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ABSTRACT 

 
Extensive research has been conducted in the field of wireless sensor 

networks(WSNs). Both the academia and researchers have envisioned a broad range 

of applications for WSNs. Many of these applications require varying levels of 

security. Security is an attribute that is computational and communicational intensive. 

Severe lack of resources and limited capability has made providing security a 

challenging task in WSN. Therefore techniques need to be devised that provide 

security without compromising the limited resources available to WSNs. 

 This thesis focuses on the design, implementation and analysis of an 

Optimized Security Protocol (OSP) that fulfills the requirements of confidentiality, 

authentication and integrity in WSNs. OSP fulfils requirements of high level security 

without compromising resources. OSP architecture is based on the further 

optimization of computations in the Rabbit stream cipher and reduction in 

communication overhead to save sensor’s life time.  

The proposed OSP has been implemented using power of TinyOS coupled 

with NesC. In order to evaluate the system, several experiments have been carried out 

with respect to encryption/ decryption of various data blocks. Evaluation of OSP has 

been done by conducting a comprehensive efficiency analysis of the proposed 

architecture. Furthermore, the results of execution time and memory footprint for OSP 

have been compared to its cryptographic counterparts. The decrease in the memory 

footprint and execution time proves that OSP is a very viable choice for WSNs. Since 

OSP provides extensive security features, operates within the optimal ranges for 

WSNs and outperforms existing security protocol for WSNs therefore this protocol 

promises to be widely accepted. 
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Chapter 1 

INTRODUCTION 

 

WSNs are being extensively studied for their promising applications and cost effective 

nature. Researchers and scientists have been able to identify a broad range of 

environments where WSNs can be applied. Because WSNs are low cost sensing devices 

it is predicted that in the near future these small sensors will be implemented in places 

that were not imagined before. Small sensor size and their low price implies that these 

wireless sensors can be deployed in great numbers and they can sense a broad range of 

parameters like temperature, vibration, movement and light [1]. 

Besides the civilian applications researchers have also proposed military 

applications for WSNs. Many of these applications will require the sensors to be 

deployed in highly hostile environments where they are highly prone to a large range of 

security attacks. So far little emphasis was given to the security of WSNs, but as these 

wireless networks become ready for wide spread adoption and researchers also recognize 

the insecure nature of wireless mediums research trends have shifted and more emphasis 

is now being given to the security of WSNs. The industry and the academia acknowledge 

the fact that wide spread adoption of any wireless technology should not commence 

without addressing the inherent security issues. In most wireless networks attackers 

attempt to exploit the minor weaknesses of the system to gain access to whatever 

resources they can. Although this is also true in WSNs but the limited battery and the 

possibility of a hostile environment means that a small weakness can be effectively 

exploited to bring down an entire network [2]. 

1.1 PROBLEM OVERVIEW 

Security in computing and networking is a heavily studied domain and researchers have 

been successful in proposing protocols and techniques to counter security threats. But 

when it comes to WSNs conventional security mechanisms cannot be applied owing to 
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the lack of resources available. WSNs have a very limited memory, power, and 

computational capability therefore providing security solutions for WSNs is a challenging 

task. Researchers in the field of security understand that limited energy is the greatest 

hindrance in the implementation of intricate security protocols. WSNs need lightweight 

security algorithms that are resilient to attack and can be applied in domains that require 

varying levels of security. In other words algorithms and protocols are required that 

provide high levels of security with a minimum memory footprint. Security algorithms 

need to be designed that are not computational intensive and do not need repeated 

communications to operate. 

1.2 PROJECT OBJECTIVES 

The aim of this project is to design a lightweight security protocol for WSNs. A protocol 

that consumes very little resources and can be widely adopted for its high levels of 

security. Optimized Security Protocol referred to as OSP will fulfil all the requirements 

of a security protocol without compromising essential resources. OSP attempts to provide 

a suite of basic security features i.e. confidentiality, authentication and integrity. 

Although only confidentiality fulfils the very basic requirements of a security protocol, 

researchers still recognize the fact that confidentiality is not adequate in ensuring a fool 

proof system, therefore features for authentication and integrity also need to be 

incorporated into the OSP. This protocol has been designed using refined, revised and 

reduced sized packets so that security provision does not become an expensive 

characteristic for the network. OSP is based on the Rabbit stream cipher because it has 

been recognized by the eSTREAM project for its promising nature of providing high 

levels of security in a resource constrained environment. 

To completely study the effectiveness of OSP it had to be implemented so that its 

results can be analyzed. OSP has been implemented using the language NesC in the 

TinyOS operating system. The simulator used for the deployment of sensors is TOSSIM. 

All tools and languages used in the project are specialized for use with WSNs. 
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1.3 THESIS OUTLINE 

This thesis is aimed at bringing to light the various security aspects related to WSNs. The 

aim of this work is to develop an implementable security protocol for resource 

constrained WSNs. Developing a protocol that fulfils the requirements of high level 

security yet not compromising the resource demand is a critical task. 

The thesis is logically broken down so that each chapter builds on the learning’s from the 

previous chapters. Chapter 2 provides details about WSNs and their resource constrained 

nature. In this chapter security has also been discussed with particular emphasis on WSN 

security. Chapter 3 builds on the concepts of security and WSNs to present a detailed 

architecture of the OSP. The architecture discusses in details the system architecture, 

packet formats and also possible keying mechanisms. This chapter employs previously 

discussed concepts to shows how the architecture of OSP can be formally implemented 

using TinyOS, nesC and TOSSIM. Chapter 4 analyzes OSP with relation to other similar 

security protocols. The resource consumption results are elaborated with the help of 

graphs. Finally chapter 5 concludes the thesis and presents future directions for further 

enhancements and research. 
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Chapter 2 

LITERATURE REVIEW 

 

INTRODUCTION 

This chapter is a detailed description of WSNs and security. The chapter begins with an 

explanation of what WSNs are and their constraints. Then WSNs are discussed in 

conjuncture with security to explain the security goals of WSNs. Later in the chapter a 

detailed account of block ciphers and stream ciphers is given. In the end a complete 

description of the eSTREAM project is given to explain the origin of the Rabbit stream 

cipher and many other competing ciphers. 

2.1 WIRELESS SENSOR NETWORKS 

Data Processing is perhaps the largest required functionality of a computation 

device. Data processing was actually the real motivation behind the development of 

computer systems. Old fashioned mainframe computers were actually developed to 

reduce the amount of time that was required to process data. With time these large sized 

main frame computers became obsolete and smaller desktop computers emerged that 

could process data much quickly and efficiently. Recently we have seen how computers 

are being embedded into the environment around us. The sole purpose of embedding 

these computation devices is to monitor the environment and then perform actions based 

on the current environmental status. 
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Fresh developments in Micro-Electro-Mechanical Systems (MEMS) has allowed 

scientists to develop small sized, low powered and low priced sensors that have the 

ability of sensing their environment[1][5]. Despite being small these sensors can sense 

their environment, process the data from the events generated in the environment and 

then communicate over short distance without any interruption. Since these sensors are 

small in size and low cost therefore they can be deployed in large numbers thereby 

forming a wireless network of sensor nodes formally called wireless sensor networks. 

Recent research has shown that WSNs can be applied in environments that were 

previously thought impenetrable. In the near future these small sized sensing devices will 

be deployed all around us and they will monitor a wide range of parameters. To 

implement WSNs in such diverse range of applications means we need to develop 

protocols for WSNs that offer efficiency at the cost of very little resources. 

2.2 CHALLENGES OF SENSOR NETWORKING 

Researchers have suggested a broad range of applications for WSNs but because of the 

physical properties of these sensors they suffer from technical issues that need to be 

addressed before we can employ the power of these smart sensing devices. To fully 

unleash the power of sensor networks we need to address the issues of limited energy, 

limited bandwidth, limited hardware and security. Only when these issues [7] are fully 

addressed can we formally deploy these wireless sensors for our full benefit. 

2.2.1 Limited Energy 

Fundamentally the sensors of a WSN have been designed to run on battery so they can be 

deployed in environments that are not physically penetrable. Once a battery has served its 
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purpose and cannot supply any more power it expires resulting in death of the sensor. A 

WSN can be composed of thousands of sensors which work in a collaborative fashion. 

Hence the death of a few of the sensors could render the network useless. 

2.2.2 Limited Bandwidth 

In WSNs the power required to transmit data is many times the power required to execute 

an instruction. The reason for this is the complexities involved in the transmission of 

data. The existing data rate for wireless communications has been restricted to 10-100 

Kbits/second. Pottie and Kaiser have shown that the energy required in transmitting one 

bit over 100 meters in 3 joules. Whereas the same amount of energy can be used to 

compute around 3 million instructions. 

2.2.3 Limited Hardware 

In mission critical environments the sensors are required to be small in size so that they 

are not readily visible. In order to keep the size of a sensor at its minimum the hardware 

is kept limited. For example the Berkley Mica2 motes possess a small battery, 8 bit CPU 

that can run at 10MHz, 128KB to 1MB memory and a communication range of less than 

50 meters. Researchers have to devise methods and strategies for deploying the sensors 

within the limited available hardware. The size of the hardware cannot be increased 

because this would result in expensive hardware that requires further power for 

processing. 

2.2.4 Security 

The parameters that are detected in a WSN may seem to be fairly simple but the reality of 

the fact is that the same data in the wrong hands may prove to be fatal. For example in 
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battle field monitoring or nuclear power station monitoring, the loss of processed data 

may prove to be fatal. WSNs are susceptible to a very broad range of attacks. Moreover 

attackers can use a combination of attacks to truly bring down the entire network. 

2.3 SECURITY IN WIRELESS SENSOR NETWORKS 

Researchers and scientists have predicted a broad range of applications for WSNs. Many 

of these applications are highly critical in nature. For example application domains 

related to military, earth quake monitoring and nuclear power stations will all process 

data that is very critical in nature. Since WSNs process very fundamental forms of data 

and then produce results that are highly valuable and crucial in nature therefore these 

results may be very sought after by adversaries [2,3,4,6]. 

Recent advances in the field of network security cannot be applied because firstly WSNs 

have a very unique purpose and design as compared to conventional networks. Secondly, 

conventional security mechanisms cannot be applied because of the inherent processing 

and communicational constraints that exist in WSNs. To provide security in WSNs we 

need to design new protocols and frameworks that are lightweight in nature yet produce 

high quality results. In simple terms all protocols and frameworks for WSNs need to be 

optimized for performance, functionality and value added services like security. 

2.4 SECURITY GOALS IN WIRELESS SENSOR NETWORKS 

To provide security in WSNs we need to address three fundamental security goals 

namely data confidentiality, data authentication and data integrity. 
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2.4.1 Data Confidentiality 

The data in a sensor network should not be leaked to unintended persons. It should only 

be accessible by authorized persons. The conventional approach for keeping data 

protected is to encrypt the data with a secret key which is only possessed by the intended 

receivers. 

2.4.2 Data Authentication 

The purpose of authentication is to verify that the parties involved in initiating a 

communication session are really who they claim to be. Further authentication can be 

used to ensure that an already established connection is not being interfered by any 

unwanted party. 

2.4.3 Data Integrity 

In networks, data integrity refers to the fact that the received data has not been tampered 

during transit by an attacker. The system must possess the ability to recognize data that 

has been reordered, modified, deleted, duplicated or inserted. 

2.5 SECURITY RISKS IN WSNS 

WSNs are often deployed in domains that are susceptible to attack by adversaries. 

Unwanted persons may attempt to eavesdrop, tamper or even modify data that is being 

communicated. In this section some of the high priority security risks are 

presented[18,19,20]. 
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2.5.1 Eavesdropping 

Since WSN is a wireless based communication network therefore it becomes easier for an 

attacker to pick up on a data stream. If an attacker can pick up on an inadequately 

encrypted data stream then it can easily extract data and then draw conclusions based on 

that data. In a similar scenario an attacker can place listening nodes at significant 

locations so that the nodes can simply listen to the data being communicated. To protect 

against such types of attacks an encryption method is needed. Encryption in conventional 

networks is not a great issue because they possess unlimited processing capabilities [10]. 

Whereas in WSNs the encryption approach is faced with issues like limited battery, small 

memory and limited processing capability. To overcome this only symmetric key 

encryption can be used because it uses less power as compared to asymmetric key. 

Symmetric keys use two identical keys to perform encryption; therefore a secure key 

distribution mechanism is also needed for WSNs. Also we must ensure that if a node or a 

number of nodes are compromised the attacker does not obtain too much information 

regarding the security scheme and the keys that are being used. 

2.5.2 Sensor Node Compromise 

In WSNs it is understood that every node can be a potential point of attack. The attackers 

can also try to insert their own nodes into the network and make the network accept them 

as authorized nodes. In similar scenarios the attackers can capture legitimate nodes and 
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use them in attacks like falsification of sensor data, listening sensor data or starting denial 

of service attacks. 

 

2.5.3 Privacy of Sensed Data 

WSNs can form a collaboration of thousands of nodes, where each node is responsible 

for sensing its environment and then routing the information to a beacon. When all these 

sensors work together the aggregated data can be quite large. When the data is sent 

through the entire WSN it becomes very easy for the attacker to access data from almost 

any point in the wireless network [16]. Furthermore the attacker can infiltrate some of the 

nodes in the network and hence gain access to a large amount of data. Detecting and 

overcoming such types of attacks can be difficult because in most cases the attack may 

not even be apparent. When designing the network one needs to consider that only the 

essential data is transmitted. For example if the core temperature of a nuclear power 

generator is required then we may not need to transmit data regarding the time, place, 

humidity and sensor relative information. Discarding such type of irrelevant data also 

results in minimization of data transmission costs that occur because of unnecessary data. 

2.5.4 Denial of Service (DoS) Attacks 

Using the Denial of Service attack an attacker has the ability of rendering its host 

inoperable. In most cases such type of attacks happen when the attacker tries to 

overwhelm the network by sending large amounts of malicious data. This technique 

deprives the sensors from going into their power saving sleep mode. This implies that the 

sensors consume up a large amount of their precious battery power thereby reducing the 
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lifespan of the entire network. Once the individual sensors start to fade away the network 

is first segmented and then later the entire network collapses due to non availability of 

power. There are many mechanisms to protect against such type of attacks but the 

creativity with which this attack can be used is limitless. 

2.6 SENSOR NETWORK CONSTRAINTS 

The major constraints of a typical WSN are its adhoc nature and the low price of the 

sensors which is visible in the limited power capability, limited battery and limited 

transmission range. These constraints greatly affect how security is provided to WSNs. 

The impact of these constraints is discussed below. 

2.6.1 Limited Memory Space 

WSNs do not possess a large memory as compared to other networking devices. The 

limited memory size prevents us from storing large and complex algorithms on the 

sensors. WSNs need simple and optimized algorithms for security and routing. 

2.6.2 Limited Power 

Limited power in sensors is the toughest challenge in WSNs. Because of this property the 

security technique cannot be complicated. A very complex security algorithm may 

provide high level of security but largely at the cost of power consumption. To conserve 

energy we need to minimize computations and communications. Complicated encryption 

techniques like public key algorithms and complex authentication mechanisms are 

avoided because of the inherent power limitation. 

 



12 
 

 

2.6.3 Limited Budget 

Each sensor node is designed to be very cheap so that the sensors can be deployed in 

large numbers. Deploying sensors in an unattended fashion makes them very vulnerable 

to capture and scrutiny. Once a node is captured the attacker can attempt to extract 

information regarding the security mechanisms. Hence techniques need to be devised that 

limit the devastating effect in case a node is compromised. 

2.7 DATA ENCRYPTION 

Many networks need to be made secure even though they do not carry very critical type 

of data. For example a local area connection in an office may need to be made secure 

because it provides networking support to the people that work in the office even though 

the data that is being shared is pretty ordinary. On the other hand there are networks 

where the data communications in the network needs to be secured because of the 

criticality of the data. For example a network that may exist in a military environment. To 

secure WSNs it is very essential to secure the data that is being passed through the 

network because each sensor has limited resources and the data that is being processed is 

critical. 

To send data securely between two sensor nodes in a WSN the system can encrypt the 

data either using a Symmetric Key Cryptography (SKC) or Public key Cryptography 

(PKC). PKC is commonly adopted because of its comprehensive security provision along 

with the demand for higher resources than SKC. SKC schemes are very light weight in 

nature hence they are more appropriate for WSNs. The only concern in SKC is the 
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sharing of keys. If a key is disclosed for some reason then the entire WSN is 

compromised. If a node-to-node key is utilized then key management becomes difficult. 

To reap the benefits of both the SKC and PKC a hybrid technique is employed in which 

asymmetric encryption is used to exchange the secret key between the sending and 

receiving sensor nodes. Then PKC schemes are applied to transfer data between the 

sending and receiving sensor nodes. SKC based schemes are of two broad types block 

ciphers and stream ciphers, which are elaborated in the following section. 

2.7.1 Block Ciphers 

In block ciphers the plain text is broken down into blocks of n-bits. Each block is 

encrypted one at a time. Most often the block size is kept at 64 or 128 bits. A block 

cipher encrypts the plaintext by encrypting it r times sequentially with a round function. 

Each round function receives a subkey which is a derivation of the actual key K, and 

performs confusion and diffusions of its inputs. Many similar variances of the block 

cipher also exist that reinforce the security of the system [30]. 

2.7.2 Stream Cipher 

Unlike block ciphers this method of data encryption uses a bit by bit encryption 

mechanism. Stream ciphers are composed of two components i.e. a key stream generator 

and a mixing function. The key stream generator is the central function of the stream 

cipher while the mixing function is an XOR function. Largely the stream cipher is of two 

operational modes: Synchronous Stream Ciphers and Self Synchronizing Stream Cipher. 

In synchronous stream cipher the key stream generator is only dependent upon the shared 

key for encryption. The shared key is used by the sender for the encryption of outbound 



14 
 

streams. The receiver decrypts the stream using the same shared key. A major 

disadvantage of this method is that if the key is leaked then the system is compromised. 

Figure 2.1 illustrates how synchronous stream ciphers operate. 

 

 

 

Figure 2.1: Stream Cipher – Synchronizing Mode 

 In self synchronizing stream cipher the previous states of the cipher bits are given 

as input to the keystream generator. Figure 2.2 shows the encryption and decryption 

process taken by the self synchronizing stream cipher. 

 

 

 

Figure 2.2: Stream Cipher – Self Synchronizing Mode 

2.8 PROTOCOL DESIGN OBJECTIVES 

Wireless Sensor Networks (WSNs) operate on wireless communication links. It is proven 

that it is easier to eavesdrop on wireless links because they broadcast their information 

wirelessly over the network[6]. Owing to this broadcast nature of WSNs, the adversary 

can easily intercept the transmitted data. Therefore WSNs must deter eavesdropping and 
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operate within the limited resources available to them. By nature security is an expensive 

mechanism that requires memory, complex mathematical operations and 

communications. Unfortunately WSNs have limited memory, processing, communication 

and power. To provide security in WSNs we need to maintain a delicate balance between 

security, resource consumption and performance. If this balance is not maintained then 

the network will either fade away too quickly or it will not provide services as they are 

intended to be. 

The Optimized Security Protocol (OSP) has been developed to provide extended security 

services along with minimum resource consumption. OSP has been developed keeping in 

view the best practices required for a protocol to operate in a resource constrained 

environment [33]. 

2.8.1 Security 

WSNs need to communicate pin point accurate data that can be very sensitive in nature. 

A sensor must not leak the data it possesses to an unauthorized node. To provide message 

confidentiality the data is encrypted with a secret key so that even if data is available to 

the adversary it is not readily understandable. Another benefit of keeping data encrypted 

with a secret key is that the data can only be decrypted by an entity that possesses the 

required secret key. To achieve high level security it has been proven that message 

confidentiality is not sufficient. Therefore authentication and integrity are also required. 

Using authentication the receiver can verify that the message was actually sent by an 

authenticated party. Whereas Integrity ensures that the message being communicated has 

not been tampered with in any way. In the absence of authentication and integrity, 

messages under transit are prone to cut-and-paste attacks. OSP has been designed to 
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provide message confidentiality, authentication and integrity while consuming as little 

resources as possible. 

2.8.2 Performance 

Owing to the extreme resource limitations in WSNs it is important to provide security 

without consuming too many resources. Security protocols are needed that provide 

reasonable security coverage without too much resource demand. An over conservative 

approach towards resources can limit the level of security available to the network. On 

the other hand an approach to provide a high level comprehensive security solution may 

render the network useless because of the intensive demand for resources. Therefore a 

performance tradeoff is necessary to achieve a satisfactory level of security along with 

optimal resource consumption. OSP provides high level security with low 

communication and computation overhead. The security key space is kept moderate to 

secure the network and also provide extended sensor life. 

2.8.3 Ease of Use 

WSNs are deployable in a broad range of environments. Each environment has its own 

requirements and preferences. Therefore OSP has been designed for adaptability and 

modifiability. OSP can be easily customized i.e. programmers can make adjustments for 

security and performance. Secondly OSP can be used in combination with any keying 

mechanism. This provision has been kept because of broadly varying application 

demands, security and performance. 

 

 



17 
 

2.9 SECURITY PRIMITIVES 

OSP is designed specifically for WSNs that have to operate in a hostile environment with 

resource limitations. This section provides an overview of the security primitives that 

have been employed in the OSP. 

2.9.1 Encryption Scheme 

Both symmetric and Asymmetric keys have their advantages and disadvantages. 

Asymmetric key encryption is considered slightly less troublesome because it uses 

different keys for encryption and decryption. Hence asymmetric keys do not have issues 

related to secure key sharing. On the other hand since the encryption and decryption keys 

are different this makes the encryption and decryption process complicated. This aspect 

of asymmetric keys makes them less efficient compared with symmetric key. A complex 

encryption and decryption process means cumbersome mathematical calculations, 

communication overheads and unnecessary drainage of battery power. 

Since asymmetric key encryption is computationally expensive therefore a 

method is used to both safely share the keys and then share data without the overhead. 

Symmetric key encryption scheme is used to encrypt bulk data. Whereas the asymmetric 

key encryption is used to encrypt the encryption key which was used for bulk data 

encryption. This method provides secure key exchange and then allows the sensors to 

exchange data using symmetric key encryption. Since symmetric key encryption is less 

computation intensive therefore it is efficient to use symmetric keys for regular 

communications. 
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2.9.2 Stream Ciphers 

Stream ciphers are designed to process data bit by bit. This aspect of stream ciphers 

makes them appropriate for environments where large memory blocks do not exist. 

Stream ciphers provide faster and efficient encryption/decryption as compared to block 

ciphers. 

2.9.3 Initialization Vector 

Initialization vectors are used to further strengthen the security of WSNs. Initialization 

vector is used when two messages are very similar or truly identical. In case of WSNs 

identical or similar messages are frequently communicated between neighboring nodes. 

The initialization vectors provide side inputs so that if two identical messages are 

encrypted then the obtained cipher texts are different. In the absence of an initialization 

vector the attackers can use various types of attacks to scan for repeating patterns and 

sequences in the transmitted cipher texts. 

2.9.4 Message Authentication Code 

Alongside confidentiality, OSP has been designed to provide authentication and integrity. 

To save essential resources while providing authentication and integrity message 

authentication code (MAC) has been used. A MAC is a superior algorithm that accepts as 

input a secret key and a message. The output after performing the MAC is a tag that can 

be used to verify the authentication and integrity. In simple terms a MAC is a 

computation performed on a message and the resulting output allows verifiers who 

possess the secret key, to detect any changes that have been made by attackers to the 

message while it was in transit. 
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2.10 eSTREAM PROJECT 

eSTREAM is a multi year project being run by the EU ECRYPT network. The purpose of 

the project was to identify new stream ciphers that promise to be widely accepted and 

adopted. The project was initiated because of the disappointment of all six stream ciphers 

that were submitted to the NESSIE project. The eSTREAM portfolio began establishment 

in November 2004. After going through three phases of study and analysis the final phase 

was completed in May 2008. The goal of the project was to identify those stream ciphers 

that have high throughput in environments with limited resources. Table 2.1 presents the 

four finalized stream ciphers of the eSTREAM project [23]. 

Table 2.1: eSTREAM Portfolio Stream Ciphers 

eSTREAM Portfolio Stream Ciphers 

Rabbit 

HC-128 

Salsa20 

SOSEMANUK 

2.10.1     Rabbit Cipher 

Rabbit stream cipher was presented to the eSTREAM project in May 2005. Rabbit stream 

cipher was designed for high performance. The core component is a bitstream generator 

that can encrypt 128 message bits per iteration. The cipher is composed of a mixing 

function that is based on arithmetic functions that are available on a modern processor. 

This mixing function is the actual strength of the cipher[28]. 
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2.10.2     HC-128 Cipher 

HC-128 is also a part of the eSTREAM portfolio. The cipher was designed to provide 

swift bulk data encryptions without compromise in security [25]. The cipher is composed 

of two secret tables. Each table is designed to hold 1024 32-bit words. For each state 

update a 32-bit word in each table is updated using a non-linear update function. Both 

tables are updated after 2048 steps. 

2.10.3     Salsa20 Cipher 

Salsa20 has been selected for the eSTREAM portfolio because of its superior diffusion 

mechanisms. The cipher uses pseudorandom functions along with bitwise additions and 

constant rotations to defeat timing attacks. 

2.10.4    SOSEMANUK Cipher 

SOSEMANUK is a 128 bit cipher that is part of the eSTREAM portfolio. The cipher has 

an associated proof of concept but the cipher has not been proved in the finalization of 

the eSTREAM portfolio. The cipher uses a 128 bit initialization vector. According to the 

author this cipher is based on the design of SNOW and the Serpent block cipher. 

2.11 WSN DEVELOPMENT ENVIRONMENT 

TinyOS is an operating system that is event driven yet it possesses a very small memory 

footprint (instruction and data memory 400 bytes). The operating system supports several 

platforms and it is open-source environment. TinyOS is supported by a programming 

language and model (NesC). Programs in TinyOS are built out of components that have 

specific interfaces for interactions. The components are of two types: Modules and 
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Configurations. Modules and configurations work in a closely knit fashion. The modules 

define the application behavior while the configuration is used to connect the components 

together. Each component has a frame, function and access interfaces. The frame is 

composed of variables to keep track of internal/ initial states. All the code, commands, 

events and tasks written in NesC are part of the function [29]. 

2.12 SUMMARY 

In this chapter a background study on WSNs was presented. The presented concepts form 

the foundations of the project. Details regarding individual sensors, entire network and 

security in WSNs have been discussed in detail. The eSTREAM project has been studied 

for its dedications towards providing security in resource constrained environments. 

Algorithms, techniques and various directions that have been discussed form the 

foundation of the research work in the project. 
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Chapter 3 

DESIGN & IMPLEMENTATION OF OSP 

 

INTRODUCTION 

When designing a security protocol for conventional systems researchers have a very 

limited set of constraints within which they have to operate. Whereas in the case of 

WSNs, researchers face the issue of being faced by constraints that are many and severe 

in nature. WSNs present constraints and limitations that require researchers to rethink the 

way conventional security works. In a resource constrained environment producing a new 

design can mean redesigning from the basic foundations. Often packet formats need to be 

optimized and redundant data needs to be discarded so that essential resources can be 

conserved. 

This chapter presents the architectural design and implementation details of the 

newly proposed Optimized Security Protocol for WSNs referred to as OSP. This protocol 

has been designed to meet the highest levels of security. Besides the conventional 

confidentiality, OSP also provides authentication and integrity. Furthermore, since 

wireless sensors can be deployed in highly hospitable environments, therefore the 

importance of providing confidentiality, authentication and integrity in a single protocol 

increases. 
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3.1 OSP DESIGN RUDIMENTS 

OSP is a security protocol specifically designed for resource constrained WSNs. A 

security protocol that is designed for a resource constrained but mission critical 

environment must provide the highest level of security while consuming as little 

resources as possible. The designed protocol must consume minimum amount of 

resources while providing high levels of security in a quick and optimal fashion. OSP has 

been optimized by first eradicating the communication overhead that incurs because of 

sending separate encrypted packets for the initialization vector. Secondly the packet 

format has been redesigned to remove redundant bits and to accommodate that data 

which is actually required by the system. A smarter packet results in efficient encryption/ 

decryption. 

3.1.1 Encryption 

Rabbit is one of the qualifying eSTREAM portfolio ciphers. Rabbit has been specially 

designed for security and performance without influencing limited resources. Rabbit has 

a lightweight algorithm that consists of a 128 bit key that is expanded into eight state 

variables and eight counter variables. The key and initialization vector (IV) are plugged 

into four rounds of the next state function to eradicate any recognizable correlations 

between the key, IV and plaintext. The next state function is employed to jumble up bits 

so that no obvious pattern is visible. The keystream generator uses the same components 

for modification of counter variables and state variables. 

In OSP, the encryption process begins by providing the plaintext (PT) to Rabbit. 

To formally perform encryption, Rabbit is also provided with the symmetric key (KE) and 

the initialization vector (IV). When the Rabbit cipher is performed on the plaintext the 
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output obtained is ciphertext (CT). But at this stage the ciphertext cannot be transmitted; 

because in its current state, it only fulfills the requirements of message confidentiality, 

whereas OSP is required to also provide authentication and integrity. These security 

features can only be provided when a MAC is computed on the ciphertext. To save 

precious program space OSP has been designed to reuse the Rabbit next state function for 

computing the MAC. A separate MAC algorithm is not needed because the Rabbit next 

state function possesses superb diffusion properties and further in this manner a separate 

footprint for a MAC algorithm is not required. The obtained MAC is embedded into the 

OSP packet and transmitted along with the CT. 

 

 

 

Figure 3.1: Computation of Ciphertext (CT) and MAC in OSP 

3.1.2 OSP Packet Format 

A security protocol that requires minimum processing is not possible without an 

optimized packet format. Therefore, the packet format used by OSP has been redesigned 

to accommodate fields that did not previously exist in the TinyOS packet. The design of 

the TinyOS packet format included fields that were not very necessary for 

communication and these fields have been replaced in OSP design by making a more 

advantageous use of each bit in the packet. Given below is the TinyOS packet format[31]. 

MAC 
CT PT 

KE      IV

Rabbit OSP-MAC

KM 
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Dest 
(2) 

AM 
(1) 

Length
(1) 

Grp 
(1) 

Data 
(0…29) 

CRC 
(2) 

 

Figure 3.2 The TinyOS Packet Format with Number of Bytes Per Field [31] 

The TinyOS packet format contains Grp and CRC fields which are not required by OSP. 

These fields have been replaced by the source (Src), message counter (Ctr) and the MAC. 

The Grp is a field that is used in cases when data is transmitted to a group of sensors. 

Using the Grp field only those sensors can communicate that possess the same Grp. In 

OSP the Grp field has been replaced by Src field to provide security on perlink basis 

rather than group basis. 

The CRC field in TinyOS packet is replaced by the MAC in OSP. The MAC is a superior 

algorithm as compared to the CRC, the later can only detect transmission errors that exist 

because of channel noise whereas MAC detects transmission errors as well as 

modifications done on the message to check for message integrity. The updated and 

optimized OSP packet format is as follows: 

 

Dest 
(2) 

AM 
(1) 

Length 
(1) 

Src 
(2) 

Ctr 
(2) 

CT 
(0...29) 

MAC 
(4) 

Figure 3.3: The OSP Packet Format with Number of Bytes Per Field [33] 

The header fields in OSP packet namely Dest, AM and Length are kept unencrypted so 

they are readable at once. If they were kept encrypted then every sensor would first have 

to decrypt the fields to see if it is the intended destination sensor. 
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3.1.3 IV Format 

To further conserve the limited resources that are available, the design of OSP reuses the 

fields in its packet for the generation of the IV. A major advantage of this is that separate 

transmission of IV is not needed. Thus we can save the costs that occur from the creation 

and transmission of an independent IV. The unencrypted fields of the OSP packet are 

utilized to generate the IV. All fields of the IV are sent unencrypted. The unique 

combination of Src and Ctr ensures that a single node can send around 216 packets before 

a repetition of the IV is observed. Given below is the IV format [33] for OSP: 

Dest AM Length Src Ctr 

Figure 3.4: IV Format 

3.2 ARCHITECTURAL DIAGRAM OF OSP 

OSP is a design that is based on reuse so that resources can be conserved. The sender 

provides the plaintext (PT) to the Rabbit algorithm along with the symmetric key (KE) 

and the initialization vector (IV). This produces the ciphertext (CT) which in turn is used 

to compute the MAC using the MAC encryption key. After the computation of MAC, the 

required fields of the OSP packet are populated and transmitted to the intended node. 

This approach to encryption is often referred to as Encrypt-Then-MAC approach [33]. 

 

 

 

Figure 3.5: Functional Diagram of OSP - Sending Party 
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When the above packet is received by the receiving node the process of determining if 

the message is legitimate or not is initiated. The receiving node extracts the CT and uses 

the agreed KM to compute an independent MAC. If the received MAC and the MAC 

computed at the receiving node are both identical then the message is in its true form, 

else the packet is discarded. If the packet is legitimate then the CT, KE and the IV are 

used by the receiving party to recover the plaintext using Rabbit cipher [33]. 

 

 

 

 

 

 

Figure 3.6: Functional Diagram of OSP - Receiving Party 

3.3 OSP ALGORITHM 

The underlying primitives of Rabbit are secure, so it is possible to build a proof of given 

notion of security of the encryption MAC algorithm and for OSP. 

The ciphertext is formed by encrypting the plaintext using Rabbit under KE and IV. 

Further, a 128 bit MAC encryption key KM, is used to generate 8 subkeys for the OSP-

Mac function. The KM subkeys and IV are further used to generate state and counter 

variables that are used in the next state function for the generation of MAC keystream. 

KM 

Extracted  
MAC 

 

Extracted CT

MAC Dest | AM | Length | Src | Ctr

MAC

CT

OSP-MAC
If 

MAC Equal

CT 
KE 

IV
Rabbit 

PT

YES

NO 
Reject 
Packet 



 

28 
 

The generated keystream blocks SM0,....,SM7 are XORed with the ciphertext blocks that 

were generated as a result of encryption using KE to get CtM. The calculated CtM is 

divided into four equal blocks namely CtM[31...0], CtM[62...32], CtM[95...64], 

CtM[127...96]. These blocks are XORed to generate the OSP-MAC which in turn is 

verified by the receiving party to check for integrity and authenticity of the transmitted 

message. The receiving party extracts the ciphertext from the received packet and 

calculates MAC using the same KM (MAC key) and initialization vector to see whether 

the 4bytes MAC received in the packet matches the calculated MAC. Figure 3.7 shows 

the complete OSP algorithm [28]. 

 

 

 

 

 

 

 

Figure 3.7: The OSP Algorithm 

 

 

Let Pt denote the plaintext 

Let Ct denote the ciphertext generated as a result of KE 

Let KE denote the encryption key 

Let KM denote the MAC encryption key 
 

CtE = EKE (Pt) 

{ K0, K1, K2, K3, K4, K5, K6, K7 }=KM (128 bit) 

 IV = [ DEST | AM | LEN | Src | Ctr ] 

CtM = Cte ⊕ SM0, SM1, SM2, SM3, SM4, SM5, SM6, SM7 

OSP – MAC = CtM [31…0] ⊕ CtM [63…32] ⊕ CtM [95…64] ⊕ CtM [127…96] 
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Figure 3.8: Flowchart of OSP – Message Sending Party 
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XOR keystream(SE) and plaintext to generate ciphertext (CTE) 
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Input KM 
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Generate keystream (SM) using IV and KM 

XOR keystream and plaintext to generate ciphertext (CTM) 
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Generate OSP-MAC by 
XORing every 32 bit block of CTM 

OSP-MAC = CTM[31...0] ⊕ CTM[32...63]⊕ CTM[95...64] ⊕ CTM[127...96] 

END 
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XOR keystream and ciphertext (CTE) to generate CTM 
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Figure 3.9: Flowchart of OSP – Message Receiving Party 

3.4 SIMULATION SETUP 

TinyOS is a specialized operating system designed for WSNs. The operating system is a 

component based platform that provides extensive support to the various requirements of 

sensor networks [32]. TinyOS has been designed specifically for resource constrained 

environments and it provides support to the most popular motes such as MICA2, RENE 

and BTNode. 
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TinyOS is supported by NesC which is an executable application that 

fundamentally assembles individual components. The greatest advantage of the 

component assembly is that the user can exclude all those components that are not being 

used by the application. Excluding components means reduced code size, application 

simplicity and elimination of many potential error sources. OSP has been designed to 

employ the benefits of both TinyOS and NesC. Figure 3.10 shows the ideal component 

diagram of OSP. 

 

Figure 3.10: Ideal Component Composition Diagram of OSP 

Fundamentally, OSP is a collection of components and their interconnection. OSP 

is composed of the OSPM function that is the calling point of other components. The 

OSPM component communicates directly with the TimerC which is the default time 

keeping component. The OSPM also links with the COM component which is the generic 

communication component. The OSPM is fundamental in nature because it 
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communicates with SysTimeC, RabbitM and the Randomizer. SysTimeC is used for 

performing timing calculations. RabbitM component is used to provide Rabbit 

encryption/decryption and MAC generation modules. The MAC calculations are 

performed by invoking the services of the MAC component. The Randomizer component 

is essential for random deployment of sensor nodes in the network.  

3.5 OSP IMPLEMENTATION 

Rabbit is a security protocol that is designed for high levels of security and efficiency. 

Rabbit, by nature is a symmetric synchronous stream cipher that is intended for 

environments that have limited resources. Rabbit is part of the eSTREAM portfolio [23], 

because of its promising nature for resource constrained environments hence it is also 

suitable for WSNs. Rabbit operates by taking a 128-bit secret key as input and generates 

for each iteration an output block of 128 pseudo-random bits from a combination of the 

internal state bits. Encryption/ decryption is achieved by performing XOR on the pseudo-

random data with the plaintext/ ciphertext. OSP attempts to use Rabbit and an optimized 

packet format for optimized security provision. In OSP, the plaintext is provided to the 

Rabbit module along with the encryption key (KE) and initialization vector. The output 

obtained from the Rabbit module is the ciphertext. Authentication and integrity of 

message is verified by further performing computations on the generated ciphertext. In 

the second phase of its MAC generation cycle, OSP takes a 128 bit MAC key and for 

each iteration of the Rabbit Next State function, it generates an output block of 128 

pseudorandom bits. Further, the MAC of the ciphertext (CtE) is generated by XORing the 

pseudo-random data with the ciphertext blocks to generate CtM. The 32 bit OSP-MAC is 

calculated by XORing every 32 bit ciphertext block within CtM 
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Figure 3.11: OSP Functional Diagram [33] 

3.5.1 Inner State 

The internal state of the stream cipher consists of 513 bits. These 513 bits are divided 

between eight 32-bit state variables ranging from X0,...,X7 and eight 32-bit counter 

variables ranging from C0,...,C7. Figure 3.12 shows the inner state details which are part 

of the rabbit encryption/decryption and MAC generation module for OSP. 

 

 

 

Figure 3.12: Basic OSP Structure Definition 

3.5.2 Key Setup Scheme 

Key setup begins by first expanding the 128-bit key into the eight state and eight counter 

variables. This expansion is such that there is a one-to-one correspondence between the 

key, the initial variables and counter variables. Four iterations are performed on the state 

and counter variables according to the next state function. These four iterations result in 

reduction of the correlations between the key bits and the internal state variables. Figure 

3.13 shows the key setup procedure for the encryption and MAC generation of OSP [18]. 

 

Struct t_instance  

{ 
unint32_t x[8]; 
unint32_t c[8]; 
unint32_t carry; 
} 

MAC 
CtE PT 

KE      IV

Rabbit OSP-MAC

KM 
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Figure 3.13: Key Setup Algorithm 

The internal state variables and the secret key are passed as parameters to the key setup 

procedure. The key setup procedure divides the key into eight sub-keys. These eight 

subkeys are further used in the generation of state and counter variables. All these 

variables are utilized during the ongoing processing of OSP encryption and MAC 

calculation. Table 3.1 shows details regarding the key_setup scheme in OSP which is 

used for encryption/decryption and MAC generation in OSP. 

 

 

 

 

The key is divided into subkeys: 
K0 = k [15...0]   K4 = k [79...64] 
K1 = k [31...16]   K5 = k [95...80] 
K2 = k [47...32]   K6 = k [111...96] 
K3 = k [63...48]   K7 = k [127...112] 

 
The initial state is initialized as follows: 

For j=0 to 7 
 if  j  is even 
  Xj = k(j+1 mod 8) || Kj 
  Cj = k(j+4 mod 8) || K(j+5 mod 8) 

else 
  Xj = k(j+5 mod 8) || K(j+4 mod 8) 
  Cj = kj || K(j+1 mod 8) 

 
Four iterations of the system are then performed. Each iteration consists of counter 
updates and the next state function. The counter variables are initialized to: 

For j=0 to 7 
Cj = Cj ⊕ x(j+4 mod 8) 
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Table 3.1: Function Definition for Key Setup 

Key_setup Performs key setup in OSP 

Input 
Parameters 

Type Name Task 

t_instance *p_instance 
Provides a pointer to the internal 

state 
const char *p_key Carries the secret key exchanged. 

3.5.3 Initialization Vector 

The IV setup scheme functions by modification of the counter state. Using the next state 

function in figure 3.14 the system performs four iterations so that all state bits are non-

linearly dependent on all the IV bits. The modification of the counter by the IV assures 

that all 264 varying IV will lead to a unique keystreams [18]. 

 

 

 

 

 

Figure 3.14: Initialization Vector Algorithm 

After the key setup is complete the resulting inner state is saved as a master state. Then 

the IV setup is commenced which makes it possible to generate the first key stream 

block. If re-initialization under a new IV is necessary the IV setup is run on the mater 

state of the key. The purpose of this is to generate the next keystream block while not 

having to perform the key setup procedure[14,18]. 

C0=C0m ⊕  IV[31..0] 
C1=C1m  ⊕  (IV[63..48]  ||  IV[31..16]) 
C2=C2m  ⊕  IV[63..32] 
C3=C3m  ⊕  (IV[47..32]  ||  IV[15..0]) 
C4=C4m  ⊕  IV[31..0] 
C5=C5m  ⊕  (IV[63..48]  ||  IV[31...16]) 
C6=C6m  ⊕  IV[63..32] 
C7=C7m  ⊕  (IV[47..32]  ||  IV[15..0]) 
 
M refers to master state which is the internal state directly after key setup scheme 
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Table 3.2: Function Definition for IV_setup 

IV_setup Performs IV setup of OSP 

Input 
Parameters 

Type Name Task 

t_instance *p_master_instance
Pointer to master state i.e. 

internal state after key_setup 

t_instance *p_instance 
Provides a pointer to the internal 

state 
Char p_dest Destination sensor node ID 
Char p_src Sending Sensor Node ID 

Const char *p_iv 
Pointer to the initialization 

Vector 
IV= Dest | AM | Len | Src | Ctr 

Size_t iv_size Size of Initialization Vector(IV) 

3.5.4 Next-State Function 

OSP is fundamentally based on the Rabbit Next-State function because this is the core 

function and is used in key setup, keystream generation and MAC generation of OSP. 

The Next-State function takes eight counter variables as input and after system iteration, 

counter modification and g-function iteration produces a 128 bit keystream [18]. 

 

 

 

 

 

 

Figure 3.15: Algorithm for the Next State Function 

Counter Modification 
Update C0,...,C7 
Update X0,...,X7 
 
G_func(Xi,Ci) 

a=X&0xFFFF 
b=x>>16 
h=(((a*a)>>17)+(a*b))>>)+b*b 
l=x*x 
result=h⊕l 
 

Using this function, the algorithm updates the inner state as follows: 
for j=0 to 7 

Gj=g(Xj,cj) 
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3.5.5 Extraction Scheme for OSP Encryption/Decryption 

Once the key and IV setup are complete, the 128 bit keystream is generated after 

performing modifications to the state and counter variables. The obtained keystream is 

then used for future computations. Figure below shows the algorithm for keystream 

output Se[127...0]. 

 

 

 

 

Figure 3.16: Algorithm for Keystream Generation [18] 

3.5.6 Extraction Scheme for OSP MAC 

After the key and IV setup are concluded for the MAC key (KM), the algorithm is iterated 

in order to produce a 128 bit output block or keystream for computing the MAC. The 

keystream is then XOR’ed with the ciphertext generated in the encryption/decryption 

phase of OSP algorithm to generate a CtM. Figure 3.17 shows the algorithm for the 

keystream output SM[128...0]. 

 

 

 

Se [15...0] = X0[15...0]  ⊕  X5[31...16] 
Se [31...16] = X0[31...16]  ⊕  X3[15...0] 
Se [47...32] = X2[15...0]  ⊕  X7[31...16] 
Se [63...48] = X2[31...16]  ⊕  X5[15...0] 
Se [79...64] = X4[15...0]  ⊕  X1[31...16] 
Se [95...80] = X4[31...16]  ⊕  X7[15...0] 
Se [111...96] = X6[15...0]  ⊕  X5[31...16] 
Se [127...112] = X6[31...16]  ⊕  X1[15...0] 
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Figure 3.17: Extraction Scheme for OSP MAC [18] 

3.5.7 Encryption/Decryption Scheme 

Once the keystream bits are obtained they are simply XOR’ed with the plaintext/cipher 

text to perform encryption/decryption. The encryption/decryption scheme is repeated 

until all blocks in the message have been encrypted/decrypted. If a case arises where the 

message size is not a multiple of 128 bits then only the needed amount of least significant 

bits from the last output block S is used for the last message block M. 

 

 

 

Figure 3.18: Algorithm for Encryption/Decryption 

The internal states and variables after processing are passed with the plaintext to the OSP 

cipher function. Table 3.3 shows the parameters linked with the final stage of 

encryption/decryption. 

 

 

Encryption: 
E = M ⊕ Se 

Decryption: 
M’ = E ⊕ S 

SM [15...0] = X0[15...0]  ⊕  X5[31...16] 
SM [31...16] = X0[31...16]  ⊕  X3[15...0] 
SM [47...32] = X2[15...0]  ⊕  X7[31...16] 
SM [63...48] = X2[31...16]  ⊕  X5[15...0] 
SM [79...64] = X4[15...0]  ⊕  X1[31...16] 
SM [95...80] = X4[31...16]  ⊕  X7[15...0] 
SM [111...96] = X6[15...0]  ⊕  X5[31...16] 
SM [127...112] = X6[31...16]  ⊕  X1[15...0] 
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Table 3.3: Function Definition for Cipher 

Cipher Performs Ciphering in OSP 

Input 
Parameters 

Type Name Task 

t_instance *p_instance 
Provides a pointer to the internal 

state 
Char *p_src Plaintext to be encypted. 

3.5.8 MAC Generation Scheme 

The generated keystream bits Sm[128...0] are sorted with the ciphertext to generate a 

stream of pseudo random bits for final MAC calculations shown in figure 3.19. 

 

 

 

 

Figure 3.19: MAC Generation Scheme for OSP 

3.6 KEYING MECHANISMS FOR OSP 

A security protocol can be widely understood if it is elaborated in conjunction with a key 

management architecture and communication protocol. Key management architectures 

are designed to handle the complexities related to key creation, key distribution and key 

revocation. Another purpose of key management architectures is to protect keys from 

being exploited. 

 A keying mechanism is chiefly used for the distribution of keys throughout the 

network. OSP has been designed in such a way that practical implementation is not 

limited to any particular keying mechanism. Each keying mechanism is unique and each 

CtM [31...0] = Ct[31...0] ⊕ SM[31...0] 
CtM [63...32] = Ct[63...32] ⊕ SM[63...32] 
CtM [95...64] = Ct[95...64] ⊕ SM[95...64] 
CtM [127...96] = Ct[127...96] ⊕ SM[127...96] 
 
OSP-MAC = CtM [31...0] ⊕ CtM[63...32] ⊕ CtM[95...64] ⊕ CtM [127...96] 
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one has its positive and negative points. Researchers have not been able to prove the 

effectiveness of any particular keying mechanism because some keying mechanisms 

provide better functionality in specific environments [16]. It is essential to consider all 

the keying mechanisms before a final decision is made about the effectiveness of a 

particular keying mechanism. Essentially a balance needs to be maintained between the 

amount of resources and the level of security. Selection of the appropriate keying 

mechanism depends upon the application domain, amount of resources available and the 

threat model. 

Table 3.4: Keying Mechanisms with their Positive and Negative Aspects 

Keying Mechanism Positives Negatives 
Network Wide Key Low Deployment Complexity Network Compromise 

Per Group Key Medium Deployment Complexity Group Compromise 

Per Link Key High Deployment Complexity Only One Link 
Compromise 

 

3.6.1 Link Key with OSP 

The simplest yet effective mechanism for keying is the per link keying. Two nodes that 

wish to communicate among themselves maintain a key for communication. This method 

of keying protects the entire network from an attack in case a key is captured. This 

implies that an attacker can only decrypt traffic that is addressed to it. Also an attacker 

can only inject traffic through its immediate neighbours. If a system can detect the 

location of the attacker then it can be isolated from the rest of the network by denial of 

service to that particular neighbourhood around the attacker. Based on the architecture of 

OSP it can be implied that the protocol in conjunction with per link keying will produce 
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high level of security but with high resource consumption. The resource consumption 

occurs as a result of complexities owing to key distribution and communication costs. 

Figure 3.20: Sequence Diagram Depicting the Link Key with OSP 

Per link keying should be used in environments where the required level of 

security is very high. Further the amount of available resources should be very high for 

utilization of this keying method. 

3.6.2 Group keying with OSP 

A collaborative approach towards keying is the use of a group key for communication 

among a large number of nodes. In this approach a single key is used among a group of 

nodes. If a particular node is captured then the communications among the group are 

accessible to the attacker. All communications outside the group are not accessible to the 

attacker. This implies that large group size will result in greater losses if any node is 

compromised. Therefore moderate group sizes need to be defined. Figure 3.9 shows how 

a group key is utilized in combination with OSP. 
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Figure 3.21: Sequence Diagram Depicting the Group Key with OSP 

If group keying is used with OSP the level of security will be moderate with average 

amount of resource consumption. This form of keying should be used in environments 

where the required level of security is not very high. 

3.6.3 Network Wide Keying with OSP 

Network wide keying is a method that has very less complexities related to key 

distribution because a single key is utilized throughout the network. A major advantage 

of this keying scheme is that any authorized node can communicate within the network. 

All communications within the network are encrypted but if any single node is 

compromised then the entire network is at risk. Also network wide keying does not 

protect against node capture attacks. If any node is captured the attacker can listen to all 

communications and also inject his own messages into the system. Figure 3.20 shows 

how a network wide key is utilized in combination with OSP. 
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Figure 3.22: Sequence Diagram Depicting the Network Key with OSP 

The network wide key should be used in environments where the data being 

communicated is not very critical and the available resources for security are not very 

high. If network wide keying is used with OSP the level of security will be low. Even if 

OSP continues to function without failure it needs to be understood that a single node 

compromise will result in the compromise of the entire network. Network wide keying 

will prove very successful in environments where there are no chances of an attack on the 

network. 

3.7 SUMMARY 

In this chapter the architecture and implementation of the newly proposed Optimized 

Security Protocol have been described in detail. OSP is a complete security protocol that 

fulfils the three most important requirements of security i.e. confidentiality, 

authentication and integrity. OSP has been designed by using message encryption along 

with MAC. For the successful operations of this security protocol a new optimized packet 
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format has been defined. The new packet format results in lower resource consumption 

due to eradication of redundant data field that exist in the TinyOS packet format. 
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Chapter 4 

TESTING AND EVALUATION OF OSP 

 

INTRODUCTION 

OSP is a comprehensive protocol that provides high levels of security for resource 

constrained WSNs. To finalize the protocol it has to be tested and evaluated in relation to 

a wide range of parameters. Firstly, since the protocol is designed for a resource 

constrained environment therefore it has to be evaluated for its ROM/ RAM 

consumption. Also testing needs to be performed for the operating time of the protocol. 

OSP cannot be tested and evaluated in total isolation. It has to be tested and evaluated in 

comparison with other leading security protocols for WSNs. 

4.1 OSP TESTING ENVIRONMENT 

To formally test and evaluate OSP a proper environment had to be established. This 

environment provides support for visualization and result analysis. 

4.1.1 Simulator 

OSP has been tested using TOSSIM which is the default simulator for use with TinyOS 

With the help of TOSSIM thousands of sensors can be deployed at the same time and 

TOSSIM provides extended support of analysis of system implementation. TOSSIM is an 

compiles the code into a native executable that can run directly on a the simulation host. 
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This feature provides flexibility and thus results in support of thousands of simultaneous 

nodes. TOSSIM has been extensively compared with physical deployments and the 

results prove that the simulator is highly comparable and accurate. 

The greatest advantage of using TOSSIM is its seamless connectivity with TinyOS. 

TOSSIM also operates at the network bit granularity level to capture behaviours and 

interactions that take place in the network. 

4.1.2 Visualization Environment 

TinyViz is a Java based graphical user interface that extends the functionality of 

TOSSIM by providing visualization support. TinyViz can be associated to a running 

application while TOSSIM waits for TinyViz to connect all the simulated sensors. 

TinyViz also allows its users to trace the execution of TinyOs applications; hence the 

users can observe the behaviour of their implementation pause and resume fashion. 

4.2 OSP FRAMEWORK TESTING 

Rigorous testing of OSP is through the various test vectors that provide varying inputs to 

the system. Fundamentally OSP is designed to take message of any size as input and 

process it to the implementation. If a message exceeds the standard length then the 

message is broken down into manageable blocks of size 128 bit. Each test vector is 

unique but fundamentally operates on three inputs i.e. secret key, initialization vector and 

plaintext. Varying these three inputs provides varying outputs. The purpose of this testing 

is to identify abnormal behaviour (if any), and also to identify the efficacy of the entire 

system. 
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4.2.1 Test Vector-I 

The first test vector which forms input to the OSP framework for testing is shown in table 

4.1 and shows the obtained ciphertext when plaintext is encrypted using encryption key 

and MAC obtained using MAC key. 

Table 4.1: Test Vector-I 

Test Vector-I 

Encryption Key [0xa7, 0x92, 0xac, 0xfb, 0x43, 0xdc, 0x15, 0xa5, 0x08,0x60, 0x56, 

0x00,0xa7, 0x81,0x70] 

MAC Key [0x67, 0x73, 0xfb, 0x15, 0xeb, 0x9b, 0xff, 0xad, 0xe5, 0xb1, 0x8g, 

0x96, 0x02, 0x9c, 0xc3, 0x02] 

IV [0xac, 0x89, 0x00, 0x76, 0x00, 0x56, 0x00, 0x78] 

Input Plaintext [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 

0x00, 0x00, 0x00, 0x00, 0x00] 

Ciphertext [0xa3, 0x76, 0xd2, 0xc4, 0xa4, 0x01, 0xa7, 0xc2, 0xe2 0x1e, 0x2f, 

0x00, 0x2a, 0x36, 0x07, 0xc4] 

Recovered Plaintext [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 

0x00, 0x00, 0x00, 0x00, 0x00] 

MAC [0x96, 0xfc] 

 

4.2.2 Test Vector-II 

The second test vector is designed to test if OSP continues to function with any given 

encryption key, MAC key, initialization vector and plaintext. Table 4.2 shows the details 

of the second test vector. 
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Table 4.2: Test Vector-II 

Test Vector-II 

Encryption Key [0xa1, 0xaf, 0xce, 0x02, 0xfd, 0x5c, 0xeb, 0x9b, 0xff, 0xad, 0xe5, 

0x96, 0x0c, 0xda, 0xb1, 0x88] 

MAC Key [0x27, 0xa6, 0xad, 0x96, 0xeb, 0xac, 0xf8, 0xd8, 0x66, 0x03, 0xcb, 

0x00, 0xeb, 0xc1, 0x10, 0x00] 

IV [0x00, 0x00, 0x91, 0x67, 0xfe, 0xac, 0xc3, 0x02] 

Input Plaintext [0x16, 0xa1, 0x28, 0x94, 0xd0, 0xeb, 0xe5, 0xaa, 0x84, 0x7f, 0xfe, 

0x00, 0x36, 0x91, 0x00, 0xd1] 

Ciphertext [0x14, 0x00, 0x80, 0xa1, 0xf6, 0xd2, 0xdc, 0xa0, 0xe0, 0x87, 0x83, 

0xfa, 0x12, 0xd9, 0x02, 0x39] 

Recovered Plaintext [0x16, 0xa1, 0x28, 0x94, 0xd0, 0xeb, 0xe5, 0xaa, 0x84, 0x7f, 0xfe, 

0x00, 0x36, 0x91, 0x00, 0xd1] 

MAC [0x88, 0x60] 

 

4.2.3 Test Vector-III 

The third test vector is designed to further test OSP with varying encryption key, MAC 

key, initialization vector and plaintext. Table 4.3 shows the details of the third test vector. 

Table 4.3: Test Vector-III 

Test Vector-III 

Encryption Key [0x27, 0xa6, 0xad, 0x96, 0xeb, 0xac, 0xf8, 0xd8, 0x66, 0x03, 0xcb, 

0x00, 0xeb, 0xc1, 0x10, 0x00] 

MAC Key [0xa7, 0x92, 0xac, 0xfb, 0x43, 0xdc, 0x15, 0xa5, 0x08,0x60, 0x56, 
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0x00,0xa7, 0x81,0x70] 

IV [0x92, 0x10, 0x01, 0xd8, 0xc6, 0xf5, 0x5b, 0x1c] 

Input Plaintext [0x89, 0xfc, 0xf6, 0x00, 0x1f, 0x96, 0x95, 0x0c, 0x3d, 0xb1, 0x88, 

0x60, 0x02, 0xfd, 0xd4, 0x12] 

Ciphertext [0xff, 0x6c, 0xe8, 0x58, 0x75, 0x84, 0x70, 0xe1, 0x68, 0x9a, 0xe7, 

0xc4, 0xf2, 0x12, 0x03, 0x01] 

Recovered Plaintext [0x89, 0xfc, 0xf6, 0x00, 0x1f, 0x96, 0x95, 0x0c, 0x3d, 0xb1, 0x88, 

0x60, 0x02, 0xfd, 0xd4, 0x12] 

MAC [0x01, 0xa7] 

 

4.2.4 Test Vector-IV 

The fourth test vector reveals the effectiveness of OSP in processing various inputs. The 

results of test vector-IV prove that OSP can readily take any encryption/ MAC key, 

initialization vector and plaintext to produces the correct parameters. Table 4.4 shows the 

details of the third test vector. From all four test vectors one can readily conclude the 

effectiveness and correctness of OSP. 

Table 4.4: Test Vector-IV 

Test Vector-IV 

Encryption Key [0xaa, 0x91, 0xfe, 0xe9, 0xcd, 0x3b, 0xfe, 0x02, 0x00, 0xcd, 0xe5, 

0x3e, 0x0c, 0xd4, 0xb6, 0x99] 

MAC Key [0xa1, 0xaf, 0xce, 0x02, 0xfd, 0x5c, 0xeb, 0x9b, 0xff, 0xad, 0xe5, 

0x96, 0x0c, 0xda, 0xb1, 0x88] 

IV [0xff, 0xbd, 0xf0, 0xac, 0xad, 0x74, 0x3a, 0xb8] 
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Input Plaintext [0x0d, 0xcd, 0x32, 0x9b, 0xe0, 0x15, 0xd1, 0xd4, 0x36, 0xd7, 0xd6, 

0x7f, 0x00, 0x58, 0x2e, 0x9b] 

Ciphertext [0xdf, 0x04, 0xae, 0x03, 0x16, 0x2f, 0x01, 0x97, 0xdf, 0x02, 0xc0, 

0x35, 0x12, 0x27, 0xae, 0x97] 

Recovered Plaintext [0x89, 0xfc, 0xf6, 0x00, 0x1f, 0x96, 0x95, 0x0c, 0x3d, 0xb1, 0x88, 

0x60, 0x02, 0xfd, 0xd4, 0x12] 

MAC [0xc0, 0x87] 

 

4.3 MEMORY FOOTPRINT ANALYSIS 

The analysis of a security protocol for resource constrained environement cannot be 

completed with a formal memory analysis. The memory of OSP has been measured by 

using TinyOS in collaboration with TOSSIM. TOSSIM is used to compile the code and 

analyze the code for any errors. If the compilation is completed without any errors then 

TOSSIM displays the amount of memory consumed. The memory footprint analysis of 

OSP is only presented in the form of ROM and RAM consumption. 

4.3.1 ROM Consumption Study 

To perform in depth analysis of the ROM consumption of OSP, a comparison of no 

security and OSP is presented. When mica nodes in a WSN communicate without OSP 

they consume 7076 bytes of ROM. When communication is based on our newly proposed 

OSP, three essential features of security namely confidentiality, authentication and 

integrity are provided at the total cost of 12470 bytes in ROM. This consumed ROM is 

well inside the maximum limit of ROM available to conventional sensor nodes. It is 

interesting to note that OSP is very lean as compared to other rival protocols like Dragon 
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MAC and RC4. When OSP is used to provide only encryption it easily outperforms both 

RC4 and Dragon. Dragon MAC [24] provides only authentication and integrity but 

consumes 18900 bytes thus giving a difference of 6430 bytes (18900-12470). As shown 

in figure 4.1 RC4 is a very costly protocol because it consumes more RAM as compared 

to OSP and provides only encryption. Whereas OSP consumes less number of bytes and 

provides confidentiality, authentication and integrity all in a single suite. 

 

Figure 4.1: Comparison Graph for ROM Consumptions 

Table 4.5 shows the ROM consumption results for OSP and other popular security 

protocols for WSNs. It is evident from the readings that OSP requires very little ROM as 

compared to its rival protocols. For instance the complete OSP requires less ROM than 

RC4 and Dragon but provides higher number of security features. 
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Table 4.5: ROM Consumptions for Competing Protocols 

Description ROM (Bytes) 

RC4 (Encryption Only) 14372 

Dragon (Encryption Only) 18000 

OSP (Encryption Only) 7076 

Dragon MAC (Encryption & 

Authentication) 

18900 

OSP (Encryption, 

Authentication, Integrity) 

12470 

TinySec 8152 

 

4.3.2 RAM Consumption Study 

To conduct comprehensive RAM consumption study of OSP the protocol is compared 

with other popular rival protocols like RC4 (Encryption), Dragon (Encryption), Dragon 

MAC (Encryption and Authentication). A comparison of OSP with other security 

protocols is necessary to understand the stability and efficiency of this new security suite. 

When discussing RAM consumptions OSP ranks slightly higher as compared with other 

similar protocols. The difference in RAM consumption is minor and is almost negligible. 

OSP can provide encryption consuming almost the same number of bytes as the 

encryption only Dragon protocol. When OSP provides encryption, authentication and 

integrity it consumes only 302 bytes more than the Dragon MAC which only provides 

encryption and authentication. Since OSP provides more features as compared to Dragon 
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MAC while consuming 302 extra bytes (1284-982) therefore the protocol can be 

considered efficient in terms of both ROM and RAM consumption [24]. Figure 4.2 shows 

the RAM consumption graph for OSP and other competing protocols. 

 

Figure 4.2: Comparison Graph for RAM Consumptions 

OSP has a slightly elevated level of RAM requirement. Even though the RAM 

requirement may seem higher as compared to rival protocols but still it is well in range of 

the RAM available to WSNs. Table 4.6 shows the RAM requirements in bytes of various 

high level protocols for WSNs. 

Table 4.6: RAM Consumptions for Competing Protocols 
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OSP (Encryption Only) 992 

Dragon MAC (Encryption & 

Authentication) 

982 

OSP (Encryption, 

Authentication, Integrity) 

1284 

TinySec 728 

 

4.4 PROCESSING TIME 

This section presents a detailed study of OSP in terms of processing time. Since OSP is 

developed using TinyOS and TOSSIM therefore the processing time is calculated by the 

internal timers of the simulation environment. Even though OSP is very efficient in terms 

of memory footprint, the protocol needs to be analyzed for processing time. The results of 

processing time ensure freshness of the data communicated along with the guarantee that 

a sensor can communicate a packet with another sensor within a certain time range. 

To formally study the processing time of OSP the processing time with encryption only 

has to be extracted so that one can determine the overall time OSP takes to operate. The 

time taken by OSP to provide only encryption is 39μs. When OSP is used to provide 

encryption, authentication and integrity in a single suite then it requires a time of 

153.76μs. Figure 4.3 shows the graph of operating times for OSP and other competing 

protocols. 
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Figure 4.3: Comparison Graph for Operating Time (μs) 

The complete OSP suite requires less operating time as compared to TinySec which is 

well renowned for its efficiency and low resource requirements. Table 4.7 shows the 

processing times of OSP and other similar protocols. 

Table 4.7: Processing Time (μs) for Competing Protocols 

Description Time (μs) 
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4.5 SECURITY RESILIANCE ANALYSIS 

OSP is a comprehensive security solution for resource constrained WSNs. OSP has been 

designed with new packet formats. The purpose of this exercise is to change the way we 

view security in WSNs. Even though OSP is very light weight in nature but still there is 

no compromise in the level of security provision. OSP provides encryption, 

authentication and integrity without the requirement for resources. The key size of 128 bit 

ensures that the chances of guessing the key is next to impossible. The superior diffusion 

properties of Rabbit acts as a deterrent to all known attacks for WSNs [28]. Another 

benefit of the diffusion rounds translates into less need for rekeying in the network. 

OSP has been designed with an IV that attempts to reuse fields from the OSP packet 

format. The IV has been designed to further prevent the chances of an attacker finding 

patterns among the transmitted messages. The IV has the SRC and CTR field. These 

fields assist in making two messages differ from each other thereby reducing the chances 

of a message repetition. Also OSP has a MAC function that assists in determining if the 

message is authentic and the sender is really who he claims to be. Another big advantage 

of using a MAC is that any message that has been affected due to channel noise is 

detected and then discarded. OSP has been designed to operate with the Rabbit stream 

cipher because of its recognized security characteristics and minimal resource 

consumption. 

4.6 SUMMARY 

To fully test OSP it has been evaluated from various aspects like ROM/ RAM 

consumption, processing time and security provision. The results have been obtained by 
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using TinyOS, TOSSIM and TinyViz. Extensive testing of OSP has shown that this new 

protocol is very stable and requires little resources to operate. OSP has been evaluated in 

comparison with other popular protocols like TinySec, Dragon MAC and RC4. The 

results demonstrate that OSP has all the properties that are required by a highly 

acknowledged security protocol for WSNs. 
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Chapter 5 

CONCLUSIONS AND FUTURE WORK 

 

Researchers have been successful in promising wonderful applications for the field of 

WSNs. Both researchers and the academia acknowledge the fact that security provision 

for WSNs is necessary if they are to be widely deployed. What they mean by security is 

the provision of confidentiality along with advanced features that cater to authentication 

and integrity. Until recently all research endeavours were directed towards conserving 

essential resources. This is the precise reason why security provision was considered an 

expensive attribute/ feature. Latest research in the field of WSN security has been able to 

promise high levels of security without compromise in resource consumption. This work 

is geared towards the development of an Optimized Security Protocol - OSP that can be 

widely acknowledged and implemented. 

5.1 CONCLUSIONS 

In this project an attempt has been made to develop a new protocol that provides three 

features namely confidentiality, authentication and integrity without compromising the 

limited resources available to sensor nodes. The purpose of OSP is to provide a complete 

security suite that prevents unlawful access and modification of data and at the same time 

prevents node impersonation by an attacker. The protocol is based on an optimized 

packet format that is derived from the TinyOS packet format. The newly proposed packet 

format removes redundant fields and also attempts to reuse existing fields from the 
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TinyOS packet to reduce the packet size and also create space for handling advanced 

security mechanisms like MAC. The newly proposed OSP packet is fully supported by a 

new and unique architecture that can operate with any key exchange mechanism. This 

keying independent architecture ensures greater flexibility with ease of implementation. 

To prove the efficiency of OSP it has been implemented in TinyOS using the TOSSIM 

simulator. OSP has been tested using TinyOS so that it can be fully deployed on physical 

sensor nodes. The compilation results of OSP prove that this new protocol occupies very 

little ROM and RAM while it operates. This implies that when OSP will be physically 

implemented it will not exhaust the available resources of the sensors. Another attribute 

of OSP is its very optimal operating time. OSP performs quick communications because 

of its smaller and optimized packet size. Also OSP does not require unnecessary/ 

repeated sensor-to-sensor communication thereby conserving time and other essential 

resources. 

5.2 FUTURE WORK 

Although OSP has been fully tested and is considered complete in all respect, but there is 

still room for implementing and testing the protocol on real sensor test bed. The true 

behaviour of a protocol can be truly tested if it is implemented on real sensor nodes. 

OSP has demonstrated good results in terms of memory requirements and time 

requirements but still there is room for optimization. The algorithm and processing can be 

tweaked and adjusted for improved results and performance. 

OSP is fundamentally a security protocol based on the Rabbit stream cipher hence there 

is ample space for research in combining the OSP architecture and packet format with a 
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stream cipher other than Rabbit. Also OSP can be extended to propose and implement a 

protocol that attempts to incorporate OSP with different Routing protocols. 

To further strengthen the security of the entire system OSP can be designed such that it 

supports security features related to availability of sensor nodes. If this last feature is 

incorporated into OSP then it will result in a truly outstanding protocol that completely 

addresses all the security concerns. 
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