node’s data structure and will be 

accessible to every node in the suburbs of a node. 

• The size ‘s’ of a cluster can be configured dynamically according to the cache size which 

is again dependable on the network size. 

• The cluster size is less than or equal to the cache size to avoid cache-miss (occurs when a 

node is not found in the cache), conditionally the degree (size of views exchanged 

between the peers) is half of the cache size. As peer-sampling-service (PSS) is used in 

NP, the cluster size is restricted to one sample size. 

• Each node in the cache maintains only one Cluster ID at a time in its data structure to 

avoid multiple cluster participation. 

• The most important point is that one cluster can never contain all the nodes of the same 

capability level ensuring heterogeneity. 

• Each node will refresh its neighbour’s list and its capability level after each cycle, which 

shows that there could be a change in the capability level of a node after a specific period 

of time. 

• Total number of active/ non-empty clusters formed is less than the total number of 

clusters formed in a cycle, due to rapid change in data structure (Cluster ID) of a node on 

the basis of rapid changes in its capability level. 

• The overheads (Cluster ID & Capability level) are handled implicitly by maintaining the 

updated data structure in each cycle. 

The Algorithm for assignment of Cluster ID to a node on the basis of its capability 

parameters is the same as in HCNP with single physical parameter: 

 



23 
 

 

CHAPTER 4: SECURE-HCNP  
 

4.1 Secure-HCNP Overview 
HCNP is one of many gossip based protocols that are used to design an efficient peer-to-

peer overlay network. The specialty of HCNP is to design an architecture comprised of 

heterogeneous nodes uniformly distributed across a cluster. The nodes are heterogeneous 

in their physical resources such as RAM, secondary storage and processor speed etc. The 

benefit of such architecture is basically to provide an efficient, scalable and self-

configuring overlay topology with a built-in mechanism to configure clusters on the basis 

of nodes capabilities. The purpose of heterogeneous clusters is to provide architecture- 

level resource sharing. This topology is quite helpful for the applications involving file 

search. The resources (e.g. disk space) can easily be shared among the nodes of a cluster. 

A node which is deficient in a resource can make use of the resources available to the 

other node, if required. The architecture suggested and tested by HCNP acts as a 

backbone for the peer-to-peer applications and provides robust resources access to nodes. 

HCNP is Newscast [20] based and hence, preserves all the properties offered by 

Newscast Protocol. 

The Secure-HCNP is an extension of HCNP. HCNP does not have any built in 

mechanism to provide security. The architecture specific information shared among 

nodes may be accessed and altered by any malicious node. HCNP is prone to attacks. 

Secure-HCNP is the first step towards providing security to the architecture so that at 

least, the information related to HCNP architecture is preserved. Secure-HCNP is 

typically based on KAHC-RSA, a new version of standard RSA encryption algorithm, 

having property of dynamic key assignment on the basis of heterogeneous capabilities of 

nodes. This not only retains basic HCNP properties but also decreases standard RSA 

overheads. The research suggests an optimal key size that can be used uniformly across a 

cluster. The optimal key size not only ensures confidentiality of architecture specific 

information exchanged between nodes but also reflects cluster wise need of heterogenic 

security level. The heterogeneous security is to maintain HCNP basic property i.e. 



24 
 

heterogeneity and to provide each node with the optimal security level based on its 

physical capability. This mechanism also reduces standard RSA computational 

overheads. The network size does not impact on the efficiency of the protocol. Two 

major aspects related to security are covered by secure-HCNP. One is confidentiality and 

the other is integrity. The third major characteristic i.e. authentication is already 

implemented on the gossip-based protocols. The issue of detection of nodes not behaving 

according to the prescribed protocol and their removal from the network always requires 

a central database maintaining blacklisted nodes [14]. 

   

4.2 Secure-HCNP Characteristics 
Secure-HCNP has the following basic characteristics: 

• To ensure confidentiality, KAHC-RSA is used which is a modified version of standard 

RSA.   

• MD-5 hashing algorithm is used to maintain system integrity and prevent the architecture 

from attacks in the presence of malicious peers in the network. The purpose is also to 

reduce the size of the message for fast transportation. Each node maintains a security 

identifier depicting its participation level (true/false) 

• One of the problems is how to ensure the identity of a node. Authentication can be 

achieved through public key cryptography and a trusted certificate authority (CA) 

[14].CA can not be a performance bottleneck because it does not participate in the 

protocol and it can even be offline.  

 

4.3 Secure-HCNP Architecture and Layers 
Secure HCNP resides under the application layer and above the transport layer of 

standard TCP/IP model.  Figure 4.1 presents its position in the TCP/IP model. 

 

 

 

 

 

 



25 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1 TCP/IP Layers Showing HCNP and Secure-HCNP Layers 

 

Secure-HCNP resides on the top of standard HCNP protocol and can be used by the 

applications running on the top of it. All applications using HCNP protocol for defining 

overlay architecture can replace it with Secure HCNP to make underlying architecture 

secure. The applications do not have to compromise much on efficiency. 

4.3.1 Standard HCNP Protocol Layer: 

It consists of standard HCNP Protocol that has inherent capability of Cluster-based 

heterogeneous resource sharing. It is used to design a p2p overlay graph on the top of 

which a p2p application runs. HCNP is discussed in detail above.  

4.3.2 Secure-HCNP Protocol Layer: 

This layer ensures secure transmission of HCNP architecture-specific information. This 

leads to the correct configuration of HCNP clusters. The applications do not need to 

embed built-in security in it. This partial implementation of security also increases the 

efficiency of application as compared to the applications having complete built-in 

security implementations. 

 

 

 

Physical Layer 

Data Link Layer and its protocols 

Network Layer and its protocols 

Transport Layer and its protocols 

Standard HCNP Protocol for P2P Overlay 

Secure-HCNP with KAHC-RSA Support for P2P 
Overlay design 

Application Layer  
(P2P Applications) HCNP and 

Secure HCNP 
layers 



26 
 

4.4 Standard RSA Implementation on HCNP 
Standard RSA algorithm is a public key encryption algorithm which is used for 

encrypting a smaller piece of information that needs higher levels of security. It is 

computationally quite slow as compared to symmetric key cryptographic techniques and 

other public key encryption techniques. 1024 bit RSA gives security equivalent to 128 bit 

AES (a symmetric key encryption technique). The reason to choose RSA is that it does 

not require any key exchange procedure as AES, DES etc. require. HCNP is completely 

decentralized architecture and does not have any central authority to ensure secure key 

exchange procedure. It is computationally slow but not bad for exchanging smaller piece 

of information as in the case of HCNP where only physical capability related information 

is required to be exchanged between nodes.  

4.4.1 RSA Algorithm 

Basic algorithm of Standard RSA is given as under: 

There are three basic steps: 

1‐ To generate keys 

2‐ To encrypt the message 

3‐ To calculate digital signatures 

In key generation procedure, the very first step is to select two prime numbers randomly 

e.g. ‘a’ and ‘b’ in such a way that ‘a’ should not be equal to ‘b’. Then their modulus is 

computed as n=a*b. After modulus calculation, Phi is calculated as  � = (a - 1)(b - 1). 

Afterwards, a public exponent is selected in such a way that it is less than  � and greater 

than 1 and gcd(e, �) should be 1. Finally, d = e - 1 mod � is calculated.  Here, (n, d) 

will serve as private key and public key will be (n,e). In encryption phase, the following 

procedure is done: c = me mod n, decryption: m = cd mod n. Then the last step is to 

compute digital signature. For that purpose use the following procedure. Y = H(m)d mod 

n, verification: m' = Ye mod n, if m' = H(m) signature is correct. H depicts a hash 

function. 

 

 



27 
 

4.4.2 RSA Usage 

RSA is used in many security protocols e.g. PGP, IPSEC, SSH and SSL etc. Many other 

implementations and usages of RSA are found in literature. 

4.4.3 Standard RSA Implementation on HCNP Examples: 

All Prime numbers mentioned below are in decimal format and can be converted to 

binary following the standard decimal to binary conversion method.  

4-bit key: 

Message   = Capability Level= 2 (Ranging from 1-5) 

RSA bits = 4  

Prime Numbers: p= 11, q= 13 

Binary format: p=11=1011, q=13=1101 

Modulus N=p*q= 143  

PHI= (p-1)*(q-1) = 20  

Public Key = 65537 (generic key is used for experimentation)     

Private Key = 113     

Encrypted Value= 84  

Hashed (Sender side) = 9Px09zs97BvRZB7I9cvQnA 

Hashed (Receiver side) = 9Px09zs97BvRZB7I9cvQnA 

Un-Hashed = 84 

Decrypted Value= 2   

8-bit key: 

Message   = Capability Level= 2 (Ranging from 1-5) 

RSA bits = 8  

Prime Numbers: p= 199, q= 179 

Modulus N=p*q= 35621  

PHI= (p-1)*(q-1) = 35244 

Public Key = 65537 (generic key is used for experimentation)     

Private Key = 7325     

Encrypted Value= 22985  

Hashed (Sender side) = lK3AwFv34fgldEJRh45GtQ  

Hashed (Receiver side) = lK3AwFv34fgldEJRh45GtQ  



28 
 

Un-Hashed = 22985 

Decrypted Value= 2   

32-bit key: 
Message = Capability Level= 4 (Ranging from 1-5) 

RSA bits = 32  

Prime Numbers: p= 3574654261, q= 3219421103  

Modulus N=p*q= 11508317363792269883  

PHI= (p-1)*(q-1)= 11508317356998194520 

Public Key = 65537 (generic key is used for experimentation)     

Private Key = 10059614819572997993     

Encrypted Value= 8540222292004936118  

Hashed (Sender side) = 3TIhS1F62QhJOnqWL6/rvg==  

Hashed (Receiver side) = 3TIhS1F62QhJOnqWL6/rvg== 

Un-Hashed = 8540222292004936118 

Decrypted Value= 4  

64-bit key: 

Message   = Capability Level= 5 (Ranging from 1-5) 

RSA bits  = 64  

Prime Numbers: p= 17960315784160238351, q =   12280551836681366809  

Modulus N=p*q=   220562588990546357854056256785900291959  

PHI=(p-1)*(q-1)=   220562588990546357823815389165058686800  

Public key = 65537 (generic key is used for experimentation)     

Private key = 90537784290151793920629287262438146273 

Encrypted Value=   213531348473650248320001238533207768943 

Hashed (Sender side) = m/DWvESFf75gyCIfXPZa5w== 

Hashed (Receiver side) = m/DWvESFf75gyCIfXPZa5w== 

Un-Hashed = 213531348473650248320001238533207768943 

Decrypted Value= 5  

128-bit key: 
Message   = Capability Level= 3 (Ranging from 1-5) 

RSA bits = 128  



29 
 

Prime Numbers:  

p= 179523711197359786574182004961688360397   

q= 202755979532338453339980130046634393311 

Modulus=p*q=36399505913101320498735109688833014519832773427256320525740

840095364414104467 

PHI= (p-1)*(q-1) = 

363995059131013204987351096888330145194504937365266222858266779603560913

50760  

Public key = 65537 (generic key is used for experimentation)     

Private key= 

689922734413452863627092379197527665838555370546612908791276673670664459

4033        

Encrypted Value= 

280742175521265007166468911370206815831964387689153855602235554567152914

56653  

Hashed (Sender side) = WSDtRk3+EjsLVpcvHdKKmQ== 

Hashed (Receiver side)= WSDtRk3+EjsLVpcvHdKKmQ== 

Un-Hashed= 

280742175521265007166468911370206815831964387689153855602235554567152914

56653  

Decrypted Value= 3  

 

256-bit key: 

Message = Capability Level= 3 (Ranging from 1-5) 

RSA bits = 256 

Prime Numbers:  

p= 

727920785051886270807753528469007013776895979840703300644099562951304041

73553   

q=887330203128467162169408532712578470933990249590396353058097707686697

74232147 



30 
 

Modulus N=p*q =  

645906098061523527748500756474434093082815327174545767079073693051577260

993340233495968449855592375089650814668818914252600825566662621346927922

4699808291  

PHI= (p-1)*(q-1) = 

645906098061523527748500756474434093082815327174545767079073693051577260

993324080986086646321262603469038998813971805390306514570125599374221542

4521402592  

Public key = 65537 (generic key is used for experimentation)     

Private key = 

694030966103002682821145662311818496954267899654111615083210544649466266

676074305858373462836921319808500942925063621093205132307372090695831072

821150145   

Encrypted Value =  

623603180477908450697684883988206247127703768237935269202613208447848368

729701905958013759970369386308371968370320941806533251869986321203991750

2988535794  

Hashed (Sender side) = WV/qNZoi47II76zvZ5Y6cw==  

Hashed (Receiver side) = WV/qNZoi47II76zvZ5Y6cw== 

Un-Hashed = 

623603180477908450697684883988206247127703768237935269202613208447848368

729701905958013759970369386308371968370320941806533251869986321203991750

2988535794  

Decrypted Value= 3 

 

512-bit key: 

Message   = Capability Level= 5 (Ranging from 1-5) 

RSA bits = 512 

Prime Numbers:  



31 
 

p=763182136906418626408013366724056508358709082246769074784805685550302

983994889792732212382475640980570500696148082383512328995801111602765349

2030760210931  

q=120824127149719375479131271759463236295002897492606027644851317304163

559607503846982226862117042813682599881518459227975493277588176995100730

97990371219581    

Modulus N=p*q= 

922108155479756641467452189130083738851110354735686940976234067275448576

797862158845824593208485095932957484338797443549069858881158013493642077

942386170680098320387962671160707229349629401053561777670493396662808365

100839573750998116007451594319811425323355336382823523575075008728328471

25877773303277439911  

PHI=(p-1)*(q-1)= 

922108155479756641467452189130083738851110354735686940976234067275448576

797862158845824593208485095932957484338797443549069858881158013493642077

942386170482955979547601433040774620917760513922687971953210461539476479

241645715744005289752003493955204513583705385249556057248348831560040315

88151183282146009400  

Public key = 65537 (generic key is used for experimentation)     

Private key =  

183585870770707610324966296348159552993412696775733451422218015927034393

244404007638743294508206258018115404361698415298659742110278922746922224

590571047690031732016068838950761054880982333424832272732128264982637122

558936071212105848920215169890710720558466024791128788851739560159839572

17483202457626091073 Modulus 

Encrypted Value=  

369501769380048266090850126616078393134124592216601624167915327193630744

207302818154470141333872762560672280493858906692305061129212419217382079

103721703100888142076363708408812719178448089221669244069797860157658098

529905003412075163861390591606153887652356422252005605593740345358813873

92993257834184649296  



32 
 

Hashed (Sender side) = YXVlNbzkWC0iob2EJfQ4+w==  

Hashed (Receiver side) = YXVlNbzkWC0iob2EJfQ4+w== 

Un-Hashed= 

369501769380048266090850126616078393134124592216601624167915327193630744

207302818154470141333872762560672280493858906692305061129212419217382079

103721703100888142076363708408812719178448089221669244069797860157658098

529905003412075163861390591606153887652356422252005605593740345358813873

92993257834184649296  

Decrypted Value= 5 

 

1024-bit key: 

Message   = Capability Level= 2 (Ranging from 1-5) 

RSA bits = 1024 

Prime Numbers:  

p=134991421493486297926396457637276737373677945726749841344028556799916

437673159300499033729860139959882762804993639748201699709844291711832800

351246625148046720619458016354750125211017915834723764805082069940138285

852476470872780268505237118259419480176298354466705935501453527161646342

565076220559541743039973   

q=156044941459878769995069974160656580743976331277739640395262069481189

726843040302318125019310764361564308876298224898045765631155467563566465

933037208668263580841692862215551934953517095860599928967612665210803688

209791529636554682717486108934956673850088409653033963886144659928827781

048601679745244780245857    

Modulus N=p*q=  

210647284645368901205434880808100152822275449228991440870046070922100479

567365865720997127867707490792221617555095976076296471663171547702224820

872685218562888250279302553533699602881378414058495165581816985415300334

489669505133501305149138437231435518742045167844580936221029152417728531

023075572052069662798424647055928175721134901441895712070072105529532007

352424079587270808085639486924649140317793898840057318183030407439812273



33 
 

448631733793417841491827624698179899291615746153861681559121289013468791

859720737016173577811154584724834642325912528215191707614646316980908651

16931161112590391359465415463909518641861  

PHI=(p-1)*(q-1)= 

210647284645368901205434880808100152822275449228991440870046070922100479

567365865720997127867707490792221617555095976076296471663171547702224820

872685218562888250279302553533699602881378414058495165581816985415300334

489669505133501305149138437231435518742045167844580936221029152417728531

023075572052069662795514283426394525041920237123916378888895562759487112

535031173324459746440477490896477552826084855625586601370111760977337620

038634141039425178648989286535076884680106960450841079913771172060231854

132773385506753837188474579631485130098680256271430167350778675783509657

29332974022116267745787515159122995356032  

Public key = 65537 (generic key is used for experimentation)     

Private key = 

869176781265554698322683376842492688499621999488897347148600920071935115

806446395292308822771647461129324958714147029167525090668703937159705754

923044033199204123480308780178876765967046870160340916987883931153478438

938255147141331201282176727590899689919035877268284736452548993649421690

941912144198249511164120611626495070904009498802958133255033615841745959

865772462737085991614415110368577442288018472897311880960459319216498149

302644985578854033755888778320879673393571940203494893423287613844513755

505814713959082238315871886475520833747121700732718095961023078648346453

5340682110961260240499046110334681789185          

Encrypted Value=  

927311203560640988445856161047728252748084129424994693120608708722772701

513165371897358712118883062122473397738554237356947030001055515390178207

870510810367205699737124075006676919675977325613209545720166025842679482

731282453465529061370253512460321416560325359574288017792762010801946151

994763901734239848227366773871886016669874627890411819216752200223591137

022949889545179061725053418682902565529220513443625457984195940139826961



34 
 

379089681966464408890898831651191507123142722983148114148195601373144018

944525211320065410440710005846060215881459297188180476636392789338926504

4941078587881505336545621249059475759800  

Hashed (Sender side) = pcIOG0EdfF+pZjGlIMPKVA==  

Hashed (Receiver side) = pcIOG0EdfF+pZjGlIMPKVA==  

Un-Hashed = 

927311203560640988445856161047728252748084129424994693120608708722772701

513165371897358712118883062122473397738554237356947030001055515390178207

870510810367205699737124075006676919675977325613209545720166025842679482

731282453465529061370253512460321416560325359574288017792762010801946151

994763901734239848227366773871886016669874627890411819216752200223591137

022949889545179061725053418682902565529220513443625457984195940139826961

379089681966464408890898831651191507123142722983148114148195601373144018

944525211320065410440710005846060215881459297188180476636392789338926504

4941078587881505336545621249059475759800  

Decrypted Value= 3 

 

4.5 KAHC-RSA Implementation on HCNP 
 

4.5.1 Why Secure-HCNP? 

KAHC-RSA provides security to the architecture configured by HCNP. HCNP is used to 

design an overlay efficiently just like many other p2p topology generation protocols. It 

lacks in security in the sense that the architecture specific information, that is exchanged 

by nodes mutually, is available to each and every node and can be accessed and tempered 

by any malicious node at any time. This may cause the protocol properties to be 

destroyed at maximum. So, a malfunctioning HCNP protocol may cause wrong cluster 

configuration. Another major problem that a malicious node may create is that, the nodes 

are sharing their resources related information with each other. If a malicious node gets 

that information in some way or the other, it can cause critical problems to the resources 

of other nodes.  So, Secure-HCNP comes into play. It not only makes the architecture 



35 
 

specific information secure by using KAHC-RSA encryption, but also prevents nodes 

from misuse of their resources by any malicious node. 

 

4.5.2 Why KAHC-RSA, Why not Standard RSA? 

As symmetric key encryption techniques are not suitable for HCNP due to key sharing 

problem, the public key encryption technique is used to work with HCNP. As RSA is 

used widely and commonly in internet related protocols, it is considered as suitable for 

HCNP. As RSA is very high in its computational complexity, it is modified according to 

the HCNP protocol to match best with the situation. HCNP is very efficient and scalable 

and KAHC-RSA is designed to meet the purpose of HCNP. The detailed description of 

KAHC-RSA is given as under:  

 

4.5.3 Basic Functionality and Steps: 

KAHC-RSA uses key assignment on the basis of heterogeneous capabilities of resources 

a node shares. Heterogeneity is the key attribute of HCNP and is required to be 

maintained in Secure-HCNP. To retain this major property of the protocol along with the 

other, KAHC-RSA uses dynamic key assignment technique. The protocol major 

functions are described in steps as under:  

1. Determining key size combinations 

2. Dynamic allocation of keys 

3. Newscast exchanges and updates between nodes 

4. Level Assignment 

5. Self Cache Encryption 

6. Cache decryption 

7. Cluster Configuration 

 

4.5.3.1 Determining key size combinations: 

The Standard RSA uses a fixed size key i.e. 512, 1024 or 2048 bits depending on the 

criticality of the problem area and the level of security required. In HCNP, very high 

security is not required; so this is not practical to use high bit values for keys that cost 

high in terms of computation. It’s a good idea to change the bit length according to 



36 
 

physical capabilities of nodes. The node that is low in its capability does not need to be so 

much secured. Its risk of being misused is not as much critical as the other with very high 

capability. The approach is to use combination of key sizes. Key size should change 

according to physical capability of node. This seems quite compatible with the major 

property of HCNP i.e. heterogeneity. Heterogeneous key sizes are used according to 

heterogeneous capabilities. Now the question is, what key sizes should be used for what 

values of physical capabilities. So, the very first step is, to find the best key size 

combination that matches with nodes capabilities. If estimated capabilities of nodes 

participating in the overlay are ranging between x to y, where x and y are integers, then 

the key sizes allocation may be from x + n to y + n. Here, n can be any constant. This is 

mentioned in detail as under: 

 

4.5.3.2 Dynamic allocation of keys: 

Heterogeneous key sizes are allocated dynamically because nodes are rapidly changing 

their capabilities. This is quite possible that a node has 20 GB storage space available at 

one time instant and just after a newscast update, the node is found very low in its 

capability, say, 10 GB or the node has left the network. So, instead of static allocation of 

key for all nodes, it is a good idea to use dynamic allocation criteria. What dynamic 

allocation means? After a short interval of time, when each node exchanges and updates 

its cache view with the other nodes in its cache, to get freshest list of nodes, some 

information is exchanged between nodes. This information is stored in encrypted form in 

the cache. Dynamic allocation means that this encryption will be done using dynamic key 

sizes. If a node found in the network is low in its capability, it will be encrypted with 

smaller key size. If a node is high in capability, it is encrypted with higher key size to 

provide the node with higher security. Node ids are not important. The node encrypted 

with higher key sizes values may be encrypted with lower key size values just after a 

short span of time if it becomes low in its capability. As the key size changes 

dynamically with each Newscast update view method, it makes it very hard to determine 

the key value in such a short instance of time. This dynamicity makes KAHC-RSA 

secure enough to prevent malicious node attacks. 



37 
 

 The detail of encryption and decryption procedure is given under the heading cache 

encryption.  

 

4.5.3.3 Optimal Key Size Values: 

While using heterogeneous key size values, it is very important to decide what minimum 

and maximum key sizes are affordable for the network. Affordability or suitability 

depends on some factors given under the heading factors involved in determining key 

combinations. The minimum value is taken as ‘x’ and the maximum value is taken as 

‘x+(CL-1)’ then the average key value can be calculated using the following equation: 

Range = 2x    when   x1     x1 + (CL-1)                                                             Eq.  4.1 

(Deduced for base 2 key sizes e.g. 2, 4, 8, … ,1024 etc only) 

Where,  

x1= An integer showing minimum key size in bits. 

CL= Total number of capability levels 

For example, for CL=5 (All nodes in the network comprise of maximum 5 different 

levels depicting their capabilities), there should be 5 different key sizes to encrypt each 

capability level. If x1=4, then 2x means 24 =16 bits, and x1+ (CL-1) = 4+ (5-1)=8, and 

28=256 bits . So, X ranges from 16 bits to 256 bits to accommodate 5 CL values. Increase 

x1 by 1, because it is an integer, and get next key size used for next level.    

 The above equation is deduced through experimentation. The detail of experiments is 

given in next chapters under simulations heading. 

The optimal key size value can be obtained by simply finding average of the key size 

values used.  

Optimal Key Size K  [  /CL                                                                Eq. 4.2 

Where, 

 x1= integer 

CL= total number of capability levels.  

If x1=8 then x1+1=9, x1+2=10, x1+3=11, x1+4=12 for CL=5. K= 

8+9+10+11+12/5=50/5=10 bits. So approximately, 10 can be used as optimal key size for 

uniform security provision.  



38 
 

Optimal key value can be used for uniform level of security regardless of the capability 

of the node. This can cost much if network bandwidth is the issue. All nodes will have 

equal level of security even if they are heterogeneous in their capabilities. E.g. if a node 

has a physical resource (e.g. 5 GB hard disk space) that can be shared and another node 

also has a physical resource that is lesser than the previous one (e.g. 0.5 GB) then both 

will be handled in the same manner. It could be a better approach if higher resource level 

node is given higher security because it is on higher risk as compared to the node that has 

almost nothing to share.  

Optimal key size is good in the sense that it give an average view if the nodes capabilities 

in the network. The tendency of nodes about resources is well handled using Optimal 

Key Value.  

4.5.3.4 Newscast exchanges and updates between nodes: 
The first step is simple conventional newscast exchange and update procedure between 

nodes. Nodes get refreshed list of peers through this. 

4.5.3.5 Level Assignment: 

Nodes extract its physical capability and on the basis of that capability, each node is 

assigned a level, just as in standard HCNP. This level information is stored in the cache. 

4.5.3.6 Self Cache Encryption: 

Each node picks its capability level. The protocol assigns number of bits to calculate keys 

and sets the security Id value to 1, showing that the node is now using KAHC-RSA 

encryption. For example, its capability level is 5 (very low in capability let’s say), it will 

be encrypted using any public key. After encryption, it will be hashed using MD-5 

hashing. This makes the length of the message short for transportation. After encryption, 

the node will save encrypted hashed information in its cache. This information is 

accessible for other peers/ nodes when required. The flow chart of the encryption 

procedure is shown in Figure 4.2. 



39 
 

 
Figure 4.2 Encryption using KAHC-RSA 

 

 

4.5.3.7 Cache decryption: 

When a node refreshes its cache using simple newscast protocol, it also extracts the other 

node’s physical capability related information in encrypted format. It then decrypts it 

using its own private key. This is the key that is calculated using dynamic key size 

allocation procedure. The encrypted message is first hashed and checked for integrity and 

then decrypted. The decryption procedure is shown in Figure 4.3. 

 
Figure 4.3 Decryption using KAHC-RSA 

 

4.5.3.8 Cluster Configuration: 

After extracting original capability level of nodes, clusters will be configured. Each node 

will be assigned a cluster identifier through standard cluster configuration procedure of 

HCNP. 



40 
 

4.5.4 Factors involved in determining key combinations: 

This is very important to find the best key combination for KAHC-RSA. There are many 

factors that are important in determining key combination suitable for that particular 

situation. Those factors are: 

• Network bandwidth  

• Level of security required 

• Physical capabilities of nodes i.e. overall trend of nodes physical resources.  

If available network bandwidth is sufficient enough to handle higher key size values 

without compromising much on efficiency, KAHC-RSA key sizes can be adjusted to 

higher bits key sizes combinations. This will provide higher security to the nodes and the 

architecture as well. More secure clusters will be configured and applications specifically 

designed for such architecture, will have to accommodate a bit less security measures in 

it.  

If available network bandwidth is the main issue and fluctuates abruptly at different 

timings, the smaller key sizes combination can give more suitable results. But, less 

security will be provided to the architecture and hence to the node. So, key combination 

is basically a tradeoff between the level of security required and the availability of 

bandwidth. Higher security will definitely cost more than lower security in terms of time 

especially. 

Another important thing is, the physical capabilities of nodes play very important role in 

determining the best suitable key combinations. If overall trend of nodes is such that 

many nodes have very low in sharing their physical resources than no need to implement 

higher security key combinations and vice versa. 

4.5.5 Key Combination Examples: 

Some key combinations are used for experimentation. These dynamically assigned key 

size combinations according to heterogeneous physical resources of nodes are given 

below:  

Keys between 4 and 64: 

Number of capability levels is 5, so 5 key sizes are used in this key combination i.e. 4, 8, 

16, 32, 64.The higher the node in its capability (1 is the highest and 5 is the lowest level), 



41 
 

the higher bits are used to calculate key and vice versa. The Table 4.1, 4.2, 4.3, 4.4 and 

4.5 show five different combinations. 
Node Id Cap Level RSA bits 

1 5 4 

2 2 32 

3 3 16 

4 4 8 

5 1 64 

6 4 8 

7 3 16 

8 5 4 

9 1 64 

10 2 32 

Table 4.1 Keys between 4 and 64 (combination 1) 

Keys between 8 and 128 (8, 16, 32, 64, and 128): 
Node Id Cap Level RSA bits 

1 5 8 

2 2 64 

3 3 32 

4 4 16 

5 1 128 

6 4 16 

7 3 32 

8 5 8 

9 1 128 

10 2 64 

Table 4.2 Keys between 8 and 128 (combination 2) 

 

Keys between 16 and 256 (16, 32, 64, 128, and 256): 
Node Id Cap Level RSA bits 

1 5 16 

2 2 128 

3 3 64 

4 4 32 

5 1 256 

6 4 32 

7 3 64 

8 5 16 

9 1 256 

10 2 128 

Table 4.3 Keys between 16 and 256 (combination 3) 

 



42 
 

Keys between 32 and 512 (32, 64, 128, 256 and 512): 
Node Id Cap Level RSA bits 

1 5 32 

2 2 256 

3 3 128 

4 4 64 

5 1 512 

6 4 64 

7 3 128 

8 5 32 

9 1 512 

10 2 256 

Table 4.4 Keys between 32 and 512 (combination 4) 

 

 

Keys between 64 and 1024 (64, 128, 256, 512 and 1024): 
Node Id Cap Level RSA bits 

1 5 64 

2 2 512 

3 3 256 

4 4 128 

5 1 1024 

6 4 128 

7 3 256 

8 5 64 

9 1 1024 

10 2 512 

Table 4.5 Keys between 64 and 1024 (combination 5) 

4.6 Secure-HCNP Data Structure 
Each HCNP node maintains the following information in its cache: 

1-Node Id    2- Time Stamp    3- Cluster Id     4- Capability level.  

Let’s suppose that the cache is comprised of 6 nodes, as shown in Figure 4.4.  

 

 
Figure 4.4 HCNP Node Cache 

The first entry in the cache i.e. ‘1/0/3/4’ contains a node’s information in the following 

format: Node Id=1, Time Stamp=0 (depicting freshest node, it increases when node 

remains for the longer time period), Capability Level=3 (can be Integral Capability Level 

if multiple physical parameters are used), Cluster Id=4.  

2/2/5/11 6/1/2/5 8/1/3/2 1/0/3/4 10/2/5/2 4/1/3/11 



43 
 

The Secure-HCNP maintains some extra information in its fields and its cache looks as in 

Figure 4.5 and Figure 4.6. 

1- Node Id, 2- Time Stamp, 3- Encrypted Capability Level, 4- Cluster Id, 5- Security 

Identifier (1/0). 

 

 
Figure 4.5 Single Entry of Secure HCNP Node’s Cache 

 
 

Figure 4.6 Secure HCNP Cache 

Secure-HCNP stores the architecture specific information in hashed encrypted format. 

The other protocol related information is stored in the normal format just as in case of 

HCNP. The Figure 4.5 shows one entry ‘1/0/3/4/1’ of the cache. Here, ‘3’ shows 

capability level of a node which is finally stored in the cache in encrypted format. The 

Figure 4.7 shows the node and Figure 4.8 shows the overall view of an HCNP cache. The 

public key encryption technique KAHC-RSA is used for the purpose. Each and every 

node maintains capability related information in encrypted format. For smaller RSA bits, 

the hashing may not look as useful as in case of larger bits. For example, when 8 bit 

standard RSA is used, the length of hashed entry in the cache may seem longer as 

compared to 512 bit standard RSA, which seems quite compressed from original. The 

examples are given as under: 

 

8 bit Standard RSA:  

Original Message: 2 

Encrypted Message: 22985 

After MD-5 Hashing (The format in which it is stored in the cache):  

lK3AwFv34fgldEJRh45GtQ 

512 bit Standard RSA:  

Original Message: 5 

Encrypted Message: 

369501769380048266090850126616078393134124592216601624167915327193630744

1/0/505DGluQ3mZHO0lo/+eoLA 
/4/1 

1/0/3/4/1 6/1/2/5/1 8/1/3/2/1 10/2/5/2/1 4/1/3/11/1 



44 
 

207302818154470141333872762560672280493858906692305061129212419217382079

103721703100888142076363708408812719178448089221669244069797860157658098

529905003412075163861390591606153887652356422252005605593740345358813873

92993257834184649296  

After MD-5 Hashing (The format in which it is stored in the cache): 

YXVlNbzkWC0iob2EJfQ4+w    

Result: in both above regardless of the encrypted message length, the generated hash 

function is of equal length for every message. This includes more security to the node 

because this is not known to any of the node’s that which RSA is used. 

 
Figure 4.7 Secure-HCNP Node Data Structure  

 
Figure 4.8 Overall View of Secure HCNP Node’s Cache 

 

 

 

 

 



45 
 

4.7 Secure-HCNP Algorithm 
The algorithm showing HCNP procedure is given under: 

Set TCL value 

for  i=1 to cache length 

{ 

Self: 

Exchange view with neighbors 

Update neighbors list in the cache 

Allocate key size 

Encrypt level with the allocated key size (use any public key) 

Calculate hash using MD-5 

Replace level info in the cache with hashed and encrypted level  

Publish cache (only cap level info) 

Other: 

Extract neighbor node hashed encrypted level 

Calculate hash of the encrypted level 

If (received level values==calculated level value) 

{ 

Level info is correct 

Decrypt level info 

Use this info for cluster configuration 

Assign cluster Id to the node 

} 

else 

{ 

Set Security Id of neighboring node=0 (depicts the node as malicious) 

Remove the node from the cache 

} 

} 

   

 



46 
 

4.8 Secure-HCNP Procedure  
The schematic diagram of Secure-HCNP is drawn for better understanding. Sender and 

receiver nodes with flow of information, is shown in Figure 4.9 (a) and (b). 

Get updated cache of 
fixed size view 

containing neighbour list

Determine self 
Capability level

Encrypt Cap-level 
using KAHC-RSA

Calculate  hash of 
encrypted cap level

Publish cap level

Follow join a cluster 
procedure as node 2

Perform the same procedure 
until it publishes its cap level

Select a node  from its cache 
to communicate with

Perform KAHC-RSA Decrypt 
procedure

Become a part of the cluster 
by cluster joining procedure

End

End

Start Start

(b) Node 2 Willing to Join an HCNP Cluster Running 
Secure HCNP at Application Level

(a) Node 1 Willing to Join a Secure HCNP 
Cluster  

Figure 4.9 Secure HCNP Procedure 



47 
 

4.9 Secure HCNP Efficiency 
Standard RSA with 1024 bits encryption cannot be used in case of HCNP. The major 

reason is that HCNP is a protocol for designing highly scalable and robust p2p overlay 

network with support of heterogeneity. If standard RSA is used with it, the network will 

become extremely slow due to computational complexity of 1024 bit RSA. Also all nodes 

do not require very high levels of security. To overcome this problem, KAHC-RSA is 

designed and tested. The Table 4.6 represents some factual results by comparing KAHC-

RSA with Standard RSA. It is very clear in the Table 4.6 that at 1024 bits key size 

Standard RSA needs almost 2.5 sec for encryption and decryption of capability level, 

whereas, KAHC-RSA requires only 0.5 sec for that. This is at least 5 times faster than 

standard RSA. The range column of Table 4.6 shows the minimum and maximum key 

sizes and the key sizes in between those minimum and maximum. This depicts 

heterogeneous key assignment in KHAC-RSA. The last column of Table 4.6 shows bit 

size reduction ratio in case of KAHC-RSA. Bit size reduction ratio is the ratio between 

the maximum key size used in a combination and the optimal key size achieved.   
 

 Optimal 

Key Size 

(bits) 

Range = minimum to maximum bits used 

for KAHC-RSA 

Standard 

RSA 

KAHC-

RSA 

Bit size 

Reduction 

Ratio  

Average 

Total 

Time(µ 

sec) 

4 4 to 64 248 -  

8 4 to 64, 8 to 128 450 -  

16 4 to 64, 8 to 128, 16 to 256 765 -  

32 4 to 64, 8 to 128,16 to 256,32 to 512 1345 -  

64 4 to 64, 8 to 128,16 to 256, 32 to 512, 64 to 

1024 

3085 -  

128 8 to 128,16 to 256, 32 to 512, 64 to 1024 9736 -  

256 16 to 256, 32 to 512, 64 to 1024 37100 -  

512 32 to 512, 64 to 1024 237025 -  

1024 64 to 1024 2309810  

2.5 sec 

-  

24  4 to 64 (Comb 1) - 977 2.6 

48 50 8 to 128 (Comb 2) - 3009 2.6 

98 100 16 to 256 (Comb 3) - 10269 2.6 

194 200 32 to 512 (Comb 4) - 55595 2.6 

390 400 64 to 1024 (Comb 5) - 498029  

0.5 sec 

2.6 

Table.4.6 Comparison of KAHC-RSA with original RSA 



48 
 

Bit size for each key combination is reduced to 2.6th of the maximum key size used. So, 

KAHC-RSA is computationally faster from original RSA by ratio of 2.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



49 
 

CHAPTER 5: SIMULATIONS & RESULTS 

 
5.1 PeerSim Overview  

PeerSim [4] is an open source P2P systems simulator developed at the Department of 

Computer Science, University of Bologna, Italy. It has the following features: 

• It has been developed with Java 

• Available on Source Forge (peersim.sf.net) 

•  Its aim is to cope up with P2P systems 

• It is  highly Scalable (up to 1 million nodes) and Highly configurable 

The experiments are done on the above P2P simulation platform, PeerSim, to see the 

effect of all changes done. PeerSim has been developed to cope with the high dynamicity 

of the systems (nodes), and thus to accomplish extreme scalability.  

    PEERSIM is an extremely scalable simulation environment that supports dynamic 

scenarios such as churn and other failure models. Protocols are needed to be specifically 

implemented for the PEERSIM Java API. However, with a reasonable effort they can be 

evolved into a real implementation. Testing in specified parameter-spaces is supported as 

well. 

PeerSim [4] engine supports two types of simulations: 

a. Cycle driven (CD Simulator) 

b. Event driven (ED Simulator) 

In cycle driven simulator, the concept of cycles or rounds is used. One round or cycle 

means one complete run of the set of nodes. A new cycle starts when all the nodes are 

done with the experiment. In Event driven simulator, experiment is triggered by an event 

or message generated by any of the network nodes. 

A configuration file is required to provide the Simulator with network configuration 

parameters such as network size, base protocols used etc. An example of the 

configuration file is given as under: 

# PEERSIM EXAMPLE 1  

random.seed 1234567890 

simulation.cycles 3 



50 
 

overlay.size 100 

overlay.maxsize 100  

protocol.0 example.SimpleNewscast.SimpleNewscast 

protocol.0.cache 40 

init.0 peersim.dynamics.WireRegularRandom 

init.0.protocol 0 

init.0.degree 40 

The Secure-HCNP is tested and assessed for its efficiency and dynamicity on PeerSim (a 

p2p simulation test bed). Effects of change in different configuration parameters, is also 

studied.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



51 
 

5.2 Simulations 
The snapshot of running simulations on PeerSim is shown in Figure 5.1. 

 
Figure 5.1 Running Simulations on PeerSim 

5.3 Experiments and Results 
Different experiments are done to study Secure HCNP characteristics. All the 

experiments used 3 cycles and initially 500 nodes overlay. The cache and the degree size 

used is 40. 

 

 



52 
 

The following experiments are done using PeerSim: 

 

1-Dynamic assignment of key sizes 

The Figure 5.2 (a) and (b) shows dynamic assignment of key sizes. Key sizes range from 

4 to 1024 bits and five different key combinations are used i.e. 4 to 64 bits, 8 to 128bits , 

16 to 256 bits , 32 to 512 bits and 64 to 1024 bits. 

The CL =5. There are five differnet key combinations are used in five different runs. The 

slight decrease in key sizes can be seen in Figure 5.2 (a). For CL=1, 5 combinations are 

tried ranging from 64 bit to 1024 bits. Similarly for CL=2, combinations are from 32 to 

512 and so on. With the increase in physical capability of the node, the key size assigned 

increases. The Lower value of level depicts the node is higher in its physical capability, 

e.g. CL=1 means the node with highest resources and CL=5 means the node with lowest 

physical capability.  This can be reversed dependingon the choice of secure-HCNP users. 

This distribution is uniform across all clusters configured. 

1 2 3 4 5
0

200

400

600

800

1000

1200

Levels

K
ey

 S
iz

es

Dynamic Assignment of Key Sizes in KAHC-RSA

 

 

4n64
8n128
16n256
32n512
64n1024

 
Figure 5.2 (a) Dynamic Assignment of Key Sizes in KAHC-RSA 



53 
 

1 1.5 2 2.5 3 3.5 4 4.5 5
0

200

400

600

800

1000

1200

Levels (1-5)

K
ey

 S
iz

es
 (4

-1
02

4)

Dynamic Assignment of Key Sizes in KAHC-RSA

 

 

4n64
8n128
16n256
32n512
64n1024

 
Figure 5.2 (b) Dynamic Assignment of Key Sizes in KAHC-RSA 

2- Key size distribution across a cluster 

The Figure 5.3 shows the assignment of correct key sizes to randomly selected 20 nodes. 

Other parameters are the same for this experiment as of the above. 

The node with node Id=1 is assigned 4 bit key and the node 19 is assigned 64 bit key. 

Key sizes range  for this experiment is 4 to 64 bits. The important assessment is the 

heterogeneity of key sizes is totally according to heterogeneity of nodes capabilities. So, 

basic property of HCNP is preserved. 

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

Cluster Node IDs

Al
lo

ca
te

d 
K

ey
 S

iz
es

(4
bi

ts
 to

 6
4b

its
)

Key Sizes distribution across a cluster

 
Figure 5.3 Key Size Distribution across a Cluster 

 

 

 



54 
 

3- Level distribution across a cluster 

Similarly, for the range 8 bit to 128 bits, the same results are drawn. Level distribution is 

also studied across a cluster of 40 nodes. The 20 nodes are shown in Figure 5.4 (a) and 

Figure 5.4 (b). This also presents heterogeneity applied to nodes. As CL = 1 to 5, so each 

node is assigned with 5 distinct values depicting its physical capability. It can be noticed 

that the level is shown just by a digit and any node acting as a malicious node, cannot 

guess the exact value of nodes physical capability.  

0 2 4 6 8 10 12 14 16 18 20
1

1.5

2

2.5

3

3.5

4

4.5

5

Cluster Node IDs

Le
ve

ls
 D

is
tri

bu
tio

n

Levels distribution across a cluster

 
Figure 5.4 (a) Level Distribution across a Cluster 

 

0 2 4 6 8 10 12 14 16 18 20
1

1.5

2

2.5

3

3.5

4

4.5

5

Cluster Node IDs

Le
ve

ls
 D

is
tri

bu
tio

n

Levels distribution across a cluster

 
Figure 5.4 (b) Level Distribution across a Cluster 

 

 

 



55 
 

4- Average Encryption, decryption and hashing time of KAHC-RSA 

The Figure 5.5 (a) shows the comparison of average encryption, decryption and hashing 

time for KAHC-RSA. The decryption process takes the longest in KAHC-RSA because 

of involvement of modulus calculation time. It is necessary to get the private key.This is 

observed for network size=1000 to 10000. Cluster sizes vary from 40 nodes to 200 nodes 

per cluster. 

64 128 256 512 1024
0

1000

2000

3000

4000

5000

6000

7000

Key Sizes(<=64 to <=1024)

E
H

D
 T

im
e(

u 
se

c)

Average Encryption Time, Decryption and hash time EHD for KAHC-RSA

 

 

Encryption Time
 Hashing Time
Decryption Time

 
Figure 5.5 (a) Average Encryption, Decryption and Hashing Time of KAHC-RSA 

 

5- Average Encryption, decryption and hashing time of Standard RSA 

The Figure 5.5 (b) shows the same as above for Standard RSA.  

0 200 400 600 800 1000 1200
0

2

4

6

8

10

12

14

16 x 10
4

Key Sizes variations  4-1024 bits

A
ve

ra
ge

 T
im

e(
u 

se
c)

Average EHD Time(u sec) FOR STANDARD RSA WITH DIFFERENT KEY SIZES (4-1024)

 

 

Average Encryption Time
Average Hashing Time
Average Decryption Time

 
Figure 5.5 (b) Average Encryption, Decryption and Hashing Time of Standard-RSA 

 



56 
 

The Figure 5.6 shows that the total time is composed of maximum of modulus calculation 

time in KAHC-RSA as well as original RSA. Encryption and decryption time is 

negligible as compared to modulus calculation time. 

64 128 256 512 1024
0

50

100

150

200

250

300

350

400

450

500

Key Sizes(<=64 to <=1024)

Ti
m

e(
m

s)

Comparison of avarage modulus calculation time and total time in KAHC-RSA

 

 

Modulus Calculation Time
Average Total Time

 
Figure 5.6 Comparison of Modulus Calculation Time with Total Time in KAHC-RSA 

6- Average efficiency of Standard RSA 

0 200 400 600 800 1000 1200
0

500

1000

1500

2000

2500

Key Sizes(4-1024 bits)

A
ve

ra
ge

 T
ot

al
 T

im
e(

m
s)

Average Efficiency of Standard RSA

 
Figure 5.7 (a) Average Efficiency of Original RSA 

The Figure 5.7 (a) demonstrates the efficiency of Standard RSA in terms of total time 

required to encrypt and decrypt the capability levels. It is found that there is an 

exponential rise in time with increase in key sizes. The key sizes taken for 

experimentation are 4, 8, 16, 32, 64, 128, 256, 52 and 1024 bits.  The maximum time for 

1024 bit (as in case of standard RSA), is 2500 ms, Whereas, the maximum time for 64 to 

1024 bit KAHC-RSA is, 500 ms as shown in Figure 5.7 (b). So, KAHC-RSA is proven to 



57 
 

be five times faster than standard RSA, And more suitable for HCNP because of its 

compatibility with HCNP property i.e. heterogeneity. 

7- Average efficiency of KAHC-RSA 

In Figure 5.7 (b), average efficiency of KAHC-RSA is shown. It is quite clear that there 

is an exponential rise in average total time with increase in key sizes. The difference from 

standard RSA is that the maximum time for 1024 bit standard RSA is 2500 ms whereas in 

case of KAHC-RSA, it is 500ms which proves KAHC-RSA to be five times faster than 

original RSA. Figure 5.7 (c) shows the same fact. 

0 200 400 600 800 1000 12000

50

100

150

200

250

300

350

400

450

500

Key Sizes in bits

Av
er

ag
e 

To
ta

l T
im

e 
(m

s)

Average Efficiency of KAHC-RSA

 
Figure 5.7 (b) Average Efficiency of KAHC- RSA 

8- Comparison of average efficiency of original vs KAHC-RSA 

0 200 400 600 800 1000 1200
0

500

1000

1500

2000

2500

Key Sizes(4-1024)

A
ve

ra
ge

 T
ot

al
 T

im
e(

m
s)

Average Efficiency of Original RSA vs KAHC-RSA

 

 

Average Efficiency/Total time of Standard RSA
Average Efficiency/Total time of KAHC-RSA

 
Figure 5.7 (c) Comparison of Average Efficiency of Original RSA with KAHC-RSA 



58 
 

9- Cluster wise average total time in KAHC-RSA 

2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

Cluster No.

A
ve

ra
ge

 T
ot

al
 T

im
e 

(m
s)

Cluster Wise Average Total Time in KAHC-RSA

 

 

Avg Time with keys between 4 and 64
Avg Time with keys between 8 and 128
Avg Time with keys between 16 and 256
Avg Time with keys between 32 and 512
Avg Time with keys between 64 and 1024

 
Figure 5.8 Cluster-Wise Average Total Time in KAHC- RSA 

In Figure 5.8, cluster wise performance of KAHC-RSA is observed. There are total of 20 

clusters, each composed of nearly 40 nodes. The average total time for 64 to 1024 bits 

KAHC-RSA is fluctuating around 50ms as shown in the Figure 5.8. For all other 

categories, KAHC-RSA performance is below 100ms. This means regardless of nodes 

capabilities, the average total time is almost the same in all the 20 clusters for one range 

of key size values. The clusters are picked randomly from the overlay. 

10- Cluster wise average key sizes in KAHC-RSA 

0 2 4 6 8 10 12 14 16 18 200

50

100

150

200

250

300

350

400

450

500

Cluster No.

A
ve

ra
ge

 K
ey

 S
iz

e

Cluster Wise Average Key Sizes in KAHC-RSA

 

 

Keys between 4 and 64
Keys between 8 and 128
Keys between 16 and 256
Keys between 32 and 512
Keys between 64 and 1024

 
Figure 5.9 Cluster-Wise Average Key Sizes in KAHC- RSA 



59 
 

Similarly, the average key size is studied in the Figure 5.9 in 20 clusters. Main axis 

shows clusters and y axis shows average key sizes for five different ranges of key sizes in 

KAHC-RSA. These factual values are found very close to the values obtained 

theoretically. The values for individual clusters match the average of total, say 500 

clusters. This shows optimal key value for a cluster can be taken for uniform security 

implementation.     

11-Optimal Key Size in KAHC-RSA 

  
64 128 256 512 1024

0

50

100

150

200

250

300

350

400

Key Ranges(4-64,8-!28,16-256,32-512,64-1024)

Av
er

ag
e 

Ke
y 

Si
ze

Average Key Sizes in KAHC-RSA

 
Figure 5.10 Optimal Key Size in KAHC- RSA 

The Figure 5.10 shows the average key sizes i.e. optimal key size values for five different 

key size ranges (key combinations) in KAHC-RSA. The CL=5, 20,000 nodes, more than 

500 clusters, overlay with degree=40 and cluster size=40. This optimal key size can be 

used for uniform key size implementations. Optimal key size will provide security 

somewhat between maximum and minimum key sizes. For example, instead of using 64 

to 1024 key size ranges, the optimal key size i.e.  390 bit value can be used. 

 

 

 

 

 

 

 

 



60 
 

12- Effect of network size on efficiency of KAHC-RSA 

   
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

990

995

1000

1005

1010

1015

1020

1025

1030

1035

Network Size

Ti
m

e(
m

s)

Performance of KAHC-RSA with different network sizes

 
Figure 5.11(a) Effect of Network Size on Efficiency of KAHC- RSA 

      
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Network Size

Ti
m

e(
m

s)

Performance of KAHC-RSA with different network sizes

 
Figure 5.11 (b) Effect of Network Size on Efficiency of KAHC- RSA 

The effect of network size on the performance of KAHC-RSA is shown in Figure 5.11 (a) 

and Figure 5.11 (b). The experiment takes 1000, 2000, 3000, 4000, 5000 and up to 

10,000 nodes with five different key ranges. One of the key size ranges i.e. 32 to 512 is 

shown in Figure 5.11(a) and Figure 5.11(b). The average time remains the same for all 

network sizes, means that increase in network size does not have any impact on the 

performance of KAHC-RSA. The average total time remains the same for 1000 as well as 

for 10,000 nodes overlay. Figure 5.11 (a) shows enlarged view of y-scale in Figure 5.11 

(b).      

13- Comparison of Original RSA on HCNP and High Speed RSA 

Figure 5.12 demonstrates the results of comparison between Standard RSA when 

implemented with HCNP and a high speed implementation of RSA by RSA laboratories 



61 
 

[31]. In Figure 5.12, average total time (required for encryption + decryption) in 

milliseconds, is drawn against the key sizes (in bits) for both original RSA as well as a 

High Speed RSA implementation. The Figure 5.12 shows that for key sizes 128 bits  and 

256 bits, there is not a big difference in total time required for encryption and decryption 

in both cases whereas with key sizes 512 bits  and 1024 bits, the average total time 

increases exponentially. This shows that the average increasing trend is found in both 

implementations of RSA when key size is increased. Secondly, when both of them are 

compared with each other, original-RSA is proven to be more efficient in terms of total 

time required in encryption and decryption when implemented on HCNP. Originally, the 

standard RSA implementation is supposed to be lesser efficient than the high speed 

implementation of RSA if HCNP is not used as an underlying topology.   

128 256 512 1024
0

500

1000

1500

2000

2500

3000

Key Sizes 128 to 1024 bits

To
ta

l T
im

e(
m

s)
(E

nc
ry

pt
io

n+
 D

ec
ry

pt
io

n)

Comparison of Standard RSA on HCNP and High Speed-RSA

 

 
High Speed RSA
Standard-RSA

 
Figure 5.12 Comparison of Original RSA on HCNP and High Speed RSA 

14- Comparison of KAHC-RSA and High Speed RSA 

When KAHC-RSA is compared with a high speed implementation of RSA, it is found 

that KAHC-RSA is much faster than the high speed RSA in terms of total time required 

for encryption and decryption. The Figure 5.13 shows that with increase in key size from 

128 bits to 1024 bits, total time also increases. But this increasing trend is more 

significant in case of higher key size values. Secondly, KAHC-RSA is proven to be much 

more efficient than a high speed RSA implementation in terms of computational time 

required to encrypt and decrypt a fixed length message.  



62 
 

128 256 512 1024
0

500

1000

1500

2000

2500

3000

Key Sizes 128 to 1024 bits

To
ta

l T
im

e(
m

s)
(E

nc
ry

pt
io

n+
 D

ec
ry

pt
io

n)

Comparison of  KAHC-RSA and High Speed-RSA

 

 

High Speed RSA
KAHC-RSA

 
Figure 5.13 Comparisons of KAHC-RSA and High Speed RSA 

This also shows that the selection of encryption or decryption algorithm depends on the 

usage scenario and level of security required because 1024 bit RSA or KAHC-RSA gives 

higher security than 128 bit but efficiency will be compromised in the former case.           

15-Comparing Computational Complexity of KAHC-RSA with original RSA and CRT 

RSA 

When 1024 bit original RSA is compared with one of its fast variants CRT RSA [6] 

designed for mobile phones (based on Chinese Remainder Theorem) and KAHC RSA, it 

is found that KAHC-RSA is much faster than original RSA. The column showing 

decryption time in table 5.1, demonstrates average decryption time in ms for all the three 

variants of RSA. The decryption time for KAHC-RSA is 498 ms which is less than the 

decryption time of CRT RSA (especially design to work on mobile phones) i.e. 558 

milliseconds. 

Similarly, the results presented under the column heading ‘Computational Complexity’ in 

Table 5.1, show that KAHC-RSA is reduced in its complexity by the factor of 2.5 when 

compared with original RSA. KAHC-RSA requires lesser computation than CRT RSA 

and so emerged as a faster variant of RSA than CRT RSA.  
 Encryption Time Decryption Time (ms) Computational 

Complexity 

Original RSA 29 2098 O ( K3 )  

CRT RSA - 558 2.O ( (K / 2 )3) 

KAHC-RSA - 498 (K / 2.5 )3 

Table 5.1 Comparison of Decryption Time   



63 
 

Here, K is the number of bits used for key calculation. Figure 5.14 demonstrates the 

results of Table 5.1 in graphical form. Here, for key size of 512 bits, only Standard RSA 

and KAHC-RSA is drawn. There are no experiments found in the related research on 

CRT RSA for 512 bits key size. 

  
512 1024

0

500

1000

1500

2000

2500

Key Size 1024 bits

To
ta

l T
im

e(
m

s)
(E

nc
ry

pt
io

n+
 D

ec
ry

pt
io

n)

Comparison of KAHC-RSA with Standard RSA and CRT RSA

 

 

Standard RSA
CRT RSA
KAHC RSA

 
Figure 5.14 Comparison of Decryption Time 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



64 
 

 

CHAPTER 6: CONCLUSION & FUTURE WORK 

 
6.1 Conclusion  
The concept of heterogeneous clusters given by HCNP and HCNP with multiple physical 

parameters can be used and implemented with any gossip-based protocols working on the 

basis of Peer Sampling Services e.g. Newscast used with HCNP and HCNP with multiple 

physical parameters. Whereas, the attack model described in previous relevant researches 

on gossip-based protocols security, can completely destroy the basic properties of any 

gossip-based protocol. To stop the spread of a poisonous cache and to prevent HCNP 

from other types of worms and threats, encryption is a good idea. It is concluded that 

Secure-HCNP can be used to prevent from the attacks described. It uses KAHC-RSA 

which is a modified version of Original RSA and specifically designed for HCNP. It not 

only preserves the basic property of HCNP (i.e. heterogeneity) and the concept of 

heterogeneous security levels and dynamic key assignment, makes it more appropriate in 

the situations where smaller pieces of information are required to be encrypted. KAHC-

RSA can also be used with other gossip based protocols using Peer Sampling Services. 

The same is experimented with the Newscast protocol in the current research without 

compromising on efficiency. KAHC-RSA uses java which is proven to be the fastest 

language for implementation of RSA. KAHC-RSA is proven to be five times faster than 

original RSA and a bit more efficient than CRT which is a faster variant of RSA. Hence, 

KAHC-RSA joined the group of faster variants of RSA just as it is modified to use on 

mobile phones. KAHC-RSA can also be used with Cooperative Heterogeneous Clusters 

without compromising on efficiency. The experiments done for testing KAHC-RSA for 

efficiency have shown that KAHC-RSA can equally be used for encrypting any smaller 

piece of information which is not specific to peer to peer network protocol. 
    

6.2 Limitations 
The current research only deals in architecture-related security, not the application-level 

security. It makes the overlay architecture secure, not the application related data 

exchanged between them. It is assumed that the application using this protocol will have 



65 
 

embedded security specific to the application. Moreover, only smaller pieces of 

information (e.g. physical capability level or id type information) can be encrypted using 

KAHC-RSA. Otherwise, the key size may become a bottleneck. 

Similarly, in Secure-HCNP only architecture-related information is encrypted using 

KAHC-RSA. The whole cache possessed by each node is not encrypted. The current 

research does not handle cache attacks. HCNP cache attacks can also cause 

inaccessibility to the correct information e.g. if the node id is changed by malicious node 

or time stamp is modified to some incorrect value. These are basically Newscast related 

security issues. This problem may disappear if a secure Newscast protocol is used for 

HCNP.  
 

6.3 Recommendations for Future Work 
HCNP is a new protocol and has a lot of room for future work regarding security 

implementations. Secure HCNP is the first step towards making this protocol secure. In 

the current research, only Standard/ original RSA is implemented and tested with 

modification. Other faster variants of RSA (e.g. CRT, R-Prime, Multi power, Multi prime 

and Re-balanced RSA) should be implemented and tested with java to give better and 

more efficient results on HCNP.  Moreover, other public key cryptographic techniques 

can be used with HCNP and the efficiency may be calculated. Node authentication can be 

implemented with more sophisticated methods as compared to the general method used 

for gossip-based protocols.  Similarly, the whole cache encryption techniques may be 

introduced with faster and more secure implementations.  

 

 

 

 

 

 

 



66 
 

REFERENCES 
[1] Shen Guicheng, Liu Bingwu and Zheng Xuefeng, U. (1971).  “Research on Fast 

Implementation of RSA with Java”, International Symposium on Web Information 

Systems and Applications, pp. 186 – 189, WISA 2009. 

[2] Irum Kazmi, Saira Aslam, M. Y. Javed, “Cluster-based Peers Configuration Using 

HCNP in Peer-to-Peer Overlay Networks”, CICSyn 2010.  

[3] Irum Kazmi, Saira Aslam, M. Y. Javed, “Cluster-based Peers Configuration with 

Multiple Physical Parameters using HCNP in Peer-to-Peer Overlay Networks”, ICCAIE 

2010.  

[4] A. Montresor, M. Jelasity, “Peersim: Scalable P2P  Simulator”, NAPA-WINE 

Project, 2009. 

[5] C. L. Wu, D. C. Lou, and T. Chang, “Computational Complexity Analyses of 

Modular Arithmetic for RSA Cryptosystem”, The 23rd workshop on Combinatorial 

Mathematics and computation theory, 2006. 

[6] K. Hansen, T. Larsen and K. Olsen, “On the Efficiency of Fast RSA Variants in 

Modern Mobile Phones”, International Journal of Computer Science and Information 

Security, Vol. 6, Issue No. 3, 2009 

[7] Jason Hinek and David R.Cheriton, “On the security of multi-prime RSA”, Journal of 

Mathematical Cryptography, Volume 2, Issue 2, pp 117-147, 6-7-2008 

[8] V. Vishnumurthy and P. Francis, “A Comparison of Structured and Unstructured P2P 

Approaches to Heterogeneous Random Peer Selection”, USENIX Annual Technical 

Conference, 2007. 

[9] C. Reddy, D. Leonard, and D. Loguinov, “Optimizing Capacity-Heterogeneous 

Unstructured P2P Networks for Random-Walk Traffic”, International Conference on Peer 

to Peer Computing, IEEE ,2009. 

[10] X. Xiao, Y. Shi, Z. Chen and B. Zhang, "On Constructing High Performance 

Overlay for Layered Streaming in Heterogeneous Networks," Advanced Information 

Networking and Applications Workshops, pp. 578-584, 2008. 

[11] Vishnumurthy and Francis, “On Heterogeneous Overlay Construction and Random 

Node Selection in Unstructured P2P Overlay Networks”, International Conference on 



67 
 

Computer Communications, IEEE, pp. 1-12, 2006. 

[12] G. P. Jesi, A. Montresor and M. V. Steen, “ Secure Peer Sampling”, Journal of 

Computer Networks, Vol. 54,Issue 12, pp. 2086-2098,  2010. 

[13] G. P. Jesi and A. Montresor, "Secure Peer Sampling Service: The Mosquito Attack", 

IEEE International Workshops on Enabling Technologies, pp. 134-139, 2009. 

[14] M. Jelasity, A. Montresor, O. Babaoglu, “Detection and Removal of Malicious Peers 

in Gossip-Based Protocols”, FuDiCo, 2004. 

 

[15] D. C. Lou and C. L. Wu, “Parallel Exponentiation Using Common- Multiplicand-

Multiplication and Signed- Digit-Folding Techniques”, International Journal of Computer 

Mathematics, vol. 81, no. 10, 1187-1202, 2004. 

[16] J.C. Ha and S. J. Moon, “A Common-Multiplicand Method to the Montgomery 

Algorithm for Speeding up Exponentiation,”, Information Proceeding Letters, vol. 66, 

105-107, 1998. 

[17] L. Zhou, L. Zhang, F. McSherry, N. Immorlica, M. Costa, and S. Chien, “A First 

Look at Peer-to-Peer Worms: Threats and Defenses”, International Symposium on Peer 

to Peer Systems, MIT, University of Cambridge, 2005. 

[18] M. Jelasity, W. Kowalczyk and M. V. Steen, “Newscast Computing”, Technical 

Report, University of Amsterdam, 2003.  

[19] PeerSim, A peer-to-peer simulator by sourceforge.net accessed on 23-06-2010. 

[20] Spyros Voulgaris,  M´ark Jelasity,  M. V. Steen, “A Robust and Scalable Peer-to-

Peer Gossiping Protocol”, International workshop on agents and peer-to-peer computing, 

vol. 2872, pp. 47-58, 2004. 

[21] R. Subramanin, B. D. Goodman, “Peer to Peer computing: The evolution of a 

Disruptive Technology”, Idea Group Publishing, 2005. 

[22] A. Bakker and M. V. Steen, “Puppet Cast: A Secure Peer Sampling Protocol”, 

European Conference on Computer Network Defense, 2008 

[23] G. P. Jesi, D. Gavida, C. Gamage, and M. van Steen. “A Secure Peer Sampling 

Service as “Hub Attack” countermeasure”. Technical Report UBLCS-2006-17, Dept. of 

Computer Science, University of Bologna, Italy, May 2006. 



68 
 

[24] G. P. Jesi, D. Hales, and M. van Steen. “Identifying Malicious Peers Before It’s Too 

Late: A Decentralized Secure Peer Sampling Service”. International Conference on Self- 

Adaptive and Self-Organizing Systems IEEE, June 2007. 

[25] E. Bortnikov, M. Gurevich, I. Keidar, G. Kliot, and A. Shraer. Brahms: “Byzantine 

Resilient Random Membership Sampling”, ACM Symposium on Principles of 

Distributed Computing , July 2008. 

[26] G. P. Jesi, A. Montresor and M. V. Steen, “Secure Peer Sampling”, Journal of 

Computer Networks, Vol. 54, pp. 2086-2098, 2010 . 

[27] Saira Aslam, “Cooperative Heterogeneous Clusters”, MS Final Thesis, Department 

of Computer Engineering, NUST,2010 

[28] C. Wang and Bo Li, “Peer to Peer Overlay Networks: A Survey”, April 20, 2003. 

[29] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma and Steven Lim, “A Survey and Comparison 

of Peer to Peer Overlay Network Schemes”, IEEE Communications Survey and 

Tutorials, March 2004. 

[30] Jorge Ardenghi and Javier Echaiz, “Peer-to-Peer Systems: The Present and the 

Future”, Journal of Computer Science & Technology, Vol. 7, Issue No. 3, October 2007. 

[31] C. Kaya Koc, “High Speed RSA Implementation”, Technical Report by RSA 

Laboratories, RSA Data Security Inc, CA, 2005. 

[32] J.Saigeetha and V.Selvi, “Speed and Security Enhancement through Public Key 

Cryptography”, Journal of Engineering Science and Technology, Vol. 2, Issue no.8, pp. 

3551-3556, 2010. 

[33] Challa Narasimham and Jayaram Pradhan ,“Evaluation of Performance 

Characteristics of Cryptosystem using Text Files”, Journal of Theoretical and Applied 

Information Technology,Vol. 4, Issue. 1 ,pp. 56-60, JATIT 2008 . 

[34] R. Biswas, S. Bandyopadhyay and A. Banerjee “A Fast Implementation of The RSA 

Algorithm Using GNU MP Liberary”, Naional Workshop on Cryptography, 2003. 

[35]  S. Subasree and N. K. Sakthivel,  “Design of a New Security Protocol using Hybrid 

Cryptography Algorithms.”, International Journal of Research and Reviews in Applied 

Sciences,  Vol. 2, Issue. 2 , IJRRAS 2010. 


	Front_Page.pdf
	initial_pages.pdf
	Thesis_Final.pdf

