
Form TH-4

National University of Sciences & Technology (NUST)

MASTER’S THESIS WORK

We hereby recommend that the dissertation prepared under our supervision by: Hassan Ahmed (00000321077)

Titled: Analytical Study of heat and mass transfer in the unsteady squeezing flow between parallel plates be accepted in partial

fulfillment of the requirements for the award of MS in Mechanical Engineering degree.

Examination Committee Members

1. Name: Riaz Ahmad Khan Signature: 

2. Name: Hina Munir Dutt Signature: 

3. Name: Adnan Munir Signature: 

Supervisor: Muhammad Safdar Signature:  

Date: 15 - Aug - 2023

15 - Aug - 2023

Head of Department Date

COUNTERSINGED

15 - Aug - 2023

Date Dean/Principal



 Analytical Study of heat and mass transfer in the unsteady 

squeezing flow between parallel plates 

 

 

Author 

Hassan Ahmed 

Regn Number 

00000321077 

 

Supervisor 

Muhammad Safdar 

 

DEPARTMENT OF MECHANICAL ENGINEERING 

SCHOOL OF MECHANICAL & MANUFACTURING ENGINEERING 

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY 

ISLAMABAD 

AUGUST 2023 

 



 

Analytical Study of heat and mass transfer in the unsteady squeezing 

flow between parallel plates  

Author 

Hassan Ahmed 

Regn Number 

321077 

 

A thesis submitted in partial fulfillment of the requirements for the degree of 

MS Mechanical Engineering 

 

Thesis Supervisor: 

Muhammad Safdar 

 

Thesis Supervisor’s Signature: ____________________________________ 

 

 

DEPARTMENT OF MECHANICAL ENGINEERING 

SCHOOL OF MECHANICAL & MANUFACTURING ENGINEERING 

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY 

ISLAMABAD 

AUGUST 2023 

 

 



Thesis Acceptance Certificate 

Certified that final copy of MS thesis written by Hassan Ahmed Registration No. 321077, of 

SMME has been vetted by undersigned, found complete in all respects as per NUST Statutes / 

Regulations, is free of plagiarism, errors, and mistakes and is accepted as partial fulfillment for 

award of MS degree. It is further certified that necessary amendments as pointed out by GEC 

members of the scholar have also been incorporated in the said thesis. 

 

 

 

 

 

 

       Signature: __________________________  

                  Name of Supervisor: Dr. Muhammad Safdar 

           Date: 23-08-2023 

 

 

 

 

           Signature (HOD): _____________________ 

           Date: 23-08-2023 

 

 

 

 

          Signature (Principal): _________________ 

           Date: 23-08-2023 

 

 



i 
 

Declaration 

I certify that this research work titled “Analytical Study of heat and mass transfer in the 

unsteady squeezing flow between parallel plates” is my own work. The work has not been 

presented elsewhere for assessment. The material that has been used from other sources has been 

properly acknowledged / referred.  

 

 

 

Signature of Student  

Hassan Ahmed 

2019-NUST-MS-Mech-321077 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ii 
 

Language Correctness Certificate  

This thesis has been read by an English expert and is free of typing, syntax, semantic, 

grammatical, and spelling mistakes. Thesis is also according to the format given by the university. 

 

 

 

 

 

 

 

Signature of Student  

Hassan Ahmed 

2019-NUST-MS-Mech-321077 

        

        

 

Signature of Supervisor 

Dr. Muhammad Safdar 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

Certificate for Plagiarism 
 

It is certified that MS Thesis Titled: Analytical Study of heat and mass transfer in the unsteady 

squeezing flow between parallel plates by Hassan Ahmed (321077) has been examined by me. I 

undertake the follows: 

a. Thesis has significant new work/knowledge as compared already published or are under 

consideration to be published elsewhere. No sentence, equation, diagram, table, paragraph, 

or section has been copied verbatim from previous work unless it is placed under quotation 

marks and duly referenced. 

b. The work presented is original and own work of the author (i.e., there is no plagiarism). 

No ideas, processes, results, or words of others have been presented as Author own work. 

c. There is no fabrication of data or results which have been compiled/analyzed.  

d. There is no falsification by manipulating research materials, equipment, or processes, or 

changing or omitting data or results such that the research is not accurately represented in 

the research record. 

e. The thesis has been checked using TURNITIN (copy of originality report attached) and 

found within limits as per HEC plagiarism Policy and instructions issued from time to time.  

 

 

 

 

 

 

 

 

 

 

 

 

Name & Signature of Supervisor 

 

DR. MUHAMMAD SAFDAR 

 

 

 

 

 

Signature: ________________ 

 

 

 

 

 



iv 
 

Copyright Statement 

• Copyright in text of this thesis rests with the student author. Copies (by any process) either 

in full, or of extracts, may be made only in accordance with instructions given by the author 

and lodged in the Library of NUST School of Mechanical & Manufacturing Engineering 

(SMME). Details may be obtained by the Librarian. This page must form part of any such 

copies made. Further copies (by any process) may not be made without the permission (in 

writing) of the author. 

• The ownership of any intellectual property rights which may be described in this thesis is 

vested in NUST School of Mechanical & Manufacturing Engineering, subject to any prior 

agreement to the contrary, and may not be made available for use by third parties without 

the written permission of the SMME, which will prescribe the terms and conditions of any 

such agreement. 

• Further information on the conditions under which disclosures and exploitation may take 

place is available from the Library of NUST School of Mechanical & Manufacturing 

Engineering, Islamabad. 



v 
 

Acknowledgements 

I am thankful to my Creator Allah Subhana-Watala to have guided me throughout this work 

at every step and for every new thought which You setup in my mind to improve it. Indeed, I could 

have done nothing without Your priceless help and guidance. Whosoever helped me throughout 

the course of my thesis, whether my parents or any other individual, was Your will, so indeed none 

be worthy of praise but You.  

I am profusely thankful to my beloved parents who raised me when I was not capable of 

walking and continued to support me throughout every department of my life.  

I would also like to express special thanks to my supervisor Dr. Muhammad Safdar for his 

help throughout my thesis and also for Numerical and Analytical methods which he has taught me. 

I can safely say that I haven't learned any other engineering subject in such depth as the ones which 

he has taught.  

I would also like to pay special thanks to Dr. Muhammad Safdar for his tremendous support 

and cooperation. Each time I got stuck in something; he came up with the solution. Without his 

help I wouldn’t have been able to complete my thesis.  I appreciate his patience and guidance 

throughout the whole thesis. 

I would also like to thank Dr. Riaz Ahmed Khan and Dr. Hina Munir Dutt for being on my 

thesis guidance and evaluation committee and express my special thanks to Dr. Adnan Munir for 

his help.  

Finally, I would like to express my gratitude to all the individuals who have rendered 

valuable assistance to my study. 

 

 

 



vi 
 

 

 

 

 

 

 

Dedicated to my special parents and my teachers whose tremendous 

support and cooperation led me to this wonderful accomplishment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

Abstract 

This thesis investigates the unsteady flow of Non-Newtonian Fluid - Casson fluid between two 

squeezing/separating parallel plates under the presence of viscous dissipation, 

magnetohydrodynamic effect and joule dissipation. This investigation also involves the radiation 

and chemical reaction effects on Casson fluid. The fundamental governing equations for the Non-

Newtonian Casson fluid flow problem is highly non-linear and coupled partial differential equation 

(PDEs) with time dependency. In order to reduce this highly nonlinear system of PDEs into 

Ordinary differential equations (ODEs), similarity transformations are used. The analytical and 

numerical solutions of the reduced ODEs are obtained using MAPLE through Homotopy Analysis 

Method (HAM) and Finite Difference Method (FDM), respectively. These results are validated 

with the previously published results derived by employing Shooting method along with results of 

bvp4c. Subsequently, the influence of prominent dimensionless flow parameters on velocity, heat 

transfer and mass flow are presented graphically with their physical aspects on engineering 

applications. The velocity field, heat transfer and mass flow contours are also plotted for each case 

in order to understand the effect of these flow parameters on flow, heat and mass distribution in 

the given Casson fluid flow.  

A comprehensive analysis of the analytic procedure HAM and the approximate solution 

scheme FDM is carried out to compare the results provided by both for the considered flow model. 

This comparison encompasses performance of both the procedures on the basis of processing time, 

memory allocation (computational cost) and accuracy, through which effectiveness of these 

procedures is determined.  

 

Key Words: Casson Fluid, Magnetohydrodynamic, Viscous Dissipation, Radiation, Chemical 

Reaction, Similarity Transformation, Homotopy Analysis Method, Finite Difference Method, 

Analytic and approximate Solutions
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CHAPTER 1. INTRODUCTION 

In this dissertation, heat and mass transfer for a Casson fluid between squeezing/separating 

parallel plates is studied. In this flow, the magnetohydrodynamic, radiation, chemical reaction and 

heat source/sink effects are also present to understand their combined effect on the behavior of 

fluid. In Chapter 1, brief introduction of Casson fluid and its application in the industries are 

discussed along with the literature review. In the second section, the governing PDEs are 

transformed into ODEs using Similarity Transformations and the same ODEs are solved using 

Homotopy Analysis Method. In the third section, the effectiveness of the Homotopy analysis 

method for Casson fluid flow applications is compared to the Finite Difference scheme and results 

are validated using previous published results. In the fourth section, in order to better understand 

the flow behavior, the effect of flow parameters on flow, heat, and mass distribution on the fluid 

flow between the parallel plates is investigated. 

1.1 INTRODUCTION & APPLICATIONS: 

Casson Fluid is a type of non-Newtonian fluid named after its discoverer British 

mathematician and rheologist, A. A. Casson. As the Newtonian fluid follows the newton law of 

viscosity in which shear stress and shear strain are linearly related. On contrary, shear stress has 

nonlinear relationship with shear strain in case of Casson fluid and Casson fluid has both elastic 

and viscous properties i.e., it acts as solid up to a particular shear rate while when the shear rates 

exceed the threshold value, Casson fluid starts to flow and behave as liquid. The following 

relations applies to it. 

𝜏 =  𝜏0 +  𝜇 √�̇� 

 

where 𝜏 is the shear stress, 𝜏0 is the yield stress (a constant value representing the minimum stress 

required to initiate flow), 𝜇 is the consistency coefficient (a constant that determines resistance of 

a fluid to deformation) and �̇� is the shear rate. 

Heat and mass transfer in squeezing/separating non-Newtonian Casson fluid between two 

parallel plates is an area of interest for scientists and engineers due to its widespread applications 

in a variety of industries. Fluid stretching sheets are used in a variety of sectors to optimize and 

improve productivity.  
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In Nuclear industry where safety is utmost priority, the Casson fluid has application in 

transportation and management of nuclear waste in the form of slurries and pastes. Also, the 

coolant of molten salt reactor in specific cases acts as Casson fluid and during the accident 

scenarios such as loss of Coolant Accident (LOCA), most of liquid coolant are vaporized and 

coolant act as non-Newtonian fluid whose behavior can be studied using Casson fluid equations. 

In the food industry, sauces and dressings such as ketchup and mayonnaise are examples 

of non-Newtonian fluid. It also finds applications in Dairy products, Baked goods, Jams and 

Chocolate industries. 

For the automobile industry, they are used to shape sheet metal into complex forms and 

geometries. They are used to produce paper goods and printing of a higher quality in the printing 

and paper industries. They are used to stretch fabric for curtains, rugs, and clothing in the textile 

industry. In the plastics business, they are utilized to make complex shapes for infusion forming. 

Liquid extending sheets can likewise be utilized in sheet metal manufacture, sheet metal framing, 

and wire shaping cycles. A useful instrument in medical research is a fluid film squeezing flow as 

it accurately measures the viscosity of fluids like blood and lymphatic fluid. It can also be used to 

evaluate and monitor the health of tissues and organs. Moreover, it enables a measurement of the 

extent of inflammation, assessment of the efficacy of treatments, or tracking of the progress of a 

healing process. Further, liquid film pressing stream is used to enhance drug conveyance, as it can 

precisely control the rate at which medications are conveyed to explicit region of the body. Lastly, 

it can be used to help develop targeted treatments and diagnose certain conditions like vascular 

diseases etc.  

1.2 LITERATURE REVIEW: 

 In his paper, Stefan [1] initially looks into the squeezing flow and presents a basic 

mathematical model for it under thermodynamic conditions based on lubrication theory. Reynold's 

[2] modified the mathematical model for elliptical plates and used it in the application on Mr. 

Beauchamp Tower's Experiments. Additionally, Archibald [3] investigated a comparable issue for 

rectangular plates in Time Relations and Load Capacity for Squeeze Films. Domairry and Aziz [4] 

used homotopy perturbation approach to study the influence of viscous dissipation on flow and 

heat transfer in incompressible flow between parallel discs and Similar study for parallel plates 

using the homotopy perturbation approach was carried out by Siddiqui, Irum et al. [5]. Since many 
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scientists are working on the research and discovering solutions for different configurations. Wang 

used the Homotopy Analysis approach (HAM) to solve the governing equation for a liquid layer 

on an unstable stretching surface, whereas Anderson used the Shooting numerical approach to 

address the same issue. In his research, Wang emphasized the value of HAM in helping to better 

understand the flow mechanism for industrial use.  Using HAM, Mustafa, Hayat et al. [6] examines 

heat and mass transport on an unstable squeeze flow between parallel plates.  The impact of the 

Prandtl and Eckert numbers on the Nusselt number as well as the impact of the Schmidt number 

on the Sherwood number were presented in this work. 

Weaver et al. [7] looked into interactions between species and how they influenced Natural 

convection heat and mass transfer in porous medium due to the combined effects of concentration 

and temperature gradients, as well as the thermal-diffusion and diffusion-thermo impacts. 

According to their analysis, the gradients in temperature and concentration within the flow regime 

cause the flow to occur. The concentration field and heat transfer properties of gyrotactic 

microorganisms floating in an Casson fluid flow close to a vertical rotating plate or cone retained 

in porous media in electromagnetic field were numerically studied by Raju and Sandeep [8]. 

(Sulochana, Payad et al.[8] investigated the Soret effect in the presence of a heat source or sink in 

the situation of three-dimensional Casson fluid flow across a stretching surface, taking into account 

heat and mass transfer characteristics. Nawaz, Hayat et al [9] investigated the role of Thermal 

diffusion and Mass diffusion effects on time independent MHD two-dimensional electrically 

conducting flow. Ojjela and Kumar [10] studied open channel flow of a two stress fluids with 

radiation and chemical reaction effects and the effect of the Soret as well as Dufour numbers on 

it. In addition, Khan, Qayyum et al.[11] investigated the effect of the thermal diffusion and mass 

diffusion effects in the situation of viscous MHD flow between non-parallel walls by taking the 

chemical reaction process into account. According to their findings, the temperature field grows 

as the Dufour number increases, while the concentration field decreases as the Soret number 

increases. Khan, Mohyud-Din et al.[12] have explored the thermal diffusion and mass diffusion 

effect  on the viscous incompressible nano-fluid between two squeezing parallel disks under 

electromagnetic field. Their research shows that as the Schmidt and Soret numbers increase, the 

concentration field in the flow zone decreases. N B Naduvinamani and Usha Shankar [13] 

investigate heat and mass transfer in the presence of a chemical reaction by compressing an 

unsteady MHD Casson fluid between two parallel plates with joule and viscous dissipation. The 
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simplified governing equations of flow are solved using the RK-SM techniques, and the results 

describe the effect of different parameters on the non-Newtonian flow behavior of Casson Fluid. 

Further the same results are obtained using the bvp4c method. 

Mustafa, Hayat et al. on The Unsteady Squeezing Flow Between Parallel Plates: Heat and 

Mass Transfer [6]:  

In his paper, M. Mustafa analyzed the heat and mass transfer of two-dimensional, unsteady 

Newtonian fluid behavior between squeezing and separating parallel plates under the influence of 

viscous dissipation. The flow model or governing equation of mass, momentum, energy and 

concentration are non-linear and time dependent coupled partial differential equations. It is 

pertinent to mention that the governing equations are presenting the Newtonian fluid in absence of 

radiation, heat source/sink and MHD effects.  

𝑢𝑥 + 𝑢𝑦 = 0 (1.1) 

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑣𝑢𝑦 = −
1

𝜌
𝑃𝑥 + 𝑣(𝑢𝑥𝑥 + 𝑢𝑦𝑦) 

(1.2) 

𝑣𝑡 + 𝑢𝑣𝑥 + 𝑣𝑣𝑦 = −
1

𝜌
𝑃𝑦 + 𝑣(𝑣𝑥𝑥 + 𝑣𝑦𝑦) 

(1.3) 

𝑇𝑡 + 𝑢𝑇𝑥 + 𝑣𝑇𝑦 =
𝑘

𝜌𝑐𝑝
(𝑇𝑥𝑥 + 𝑇𝑦𝑦) +

𝜇

𝜌𝑐𝑝
(4𝑢𝑥

2 + (𝑢𝑦 + 𝑣𝑥)
2

) 
(1.4) 

𝐶𝑡 + 𝑢𝐶𝑥 + 𝑣𝐶𝑦 = 𝐷𝑚(𝐶𝑥𝑥 + 𝐶𝑦𝑦) − 𝑘𝑙𝐶 (1.5) 

He converts the governing system of partial differential equations into ordinary differential 

equations using the similarity transformations represented by the similarity variables 𝜂, 𝜃(𝜂) and 

𝜙(𝜂). Resultantly, the continuity equation is eliminated during this process and number of 

independent variables is reduce to one 𝜂. 

Subsequently, he utilizes the Homotopy method to obtain the solution of the ODEs under 

the given boundary conditions. In this process, he obtained the solutions 𝑓′′(1), 𝜃′(1) and 𝜙′(1) 

at 1, 5, 8, 9, 10, 15, 20 and 30 order of approximation for particular case in order to converge the 

solution at 15th order. Afterwards, he discusses the effect of Eckert number, Prandtl number and 

Squeezing number on temperature and effect of squeezing number, Schmidt number and chemical 

reaction parameter on concentration. Further, the effect of these parameters is also extended on 

Nusselt number and Sherwood number. 

In the findings, he discussed that the velocity profile is inversely related to the squeezing 
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number, Prandtl and Eckert number is increasing the heat transfer rate as well as temperature. Also, 

Schmidt Number has an inverse relation with the concentration field and directly related to the 

Sherwood Number. Finally, the chemical reaction is increasing the Sherwood Number. 

 

N B Naduvinamani and Usha Shankar Model on Thermal-Diffusion and Diffusion-Thermo 

Effects on Squeezing Flow of Unsteady Magneto-Hydrodynamic Casson Fluid between Two 

Parallel Plates With Thermal Radiation [13]:  

 In this paper, the study of non-Newtonian Casson fluid between squeezing/separating 

parallel plates is conducted. In this study the effect of electromagnetic field, radiation, chemical 

reaction and presence of heat source/sink in fluid are also included along with viscous and joule 

dissipation effects. The governing equation for the flow is: 

𝑢𝑥 + 𝑢𝑦 = 0 (1.6) 

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑣𝑢𝑦 = −
1

𝜌
𝑃𝑥 + 𝑣 (1 +

1

𝛽
) (2𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑣𝑦𝑥) −

𝜎𝐵𝑜
2

𝜌(1 − 𝛼𝑡)
𝑢  

(1.7) 

𝑣𝑡 + 𝑢𝑣𝑥 + 𝑣𝑣𝑦 = −
1

𝜌
𝑃𝑦 + 𝑣 (1 +

1

𝛽
) (2𝑣𝑥𝑥 + 𝑣𝑦𝑦 + 𝑢𝑦𝑥) 

(1.8) 

𝑇𝑡 + 𝑢𝑇𝑥 + 𝑣𝑇𝑦 =
𝑘

𝜌𝑐𝑝
(𝑇𝑥𝑥 + 𝑇𝑦𝑦) +

𝜇

𝜌𝑐𝑝
(1 +

1

𝛽
) (2𝑢𝑥

2 + (𝑢𝑦 + 𝑣𝑥)
2

+ 2𝑣𝑦
2) 

+
16𝜎∗𝑇𝑜

3

3𝜌𝑐𝑝𝑘∗
𝑇𝑦𝑦 +

𝜎𝐵𝑜
2

𝜌(1 − 𝛼𝑡)
𝑢2 +

𝑄∗

𝜌𝑐𝑝

(𝑇 − 𝑇∞) +
𝐷𝑚𝑘𝑇

𝑐𝑠𝑐𝑝
𝐶𝑦𝑦 

(1.9) 

𝐶𝑡 + 𝑢𝐶𝑥 + 𝑣𝐶𝑦 = 𝐷𝑚(𝐶𝑥𝑥 + 𝐶𝑦𝑦) +
𝐷𝑚𝑘𝑇

𝑇𝑚
𝑇𝑦𝑦 −

𝑘𝑙

(1 − 𝛼𝑡)
(𝐶 − 𝐶∞) 

(1.10) 

 The highly non-linear unsteady coupled system of partial differential equations is reduced 

using similarity transformations. The reduced ODEs are then solved using Runga Kutta Shooting 

method (RK-SM) and bvp4c method. They validate their results by comparing them with results 

of Mustafa [6].The convergence of the results for RK shooting method and bvp4c method are 

compared unlike  Mustafa [6] model where the convergence is achieved by increasing the order of 

the equation . Afterwards, the effect of parameters i.e., Squeezing number, Casson fluid parameter, 

Hartmann number, Prandtl number, Schmidt number, Radiation parameter, Heat Source/sink 

number, Soret number and Dufour number on the flow field are plotted and their effect on heat 

and mass transfer are discussed. Like the previous model, they also studied the effect of these 

parameters on Nusselt number and Sherwood number to understand their physical aspects. 
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However, they obtained their solution through numerical method where these effects can only 

study in limited domain at limited points with limited accuracy which is restricted by processing 

cost and time i.e. If someone wants to investigate a larger domain, wants to increase the mesh size, 

or needs greater accuracy, the computing time and cost will rise. Further, these effects are not 

plotted as flow field or contours to fully understand their effects. 

 In his findings, he confirmed that the velocity profile is inversely related to the Squeezing 

number and temperature is also inversely related to Squeezing number Casson Fluid parameter 

and radiation parameter are also inverse function of temperature field. Dufour number is an 

increasing function of temperature. Soret number and Schmidt number are inversely related to 

Concentration field. 

1.3 SCOPE & MOTIVATION: 

Having the comprehensive literature survey, it is noted that the numerical methods provide 

results on discrete points and accuracy increases with increase in these discrete points, however, 

high computation cost and time restrict the results to finite number of points and on the other hand, 

analytical method like HAM can provide analytic solutions in the domain of interest without 

increasing the computation cost and time. Further, it claims to provide better understanding of the 

flow dynamics. So, it is worthwhile to understand the flow field, heat and mass transfer in the non-

Newtonian flow of Casson fluid under effect of various forces using Homotopy Analysis method. 

For comparison the same problem is solved using the Finite Difference Method along with the 

previously presented published results to assess the accuracy, processing time and memory 

allocation. Additionally, a thorough explanation of the relationship between the flow control 

parameters for Casson fluid is provided, and to fully comprehend how the fluid would behave 

under the given conditions, flow field, temperature, and concentration contours must also be 

displayed. 
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CHAPTER 2. FLOW AND HEAT TRANSFER MODEL 

In this section, the governing equations of Casson fluid between the parallel plates are 

shown along with the boundary conditions. These PDEs are transformed into ODEs using 

similarity transformation and the resulting ODEs are solved using Homotopy analysis method. 

Finally, the convergence control parameters are plotted. These parameters are used to determine 

at what value of these parameters the results are converging. 

2.1 GOVERNING EQUATION 

The analysis presented in this study considers unsteady two-dimensional flow model of 

MHD squeezing, viscous and incompressible Casson fluid between two parallel plates under the 

influence of radiation and chemical reaction process studied in [13] .Symmetrical flow is assumed 

across the center of the two plates to reduce the computation time. The equations of continuity, 

momentum, energy and concentration for this model are written as 

 

𝑢𝑥 + 𝑢𝑦 = 0 (2.1) 

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑣𝑢𝑦 = −
1

𝜌
𝑃𝑥 + 𝑣 (1 +

1

𝛽
) (2𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑣𝑦𝑥) −

𝜎𝐵𝑜
2

𝜌(1 − 𝛼𝑡)
𝑢  

(2.2) 

𝑣𝑡 + 𝑢𝑣𝑥 + 𝑣𝑣𝑦 = −
1

𝜌
𝑃𝑦 + 𝑣 (1 +

1

𝛽
) (2𝑣𝑥𝑥 + 𝑣𝑦𝑦 + 𝑢𝑦𝑥) 

(2.3) 

𝑇𝑡 + 𝑢𝑇𝑥 + 𝑣𝑇𝑦 =
𝑘

𝜌𝑐𝑝
(𝑇𝑥𝑥 + 𝑇𝑦𝑦) +

𝜇

𝜌𝑐𝑝
(1 +

1

𝛽
) (2𝑢𝑥

2 + (𝑢𝑦 + 𝑣𝑥)
2

+ 2𝑣𝑦
2) 

+
16𝜎∗𝑇𝑜

3

3𝜌𝑐𝑝𝑘∗
𝑇𝑦𝑦 +

𝜎𝐵𝑜
2

𝜌(1 − 𝛼𝑡)
𝑢2 +

𝑄∗

𝜌𝑐𝑝

(𝑇 − 𝑇∞) +
𝐷𝑚𝑘𝑇

𝑐𝑠𝑐𝑝
𝐶𝑦𝑦 

(2.4) 

𝐶𝑡 + 𝑢𝐶𝑥 + 𝑣𝐶𝑦 = 𝐷𝑚(𝐶𝑥𝑥 + 𝐶𝑦𝑦) +
𝐷𝑚𝑘𝑇

𝑇𝑚
𝑇𝑦𝑦 −

𝑘𝑙

(1 − 𝛼𝑡)
(𝐶 − 𝐶∞) 

(2.5) 

 The following are the boundary conditions for Casson fluid squeezing flow. 

𝑦 = h(t) →   𝑢 = 0,   𝑣 = 𝑣𝑤 =
𝑑ℎ

𝑑𝑡
,   𝑇 = 𝑇𝑤, 𝐶 = 𝐶𝑤         (2.6) 

𝑦 = 0 →   𝑢𝑦 = 𝑇𝑦 = 𝐶𝑦 = 0,   𝑣 = 0          (2.7) 

 The effect of chemical reaction is included in the concentration equation while the effects 

of joule dissipation and radiation are present in the energy equation. 
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2.2 CASSON FLUID FLOW BETWEEN PARALLEL PLATES: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Casson Fluid Flow Between Parallel Plates 

Figure 1 describes the flow configuration and geometry of the Casson fluid flow in which 

distance between the plates is expressed in direction of y and represented as ±h(t) = l(1 − αt)
1

2 

where l is the initial position of plates at t = 0 and α shows the speed and direction of the plates 

i.e.  α > 0 indicates that the plates are squeezing and α < 0 shows that they are moving away. 

Further, the applicable boundary conditions are shown in (2.6) and (2.7) 

𝑦 = h(t) →   𝑢 = 0,   𝑣 = 𝑣𝑤 =
𝑑ℎ

𝑑𝑡
,   𝑇 = 𝑇𝑤, 𝐶 = 𝐶𝑤         (2.6) 

𝑦 = 0 →   𝑢𝑦 = 𝑇𝑦 = 𝐶𝑦 = 0,   𝑣 = 0          (2.7) 

 

2.3 CONSTRUCTION OF SIMILARITY TRANSFORMATIONS 

There is no current analytical and direct method to solve the equation (2.1), (2.2), (2.3), 

(2.4) and (2.5) with boundary conditions (2.6) and (2.7) because these equations are coupled and 

highly nonlinear in nature. Further, Homotopy Analysis Method requires ordinary differential 

equations as an input to provide the analytical solution. Therefore, Following Similarity 

transformations are used to convert these complex equations into non-linear ODEs [12, 14, 15] 

y 

x 

y=h(t) 

y=-h(t) 

±ℎ(𝑡) = 𝑙(1 − 𝛼𝑡)
1

2 

𝐵𝑜(1 − 𝛼𝑡)−
1

2 

Casson Fluid 
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𝑢 = (
𝛼𝑥

2(1 − 𝛼𝑥)
) 𝑓′(𝜂), 𝑣 = (

−𝛼𝑙

2√1 − 𝛼𝑥
) 𝑓(𝜂) 

 

𝜃(𝜂) =
𝑇 − 𝑇∞

𝑇𝑤 − 𝑇∞
, 𝜙(𝜂) =

𝐶 − 𝐶∞

𝐶𝑤 − 𝐶∞
 

(2.8) 

 

Where   𝜂 =
𝒚

𝒍√𝟏−𝜶𝒙
 

By using the above similarity transformation on equation (2.1), (2.2), (2.3), (2.4) and (2.5) 

the following non dimensional equations are obtained: 

(1 +
1

𝛽
) 𝑓′′′′ − 𝑆(𝜂𝑓′′′ + 3𝑓′′ + 𝑓′𝑓′′ − 𝑓𝑓′′′) − 𝐻𝑎2𝑓′′ = 0 

(2.9) 

(1 +
4

3
) 𝑅𝜃′′ − Pr 𝑆 (𝑓𝜃′ − 𝜂𝜃′ + 𝑄𝜃) + Pr 𝐸𝑐 ((1 +

1

𝛽
) (𝑓′′2 + 4𝛿2𝑓′2) + 𝐻𝑎2𝑓′2) 

+𝐷𝑢𝑃𝑟𝜙′′ = 0 (2.10) 

𝜙′′ + 𝑆𝑐𝑆(𝑓𝜙′ − 𝜂𝜙′) − 𝑆𝑐𝐾𝑟𝜙 + 𝑆𝑟𝑆𝑐𝜃′′ = 0 (2.11) 

Similarly, the boundary conditions (2.6) and (2.7) converted into the following form: 

𝜂 = 0 →   𝑓 = 0,  𝑓′′ = 0, 𝜃 = 0, ϕ = 0 
(2.12) 

𝜂 = 1 →   𝑓 = 1,  𝑓′ = 0, 𝜃 = 1, ϕ = 1 

In equation (2.9), (2.10), (2.11) and (2.12), prime represents the derivative with respect to 

similarity variable 𝜂 and the dimensionless numbers shown in the these equations are presented in 

the following table.  

𝑆 =
𝛼𝑙2

2𝑣
  

(𝑆𝑞𝑢𝑒𝑒𝑧𝑖𝑛𝑔 𝑁𝑢𝑚𝑏𝑒𝑟) 

𝑅 =
4𝜎∗𝑇∞

3

𝑘𝑘∗
 

(𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟) 

𝐻𝑎 = 𝐵𝑜𝑙√
𝜎

𝜇
   

(𝐻𝑎𝑟𝑡𝑚𝑎𝑛𝑛 𝑁𝑢𝑚𝑏𝑒𝑟) 

𝐷𝑢 =
𝐷𝑚𝑘𝑡(𝐶 − 𝐶∞)

𝑐𝑝𝑐𝑠𝑣(𝑇 − 𝑇∞)
  

(𝐷𝑢𝑓𝑜𝑢𝑟 𝑁𝑢𝑚𝑏𝑒𝑟) 

𝑆𝑟 =
𝐷𝑚𝑘𝑡(𝑇 − 𝑇∞)

𝑇𝑚𝑣(𝐶 − 𝐶∞)
  

(𝑆𝑜𝑟𝑒𝑡 𝑁𝑢𝑚𝑏𝑒𝑟) 

𝑆𝑐 =
𝑣

𝐷𝑚
 

(𝑆𝑐ℎ𝑚𝑖𝑑𝑡 𝑁𝑢𝑚𝑏𝑒𝑟) 
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𝑃𝑟 =
𝜇𝑐𝑝

𝑘
 

(𝑃𝑟𝑎𝑛𝑑𝑡𝑙 𝑁𝑢𝑚𝑏𝑒𝑟),   

𝛿 =
ℎ

𝑥
  

(𝐷𝑒𝑙𝑡𝑎) 

𝐾𝑟 =
𝑙2𝑘1

𝑣
 

(𝐶ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟) 

𝑄 =
2𝑄∗(1 − 𝛼𝑡)

𝛼𝜌𝐶𝑝
 

(ℎ𝑒𝑎𝑡 𝑠𝑜𝑢𝑟𝑐𝑒/𝑆𝑖𝑛𝑘 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟) 

𝐸𝑐 =
𝛼2𝑥2

4𝐶𝑝(𝑇 − 𝑇∞)(1 − 𝛼𝑡)2
 

(𝐸𝑐𝑘𝑒𝑟𝑡 𝑁𝑢𝑚𝑏𝑒𝑟) 

2.4 SOLUTION APPROACH 

 The equations (2.9), (2.10), (2.11) and (2.12) obtained from similarity transformation are 

analytically solved using HAM.  

2.4.1 Homotopy Analysis Method (HAM): 

In this method, we assume the solution can be expressed by: 

(𝜂𝑚|𝑚 = 0,1,2, … . ) 

 In this step we assume the initial value of 𝑓𝑜, 𝜃𝑜and 𝜙𝑜 along with linear operators: 
 

𝑓0(𝜂) =
1

2
(3𝜂 + 𝜂3),         𝜃0(𝜂) = 1,         𝜙0(𝜂) = 1 . 

 

𝐿𝑓(𝑓) =
𝑑4𝑓

𝑑𝜂4
, 𝐿𝜃(𝜃) =

𝑑2𝜃

𝑑𝜂2
, 𝐿𝜙(𝜙) =

𝑑2𝜙

𝑑𝜂2
 

(2.13) 

 

 

The initial values mentioned above have been found out through the following: 

𝐿𝑓[𝐶1 + 𝐶2𝜂 + 𝐶3𝜂2 + 𝐶4𝜂3] = 0 

 (2.14) 

𝐿𝜃[𝐶5 + 𝐶6𝜂] = 0, 𝐿𝜙[𝐶7 + 𝐶8𝜂] = 0 

We construct the zeroth order deformation equation which can be written as: 

(1 − 𝑞)𝐿𝑓[𝐹(𝜂, 𝑞) − 𝑓0(𝜂)] = 𝑞ℎ𝑓𝐻𝑓𝑁𝑓[𝐹(𝜂, 𝑞)] 

 

(2.15) 
(1 − 𝑞)𝐿𝜃[θ(𝜂, 𝑞) − 𝜃0(𝜂)] = 𝑞ℎ𝜃𝐻𝜃𝑁𝜃[θ(𝜂, 𝑞)] 
 
(1 − 𝑞)𝐿ϕ[ϕ(𝜂, 𝑞) − 𝜙0(𝜂)] = 𝑞ℎϕ𝐻ϕ𝑁ϕ[𝜙(𝜂, 𝑞)] 
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𝐹(0, 𝑞) = 0, 𝐹(1, 𝑞) = 1, 𝐹′′(0, 𝑞) = 0, 𝐹′(1, 𝑞) = 0 

 

θ(0, 𝑞) = 0, θ(1, 𝑞) = 1, ϕ(0, 𝑞) = 0, ϕ(1, 𝑞) = 1 

 

In above equation, 𝐻𝑓 , 𝐻𝜃 and 𝐻ϕ are the auxiliary functions that are normally put equal to 

1. Further, ℎ𝑓 , ℎ𝜃 and ℎϕare non-zero auxiliary parameters and they must carry identical signs for 

a convergent solution. Also, q is an embedding parameter. For q=0 and q=1 

𝐹(𝜂, 0) = 𝑓0(𝜂), 𝐹(𝜂, 1) = 𝑓(𝜂) 

(2.16) θ(𝜂, 0) = 𝜃0(𝜂), θ(𝜂, 1) = 𝜃(𝜂) 

ϕ(𝜂, 0) = 𝜙0(𝜂), ϕ(𝜂, 1) = 𝜙(𝜂) 

 

The second step is to construct the m𝑡ℎ-order deformation equations and integrate them to 

find the solution that are built on the initial functions (2.16). In [4], one finds a detailed procedure 

to construct the m𝑡ℎ-order deformation equations which, for example, for ODEs in case 1(a) of 

Table 1 are written as 

𝐿𝑓[𝑓𝑚(𝜂) − 𝑥𝑚𝑓𝑚−1(𝜂)] = ℎ𝑓𝐻𝑓(𝜂)𝑅𝑓,𝑚(𝜂),   

𝐿𝜃[𝜃𝑚(𝜂) − 𝑥𝑚𝜃𝑚−1(𝜂)] = ℎ𝜃𝐻𝜃(𝜂)𝑅𝜃,𝑚(𝜂),  
(2.17) 

𝐿𝜙[𝜙𝑚(𝜂) − 𝑥𝑚𝜙𝑚−1(𝜂)] = ℎ𝜙𝐻𝜙(𝜂)𝑅𝜙,𝑚(𝜂),  

 

where, 

𝑥𝑚 = {
1, 𝑚 > 1
0, 𝑚 = 1

  (2.18) 

m𝑡ℎ-order deformation equations for the given equations are: 
 

𝑅𝑓,𝑚(𝜂) = (1 +
1

𝛽
) 𝑓𝑚−1

′′′′ − 𝑆(𝜂𝑓𝑚−1
′′′ + 3𝑓𝑚−1

′′ ) + ∑ 𝑆(𝑓𝑚−1−𝑘
′ 𝑓𝑘

′′ − 𝑓𝑚−1−𝑘𝑓𝑘
′′′)

𝑚−1

𝑘=0

 

−𝐻𝑎2𝑓𝑚−1
′′  

(2.19) 

 

𝑅𝜃,𝑚(𝜂) = (1 +
4

3
𝑅) 𝜃𝑚−1

′′ − 𝑃𝑟𝑆(𝜂𝜃𝑚−1
′ − 𝑄𝜃𝑚−1

′ ) + 𝐷𝑢𝑃𝑟𝜙𝑚−1
′′  

+ ∑ (𝑃𝑟𝑆𝑓𝑚−1−𝑘𝜃𝑘
′ + 𝑃𝑟𝐸𝑐((1 +

1

𝛽
)(𝑓𝑚−1−𝑘

′′ 𝑓𝑘
′′ + 4𝛿2𝑓𝑚−1−𝑘

′ 𝑓𝑘
′)

𝑚−1

𝑘=0

− 𝐻𝑎2𝑓𝑚−1−𝑘
′ 𝑓𝑘

′) 

𝑅𝜙,𝑚(𝜂) = 𝜙𝑚−1
′′ − 𝑆𝑐𝑆𝜂𝜙𝑚−1

′ − 𝑆𝑐𝐾𝑟𝜙𝑚−1 + 𝑆𝑟𝑆𝑐𝜃𝑚−1
′′ + ∑ 𝑆𝑐𝑆𝑓𝑚−1−𝑘𝜙𝑘

′

𝑚−1

𝑘=0

 

 

Similarly, the boundary conditions become, 
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𝑓𝑚(0) = 0, 𝑓𝑚(1) = 1, 𝑓𝑚
′′(0) = 0, 𝑓𝑚

′ (1) = 0  

(2.20) 𝜃𝑚(1) = 1, 𝜃𝑚
′ (0) = 0, 𝜙𝑚(1) = 1, 𝜙𝑚

′ (0) = 0 

 

Increasing the order of HAM can enhance the precision of such approximations. The 𝑚𝑡ℎ-

order approximation of a function is obtained by adding up all the approximated values of that 

function, represented as (𝑓0 + 𝑓1 + 𝑓2 + ⋯ + 𝑓𝑚). The same method can be employed for the 

solutions of all cases written in Table 1. 

2.4.2 Convergence of Solution 

The system of equation (2.17) contains non-zero auxiliary parameters ℎ𝑓 , ℎ𝜃 and ℎ𝜙 also 

known as convergence control parameters. These parameters are determined by plotting the 

equation for 𝑓, 𝜃 and 𝜙 as function of ℎ𝑓 , ℎ𝜃 and ℎ𝜙 respectively at particular 𝜂 and same plots 

are shown in figure 2 - 12. Each plot in figure 2 - 12 represents h-curves for each case of study for 

particular dimensionless numbers. By observing these graphs, it is evident that valid range of these 

parameters vary from case to case and can easily be extracted from graph. Further examining the 

behavior of these parameters by using 3D plot between 𝑓, 𝜃 and 𝜙 as functions of ℎ𝑓 , ℎ𝜃 and ℎ𝜙,  

respectively, by varying 𝜂 using 15𝑡ℎ −order HAM which lead to the fact that this system of 

equations converged at ℎ𝑓 = ℎ𝜃 = ℎ𝜙 = −0.1~ − 0.8 depending on case under study. 

 

Figure 2: h-curve for Influence of β at S=-4, Du=R=Q=Ec=Kr=0.1, Sr=0.5, 
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Pr=0.7, Sc=0.7, δ =1.2, Ha=0.1, β=0.17 

 

Figure 3: h-curve for Influence of Du at S=0.4, Du=Sr=Ha=Q=0.5, Kr=1.6, 

Sc=0.7, δ=0.01, R= Ec=0.1, Pr=1.2, β=0.2 

 

Figure 4: h-curve for Ec at S=0.5, β =0.1, Du=0.5, Sr=0.5, Ha=0.5, Q=0.1, 

Kr=0.1, Pr=0.7, Sc=0.7, δ =0.1, R=0.1, Ec=0.5 
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Figure 5: h-curve for Pr at S=0.5, β=0.1, Du=0.5, Sr=0.5, Ha=0.5, Q=0.1, 

Kr=0.1, Sc=0.7, δ=0.1, R=0.1, Ec=0.1, Pr=1.3 

 

Figure 6:h-curve for Influence of Ha at S=0.1, β=2.0, Du=0.5, Sr=0.5, R=0.1, 

Q=0.1, Ec=0.1, Kr=0.1, Pr=0.7, Sc=0.7, δ=0.5, Ha=2 
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Figure 7: h-curve for Influence of Q at S=0.4, β=0.2, Du=0.5, Sr=0.5, Ha=0.1, 

Q=0.1, Ec=1.0, Kr=0.1, Pr=0.7, Sc=0.7, δ=0.1, R=0.2 

 

Figure 8: h-curve for Influence of at Kr S=0.1, β=0.5, Du=0.5, Sr=0.5, Ha=0.1, 

Q=0.1, Kr=0.3, Sc=0.7, δ=0.1, R=0.1, Ec=0.1, Pr=0.7 
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Figure 9: h-curve for Influence of R at S=0.4, β=0.2, Du=0.5, Sr=0.5, Ha=0.1, 

Q=0.1, Ec=1.0, Kr=0.1, Pr=0.7, Sc=0.7, δ=0.1, R=0.2 

 

Figure 10: h-curve for Influence of Sc at S=0.1, β=0.5, Du=0.5, Sr=0.5, Ha=0.1, 

Q=0.1, Kr=0.1, Sc=1.4, δ=0.1, R=0.1, Ec=0.1, Pr=0.7 
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Figure 11: h-curve for Influence of S at β=0.8, Du=0.5, Sr=0.1, Ha=0.1, R=0.1, 

Ec=0.1, Kr=0.1, Pr=0.1, Sc=0.7, δ=5, Q=0.1, S=1.5 

 

Figure 12: h-curve for Influence of Sr at S=0.1, β=0.5, Du=0.5, Sr=0.5, Ha=0.1, 

Q=0.1, Kr=0.1, Sc=0.5, δ=0.1, R=0.1, Ec=0.1, Pr=0.7 
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CHAPTER 3: VALIDATION AND COMPARISON  

In this section, the results obtained from HAM are compared with previously published 

results in order to verify them, Further the effectiveness of HAM are investigated by comparing it 

with the results and performance of Finite difference scheme (Backward). 

3.1 VALIDATION OF RESULTS OF HAM: 

In this section, the systems of non-linear ODEs mentioned in equation (2.9), (2.10) and 

(2.11) that are subjected to boundary conditions (2.12) are solved using various order of 

approximation of HAM and results are shown in Table 1. This table indicates the convergence of 

analytical solution with an increase in the order of approximation, with the convergent results at 

15𝑡ℎ-order of approximation with a precision up to 10-5.  

 

Additionally, the same system of ODEs is solved using the Forward Difference Method, and 

the results are presented in Table 2. Also, the HAM and FDM results are validated by comparing 

them with those of the RK-shooting method and the bvp4c method derived by Naduvinamani [13]. 

The comparison of the HAM and FDM results with the shooting method and the bvp4c method 

demonstrates that the results are consistent. These findings illustrate the effectiveness of HAM 

analytical approach to effectively tackling complex non-linear problems [6]. For all the analytic 

and approximate solutions deduced using HAM and FDM respectively MAPLE codes are used 

here. 

 

 

Table 1  Momentum, heat and mass transports with increasing order of approximation at Ha = Kr = 

S = δ = 0.5, Ec = Q = R = 0.3, Pr= Sc=1.5, β=0.3 

Order  f '''(1) 𝜃 '(1) 𝜙'(1) Order  f'''(1) 𝜃 '(1) 𝜙'(1) 

5 -3.10687 -6.06438 0.56129 12 -3.09135 -6.20756 0.58256 

8 -3.08768 -6.19218 0.57944 15 -3.09283 -6.20879 0.58285 

9 -3.09577 -6.20225 0.58098 20 -3.09283 -6.20879 0.58285 

10 -3.09016 -6.20461 0.58183 30 -3.09283 -6.20879 0.58285 
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Table 2  Momentum, heat and mass transports on different S at Ha = R = Q = Du = Sr = 0, Ec = Kr = Pr= Sc=1, β=∞, δ = 0.5 

S 
−𝑓′′(1)  −𝜃′(1)  −ϕ′(1) 

RK-SM bvp4c HAM FDM 

 

RK-SM bvp4c HAM FDM 

 

RK-SM bvp4c HAM FDM 

-1.0 2.170090 2.170090 2.170090 2.170090 3.319899 3.319899 3.319899 3.319899 0.8045587 0.8045587 0.8045587 0.8045587 

-0.5 2.614038 2.614038 2.614038 2.614038 3.129491 3.129491 3.129491 3.129491 0.7814023 0.7814023 0.7814023 0.7814023 

0.01 3.007134 3.007134 3.007134 3.007134 3.047092 3.047092 3.047092 3.047092 0.7612252 0.7612252 0.7612252 0.7612252 

0.5 3.336449 3.336449 3.336449 3.336449 3.026324 3.026324 3.026324 3.026324 0.7442243 0.7442243 0.7442243 0.7442243 

2.0 4.167389 4.167389 4.167389 4.167389 3.118551 3.118551 3.118551 3.118551 0.7018132 0.7018132 0.7018132 0.7018132 

Table 3 Momentum, heat and mass transports at Ha = Kr = S = δ = 0.5, Ec = Q = R = 0.3, Pr= Sc=1.5, β=0.3 

η 
𝑓(η) 

 

𝜃(η) 

 

ϕ(η) 

RK-SM bvp4c HAM FDM RK-SM bvp4c HAM FDM RK-SM bvp4c HAM FDM 

0.0 0 0 0 0 3.4065 3.4065 3.4039 3.4039 0.7222 0.7222 0.7224 0.7224 

0.1 0.1483 0.1483 0.1483 0.1483 3.3874 3.3874 3.3849 3.3849 0.7249 0.7249 0.7251 0.7251 

0.2 0.2938 0.2938 0.2938 0.2938 3.3297 3.3297 3.3273 3.3273 0.7330 0.7330 0.7332 0.7332 

0.3 0.4335 0.4335 0.4336 0.4336 3.2323 3.2323 3.2300 3.2300 0.7466 0.7466 0.7468 0.7467 

0.4 0.5646 0.5646 0.5647 0.5647 3.0928 3.0928 3.0907 3.0907 0.7656 0.7656 0.7657 0.7657 

0.5 0.6841 0.6841 0.6842 0.6842 2.9076 2.9076 2.9058 2.9058 0.7900 0.7900 0.7902 0.7902 

0.6 0.7891 0.7891 0.7891 0.7892 2.6713 2.6713 2.6697 2.6697 0.8201 0.8201 0.8202 0.8202 

0.7 0.8763 0.8763 0.8764 0.8765 2.3758 2.3758 2.3746 2.3747 0.8558 0.8558 0.8559 0.8559 

0.8 0.9427 0.9427 0.9428 0.9429 2.0101 2.0101 2.0093 2.0093 0.8974 0.8974 0.8975 0.8975 

0.9 0.9851 0.9851 0.9851 0.9851 1.5585 1.5585 1.5581 1.5581 0.9453 0.9453 0.9454 0.9454 

1.0 1 1 1 1 1 1 1 1 1 1 1 1 
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3.2 COMPARISON OF RESULTS OF HAM WITH FINITE DIFFERENCE 

METHOD: 

Nowadays, the effectiveness of method either analytical or numerical are not based on 

accuracy of the results of its solution but also the computational cost and time it consumed to 

achieve these solutions or in order words, is it feasible to achieve the required solution against its 

computational cost and time. In view of above, the computational cost of HAM is calculated and 

compared with the computational cost of finite difference scheme which is standard scheme used 

to solve differential problem. Table 4 represents the CPU time and memory of Numerical solution 

through Finite difference scheme (Backward difference) in which the solution is converging up to 

precision of 10-5 at 200 - 400 iterations depending upon different cases And Table 5 indicates the 

same data for the Homotopy Analysis method where the solution is converging at 10 to 15. By 

comparing both tables, it can be concluded that the CPU time and memory used for solution of 

HAM is definitely better than Numerical method of Finite difference scheme. 

Table 4 CPU Time and Memory for Finite Difference Solution 

S.No. Number of Nodes CPU Time Memory Used 

1 10 0.032 sec 1.765 MB 

2 50 2.327 sec 111.28 MB 

3 100 17.718 sec  826 MB 

4 200 453.40 sec 20287 MB 

5 400 23435.33 sec 907274 MB 

 

Table 5 CPU Time and Memory for Homotopy Analysis Method 

S.No. Order of HAM CPU Time Memory Used 

1 5 4.5 60.18 

2 8 36.578 168 

3 9 79.547 208.18 

4 10 187.675 240 

5 12 675 330 

6 15 5364.297 437.835 
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CHAPTER 4: RESULTS 

4.1 EFFECT OF FLOW PARAMETERS: 

The influence of all the physical control parameters namely 𝐻𝑎, 𝐾𝑟, 𝑆, 𝛿, 𝐸𝑐, 𝑄, 𝑅, 𝑃𝑟, 𝑆𝑐, 𝛽 

, 𝐷𝑢 and 𝑆𝑟 on flow is analyzed here in order to develop a physical understanding of flow, heat, 

and mass transfer in regard to the present problem. All the computations are performed on MAPLE 

to determine the impact of each control parameter on flow rates, temperature, and concentration. 

The same data is presented graphically as well to help better understand the dynamics of the flow. 

4.1.1 Effect of Casson Fluid Parameter (β): 

In this subsection, the effect of Casson Fluid Parameter (β) on flow field, temperature and 

concentration is studied. The flow, temperature and concentration variables are plotted by varying 

Casson fluid parameter (β) using HAM and same is illustrated in Figure Figure 13, Figure 14, 

Figure 15 andFigure 16. Same results can be achieved using FDM. These results are in complete 

agreement with the results shown in Naduvinamani[13]. From these graphs it is evident that the 

slope of normal component of velocity increases with increasing Casson fluid parameter. This is 

caused by the reduced viscosity and the moving plates can transport its momentum more 

effectively than at lower values of Casson fluid parameter. Similarly, due to less resistance of the 

fluid and better momentum transport of the fluid the axial velocity also increases. 

Moreover, the 𝜃 profile of the flow field decreases with increasing β as shown in Figure 

15. However, the Figure 16 indicates that concentration field 𝜙 shows increment with increasing 

β. 
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Figure 13: Effect of β on 𝑓(𝜂) at S=-4, Sr=0.5, R=0.1, Q=0.1, Ec=0.1, Kr=0.1, 

Pr=0.7, Sc=0.7, δ =1.2, Ha=0.1, Du=0.1 

 

Figure 14: Effect of β on 𝑓’(𝜂) at S=-4, Sr=0.5, R=0.1, Q=0.1, Ec=0.1, Kr=0.1, 

Pr=0.7, Sc=0.7, δ =1.2, Ha=0.1, Du=0.1 
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Figure 15: Effect of β on 𝜃(𝜂) at S=-4, Sr=0.5, R=0.1, Q=0.1, Ec=0.1, Kr=0.1, 

Pr=0.7, Sc=0.7, δ =1.2, Ha=0.1, Du=0.1 

 

Figure 16: Effect of β on 𝜙(𝜂) at S=-4, Sr=0.5, R=0.1, Q=0.1, Ec=0.1, Kr=0.1, 

Pr=0.7, Sc=0.7, δ =1.2, Ha=0.1, Du=0.1 
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The dimensionless values 𝜂, 𝑓(𝜂), 𝜃(𝜂) and 𝜙(𝜂) are converted back to the velocities, 

temperature and concentration using equation (2.8) to better understand the behavior of flow field, 

temperature and concentration contours. By observing the Figure 13 to Figure 19, it is clear that 

trends of the graph of dimensionless parameters and contours of physical parameters are the same. 

In Figure 17, the temperature contours are plotted using MAPLE at β = 0.17 and β = 0.9. Also, the 

temperature at the plates wall is taken to be 130 deg Celsius and distance between plates L is taken 

to be 4m. The positive gradient is observed for both cases as we approached the center of fluid and 

also, at lower value of β the gradient and overall value of temperature of fluid is increasing. In 

Figure 18, the concentration contours are plotted using MAPLE at β = 0.17 and β = 0.9. Also, the 

concentration at the plates wall is taken to be 20 mol/m3. The negative gradient is observed for 

both cases as we approached the center of fluid and also, at higher value of β the gradient and 

overall value of concentration of fluid is increasing slightly. Further, velocity field can be plotted 

by combining the values of 𝑓(𝜂) and 𝑓 ‘(𝜂) as mentioned in Figure 19. In this case, β has no 

prominent effect on velocity field. 

  

Figure 17: (a) Temperature contours at wall temperature of 130 deg C at β = 0.17 (b) Temperature contours at wall 

temperature of 130 deg C at β = 0.9 

 

Figure 18: (a) Concentration contours at concentration of 20 mol/m3 at β = 0.17 (b) Concentration contours at 

concentration of 20 mol/m3 at β = 0.9 
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Figure 19: (a) Velocity field/streamlines at β = 0.9 

4.1.2 Effect of Squeezing Number (S): 

The effect of varying squeezing number (S) on flow field, temperature and concentration 

and same is depicted in Figure 20, Figure 21,Figure 22 and Figure 23. These results are also taken 

out using HAM that are found to perfectly align the results of Naduvinamani[13]. Subsequently, 

the squeezing number represents the movement of plates that is positive squeezing number shows 

that plates are moving away from each other, and negative Squeezing number (S) represents the 

plates are moving toward each other. For negative squeezing number, normal velocity shows rapid 

increase in magnitude at expanse of axial velocity near wall or η>0.65 as shown in Figure 20. This 

is caused by the movement of plates towards each other which creates a localized pressure gradient 

due to relatively high pressure near plate surface. However, the axial velocity increases rapidly 

after η=0.65 at expanse of normal velocity due to the fluid moving out of the system or release 

into surrounding similarly as, for example, cream moves out when the two biscuit are press towards 

each other. The same is illustrated in Figure 21. Furthermore, these effects increase with decreasing 

squeezing number for Squeezing number (S) <0.  

 However, for positive squeezing number the effect on flow field is similar to the 

Casson fluid parameter. The normal velocity which is shown as function 𝑓(𝜂) indicates that the 

normal velocity is zero at middle of plates and has same velocity as plates on the near to surface 
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of plate for all the value of Squeezing number, but the gradient of the function become steeper 

with increase in squeezing number as illustrated in Figure 21. Moreover, axial velocity which is 

shown as function 𝑓 ′ is zero at plate surface and maximum in center of both plates. But the axial 

velocity increases with increasing Squeezing number for η>0.45 and decrease with increasing 

squeezing number for η<0.45. 

The effect of Squeezing number (S) on temperature profile is depicted in Figure 22. This 

figure indicates that the temperature profile increases drastically with decreasing Squeezing 

number S at S<0 and these increases become more gradual for S>0. 

Similarly, Figure 23 represents the effect of squeezing number on concentration field this 

figure shows that the concentration profile decreases rapidly with decreasing Squeezing number 

(S) at S<0 and these decreases become steadier for S>0. 

 

Figure 20: Influence of S on 𝑓(𝜂) at β=0.8, Du=0.5, Sr=0.1, Ha=0.1, R=0.1, 

Ec=0.1, Kr=0.1, Pr=0.1, Sc=0.7, δ=5, Q=0.1 
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Figure 21: Influence of S on 𝑓’(𝜂) at β=0.8, Du=0.5, Sr=0.1, Ha=0.1, R=0.1, 

Ec=0.1, Kr=0.1, Pr=0.1, Sc=0.7, δ=5, Q=0.1 

 

Figure 22: Influence of S on 𝜃(𝜂) at β=0.8, Du=0.5, Sr=0.1, Ha=0.1, R=0.1, 

Ec=0.1, Kr=0.1, Pr=0.1, Sc=0.7, δ=5, Q=0.1 
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Figure 23: Influence of S on 𝜙 (𝜂) at β=0.8, Du=0.5, Sr=0.1, Ha=0.1, R=0.1, 

Ec=0.1, Kr=0.1, Pr=0.1, Sc=0.7, δ=5, Q=0.1 

The dimensionless values 𝜂, 𝑓(𝜂), 𝜃(𝜂) and 𝜙(𝜂) are converted back to the velocities, 

temperature and concentration using the equation (2.8) to understand the behavior of flow field, 

temperature and concentration contours. By observing the Figure 20 to Figure 26, it is clear that 

trends of the graph of dimensionless parameters and contours of physical parameters are the same. 

In Figure 24, the temperature contours are plotted using MAPLE at S=0.5 and S=-7.5. Also, the 

temperature at the plates wall is taken to be 130 deg Celsius and distance between plates L is taken 

to be 4m. The positive gradient is observed for both cases as we approached the center of fluid and 

also, at lower value of S the gradient and overall value of temperature of fluid is increasing. In 

Figure 25, the concentration contours are plotted using MAPLE at S=0.5 and S=-7.5. Also, the 

concentration at the plates wall is taken to be 20 mol/m3. The negative gradient is observed for 

both cases as we approach the center of fluid and also, at the higher value of S the gradient and 

overall value of concentration of fluid is increasing. Further, velocity field can be plotted by 

combining the values of 𝑓(𝜂) and 𝑓 ′(𝜂) as mentioned in Figure 26. In this case, squeezing number 

S significantly affects the velocity field of the flow and reversing the flow at negative S. 
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Figure 24: (a) Temperature contours at wall temperature of 130 deg C at S = 0.5 (b) Temperature contours at wall 

temperature of 130 deg C at β = -7.5 

  

Figure 25: (a) Concentration contours at concentration of 20 mol/m3 at S=0.5 (b) Concentration contours at 

concentration of 20 mol/m3 at S=-7.5 

     

Figure 26: (a) Velocity field/streamlines at S = 0.5 (b) Velocity field/streamlines at S = 3.5 (c) Velocity 

field/streamlines at S = -7.5 

4.1.3 Effect of Hartmann Number (Ha): 

Impact of Hartmann Number on flow, temperature and concentration fields are shown in 

Figure 27 to Figure 30. Ha signifies the ratio of electromagnetic force to viscous force. So, with 

increasing Hartmann number, the slope of the normal velocity is flattened out, but the effect is not 

significant as shown in Figure 27. However, the increasing Ha Number is significant on axial 
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velocity as depicted in Figure 28. This is due to force generated by electromagnetic force in 

perpendicular direction or axial direction due to Lorentz Effect. Subsequently, the axial velocity 

has a direct relationship with Ha at 𝜂>0.45 and inverse relation with Ha when 𝜂<0.45. But Ha has 

no effect on axial velocities at 𝜂=0.45 

 The effect of Ha number on temperature field is illustrated in Figure 29 and it 

signifies that temperature field θ increases with increasing Hartmann Number due to increasing 

electromagnetic forces which dissipates more energy and heat to the fluid. 

Similarly, the effect of Ha on concentration field 𝜙 is depicted in Figure 30, however, the 

Hartmann number holds inverse relationship with Concentration field and concentration effect 

reduces with increasing Hartmann number. 

The dimensionless values 𝜂, 𝑓(𝜂), 𝜃(𝜂) and 𝜙(𝜂) are converted back to the velocities, 

temperature and concentration using the equation (2.8) to understand the behavior of flow field, 

temperature and concentration contours. By observing the Figure 27 to Figure 33, it is clear that 

trends of the graph of dimensionless parameters and contours of physical parameters are the same. 

In Figure 31, the temperature contours are plotted using MAPLE at Ha=0.5 and Ha=3.5. Also, the 

temperature at the plates wall is taken to be 130 deg Celsius and distance between plates L is taken. 

 

Figure 27: Effect of Ha on 𝑓(𝜂) at S=R=Q=Ec=Kr=0.1, Du=Sr=0.5, Pr=Sc=0.7, 

δ=0.5, β=2.0 
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Figure 28:Effect of Ha on 𝑓’(𝜂) at S=R=Q=Ec=Kr=0.1, Du=Sr=0.5, Pr=Sc=0.7, 

δ=0.5, β=2.0 

 

Figure 29: Effect of Ha on 𝜃(𝜂) at S=R=Q=Ec=Kr=0.1, Du=Sr=0.5, Pr=Sc=0.7, 

δ=0.5, β=2.0 
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Figure 30: Effect of Ha on 𝜙 (𝜂) at S=R=Q=Ec=Kr=0.1, Du=Sr=0.5, Pr=Sc=0.7, 

δ=0.5, β=2.0 

to be 4m. The positive gradient is observed for both cases as approached to the center of fluid and 

also, at higher value of Ha the gradient and overall value of temperature of fluid is increasing. In 

Figure 32, the concentration contours are plotted using MAPLE at Ha=0.5 and Ha=3.5. Also, the 

concentration at the plates wall is taken to be 20 mol/m3. The negative gradient is observed for 

both cases as approached to the center of fluid and also, at higher value of Ha, the overall value of 

concentration of fluid is decreasing. Further, velocity field can be plotted by combining the values 

of 𝑓(𝜂) and 𝑓 ′(𝜂) as mentioned in Figure 33. In this case, variation in the Hartmann number 

makes insignificant difference in velocity field. 

  

Figure 31: (a) Temperature contours at wall temperature of 130 deg C at Ha= 0.5 (b) Temperature contours at wall 

temperature of 130 deg C at Ha = 3.5 
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Figure 32: (a) Concentration contours at concentration of 20 mol/m3 at Ha=0.5 (b) Concentration contours at 

concentration of 20 mol/m3 at Ha=3.5 

 
Figure 33: (a) Velocity field/streamlines at Ha = 0.5  

4.1.4 Effect of Radiation Parameter (R): 

This section shows the effect of radiation parameter on flow temperature and concentration and 

same is illustrated in Figure 34 to Figure 35. The radiation parameter R specifies the effect of 

conduction heat transfer to thermal radiation transfer. The radiation parameter has no effect on 

velocity profiles of flow field. However, the temperature field decreases with increase of radiation 

parameters. This is because higher radiation parameter implies reduced conduction effect, and less 

heat is transferred to center of the fluid and same is illustrated in Figure 34. Subsequently, there is 

reduced mass transfer at higher radiation parameter which is clearly portrayed in Figure 35. This 

reduction is produced by the overall low temperature of fluid at higher radiation parameter. 
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Figure 34: Influence of R on 𝜃(𝜂) at S=0.1, Du=Sr=0.5, R=Q=Ec=Kr=0.1, 

Sc=Pr=0.7, δ=0.5, β=2.0 

 

Figure 35: Influence of R on 𝜃(𝜂) at S=0.1, Du=Sr=0.5, R=Q=Ec=Kr=0.1, 

Sc=Pr=0.7, δ=0.5, β=2.0 
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4.1.5 Effect of heat Source/Sink parameter (Q): 

The influence of heat generation or absorption parameter Q on flow behavior is illustrated 

in Figure 36 and Figure 37. Since, positive value of Q indicates the heat generation in the system 

while negative value represents heat absorption. Hence, the temperature profiles hold a direct 

relation with heat source/sink parameter and the temperature increases with increase in heat 

source/sink parameter because during heat generation the fluid has higher temperature and vice 

versa. Same behavior is clearly indicated in Figure 36. Consequently, the concentration field has 

inverse effect of change in source/sink parameter and the heat generation Q>0 in fluid decreases 

the concentration field and heat absorption Q<0 in fluid increases the concentration field and this 

effect is illustrated in Figure 37. While Q has no effect on velocity field of flow. 

4.1.6 Impact of Prandtl Number (Pr): 

The effect of Prandtl Number on temperature and concentration field is discussed in this 

section and same is shown in Figure 38 and Figure 39. Since, Prandtl number signifies the 

momentum diffusivity over thermal diffusivity and the higher Prandtl number indicates less 

effective heat conduction or smaller thermal boundary layer that is why the thermal gradient 

increases with increasing Prandtl number as illustrated in Figure 38. However, the concentration 

field reduces with an increase in the Prandtl number emphasizing the inverse relation among them 

that is highlighted in Figure 39. The overall temperature reduction is the cause of this reduced 

concentration field. While the Prandtl number has no significant effect on velocity field of flow.  

4.1.7 Effect of Eckert Number (Ec): 

This section underlines the effect of Eckert number on thermodynamics and concentration 

of flow field that is portrayed in Figure 40 and Figure 41 respectively. Eckert number is used to 

characterize the heat dissipation in flow field. A higher Eckert number means lower heat 

dissipation and higher temperature gradient. Figure 40 is pointing out the same behavior in which 

temperature profile increases with increase in Eckert number. Subsequently, the concentration 

field is declining with increasing Eckert number due to overall reduction in temperature of fluid 

and this behavior is shown in Figure 41. 

4.1.8 Impact of Dufour Number (Du): 

The effect of Dufour number on flow behavior is discussed in this section and same is 

illustrated in Figure 42 and Figure 44. Dufour number signifies the effect of concentration gradient 
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on the thermal influx in fluid and holds inverse relation with thermal influx. So, Dufour number 

hold inverse relation with heat transfer and therefore, it holds direct relation with temperature 

profile and temperature gradient and the same behavior is highlighted in Figure 42 where 

temperature gradient increases with increasing Dufour number. Since thermal flux seems to be 

varying with Dufour Number, therefore, the concentration field doesn’t have significant effect and 

the concentration field decreases slightly with increase in Du as shown in Figure 44. Furthermore, 

the velocity field seems to be independent of Du. 

4.1.9 Effect of Chemical Reaction Parameter (Kr): 

The effect of varying Chemical Reaction Parameter (Kr) on concentration and same is 

depicted in Figure 43. For Kr>0 or positive value, the increasing value of Kr is enhancing the 

concentration field. However, the inverse behavior is observed for Kr<0 where concentration field 

is diminishing with increasing value of Kr. This highlights that whether the reaction is constructive 

or destructive, both cases will increase the concentration gradient. Furthermore, Kr doesn’t 

produce considerable effect on temperature and velocity field. 

4.1.10 Effect of Schmidt number (Sc): 

Impact of Schmidt number (Sc) on flow, concentration fields is shown in Figure 45. Since, 

Sc represents the ratio of viscous diffusion to mass diffusion rate and hold inverse relation with 

the mass diffusion rate, therefore, the growing Schmidt number will decrease the concentration of 

the fluid cause by reduced mass diffusion rate. Further, it is pertinent to note that the field is a 

monotonically diminishing function of Sc. 

4.1.11 Effect of Soret Number (Sr): 

The effect of Soret number (Sr) on flow behavior is discussed in this section and same is 

illustrated in Figure 46 and Figure 47. Since, Soret Number (Sr) is inverse of Dufour Number (Du), 

and it implies the effect of temperature gradient on mass flux. The temperature field experiences 

no considerable effect of varying Sr and increases slightly with increasing of Soret Number as 

illustrated in Figure 46. Conversely, the concentration field experience significant effect of Soret 

number and decreases with increasing value of Sr because the Soret Number has inverse relation 

with mass transfer as mentioned in Figure 47. Furthermore, velocity field is independent of Soret 

number. 
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Figure 36: Influence of Q on 𝜃(𝜂) at S=0.4, β=0.2, Du=0.5, Sr=0.5, Ha=0.1, 

Ec=1.0, Kr=0.1, Pr=0.7, Sc=0.7, δ=0.1, R=0.2 

 

Figure 37: Influence of Q on 𝜙(𝜂) at S=0.4, β=0.2, Du=0.5, Sr=0.5, Ha=0.1, 

Ec=1.0, Kr=0.1, Pr=0.7, Sc=0.7, δ=0.1, R=0.25 
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Figure 38: Influence of Pr on 𝜃(𝜂) at S=0.5, β=0.1, Du=0.5, Sr=0.5, Ha=0.5, Q=0.1, 

Kr=0.1, Sc=0.7, δ=0.1, R=0.1, Ec=0.1 

 

Figure 39: Influence of Pr on 𝜙(𝜂) at S=0.5, β=0.1, Du=0.5, Sr=0.5, Ha=0.5, Q=0.1, 

Kr=0.1, Sc=0.7, δ=0.1, R=0.1, Ec=0.1 
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Figure 40: Influence of Ec on 𝜃(𝜂) at S=0.5, β =0.1, Du=0.5, Sr=0.5, Ha=0.5, Q=0.1, 

Kr=0.1, Pr=0.7, Sc=0.7, δ =0.1, R=0.1 

 
Figure 41: Influence of Ec on 𝜙(𝜂) at S=0.5, β =0.1, Du=0.5, Sr=0.5, Ha=0.5, Q=0.1, 

Kr=0.1, Pr=0.7, Sc=0.7, δ =0.1, R=0.1 
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Figure 42: Influence of Du on 𝜃(𝜂) at S=0.4, β=0.2, Sr=0.5, Ha=0.5, Q=0.5, 

Kr=1.6, Sc=0.7, δ=0.01, R=0.1, Ec=0.1, Pr=1.2 

 

Figure 43: Influence of Kr on 𝜙(𝜂) at S=0.1, β=0.5, Du=0.5, Sr=0.5, Ha=0.1, 

Q=0.1, Sc=0.7, δ=0.1, R=0.1, Ec=0.1, Pr=0.7 
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Figure 44: Influence of Du on 𝜙(𝜂) at S=0.4, β=0.2, Sr=0.5, Ha=0.5, Q=0.5, 

Kr=1.6, Sc=0.7, δ=0.01, R=0.1, Ec=0.1, Pr=1.2 

 

Figure 45: Influence of Sc on 𝜙(𝜂) at S=0.1, β=0.5, Du=0.5, Sr=0.5, Ha=0.1, 

Q=0.1, Kr=0.1, δ=0.1, R=0.1, Ec=0.1, Pr=0.7 



42 
 

 

Figure 46: Influence of Sr on 𝜃(𝜂) at S=0.1, β=0.5, Du=0.5, Ha=0.1, Q=0.1, 

Kr=0.1, Sc=0.5, δ=0.1, R=0.1, Ec=0.1, Pr=0.7 

 

Figure 47: Influence of Sr on 𝜙(𝜂) at S=0.1, β=0.5, Du=0.5, Ha=0.1, Q=0.1, 

Kr=0.1, Sc=0.5, δ=0.1, R=0.1, Ec=0.1, Pr=0.7 
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4.2 PHYSICAL AND ENGINEERING ASPECTS: 

In engineering sciences, the physical parameters like Skin-friction coefficients, Nusselt and 

Sherwood numbers are critical for momentum, heat transfer, and mass transfer coefficients. In this 

section, the behavior of Skin-friction coefficients, Nusselt and Sherwood numbers that are 

expressed as 

 𝐶𝑓 =
𝜏𝑤

𝜌𝑓𝑣𝑤
2

 (𝑆𝑘𝑖𝑛 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡), 

𝑁𝑢 =
𝑙𝑞𝑤

𝛼𝑓(𝑇𝑜 − 𝑇𝑤)
(𝑁𝑢𝑠𝑠𝑒𝑙𝑡 𝑁𝑢𝑚𝑏𝑒𝑟), 

 𝑆ℎ =
𝑙𝑞𝑠

𝐷𝑚(𝐶𝑜 − 𝐶𝑤)
  (𝑆ℎ𝑒𝑟𝑤𝑜𝑜𝑑 𝑁𝑢𝑚𝑏𝑒𝑟), 

(3.1) 

 are evaluated and presented. In above equations 𝜏𝑤, 𝑞𝑤 and 𝑞𝑠 are the skin friction, 

thermal and mass fluxes at surface of parallel plates and can be denoted by: 

𝜏𝑤 = 𝜇 (1 +
1

β
) [

𝜕𝑢

𝜕𝑦
]

𝑦=ℎ(𝑡)

 , 

𝑞𝑤 = 𝛼𝑓 (
𝜕𝑇

𝜕𝑦
−

16𝜎∗𝑇𝑤
2

3𝑘∗

𝜕𝑇

𝜕𝑦
)

𝑦=ℎ(𝑡)

, 

 𝑞𝑠 = 𝐷𝑚 (
𝜕𝐶

𝜕𝑦
 )

𝑦=ℎ(𝑡)

 

(3.2) 

  

Moreover, these physical parameters are converted to dimensionless form in order to 

incorporate them into the analytical solution and understand their behavior for the given 

application. In non-dimensionless form, these parameters can be expressed as: 

𝑙2

𝑥2(1 − 𝛼𝑡)
𝑅𝑒𝑥𝐶𝑓 = (1 +

1

β
) 𝑓 ′′(1) , 

√(1 − 𝛼𝑡) 𝑁𝑢 = − (1 +
4

3
𝑅) 𝜃 ′(1), 

 √(1 − 𝛼𝑡) 𝑆ℎ = −ϕ ′ (1) 

(3.3) 

  

The effect of control parameters on 𝑓 ′′(1), 𝜃 ′(1) and ϕ ′(1) are illustrated in Figure 48 

to Figure 50.In Figure 48,the effect of Squeezing number on momentum transport coefficient is 

shown in which it can be observed that 𝑓 ′′(1) increases with increase in S for S>0 resulting in 

reduction of momentum transport and this momentum transport is increasing for S<0. Figure 49 

highlights the effect of Hartmann number Ha on momentum transport which shows that for Ha>0, 
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the momentum transport decreases, and this behavior is reversed for Ha<0. Similarly, the Casson 

fluid parameter β increase the momentum transport by reducing 𝑓 ′′(1) as shown in Figure 50. 

This reduction is accelerated for β<4 and decay gradually as β increases. 

Figure 51 shows the heat transfer coefficient behavior by varying Dufour number Du and 

it is observed that Du increases the heat transfer coefficient. Similarly, the squeezing number S 

also increases the heat transfer coefficient as illustrated in Figure 52. However, the radiation 

parameter R decreases the heat transfer coefficient which is depicted in Figure 53. Furthermore, 

Figure 54 shows the behavior of increasing heat transfer in presence of heat source (Q>0) and 

decreases in presence of heat sink (Q<0). 

Mass transfer coefficient holds direct relation with squeezing number, Chemical reaction 

parameter which can be observed in Figure 55, Figure 56 and Figure 57 respectively. But Mass 

transfer coefficient is decreasing with increasing Soret Number as depicted in Figure 56. 

 

Figure 48: Effect of S on Momentum Transport Coefficient at β=2.5, Du=0.5, Sr=0.5, 

Ha=0.3, Q=0.2, Kr=0.2, Sc=0.7, δ=0.5, R=0.2, Ec=0.2, Pr=0.7 
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Figure 49: Effect of Ha on Momentum Transport Coefficient at β=2.5, Du=0.5, Sr=0.5, 

S=2.5, Q=0.2, Kr=0.2, Sc=0.7, δ=0.5, R=0.2, Ec=0.2, Pr=0.7 

 

Figure 50:  Effect of β on Momentum Transport Coefficient at β=2.5, Du=0.5, Sr=0.5, 

Ha=0.3, Q=0.2, Kr=0.2, Sc=0.7, δ=0.5, R=0.2, Ec=0.2, Pr=0.7 
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Figure 51: Effect of Du on Heat Transfer Coefficient at S=2.5, β=0.5, Sr=0.5, Ha=1.5, 

Q=0.6, Kr=0.2, δ=0.1, R=0.6, Ec=0.2, Pr=0.7, Sc=0.7 

 

Figure 52:  Effect of S on Heat Transfer Coefficient at Du=0.2, β=0.5, Sr=0.5, Ha=1.5, 

Q=0.3, Kr=0.2, δ=0.1, R=0.6, Ec=0.2, Pr=0.7, Sc=0.7 
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Figure 53: Effect of R on Heat Transfer Coefficient at S=2.5, β=0.5, Sr=0.5, Ha=1.5, 

Q=0.3, Kr=0.2, δ=0.1, Du=0.2, Ec=0.2, Pr=0.7, Sc=0.7 

 

Figure 54: Effect of Q on Heat Transfer Coefficient at Du=0.2, β=0.5, Sr=0.5, Ha=1.5, 

S=2.5, Kr=0.2, δ=0.1, R=0.6, Ec=0.2, Pr=0.7, Sc=0.7 
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Figure 55:  Effect of S on Mass Transfer Coefficient at Du=0.5, β=0.5, Sr=0.2, Ha=0.5, 

Kr=0.1, Sr=0.2, δ=0.5, R=0.2, Ec=0.2, Pr=0.7, Sc=0.7 

 

Figure 56:  Effect of Sr on Mass Transfer Coefficient at Du=0.5, β=0.5, Sr=0.2, Ha=0.5, 

S=2.5, Kr=0.1, δ=0.5, R=0.2, Ec=0.2, Pr=0.7, Sc=0.7 
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Figure 57:  Effect of Kr on Mass Transfer Coefficient at Du=0.5, β=0.5, Sr=0.2, Ha=0.5, 

S=2.5, Sr=0.2, δ=0.5, R=0.2, Ec=0.2, Pr=0.7, Sc=0.7 
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CHAPTER 4: CONCLUSION 

The behavior of Casson fluid between two parallel plates moving in transverse direction 

under the influence of electromagnetic, radiation and chemical reaction is investigated. The 

governing equation for Casson fluid is solved for given boundary conditions using similarity 

transformations, analytic (HAM) and approximate (FDM) solutions schemes. MAPLE is 

employed to deduce these solutions. Subsequently, these solutions are found in agreement with 

each other and with the existing results of Shooting method and bvp4c method. 

HAM is shown to provide better results as compared to those deduced using shooting 

method, bvp4c and FDM not only in terms of accuracy indeed it performs better with regards to 

computational time and cost. All the findings of this work based upon the variation in the physical 

parameters 𝐻𝑎, 𝐾𝑟, 𝑆, 𝛿, 𝐸𝑐, 𝑄, 𝑅, 𝑃𝑟, 𝑆𝑐, 𝛽, 𝐷𝑢 and 𝑆𝑟 are summarized in the following table. 

Table 6: Effect of Flow Parameters on Velocities, Temperature and Concentration 

S. No. Parameter Action Axial 

velocity 

Normal 

Velocity 

Temperature Concentration 

1 Casson 

Fluid 

Parameter 

Increasing Increasing 

slightly 

above eta 

=0.4  

Slope 

increasing 

slightly 

decreasing Increasing 

2 Positive 

Squeezing 

Number 

Increasing No 

significant 

change 

No 

significant 

change 

Slightly 

decreasing 

Slightly 

increasing 

3 Negative 

Squeezing 

Number 

decreasing 

to -∞ 

Reversing 

and 

increasing 

above eta 

=0.4 

Slope is 

increasing 

Increasing decreasing 

4 Hartmann 

Number 

Increasing Decreasing 

slightly 

above eta 

=0.4  

Slope is 

decreasing 

slightly 

Increasing decreasing 
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5 Radiation 

parameter 

Increasing No change No change Decreasing Increasing 

6 Heat 

Source/sink 

Parameter 

Increasing No change No change Increasing Decreasing 

7 Prandtl 

Number 

Increasing No change No change Increasing Decreasing 

8 Eckert 

Number 

Increasing No change No change Increasing Decreasing 

9 Dufour 

Number 

Increasing No change No change Increasing Decreasing 

slightly 

10 Chemical 

reaction 

parameter 

Increasing No change No change - Decrease  

11 Schmidt 

Number 

Increasing No Change No Change - Decreasing 

12 Soret 

Number 

Increasing No Change No Change Increasing 

slightly 

Decreasing 
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APPENDIX A: PROGRAMMING CODE 

Programming of HAM on MAPLE: 

 
>restart: with 

(PDEtools):declare(f(eta),theta(eta),phi(eta));Du:=0.5;Sr:=0.5;R

:=0.2;Ec:=0.2;Kr:=0.2;Pr:=0.7;Sc:=0.7;delta:=0.5;h[1]:=-

0.6;h[2]:=-0.6;h[3]:=-0.6;Q:=0.2; 

 

> for m from 1 to 15 do eq[m]:=(1+1/beta)*diff(f[m-

1](eta),eta,eta,eta,eta)-S*(eta*diff(f[m-

1](eta),eta,eta,eta)+3*diff(f[m-1](eta),eta,eta))-

sum(S*(diff(f[m-1-k](eta),eta)*diff(f[k](eta),eta,eta)-f[m-1-

k](eta)*diff(f[k](eta),eta,eta,eta)),k=0..m-1)-Ha^2*diff(f[m-

1](eta),eta,eta) end do: 

 

> for m from 1 to 15 do eqt[m]:=(1+4/3*R)*diff(theta[m-

1](eta),eta,eta)+Pr*S*(-eta*diff(theta[m-1](eta),eta)+Q*theta[m-

1](eta))+Du*Pr*diff(phi[m-1](eta),eta,eta)+sum(Pr*S*f[m-1-

k](eta)*diff(theta[k](eta),eta)+Pr*Ec*((1+1/beta)*(diff(f[m-1-

k](eta),eta,eta)*diff(f[k](eta),eta,eta)+4*delta^2*diff(f[m-1-

k](eta),eta)*diff(f[k](eta),eta))+Ha^2*diff(f[m-1-

k](eta),eta)*diff(f[k](eta),eta)),k=0..m-1) end do: 

 

> for m from 1 to 15 do eqp[m]: =diff(phi[m-1](eta),eta, eta)- 

Sc*S*eta*diff(phi[m-1] (eta),eta)-Sc*Kr*phi[m-

1](eta)+Sr*Sc*diff(theta[m-1](eta),eta,eta)+sum(Sc*S*f[m-1-

k](eta)*diff(phi[k](eta),eta),k=0..m-1) end do: 

 

> f[0](eta):=0.5*(3*eta-eta^3);theta[0](eta):=1;phi[0](eta):=1; 

sys[1]:=h[1]*(int(int(int(int(eq[1],eta),eta),eta),eta))+C[1][1]

+C[2][1]*eta+C[3][1]*eta^(2)+C[4][1]*eta^(3); 

f[0](eta):=0.5*(3*eta-eta^3);theta[0](eta):=1;phi[0](eta):=1; 

syst[1]:=h[2]*(int(int(eqt[1],eta),eta))+C[5][1]+C[6][1]*eta; 

f[0](eta):=0.5*(3*eta-eta^3);theta[0](eta):=1; 

phi[0](eta):=1;sysp[1]:=h[3]*(int(int(eqp[1],eta),eta))+C[7][1]+

C[8][1]*eta; 

subs(eta=0,sys[1])=0;C[1][1]:=rhs(%); 

simplify(subs(eta=0,diff(sys[1],eta,eta)))=0;C[3][1]:=rhs(%); 

ee1[1]:=simplify(subs(eta=1,sys[1]))=0; 

ee2[1]:=simplify(subs(eta=1,diff(sys[1],eta)))=0; 

3*ee1[1]-ee2[1]:simplify(%,size);solve(%,C[2][1]):C[2][1]:=(%); 

solve(ee1[1],C[4][1]):C[4][1]:=(%); 

subs(eta=0,diff(syst[1],eta))=0;C[6][1]:=solve(%,C[6][1]); 

subs(eta=1,syst[1])=0;C[5][1]:=solve(%,C[5][1]); 

subs(eta=0,diff(sysp[1],eta))=0;C[8][1]:=solve(%,C[8][1]); 

subs(eta=1,sysp[1])=0;C[7][1]:=solve(%,C[7][1]); 
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f[1](eta):=simplify(sys[1]);theta[1](eta):=simplify(syst[1]);phi

[1](eta):=simplify(sysp[1]); 

 

> for k from 2 to 10 do 

f[0](eta):=0.5*(3*eta-eta^3);theta[0](eta):=1;phi[0](eta):=1; 

sys[k]:=h[1]*(int(int(int(int(eq[k],eta),eta),eta),eta))+C[1][k]

+C[2][k]*eta+C[3][k]*eta^(2)+C[4][k]*eta^(3); 

f[0](eta):=0.5*(3*eta-eta^3);theta[0](eta):=1;phi[0](eta):=1; 

syst[k]:=h[2]*(int(int(eqt[k],eta),eta))+C[5][k]+C[6][k]*eta; 

f[0](eta):=0.5*(3*eta-eta^3);theta[0](eta):=1;phi[0](eta):=1; 

sysp[k]:=h[3]*(int(int(eqp[k],eta),eta))+C[7][k]+C[8][k]*eta; 

subs(eta=0,sys[k])=0;C[1][k]:=rhs(%); 

simplify(subs(eta=0,diff(sys[k],eta,eta)))=0;C[3][k]:=rhs(%); 

ee1[k]:=simplify(subs(eta=1,sys[k]))=0; 

ee2[k]:=simplify(subs(eta=1,diff(sys[k],eta)))=0; 

3*ee1[k]-ee2[k]:simplify(%,size);solve(%,C[2][k]):C[2][k]:=(%); 

solve(ee1[k],C[4][k]):C[4][k]:=(%); 

subs(eta=0,diff(syst[k],eta))=0:C[6][k]:=solve(%,C[6][k]); 

subs(eta=1,syst[k])=0:C[5][k]:=solve(%,C[5][k]); 

subs(eta=0,diff(sysp[k],eta))=0:C[8][k]:=solve(%,C[8][k]); 

subs(eta=1,sysp[k])=0:C[7][k]:=solve(%,C[7][k]); 

f[k](eta):=simplify(sys[k])+f[k-

1](eta);theta[k](eta):=simplify(syst[k])+theta[k-

1](eta);phi[k](eta):=simplify(sysp[k])+phi[k-1](eta); 

end do: 

 

>n1:=f[0](eta)+f[1](eta)+f[2](eta)+f[3](eta)+f[4](eta)+f[5](eta)

+f[6](eta)+f[7](eta)+f[8](eta)+f[9](eta)+f[10](eta): 

>n2:=theta[0](eta)+theta[1](eta)+theta[2](eta)+theta[3](eta)+the

ta[4](eta)+theta[5](eta)+theta[6](eta)+theta[7](eta)+theta[8](et

a)+theta[9](eta)+theta[10](eta): 

>n3:=phi[0](eta)+phi[1](eta)+phi[2](eta)+phi[3](eta)+phi[4](eta)

+phi[5](eta)+phi[6](eta)+phi[7](eta)+phi[8](eta)+phi[9](eta)+phi

[10](eta): 

 

Programming of FDM (Backward Scheme) on Maple: 

 
> restart; 
>S:=0.5;Ha:=0.5;beta:=0.3;Du:=0;R:=0.3;Q:=0.3;Pr:=1.5;Ec:=0.3;Kr

:=0.5;Sc:=1.5;Sr:=0;delta:=0.5;h:=1/100; i:=100; f[0]:=0; 

f[99]:=1; 

f[i]:=1;theta[i]:=1;phi[i]:=1;theta[1]:=theta[0];phi[1]:=phi[0]; 
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> for i from 100 by -1 to 4 do 

eqn[i]:=(1+1/beta)*(f[i]-4*f[i-1]+6*f[i-2]-4*f[i-3]+f[i-4])/h^4-

S*i*h*(f[i]-3*f[i-1]+3*f[i-2]-f[i-3])/h^3-S*3*(f[i]-2*f[i-

1]+f[i-2])/h^2-S*(f[i]-2*f[i-1]+f[i-2])/h^2*(f[i]-f[i-

1])/h+S*(f[i]-3*f[i-1]+3*f[i-2]-f[i-3])/h^3*f[i]-Ha^2*(f[i]-

2*f[i-1]+f[i-2])/h^2: 

end do; 
> eqn[3]:=f[2]-2*f[1]+f[0]: 
> sys:=[1-36]: 
> Ans:=fsolve(sys); 

> for i from 5 by 10 to 98 do 

f[i]:=rhs(Ans[i]); 

end do; 
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> for i from 75 by -1 to 2 do 

eqnt[i]:=(1+4/3*R)*(theta[i]-2*theta[i-1]+theta[i-

2])/h^2+Pr*S*(f[i]*(theta[i]-theta[i-1])/h-i*h*(theta[i]-

theta[i-1])/h+Q*theta[i])+Pr*Ec*((1+1/beta)*(((f[i]-2*f[i-

1]+f[i-2])/h^2)^2+4*delta^2*((f[i]-f[i-1])/h)^2)+Ha^2*((f[i]-

f[i-1])/h)^2)+Du*Pr*(phi[i]-2*phi[i-1]+phi[i-2])/h^2; 

eqnp[i]:=(phi[i]-2*phi[i-1]+phi[i-2])/h^2+Sc*S*(f[i]*(phi[i]-

phi[i-1])/h-i*h*(phi[i]-phi[i-1])/h)-

Sc*Kr*phi[i]+Sr*Sc*(theta[i]-2*theta[i-1]+theta[i-2])/h^2; 

end do: 
> syst:={seq(eqnt[i],i=2..75),seq(eqnp[i],i=2..75)}; 
> Ans2:=fsolve(syst); 
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APPENDIX A: VELOCITY FIELD AND CONTOURS OF 

TEMPERATURE AND CONCENTRATION 

Contours at value R =0.1 & 0.4 
 

Temperature (R = 0.1)     Temperature (R = 0.4) 

 
 

Concentration (R = 0.1)     Concentration (R = 0.4) 

 
 

 

Contours at different Q= -2.5 & 2.5 

Temperature (Q = -2.5)     Temperature (Q = 2.5) 
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Concentration (Q = -2.5)     Concentration (Q = -2.5) 

 
 

 

Contours at different Prandtl number Pr= 0.9 & 1.5 

Temperature (Pr = 0.9)     Temperature (Pr = 1.5) 

 
 

Concentration (Pr = 0.9)     Concentration (Pr = 1.5) 
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Contours at different Eckert Number Ec = 0.3 & 0.6 

Temperature (Ec = 0.3)     Temperature (Ec = 0.6) 

 
 

Concentration (Ec = 0.3)     Concentration (Ec = 0.6) 

 
 

Contours at different Dufour Number Du = 0.1 & 0.7 

Temperature (Du = 0.1)     Temperature (Du = 0.7) 
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Concentration (Du = 0.1)     Concentration (Du = 0.7) 

 
 

Contours at Kr =0.3 & -0.8 

Temperature (Kr = 0.3)     Temperature (Kr = -0.8) 

 
 

Concentration (Kr = 0.3)     Concentration (Kr = -0.8) 
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Contours at Sc = 1.2 & 1.5 

Temperature (Sc=1.2)     Temperature (Sc=1.5) 

 
Concentration (Sc = 1.2)     Concentration (Sc = 1.5) 

 
 

Contours at Sr = 0.4 & 0.7 

Temperature (Sr = 0.4)     Temperature (Sr = 0.7) 

 
Concentration (Sr = 0.4)     Concentration (Sr = 0.7) 
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