

OPTIMIZED SECURITY PROTOCOL FOR
WIRELESS SENSOR NETWORKS

by

Hasan Tahir

2008-NUST-MSPHD- CSE(E)-16

MS-08 (SE)

Submitted to the Department of Computer Engineering in fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in

SOFTWARE ENGINEERING

Thesis Supervisor

Prof Dr Muhammad Younus Javed

College of Electrical & Mechanical Engineering

National University of Sciences & Technology

2011

 vi

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION

1.1 PROBLEM OVERVIEW………………………………………………………….1

1.2 PROJECT OBJECTIVES………………………………………………………….2

1.3 THESIS OUTLINE……………………………………………………………......3

CHAPTER 2: LITERATURE REVIEW…………………………………………..4

2.1 WIRELESS SENSOR NETWORKS…………………………………………...…4

2.2 CHALLENGES OF SENSOR NETWORKING……………………..…………...5

2.2.1 Limited Energy………………………………………………………...5

2.2.2 Limited Bandwidth…………………………………………………….6

2.2.3 Limited Hardware………………………………………………..…….6

2.2.4 Security………………………………………………………………...6

2.3 SECURITY IN WIRELESS SENSOR NETWORKS…………………………….7

2.4 SECURITY GOALS IN WSNs………………………………………………...…7

2.4.1 Data Confidentiality…………………………………………………...8

2.4.2 Data Authentication..8

2.4.3 Data Integrity……….………………………………………………….8

2.5 SECURITY RISKS IN WSNs…………………………………………………….8

2.5.1 Eavesdropping…………………………………………………………9

2.5.2 Sensor Node Compromise……………………………………………..9

2.5.3 Privacy of Sensed Data……………………………………………….10

2.5.4 Denial of Service (DoS) Attack……………………………………...10

2.6 SENSOR NETWORK CONSTRAINTS………………………………………...11

2.6.1 Limited Memory……………………………………………………...11

2.6.2 Limited Power………………………………………………………..11

2.6.3 Limited Budget……………………………………………………….12

2.7 DATA ENCRYPTION…………………………………………………………...12

2.7.1 Block Cipher………………………………………………………….13

2.7.2 Stream Cipher………………………………………………………...13

2.8 PROTOCOL DESIGN OBJECTIVES…………………………………………...14

2.8.1 Security……………………………………………………………….15

 vii

2.8.2 Performance……….………………………………………………….16

2.8.3 Ease of Use…………………………………………………………...16

2.9 SECURITY PRIMITIVES……………………………………………………….17

2.9.1 Encryption Scheme…………………………………………………...17

2.9.2 Stream Cipher………………………………………………………...18

2.9.3 Initialization Vector…………………………………………………..18

2.9.4 Message Authentication Codes………………………………………18

2.10 eSTREAM PROJECT…………………………………………………………..19

2.10.1 Rabbit Cipher……………………………………………………….19

2.10.2 HC-128 Cipher……………………………………………………...20

2.10.3 Salsa20 Cipher………………………………………………………20

2.10.4 SOSEMANUK Cipher……………………………………………...20

2.11 WSN DEVELOPMENT ENVIRONMENT……………………………………20

2.12 SUMMARY…………………………………………………………………….21

CHAPTER 3: DESIGN & IMPLEMENTATION OSP…………………...…….22

3.1 OSP DESIGN RUDEMENTS………………………………………………....…23

3.1.1 Encryption……………………………………………………………23

3.1.2 OSP Packet Format…………………………………………………..24

3.1.3 IV Format.……………………………………………………………26

3.2 ARCHITECTURAL DIAGRAM OF OSP………………………………………26

3.3 OSP ALGORITHM………………………………………………………………27

3.4 SIMULATION SETUP…………………………………………………………..31

3.5 OSP IMPLEMENTATION………………………………………………………33

3.5.1 Inner State…………………………………………………………….34

3.5.2 Key Setup Scheme……………………………………………………34

3.5.3 Initialization Vector…………………………………………………..36

3.5.4 Next-State Function…………………………………………………..37

3.5.5 Extraction scheme for OSP Encryption/Decryption…………………38

3.5.6 Extraction scheme for OSP MAC……………………………………38

3.5.7 Encryption/ Decryption Scheme……………………………………..39

3.5.8 MAC Generation Scheme……………………………………………40

3.6 KEYING MECHANISMS FOR OSP……………………………………………40

3.6.1 Link Key with OSP…………………………………………………..41

 viii

3.6.2 Group Keying with OSP……………………………………………...42

3.6.3 Network Wide Keying and LRSA……………………………………43

3.5 SUMMARY……………………………………………………………………...44

CHAPTER 4: TESTING AND EVALUATION OF OSP……………………….46

4.1 OSP TESTING ENVIRONMENT……………………………………………….46

4.1.1 Simulator……………………………….…………………………….46

4.1.2 Visualization Environment…………….……………………………..47

4.2 OSP FRAMEWORK TESTING…………………………………………………47

4.2.1 Test Vector-I………………………………………………………….47

4.2.2 Test Vector-II………………………………………………………...48

4.2.3 Test Vector-III………………………………………………………..49

4.2.4 Test Vector-IV………………………………………………………..50

4.3 MEMORY FOOTPRINT ANALYSIS…………………………………………..51

4.3.1 ROM Consumption Study……………………………………………51

4.3.2 RAM Consumption Study……………………………………………53

4.4 PROCESSING TIME…………………………………………………………….55

4.5 SECURITY RESILIANCE ANALYSIS………………………………………...57

4.6 SUMMARY……………………………………………………………………...58

CHAPTER 5: CONCLUSIONS AND FUTURE WORK………………………..59

5.1 CONCLUSION…………………………………………………………………..58

5.2 FUTURE RESEARCH…………………………………………………………...59

APPENDIX A-SNAPSHOTS………………………………………………………60

BIBLIOGRAPHY…………………………………………………………………..62

RELEATED RESEARCH PUBLICATIONS…………………………………….66

 ix

LIST OF TABLES

TABLE PAGE

2.1 eSTREAM Portfolio Stream Ciphers………….……………………………….19

3.1 Function Definition for Key Setup……………………………………………..36

3.2 Function definition for IV_setup……………………………………………….37

3.3 Function Definition for Cipher…………………………………………………40

3.4 Keying Mechanisms with their Positive and Negative Aspects………………..41

3.5 Function Definition for Cipher…………………………………………………41

4.1 Test Vector-I……………………………………………………………………48

4.2 Test Vector-II…………………………………………………………………...48

4.3 Test Vector-III…………………………………………………………….……49

4.4 Test Vector-IV……………………………………………………….................50

4.5 ROM Consumptions for Competing Protocols…………………………………52

4.6 RAM Consumptions for Competing Protocols…………………………………54

4.7 Processing Time (μs) for Competing Protocols………………………………...56

 x

LIST OF FIGURES

FIGURE PAGE

2.1 Stream Cipher - Synchronizing Mode………………………………………..14

2.2 Stream Cipher - Self Synchronizing Mode…………………………………..14

3.1 Computation of Ciphertext (CT) and MAC in OSP………………………….24

3.2 The TinyOS Packet Format with Number of Bytes Per Field………………..25

3.3 The OSP Packet Format with Number of Bytes Per Field…………………...25

3.4 IV Format…………………………………………………………………….26

3.5 Functional Diagram of OSP – Sending Party………………………………..26

3.6 Functional Diagram of OSP – Receiving Party……………………………...27

3.7 The OSP Algorithm…………………………………………………………..28

3.8 Flowchart of OSP – Message Sending Party………………………………...29

3.9 Flowchart of OSP – Message Receiving Party………………………………31

3.10 Ideal Component Composition Diagram of OSP…………………………….32

3.11 OSP Functional Diagram…………………………………………………….34

3.12 Basic OSP Structure Definition………………………………………………34

3.13 Key Setup Algorithm………………………………………………………...35

3.14 Initialization Vector Algorithm………………………………………………36

3.15 Algorithm for the Next State Function……………………………………….37

3.16 Algorithm for Keystream Generation………………………………………...38

3.17 Extraction scheme for OSP MAC……………………………………………39

3.18 Algorithm for Encryption/Decryption………………………………………..39

3.19 MAC Generation Scheme for OSP…………………………………………..40

3.20 Sequence Diagram Depicting the Link Key with OSP………………………42

3.21 Sequence Diagram Depicting the Group Key with OSP…………………..…43

3.22 Sequence Diagram Depicting the Network Key with OSP…………………..44

4.1 Comparison Graph for ROM Consumptions………………………………...52

4.2 Comparison Graph for RAM Consumptions………………………………...54

4.3 Comparison Graph for Operating Time (μs)…………………………………56

 xi

LIST OF ABBREVIATIONS

AES Advanced Encryption Standard

AM Active Message Handler

CBC Chain Block Chaining

CFB Cipher Feedback Mode

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CTR Counter

DES Data Encryption Standard

Dest Destination Address

Destid Destination ID

ECB Electronic Code Book

EU ECRYPT European Union-European Network of Excellence for

Cryptology

grp Group

I/O Input/Output

ISO International Standards Organization

IV Initialization Vector

Len Length

MAC Message Authentication Code

NESSIE New European Schemes for Signatures, Integrity and

Encryption

OSP Optimized Security Protocol

RF Radio Frequency

RSA Rivest, Shamir, Adelman

SN Sensor Node

Src Source Address

Srcid Source ID

TinyOS Tiny Operating System

WSNs Wireless Sensor Networks

XOR Exclusive OR

DECLARATION

I hereby declare that I have developed this thesis entirely on the basis of my personal

efforts under the guidance of my supervisor Prof Dr Muhammad Younus Javed. All

the sources used in this thesis have been cited and the contents of this thesis have not

been plagiarized. No portion of the work presented in this thesis has been submitted in

support of any application for any other degree of qualification to this or any other

university or institute of learning.

 Hasan Tahir

ACKNOWLEDGEMENTS

First and foremost I want to thank my advisor Dr. Muhammad Younus. It has been an

honor to study under his supervision. I appreciate all his contributions of time, ideas,

and funding to make my MS experience both productive and stimulating. I am also

thankful for the excellent example he has provided as a successful researcher and

professor of computer science.

I would also like to thank the faculty members at the college of E&ME for their

constant support during our studies. For this dissertation I would like to thank my

committee members Dr. Aasia Khannum, Dr. Saad Rehman and Dr. Arsalan Shaukat

for their time, interest, and helpful comments.

Lastly, I would like to thank my family for all their love and encouragement. For my

parents who raised me with a love of science and supported me in all my pursuits.

And most of all for my loving, supportive and encouraging sister and brother whose

faithful support during the final stages of my degree is so appreciated. Thank you it

would not have been possible without you.

To my parents, sister and brother…

ABSTRACT

Extensive research has been conducted in the field of wireless sensor

networks(WSNs). Both the academia and researchers have envisioned a broad range

of applications for WSNs. Many of these applications require varying levels of

security. Security is an attribute that is computational and communicational intensive.

Severe lack of resources and limited capability has made providing security a

challenging task in WSN. Therefore techniques need to be devised that provide

security without compromising the limited resources available to WSNs.

 This thesis focuses on the design, implementation and analysis of an

Optimized Security Protocol (OSP) that fulfills the requirements of confidentiality,

authentication and integrity in WSNs. OSP fulfils requirements of high level security

without compromising resources. OSP architecture is based on the further

optimization of computations in the Rabbit stream cipher and reduction in

communication overhead to save sensor’s life time.

The proposed OSP has been implemented using power of TinyOS coupled

with NesC. In order to evaluate the system, several experiments have been carried out

with respect to encryption/ decryption of various data blocks. Evaluation of OSP has

been done by conducting a comprehensive efficiency analysis of the proposed

architecture. Furthermore, the results of execution time and memory footprint for OSP

have been compared to its cryptographic counterparts. The decrease in the memory

footprint and execution time proves that OSP is a very viable choice for WSNs. Since

OSP provides extensive security features, operates within the optimal ranges for

WSNs and outperforms existing security protocol for WSNs therefore this protocol

promises to be widely accepted.

1

Chapter 1

INTRODUCTION

WSNs are being extensively studied for their promising applications and cost effective

nature. Researchers and scientists have been able to identify a broad range of

environments where WSNs can be applied. Because WSNs are low cost sensing devices

it is predicted that in the near future these small sensors will be implemented in places

that were not imagined before. Small sensor size and their low price implies that these

wireless sensors can be deployed in great numbers and they can sense a broad range of

parameters like temperature, vibration, movement and light [1].

Besides the civilian applications researchers have also proposed military

applications for WSNs. Many of these applications will require the sensors to be

deployed in highly hostile environments where they are highly prone to a large range of

security attacks. So far little emphasis was given to the security of WSNs, but as these

wireless networks become ready for wide spread adoption and researchers also recognize

the insecure nature of wireless mediums research trends have shifted and more emphasis

is now being given to the security of WSNs. The industry and the academia acknowledge

the fact that wide spread adoption of any wireless technology should not commence

without addressing the inherent security issues. In most wireless networks attackers

attempt to exploit the minor weaknesses of the system to gain access to whatever

resources they can. Although this is also true in WSNs but the limited battery and the

possibility of a hostile environment means that a small weakness can be effectively

exploited to bring down an entire network [2].

1.1 PROBLEM OVERVIEW

Security in computing and networking is a heavily studied domain and researchers have

been successful in proposing protocols and techniques to counter security threats. But

when it comes to WSNs conventional security mechanisms cannot be applied owing to

2

the lack of resources available. WSNs have a very limited memory, power, and

computational capability therefore providing security solutions for WSNs is a challenging

task. Researchers in the field of security understand that limited energy is the greatest

hindrance in the implementation of intricate security protocols. WSNs need lightweight

security algorithms that are resilient to attack and can be applied in domains that require

varying levels of security. In other words algorithms and protocols are required that

provide high levels of security with a minimum memory footprint. Security algorithms

need to be designed that are not computational intensive and do not need repeated

communications to operate.

1.2 PROJECT OBJECTIVES

The aim of this project is to design a lightweight security protocol for WSNs. A protocol

that consumes very little resources and can be widely adopted for its high levels of

security. Optimized Security Protocol referred to as OSP will fulfil all the requirements

of a security protocol without compromising essential resources. OSP attempts to provide

a suite of basic security features i.e. confidentiality, authentication and integrity.

Although only confidentiality fulfils the very basic requirements of a security protocol,

researchers still recognize the fact that confidentiality is not adequate in ensuring a fool

proof system, therefore features for authentication and integrity also need to be

incorporated into the OSP. This protocol has been designed using refined, revised and

reduced sized packets so that security provision does not become an expensive

characteristic for the network. OSP is based on the Rabbit stream cipher because it has

been recognized by the eSTREAM project for its promising nature of providing high

levels of security in a resource constrained environment.

To completely study the effectiveness of OSP it had to be implemented so that its

results can be analyzed. OSP has been implemented using the language NesC in the

TinyOS operating system. The simulator used for the deployment of sensors is TOSSIM.

All tools and languages used in the project are specialized for use with WSNs.

3

1.3 THESIS OUTLINE

This thesis is aimed at bringing to light the various security aspects related to WSNs. The

aim of this work is to develop an implementable security protocol for resource

constrained WSNs. Developing a protocol that fulfils the requirements of high level

security yet not compromising the resource demand is a critical task.

The thesis is logically broken down so that each chapter builds on the learning’s from the

previous chapters. Chapter 2 provides details about WSNs and their resource constrained

nature. In this chapter security has also been discussed with particular emphasis on WSN

security. Chapter 3 builds on the concepts of security and WSNs to present a detailed

architecture of the OSP. The architecture discusses in details the system architecture,

packet formats and also possible keying mechanisms. This chapter employs previously

discussed concepts to shows how the architecture of OSP can be formally implemented

using TinyOS, nesC and TOSSIM. Chapter 4 analyzes OSP with relation to other similar

security protocols. The resource consumption results are elaborated with the help of

graphs. Finally chapter 5 concludes the thesis and presents future directions for further

enhancements and research.

4

Chapter 2

LITERATURE REVIEW

INTRODUCTION

This chapter is a detailed description of WSNs and security. The chapter begins with an

explanation of what WSNs are and their constraints. Then WSNs are discussed in

conjuncture with security to explain the security goals of WSNs. Later in the chapter a

detailed account of block ciphers and stream ciphers is given. In the end a complete

description of the eSTREAM project is given to explain the origin of the Rabbit stream

cipher and many other competing ciphers.

2.1 WIRELESS SENSOR NETWORKS

Data Processing is perhaps the largest required functionality of a computation

device. Data processing was actually the real motivation behind the development of

computer systems. Old fashioned mainframe computers were actually developed to

reduce the amount of time that was required to process data. With time these large sized

main frame computers became obsolete and smaller desktop computers emerged that

could process data much quickly and efficiently. Recently we have seen how computers

are being embedded into the environment around us. The sole purpose of embedding

these computation devices is to monitor the environment and then perform actions based

on the current environmental status.

5

Fresh developments in Micro-Electro-Mechanical Systems (MEMS) has allowed

scientists to develop small sized, low powered and low priced sensors that have the

ability of sensing their environment[1][5]. Despite being small these sensors can sense

their environment, process the data from the events generated in the environment and

then communicate over short distance without any interruption. Since these sensors are

small in size and low cost therefore they can be deployed in large numbers thereby

forming a wireless network of sensor nodes formally called wireless sensor networks.

Recent research has shown that WSNs can be applied in environments that were

previously thought impenetrable. In the near future these small sized sensing devices will

be deployed all around us and they will monitor a wide range of parameters. To

implement WSNs in such diverse range of applications means we need to develop

protocols for WSNs that offer efficiency at the cost of very little resources.

2.2 CHALLENGES OF SENSOR NETWORKING

Researchers have suggested a broad range of applications for WSNs but because of the

physical properties of these sensors they suffer from technical issues that need to be

addressed before we can employ the power of these smart sensing devices. To fully

unleash the power of sensor networks we need to address the issues of limited energy,

limited bandwidth, limited hardware and security. Only when these issues [7] are fully

addressed can we formally deploy these wireless sensors for our full benefit.

2.2.1 Limited Energy

Fundamentally the sensors of a WSN have been designed to run on battery so they can be

deployed in environments that are not physically penetrable. Once a battery has served its

6

purpose and cannot supply any more power it expires resulting in death of the sensor. A

WSN can be composed of thousands of sensors which work in a collaborative fashion.

Hence the death of a few of the sensors could render the network useless.

2.2.2 Limited Bandwidth

In WSNs the power required to transmit data is many times the power required to execute

an instruction. The reason for this is the complexities involved in the transmission of

data. The existing data rate for wireless communications has been restricted to 10-100

Kbits/second. Pottie and Kaiser have shown that the energy required in transmitting one

bit over 100 meters in 3 joules. Whereas the same amount of energy can be used to

compute around 3 million instructions.

2.2.3 Limited Hardware

In mission critical environments the sensors are required to be small in size so that they

are not readily visible. In order to keep the size of a sensor at its minimum the hardware

is kept limited. For example the Berkley Mica2 motes possess a small battery, 8 bit CPU

that can run at 10MHz, 128KB to 1MB memory and a communication range of less than

50 meters. Researchers have to devise methods and strategies for deploying the sensors

within the limited available hardware. The size of the hardware cannot be increased

because this would result in expensive hardware that requires further power for

processing.

2.2.4 Security

The parameters that are detected in a WSN may seem to be fairly simple but the reality of

the fact is that the same data in the wrong hands may prove to be fatal. For example in

7

battle field monitoring or nuclear power station monitoring, the loss of processed data

may prove to be fatal. WSNs are susceptible to a very broad range of attacks. Moreover

attackers can use a combination of attacks to truly bring down the entire network.

2.3 SECURITY IN WIRELESS SENSOR NETWORKS

Researchers and scientists have predicted a broad range of applications for WSNs. Many

of these applications are highly critical in nature. For example application domains

related to military, earth quake monitoring and nuclear power stations will all process

data that is very critical in nature. Since WSNs process very fundamental forms of data

and then produce results that are highly valuable and crucial in nature therefore these

results may be very sought after by adversaries [2,3,4,6].

Recent advances in the field of network security cannot be applied because firstly WSNs

have a very unique purpose and design as compared to conventional networks. Secondly,

conventional security mechanisms cannot be applied because of the inherent processing

and communicational constraints that exist in WSNs. To provide security in WSNs we

need to design new protocols and frameworks that are lightweight in nature yet produce

high quality results. In simple terms all protocols and frameworks for WSNs need to be

optimized for performance, functionality and value added services like security.

2.4 SECURITY GOALS IN WIRELESS SENSOR NETWORKS

To provide security in WSNs we need to address three fundamental security goals

namely data confidentiality, data authentication and data integrity.

8

2.4.1 Data Confidentiality

The data in a sensor network should not be leaked to unintended persons. It should only

be accessible by authorized persons. The conventional approach for keeping data

protected is to encrypt the data with a secret key which is only possessed by the intended

receivers.

2.4.2 Data Authentication

The purpose of authentication is to verify that the parties involved in initiating a

communication session are really who they claim to be. Further authentication can be

used to ensure that an already established connection is not being interfered by any

unwanted party.

2.4.3 Data Integrity

In networks, data integrity refers to the fact that the received data has not been tampered

during transit by an attacker. The system must possess the ability to recognize data that

has been reordered, modified, deleted, duplicated or inserted.

2.5 SECURITY RISKS IN WSNS

WSNs are often deployed in domains that are susceptible to attack by adversaries.

Unwanted persons may attempt to eavesdrop, tamper or even modify data that is being

communicated. In this section some of the high priority security risks are

presented[18,19,20].

9

2.5.1 Eavesdropping

Since WSN is a wireless based communication network therefore it becomes easier for an

attacker to pick up on a data stream. If an attacker can pick up on an inadequately

encrypted data stream then it can easily extract data and then draw conclusions based on

that data. In a similar scenario an attacker can place listening nodes at significant

locations so that the nodes can simply listen to the data being communicated. To protect

against such types of attacks an encryption method is needed. Encryption in conventional

networks is not a great issue because they possess unlimited processing capabilities [10].

Whereas in WSNs the encryption approach is faced with issues like limited battery, small

memory and limited processing capability. To overcome this only symmetric key

encryption can be used because it uses less power as compared to asymmetric key.

Symmetric keys use two identical keys to perform encryption; therefore a secure key

distribution mechanism is also needed for WSNs. Also we must ensure that if a node or a

number of nodes are compromised the attacker does not obtain too much information

regarding the security scheme and the keys that are being used.

2.5.2 Sensor Node Compromise

In WSNs it is understood that every node can be a potential point of attack. The attackers

can also try to insert their own nodes into the network and make the network accept them

as authorized nodes. In similar scenarios the attackers can capture legitimate nodes and

10

use them in attacks like falsification of sensor data, listening sensor data or starting denial

of service attacks.

2.5.3 Privacy of Sensed Data

WSNs can form a collaboration of thousands of nodes, where each node is responsible

for sensing its environment and then routing the information to a beacon. When all these

sensors work together the aggregated data can be quite large. When the data is sent

through the entire WSN it becomes very easy for the attacker to access data from almost

any point in the wireless network [16]. Furthermore the attacker can infiltrate some of the

nodes in the network and hence gain access to a large amount of data. Detecting and

overcoming such types of attacks can be difficult because in most cases the attack may

not even be apparent. When designing the network one needs to consider that only the

essential data is transmitted. For example if the core temperature of a nuclear power

generator is required then we may not need to transmit data regarding the time, place,

humidity and sensor relative information. Discarding such type of irrelevant data also

results in minimization of data transmission costs that occur because of unnecessary data.

2.5.4 Denial of Service (DoS) Attacks

Using the Denial of Service attack an attacker has the ability of rendering its host

inoperable. In most cases such type of attacks happen when the attacker tries to

overwhelm the network by sending large amounts of malicious data. This technique

deprives the sensors from going into their power saving sleep mode. This implies that the

sensors consume up a large amount of their precious battery power thereby reducing the

11

lifespan of the entire network. Once the individual sensors start to fade away the network

is first segmented and then later the entire network collapses due to non availability of

power. There are many mechanisms to protect against such type of attacks but the

creativity with which this attack can be used is limitless.

2.6 SENSOR NETWORK CONSTRAINTS

The major constraints of a typical WSN are its adhoc nature and the low price of the

sensors which is visible in the limited power capability, limited battery and limited

transmission range. These constraints greatly affect how security is provided to WSNs.

The impact of these constraints is discussed below.

2.6.1 Limited Memory Space

WSNs do not possess a large memory as compared to other networking devices. The

limited memory size prevents us from storing large and complex algorithms on the

sensors. WSNs need simple and optimized algorithms for security and routing.

2.6.2 Limited Power

Limited power in sensors is the toughest challenge in WSNs. Because of this property the

security technique cannot be complicated. A very complex security algorithm may

provide high level of security but largely at the cost of power consumption. To conserve

energy we need to minimize computations and communications. Complicated encryption

techniques like public key algorithms and complex authentication mechanisms are

avoided because of the inherent power limitation.

12

2.6.3 Limited Budget

Each sensor node is designed to be very cheap so that the sensors can be deployed in

large numbers. Deploying sensors in an unattended fashion makes them very vulnerable

to capture and scrutiny. Once a node is captured the attacker can attempt to extract

information regarding the security mechanisms. Hence techniques need to be devised that

limit the devastating effect in case a node is compromised.

2.7 DATA ENCRYPTION

Many networks need to be made secure even though they do not carry very critical type

of data. For example a local area connection in an office may need to be made secure

because it provides networking support to the people that work in the office even though

the data that is being shared is pretty ordinary. On the other hand there are networks

where the data communications in the network needs to be secured because of the

criticality of the data. For example a network that may exist in a military environment. To

secure WSNs it is very essential to secure the data that is being passed through the

network because each sensor has limited resources and the data that is being processed is

critical.

To send data securely between two sensor nodes in a WSN the system can encrypt the

data either using a Symmetric Key Cryptography (SKC) or Public key Cryptography

(PKC). PKC is commonly adopted because of its comprehensive security provision along

with the demand for higher resources than SKC. SKC schemes are very light weight in

nature hence they are more appropriate for WSNs. The only concern in SKC is the

13

sharing of keys. If a key is disclosed for some reason then the entire WSN is

compromised. If a node-to-node key is utilized then key management becomes difficult.

To reap the benefits of both the SKC and PKC a hybrid technique is employed in which

asymmetric encryption is used to exchange the secret key between the sending and

receiving sensor nodes. Then PKC schemes are applied to transfer data between the

sending and receiving sensor nodes. SKC based schemes are of two broad types block

ciphers and stream ciphers, which are elaborated in the following section.

2.7.1 Block Ciphers

In block ciphers the plain text is broken down into blocks of n-bits. Each block is

encrypted one at a time. Most often the block size is kept at 64 or 128 bits. A block

cipher encrypts the plaintext by encrypting it r times sequentially with a round function.

Each round function receives a subkey which is a derivation of the actual key K, and

performs confusion and diffusions of its inputs. Many similar variances of the block

cipher also exist that reinforce the security of the system [30].

2.7.2 Stream Cipher

Unlike block ciphers this method of data encryption uses a bit by bit encryption

mechanism. Stream ciphers are composed of two components i.e. a key stream generator

and a mixing function. The key stream generator is the central function of the stream

cipher while the mixing function is an XOR function. Largely the stream cipher is of two

operational modes: Synchronous Stream Ciphers and Self Synchronizing Stream Cipher.

In synchronous stream cipher the key stream generator is only dependent upon the shared

key for encryption. The shared key is used by the sender for the encryption of outbound

14

streams. The receiver decrypts the stream using the same shared key. A major

disadvantage of this method is that if the key is leaked then the system is compromised.

Figure 2.1 illustrates how synchronous stream ciphers operate.

Figure 2.1: Stream Cipher – Synchronizing Mode

 In self synchronizing stream cipher the previous states of the cipher bits are given

as input to the keystream generator. Figure 2.2 shows the encryption and decryption

process taken by the self synchronizing stream cipher.

Figure 2.2: Stream Cipher – Self Synchronizing Mode

2.8 PROTOCOL DESIGN OBJECTIVES

Wireless Sensor Networks (WSNs) operate on wireless communication links. It is proven

that it is easier to eavesdrop on wireless links because they broadcast their information

wirelessly over the network[6]. Owing to this broadcast nature of WSNs, the adversary

can easily intercept the transmitted data. Therefore WSNs must deter eavesdropping and

Keystream
Generator

Keystream Plaintext

Ciphertext

Decryption

Key Keystream
Generator

Keystream Ciphertext

Plaintext

Encryption

Key

Key Keystream
Generator

Keystream Plaintext

Ciphertext

Decryption

Key Keystream
Generator

Keystream Ciphertext

Plaintext

Encryption

15

operate within the limited resources available to them. By nature security is an expensive

mechanism that requires memory, complex mathematical operations and

communications. Unfortunately WSNs have limited memory, processing, communication

and power. To provide security in WSNs we need to maintain a delicate balance between

security, resource consumption and performance. If this balance is not maintained then

the network will either fade away too quickly or it will not provide services as they are

intended to be.

The Optimized Security Protocol (OSP) has been developed to provide extended security

services along with minimum resource consumption. OSP has been developed keeping in

view the best practices required for a protocol to operate in a resource constrained

environment [33].

2.8.1 Security

WSNs need to communicate pin point accurate data that can be very sensitive in nature.

A sensor must not leak the data it possesses to an unauthorized node. To provide message

confidentiality the data is encrypted with a secret key so that even if data is available to

the adversary it is not readily understandable. Another benefit of keeping data encrypted

with a secret key is that the data can only be decrypted by an entity that possesses the

required secret key. To achieve high level security it has been proven that message

confidentiality is not sufficient. Therefore authentication and integrity are also required.

Using authentication the receiver can verify that the message was actually sent by an

authenticated party. Whereas Integrity ensures that the message being communicated has

not been tampered with in any way. In the absence of authentication and integrity,

messages under transit are prone to cut-and-paste attacks. OSP has been designed to

16

provide message confidentiality, authentication and integrity while consuming as little

resources as possible.

2.8.2 Performance

Owing to the extreme resource limitations in WSNs it is important to provide security

without consuming too many resources. Security protocols are needed that provide

reasonable security coverage without too much resource demand. An over conservative

approach towards resources can limit the level of security available to the network. On

the other hand an approach to provide a high level comprehensive security solution may

render the network useless because of the intensive demand for resources. Therefore a

performance tradeoff is necessary to achieve a satisfactory level of security along with

optimal resource consumption. OSP provides high level security with low

communication and computation overhead. The security key space is kept moderate to

secure the network and also provide extended sensor life.

2.8.3 Ease of Use

WSNs are deployable in a broad range of environments. Each environment has its own

requirements and preferences. Therefore OSP has been designed for adaptability and

modifiability. OSP can be easily customized i.e. programmers can make adjustments for

security and performance. Secondly OSP can be used in combination with any keying

mechanism. This provision has been kept because of broadly varying application

demands, security and performance.

17

2.9 SECURITY PRIMITIVES

OSP is designed specifically for WSNs that have to operate in a hostile environment with

resource limitations. This section provides an overview of the security primitives that

have been employed in the OSP.

2.9.1 Encryption Scheme

Both symmetric and Asymmetric keys have their advantages and disadvantages.

Asymmetric key encryption is considered slightly less troublesome because it uses

different keys for encryption and decryption. Hence asymmetric keys do not have issues

related to secure key sharing. On the other hand since the encryption and decryption keys

are different this makes the encryption and decryption process complicated. This aspect

of asymmetric keys makes them less efficient compared with symmetric key. A complex

encryption and decryption process means cumbersome mathematical calculations,

communication overheads and unnecessary drainage of battery power.

Since asymmetric key encryption is computationally expensive therefore a

method is used to both safely share the keys and then share data without the overhead.

Symmetric key encryption scheme is used to encrypt bulk data. Whereas the asymmetric

key encryption is used to encrypt the encryption key which was used for bulk data

encryption. This method provides secure key exchange and then allows the sensors to

exchange data using symmetric key encryption. Since symmetric key encryption is less

computation intensive therefore it is efficient to use symmetric keys for regular

communications.

18

2.9.2 Stream Ciphers

Stream ciphers are designed to process data bit by bit. This aspect of stream ciphers

makes them appropriate for environments where large memory blocks do not exist.

Stream ciphers provide faster and efficient encryption/decryption as compared to block

ciphers.

2.9.3 Initialization Vector

Initialization vectors are used to further strengthen the security of WSNs. Initialization

vector is used when two messages are very similar or truly identical. In case of WSNs

identical or similar messages are frequently communicated between neighboring nodes.

The initialization vectors provide side inputs so that if two identical messages are

encrypted then the obtained cipher texts are different. In the absence of an initialization

vector the attackers can use various types of attacks to scan for repeating patterns and

sequences in the transmitted cipher texts.

2.9.4 Message Authentication Code

Alongside confidentiality, OSP has been designed to provide authentication and integrity.

To save essential resources while providing authentication and integrity message

authentication code (MAC) has been used. A MAC is a superior algorithm that accepts as

input a secret key and a message. The output after performing the MAC is a tag that can

be used to verify the authentication and integrity. In simple terms a MAC is a

computation performed on a message and the resulting output allows verifiers who

possess the secret key, to detect any changes that have been made by attackers to the

message while it was in transit.

19

2.10 eSTREAM PROJECT

eSTREAM is a multi year project being run by the EU ECRYPT network. The purpose of

the project was to identify new stream ciphers that promise to be widely accepted and

adopted. The project was initiated because of the disappointment of all six stream ciphers

that were submitted to the NESSIE project. The eSTREAM portfolio began establishment

in November 2004. After going through three phases of study and analysis the final phase

was completed in May 2008. The goal of the project was to identify those stream ciphers

that have high throughput in environments with limited resources. Table 2.1 presents the

four finalized stream ciphers of the eSTREAM project [23].

Table 2.1: eSTREAM Portfolio Stream Ciphers

eSTREAM Portfolio Stream Ciphers

Rabbit

HC-128

Salsa20

SOSEMANUK

2.10.1 Rabbit Cipher

Rabbit stream cipher was presented to the eSTREAM project in May 2005. Rabbit stream

cipher was designed for high performance. The core component is a bitstream generator

that can encrypt 128 message bits per iteration. The cipher is composed of a mixing

function that is based on arithmetic functions that are available on a modern processor.

This mixing function is the actual strength of the cipher[28].

20

2.10.2 HC-128 Cipher

HC-128 is also a part of the eSTREAM portfolio. The cipher was designed to provide

swift bulk data encryptions without compromise in security [25]. The cipher is composed

of two secret tables. Each table is designed to hold 1024 32-bit words. For each state

update a 32-bit word in each table is updated using a non-linear update function. Both

tables are updated after 2048 steps.

2.10.3 Salsa20 Cipher

Salsa20 has been selected for the eSTREAM portfolio because of its superior diffusion

mechanisms. The cipher uses pseudorandom functions along with bitwise additions and

constant rotations to defeat timing attacks.

2.10.4 SOSEMANUK Cipher

SOSEMANUK is a 128 bit cipher that is part of the eSTREAM portfolio. The cipher has

an associated proof of concept but the cipher has not been proved in the finalization of

the eSTREAM portfolio. The cipher uses a 128 bit initialization vector. According to the

author this cipher is based on the design of SNOW and the Serpent block cipher.

2.11 WSN DEVELOPMENT ENVIRONMENT

TinyOS is an operating system that is event driven yet it possesses a very small memory

footprint (instruction and data memory 400 bytes). The operating system supports several

platforms and it is open-source environment. TinyOS is supported by a programming

language and model (NesC). Programs in TinyOS are built out of components that have

specific interfaces for interactions. The components are of two types: Modules and

21

Configurations. Modules and configurations work in a closely knit fashion. The modules

define the application behavior while the configuration is used to connect the components

together. Each component has a frame, function and access interfaces. The frame is

composed of variables to keep track of internal/ initial states. All the code, commands,

events and tasks written in NesC are part of the function [29].

2.12 SUMMARY

In this chapter a background study on WSNs was presented. The presented concepts form

the foundations of the project. Details regarding individual sensors, entire network and

security in WSNs have been discussed in detail. The eSTREAM project has been studied

for its dedications towards providing security in resource constrained environments.

Algorithms, techniques and various directions that have been discussed form the

foundation of the research work in the project.

22

Chapter 3

DESIGN & IMPLEMENTATION OF OSP

INTRODUCTION

When designing a security protocol for conventional systems researchers have a very

limited set of constraints within which they have to operate. Whereas in the case of

WSNs, researchers face the issue of being faced by constraints that are many and severe

in nature. WSNs present constraints and limitations that require researchers to rethink the

way conventional security works. In a resource constrained environment producing a new

design can mean redesigning from the basic foundations. Often packet formats need to be

optimized and redundant data needs to be discarded so that essential resources can be

conserved.

This chapter presents the architectural design and implementation details of the

newly proposed Optimized Security Protocol for WSNs referred to as OSP. This protocol

has been designed to meet the highest levels of security. Besides the conventional

confidentiality, OSP also provides authentication and integrity. Furthermore, since

wireless sensors can be deployed in highly hospitable environments, therefore the

importance of providing confidentiality, authentication and integrity in a single protocol

increases.

23

3.1 OSP DESIGN RUDIMENTS

OSP is a security protocol specifically designed for resource constrained WSNs. A

security protocol that is designed for a resource constrained but mission critical

environment must provide the highest level of security while consuming as little

resources as possible. The designed protocol must consume minimum amount of

resources while providing high levels of security in a quick and optimal fashion. OSP has

been optimized by first eradicating the communication overhead that incurs because of

sending separate encrypted packets for the initialization vector. Secondly the packet

format has been redesigned to remove redundant bits and to accommodate that data

which is actually required by the system. A smarter packet results in efficient encryption/

decryption.

3.1.1 Encryption

Rabbit is one of the qualifying eSTREAM portfolio ciphers. Rabbit has been specially

designed for security and performance without influencing limited resources. Rabbit has

a lightweight algorithm that consists of a 128 bit key that is expanded into eight state

variables and eight counter variables. The key and initialization vector (IV) are plugged

into four rounds of the next state function to eradicate any recognizable correlations

between the key, IV and plaintext. The next state function is employed to jumble up bits

so that no obvious pattern is visible. The keystream generator uses the same components

for modification of counter variables and state variables.

In OSP, the encryption process begins by providing the plaintext (PT) to Rabbit.

To formally perform encryption, Rabbit is also provided with the symmetric key (KE) and

the initialization vector (IV). When the Rabbit cipher is performed on the plaintext the

24

output obtained is ciphertext (CT). But at this stage the ciphertext cannot be transmitted;

because in its current state, it only fulfills the requirements of message confidentiality,

whereas OSP is required to also provide authentication and integrity. These security

features can only be provided when a MAC is computed on the ciphertext. To save

precious program space OSP has been designed to reuse the Rabbit next state function for

computing the MAC. A separate MAC algorithm is not needed because the Rabbit next

state function possesses superb diffusion properties and further in this manner a separate

footprint for a MAC algorithm is not required. The obtained MAC is embedded into the

OSP packet and transmitted along with the CT.

Figure 3.1: Computation of Ciphertext (CT) and MAC in OSP

3.1.2 OSP Packet Format

A security protocol that requires minimum processing is not possible without an

optimized packet format. Therefore, the packet format used by OSP has been redesigned

to accommodate fields that did not previously exist in the TinyOS packet. The design of

the TinyOS packet format included fields that were not very necessary for

communication and these fields have been replaced in OSP design by making a more

advantageous use of each bit in the packet. Given below is the TinyOS packet format[31].

MAC
CT PT

KE IV

Rabbit OSP-MAC

KM

25

Dest
(2)

AM
(1)

Length
(1)

Grp
(1)

Data
(0…29)

CRC
(2)

Figure 3.2 The TinyOS Packet Format with Number of Bytes Per Field [31]

The TinyOS packet format contains Grp and CRC fields which are not required by OSP.

These fields have been replaced by the source (Src), message counter (Ctr) and the MAC.

The Grp is a field that is used in cases when data is transmitted to a group of sensors.

Using the Grp field only those sensors can communicate that possess the same Grp. In

OSP the Grp field has been replaced by Src field to provide security on perlink basis

rather than group basis.

The CRC field in TinyOS packet is replaced by the MAC in OSP. The MAC is a superior

algorithm as compared to the CRC, the later can only detect transmission errors that exist

because of channel noise whereas MAC detects transmission errors as well as

modifications done on the message to check for message integrity. The updated and

optimized OSP packet format is as follows:

Dest
(2)

AM
(1)

Length
(1)

Src
(2)

Ctr
(2)

CT
(0...29)

MAC
(4)

Figure 3.3: The OSP Packet Format with Number of Bytes Per Field [33]

The header fields in OSP packet namely Dest, AM and Length are kept unencrypted so

they are readable at once. If they were kept encrypted then every sensor would first have

to decrypt the fields to see if it is the intended destination sensor.

26

3.1.3 IV Format

To further conserve the limited resources that are available, the design of OSP reuses the

fields in its packet for the generation of the IV. A major advantage of this is that separate

transmission of IV is not needed. Thus we can save the costs that occur from the creation

and transmission of an independent IV. The unencrypted fields of the OSP packet are

utilized to generate the IV. All fields of the IV are sent unencrypted. The unique

combination of Src and Ctr ensures that a single node can send around 216 packets before

a repetition of the IV is observed. Given below is the IV format [33] for OSP:

Dest AM Length Src Ctr

Figure 3.4: IV Format

3.2 ARCHITECTURAL DIAGRAM OF OSP

OSP is a design that is based on reuse so that resources can be conserved. The sender

provides the plaintext (PT) to the Rabbit algorithm along with the symmetric key (KE)

and the initialization vector (IV). This produces the ciphertext (CT) which in turn is used

to compute the MAC using the MAC encryption key. After the computation of MAC, the

required fields of the OSP packet are populated and transmitted to the intended node.

This approach to encryption is often referred to as Encrypt-Then-MAC approach [33].

Figure 3.5: Functional Diagram of OSP - Sending Party

MAC

CT PT

KE IV

Rabbit OSP-MAC

KM

Dest | AM | Length | Src | Ctr CT MAC

27

When the above packet is received by the receiving node the process of determining if

the message is legitimate or not is initiated. The receiving node extracts the CT and uses

the agreed KM to compute an independent MAC. If the received MAC and the MAC

computed at the receiving node are both identical then the message is in its true form,

else the packet is discarded. If the packet is legitimate then the CT, KE and the IV are

used by the receiving party to recover the plaintext using Rabbit cipher [33].

Figure 3.6: Functional Diagram of OSP - Receiving Party

3.3 OSP ALGORITHM

The underlying primitives of Rabbit are secure, so it is possible to build a proof of given

notion of security of the encryption MAC algorithm and for OSP.

The ciphertext is formed by encrypting the plaintext using Rabbit under KE and IV.

Further, a 128 bit MAC encryption key KM, is used to generate 8 subkeys for the OSP-

Mac function. The KM subkeys and IV are further used to generate state and counter

variables that are used in the next state function for the generation of MAC keystream.

KM

Extracted
MAC

Extracted CT

MAC Dest | AM | Length | Src | Ctr

MAC

CT

OSP-MAC
If

MAC Equal

CT
KE

IV
Rabbit

PT

YES

NO
Reject
Packet

28

The generated keystream blocks SM0,....,SM7 are XORed with the ciphertext blocks that

were generated as a result of encryption using KE to get CtM. The calculated CtM is

divided into four equal blocks namely CtM[31...0], CtM[62...32], CtM[95...64],

CtM[127...96]. These blocks are XORed to generate the OSP-MAC which in turn is

verified by the receiving party to check for integrity and authenticity of the transmitted

message. The receiving party extracts the ciphertext from the received packet and

calculates MAC using the same KM (MAC key) and initialization vector to see whether

the 4bytes MAC received in the packet matches the calculated MAC. Figure 3.7 shows

the complete OSP algorithm [28].

Figure 3.7: The OSP Algorithm

Let Pt denote the plaintext

Let Ct denote the ciphertext generated as a result of KE

Let KE denote the encryption key

Let KM denote the MAC encryption key

CtE = EKE (Pt)

{ K0, K1, K2, K3, K4, K5, K6, K7 }=KM (128 bit)

 IV = [DEST | AM | LEN | Src | Ctr]

CtM = Cte ⊕ SM0, SM1, SM2, SM3, SM4, SM5, SM6, SM7

OSP – MAC = CtM [31…0] ⊕ CtM [63…32] ⊕ CtM [95…64] ⊕ CtM [127…96]

29

Figure 3.8: Flowchart of OSP – Message Sending Party

START

Input
KE, Plaintext

Generate IV and subkeys using KE

Generate keystream (SE) using IV and KE

XOR keystream(SE) and plaintext to generate ciphertext (CTE)

CTE = SE ⊕ PT

Input KM

Generate subkeys using KM

Generate keystream (SM) using IV and KM

XOR keystream and plaintext to generate ciphertext (CTM)

CTM = SM ⊕ CTE

Generate OSP-MAC by
XORing every 32 bit block of CTM

OSP-MAC = CTM[31...0] ⊕ CTM[32...63]⊕ CTM[95...64] ⊕ CTM[127...96]

END

30

START

Input KM

Extract CTE, IV and MAC
from received packet

Generate subkeys using KM

Generate keystream (SM) using
IV and KM

XOR keystream and ciphertext (CTE) to generate CTM

CTM = SM ⊕ CTE

Generate OSP-MAC’
XORing every 32 bit block of CTM

OSP-MAC’ = CTM[31...0] ⊕ CTM[32...63]⊕ CTM[95...64] ⊕ CTM[127...96]

A

31

Figure 3.9: Flowchart of OSP – Message Receiving Party

3.4 SIMULATION SETUP

TinyOS is a specialized operating system designed for WSNs. The operating system is a

component based platform that provides extensive support to the various requirements of

sensor networks [32]. TinyOS has been designed specifically for resource constrained

environments and it provides support to the most popular motes such as MICA2, RENE

and BTNode.

OSP-MAC’
equal to
MAC?

Is

Input KE

Generate IV and subkeys using KE

Generate keystream (SE) using IV and KE

XOR keystream and CTE to recover plaintext

PT = CTE ⊕ SE

Yes

No Discard Packet

END

A

32

TinyOS is supported by NesC which is an executable application that

fundamentally assembles individual components. The greatest advantage of the

component assembly is that the user can exclude all those components that are not being

used by the application. Excluding components means reduced code size, application

simplicity and elimination of many potential error sources. OSP has been designed to

employ the benefits of both TinyOS and NesC. Figure 3.10 shows the ideal component

diagram of OSP.

Figure 3.10: Ideal Component Composition Diagram of OSP

Fundamentally, OSP is a collection of components and their interconnection. OSP

is composed of the OSPM function that is the calling point of other components. The

OSPM component communicates directly with the TimerC which is the default time

keeping component. The OSPM also links with the COM component which is the generic

communication component. The OSPM is fundamental in nature because it

33

communicates with SysTimeC, RabbitM and the Randomizer. SysTimeC is used for

performing timing calculations. RabbitM component is used to provide Rabbit

encryption/decryption and MAC generation modules. The MAC calculations are

performed by invoking the services of the MAC component. The Randomizer component

is essential for random deployment of sensor nodes in the network.

3.5 OSP IMPLEMENTATION

Rabbit is a security protocol that is designed for high levels of security and efficiency.

Rabbit, by nature is a symmetric synchronous stream cipher that is intended for

environments that have limited resources. Rabbit is part of the eSTREAM portfolio [23],

because of its promising nature for resource constrained environments hence it is also

suitable for WSNs. Rabbit operates by taking a 128-bit secret key as input and generates

for each iteration an output block of 128 pseudo-random bits from a combination of the

internal state bits. Encryption/ decryption is achieved by performing XOR on the pseudo-

random data with the plaintext/ ciphertext. OSP attempts to use Rabbit and an optimized

packet format for optimized security provision. In OSP, the plaintext is provided to the

Rabbit module along with the encryption key (KE) and initialization vector. The output

obtained from the Rabbit module is the ciphertext. Authentication and integrity of

message is verified by further performing computations on the generated ciphertext. In

the second phase of its MAC generation cycle, OSP takes a 128 bit MAC key and for

each iteration of the Rabbit Next State function, it generates an output block of 128

pseudorandom bits. Further, the MAC of the ciphertext (CtE) is generated by XORing the

pseudo-random data with the ciphertext blocks to generate CtM. The 32 bit OSP-MAC is

calculated by XORing every 32 bit ciphertext block within CtM

34

Figure 3.11: OSP Functional Diagram [33]

3.5.1 Inner State

The internal state of the stream cipher consists of 513 bits. These 513 bits are divided

between eight 32-bit state variables ranging from X0,...,X7 and eight 32-bit counter

variables ranging from C0,...,C7. Figure 3.12 shows the inner state details which are part

of the rabbit encryption/decryption and MAC generation module for OSP.

Figure 3.12: Basic OSP Structure Definition

3.5.2 Key Setup Scheme

Key setup begins by first expanding the 128-bit key into the eight state and eight counter

variables. This expansion is such that there is a one-to-one correspondence between the

key, the initial variables and counter variables. Four iterations are performed on the state

and counter variables according to the next state function. These four iterations result in

reduction of the correlations between the key bits and the internal state variables. Figure

3.13 shows the key setup procedure for the encryption and MAC generation of OSP [18].

Struct t_instance

{
unint32_t x[8];
unint32_t c[8];
unint32_t carry;
}

MAC
CtE PT

KE IV

Rabbit OSP-MAC

KM

35

Figure 3.13: Key Setup Algorithm

The internal state variables and the secret key are passed as parameters to the key setup

procedure. The key setup procedure divides the key into eight sub-keys. These eight

subkeys are further used in the generation of state and counter variables. All these

variables are utilized during the ongoing processing of OSP encryption and MAC

calculation. Table 3.1 shows details regarding the key_setup scheme in OSP which is

used for encryption/decryption and MAC generation in OSP.

The key is divided into subkeys:
K0 = k [15...0] K4 = k [79...64]
K1 = k [31...16] K5 = k [95...80]
K2 = k [47...32] K6 = k [111...96]
K3 = k [63...48] K7 = k [127...112]

The initial state is initialized as follows:

For j=0 to 7
 if j is even
 Xj = k(j+1 mod 8) || Kj
 Cj = k(j+4 mod 8) || K(j+5 mod 8)

else
 Xj = k(j+5 mod 8) || K(j+4 mod 8)
 Cj = kj || K(j+1 mod 8)

Four iterations of the system are then performed. Each iteration consists of counter
updates and the next state function. The counter variables are initialized to:

For j=0 to 7
Cj = Cj ⊕ x(j+4 mod 8)

36

Table 3.1: Function Definition for Key Setup

Key_setup Performs key setup in OSP

Input
Parameters

Type Name Task

t_instance *p_instance
Provides a pointer to the internal

state
const char *p_key Carries the secret key exchanged.

3.5.3 Initialization Vector

The IV setup scheme functions by modification of the counter state. Using the next state

function in figure 3.14 the system performs four iterations so that all state bits are non-

linearly dependent on all the IV bits. The modification of the counter by the IV assures

that all 264 varying IV will lead to a unique keystreams [18].

Figure 3.14: Initialization Vector Algorithm

After the key setup is complete the resulting inner state is saved as a master state. Then

the IV setup is commenced which makes it possible to generate the first key stream

block. If re-initialization under a new IV is necessary the IV setup is run on the mater

state of the key. The purpose of this is to generate the next keystream block while not

having to perform the key setup procedure[14,18].

C0=C0m ⊕ IV[31..0]
C1=C1m ⊕ (IV[63..48] || IV[31..16])
C2=C2m ⊕ IV[63..32]
C3=C3m ⊕ (IV[47..32] || IV[15..0])
C4=C4m ⊕ IV[31..0]
C5=C5m ⊕ (IV[63..48] || IV[31...16])
C6=C6m ⊕ IV[63..32]
C7=C7m ⊕ (IV[47..32] || IV[15..0])

M refers to master state which is the internal state directly after key setup scheme

37

Table 3.2: Function Definition for IV_setup

IV_setup Performs IV setup of OSP

Input
Parameters

Type Name Task

t_instance *p_master_instance
Pointer to master state i.e.

internal state after key_setup

t_instance *p_instance
Provides a pointer to the internal

state
Char p_dest Destination sensor node ID
Char p_src Sending Sensor Node ID

Const char *p_iv
Pointer to the initialization

Vector
IV= Dest | AM | Len | Src | Ctr

Size_t iv_size Size of Initialization Vector(IV)

3.5.4 Next-State Function

OSP is fundamentally based on the Rabbit Next-State function because this is the core

function and is used in key setup, keystream generation and MAC generation of OSP.

The Next-State function takes eight counter variables as input and after system iteration,

counter modification and g-function iteration produces a 128 bit keystream [18].

Figure 3.15: Algorithm for the Next State Function

Counter Modification
Update C0,...,C7
Update X0,...,X7

G_func(Xi,Ci)

a=X&0xFFFF
b=x>>16
h=(((a*a)>>17)+(a*b))>>)+b*b
l=x*x
result=h⊕l

Using this function, the algorithm updates the inner state as follows:
for j=0 to 7

Gj=g(Xj,cj)

38

3.5.5 Extraction Scheme for OSP Encryption/Decryption

Once the key and IV setup are complete, the 128 bit keystream is generated after

performing modifications to the state and counter variables. The obtained keystream is

then used for future computations. Figure below shows the algorithm for keystream

output Se[127...0].

Figure 3.16: Algorithm for Keystream Generation [18]

3.5.6 Extraction Scheme for OSP MAC

After the key and IV setup are concluded for the MAC key (KM), the algorithm is iterated

in order to produce a 128 bit output block or keystream for computing the MAC. The

keystream is then XOR’ed with the ciphertext generated in the encryption/decryption

phase of OSP algorithm to generate a CtM. Figure 3.17 shows the algorithm for the

keystream output SM[128...0].

Se [15...0] = X0[15...0] ⊕ X5[31...16]
Se [31...16] = X0[31...16] ⊕ X3[15...0]
Se [47...32] = X2[15...0] ⊕ X7[31...16]
Se [63...48] = X2[31...16] ⊕ X5[15...0]
Se [79...64] = X4[15...0] ⊕ X1[31...16]
Se [95...80] = X4[31...16] ⊕ X7[15...0]
Se [111...96] = X6[15...0] ⊕ X5[31...16]
Se [127...112] = X6[31...16] ⊕ X1[15...0]

39

Figure 3.17: Extraction Scheme for OSP MAC [18]

3.5.7 Encryption/Decryption Scheme

Once the keystream bits are obtained they are simply XOR’ed with the plaintext/cipher

text to perform encryption/decryption. The encryption/decryption scheme is repeated

until all blocks in the message have been encrypted/decrypted. If a case arises where the

message size is not a multiple of 128 bits then only the needed amount of least significant

bits from the last output block S is used for the last message block M.

Figure 3.18: Algorithm for Encryption/Decryption

The internal states and variables after processing are passed with the plaintext to the OSP

cipher function. Table 3.3 shows the parameters linked with the final stage of

encryption/decryption.

Encryption:
E = M ⊕ Se

Decryption:
M’ = E ⊕ S

SM [15...0] = X0[15...0] ⊕ X5[31...16]
SM [31...16] = X0[31...16] ⊕ X3[15...0]
SM [47...32] = X2[15...0] ⊕ X7[31...16]
SM [63...48] = X2[31...16] ⊕ X5[15...0]
SM [79...64] = X4[15...0] ⊕ X1[31...16]
SM [95...80] = X4[31...16] ⊕ X7[15...0]
SM [111...96] = X6[15...0] ⊕ X5[31...16]
SM [127...112] = X6[31...16] ⊕ X1[15...0]

40

Table 3.3: Function Definition for Cipher

Cipher Performs Ciphering in OSP

Input
Parameters

Type Name Task

t_instance *p_instance
Provides a pointer to the internal

state
Char *p_src Plaintext to be encypted.

3.5.8 MAC Generation Scheme

The generated keystream bits Sm[128...0] are sorted with the ciphertext to generate a

stream of pseudo random bits for final MAC calculations shown in figure 3.19.

Figure 3.19: MAC Generation Scheme for OSP

3.6 KEYING MECHANISMS FOR OSP

A security protocol can be widely understood if it is elaborated in conjunction with a key

management architecture and communication protocol. Key management architectures

are designed to handle the complexities related to key creation, key distribution and key

revocation. Another purpose of key management architectures is to protect keys from

being exploited.

 A keying mechanism is chiefly used for the distribution of keys throughout the

network. OSP has been designed in such a way that practical implementation is not

limited to any particular keying mechanism. Each keying mechanism is unique and each

CtM [31...0] = Ct[31...0] ⊕ SM[31...0]
CtM [63...32] = Ct[63...32] ⊕ SM[63...32]
CtM [95...64] = Ct[95...64] ⊕ SM[95...64]
CtM [127...96] = Ct[127...96] ⊕ SM[127...96]

OSP-MAC = CtM [31...0] ⊕ CtM[63...32] ⊕ CtM[95...64] ⊕ CtM [127...96]

41

one has its positive and negative points. Researchers have not been able to prove the

effectiveness of any particular keying mechanism because some keying mechanisms

provide better functionality in specific environments [16]. It is essential to consider all

the keying mechanisms before a final decision is made about the effectiveness of a

particular keying mechanism. Essentially a balance needs to be maintained between the

amount of resources and the level of security. Selection of the appropriate keying

mechanism depends upon the application domain, amount of resources available and the

threat model.

Table 3.4: Keying Mechanisms with their Positive and Negative Aspects

Keying Mechanism Positives Negatives
Network Wide Key Low Deployment Complexity Network Compromise

Per Group Key Medium Deployment Complexity Group Compromise

Per Link Key High Deployment Complexity Only One Link
Compromise

3.6.1 Link Key with OSP

The simplest yet effective mechanism for keying is the per link keying. Two nodes that

wish to communicate among themselves maintain a key for communication. This method

of keying protects the entire network from an attack in case a key is captured. This

implies that an attacker can only decrypt traffic that is addressed to it. Also an attacker

can only inject traffic through its immediate neighbours. If a system can detect the

location of the attacker then it can be isolated from the rest of the network by denial of

service to that particular neighbourhood around the attacker. Based on the architecture of

OSP it can be implied that the protocol in conjunction with per link keying will produce

42

high level of security but with high resource consumption. The resource consumption

occurs as a result of complexities owing to key distribution and communication costs.

Figure 3.20: Sequence Diagram Depicting the Link Key with OSP

Per link keying should be used in environments where the required level of

security is very high. Further the amount of available resources should be very high for

utilization of this keying method.

3.6.2 Group keying with OSP

A collaborative approach towards keying is the use of a group key for communication

among a large number of nodes. In this approach a single key is used among a group of

nodes. If a particular node is captured then the communications among the group are

accessible to the attacker. All communications outside the group are not accessible to the

attacker. This implies that large group size will result in greater losses if any node is

compromised. Therefore moderate group sizes need to be defined. Figure 3.9 shows how

a group key is utilized in combination with OSP.

43

Figure 3.21: Sequence Diagram Depicting the Group Key with OSP

If group keying is used with OSP the level of security will be moderate with average

amount of resource consumption. This form of keying should be used in environments

where the required level of security is not very high.

3.6.3 Network Wide Keying with OSP

Network wide keying is a method that has very less complexities related to key

distribution because a single key is utilized throughout the network. A major advantage

of this keying scheme is that any authorized node can communicate within the network.

All communications within the network are encrypted but if any single node is

compromised then the entire network is at risk. Also network wide keying does not

protect against node capture attacks. If any node is captured the attacker can listen to all

communications and also inject his own messages into the system. Figure 3.20 shows

how a network wide key is utilized in combination with OSP.

44

Figure 3.22: Sequence Diagram Depicting the Network Key with OSP

The network wide key should be used in environments where the data being

communicated is not very critical and the available resources for security are not very

high. If network wide keying is used with OSP the level of security will be low. Even if

OSP continues to function without failure it needs to be understood that a single node

compromise will result in the compromise of the entire network. Network wide keying

will prove very successful in environments where there are no chances of an attack on the

network.

3.7 SUMMARY

In this chapter the architecture and implementation of the newly proposed Optimized

Security Protocol have been described in detail. OSP is a complete security protocol that

fulfils the three most important requirements of security i.e. confidentiality,

authentication and integrity. OSP has been designed by using message encryption along

with MAC. For the successful operations of this security protocol a new optimized packet

45

format has been defined. The new packet format results in lower resource consumption

due to eradication of redundant data field that exist in the TinyOS packet format.

46

Chapter 4

TESTING AND EVALUATION OF OSP

INTRODUCTION

OSP is a comprehensive protocol that provides high levels of security for resource

constrained WSNs. To finalize the protocol it has to be tested and evaluated in relation to

a wide range of parameters. Firstly, since the protocol is designed for a resource

constrained environment therefore it has to be evaluated for its ROM/ RAM

consumption. Also testing needs to be performed for the operating time of the protocol.

OSP cannot be tested and evaluated in total isolation. It has to be tested and evaluated in

comparison with other leading security protocols for WSNs.

4.1 OSP TESTING ENVIRONMENT

To formally test and evaluate OSP a proper environment had to be established. This

environment provides support for visualization and result analysis.

4.1.1 Simulator

OSP has been tested using TOSSIM which is the default simulator for use with TinyOS

With the help of TOSSIM thousands of sensors can be deployed at the same time and

TOSSIM provides extended support of analysis of system implementation. TOSSIM is an

compiles the code into a native executable that can run directly on a the simulation host.

47

This feature provides flexibility and thus results in support of thousands of simultaneous

nodes. TOSSIM has been extensively compared with physical deployments and the

results prove that the simulator is highly comparable and accurate.

The greatest advantage of using TOSSIM is its seamless connectivity with TinyOS.

TOSSIM also operates at the network bit granularity level to capture behaviours and

interactions that take place in the network.

4.1.2 Visualization Environment

TinyViz is a Java based graphical user interface that extends the functionality of

TOSSIM by providing visualization support. TinyViz can be associated to a running

application while TOSSIM waits for TinyViz to connect all the simulated sensors.

TinyViz also allows its users to trace the execution of TinyOs applications; hence the

users can observe the behaviour of their implementation pause and resume fashion.

4.2 OSP FRAMEWORK TESTING

Rigorous testing of OSP is through the various test vectors that provide varying inputs to

the system. Fundamentally OSP is designed to take message of any size as input and

process it to the implementation. If a message exceeds the standard length then the

message is broken down into manageable blocks of size 128 bit. Each test vector is

unique but fundamentally operates on three inputs i.e. secret key, initialization vector and

plaintext. Varying these three inputs provides varying outputs. The purpose of this testing

is to identify abnormal behaviour (if any), and also to identify the efficacy of the entire

system.

48

4.2.1 Test Vector-I

The first test vector which forms input to the OSP framework for testing is shown in table

4.1 and shows the obtained ciphertext when plaintext is encrypted using encryption key

and MAC obtained using MAC key.

Table 4.1: Test Vector-I

Test Vector-I

Encryption Key [0xa7, 0x92, 0xac, 0xfb, 0x43, 0xdc, 0x15, 0xa5, 0x08,0x60, 0x56,

0x00,0xa7, 0x81,0x70]

MAC Key [0x67, 0x73, 0xfb, 0x15, 0xeb, 0x9b, 0xff, 0xad, 0xe5, 0xb1, 0x8g,

0x96, 0x02, 0x9c, 0xc3, 0x02]

IV [0xac, 0x89, 0x00, 0x76, 0x00, 0x56, 0x00, 0x78]

Input Plaintext [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00]

Ciphertext [0xa3, 0x76, 0xd2, 0xc4, 0xa4, 0x01, 0xa7, 0xc2, 0xe2 0x1e, 0x2f,

0x00, 0x2a, 0x36, 0x07, 0xc4]

Recovered Plaintext [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00]

MAC [0x96, 0xfc]

4.2.2 Test Vector-II

The second test vector is designed to test if OSP continues to function with any given

encryption key, MAC key, initialization vector and plaintext. Table 4.2 shows the details

of the second test vector.

49

Table 4.2: Test Vector-II

Test Vector-II

Encryption Key [0xa1, 0xaf, 0xce, 0x02, 0xfd, 0x5c, 0xeb, 0x9b, 0xff, 0xad, 0xe5,

0x96, 0x0c, 0xda, 0xb1, 0x88]

MAC Key [0x27, 0xa6, 0xad, 0x96, 0xeb, 0xac, 0xf8, 0xd8, 0x66, 0x03, 0xcb,

0x00, 0xeb, 0xc1, 0x10, 0x00]

IV [0x00, 0x00, 0x91, 0x67, 0xfe, 0xac, 0xc3, 0x02]

Input Plaintext [0x16, 0xa1, 0x28, 0x94, 0xd0, 0xeb, 0xe5, 0xaa, 0x84, 0x7f, 0xfe,

0x00, 0x36, 0x91, 0x00, 0xd1]

Ciphertext [0x14, 0x00, 0x80, 0xa1, 0xf6, 0xd2, 0xdc, 0xa0, 0xe0, 0x87, 0x83,

0xfa, 0x12, 0xd9, 0x02, 0x39]

Recovered Plaintext [0x16, 0xa1, 0x28, 0x94, 0xd0, 0xeb, 0xe5, 0xaa, 0x84, 0x7f, 0xfe,

0x00, 0x36, 0x91, 0x00, 0xd1]

MAC [0x88, 0x60]

4.2.3 Test Vector-III

The third test vector is designed to further test OSP with varying encryption key, MAC

key, initialization vector and plaintext. Table 4.3 shows the details of the third test vector.

Table 4.3: Test Vector-III

Test Vector-III

Encryption Key [0x27, 0xa6, 0xad, 0x96, 0xeb, 0xac, 0xf8, 0xd8, 0x66, 0x03, 0xcb,

0x00, 0xeb, 0xc1, 0x10, 0x00]

MAC Key [0xa7, 0x92, 0xac, 0xfb, 0x43, 0xdc, 0x15, 0xa5, 0x08,0x60, 0x56,

50

0x00,0xa7, 0x81,0x70]

IV [0x92, 0x10, 0x01, 0xd8, 0xc6, 0xf5, 0x5b, 0x1c]

Input Plaintext [0x89, 0xfc, 0xf6, 0x00, 0x1f, 0x96, 0x95, 0x0c, 0x3d, 0xb1, 0x88,

0x60, 0x02, 0xfd, 0xd4, 0x12]

Ciphertext [0xff, 0x6c, 0xe8, 0x58, 0x75, 0x84, 0x70, 0xe1, 0x68, 0x9a, 0xe7,

0xc4, 0xf2, 0x12, 0x03, 0x01]

Recovered Plaintext [0x89, 0xfc, 0xf6, 0x00, 0x1f, 0x96, 0x95, 0x0c, 0x3d, 0xb1, 0x88,

0x60, 0x02, 0xfd, 0xd4, 0x12]

MAC [0x01, 0xa7]

4.2.4 Test Vector-IV

The fourth test vector reveals the effectiveness of OSP in processing various inputs. The

results of test vector-IV prove that OSP can readily take any encryption/ MAC key,

initialization vector and plaintext to produces the correct parameters. Table 4.4 shows the

details of the third test vector. From all four test vectors one can readily conclude the

effectiveness and correctness of OSP.

Table 4.4: Test Vector-IV

Test Vector-IV

Encryption Key [0xaa, 0x91, 0xfe, 0xe9, 0xcd, 0x3b, 0xfe, 0x02, 0x00, 0xcd, 0xe5,

0x3e, 0x0c, 0xd4, 0xb6, 0x99]

MAC Key [0xa1, 0xaf, 0xce, 0x02, 0xfd, 0x5c, 0xeb, 0x9b, 0xff, 0xad, 0xe5,

0x96, 0x0c, 0xda, 0xb1, 0x88]

IV [0xff, 0xbd, 0xf0, 0xac, 0xad, 0x74, 0x3a, 0xb8]

51

Input Plaintext [0x0d, 0xcd, 0x32, 0x9b, 0xe0, 0x15, 0xd1, 0xd4, 0x36, 0xd7, 0xd6,

0x7f, 0x00, 0x58, 0x2e, 0x9b]

Ciphertext [0xdf, 0x04, 0xae, 0x03, 0x16, 0x2f, 0x01, 0x97, 0xdf, 0x02, 0xc0,

0x35, 0x12, 0x27, 0xae, 0x97]

Recovered Plaintext [0x89, 0xfc, 0xf6, 0x00, 0x1f, 0x96, 0x95, 0x0c, 0x3d, 0xb1, 0x88,

0x60, 0x02, 0xfd, 0xd4, 0x12]

MAC [0xc0, 0x87]

4.3 MEMORY FOOTPRINT ANALYSIS

The analysis of a security protocol for resource constrained environement cannot be

completed with a formal memory analysis. The memory of OSP has been measured by

using TinyOS in collaboration with TOSSIM. TOSSIM is used to compile the code and

analyze the code for any errors. If the compilation is completed without any errors then

TOSSIM displays the amount of memory consumed. The memory footprint analysis of

OSP is only presented in the form of ROM and RAM consumption.

4.3.1 ROM Consumption Study

To perform in depth analysis of the ROM consumption of OSP, a comparison of no

security and OSP is presented. When mica nodes in a WSN communicate without OSP

they consume 7076 bytes of ROM. When communication is based on our newly proposed

OSP, three essential features of security namely confidentiality, authentication and

integrity are provided at the total cost of 12470 bytes in ROM. This consumed ROM is

well inside the maximum limit of ROM available to conventional sensor nodes. It is

interesting to note that OSP is very lean as compared to other rival protocols like Dragon

52

MAC and RC4. When OSP is used to provide only encryption it easily outperforms both

RC4 and Dragon. Dragon MAC [24] provides only authentication and integrity but

consumes 18900 bytes thus giving a difference of 6430 bytes (18900-12470). As shown

in figure 4.1 RC4 is a very costly protocol because it consumes more RAM as compared

to OSP and provides only encryption. Whereas OSP consumes less number of bytes and

provides confidentiality, authentication and integrity all in a single suite.

Figure 4.1: Comparison Graph for ROM Consumptions

Table 4.5 shows the ROM consumption results for OSP and other popular security

protocols for WSNs. It is evident from the readings that OSP requires very little ROM as

compared to its rival protocols. For instance the complete OSP requires less ROM than

RC4 and Dragon but provides higher number of security features.

14372

18000

7076

18900

12470

8152

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Protocol

By
te
s

RC4 (E) Dragon (E) OSP (E) Dragon MAC (E&A) OSP (E,A,I) TinySec

53

Table 4.5: ROM Consumptions for Competing Protocols

Description ROM (Bytes)

RC4 (Encryption Only) 14372

Dragon (Encryption Only) 18000

OSP (Encryption Only) 7076

Dragon MAC (Encryption &

Authentication)

18900

OSP (Encryption,

Authentication, Integrity)

12470

TinySec 8152

4.3.2 RAM Consumption Study

To conduct comprehensive RAM consumption study of OSP the protocol is compared

with other popular rival protocols like RC4 (Encryption), Dragon (Encryption), Dragon

MAC (Encryption and Authentication). A comparison of OSP with other security

protocols is necessary to understand the stability and efficiency of this new security suite.

When discussing RAM consumptions OSP ranks slightly higher as compared with other

similar protocols. The difference in RAM consumption is minor and is almost negligible.

OSP can provide encryption consuming almost the same number of bytes as the

encryption only Dragon protocol. When OSP provides encryption, authentication and

integrity it consumes only 302 bytes more than the Dragon MAC which only provides

encryption and authentication. Since OSP provides more features as compared to Dragon

54

MAC while consuming 302 extra bytes (1284-982) therefore the protocol can be

considered efficient in terms of both ROM and RAM consumption [24]. Figure 4.2 shows

the RAM consumption graph for OSP and other competing protocols.

Figure 4.2: Comparison Graph for RAM Consumptions

OSP has a slightly elevated level of RAM requirement. Even though the RAM

requirement may seem higher as compared to rival protocols but still it is well in range of

the RAM available to WSNs. Table 4.6 shows the RAM requirements in bytes of various

high level protocols for WSNs.

Table 4.6: RAM Consumptions for Competing Protocols

Description RAM (Bytes)

Dragon (Encryption Only) 964

964 992 982

1284

728

0

200

400

600

800

1000

1200

1400

Protocol

By
te
s

Dragon (E) OSP (E) Dragon MAC (E&A) OSP (E,A,I) TinySec

55

OSP (Encryption Only) 992

Dragon MAC (Encryption &

Authentication)

982

OSP (Encryption,

Authentication, Integrity)

1284

TinySec 728

4.4 PROCESSING TIME

This section presents a detailed study of OSP in terms of processing time. Since OSP is

developed using TinyOS and TOSSIM therefore the processing time is calculated by the

internal timers of the simulation environment. Even though OSP is very efficient in terms

of memory footprint, the protocol needs to be analyzed for processing time. The results of

processing time ensure freshness of the data communicated along with the guarantee that

a sensor can communicate a packet with another sensor within a certain time range.

To formally study the processing time of OSP the processing time with encryption only

has to be extracted so that one can determine the overall time OSP takes to operate. The

time taken by OSP to provide only encryption is 39μs. When OSP is used to provide

encryption, authentication and integrity in a single suite then it requires a time of

153.76μs. Figure 4.3 shows the graph of operating times for OSP and other competing

protocols.

56

Figure 4.3: Comparison Graph for Operating Time (μs)

The complete OSP suite requires less operating time as compared to TinySec which is

well renowned for its efficiency and low resource requirements. Table 4.7 shows the

processing times of OSP and other similar protocols.

Table 4.7: Processing Time (μs) for Competing Protocols

Description Time (μs)

OSP (Encryption Only) 39

OSP (Encryption,

Authentication, Integrity)

153.76

TinySec 283

Dragon MAC (Encryption &

Authentication)

214

39

153.76

283

214

0

50

100

150

200

250

300

Protocol

M
ic
ro
se
co
nd

OSP (E) OSP (E,A,I) TinySec Dragon MAC (E & A)

57

4.5 SECURITY RESILIANCE ANALYSIS

OSP is a comprehensive security solution for resource constrained WSNs. OSP has been

designed with new packet formats. The purpose of this exercise is to change the way we

view security in WSNs. Even though OSP is very light weight in nature but still there is

no compromise in the level of security provision. OSP provides encryption,

authentication and integrity without the requirement for resources. The key size of 128 bit

ensures that the chances of guessing the key is next to impossible. The superior diffusion

properties of Rabbit acts as a deterrent to all known attacks for WSNs [28]. Another

benefit of the diffusion rounds translates into less need for rekeying in the network.

OSP has been designed with an IV that attempts to reuse fields from the OSP packet

format. The IV has been designed to further prevent the chances of an attacker finding

patterns among the transmitted messages. The IV has the SRC and CTR field. These

fields assist in making two messages differ from each other thereby reducing the chances

of a message repetition. Also OSP has a MAC function that assists in determining if the

message is authentic and the sender is really who he claims to be. Another big advantage

of using a MAC is that any message that has been affected due to channel noise is

detected and then discarded. OSP has been designed to operate with the Rabbit stream

cipher because of its recognized security characteristics and minimal resource

consumption.

4.6 SUMMARY

To fully test OSP it has been evaluated from various aspects like ROM/ RAM

consumption, processing time and security provision. The results have been obtained by

58

using TinyOS, TOSSIM and TinyViz. Extensive testing of OSP has shown that this new

protocol is very stable and requires little resources to operate. OSP has been evaluated in

comparison with other popular protocols like TinySec, Dragon MAC and RC4. The

results demonstrate that OSP has all the properties that are required by a highly

acknowledged security protocol for WSNs.

59

Chapter 5

CONCLUSIONS AND FUTURE WORK

Researchers have been successful in promising wonderful applications for the field of

WSNs. Both researchers and the academia acknowledge the fact that security provision

for WSNs is necessary if they are to be widely deployed. What they mean by security is

the provision of confidentiality along with advanced features that cater to authentication

and integrity. Until recently all research endeavours were directed towards conserving

essential resources. This is the precise reason why security provision was considered an

expensive attribute/ feature. Latest research in the field of WSN security has been able to

promise high levels of security without compromise in resource consumption. This work

is geared towards the development of an Optimized Security Protocol - OSP that can be

widely acknowledged and implemented.

5.1 CONCLUSIONS

In this project an attempt has been made to develop a new protocol that provides three

features namely confidentiality, authentication and integrity without compromising the

limited resources available to sensor nodes. The purpose of OSP is to provide a complete

security suite that prevents unlawful access and modification of data and at the same time

prevents node impersonation by an attacker. The protocol is based on an optimized

packet format that is derived from the TinyOS packet format. The newly proposed packet

format removes redundant fields and also attempts to reuse existing fields from the

60

TinyOS packet to reduce the packet size and also create space for handling advanced

security mechanisms like MAC. The newly proposed OSP packet is fully supported by a

new and unique architecture that can operate with any key exchange mechanism. This

keying independent architecture ensures greater flexibility with ease of implementation.

To prove the efficiency of OSP it has been implemented in TinyOS using the TOSSIM

simulator. OSP has been tested using TinyOS so that it can be fully deployed on physical

sensor nodes. The compilation results of OSP prove that this new protocol occupies very

little ROM and RAM while it operates. This implies that when OSP will be physically

implemented it will not exhaust the available resources of the sensors. Another attribute

of OSP is its very optimal operating time. OSP performs quick communications because

of its smaller and optimized packet size. Also OSP does not require unnecessary/

repeated sensor-to-sensor communication thereby conserving time and other essential

resources.

5.2 FUTURE WORK

Although OSP has been fully tested and is considered complete in all respect, but there is

still room for implementing and testing the protocol on real sensor test bed. The true

behaviour of a protocol can be truly tested if it is implemented on real sensor nodes.

OSP has demonstrated good results in terms of memory requirements and time

requirements but still there is room for optimization. The algorithm and processing can be

tweaked and adjusted for improved results and performance.

OSP is fundamentally a security protocol based on the Rabbit stream cipher hence there

is ample space for research in combining the OSP architecture and packet format with a

61

stream cipher other than Rabbit. Also OSP can be extended to propose and implement a

protocol that attempts to incorporate OSP with different Routing protocols.

To further strengthen the security of the entire system OSP can be designed such that it

supports security features related to availability of sensor nodes. If this last feature is

incorporated into OSP then it will result in a truly outstanding protocol that completely

addresses all the security concerns.

 62

BIBLIOGRAPHY

[1] M. Saraogi, “Security in Wireless Sensor Networks,”

http://www.cs.utk.edu/~saraogi/594paper.pdf, Spring 2005.

[2] A. Perrig, J. Stankovic, and D. Wagner, “Security in Wireless Sensor

Networks,” Communications of ACM, vol. 47, no. 6, pp. 53–57, June 2004.

[3] H. Jason, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,

“System Architecture directions for Networked Sensors,” ACM SIGPLAN

Notices, vol. 35, no.11, pp.93-104, November 2000.

[4] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless

Sensor Networks: A survey,” Computer Networks, vol. 38, no. 9, pp 393-

422, March 2002.

[5] F. Akyildiz, T. Melodia, K. Kaushik and R. Chowdhry, “A survey on

Wireless multimedia Sensor Networks,” Communications of ACM, vol. 51,

no. 4, pp 921-960, March 2007.

[6] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey

on Sensor Networks,” IEEE Communications Magazine, vol. 40, no.8, pp.

102–114, August 2002.

[7] J. Deng, R. Han, and S. Mishra “Security, privacy, and fault tolerance in

Wireless Sensor Networks,” book chapter in Wireless Sensor Networks,

pp. 215-234: Artech House, July 2005.

[8] S. Duri, M. Gruteser, X. Liu, P. Moskowitz, R. Perez, M. Singh, and J.

Tang, “Framework for security and privacy in automotive telematics,” in

 63

Proc. 2nd ACM International Workshop on Mobile Commerce, pp. 25-32,

Georgia, USA, 2000.

[9] M. Ilyas and I. Maheoub, Handbook of Sensor Networks: Compact

Wireless & Wired Sensing System, New York: CRC Press, July 2004.

[10] K. Sreenath, L.Lewis and O. Popa, “Simultaneous Adaptive Localization

of a Wireless Sensor Network,” ACM SIGMOBILE Mobile Computing and

Communications Review, vol. 11, no.2, pp. 14-28, April 2007.

[11] P. Levis, N. Lee, M. Welsh and D. Culler “TOSSIM: Accurate and

Scalable Simulation of Entire TinyOS Applications,” in Proc. of the first

Int. Conf. on Embedded Networked Sensor Systems, pp. 126-137,

California, USA, 2003.

[12] M. Neufeld, A. Jain, D. Grunwald “Nsclick: Bridging Network Simulation

and Deployment” in Proc. of the fifth Int. Workshop on Modeling Analysis

and Simulation of Wireless and Mobile Systems, pp. 126-137, Georgia,

USA, 2003.

[13] L. Girod, J. Elson, A. Cerpa, T. Stathopoulos, N. Ramanathan, and D.

Estrin. “EmStar: A software environment for developing and deploying

heterogeneous sensor actuator networks,” ACM transactions of Sensor

Networks, vol. 3, no.3, article no. 13, 2007.

[14] T. Zia and A. Zomaya, “Security Issues in Wireless Sensor Networks,” in

Proc. of Int. Conf. on Systems and Networks Communications, vol. 11, no.

9, pp. 40-45, October 2006.

[15] L. Zhou and Z. Haas, “Securing ad hoc networks,” IEEE Network

Magazine, vol. 13, no.6, pp. 24-30, December 1999.

 64

[16] H. Chan, A. Perrig, and D. Song “Random key pre-distribution schemes

for sensor networks,” in Proc. of the 2003 IEEE Symposium on Security

and Privacy, pp. 197-202. IEEE Computer Society, 2003.

[17] W. Du, J. Deng, Y. S. Han, and P. K. Varshney “A pairwise key pre-

distribution scheme for wireless sensor networks,” in Proc. of the tenth

ACM Conf. on Computer and communications security, pp 42–51, NY,

USA, 2003.

[18] H. Chan and A. Perrig “Security and privacy in sensor networks” IEEE

Computer Magazine, pp 103–105, 2003.

[19] A. Perrig, J. Stankovic, and D. Wagner “Security in wireless sensor

networks,” ACM Communications, vol. 47, no.6, pp. 53–57, 2004.

[20] A. Menezes, Handbook of Applied Cryptography, pp. 353-409: CRC

Press, 1996.

[21] B. Schneier, Applied Cryptography, second ed.: John Wiley & Sons, Inc.

1996.

[22] Y. Law, J. Doumen, and P. Hartel “Survey and benchmark of block

ciphers for wireless sensor networks,” ACM transactions on Sensor

Networks, vol. 2, no. 1, pp. 65-93, February 2006.

[23] “Ecrypt Stream Ciphers,” http://www.ecrypt.eu.org/, May 2008.

[24] S.Y Lim, C.C. Pu, H. T. Lim and H. J. Lee. “Dragon-MAC: Securing

Wireless Sensor Networks with Authenticated Encryption” May 2007

[25] H. Wu, "Stream Cipher HC-256," Lecture Notes in Computer Science,

Fast Software Encryption, 3017/2004, pp. 226-244, July 2004.

 65

[26] A. Biryukov, "A New 128-bit Key Stream Cipher LEX," Lecture Notes in

Computer Science, Selected Areas in Cryptography, 4356/2007, pp 67-75,

September 2007.

[27] L. Batina, S. Kumar, J. Lano, K. Lemke, N. Mentens, C. Paar, B. Preneel,

K. Sakiyama and I. Verbauwhede, "Testing Framework for eSTREAM

Profile II Candidates," www.ecrypt.eu.org/stream/papersdir/2006/014.pdf

[28] M. Boesgaard, M. Vesterager, T. Christensen and E. Zenner, “The Stream

Cipher Rabbit,” Lecture Notes in Computer Science, Fast Software

Encryption, vol. 2887/2003, pp. 307-329, February 2004.

[29] D. Gay, P. Levis, D. Culler and E. Brewer, “NESC 1.1 Language

Reference Manual,” http://www.tinyos.net/tinyos-1.x/doc/nesc/ref.pdf, May

2003.

[30] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J.D. Tygar, “SPINS:

Security protocols for Sensor Networks,” ACM Transactions on Wireless

Networks, vol. 8, no. 5, pp. 521-534, 2002.

[31] C. Karlof, N. Sastry and D. Wagner, “TinySec: A Link Layer Security

Architecture for Wireless Sensor Networks,” Proceedings of the second

ACM Conference on Embedded Networked Sensor Systems,” pp. 162-

175, Baltimore, USA, November 2004.

[32] C. Fok, “TinyOS Tutorial,” http://www.princeton.edu/~wolf/EE

CS579/imotes/tos_tutorial.pdf, 2004.

[33] H. Tahir, R. Tahir and M. Y. Javed “OSP – Optimized Security Protocol

for Wireless Sensor Networks” Published IEEE International Confrence on

Security Science and Technology ICCSST 2011, Chonqing, China,

January 21-23, 2011.

 66

RELATED RESEARCH PUBLICATIONS

H. Tahir, M. Y. Javed, R. Tahir “Design and Implementation of an Optimized

Security Protocol for Wireless Sensor Networks”. Journal of Computing Volume 3 ,

Issue 7, July 2011.

H. Tahir, M. Y. Javed “OSP – Optimized Security Protocol for Wireless Sensor

Networks”. 2011 International Conference Security Science and Technology -

ICSST” Chongqing China, 21-23 January 2011.

H. Tahir, M. Y. Javed “Service Guarantees in Wireless Sensor Networks”. IEEE

International Conference on Emerging Technologies ICET 2009. Islamabad. pp 433-

436.

	TitlePage.pdf
	2-TOC.pdf
	3.preliminaries.pdf
	Chap1 - Introduction.pdf
	Chap2 - Literature Review.pdf
	Chap3 - Design & implementation.pdf
	Chap4 - Testing and Evaluation.pdf
	Chap5 - Conclusion & Future work.pdf
	refrences.pdf

