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ABSTRACT 

 

The Theory of Screws is well known to do kinematic computations.  Novel 

mathematical methods and applications of screw theory were developed gradually over a 

reasonably long period of time.  One of the important usage of the matrix of this theory is the 

geometric decomposition of the end effector twists into practically implementable joints 

which are combined together into serial chains.  Thereby, calculating and predicting the Single 

DOF joints orientations, locations and positions for a serial manipulator given the 

instantaneous end effector twists.  Mathematically this design will have multiple solutions, 

which will be narrowed down considering the structural constraints and further reduced on the 

basis of user‟s requirements.   
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Chapter 1 - INTRODUCTION 

 

1.1 Introduction  

Scientists often have the feeling that, through their work, they are learning about some 

aspect of themselves.  Physicists see this connection in their work; so do, for example, 

psychologists and chemists.  In the study of robotics, the connection between the field of study 

and us is unusually obvious.  And, unlike a science that seeks only to analyze, robotics as 

currently pursued takes the engineering bent toward synthesis.  Perhaps it is for these reasons 

that the field fascinates so many of us. 

The study of robotics concerns itself with the desire to synthesize some aspects of 

human function by the use of mechanisms, sensors, actuators, and computers.  Obviously, this 

is a huge undertaking, which seems certain to require a multitude of ideas from various 

classical fields [1]. 

Currently, different aspects of robotics research are carried out by experts in various fields, 

design of serial manipulators is one of them.  It is generally a very well studied topic, 

however, very little published work is available on the selection of types of joints and their 

locations in the working space of the mechanisms.  

Research on kinematic twists, freedoms, constraints of serial and parallel mechanisms 

has been done by large number of researchers but geometric decomposition of the end effector 

twists into practically implementable joints which are combined together into serial chains 

(include parallel mechanisms but these are not been studied here).   

Screw theory, as a theoretical tool, plays an important role in the kinematic analysis of 

mechanisms and robot manipulators. The principal screws are the basic and important 

elements of the screw system. In robotics practice, the twist of an end-effector is easily 

obtained by the linear combination of the joint screws. 

The theory of screws is analogous to vector analysis in that both consist of an algebra 

with a geometric entity as a fundamental element.  The vector is a fundamental element for 

vector analysis, and the screw is the fundamental element for the theory of screws. 
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1.2 Robot 

Robots can be found today in the manufacturing industry, agricultural, military and 

domestic applications, space exploration, medicine, education, information and 

communication technologies, entertainment, and many other similar fields. 

The word robot is mainly used to refer to a wide range of mechanical devices or mechanisms, 

the common feature of which is that they are all capable of movement and can be used to 

perform physical tasks. Robots take on many different forms, ranging from humanoid, which 

mimic the human form and mode of movement, to industrial, whose appearance is dictated by 

the function they are to perform. Robots can be categorized as robotic manipulators, wheeled 

robots, legged robots, swimming robots, flying robots, androids and self reconfigurable robots 

which can apply themselves to a given tasks.  

Although the appearance and capabilities of robots vary greatly, all robots share the features 

of a mechanical, movable structure under some form of control. The structure of a robot is 

usually mostly mechanical and takes the form of a mechanism having as constituent elements 

the links connected by joints. 

Serial or parallel kinematic chains are concatenated in the robot mechanism. The serial 

kinematic chain is formed by links connected sequentially by joints. Links are connected in 

series as well as in parallel making one or more closed-loops in a parallel mechanism. The 

mechanical architecture of parallel robots is based on parallel mechanisms in which a member 

called a moving platform is connected to a reference member by at least two limbs (also called 

legs or chains) that can be simple or complex. The robot actuators are integrated in the limbs 

usually closed to the fixed member, also called the base or the fixed platform as shown in Fig 

1.2 ahead. The moving platform positions the robot end-effector in space and may have 

anything between two and six degrees of freedom. Usually, the number of actuators coincides 

with the degrees of freedom of the mobile platform, exceeding them only in the case of 

redundantly-actuated parallel robots. 

1.3 Historical Remarks on Screws 

 Since the discovery (attributed to Giulio Mozzi, in the early part of the 19
th

 century) 

that any three-dimensional rigid body displacement can be accomplished by means of a 

translation about a unique axis and a rotation about the same axis [2], the concepts of screws 
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and screw displacements have emerged as some of the most convenient means of describing 

spatial displacement.  In 1900, R.S. Ball published his monumental “Theory of Screws” [3].  

The theory was developed by Ball as an important tool in the analysis of the kinematic 

characteristics of mechanisms.  After the first decade of the 20
th

 century, the theory of screws 

received little attention.  It was until 1948 that Dimentberg [4] applied the algebra of the 

theory of screws to the analysis of spatial mechanisms.  However, it was Phillips and Hunt [5] 

in the 1960s who applied the theory of screws to the study of instantaneous kinematics of 

three bodies in relative motion.  Hunt further developed screw theory in aspects of kinematic 

geometry. Screw theory reveals the nature of the rigid body motion; therefore it plays a very 

important role in the robotics and kinematics. Hunt proposed various kinematic structures for 

parallel robots based on the screw theory analysis; he also studied the special configurations 

of the serial robots using screw theory. Mohamed and Dufy [6] used screw theory to analyze 

the instantaneous kinematics of the parallel robots.  Lipkin and Dufy [7] proposed a new 

method for hybrid twist and wrench control for a robotic manipulator based on the duality of 

twist and wrench. Huang and Fang [8] analyzed the kinematic characteristics of three degrees 

of freedom parallel robot using reciprocal screw theory. Hai-Jun Su, Denis V. Dorozhkin,and 

Judy M. Vance presented A Screw Theory Approach for the Conceptual Design of Flexible 

Joints for Compliant Mechanisms [9] 

1.4 Definitions and Mathematical Preliminaries 

  A few definitions and mathematical preliminaries for better understanding of the 

discussion ahead.   

1.4.1  Robot 

"A robot is a reprogrammable multifunctional manipulator designed to move 

material, parts, tools, or specialized devices through variable programmed motions for 

the performance of a variety of tasks."(Definition based on Robotics Institute of 

America (RIA)). 

1.4.2 Law Zero 

 A robot may not injure humanity, or, through inaction, allow humanity to 

come to harm. 
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1.4.3 Law One 

 A robot may not injure a human being, or, through inaction, allow a human 

being to come to harm, unless this would violate a higher order law. 

1.4.4 Law Two 

 A robot must obey orders given it by human beings, except where such orders 

would conflict with a higher order law. 

1.4.5 Law Three 

 A robot must protect its own existence as long as such protection does not 

conflict with a higher order law. 

Isaac Asimov proposed these four refined laws of "robotics" to protect us from 

intelligent generations of robots. Although we are not too far from that time when we 

really do need to apply Asimov‟s rules, there is no immediate need, however, it is 

good to have a plan.  

1.4.5 Serial Kinematic Chain  

A serial kinematic chain is a single open-loop kinematic chain of rigid bodies 

(or links) connected by a series of joints.  Almost all existing industrial robot 

manipulators are serial chains, and in most cases simple lower pairs (revolute or 

prismatic pairs) are used.   

 

 

 

 

 

 

 

 

 

 

 

Figure - 1.1 Serial Kinematic Chain  
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 1.4.6 Parallel Kinematic Chain 

A parallel kinematic chain is a single or multiple closed-loop kinematic chain 

of rigid bodies (or links) connected by a series of joints, one end is connected to the 

base and the other to the moving platform.  Examples of parallel actuated kinematic 

chains are Florida Shoulder and the spatial Stewart Platform.  Figure 3 shows an 

RPUR 5leg parallel manipulator.     

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 Figure - 1.2 Parallel Kinematic Chain 

1.4.7 Difference between Serial and Parallel Devices 

A comparison between general serial and parallel devices in terms of some 

necessary and desirable performance and control characteristics was presented in great 

detail in [10].  These characteristics are; 

 Range of motion or workspace 

Legs, Limbs 

or Chains 
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 Rigidity or stiffness and strength 

 Complexity of end-effector positioning formulation 

 Complexity of system dynamics 

 Precision positioning 

 Load carrying distribution through system 

 Fabrication (economics) 

 Compactness  

Chart 1 illustrates a performance chart which indicates, in a relative manner, 

which characteristics or criteria tend to be favorable for serial and parallel devices.  

This chart is a modified version of the performance chart presented in [10] 

 

Range of Motion (Working Volume) 

        
 

  

  

 

 

  

 

  

Ease of Computation for The End-Effector Positioning 

  
  

  
 

  

  
  

  
 

  

Ease of Computation for System Dynamics 
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Load Carrying Distribution Through System 

  
  

  

  
  

  
 

  

Fabrication (Economics) 

    
 

  

  
  

  
 

  

Compactness 

            

 

Chart 1.1 Performance Chart Serial and Parallel Kinematic Chains 
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Chapter 2- THE DECOMPOSITION OF INSTANTANEOUS TWISTS; DESIGN AND 

SELECTION OF JOINTS IN SERIAL ROBOTIC CHAINS 

 

2.1 Introduction 

 This study is directed to the problem of identifying the limitations on type, direction 

and location of kinematic pairs needed to allow specified instantaneous kinematic freedom of 

the end effector of a serial kinematic chain.  This report is restricted to the use of single degree 

of freedom joints i.e. prismatic (P) and revolute (R) joints. 

 If a number of end effector twists of a desired serial manipulator are given then this is 

enough to predict / design the number, type, location and orientation of the joints for this 

manipulator.  The number of such joints is restricted to be the same as the number of given 

linearly independent twists.  In principle, the range of numbers of given twists is between one 

and six, but the most interesting cases are those where the number of such twists (and hence 

joints) is two and three.  The cases of twist numbers higher than this are simple extension of 

the arguments derived in the two joints case.   

2.2 Screw Theory 

 While we go into the details of the study it is pertinent here to have a look at the screw 

theory at a glance. 

 

 

 

 

 

 

 

 

 

 

 

Figure- 2.1   Simple Screw  
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2.2.1 Introduction 

The theory of screws is analogous to vector analysis in that both consists of an 

algebra with a geometric entity as a fundamental element.  The vector is a fundamental 

element for vector analysis, and the screw is the fundamental element for the theory of 

screws. 

2.2.2 Screw 

A classical result in kinematics that will have far reaching implications for us is 

Charles Theorem.  This result, also attributed to Mozi states that “every rigid body 

displacement can be expressed as a rotation about some fixed axis in space, followed 

by a pure translation parallel to that axis”. 

In the sense of rigid body motion, a screw is a way of describing a 

displacement.  It can be thought of as a rotation about an axis and a translation along 

that same axis. Any general displacement can be described by a screw, and there are 

methods of converting between screws and other representations of displacements, 

such as homographic transformations. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure- 2.2 Rotation and Translation about Same Axis 

 

 

 

http://en.wikipedia.org/wiki/Homographic_transformation
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In rigid body dynamics, velocities of a rigid body can be represented by the 

concept of a screw. This kind of screw is called a twist, and represents the velocity of a 

body by the direction of its linear velocity, its angular velocity about the axis of 

translation, and the relationship between the two, called the pitch.  

A pure screw is simply a geometric concept which describes a helix. A screw 

with zero pitch looks like a circle. A screw with infinite pitch looks like a straight line, 

but is not well defined. 

Any motion along a screw can be decomposed into a rotation about an axis 

followed by a translation along that axis. Any general displacement of a rigid body can 

therefore be described by a screw. 

2.2.2.1 Twist 

Twists represent velocity of a body. For example, if you were climbing 

up a spiral staircase at a constant speed, your velocity would be easily 

described by a twist. A twist contains six quantities: three linear and three 

angular.  

   

    

  (12) 

  

 

 

Where w = 𝑤  w^ and λ is called the pitch. Examination of this 

formula with reference to Figure 2.3 shows that v is the velocity of an 

imaginary point passing through the origin of the coordinate system in which 

the twist is expressed and moving together with the object. The twist can be 

associated with a geometrical line, namely the line passing through r and 

spanned by w which is left invariant by the rotation. 

http://en.wikipedia.org/wiki/Rigid_body_dynamics
http://en.wikipedia.org/wiki/Rigid_body
http://en.wikipedia.org/wiki/Velocity
http://en.wikipedia.org/wiki/Angular_velocity
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   Figure- 2.3    Twist Description  

 

2.2.1.2 Pitch 

The ratio between the rotation and the translation is called the 

pitch λ of the finite motion, sometimes denoted by h.  Mathematically 

this coordinate independent property of motion is written as; 

λ=d/θ        (13) 

    Therefore, a pure rotation is given as 

      

         (14) 

 

 

     

For a line at infinity the twist is given as 

            0
𝑣

       (15) 
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i=1 

n 

i=1 

n 

i=1 

n 

2.3 Preliminary Analysis 

 Given n linearly independent twists ti for i= 1 to n, it is desired to design a serial 

manipulator containing ji  joints where these joints whose types, position and orientation have 

to be designed, can realize any linear combination of the given twists.  We are interested in the 

case where the number of joints is equal to the number of given twists.  This can be written as 

below in mathematical form;-  

   t1 =     ∑   α1i $i     

    

t2 =     ∑   α2i $i      (16) 

     ….. 

     ….. 

   tn =     ∑   α2i $i 

  

This can be written in the matrix form: 

 

    

 

        =          

                                (17) 

 

 

 

 

 

       6xn   6xn           nxn 

 The essential condition for equivalence is that the coefficient matrix αij is of full rank, 

n, such that the mapping between the given twists and the twists on the designed joint screws 

is one-to-one and onto; in other words, bijective (else multiplication will not be possible)[11].  

t1     t2     .       .    .    tn 

.     .     .     .    .     . 

.     .     .     . .    .    

.     .     .     .     .    . 

.     .     .     .     .    . 

.     .     .     .     .    . 

 

 

 

$1   $2    .        .     .    $n 

.      .     .     . .     . 

.      .     .     . .     . 

.      .     .     . .     . 

.      .     .     . .     . 

.      .     .     . .     . 

 

 

 

α11  α12    .     .    .   α1n 

 α21  α22    .     .    .  α2n 

   .      .     .    .   .    . 

   .      .     .    .   .    .  

   .      .     .    .   .     . 

  αn1 αn2    .      .    .  αn1 
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It should also be noted that the columns of each of the other matrices are linearly independent.  

The above equation can also be written as; 

[T] = [J][α]       (18) 

Which can be inverted to give; 

[T] [α]
-1

 = [J]       (19) 

In principle, it is immaterial whether the matrix α that is the coefficient matrix is 

associated with the matrix of the given twists or that of the joint screws, as in either case it 

must be of the same dimension and full rank.  The design of a serial manipulator is studied for 

i=1 and 2 in detail and partially for n=3. 
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Chapter 3- DESIGN OF A SINGLE DOF SERIAL MANIPULATOR 

 

3.1 Introduction 

The number of DOF that a manipulator possesses is the number of independent 

position variables that would have to be specified in order to locate all parts of the mechanism. 

In other words, it refers to the number of different ways in which a robot arm can move. 

In the case of typical industrial robots, because a manipulator is usually an open kinematic 

chain, and because each joint position is usually defined with a single variable, the number of 

Single DOF joints equals the number of degrees of freedom. 

 To start with, the design of a single DOF manipulator is not based on the idea that they 

do exist but on the concept, that we can always isolate any joint of a serial manipulator to see 

if we can change its location, orientation to achieve the desired end effector twist or not.   

3.2 Design of Single DOF Manipulator 

A single DOF serial manipulator with linearly independent twists consists of a single 

joint or as discussed above we can isolate a single joint of any number of joint serial 

manipulator.  But the effect of only that particular single joint will be looked into so the type 

of the joint depends on the desired end-effector twist caused due to this joint.  The end 

effector twist, for a single DOF manipulator can be written in the screw coordinates in one of 

the following forms. 

T = [ ω̄; (r xω̄) ] or    (20) 

T = [ ω̄; (r xω̄) + hω ̄ ] or   (21) 

T = [ 0; v ̄]    (22) 

Where 

 T is the given twist screw 

ω ̄  is the twist axis or rotational part of the twist 

r  is the position vector of the axis of twist from the chosen axis system as shown in Fig 3.1 

h  is the pitch of the screw 

v̄ is the free vector or the linear velocity of the body 
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Figure- 3.1 Position Vector r 

The twist screw written in the first equation 20 is a zero pitch screw, the equation 21 

describes a twist with finite pitch h, and in the equation 22 gives the twist screw of an infinite 

pitch screw.  As we will be discussing only the manipulators with single DOF revolute and 

prismatic joints so only zero and infinite pitch screws will be taken into account here.  For a 

single DOF serial manipulator the given twist will be written in the following form and the 

two possible cases for such a twist are discussed below in detail. 

t1       =       [ t1x  t1y  t1z  ;  t01x  t01y  t01z   ]  (23) 

3.2.1 Case 1 – Infinite Pitch Screw Rank of Primary Part =0   

In the most general form the given twist will be written in the following form 

with the primary part equal to zero 

t1       =       [   0  0  0  ;  t01x  t01y  t01z   ]  (24) 

3.2.1.1 Possible Topology   

If the twist is given as in the equation 24, and we are required to 

achieve this twist by using only one joint then it has to be a Prismatic (P) joint 

i.e. the only option is (1P).  

3.2.1.2 Positioning and Orientation   

The Prismatic (P) joint has to be oriented in the direction of the vector 

v, and can in principle be placed anywhere in 3-space. 

3.2.2 Case 2 – Zero Pitch Screw Rank of Primary Part =1   

In the most general form the given twist will be written in the following form 

with the primary and secondary part are both non zero. 
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t1       =       [ t1x  t1y  t1z  ;  t01x  t01y  t01z   ]   

For example t1       =       [ 0   0   1  ;  t1x  t1y  0  ] (25) 

3.2.2.1 Possible Topology   

If the twist is given as in the equation 25, and we are required to 

achieve this twist by using only one joint then it has to be a revolute (R) joint 

i.e. the only option is (1R).  

3.2.2.2 Positioning and Orientation  

 The axis of the (R) joint should be in the direction of the twist, that is, 

the axis ω̄ and it has the same position vector r.  Thus the twist of the end 

effector is same as that of the joint.  This means we cannot place and orient a 

replacement joint in this case which is different in orientation and placement as 

of the original joint.  
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Chapter 4- Design of a Two DOF Serial Manipulator 

4.1 Introduction  

In the case of a two DOF serial manipulator we need minimum of two joints to obtain 

the desired twists.  The type of joints depends on the desired twists of the end effector.  For a 

two DOF serial manipulator the two linearly independent given twists will be written in the 

following form.  The total end-effector twist in this case is the linear combination of these two 

twists.   

 

t1 = [ t1x  t1y  t1z  ;  t01x  t01y  t01z   ]   

t2 = [ t2x  t2y  t2z  ;  t02x  t02y  t02z   ] (26)  

 

If the given twists are written in the matrix form denoted by (T) (called as twist matrix 

from now onward), the type of  joint possibilities is checked by finding the rank of the 

primary part of the matrix given below and is denoted by (P)(called the P matrix from now 

onward). 

 

T =        (27)   

 

 

The primary part of the matrix can be written in the matrix form as, 

 

P =     (28) 

 

 

 

The rank of the (P) matrix can be two, one or zero, each case results into a different 

possibility of alternate joints.  The alternate type, location and orientation of the joints 

depends on the rank of the primary part of the given twists; each case is therefore, discussed 

below in detail. 

 

 t1x  t1y  t1z    t01x  t01y  t01z   

 t2x  t2y  t2z    t02x  t02y  t02z   

 

 t1x  t1y  t1z     

 t2x  t2y  t2z     
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4.1.1 Case 1 – Rank of Primary Part =0   

In the most general form the twist matrix will have primary part equal to zero 

so the twist and P matrix for this case can be written as 

   

  T =          (29) 

 

  

  P =      (30) 

 

 

4.1.1.1 Possible Topology   

The manipulator can have only one configuration, that is; (2P) 

arrangement with the two P joints linearly independent of each other.  

4.1.1.2 Positioning and Orientation  

 When the primary part is possessing rank zero the two prismatic joints 

can be placed anywhere in three dimensional space as long as they are in the 

plane formed by the secondary parts of the two twists and are linearly 

independent of each other.  

4.1.2 Case 2 – Rank of Primary Part =1   

In the most general form the twist matrix will have two possible twist matrices 

and (P) matrices. 

 

T1 =        (31) 

 

 

 

P1 =      (32) 

 

 

 0  0  0    t01x  t01y  t01z   

 0  0  0    t02x  t02y  t02z   

  0  0  0     

 0  0  0     

 

 t1x  t1y  t1z    t01x  t01y  t01z   

 t1x  t1y  t1z    t02x  t02y  t02z   

 
 t1x  t1y  t1z     

 t1x  t1y  t1z     
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T2 =       (33) 

 

 

 

P2 =      (34) 

 

 

4.1.2.1 Case 2 a-Rank of Primary Part =1 (Twist matrix of the form T1)  

If the twist matrix is T1 with the corresponding primary matrix having 

rank=1, we can always choose the origin in such a way that the T1 matrix 

becomes; 

 

 

T1 =       (35) 

 

 

Therefore, the position vectors and the dual parts of the given twists lie 

in x-y plane.  If the position vectors of the two given twists are of the form (Xn ̄i 

+ Yn j̄ + Znk̄ ), where n is 1 and 2 in present case, the above twists matrix is 

then written as; 

 

  T1 =       (36) 

 

 

 

 

Since r x ω̄ = det     (37) 

 

 

 t1x  t1y  t1z    t01x  t01y  t01z   

 0     0    0     t02x  t02y  t02z   

 

 0   0   1    t01x  t01y  t01z   

 0   0   1    t02x  t02y  t02z   

 

 0   0   1    Y1   -X1   0   

 0   0   1    Y2   -X2   0   

 

 t1x  t1y  t1z     

 0    0     0     

 

 i        j     k   

 Xn  Yn   Zn     

0       0      1 
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4.1.2.1.1 Possible Topologies  

        We have the following possibilities, for the position and 

orientation of the alternate joints. 

 2 R joints with axes in the same direction as of the given 

twists 

 1R joint and 1P joint  

4.1.2.1.2 Positioning and Orientation -2R Case  

    The 2-R joints will be installed with their axes parallel to the 

given twists.  These joints cannot be placed arbitrarily in space but have 

to be placed under certain conditions to achieve any linear combination 

of the given twists, these conditions are discussed below. 

     Let the two R joints which are oriented in the direction of the 

given twists are positioned at (a1ī + b1 j̄ + c1k̄ ) and (a2ī + b2 j̄ + c2k̄ ) 

respectively.  With these position vectors the dual part of the joint 

twists can be found as variable. The twist matrix for the alternate joints 

will become. 

   

Ta =         (38) 

 

The equation of equivalence becomes: 

 

  

 

      

=   (39) 

 

 

 

 

 0   0   1    b1   -a1   0   

 0   0   1    b2   -a2   0   

 

 0    0    

0     0    

1     1 

Y1   Y2   

-X1  –X2 

 0    0   

 

 

 

 0    0    

0     0    

1     1 

b1   b2   

-a1  –a2 

 0    0   

 

 

 

α11   α12    

α21    α22       
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The equation can be reduced in the form with each matrix 

having rank =2. 

 

 

 

         =   (40) 

 

 

 

For the alpha matrix to have rank equal to two the condition is 

determinant of alpha matrix should not be equal to zero in mathematical 

form this condition can be written as 

α11 α22 - α12 α21 ≠  0      (41) 

We can write the above matrix equation in the form  

 

 

              

       =   

   

    (42) 

 

 

This gives the following conditions for equivalence 

α11 +  α21   = 1 (43) 

α12 +  α22  = 1 (44) 

Y1 α11   + Y2 α21      = b1 (45) 

Y1 α12   + Y2 α22   =  b2 (46) 

X1 α11  +  X2 α21     = a1       (47) 

 1     1 

Y1   Y2   

-X1  –X2 

  

 

 

 

1       1 

b1      b2   

-a1      –a2 

 

 

 

α11   α12    

α21    α22       

α11 +  α21          α12 +  α22 

Y1 α11   + Y2 α21     Y1 α12   + Y2 α22   

-X1 α11  - X2 α21     -X1 α12  - X2 α22          

 

1       1 

b1      b2   

-a1      –a2 
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X1 α12  + X2 α22         = a2 (48) 

Putting α11 = 1- α21 and α22 = 1- α12 in alpha matrix equivalence 

condition we get 

(1- α21) (1- α12) - α12 α21 ≠  0 

or  1- α12 - α21 + α12 α21 - α12 α21 ≠  0 

or 1- α12 - α21 ≠  0 

so  α12 + α21 ≠  1  (49) 

Similarly if we put α21 = 1- α11 and α12 = 1- α22 in alpha matrix 

equivalence condition we get 

α22 + α11 ≠  1  (50) 

Putting α11 = 1- α21 and α22 = 1- α12 the rest of the equivalence 

conditions become 

(1- α21) Y1  + α21 Y2    = b1 (51) 

(1- α21) X1  + α21 X2    = a1 (52) 

α12 Y1  + (1- α12) Y2   =  b2 (53) 

α12 X1  + (1- α12) X2   =  a2 (54) 

These conditions can be further modified as below:- 

Y1  + α21 (Y2 -   Y1 )   = b1 (55) 

X1  + α21 (X2 -   X1 )    = a1 (56) 

Y2  -  α12 (Y2 -   Y1 )   =  b2 (57) 

X2  - α12 ( X2  -   X1 )    =  a2 (58) 

4.1.2.1.3 Solution Set-2R Case 

   The solution set therefore is the set of following equations 

with the condition that the given twist axes are aligned with the Z-axis 

of the co-ordinate system. 
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α11 α22 - α12 α21   ≠  0  

α12 + α21   ≠  1 

α22 + α11   ≠  1 

Y1  + α21 (Y2 -   Y1 )  = b1  (59) 

X1  + α21 (X2 -   X1 )    = a1 

Y2  -  α12 (Y2 -   Y1 )   = b2 

X2  - α12 ( X2  -   X1 )    = a2 

 

4.1.2.1.4 Numerical Example-2R Case 

    Let the position vectors of the twists which are directed in the 

Z-axis of the co-ordinate system are given as; 

r1 = X1ī + Y1 j̄ + Z1k̄ = ī + 4/3 j̄  

r2 = X2ī + Y2 j̄ + Z2k̄ = 3ī + 2 j̄  

then;  

a1  = X1 + α21 (X2 -   X1)     

= 1+2α21 

b1  = Y1 + α21 (Y2 -   Y1) 

    = 4/3 + 2/3α21 

a2  = X2 + α12 (X2 -   X1) 

    = 3-2α12 

b2  = Y2 + α12 (Y2 -   Y1) 

    = 2-2/3α12 

    Now we can choose α12 and α21 with the condition that  

α12 + α21 ≠  1 
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let α12 = 4 and α21= 10 then we have, 

a1 = 21 

b1 = 8 

a2 = -5 

b2 = -2/3 

and we know that; 

α11 + α21 =  1 

α12 + α22 =  1 

This gives  

α11= -9 

α22= -3 

   The equation of equivalence takes the following form and thus 

any linear combination of the given twists can be provided by these two 

joints. 

 

 

 

     

          = 

 

 

 

 

 

 

4.1.2.1.5 Positioning and Orientation -1R1P Case  

    The twist matrix will still be the same T1 matrix, but as the P1 

matrix is of rank one we can install one P and one R joint.  The 

 0    0    

0     0    

1     1 

4/3   2   

-1  –3 

 0    0   

 

 

 

 0    0    

0     0    

1     1 

8  -2/3   

-21    5 

 0    0   

 

 

 

-9        4   

10      -3       



24 
 

orientation of the prismatic joint and orientation and position of the 

revolute joint is discussed in detail below. 

    Let the R joints which is oriented in the direction of the given 

twists is positioned at (a1ī + b1 j̄ + c1k̄ ) and the P joint is oriented in the 

X-Y plane and its screw is given as (0  0  0  Px  Py  0).  With these 

assumptions the equation of the equivalence becomes; 

 

 

           

        (60) 

  =  

 

 

 

 

 

 

   The equation can be reduced in the form with each matrix 

having rank =2. 

 

          

=             (61) 

 

 

   For the alpha matrix to have rank equal to two the condition is 

determinant of alpha matrix should not be equal to zero in mathematical 

form this condition can be written as 

α11 α22 - α12 α21 ≠  0  (62) 

 0    0    

0     0    

1     1 

Y1   Y2   

-X1  –X2 

 0    0   

 

 

 

 0    0    

0     0    

1     0 

b1   Px   

-a1    Py 

 0    0   

 

 

 

α11   α12    

α21    α22       

 1     1 

Y1   Y2   

-X1  –X2 

  

 

 

 

1       0 

b1      Px      

-a1        Py 

 

 

 

α11   α12    

α21    α22       
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 We can write the above matrix equation in the form  

 

      

         =   (63) 

 

 

 

 

This gives the following conditions for equivalence 

α11 +  α21   = 1 

α12 +  α22  = 0 

Y1 α11   + Y2 α21      = b1  (64) 

Y1 α12   + Y2 α22   =  Px 

X1 α11  +  X2 α21     = a1       

-X1 α12  - X2 α22         = Py 

 

Putting α11 = 1- α21 and α22 = - α12 in alpha matrix equivalence 

condition we get 

(1- α21) (- α12) - α12 α21 ≠  0 

or  - α12 + α12 α21 - α12 α21 ≠  0 

so   α12 ≠  0   (65) 

Similarly if we put α21 = 1- α11 and α12 = - α22 in alpha matrix 

equivalence condition we get 

α22 ≠   0   (66) 

α11 +  α21          α12 +  α22 

Y1 α11   + Y2 α21     Y1 α12   + Y2 α22   

-X1 α11  - X2 α21     -X1 α12  - Y2 α22          

 

1       0 

b1      Px   

-a1        Py 
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Putting α11 = 1- α21 and α22 = - α12 the rest of the equivalence 

conditions become 

(1- α21) Y1  + α21 Y2    = b1 

(1- α21) X1  + α21 X2    = a1 

α12 Y1  - α12 Y2   =  Px 

-α12 X1  + α12 X2   =  Py 

These conditions can be further modified as below:- 

Y1  + α21 (Y2 -   Y1 )  = b1 

X1  + α21 (X2 -   X1 )    = a1 

- α12 (Y2 -   Y1 )   =  Px 

 α12 ( X2   -  X1 )     =  Py 

4.1.2.1.6 Solution Set -1R1P 

               The solution set therefore is the set of following equations 

with the condition that the given twists axes are aligned with the Z-axis 

of the co-ordinate system. 

α11 α22 - α12 α21 ≠  0  

α12 ≠  0 

α22 ≠   0 

Y1  + α21 (Y2 -   Y1 )  = b1  (67) 

X1  + α21 (X2 -   X1 )    = a1 

- α12 (Y2 -   Y1 )   =  Px 

  α12 ( X2   -  X1 )     =  Py 

4.1.2.1.7 Numerical Example-1R1P 

    Let the position vectors of the twists which are directed in the 

Z-axis of the co-ordinate system are given as; 
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r1 = X1ī + Y1 j̄ + Z1k̄ = ī + 4/3 j̄  

r2 = X2ī + Y2 j̄ + Z2k̄ = 3ī + 2 j̄  

then;  

a1  = X1 + α21 (X2 -   X1)     

= 1+2α21 

b1  = Y1 + α21 (Y2 -   Y1)     

= 4/3 + 2/3α21 

Px = - α12 (Y2 -   Y1 )     

 = -2/3 α12 

 Py = α12 ( X2   -  X1 )     

  = 2 α12  

Now we can choose α12 and α21 with the condition that  

α12 ≠  0 

let α12 = 4 and α21= 10 then we have, 

a1 = 21 

b1 = 8 

Px = -8/3 

Py = 8 

and we know that; 

α11 + α21 =  1 

α12 + α22 =  0 also α22≠  0 

This gives  

α11= -9 

α22= -4 
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The equation of equivalence takes the following form and thus 

any linear combination of the given twists can be provided by these two 

joints. 

             

                  

 

 

 

          = 

 

 

 

 

 

4.1.2.2 Case 2 b-Rank of Primary Part =1 (Twist matrix of the form T2) 

If the twist matrix is T2 with the corresponding primary matrix having 

rank=1, we can always choose the origin in such a way that the T2 matrix 

becomes; 

 

T2 =  

         (68) 

 

Therefore, the dual part of the first twist lies in the x-y plane.  If the 

position vector of the given first twist is of the form (X1̄i + Y1 j̄ + Z1k̄), the 

above twists matrix is then written as; 

 

 

T2 =       (69) 

 

 

 0    0    

0     0    

1     1 

4/3   2   

-1        –3 

 0  0   

 

 

 

 0    0    

0     0    

1     0 

8  -8/3   

-21    8 

 0  0   

 

 

 

-9        4   

10      -4       

 0   0   1    t01x  t01y  t01z   

 0   0   0    t02x  t02y  t02z   

 

 0   0   1    Y1   -X1   0   

 0   0   0    t02x  t02y  t02z   
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4.1.2.2.1 Possible Topologies   

   We have the following possibilities, for the position and 

orientation of the alternate joints.  

 If the second twist has only x and y components (or only  

x, or only y) then the joint possibilities are:- 

 2 R joints with axes in the same direction as of  

the given twists 

 1R1P joints with axis of R joint in the same  

direction as of the given twist and 1P joint 

oriented in the direction of the second twist in the 

x-y plane. 

 If the second twist has some value in the z axis (no  

matter we have some x and y component or not) also, 

then we have only one alternate joint possibility as given 

below:- 

 1R joint with axis in the same direction as of the  

given twist and 1P joint oriented in the direction 

of the second twist in the x-y-z direction. 

4.1.2.2.2 Positioning and Orientation 2R Case (Second Twist 

oriented in x-y Plane)  

    The two R joints will be installed with their axis parallel to 

the given twist with primary part not equal to zero.  These joints cannot 

be placed arbitrarily in space but have to be placed under certain 

conditions to achieve any linear combination of the given twists, these 

conditions are discussed below. 

   Let the two R joints which are oriented in the direction of the 

given twist (twist with primary part not equal to zero) are positioned at 

(a1ī + b1 j̄ + c1k̄ ) and (a2ī + b2 j̄ + c2k̄ ) respectively.  With these position 

vectors the dual part of the joint twists can be found as variable. The 

twist matrix for the alternate joints will become. 
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Ta=     (70) 

 

 

The equation of equivalence becomes: 

 

  

       

 

 

    =     (71) 

 

 

 

 

 

The equation can be reduced in the form with each matrix 

having rank =2. 

 

        

 

 

        =   (72) 

 

 

 

For the alpha matrix to have rank equal to two the condition is 

determinant of alpha matrix should not be equal to zero in mathematical 

form this condition can be written as 

α11 α22 - α12 α21 ≠  0    (73) 

 0   0   1    b1   -a1   0   

 0   0   1    b2   -a2   0   

 

 0    0    

0     0    

1     0 

Y1  Px   

-X1  Py 

 0    0   

 

 

 

 0    0    

0     0    

1     1 

b1   b2   

-a1  –a2 

 0    0   

 

 

 

α11   α12    

α21    α22       

 1     0 

Y1   Px  

-X1  Py 

  

 

 

 

1       1 

b1      b2  

-a1       -a2 

 

 

 

α11   α12    

α21    α22       
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we can write the above matrix equation in the form  

 

 

       

    =                (74) 

 

 

 

This gives the following conditions for equivalence 

α11   = 1     (75) 

α12   = 1     (76) 

Y1 α11   + Px α21      = b1     (77) 

Y1 α12   + Px α22   =  b2     (78) 

- X1 α11  +  Py α21     = -a1           (79) 

-X1 α12  +  Py α22         = -a2       (80) 

Putting α11 = 1 and α12 = 1 in alpha matrix equivalence condition 

we get  

α22- α21 ≠  0 

or   

α22 ≠  α21        (81) 

Putting α11 = 1 and α12 = 1 the rest of the equivalence conditions 

become 

Y1  + Px α21      = b1       (82) 

Y1   + Px α22    =  b2     (83) 

 X1  -  Py α21      = a1           (84) 

α11          α12  

Y1 α11   + Px α21     Y1 α12   + Px α22   

-X1 α11  + Py α21     -X1 α12  + Py α22          

 

1       1 

b1      b2  

-a1       -a2 
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X1  -  Py α22          = a2     (85) 

4.1.2.2.3 Solution Set 2R Case (Second Twist oriented in x-y Plane) 

   The solution set therefore, is the set of following equations 

with the condition that one of the given twists is aligned with the Z-axis 

of the co-ordinate system and the other is oriented in the x-y plane (and 

is due to a prismatic joint). 

α11 α22 - α12 α21 ≠  0  

α11 = 1  

and  

α12 = 1 

α22 ≠  α21 

Y1 + Px α21       = b1     (86) 

Y1   + Px α22    =  b2 

 X1 - Py α21      = a1       

X1 - Py α22          = a2 

4.1.2.2.4 Numerical Example 2R Case (Second Twist oriented in x-y 

Plane) 

Let the position vectors of the first twist which is directed in the 

Z-axis of the co-ordinate system is given as; 

r1  = X1ī + Y1 j̄ + Z1k̄  

= 21ī + 8 j̄  

Let the other joints twist be oriented in the direction of the 

following vector; 

v1=-8/3i + 8j 

then; 

a1  = X1 - Py α21      

= 21-8α21  
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b1  = Y1 + Px α21      

= 8 -8/3 α21     

a2 = X1 - Py α22  

= 21 - 8α22   

b2 = Y1   + Px α22   

= 8-8/3α22   

Now we can choose α21 and α22 with the condition that  

α11 = 1 and α12 = 1 

α22 ≠  α21 

let  

α21 = 10/4 and α22= 9/4 

then we have, 

a1 = 1, b1 = 4/3, a2 = 3, b2 = 2 

The equation of equivalence takes the following form and thus 

any linear combination of the given twists can be provided by these two 

joints. 

  

     

 

 

         = 

 

 

 

 

 

 

 0    0    

0     0    

1     0 

8  -8/3   

-21    8 

 0  0   

 

 

 

1         1   

10/4    9/4       

 0    0    

0     0    

1     1 

4/3   2   

-1  –3 

 0    0   
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4.1.2.2.5 Positioning and Orientation 1R1P Case (Second Twist 

oriented in x-y Plane)   

The twist matrix will still be the same T2 matrix, but as the P2 

matrix is of rank one we can install one P and one R joint.  The 

orientation of the prismatic joint and orientation and position of the 

revolute joint is discussed in detail below. 

    Let the R joint which is oriented in the direction of the given 

twist is positioned at (a1ī + b1 j̄ + c1k̄ ) and the P joint is oriented in the 

X-Y plane and its screw is given as (0  0  0  Px  Py  0).  With these 

assumptions the dual part of the joint twists can be found as variable. 

The twist matrix for the alternate joints will become. 

 

 

Ta=         (87) 

 

 

The equation of equivalence becomes: 

 

 

 

           

 

        =       (88) 

 

 

 

 

 

The equation can be reduced in the form with each matrix 

having rank =2. 

 0   0   1    b1   -a1   0   

 0   0   0    Px2   Py2   0   

 

 0    0    

0     0    

1     0 

Y1   Px1  

-X1   Py1 

 0  0   

 

 

 

 0    0    

0     0    

1     0 

b1   Px2   

-a1  Py2 

 0    0   

 

 

 

α11   α12    

α21    α22       
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=      (89) 

 

 

 

  For the alpha matrix to have rank equal to two the condition is 

determinant of alpha matrix should not be equal to zero in mathematical 

form this condition can be written as 

α11 α22 - α12 α21  ≠  0       (90)  

We can write the above matrix equation 89 in the form  

     

      

=          (91) 

 

 

 

This gives the following conditions for equivalence 

α11   = 1     (92) 

α12   = 0     (93) 

Y1 α11   + Px1α21      = b1     (94) 

Y1 α12   + Px1 α22   =  Px2      (95) 

- X1 α11  +  Py1 α21     = -a1           (96) 

-X1 α12  +  Py1 α22         = Py2     (97) 

Putting following values of α11 and α12 in alpha matrix 

equivalence condition 

 1     0 

b1   Px2   

-a1  Py2 

  

 

 

 

α11   α12    

α21    α22       

 1     0 

Y1   Px1  

-X1  Py1 

 

 

 

α11          α12  

Y1 α11   + Px1 α21      Y1 α12   + Px1 α22   

-X1 α11  + Py1 α21     -X1 α12  + Py1α22          

 

 1     0 

b1   Px2   

-a1  Py2 
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α11 = 1  

α12 = 0  

we get 

α22  ≠  0        (98) 

Putting α11 = 1 and α12 = 1 the rest of the equivalence conditions 

become 

Y1 + Px1α21       = b1     (99) 

Px1 α22    =  Px2      (100) 

 X1 - Py1 α21      = a1           (101) 

 Py1 α22         = Py2     (102) 

4.1.2.2.6  Solution Set 1R1P Case (Second Twist oriented in x-y 

Plane) 

The solution set therefore, is the set of following equations 

with the condition that one of the given twists is aligned with the Z-axis 

of the co-ordinate system and the other is oriented in the x-y plane (and 

is due to a prismatic joint). 

α11 α22 - α12 α21 ≠  0  

α11 = 1 and α12 = 0 

α22  ≠  0 

Y1 + Px1α21       = b1  (103) 

Px1 α22    =  Px2  

 X1 - Py1 α21      = a1       

 Py1 α22         = Py2 
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4.1.2.2.7  Numerical Example 1R1P Case (Second Twist oriented in 

x-y Plane) 

    Let the position vectors of the first twist which is directed in 

the Z-axis of the co-ordinate system is given as; 

r1 = X1ī + Y1 j̄ + Z1k̄ = 21ī + 8 j̄  

    Let the other joints twist be oriented in the direction of the 

following vector; 

v1=-8/3i + 8j 

    then; 

a1  = X1 - Py1 α21      

= 21-8α21  

b1  = Y1 + Px1 α21      

= 8 -8/3 α21     

Px2 = Px1 α22    

 = -8/3α22 

Py2 = Py1 α22   

= 8α22   

    Now we can choose α21 and α22 with the condition that  

α11 α22 - α12 α21 ≠  0  

α11 = 1 and α12 = 0 

α22 ≠  0 

    let  

    α21 = 10/4  

   and  

    α22= 9/4  

   then we have, 
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a1 = 1 

b1 = 4/3 

Px2 = -15/4 

Py2 = 18 

    The equation of equivalence takes the following form and 

thus any linear combination of the given twists can be provided by 

these two joints. 

 

 

 

   

 

      

    = 

 

 

 

 

 

 

4.1.2.2.8  1R1P Case (Second Twist oriented in x-y-z direction)   

    The twist matrix will still be the same T2 matrix, but as the P2 

matrix is of rank one we can install one P and one R joint.  The 

orientation of the prismatic joint and orientation and position of the 

revolute joint is discussed in detail below. 

    Let the R joint which is oriented in the direction of the given 

twist is positioned at (a1ī + b1 j̄ + c1k̄ ) and the P joint is oriented in the 

X-Y-Z  direction and its screw is given as (0  0  0  Px  Py  Pz).  With 

these assumptions the dual part of the joint twists can be found as 

variable. The twist matrix for the alternate joints will become. 

 0    0    

0     0    

1     0 

8  -8/3   

-21    8 

 0  0   

 

 

 

1         1   

10/4    9/4       

 0    0    

0     0    

1     0 

4/3     -15/4   

-1  18 

 0  0   
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Ta       =     (104) 

 

 

The equation of equivalence becomes: 

 

 

           

 

         =              (105) 

 

 

 

 

 

 

     The equation can be reduced in the form with each matrix 

having rank =2. 

 

 

      

  =   (106) 

 

 

 

 

      For the alpha matrix to have rank equal to two the condition 

is determinant of alpha matrix should not be equal to zero in 

mathematical form this condition can be written as 

α11 α22 - α12 α21 ≠  0    (107) 

 0   0   1    b1   -a1   0   

 0   0   0    Px2   Py2  Pz2   

 

 0    0    

0     0    

1     0 

Y1   Px1  

-X1  Py1 

 0 Pz1   

 

 

 

 0    0    

0     0    

1     0 

b1   Px2   

-a1  Py2 

 0 Pz1 

 

 

 

α11   α12    

α21    α22       

 1     0 

Y1   Px1  

-X1  Py1 

  0 Pz1 

  

 

 

 

α11   α12    

α21    α22       

 1     0 

b1   Px2   

-a1  Py2 

0 Pz2 
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     We can write the above matrix equation in the form  

 

 

       

        =   (108) 

 

 

 

 

    This gives the following conditions for equivalence 

α11   = 1  (109) 

α12   = 0  (110) 

Y1 α11   + Px1α21      = b1  (111) 

Y1 α12   + Px1 α22   =  Px2   (112) 

- X1 α11  +  Py1 α21     = -a1        (113) 

-X1 α12  +  Py1 α22       = Py2  (114) 

Pz1 α21 = 0     

Pz1 cannot be zero initial assumption  

so  

α21=0     (115) 

Pz1 α22    = Pz2  (116) 

Putting following values of α11 ,α12 , and α21 in alpha 

matrix equivalence condition 

α11 = 1  

α12 = 0 

α11          α12  

Y1α11 + Px1α21      Y1α12  + Px1 α22   

-X1 α11+Py1α21     -X1α12 + Py1α22   

  Pz1 α21              Pz1α22   

     

 

 1      0 

b1     Px2   

-a1     Py2 

 0     Pz2 
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 α21 =0  

We get 

α22  ≠  0     (117) 

 Putting α11 = 1 and α12 = 0 and α21= 0 the rest of the 

equivalence conditions become 

Y1   = b1  (118) 

Px1 α22    =  Px2   (119) 

X1        = a1       (120) 

Py1 α22         = Py2  (121) 

Pz1 α22    = Pz2  (122) 

4.1.2.2.8  Solution Set 1R1P Case (Second Twist oriented in x-y-z 

direction)  

         The solution set therefore, is the set of following equations 

with the condition that one of the given twists is aligned with the Z-axis 

of the co-ordinate system and the other is oriented in the x-y-z direction 

(z component must not be zero). 

 

α11 α22 - α12 α21 ≠  0  

α11 = 1, α12 = 0 and α21 = 0 

α22  ≠  0 

Y1   = b1  

Px1 α22    =  Px2               (123) 

X1        = a1       

Py1 α22         = Py2 

Pz1 α22    = Pz2 
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4.1.2.2.8 Numerical Example 1R1P Case (Second Twist oriented in 

x-y-z direction) 

   Let the position vectors of the first twist which is directed in 

the Z-axis of the co-ordinate system is given as; 

r1 = X1ī + Y1 j̄ + Z1k̄ = 21ī + 8 j̄  

   Let the other joints twist be oriented in the direction of the 

following vector; 

v1= 0.5777i + 0.5777j+0.5777k 

   then; 

a1  = X1  

= 21  

b1  = Y1       

= 8      

Px2 = Px1 α22    

 = 0.5777α22 

Py2 = Py1 α22   

= 0.5777α22 

     Pz2 = Pz1 α22   

= 0.5777α22 

        Now we can choose α22 with the condition that  

α11 α22 - α12 α21 ≠  0  

α11 = 1 , 

 α12 = 0,  

and  

α21 = 0 

α22 ≠  0 
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α22= 2 then we have, 

a1 = 21 

b1 = 8 

Px2 = 1.154 

Py2 = 1.154 

Pz2 = 1.154 

  The equation of equivalence takes the following form and thus 

any linear combination of the given twists can be provided by these two 

joints. 

   

 

      

         = 

 

 

 

 

 

 

4.1.3 Case 3 – Rank of Primary Part =2   

In the most general form the twist and (P) matrices will be written as below. 

 

T =        (124) 

 

 

P =       

(125) 

 

In this case we have two non parallel skew lines.  We, we can choose the origin 

in such a way that it lies on the first twist screw axis and the Z-axis points along the 

 0    0    

0     0    

1     0 

8      0.5777   

-21   0.5777   

 0     0.5777  

 

 

 

1         0   

0 2       

 0    0    

0     0    

1     0 

8        1.154   

-21    1.154 

 0       1.154   

 

 

 
 t1x  t1y  t1z    t01x  t01y  t01z   

 t1x  t1y  t1z    t02x  t02y  t02z   

  t1x  t1y  t1z     

 t2x  t2y  t2z     
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common  normal of the two skew lines as shown in Fig 4.1.  If the position vector of 

the second twist is given as (X2ī + Y2 j̄ + Z2k̄) with x and y components equal to zero(r 

only ha z component), and ω̄ is of the form (lnī + mn j̄ + nnk̄) where subscript n=1 and 

2 then the twist matrix of the two twists is then written as; 

  

T =        (126) 

 

 

 

Since r x ω̄ = det     where nn=0 

      And X2,Y2=0    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure- 4.1    Z-Axis Pointing Normal to Two Skew Lines 

 l1  m1  0     0        0     0   

 l2  m2  0   - m2z2  l2z2 0  

 

 i        j     k   

X2   Y2   Z2 

ln     mn   nn     

 

z 

x 

y 

Twist 2 

Twist 1 

Twist 1 is not 

parallel to Twist 2 
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4.1.3.1 Possible Topology  

The only possibility is to use two R joints with the joint axis parallel to 

the given twists. 

4.1.3.2 Positioning and Orientation  

 The rank of the primary matrix (P) is two which spans a plane.  The 

primary matrix (P) of the two joints which are needed to achieve this twist 

must span this plane.  If ω̄ of the two joints are given as (Ln,Mn,0) (as the 

primary part has to be in the x-y plane) and the position of the joints is given as 

(anī + bn j̄ + cnk̄ ).  Then the dual part of the joint screws is given as    (-Mncn,     

Lncn, Mnan-Lnbn). 

 

 

Since r x ω̄ = det       

 

 

The matrix of the equivalence of the given twist space and the joint 

space is written as; 

 

       

 

 

        =        (127) 

 

 

 

 

 

 

 l1    l2    

m1     m2    

0     0 

0       - m2z2 

0             l2z2 

0 0  

 

 

 

α11   α12    

α21    α22       

 L1                  L2    

 M1                  M2    

 0                   0 

-M1c1                -M2c2   

 L1c1                  L2c2 

 M1a1- L1b1   M2a2-L2b2 

 

 

 

 i        j      k   

an      bn    cn 

Ln     Mn    0     
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The equivalence condition can be reduced to the following form with 

each matrix having rank =2. 

 

 

 

             =         (128) 

 

 

 

 

 

 

Now by setting L1b1-M1a1=0 and L2b2-M2a2 = 0, as Ln and Mn cannot 

be equal to zero so both an= bn = 0, which is only possible when the joint axis 

passes through the z-axis.  Which means that the position vector of the two 

joints lie along the z-axis only, an = bn = 0.  Therefore, for this condition to 

satisfy the replacement joints can be placed anywhere on the z-axis oriented in 

the x-y plane linearly independent of each other.   

For the alpha matrix to have rank equal to two the condition is 

determinant of alpha matrix should not be equal to zero in mathematical form 

this condition can be written as 

α11 α22 - α12 α21  ≠  0    (129) 

We can write the above matrix equation in the following form 

       

      

     =                          (130) 

  

 

 

l1α11+ l2 α21         l1α12+ l2 α22 

m1α11+ m2α21         m1α12 + m2α22   

-m2z2α21             -m2z2α22        

 l2z2α21            l2z2α22 

 

   

 

L1          L2    

M1          M2    

-M1c1      -M2c2   

L1c1          L2c2 

 

 

L1               L2    

M1               M2    

-M1c1                -M2c2   

 L1c1                  L2c2 

M1a1- L1b1    M2a2-L2b2 

 

 

 

 

 l1    l2    

m1     m2    

0       -m2z2 

0             l2z2 

0 0  

 

 

 

α11   α12    

α21    α22       
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This gives the following conditions for equivalence of first joint 

l1α11+ l2α21  = L1  (131) 

m1α11+ m2α21  = M1  (132) 

-m2z2α21  = -M1c1 (133) 

l2z2 α21  =L1c1         (134) 

From equation 133 we can write 

c1 = m2z2α21/ M1  

Putting M1 from equation 132 

c1 = m2z2α21/ m1α11+ m2α21  (135) 

From equation 134 we can write 

c1 = l2z2α21/ L1  

Putting L1 from equation 131 

c1 = l2z2α21/ l1α11+ l2 α21 (136) 

Equating equation 135 and 136 

m2z2α21/ (m1α11 + m2α21) =  l2z2α21/ (l1α11+ l2 α21) 

m2(l1α11+ l2 α21) = l2(m1α11 + m2α21) 

m1/ m2 = l1/ l2   (137) 

m1/ l1= m2/ l2  

For the second joint 

l1α12+ l2α22  = L2  (138) 

m1α12 + m2α22 = M2  (139) 

-m2z2α22  = -M2c2 (140) 

l2z2 α22  =L2c2         (141) 

From equation 140 we can write 

c2 = m2z2α22/ M2 
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Putting M2 from equation 139 

 c2 = m2z2α22/ m1α12 + m2α22 (142) 

From equation141 we can write 

c2 = l2z2α22/ L2   (143) 

Putting L2 from equation 138 

c2 = l2z2α22/ l1α12+ l2α22  (144) 

Equating equation 142 and 144  

m2z2α22/ (m1α12 + m2α22) =  l2z2α22/ (l1α12+ l2 α22) 

m1/ m2 = l1/ l2  (145) 

Conditions (137) and (144) dictates that the given joints axes should be parallel 

to each other as it says that the ratio of m1/ l1= m2/ l2   where mn,ln is giving the 

orientation of the given joints axes.  However, we have originally said that the given 

two joint axis are not parallel to each other for the primary matrix to have rank=2.  It 

brings us to an important deduction as far as this work is concerned that, for spatial 

cases involving revolute joints taking into account just the primary part rank will not 

suffice to predict the alternate joints, consideration has to be given to the secondary 

part of the twist matrix also.  Therefore, the present work is applicable to twist matrix 

with rank =0,1. 
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Chapter 5- DESIGN AND SELECTION OF JOINTS IN THREE DOF SERIAL 

ROBOTIC CHAINS 

 

5.1 Introduction 

 In principle, the range of numbers of given twists is between one and six, but the most 

interesting cases are those where the number of such twists (and hence joints) is two-three.  

The cases of twist numbers higher than this are simple extension of the arguments derived in 

the two-three joints case. 

We have already seen in section 4.1.3 that is the case of rank = 2 of the primary matrix 

of the design of 2 DOF serial manipulator that for spatial cases involving revolute joints 

taking into account just the primary part rank will not suffice to predict the alternate joints, 

consideration has to be given to the secondary part of the twist matrix also.  Therefore, in the 

present work only cases of rank =0,1 of the primary matrix will be discussed. 

5.2 Design of a Three DOF Manipulator 

In the case of three DOF serial manipulator we need minimum of three joints to obtain 

the desired twists.  The type of joints depends on the desired twists of the end effector.  If the 

three linearly independent twists are given as t1,t2,t3 and it is desired to design three joints of a 

serial manipulator which can provide these three twists, the three given linearly independent 

end-effector twists can be written as; 

t1 = [ t1x  t1y  t1z  ;  t01x  t01y  t01z   ]   (146) 

t2 = [ t2x  t2y  t2z  ;  t02x  t02y  t02z   ]     (147) 

t3 = [ t3x  t3y  t3z  ;  t03x  t03y  t03z   ]     (148) 

The twist matrix T and the P matrix can then be written as below:- 

 

 

T =          (149) 

 

 

 

 

 t1x  t1y  t1z    t01x  t01y  t01z   

 t2x  t2y  t2z    t02x  t02y  t02z 

t3x  t3y  t3z     t03x  t03y  t03z   
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 P =         (150) 

 

 

 

The rank of the (P) matrix can be three, two, one or zero, each case results into a 

different possibility of alternate joints.  The alternate type, location and orientation of the 

joints depends on the rank of the primary part of the given twists.  In this thesis only cases of 

rank zero and one (rank one with parallel revolute joints and prismatic joint if any should be in 

the plane of the secondary part of the revolute joint twists) are discussed below in detail. 

5.2.1 Case 1 –Rank of Primary Part =0   

In the most general form the twist matrix will have primary part equal to zero 

so the twist and P matrix for this case can be written as 

 

 

 

T     =            (151) 

 

 

 

 

P   =            (152) 

 

 

5.2.1.1 Possible Topology   

The manipulator can have only one configuration, that is; (3P) arrangement 

with the three P joints linearly independent of each other. 

5.2.1.2 Positioning and Orientation   

When the primary part is possessing rank zero the three prismatic joints 

can be placed anywhere in three dimensional space as long as they are linearly 

 t1x  t1y  t1z     

 t2x  t2y  t2z  

t3x  t3y  t3z         

 

 0    0    0    t01x  t01y  t01z   

 0    0    0    t02x  t02y  t02z 

 0    0    0     t03x  t03y  t03z   

  

 
 0  0  0     

 0  0  0 

 0  0  0 
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independent of each other (when two joints are considered in isolation) and in 

the plane formed by the secondary part of the twists. 

 5.2.2 Case 2 – Rank of Primary Part =1   

In the most general form the twist matrix will have three possible twist and (P) 

matrices given below.  Each case will be discussed separately in the subsequent 

paragraphs. 

 

T1 =       (153) 

 

 

 

 

P1 =      (154) 

 

 

 

 

T2 =      (155) 

 

 

 

 

P2 =      (156) 

 

 

 

 

   T3 =      (157) 

 

 

 t1x  t1y  t1z   t01x  t01y  t01z   

 0    0    0    t02x  t02y  t02z 

 0    0    0     t03x  t03y  t03z   

  

 

 t1x  t1y  t1z    t01x  t01y  t01z   

 t2x  t2y  t2z    t02x  t02y  t02z 

t3x  t3y  t3z     t03x  t03y  t03z   

  

 

 t1x  t1y  t1z     

 t2x  t2y  t2z  

t3x  t3y  t3z         

 
 t1x  t1y  t1z    t01x  t01y  t01z   

 t2x  t2y  t2z    t02x  t02y  t02z 

0     0    0     t03x  t03y  t03z   

  

 

 t1x  t1y  t1z     

 t2x  t2y  t2z  

0     0    0      
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P3 =      (158) 

 

 

5.2.2.1 Case 2 a-Rank of Primary Part =1 (Twist matrix of the form T1)  

If the twist matrix is T1 with the corresponding primary matrix having 

rank=1, which means the three twists are parallel to each other as shown in Fig 

5.1.  We can always choose the origin in such a way that the primary part of the 

twists is directed in the direction of the z-axis, and the first twist axis passes 

through the origin, the twist matrix then take the following form   

 

  

T1 =        (159) 

 

 

 

The primary part matrix thus becomes; 

  

 

P1 =       (160) 

 

 

If now the position vectors of the twists are given in the form (Xn ̄I + Yn 

j̄+Znk̄), where n= 1 to 3, the above twists matrix is then written as; 

 

  

T1 =        (161) 

 

 

 t1x  t1y  t1z     

0    0    0 

0     0    0      

 0   0   1    t01x  t01y  t01z   

 0   0   1    t02x  t02y  t02z   

 0   0   1    t03x  t03y  t03z   

 0   0   1     

 0   0   1    

 0   0   1     

 

 0   0   1    0     0    0     

 0   0   1    Y2 -X2  0   

 0   0   1    Y3 -X3  0   
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Figure-5.1 Three Parallel Twists 

 

5.2.2.1.1   Possible Topologies 

       The manipulator can have the following three configurations, 

with certain conditions on the joints which will be discussed here 

separately. 

 Three parallel R Joints 

 Two Parallel R Joints and 1P Joint 

 One R joint and 2 P Joints  

5.2.2.1.2   Positioning and Orientation -3R Case (Twist matrix of 

the form T1)  

      The three R joints will be installed with their axis parallel to 

each other and oriented in the direction of the given twists.  These joints 

can be placed anywhere in the plane under certain conditions to achieve 

Three parallel Twists  
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any linear combination of the given twists, these conditions are 

discussed below. 

      Let the three R joints which are oriented in the direction of 

the given twists are positioned at (a1ī + b1 j̄ +c1k̄ ), (a2ī + b2 j̄ + c2k̄ ), and  

(a3ī + b3 j̄ + c3k̄ )respectively.  With these position vectors the dual part 

of the joint twists can be found as variable. The twist matrix for the 

alternate joints will become. 

 

   

 

Ta1 =       (162) 

 

 

 

The equation of equivalence becomes: 

     

 

      

 

   =      (163) 

 

 

 

 

 

 

 

 

 

 0   0   1    b1   -a1   0   

 0   0   1    b2   -a2   0   

0   0   1     b3   -a3   0   

 

 0    0      0 

0     0      0 

1     1      1 

0     Y2   Y3   

0    -X2  -X3 

 0      0      0 

   

 

 

 0     0    0 

0      0    0  

1      1     1 

b1     b2     b3   

-a1    –a2    -a3 

  0     0     0   

 

 

 

α11 α12  α13   

α21 α22  α23      

α31 α32  α33      
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The equation can be reduced in the form with each matrix 

having rank =3. 

 

 

 

      =      (164) 

 

 

 

For the alpha matrix to have rank equal to three the condition is 

determinant of alpha matrix should not be equal to zero, can be written 

as; 

 

 

Determinant     ≠  0  (165) 

 

 

 

For the following matrix to have rank =3 the condition will be 

determinant not equal to zero which gives the following condition; 

 

 

 

 

 

 

-Y2X3+Y3X2 ≠  0 

   Y3/ Y2 ≠ X3/ X2   (166) 

 

 

1     1      1 

0     Y2   Y3   

0    -X2  -X3 

  

   

 

 

1      1     1 

b1     b2     b3   

-a1    –a2    -a3 

 

 

 

α11 α12  α13   

α21 α22  α23      

α31 α32  α33      

 

α11 α12  α13   

α21 α22  α23      

α31 α32  α33      

 

1     1      1 

0     Y2   Y3   

0    -X2  -X3 
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We can write the above matrix equation in the following form 

 

 

   

   

     =           (167)

     

 

 

 

This gives the following conditions for equivalence 

α11+ α21+ α31 =1    (168) 

α12+α22+α32    =1    (169) 

α13+α23+α33   =1    (170) 

b1= Y2 α21+Y3α31          (172) 

b2= Y2 α22+Y3α32         (173) 

b3= Y2α23+Y3α33    (174) 

a1=X2α21+X3α31          (175) 

a2=X2α22+X3α32         (176) 

a3= X2α23+X3α33        (177) 

5.2.2.1.3   Solution Set -3R Case (Twist matrix of the form T1) 

      The solution set therefore is the set of following equations 

with the condition that the given twists axes are aligned with the Z-axis 

of the co-ordinate system. 

 

 

α11+α21+α31   α12+α22+α32    α13+α23+α33 

Y2α21+Y3α31    Y2α22+Y3α32    2α23+Y3α33 

-X2α21-X3α31  -X2α22-X3α32   -X2α23-X3α33     

 

1   1    1 

b1  b2   b3   

-a1-a2 -a3 
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Determinant          ≠  0 

 

 

 

 

Y3/ Y2 ≠ X3/ X2 

α11+ α21+ α31 =1 

α12+α22+α32    =1   (178) 

α13+α23+α33   =1 

b1= Y2 α21+Y3α31       

b2= Y2 α22+Y3α32      

b3= Y2α23+Y3α33 

a1=X2α21+X3α31       

a2=X2α22+X3α32      

a3= X2α23+X3α33     

5.2.2.1.4   Positioning and Orientation -2R1P Case (Twist matrix of 

the form T1) 

     The two R one P joints will be installed with the two R joints 

oriented in the direction of the given twist but different position vectors, 

the prismatic joint must lie in the plane of the dual parts of the joint 

twists.  Let the two R joints which are oriented in the direction of the 

given twists are positioned at (a1ī + b1 j̄ +c1k̄ ) and (a2ī + b2 j̄ + c2k̄ ) 

respectively.  Let the P joint is oriented in the X-Y plane and its screw 

is given as (0  0  0  Px  Py  0).  With these position vectors the dual part 

α11 α12  α13   

α21 α22  α23      

α31 α32  α33      
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of the joint twists can be found as variable. The twist matrix for the 

alternate joints will become. 

 

 

Ta1 =      (179)  

     

     

  The equation of equivalence becomes: 

       

 

 

               

  =   (180) 

 

 

 

 

 

  The equation can be reduced in the form with each matrix 

having rank =3. 

 

 

 

    =   (181) 

 

 

 

  For the alpha matrix to have rank equal to three the condition 

is determinant of alpha matrix should not be equal to zero, can be 

written as; 

 0   0   1    b1   -a1   0   

 0   0   1    b2   -a2   0   

0   0   1     b3   -a3   0   

 

 0    0      0 

0     0      0 

1     1      1 

0     Y2   Y3   

0    -X2  -X3 

 0      0      0 

   

 

 

 0     0    0 

0      0    0  

1      1     0 

b1     b2     Px   

-a1    –a2    Py 

  0     0     0   

 

 

 

α11 α12  α13   

α21 α22  α23      

α31 α32  α33      

 

1     1      1 

0     Y2   Y3   

0    -X2   -X3 

  

   

 

 

1      1     0 

b1     b2     Px   

-a1    –a2    Py 

 

 

 

α11 α12  α13   

α21 α22  α23      

α31 α32  α33      
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Determinant     ≠  0  (182) 

 

 

 

 For the following matrix to have rank =3 the condition will be 

determinant not equal to zero which gives the following condition; 

 

 

 

 

 

 

-Y2X3+Y3X2 ≠  0 

  Y3/ Y2 ≠ X3/ X2    (183) 

We can write the above matrix equation in the following form 

 

 

 

         =             (184) 

         

 

This gives the following conditions for equivalence 

α11+ α21+ α31 =1    (185) 

α12+α22+α32    =1    (186) 

α13+α23+α33   =0    (187) 

b1= Y2 α21+Y3α31          (188) 

b2= Y2 α22+Y3α32         (189) 

α11 α12  α13   

α21 α22  α23      

α31 α32  α33      

 

α11+ α21+α31   α12+α22+α32     α13+α23+α33 

Y2α21+Y3α31    Y2α22+Y3α32    Y2α23+Y3α33 

-X2α21-X3α31  -X2α22-X3α32   -X2α23-X3α33 

 

1   1    0 

b1  b2   Px   

-a1 -a2  Py 

 

 

 

1     1      1 

0     Y2   Y3   

0    -X2  -X3 
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Px = Y2α23+Y3α33    (190) 

a1=X2α21+X3α31          (191) 

a2=X2α22+X3α32         (192) 

Py = -X2α23-X3α33        (193) 

5.2.2.1.5   Solution Set -2R1P Case (Twist matrix of the form T1) 

     The solution set therefore is the set of following equations 

with the condition that the given twists axes are aligned with the Z-axis 

of the co-ordinate system. 

 

 

Determinant     ≠  0 

 

 

 

Y3/ Y2 ≠ X3/ X2 

α11+ α21+ α31 =1 

α12+α22+α32    =1 

α13+α23+α33   =0   (194) 

b1= Y2 α21+Y3α31       

b2= Y2 α22+Y3α32      

Px = Y2α23+Y3α33 

a1=X2α21+X3α31       

a2=X2α22+X3α32      

Py = -X2α23-X3α33     

 

α11 α12  α13   

α21 α22  α23      

α31 α32  α33      
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5.2.2.1.6   Positioning and Orientation -1R2P Case (Twist matrix of 

the form T1) 

    The one R two P joints will be installed with the R joint 

oriented in the direction of the given twists, the prismatic joints must lie 

in the plane of the dual parts of the joint twists, but they have to be 

linearly independent of each other. 

    Let the R joint which is oriented in the direction of the given 

twists is positioned at (a1ī + b1 j̄ +c1k̄ ).  Let the P joints be oriented in 

the X-Y plane and their screws are given as (0  0  0  Px1  Py1  0) and (0  0  

0  Px2  Py2  0).  With these position vectors the dual part of the joint 

twists can be found as variable. The twist matrix for the alternate joints 

will become. 

 

 

 

Ta1 =       (195) 

     

     

 

The equation of equivalence becomes: 

       

 

 

          

         =         (196) 

 

 

 

 

 

 0   0   1    b1   -a1   0   

 0   0   0    Px1  Px2  0   

 0   0   0     Py1  Py2  0   

 

 0    0      0 

0     0      0 

1     1      1 

0     Y2   Y3   

0    -X2  -X3 

 0      0      0 

   

 

 

 0     0    0 

0      0    0  

1      0    0 

b1    Px1    Px2  

-a1    Py1  Py2 

  0     0     0   

 

 

 

α11 α12  α13   

α21 α22  α23      

α31 α32  α33      
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The equation can be reduced in the form with each matrix 

having rank =3. 

 

 

            

          =                               (197) 

 

 

 

For the alpha matrix to have rank equal to three the condition is 

determinant of alpha matrix should not be equal to zero, can be written 

as; 

 

 

 

Determinant     ≠  0  (198) 

 

 

 

For the following matrix to have rank =3 the condition will be 

determinant not equal to zero which gives the following condition; 

 

 

 

 

 

 

-Y2X3+Y3X2 ≠  0 

  Y3/ Y2 ≠ X3/ X2  (199) 

1     1      1 

0     Y2   Y3   

0    -X2   -X3 

  

   

 

 

1      0    0 

b1    Px1    Px2  

-a1    Py1  Py2 

 

 

 

α11 α12  α13   

α21 α22  α23      

α31 α32  α33      

 

α11 α12  α13   

α21 α22  α23      

α31 α32  α33      

 

1     1      1 

0     Y2   Y3   

0    -X2  -X3 
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For the following matrix to have rank = 3 the condition will be 

determinant not equal to zero which give the following condition; 

 

 

 

 

 

 

Px1 Py2- Px2 Py1≠  0 

Px1/ Px2≠ Py1/ Py2   (200) 

We can write the above matrix equation in the following form 

 

 

 

       =             (201) 

         

 

 

This gives the following conditions for equivalence 

α11+ α21+ α31 =1   (202) 

α12+α22+α32    =0   (203) 

α13+α23+α33   =0   (204) 

b1= Y2 α21+Y3α31         (205) 

Px1= Y2 α22+Y3α32        (206) 

Px2 = Y2α23+Y3α33   (207) 

a1=X2α21+X3α31         (208) 

Py1=-X2α22-X3α32        (209) 

α11+ α21+ α31     α12+α22+α32     α13+α23+α33 

Y2α21+Y3α31      Y2α22+Y3α32   Y2α23+Y3α33 

-X2α21-X3α31    -X2α22-X3α32    -X2α23-X3α33    

 

1      0    0 

b1    Px1    Px2  

-a1    Py1  Py2 

 

 

 

1     0   0 

b1   Px1 Px2  

-a1  Py1 Py2 
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Py2 = -X2α23-X3α33       (210) 

5.2.2.1.7   Solution Set -1R2P Case (Twist matrix of the form T1) 

      The solution set therefore is the set of following equations 

with the condition that the given twists axes are aligned with the Z-axis 

of the co-ordinate system. 

 

 

Determinant     ≠  0 

 

 

 

 

Y3/ Y2 ≠ X3/ X2 

Px1/ Px2≠ Py1/ Py2 

α11+ α21+ α31 =1 

α12+α22+α32    =0    (211) 

α13+α23+α33   =0 

b1= Y2 α21+Y3α31       

Px1= Y2 α22+Y3α32      

Px2 = Y2α23+Y3α33 

a1=X2α21+X3α31       

Py1=-X2α22-X3α32      

Py2 = -X2α23-X3α33     

5.2.2.2 Case 2 b-Rank of Primary Part =1 (Twist matrix of the form T2)  

If the twist matrix is T2 with the corresponding primary matrix having 

rank=1, we can always choose the origin in such a way that the primary part of 

α11 α12  α13   

α21 α22  α23      

α31 α32  α33      
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the twists is directed in the direction of the z-axis, and the first twist axis passes 

through the origin, the twist matrix then take the following form   

 

  

T2 =        (212) 

 

 

 

The primary part matrix thus becomes; 

  

 

P2 =       (213) 

 

 

 

If now the position vectors of the twists are given in the form (Xn ̄i+Yn 

j̄+Znk̄), where n= 1 to 2, the above twists matrix is then written as (with the 

assumption that the prismatic joint is in the plane of the dual parts of the twists 

that is the planer case with the prismatic joint not oriented in the z direction); 

 

  

T2=        (214) 

 

 

 

  5.2.2.2.1  Possible Topologies  

       The manipulator can have the following three configurations, 

with certain conditions on the joints which will be discussed later. 

 Three parallel R Joints 

 Two Parallel R Joints and 1P Joint 

 0   0   1    t01x  t01y  t01z   

 0   0   1    t02x  t02y  t02z   

 0   0   0    Px1   Py1   Pz1  

 0   0   1     

 0   0   1    

 0   0   0     

 

 0   0   1    0     0    0     

 0   0   1    Y2 -X2  0   

 0   0   0    Px1  Py1 0   
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 One R joint and 2 P Joints  

5.2.2.2.2   Positioning and Orientation -3R Case (Twist matrix of 

the form T2) 

       The three R joints will be installed with their axis parallel to 

each other and oriented in the direction of the given twists.  These joints 

can be placed anywhere in the three space under certain conditions to 

achieve any linear combination of the given twists, these conditions are 

discussed below. 

       Let the three R joints which are oriented in the direction of 

the given twists are positioned at (a1ī + b1 j̄ +c1k̄ ), (a2ī + b2 j̄ + c2k̄ ), and  

(a3ī + b3 j̄ + c3k̄ )respectively.  With these position vectors the dual part 

of the joint twists can be found as variable. The twist matrix for the 

alternate joints will become. 

 

   

Ta2 =       (215) 

 

 

 

The equation of equivalence becomes: 

     

 

           

        =         (216) 

 

 

 

 

 

 0   0   1    b1   -a1   0   

 0   0   1    b2   -a2   0   

0   0   1     b3   -a3   0   

 

 0    0      0 

0     0      0 

1     1      1 

0     Y2   Px1         

0    -X2    Py1 

 0      0      0 

   

 

 

 0     0    0 

0      0    0  

1      1     1 

b1     b2     b3   

-a1    –a2    -a3 

  0     0     0   

 

 

 

α11 α12  α13   

α21 α22  α23      

α31 α32  α33      
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The equation can be reduced in the form with each matrix 

having rank =3. 

 

 

 

             =   (217) 

 

 

 

 

For the alpha matrix to have rank equal to three the condition is 

determinant of alpha matrix should not be equal to zero, can be written 

as; 

 

 

Determinant     ≠  0  (218) 

 

 

 

 

For the following matrix to have rank =3 the condition will be 

determinant not equal to zero which gives the following condition; 

 

 

 

 

 

 

 

 

1     1      1 

0     Y2   Px1  

0    -X2    Py1 

  

   

 

 

1      1     1 

b1     b2     b3   

-a1    –a2    -a3 

 

 

 

α11 α12  α13   

α21 α22  α23      

α31 α32  α33      

 

α11 α12  α13   

α21 α22  α23      

α31 α32  α33      

 

1     1      1 

0     Y2   Px1  

0    -X2    Py1 
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Y2 Py1 + Px1 X2 ≠  0   (219) 

We can write the above matrix equation in the following form 

 

 

            

 

       =                      (220) 

 

 

 

 

This gives the following conditions for equivalence 

α11+ α21+ α31 =1    (221) 

α12+α22+α32    =1    (222) 

α13+α23+α33   =1    (223) 

b1= Y2α21+ Px1α31          (224) 

b2= Y2α22+ Px1α32         (225) 

b3= Y2α23+ Px1α33    (226) 

a1=X2α21- Py1α31        (227) 

a2=X2α22- Py1α32       (228) 

a3= X2α23-Py1α33        (229) 

5.2.2.2.3   Solution Set -3R Case (Twist matrix of the form T2) 

 

                The solution set therefore is the set of following equations 

with the condition that the given twist axes are aligned with the Z-axis 

of the co-ordinate system. 

 

α11+α21+α31   α12+α22+α32     α13+α23+α33 

Y2α21+Px1α31  Y2α22+Px1α32   Y2α23+Px1α33 

-X2α21+Py1α31 -X2α22+Py1α32  -X2α23+Py1α33     

 

1   1   1 

b1  b2  b3   

-a1 -a2 -a3 
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Determinant     ≠  0 

 

 

 

Y2 Py1 + Px1 X2 ≠  0 

α11+ α21+ α31 =1 

α12+α22+α32    =1              (230) 

α13+α23+α33   =1 

b1= Y2α21+ Px1α31       

b2= Y2α22+ Px1α32      

b3= Y2α23+ Px1α33 

a1=X2α21- Py1α31     

a2=X2α22- Py1α32    

a3= X2α23-Py1α33     

5.2.2.2.4   Positioning and Orientation -2R1P Case (Twist matrix 

of the form T2) 

       The two R one P joints will be installed with the two R 

joints oriented in the direction of the given twist but with different 

position vectors, the prismatic joint must lie in the plane of the dual 

parts of the joint twists oriented in the direction of the third twist. 

     Let the two R joints which are oriented in the direction of the 

given twists are positioned at (a1ī + b1 j̄ +c1k̄ ) and (a2ī + b2 j̄ + c2k̄ ) 

respectively.  Let the P joint is oriented in the X-Y plane and its screw 

is given as (0  0  0  Px2  Py2  0).  With these position vectors the dual 

α11 α12  α13   

α21 α22  α23      

α31 α32  α33      

 



70 
 

part of the joint twists can be found as variable. The twist matrix for 

the alternate joints will become. 

 

 

Ta2 =       (231) 

     

     

    The equation of equivalence becomes: 

 

 

       

 

         =   (232) 

 

 

 

 

 

The equation can be reduced in the form with each matrix 

having rank =3. 

 

 

=   (233) 

 

 

 

For the alpha matrix to have rank equal to three the condition is 

determinant of alpha matrix should not be equal to zero, can be written 

as; 

 

 0   0   1    b1   -a1   0   

 0   0   1    b2   -a2   0   

0   0   0     Px2   Py2  0 

 

 0     0    0 

0      0    0  

1      1    0 

b1     b2   Px2   

-a1  -a2   Py2 

  0     0    0   

 

 

 

α11 α12  α13   

α21 α22  α23      

α31 α32  α33      

 

1     1      1 

0     Y2   Px1         

0    -X2    Py1 

  

   

 

 

1      1     0 

b1     b2   Px2   

-a1  -a2   Py2 

 

 

 

α11 α12  α13   

α21 α22  α23      

α31 α32  α33      

 

 0    0      0 

0     0      0 

1     1      1 

0     Y2   Px1         

0    -X2    Py1 

 0      0      0 
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Determinant     ≠  0  (234) 

 

 

For the following matrix to have rank =3 the condition will be 

determinant not equal to zero which gives the following condition; 

 

 

 

 

 

 

 Y2 Py1+ Px1 X2 ≠  0   (235) 

We can write the above matrix equation in the following form 

 

 

 

      =           (236) 

         

 

This gives the following conditions for equivalence 

α11+ α21+ α31 =1  (237) 

α12+α22+α32    =1  (238) 

α13+α23+α33   =0  (239) 

b1= Y2α21+ Px1α31  (240) 

b2=Y2α22+ Px1α32    (241) 

Px2 = Y2α23+ Px1α33  (242) 

a1=X2α21-Py1α31     (243) 

α11 α12  α13   

α21 α22  α23      

α31 α32  α33      

 

α11+α21+α31    α 12+α 22+α 32    α13+ α23+ α33 

Y2α21+Px1α31  Y2α22+ Px1α32    Y2α23+ Px1α33 

-X2α21+Py1α31  -X2α22+ Py1α32  -X2α23+Py1α33     

 

1    1   0 

b1  b2 P x2   

-a1 -a2 Py2 

 

 

 

1     1      1 

0     Y2   Px1         

0    -X2    Py1 
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a2=X2α22- Py1α32   (244) 

 Py2 = -X2α23+Py1α33     (245) 

5.2.2.2.5   Solution Set -2R1P Case (Twist matrix of the form T2) 

        The solution set therefore is the set of following equations 

with the condition that the given twist axes are aligned with the Z-axis 

of the co-ordinate system. 

 

 

Determinant     ≠  0 

 

 

 

 

Determinant     ≠  0 

 

 

Y2 Py1+ Px1 X2 ≠  0 

α11+ α21+ α31 =1                  (246) 

α12+α22+α32    =1 

α13+α23+α33   =0 

b1= Y2α21+ Px1α31 

b2=Y2α22+ Px1α32   

Px2 = Y2α23+ Px1α33 

a1=X2α21-Py1α31    

a2=X2α22- Py1α32  

  Py2 = -X2α23+Py1α33     

α11 α12  α13 

α21 α22  α23  

α31 α32  α33      

 

1    1    0 

b1   b2 P x2   

-a1 -a2 Py2 
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5.2.2.2.6   Positioning and Orientation -1R2P Case (Twist matrix of 

the form T2) 

     The one R two P joints will be installed with the R joint 

oriented in the direction of the given twists, the prismatic joints must lie 

in the plane of the dual parts of the joint twists, but they have to be 

linearly independent of each other. 

     Let the R joint which is oriented in the direction of the given 

twists is positioned at (a1ī + b1 j̄ +c1k̄ ).  Let the P joints be oriented in 

the X-Y plane and their screws are given as (0   0   0   Px2  Py2   0) and (0  

0  0  Px3  Py3  0).  With these position vectors the dual part of the joint 

twists can be found as variable. The twist matrix for the alternate joints 

will become. 

 

 

Ta2 =                     (247) 

     

 

  

     The equation of equivalence becomes: 

 

       

 

 

           =       (248) 

 

 

 

 

 

 0   0   1    b1   -a1   0   

 0   0   0    Px2  Px3  0   

 0   0   0    Py2  Py3  0   

 

 0     0    0 

0      0    0  

1      0    0 

b1     Px2  Px3   

-a1    Py2 Py3 

  0     0    0   

 

 

 

α11 α12  α13   

α21 α22  α23      

α31 α32  α33      

 

 0    0      0 

0     0      0 

1     1      1 

0     Y2   Px1         

0    -X2    Py1 

 0      0      0 
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   The equation can be reduced in the form with each matrix 

having rank =3. 

 

 

 

        =     (249) 

    

 

 

  For the alpha matrix to have rank equal to three the condition 

is determinant of alpha matrix should not be equal to zero, can be 

written as; 

 

 

 

Determinant     ≠  0  (249) 

    

 

 

For the following matrix to have rank =3 the condition will be 

determinant not equal to zero which gives the following condition; 

 

 

 

 

 

 

 Y2 Py1+ Px1 X2 ≠  0   (250) 

 

 

1     1      1 

0     Y2   Px1         

0    -X2    Py1 

  

   

 

 

1     0    0 

b1   Px2  Px3   

-a1  Py2 Py3 

 

 

 

α11 α12  α13   

α21 α22  α23      

α31 α32  α33      

 

α11 α12  α13   

α21 α22  α23      

α31 α32  α33      

 

1     1      1 

0     Y2   Px1         

0    -X2    Py1 
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  We can write the above matrix equation in the following form 

 

 

 

 =         (251)

   

         

  

 

This gives the following conditions for equivalence 

α11+ α21+ α31 =1  (253) 

α12+α22+α32    =1  (254) 

α13+α23+α33   =0  (255) 

b1= Y2α21+ Px1α31  (256) 

Px2=Y2α22+ Px1α32    (257) 

Px3 = Y2α23+ Px1α33  (258) 

a1=X2α21-Py1α31     (259) 

Py2=-X2α22+ Py1α32   (260) 

Py3= -X2α23+Py1α33      (261) 

5.2.2.2.7   Solution Set -1R2P Case (Twist matrix of the form T2) 

     The solution set therefore is the set of following equations 

with the condition that the given twist axes are aligned with the Z-axis 

of the co-ordinate system. 

 

 

 

 

α11+α21+α31    α12+α22+α32        α13+α23+α33 

Y2α21+Px1α31    Y2α22+Px1α32   Y2α23+Px1α33 

-X2α21+Py1α31  -X2α22+Py1α32   -2α23+Py1α33     

 

1   0     0 

b1 Px2   Px3   

-a1 Py2 Py3 
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Determinant     ≠  0 

 

 

 

Y2 Py1+ Px1 X2 ≠  0 

 α11+ α21+ α31 =1 

α12+α22+α32    =1               (262) 

α13+α23+α33   =0 

b1= Y2α21+ Px1α31 

Px2=Y2α22+ Px1α32   

Px3 = Y2α23+ Px1α33 

a1=X2α21-Py1α31    

Py2=-X2α22+ Py1α32  

Py3= -X2α23+Py1α33     

 

5.2.2.3 Case 2 a-Rank of Primary Part =1 (Twist matrix of the form T3)  

If the twist matrix is T3 with the corresponding primary matrix having 

rank=1, we can always choose the origin in such a way that the primary part of 

the first twist is directed in the direction of the z-axis, and the first twist axis 

passes through the origin, the twist matrix then take the following form   

 

  

T3 =            (263) 

 

 

  0   0    1     0     0      0   

 0    0    0     Px1   Py1   Pz1 

 0    0    0     Px2   Py2   Pz2 

  

 

α11 α12  α13   

α21 α22  α23      

α31 α32  α33      
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The primary part matrix thus becomes; 

  

 

P3 =     (264) 

 

 

 

If now the position vectors of the twists are given in the form (X1ī+Y1 

j̄+Z1k̄), the above twists matrix is then written as (with the assumption that the 

prismatic joint is oriented in the x-y plane that is the planer case with the 

prismatic joint not oriented in the z direction); 

 

. 

  

   T3 =       (265) 

 

 

 

5.2.2.3.1  Possible Topologies  

 The manipulator can have the following three configurations, 

with certain conditions on the joints which will be discussed later. 

 Three parallel R Joints 

 Two Parallel R Joints and 1P Joint 

 One R joint and 2 P Joints   

5.2.2.1.2   Positioning and Orientation -3R Case (Twist matrix of 

the form T3) 

     The three R joints will be installed with their axis parallel to 

each other and oriented in the direction of the first given twists.  These 

joints can be placed anywhere in the plane under certain conditions to 

 0   0   1     

 0   0   0    

 0   0   0     

 

 0   0   1    0     0    0     

 0   0   0   Px1  Py1   0   

 0   0   0   Px2  Py2  0   
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achieve any linear combination of the given twists, these conditions are 

discussed below. 

Let the three R joints which are oriented in the direction of the 

first given twists are positioned at (a1ī + b1 j̄ +c1k̄), (a2ī + b2 j̄ + c2k̄), and 

(a3ī + b3 j̄ + c3k̄) respectively.  With these position vectors the dual part 

of the joint twists can be found as variable. The twist matrix for the 

alternate joints will become. 

 

 

  Ta3 =       (266) 

 

 

 

 

The equation of equivalence becomes: 

 

     

 

     

                                                 =   (267) 

 

 

 

 

 

 

 

The equation can be reduced in the form with each matrix 

having rank =3. 

 

 0   0   1    b1   -a1   0   

 0   0   1    b2   -a2   0   

0   0   1     b3   -a3   0   

 

 0    0     0 

0     0     0 

1     0     0 

0    Px1  Px2         

0    Py1  Py2 

 0    0      0 

   

 

 

 0     0    0 

0      0    0  

1      1     1 

b1     b2     b3   

-a1    –a2    -a3 

  0     0     0   

 

 

 

α11 α12  α13   

α21 α22  α23      

α31 α32  α33      
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           =          (268) 

 

 

 

 

For the alpha matrix to have rank equal to three the condition is 

determinant of alpha matrix should not be equal to zero, can be written 

as; 

 

 

 

Determinant     ≠  0 (269) 

 

 

 

For the following matrix to have rank =3 the condition will be 

determinant not equal to zero which gives the following condition; 

 

 

 

 

 

 

 

Px1Py2 – Py1Px2 ≠  0   (270) 

We can write the above matrix equation in the following form 

 

 

1     0     0 

0    Px1  Px2         

0    Py1  Py2 

  

   

 

 

1      1     1 

b1     b2     b3   

-a1    –a2    -a3 

 

 

 

α11 α12  α13   

α21 α22  α23      

α31 α32  α33      

 

α11 α12  α13   

α21 α22  α23      

α31 α32  α33      

 

1     0     0 

0    Px1  Px2         

0    Py1  Py2 
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        =                         (271) 

 

 

 

 

This gives the following conditions for equivalence 

α11=1   (272) 

α12 =1   (273) 

α13 =1   (274) 

b1= Px1α21+Px2α31 (275) 

b2= Px1α22+Px2α32      (276) 

b3= Px1α23+Px2α33 (277) 

a1= -Py1α21-Py2α31 (278) 

a2= -Py1α22-Py2α32      (279) 

 a3= -Py1α23-Py2α33 (280) 

 

5.2.2.3.3   Solution Set -3R Case (Twist matrix of the form T3) 

 The solution set therefore is the set of following equations 

with the condition that the first given twist axis is aligned with the Z-

axis of the co-ordinate system and the other two twists corresponding to 

prismatic joints are oriented in the x-y plane. 

 

 

 

α11                α12               α13 

Px1α21+Px2α31   Px1α22+Px2α32   Px1α23+Px2α33 

Py1α21+Py2α31   Py1α22+Py2α32    Py1α23+Py2α33 

 

1    1    1 

b1   b2   b3   

-a1 -a2  -a3 
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Determinant     ≠  0 

 

 

 

 

Px1Py2 – Py1Px2 ≠  0 

α11=1 

α12 =1      (281) 

α13 =1 

b1= Px1α21+Px2α31 

b2= Px1α22+Px2α32      

b3= Px1α23+Px2α33 

a1= -Py1α21-Py2α31 

a2= -Py1α22-Py2α32      

a3= -Py1α23-Py2α33 

5.2.2.3.4   Positioning and Orientation -2R1P Case (Twist matrix of 

the form T3) 

 The two R one P joints will be installed with the two R 

joints oriented in the direction of the first given twist but with different 

position vectors, the prismatic joint must lie in the plane of the dual 

parts of the joint twists oriented in the direction of the third twist. 

Let the two R joints which are oriented in the direction of the given 

twists are positioned at (a1ī + b1 j̄ +c1k̄ ) and (a2ī + b2 j̄ + c2k̄ ) 

respectively.  Let the P joint is oriented in the X-Y plane and its screw 

is given as (0  0  0  Px3  Py3  0).  With these position vectors the dual part 

α11 α12  α13   

α21 α22  α23      

α31 α32  α33      
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of the joint twists can be found as variable. The twist matrix for the 

alternate joints will become. 

 

 

 

Ta3 =      (282) 

     

     

The equation of equivalence becomes: 

 

 

     

 

                         =                     (283) 

 

 

 

 

 

 

 

The equation can be reduced in the form with each matrix 

having rank =3. 

 

 

 

 =   (284) 

 

 0   0   1    b1   -a1   0   

 0   0   1    b2   -a2   0   

0   0   0     Px3   Py3  0 

 

 0     0    0 

0      0    0  

1      1    0 

b1     b2   Px3   

-a1    -a2   Py3 

  0     0    0   

 

 

 

 0    0     0 

0     0     0 

1     0     0 

0    Px1  Px2         

0    Py1  Py2 

 0    0      0 

   

 

 

α11 α12  α13   

α21 α22  α23      

α31 α32  α33      

 

1     0     0 

0    Px1  Px2         

0    Py1  Py2 

  

   

 

 

1      1    0 

b1     b2   Px3   

-a1    -a2   Py3 

 

 

 

α11 α12  α13   

α21 α22  α23      

α31 α32  α33      
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For the alpha matrix to have rank equal to three the condition is 

determinant of alpha matrix should not be equal to zero, can be written 

as; 

 

 

 

Determinant     ≠  0  (285) 

 

 

 

For the following matrix to have rank =3 the condition will be 

determinant not equal to zero which gives the following condition; 

 

 

 

 

 

 

 

 Px1Py2 - Px2 Py1 ≠  0   (286) 

We can write the above matrix equation in the following form 

 

 

 

 

      =                          (287) 

         

 

 

 

α11 α12  α13   

α21 α22  α23      

α31 α32  α33      

 

1    1    0 

b1   b2 P x2   

-a1 -a2 Py2 

 

 

 

1     1      1 

0    Px1   Px2         

0    Py1    Py2 

  

   

 

 
α11              α12               α13 

Px1α21+Px2α31  Px1α22+Px2α32    Px1α23+Px2α33 

Py1α21+Py2α31   Py1α22+Py2α32   Py1α23+Py2α33 
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This gives the following conditions for equivalence 

α11=1    (288) 

α12 =1    (289) 

α13 =0(287) 

b1= Px1α21+Px2α31  (290) 

b2= Px1α22+Px2α32       (291) 

P x2  = Px1α23+Px2α33  (292) 

a1= -Py1α21-Py2α31  (293) 

a2= -Py1α22-Py2α32       (294) 

    Py2= Py1α23+Py2α33  (295) 

5.2.2.3.5   Solution Set -2R1P Case (Twist matrix of the form T3) 

 The solution set therefore is the set of following equations 

with the condition that the first given twist axis is aligned with the Z-

axis of the co-ordinate system and the other two twists corresponding to 

prismatic joints are oriented in the x-y plane. 

    

 

Determinant     ≠  0 

 

 

 

Px1Py2 - Px2 Py1 ≠  0 

α11=1 

α12 =1 

α13 =0 

α11 α12  α13   

α21 α22  α23      

α31 α32  α33      
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b1= Px1α21+Px2α31 

b2= Px1α22+Px2α32      

P x2  = Px1α23+Px2α33 

a1= -Py1α21-Py2α31                (296) 

a2= -Py1α22-Py2α32      

Py2= Py1α23+Py2α33 

 

5.2.2.3.6   Positioning and Orientation -1R2P Case (Twist matrix of 

the form T3) 

The one R two P joints will be installed with the R joint 

oriented in the direction of the first given twists, the prismatic joints 

must lie in the x-y plane, but they have to be linearly independent of 

each other. 

Let the R joint which is oriented in the direction of the given 

twists is positioned at (a1ī + b1 j̄ +c1k̄ ).  Let the P joints be oriented in 

the X-Y plane and their screws are given as (0   0   0   Px3  Py3   0) and (0  

0  0  Px4  Py4  0).  With these position vectors the dual part of the joint 

twists can be found as variable. The twist matrix for the alternate joints 

will become. 

 

 

 

Ta3 =         (297) 

     

  

 

 

 

 0   0   1    b1   -a1   0   

 0   0   0    Px3  Px4  0   

 0   0   0    Py3  Py4  0   
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The equation of equivalence becomes: 

 

       

 

 

       

          =        (298) 

    

 

 

 

 

 

 

The equation can be reduced in the form with each matrix 

having rank =3. 

 

 

        = 

 

 

 

 

For the alpha matrix to have rank equal to three the condition is 

determinant of alpha matrix should not be equal to zero, can be written 

as; 

 

 

 

 

 0     0    0 

0      0    0  

1      0    0 

b1    Px3  Px4   

-a1    Py3 Py4 

  0     0    0   

 

 

 

α11 α12  α13   

α21 α22  α23      

α31 α32  α33      

 

1     0     0 

0    Px1  Px2         

0    Py1  Py2  

   

 

 

1      0    0 

b1    Px3 Px4   

-a1    Py3 Py4 

 

 

α11 α12  α13   

α21 α22  α23      

α31 α32  α33      

 

 0    0     0 

0     0     0 

1     0     0 

0    Px1  Px2         

0    Py1  Py2 

 0    0      0 
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Determinant     ≠  0 (298) 

 

 

 

For the following matrix to have rank =3 the condition will be 

determinant not equal to zero which gives the following condition; 

 

 

 

 

 

. 

 Px1Py2 - Px2 Py1 ≠  0 (299) 

We can write the above matrix equation in the following form 

 

 

 

     =                          (298) 

 

         

 

This gives the following conditions for equivalence 

α11=1    (298) 

α12 =0    (299) 

α13 =0    (300) 

b1= Px1α21+Px2α31  (301) 

Px3= Px1α22+Px2α32      (302) 

α11 α12  α13   

α21 α22  α23      

α31 α32  α33      

 

1    0    0 

b1  Px3 Px4   

-a1  Py3 Py4 

 

 

 

1     1      1 

0    Px1   Px2         

0    Py1    Py2 

  

   

 

 α11              α12   α13 

Px1α21+Px2α31     Px1α22+Px2α32     Px1α23+Px2α33 

Py1α21+Py2α31     Py1α22+Py2α32     Py1α23+Py2α33 
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P x4  = Px1α23+Px2α33  (303) 

a1= -Py1α21-Py2α31  (304) 

Py3= Py1α22+Py2α32      (305)  

    Py4= Py1α23+Py2α33  (306) 

5.2.2.3.7   Solution Set -1R2P Case (Twist matrix of the form T3) 

 The solution set therefore is the set of following equations 

with the condition that the first given twist axis is aligned with the Z-

axis of the co-ordinate system and the other two twists corresponding to 

prismatic joints are oriented in the x-y plane. 

    

 

Determinant     ≠  0 

 

 

 

Px1Py2 - Px2 Py1 ≠  0 

α11=1 

α12 =1 

α13 =0          (307) 

b1= Px1α21+Px2α31 

b2= Px1α22+Px2α32      

P x2  = Px1α23+Px2α33 

a1= -Py1α21-Py2α31 

a2= -Py1α22-Py2α32      

Py2= Py1α23+Py2α33 

 

α11 α12  α13   

α21 α22  α23      

α31 α32  α33      
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Chapter 6 – CONCLUSION 

6.1 Introduction 

 This chapter is concerned with the overall outcome of the thesis, and with the 

suggestions of the further work which can be carried out on the basis of the theory presented 

in this thesis.  First, each chapter is reviewed, and the essential results from each are 

described; then overall conclusions are proposed; finally, recommendations for further work 

are made.   

6.2 Review 

 Chapter 1 reviewed the background of the screw theory and the basic definitions of 

serial and parallel kinematic manipulators. 

 Chapter 2 presented the more detailed understanding of the screw theory with 

description of the elements of the screw theory in more detail and the chapter contributed as to 

how the instantaneous twist of the manipulator can be decomposed to the primitive design of 

the manipulators.  Based upon the linear combination of the specified twists, revolute, 

prismatic joints can be found to achieve this combination. 

 Chapter 3 gives the application of the theory presented in chapter 2 to single degree of 

freedom manipulators and discussed in detail with the help of twist matrices all the possible 

cases associated with the single DOF manipulators. 

 The theory presented in chapter 2 is applied to Two DOF serial manipulators in 

chapter 4 in detail, with detailed examples, all the calculations involved and conditions 

required.  Details of all possible topologies pertaining to two DOF and as to why this theory in 

the present form is restricted to planer serial manipulators. 

 Chapter 5 gives a detailed account of the application of the given theory on to 3 DOF 

serial manipulators (only planer).   
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6.3 General Conclusion 

 This thesis is held to be successful in that, a new systematic approach and a theory on 

instantaneous finite twist has been proposed, which can be used to give alternate designs for a 

given manipulator.  The end effector twist of a given design is used to associate the design to 

the possible alternate topologies.  The design of the revolute and prismatic joints has thus been 

proposed.   

6.4 Further Work 

 The avenues of further work suggested by the experience of this project are: 

 The study be extended to the spatial manipulators working in coordination with 

eachother. 

 

 

 

 

 

 

 

 

 

 

Figure- 6.1 Motion Planning for Multi-Robot Assembly Systems 
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Figure 6.2 A dual-arm cooperative robot  

 

 

 

 

 

 

 

 

Figure 6.3 Cooperating Robots 

 

 Further investigation can be done on the application of this study to parallel 

manipulators. 
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Appendix ‘A’ 

 

 

 

 

 

 

 

 

 

 

Mathematical Preliminaries 
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1. Workspace 

The workspace of a manipulator is the total volume of space the end-effector 

can reach. The workspace is constrained by the geometry of the manipulator as well as 

the mechanical constraints on the joints. The workspace is broken into a reachable 

workspace and a dexterous workspace. The reachable workspace is the volume of 

space within which every point is reachable by the end-effector in at least one 

orientation. The dexterous workspace is the volume of space within which every point 

can be reached by the end effector in all possible orientations. The dexterous 

workspace is a subset of the reachable workspace. [12] 

2. Vector  

A vector is a directed line segment representing a quantity such as force, 

velocity, etc. which possesses both magnitude and direction.  The direction of the 

quantity is given by the direction of the arrow and the magnitude by the length of the 

arrow.  A vector „A’ can be represented analytically if we let i, j and k be unit vectors 

directed along the positive x, y and z axes of a right-handed Cartesian coordinate 

system. Let the initial point of A be located at the origin O and whose terminal point is 

at coordinates (a1, a2, a3). Then vector A can be represented as  

              A = a1 i + a2 j + a3 k .     (1) 

The vectors a1 i, a2 j, and a3 k are called the component vectors of A in the x, y and z 

directions respectively. a1, a2, and a3 are called the x, y and z components of A. 

3. Unit Vector 

A unit vector is a vector having unit magnitude i.e. a magnitude of 1.  

Normally denoted by a‟ ̄ „or‟ ̂ „over the name of the vector . 

4. Position Vector (or Radius Vector)  

A position vector is a vector that extends from the origin of the coordinate 

system to some point (x, y, z) in space i.e. the vector 

             r = xi + yj + zk       (2) 

or 

            r = (x, y, z)       (3) 
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5. Sum of Two Vectors 

The sum of two vectors expressed in analytical form is obtained by adding 

corresponding components i.e. if A and B are two vectors such that; 

A = a1 i + a2 j + a3 k       (4) 

B = b1 i + b2 j + b3 k       (5)    

A + B = (a1 + b1) i + (a2 + b2) j + (a3 + b3) k   (6) 

6. Vector (or Cross) Product  

The vector (or cross) product A×B of two vectors A and B (defined in 4 and 5 ) 

is defined as  

             A×B = |A| |B| sin θ u      (7) 

Where θ is the angle from A to B and u is a unit vector perpendicular to the 

plane of A and B and so directed that a right-handed screw driven in the direction of u 

would carry A into B. 

   A×B = (a2b3 - b2a3) i + (a3b1 - b3a1) j + (a1b2 - b1a2) k (8) 

 

 

or A×B = determinant of      (9) 

 

 

 

7. Rank of a Matrix  

The rank of a matrix A is the maximum number of linearly independent row or 

column vectors of the matrix. 

8. Linearly Independence of Vectors  

Two vectors A= (x1,y1) and B = (x1i,y2) are linearly independent if the only 

simultaneous solution of the system a(x1,y1)+b(x1,y2)=0, a=0 and b=0, where a and b 

are both scalars; that is the simultaneous solution of the following two equations; 

ax1+bx1=0       (10) 

ay1+by1=0       (11) 

 

 

 

 i       j     k   

 a1     a2   a3     

 b1     b2   b3     
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Appendix ‘B’ 

 

 

 

 

 

 

 

 

 

 

 

Graphical Representation of Original and Alternate Mechanisms 
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Two Revolute Joints Mechanism Replaced by Alternate Two Revolute Joints Mechanism 

(2R to 2R) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note:- Graph showing same path traced by end effector of both mechanisms and the path 

followed by joints 
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Workspace Alternate 
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Path traced by both Mechanisms 

inside workspace of original 
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Two Prismatic Joints Mechanism Replaced by Alternate Two Prismatic Joints 

Mechanism (2P to 2P) 

 

 

 

 

 

 

 

Note: - Both Mechanisms have the same workspace irrespective of the fact that both 

mechanisms have different joint locations.  

 

 

 

Original Mechanism 

Prismatic Joint 1 

Motion Prismatic 

Joint 2  

Path traced by both Mechanisms  

Alternate Mechanism 

Common Point on Path 
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Two Revolute Joints Mechanism Replaced by One Revolute and One Prismatic Joint 

Mechanism-(2R to 1R1P) 

 

 

 

 

Note:- Graph showing same path traced by end effector of both mechanisms and the path 

followed by joints 
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Three Revolute Joints Mechanism Replaced by Three Revolute Joints Mechanism  

 (3R to 3R) 

 

 

 

 

 

Note:- Graph showing same path traced by end effector of both mechanisms and the path 

followed by joints 
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Three Revolute Joints Mechanism Replaced by Two Revolute and One Prismatic Joint 

Mechanism-(3R to 2R1P) 
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Three Revolute Joints Mechanism Replaced by Two Prismatic and One Revolute Joint 

Mechanism-(3R to 2P1R) 
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Three Prismatic Joints Mechanism Replaced by Three Prismatic Joints Mechanism  

 (3P to 3P) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: - Both Mechanisms have the same workspace irrespective of the fact that both 

mechanisms have different joint locations.  
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