
 

DSP SPECIFIC OPTIMIZED IMPLEMENTATION OF VITERBI 

By 

Yame Asfia 

 

Submitted to the department of Computer Engineering in fulfillment of the 

requirements for the degree of 

 

Masters in Science 

in 

Computer Engineering 

 

External Supervisor 

Dr. Muid-ur-Rahman Mufti 

 

Internal Supervisor 

Brig Dr. M. Younus Javed 

 

College of Electrical and Mechanical Engg,  

National University of Sciences and Technology 

2009  



ii 
 

ACKNOWLEDGEMENT 

All praises and thanks to ALMIGHTY ALLAH, Who made this difficult work possible. 

This research work is the product of His blessings. 

I would like to express my heartfelt gratitude with love to my family especially to my 

parents for being so supportive and caring throughout the course of this study, my 

brother and my sisters without whom I would have never be able to achieve this 

milestone.  

I extend my appreciation and thanks to my supervisor, Dr. Muid-ur-Rahman Mufti, 

Professor, Department of Computer Engineering, UET Taxila for his long lasting 

guidance, positive criticism and kind cooperation offered to me during my MS tenure. I 

feel I may never be able to pay him the deserved thanks. I wish to express my heartiest 

thanks to my internal-supervisor, Brig Dr. M. Younus Javed, Head of the Department, 

College of Electrical and Mechanical Engg, NUST Rawalpindi, for his kind cooperation 

and constructive suggestions at every step of my research. 

The constant advice and encouragement of my friends and the work of early scientists 

which blazed this study is also highly acknowledged. 

Last but not the least, I appreciate all those who remember me in their prayers and 

encourage me throughout the deals of my life. 

YAME ASFIA 



iii 
 

 

 

 

 

 

 

 

 

 

… Dedicated to my parents 

 

 

 

 

 

 

 

 



iv 
 

ABSTRACT 

Due to the rapid changing and flexibility of Wireless Communication protocols, there is a 

desire to move from hardware to software/firmware implementation in DSPs. High data 

rate requirements suggest  highly optimized firmware implementation in terms of 

execution speed and high memory requirements. This work suggests optimization levels 

for the implementation of a viable Viterbi decoding algorithm on a commercial off-the-

shelf DSP. Viterbi is a popular decoding algorithm employed in building up many 

communication systems because of its robustness and ability to detect and correct most 

of the transmission errors. Optimizing this algorithm to achieve maximum execution 

speed and minimum possible memory usage is the focus of our research. Different 

Logic and Code optimization techniques have been applied and discussed throughout 

the document. With an aim of producing an improved design (in terms of execution 

speed and memory requirements), the proposed system is able to deliver a data rate of 

1.7 Mbps on a clock frequency of 600MHz, for a constraint length (i.e. K=7). 

 



v 
 

Table of Contents 

ABSTRACT ................................................................................................................................................ iv 

Table of Figures ........................................................................................................................................ vii 

Table of Tables ........................................................................................................................................ viii 

CHAPTER – 1 :    INTRODUCTION........................................................................................................ 1 

1.1 Challenges vs. Technology ................................................................................................... 1 

1.1.1 Available Technology ......................................................................................................... 2 

1.1.2 Technology tradeoffs ......................................................................................................... 3 

1.2 Viterbi Decoder ....................................................................................................................... 4 

1.3 Related Work .......................................................................................................................... 4 

1.4 Thesis Organization ............................................................................................................... 5 

CHAPTER – 2 :   CONVOLUTIONAL ENCODING AND VITERBI DECODING .............................. 6 

2.1 Convolutional Encoding ......................................................................................................... 6 

2.1.1 Structure .................................................................................................................................. 6 

2.1.2 State Diagram ......................................................................................................................... 7 

2.2 Viterbi Decoding ..................................................................................................................... 8 

2.2.1 Trace Back ............................................................................................................................ 10 

2.3 Demodulator Configurations: Hard Decisions vs. Soft Decisions ................................. 11 

2.3.1 Hard Decision and Soft Decision Plane ........................................................................ 12 

CHAPTER  – 3 :   HARDWARE PLATFORM ...................................................................................... 14 

3.1 ADSP-BF533 Core Architecture ........................................................................................ 14 

3.1.1 Compute Register File ..................................................................................................... 14 

3.1.2 Arithmetic and Logical Unit -- ALUs .............................................................................. 14 

3.1.3 Multiply and Accumulate -- MAC .................................................................................... 15 

3.1.4 Shifter ................................................................................................................................. 15 

3.1.5 Zero Overhead Loops ...................................................................................................... 15 

3.1.6 Address Arithmetic Unit ................................................................................................... 15 

3.1.7 Blackfin Memory ............................................................................................................... 16 

3.1.8 Instruction Set [9].............................................................................................................. 16 

CHAPTER  –  4:    OPTIMIZATION STRATEGY ................................................................................ 18 

4.1 The Optimization Process ................................................................................................... 18 



vi 
 

4.1.1 Logic Optimization ............................................................................................................ 18 

4.1.2 Code Optimization ............................................................................................................ 21 

CHAPTER  –  5 :     SYSTEM DESIGN ................................................................................................ 23 

5.1 System Model ....................................................................................................................... 23 

5.1.1 Inside the Decoder ........................................................................................................... 24 

5.2 Flow Chart ............................................................................................................................. 25 

CHAPTER  –  6 :    EXPERIMENTAL RESULTS ................................................................................ 26 

6.1 Methodology: ......................................................................................................................... 26 

6.1.1 Phase I:  MATLAB ............................................................................................................ 26 

6.1.2 Phase II: C++ .................................................................................................................... 27 

6.1.3 Phase III:  Final Design on DSP .................................................................................... 27 

6.2 Bit Error Rate Calculation and Comparison: .................................................................... 28 

6.3.1.1 Results ........................................................................................................................... 28 

6.3 Benchmarking – System’s Execution time and Throughput: ......................................... 31 

6.3.1 ADSP BF-533  (For K=7 and code rate= 1/2) .............................................................. 31 

6.3.2 TMS320C6201 (For K=7 and code rate= 1/2) ............................................................. 32 

6.3.3 ADSP-BF 533 (For K=9 and code rate= 1/2) ............................................................... 32 

6.3.4 TMS320C6201 (For K=9 and code rate= 1/2) ............................................................. 32 

6.3.5 Comparison with previously published work ................................................................ 33 

CHAPTER – 7 :    CONCLUSION AND FUTURE WORK ................................................................. 34 

REFERENCES : ....................................................................................................................................... 35 

APPENDIX-A ............................................................................................................................................ 36 

CODES ...................................................................................................................................................... 36 

A.1 MATLAB ................................................................................................................................. 36 

A.2 C++ ......................................................................................................................................... 50 

A.3 ADSP-BF533 Assembly (Visual DSP++) .......................................................................... 55 

 

 

 

 

 



vii 
 

Table of Figures 

 

Figure 2-1: Block Diagram of Convolutional Encoder [1] .......................................... 7 

Figure 2-2: State Diagram of a Convolutional Encoder with K=3, k/n=1/2 [1] .......... 8 

Figure 2-3: Formation of trellis and process of traceback for K=3 k/n=1/2 [1] ........ 9 

Figure 2-4: (a) Hard Decision Plane (b) Soft Decision Plane (c) Soft Viterbi Trellis 

with Reference values (d) Soft Viterbi Trellis showing distances (errors) in 

transmission as Dot Products [1] .............................................................................. 13 

Figure 4-1: Symmetry in Viterbi’s Butterfly ............................................................... 19 

Figure 5-1: System Model ........................................................................................... 23 

Figure 5-2: Decoder Configuration ............................................................................ 24 

Figure 5-3: Flow Chart ................................................................................................ 24 

Figure 6-1: Bit Error Rate Comparisons .................................................................... 29 

Figure 6-2: Bit Error Rate Comparison (C++) ............................................................ 30 

Figure 6-3: Bit Error Rate Comparisons (DSP) ......................................................... 31 

 

  

 

file:///F:\ABSTRACT.doc%23_Toc237849865
file:///F:\ABSTRACT.doc%23_Toc237849870
file:///F:\ABSTRACT.doc%23_Toc237849871
file:///F:\ABSTRACT.doc%23_Toc237849871


viii 
 

 

Table of Tables 

 

Table 6-1: Benchmarking Results  ............................................................................................. 33 

Table 6-2: Comparison with other researchers  ....................................................................... 33 

 

file:///F:\MS%20Thesis\ABSTRACT.docx%23_Toc234209858


1 
 

CHAPTER – 1 :    INTRODUCTION 

 

For the last few decades, there has been an immense research in the field of 

embedded system designing. With an ambition of achieving compaction and flexibility 

in designs, designers are focusing on the firmware implementation of algorithms on 

DSPs. The advancements in technology, call for high data rate systems and so 

improving the execution speed of such algorithms is critical and unavoidable. 

Moreover, the memory requirements of such systems need to be compromised in a 

positive manner. For the achievement of such goals, different kinds of optimization 

techniques need to be applied suggesting an optimal implementation. This work 

focuses on the implementation of a ½ code rate Viterbi decoder with a constraint 

length K=7 on ADSP-BF533. A comparison of this implementation with the designs 

implemented on TMS320C6201, having different constraint lengths, has also been 

provided. 

1.1 Challenges vs. Technology  

Any embedded application attempts to minimize, simultaneously, four factors:  

 The number of transistors employed, which impacts die and package size, unit 

cost and power consumption. Advances in process technology continuously 

reduce transistor area, but both static and dynamic power consumption 

depend on the transistor count. The transistor count remains an important 

metric of system efficiency.  

 The number of clock cycles required, which impacts performance and power 

consumption. Increasing clock frequencies associated with smaller process 

geometries permit more clock cycles in a given time interval, but at the 

expense of increased power consumption. Fewer clock cycles means less 

power consumption.  

 The time taken to develop the application, which strongly influences its market 

acceptance. A product that misses its market window is a total waste of 



2 
 

development effort. In many cases software development takes more time and 

costs more than hardware development.  

 Nonrecurring engineering (NRE) costs such as mask manufacturing and the 

cost of hardware and software development. The increased NRE costs 

associated with leading-edge process technologies are putting these out of 

reach for many applications.  

1.1.1 Available Technology 

Generally four kinds of hardware platforms are available for the implementation of 

any communication or signal processing system/algorithm. These include ASICs, 

MCUs, FPGAs and DSPs. Depending on the type of application and the system 

requirements i.e. performance and flexibility, developers have to make a sound 

choice among these platforms.  

1. Application Specific Integrated Circuits (ASICs) 

An ASIC is custom-designed for a particular application, possibly embedding 

one or more MCU or DSP cores, with as much as possible of the total system 

functionality implemented on a single die.  

This optimizes the number of transistors and clock cycles (and therefore unit 

cost and power consumption), at the expense of development time and NRE 

cost that are generally an order of magnitude higher than those for MCUs, 

DSPs or FPGAs.  

Application-specific functions, in particular analog operations, must often be 

implemented off-chip. Die size, package size, pin-out and power consumption 

are less than optimal compared with what can be achieved by this technology, 

namely ASICs.  

2. Microcontrollers (MCUs) 

Microcontrollers (MCUs) are general-purpose devices for information 

processing and control that can be adapted to a wide variety of applications by 

software. Application development effort is limited to software development 

and validation, and NRE costs are amortized amongst all the users of a 

particular MCU architecture. Clock cycle optimization is determined by code 



3 
 

optimization, and the code footprint influences the number of transistors 

required for memories. Compact code that makes the most efficient use of the 

MCU architecture is essential. MCUs generally use transistors and clock 

cycles efficiently, but not optimally.  

3. Field programmable gate arrays (FPGAs) 

Field programmable gate arrays (FPGAs) limit development effort to the 

coding required to configure them, and share NRE costs amongst a very large 

population of users, at the expense of a high level of transistor redundancy 

(and therefore high unit costs) and a limited optimization of clock cycles. 

Power consumption is far from optimal.  

4. Digital signal processors (DSPs) 

Digital signal processors (DSPs) hard-wire the basic functions of many signal-

processing algorithms. This optimizes transistor use and clock cycles for the 

required operations, at the expense of flexibility. Code is simpler than that 

required for MCUs. In many cases a DSP is an optimal solution for some but 

not all of the functions required of an application. Many MCUs include basic 

DSP operations in their instruction set, which enables them to do simple signal 

processing, without the need for a dedicated DSP.  

1.1.2 Technology tradeoffs  

The four technologies represent different tradeoffs towards achieving the four 

optimizations. The choice for any particular application is an engineering 

compromise. In most cases, the choice depends on a complex combination of 

factors, and no single technology is ideal. Different technology mixes are often most 

appropriate at different stages of the lifecycle of the end-user product. During 

prototyping and production ramp-up an FPGA or MCU/DSP-plus-FPGA solution may 

be preferable, in order to reduce development time and cost. When the product goes 

into high volume, its functionality can be re-mapped into an ASIC that embeds the 

MCU or DSP core from the standard product, and absorbs the logic from the FPGA, 

thereby optimizing die size, unit cost, clock cycles and power consumption without 

the need to rewrite the software. The high NRE costs associated with ASIC 

development are amortized over the high production volume.  



4 
 

 

Where, FPGAs and ASICs are considered superior in terms of performance and 

power efficiency, they greatly lack the programming flexibility, offered by DSPs, which 

is highly desirable in implementing complex signal processing algorithms. Moreover, 

the highly optimized architectural features and less price premium than FPGAs, make 

DSPs the right choice for their use in the signal processing and communication 

applications. A detailed comparison of all these platforms can be found in [4]. 

1.2 Viterbi Decoder 

The heart of this discussion is the DSP specific implementation of Viterbi decoder, 

which is a well known communication algorithm. Viterbi is employed for decoding the 

convolutionally encoded data, which has been transmitted through an Additive White 

Gaussian Noise (AWGN) channel. The strength of this algorithm to correct most of 

the errors makes it an essential module of a CDMA/WCDMA system.  

“Viterbi Algorithm (VA) decoders are currently used in about one billion cell 

phones, which is probably the largest number in any application. However, the 

largest current consumer of VA processor cycles is probably digital video 

broadcasting. A recent estimate at Qualcomm is that approximately 1015 bits 

per second are now being decoded by the VA in digital TV sets around the 

world, every second of every day” [2]. 

The algorithm works by forming a trellis structure which is eventually traced back, for 

decoding the received information. This calls for massive storage requirements. 

Furthermore, the emerging Wireless standards, which deliver high data rates, have 

also raised the performance bar for Viterbi and  hence the need for an optimized 

system that improves the execution speed and uses memory optimally, by reducing 

the logic and code complexity, is eminent.  

1.3 Related Work 

[3] has presented an implementation on TMS320C6201 for a constraint length K=9 

and code rate= 1/3. The design of a 500MHz, two 8-state, 7-bit soft output Viterbi 

decoders matched to an EPR4 channel and a rate-8/9 Convolutional code, 



5 
 

implemented in 0.18µm CMOS technology has been described in [5]. [6] Describes 

the design and implementation of a 19.2 kbps, 256 state Viterbi decoder using 

FPGAs with the added capability of catering to higher input data rates. To the best of 

our knowledge no research work has focused on the implementation of Viterbi on a 

general DSP platform. Here we discuss a generalized Viterbi implementation which 

has been optimized well, to suit any DSP platform (processor). 

1.4 Thesis Organization 

The discussion has been organized as follows:  

Chapter II: 

Chapter II explains the presents the discussion for Convolutional encoding followed 

by Viterbi decoding. This chapter briefly provides a background of the modules of a 

typical communication model employing Convolutional encoding and Viterbi 

decoding. The channel modes are also discussed. 

Chapter III: 

In this chapter we brief the architecture of ADSP-BF533 Blackfin® Processor.   

Chapter IV: 

Chapter IV explains our optimization strategy. The optimization techniques in practice 

and those devised by us are thoroughly discussed. 

Chapter V: 

The last chapter carries out the implementation details of the system model. It 

thoroughly explains the system design and its components. Different phases of the 

design process are also described.  

Chapter VI: 

The last chapter provides the simulation results and rates the performance of the 

optimized design. 



6 
 

 

CHAPTER – 2 :   CONVOLUTIONAL ENCODING AND VITERBI 

DECODING 

 

Forward Error Correction schemes are largely employed to detect and correct errors 

in the data transmitted through any communication channel. Such schemes introduce 

some redundant bits in the original stream of data. This redundancy helps not only in 

detecting the errors but also proves to be helpful in locating and correcting the error 

within some limited precision. This chapter briefs out the details of the Forward Error 

Correction encoding scheme Convolutional Encoding and the decoding algorithm 

used on the receiving end called Viterbi Decoding. 

2.1 Convolutional Encoding 

Convolutional coding was introduced in 1955 as a strong FEC (Forward Error 

Correction) coding scheme. This FEC scheme treats the incoming data in streams 

rather than in blocks. 

2.1.1 Structure  

The Encoding process involves a shift register accompanied by modulo-2 addition 

logic. The length of shift registers is called the constraint length „K‟ of the decoder so 

that the system has 2(K-1) states. The number of different modulo-2 addition 

combinatorial logics determine the code rate ‘k/n’ i.e. ratio of number of input bits 

to the number of output bits of the decoder [1]. 

Figure-2-1 shows the block diagram of a feed forward convolutional encoder with a 

constraint length K=3 and a code rate of n=1/2. It means that the system has a total 

of 2(K-1) = 2(3-1) = 4 states and for every single input bit, the system produces two 

output bits. The inputs to the two adders (XOR) form the generator polynomials [7,5]. 

As the shift registers are initially cleared, the initial state is ‘0’. Once a pair of output 

bits has been produced, the data is shifted right to introduce the next input bit and 

then the same encoding process is applied over this bit as well. Hence the encoded 



7 
 

output is a function of the current input and K-1 (3-1= 2) previous inputs. The process 

may be terminated once all the input bits have been processed or some extra zero 

bits may be added so that the encoding process ends in all zero state. Our discussion 

will not be covering the details of these termination decisions. 

 

 

2.1.2 State Diagram 

The whole encoding process may be best explained with the help of this state 

diagram (Figure-2-2). The state diagram shows all the possible transitions and 

outputs for each state-input pair.  

As already explained, the initial state is ‘00’. The edges represent the state 

transitions where the dotted ones indicate the case for input bit value equal to 1 and 

the solid lines represent the transitions for 0 bit. The corresponding two bit outputs 

are labeled on the relevant edges [1]. 

 

Output bit 1 

n1 

Output bit 2  

n2 

R1 R2 K 

Figure 2-1: Block Diagram of Convolutional Encoder [1] 



8 
 

 

 

 

Figure 2-2: State Diagram of a Convolutional Encoder with K=3, k/n=1/2 [1] 

 

2.2 Viterbi Decoding 

Viterbi Algorithm employs Maximum Likelihood Detection technique for decoding 

the convolutionally encoded data. The process involves formation of a „Trellis‟ 

structure which depicts a time-indexed information of the state diagram of the 

convolutional encoder. The process initiates at state ‘00’. As shown in the state 

diagram, there are ‘k’ possible paths originating from each state, one for each kind of 

input bit (In this case: for 0 and 1 as k=2). Viterbi looks for the possible transitions 

from each state, from the state diagram. From each state, an edge follows for each 

kind of possible input and carries the distance which is a measure of similarity 



9 
 

(error) between the reference outputs (labeled in the state diagram) and the bits 

received. This distance is called ‘Branch Metric’ and provides a basis for retrieving 

the encoded bits. The branch metric values of all the connected nodes (that form a 

single path) are accumulated to generate a ‘State Metric’ value at each terminating 

node [1]. 

 

Figure 2-3: Formation of trellis and process of traceback for K=3 k/n=1/2 [1] 

The bits are processed in groups depending on the code rate and so in this particular 

case, they will be processed in pairs. Figure-2-3 displays a six-stage trellis for the 

state diagram in Figure-2-2. As shown, at every new stage, the next pair is processed 

and distance is evaluated. Now, as each state can be entered through two possible 



10 
 

paths, one path with the best metric has to be chosen. Such a path is called the 

surviving path and the best metric decision may be a minimum distance metric or 

a maximum likelihood metric. Here for the sake of simplicity we have shown an 

example trellis with minimum distance metric and so a surviving path is the one with 

the minimum state-metric value. As different surviving paths exit within a trellis, they 

are shown with the help of bold-gray lines, whereas the final survivor path is shown in 

bold-black line. The dotted ones represent the branches for input 1 and solid lines 

represent transitions in case of input 0. The branch metrics are calculated by 

performing XOR-addition operation on the corresponding input pairs with all the 

reference outputs and are shown on all branches (Figure-2-3). State Metrics are 

shown at each node. 

2.2.1 Trace Back 

The trace back unit of the Viterbi decoder is of special interest. After the construction 

of trellis, it is traced-back from the last stage, based on the kind of the best metric 

criterion decided. The last stage of the trellis is searched for the best metric value 

(minimum distance or maximum likelihood). The node with the best metric value then 

acts as the root and the survivor path connecting to this root is selected for decoding 

the values. As the Figure-2-3 shows, the minimum state-metric value is ‘1’ and hence 

the node marked „M‟ forms the root of the surviving path. The trellis maintains a 

memory of each branch's source and destination nodes and the expected input value 

at this branch (represented by dotted and solid lines). This memory helps the 

formation of the surviving path and the extraction of decoded sequence. E.g. the 

record says that the predecessor of M is at State (10)2 - Stage 5 and as for each 

dotted line we record an input value ‘1’ and for each solid line, the decoded value is 

‘0’, the first decoded value is 0. As tracing back is a reverse process so the first bit is 

decoded in the end.  

In this way the whole input stream is extracted from the trellis. This resultant stream 

may or may not be the exact replica of the original input stream depending on the 

percentage of noise (SNR) induced into the encoded data by the channel. However, 



11 
 

as studies reveal, Viterbi proves to be superior in performance over other decoding 

schemes, working in the same scenario. 

2.3 Demodulator Configurations: Hard Decisions vs. Soft Decisions 

After the encoding process has been applied on the input stream, the encoded bit 

stream needs to be modulated, before injecting it into the channel. Modulating the 

stream (code symbols) converts it into signal waveforms. The modulation schemes 

applied may be baseband or band pass. Whatever, the kind of modulation may be, 

the general rule is to map l code symbols at a time, to a signal waveform chosen 

from a set M=2l possible combinations. These waveforms are then transmitted 

through the channel where they are affected rather corrupted by the channel noise 

(AWGN in this particular case). The demodulator unit on the receiver side de-maps 

the waveforms back into a bit stream. This bit stream is then passed on to the 

decoding module. 

Two kinds of configurations are possible for the demodulator output: 

 Hard Decision 

One of the ways compares the incoming waveforms with a certain threshold 

value. If the signal level appears to be higher than that threshold a bit value 1 

is assumed otherwise a 0 is inferred. This configuration scheme which 

assumes a binary decision i.e. quantizes demodulator output to two levels is 

known as hard decoding/decision. 

 Soft Decision 

The other method of extracting the bit stream from the waveforms is called soft 

decoding or decision. This configuration compares the signal's level with more 

than one threshold values i.e. the decision is not binary. Hence the 

demodulator output is quantized to more than two levels i.e. more than 1 bit 

will be required for storing the different possible values. For example, a typical 

soft decoding system employing an 8 level (or more) de-mapping will be 

needing 3 bits for each signal level causing an increased requirement for 

memory space. 



12 
 

2.3.1 Hard Decision and Soft Decision Plane 

Figure- 2-4(a) and 2-4(b) show the Hard and Soft decision planes respectively. As 

shown, the four hard combinations can be placed at the corners of a square. If any 

kind of noise is introduced in the transmitted data, any single bit change will cause 

the decision to move from one corner to another. When decoding it with the help of 

Viterbi's trellis, the distance (differences) are calculated as no of bits in error and is 

called Hamming distance.  

For Soft Viterbi decoding, the quantization levels between the corner values are 

increased. These corner values can be now converted to some voltage levels , like 

those in Figure -2-4(b), taken from the domain [-15,15]. Now, any kind of disturbance 

in the signal level cannot be calculated using Hamming distances. A preferable 

choice of metric may be Euclidean distance or dot product. The Figure-2-4(b) 

represents the distance as dot products between the corresponding values (the 

reference values at the corners and the coordinates of the actual point). 

Figure-2-4(c) and 2-4(d) show the trellis for soft viterbi decoding. Figure-2-4(c) shows 

the reference values for each input (1 and 0) while 2-4(d) represents the distances as 

dot products. 



13 
 

 

Figure 2-4: (a) Hard Decision Plane (b) Soft Decision Plane (c) Soft Viterbi Trellis with 
Reference values (d) Soft Viterbi Trellis showing distances (errors) in 
transmission as Dot Products [1] 

 

There are some obvious pros and cons, associated with both these configuration 

schemes. Where hard decoding implies a simpler approach, the accuracy of the 

decoded result is doubted especially in case of low SNR. On the contrary, the soft 

decoding schemes show greater accuracy as the decisions tend to be really 

narrowed within small regions. Therefore soft decoding is employed largely in the 

communication systems where the accuracy of the received data is a critical factor. 

Hard decoding schemes may be applied for small firmware implementations where 

the complexity, associated with the soft decisions, needs to be avoided. 

 

 



14 
 

CHAPTER  – 3 :   HARDWARE PLATFORM 

 

ADSP-BF533 Blackfin is an inexpensive RISC DSP, whose cycle time is 1.6ns 

(600MHz). The ADSP-BF533, ADSP-BF532, and ADSP-BF531 processors are 

enhanced members of the Blackfin processor family that offer significantly higher 

performance and lower power than previous Blackfin processors while retaining their 

ease-of-use and code compatibility benefits. These three processors are completely 

pin compatible, differing only in their performance and on-chip memory, mitigating 

many risks associated with new product development. 

The Blackfin processor core architecture combines a dual MAC signal processing 

engine, an orthogonal RISC-like microprocessor instruction set, flexible Single 

Instruction, Multiple Data (SIMD) capabilities, and multimedia features into a single 

instruction set architecture.  

Blackfin products feature dynamic power management. The ability to vary both the 

voltage and frequency of operation optimizes the power consumption profile to the 

specific task.  

3.1 ADSP-BF533 Core Architecture  

The ADSP-BF533 core consists of two 16-bit multipliers, two 40-bit accumulators, two 

40-bit arithmetic logic units (ALUs), four 8-bit video ALUs, and a 40-bit shifter. These 

computational units are able to process 8, 16, or 32-bit data extracted from the 

register file. 

3.1.1 Compute Register File 

There are eight 32-bit registers comprising the compute register file. For 16 bit 

operations, these registers act as sixteen 16-bit registers.  

3.1.2 Arithmetic and Logical Unit -- ALUs 

The two 40 bit ALUs operate on 16, 32 and 40 bit operands. Fixed point addition and 

subtraction operations are supported. Addition and subtraction of immediate values, 

Accumulation and subtraction of multiplier results, Logical operations and bitwise 



15 
 

operations, functions like ABS, MAX, MIN, Round, division primitives, conditional 

instructions are also supported.  

Signed and unsigned formats, rounding, and saturation are supported. 

3.1.3 Multiply and Accumulate -- MAC  

Each MAC can perform fixed point multiplication and multiply-and accumulate 

operations on 16-bit fixed point operands resulting 32-bit or 40-bit values. 

Multiplication, Multiply-and-accumulate with addition, Multiply-and-accumulate with 

subtraction and dual versions of the two are supported. Saturation and Optional 

rounding formats are supported.  

A MAC operation takes a single cycle for execution.  

3.1.4 Shifter  

The 40-bit shifter supports shifting, rotating, normalization, and extraction operations. 

3.1.5 Zero Overhead Loops  

Zero overhead looping is supported by the hardware. Moreover the architecture is 

fully interlocked, meaning there are no visible pipeline effects when executing 

instructions with data dependencies. 

3.1.6 Address Arithmetic Unit  

The address arithmetic unit provides two addresses for simultaneous dual fetches 

from memory. Eight 32-bit pointer registers are provided for C style stack 

manipulation. 

3.2.6.1 Circular Buffering 

A multiported register file consisting of four sets of 32-bit Index, Modify, Length, and 

Base registers is provided to support circular buffering. The Index (I) registers are 

used to hold the address that is sent out on the address bus. Base (B) registers 

contain the starting address of the circular buffer. Length (L) registers specify the 

length of the buffer while the Modify (M) registers contain the value (positive or 



16 
 

negative) that will be added to the L registers at the end of each memory access. The 

size of the modify value must reside the length of the circular buffer. 

The trellis unit can be efficiently benefited from this feature as the same memory can 

be re-used for building the new trellis stages each time. Furthermore, the arrays 

those need to be circularly accessed iteratively, e.g. Reference output array, can be 

implemented as circular buffers. 

3.1.7 Blackfin Memory  

Blackfin processors support a modified Harvard architecture in combination with a 

hierarchical memory structure. Level 1 (L1) memories typically operate at the full 

processor speed with little or no latency. At the L1 level, the instruction memory holds 

instructions only. The two data memories hold data, and a dedicated scratchpad data 

memory stores stack and local variable information. 

In addition, multiple L1 memory blocks are provided, which may be configured as a 

mix of SRAM and cache. The Memory Management Unit (MMU) provides memory 

protection for individual tasks that may be operating on the core and may protect 

system registers from unintended access. 

3.1.8 Instruction Set [9]  

The processor's assembly language employs a simple algebraic syntax and the 

architecture is optimized for use with the C compiler. Where, the 16-bit opcodes 

represent the most frequently used operations, some 32-bit multifunction instructions 

are also included to support complex DSP operations. Blackfin is neither Super 

Scalar nor VLIW but supports the issuance of multiple instructions within a single 

instruction with some limitations. 

3.2.6.1 Specialized Instructions 

To facilitate and accelerate various signal processing tasks, the instruction set is 

equipped with many special instructions like compare/select and vector search 

instructions. Such vector search operations are useful in searching arrays, a requisite 

operation in trace-back unit. 



17 
 

Special video instructions are also included with byte alignment and packing 

operations, 16-bit and 8-bit adds with clipping, 8-bit average operations, and 8-bit 

subtract/absolute value/accumulate (SAA) operations. 

3.2.6.2 Instruction Modes  

40-bit ALU operations support Single, Dual and Quad 16 bit operations and Single 

and Dual 32-bit operations. Such configurations allow parallel operations processing, 

though ADSP-BF533 is neither super-scalar nor VLIW.  

3.2.6.3 Parallel Instructions  

As discussed, Blackfin processor supports a limited multi-issue capability. The 

general rule is to issue some instructions in parallel within a single instruction so that 

the instruction size is exactly 64 bits. A 32-bit instruction can be issued in parallel with 

two 16 bit instructions or with a single 16 bit instruction followed by a 16-bit NOP 

instruction. Two 16-bit instructions can be issued in parallel with an added 32 bit 

MNOP instruction. However, these do not apply for all the instructions as there is a 

limited set of instructions that can be issued in parallel. 

In this way many of the core resources can be utilized within a single instruction 

cycle. 

 

 

 

 

 

 

 



18 
 

CHAPTER  –  4:    OPTIMIZATION STRATEGY 

 

Programmers have been striving at their best to achieve the best possible optimization 

levels where ever possible. [4] discusses some standard optimization techniques 

necessary for any DSP based application. Our work focuses on the optimized 

implementation of Viterbi. In this chapter, we state the optimization strategy employed in 

the work while explaining all the phases the work has gone through.  

4.1 The Optimization Process 

Usually the optimization process involves two main steps:  

 Logic Optimization 

 Code Optimization 

 

4.1.1 Logic Optimization 

The logic optimization part involves simplifying the algorithm, searching for and 

removing any kind of possible redundancies. While there are some very well known 

logic optimization techniques, Viterbi's structure also reveals some really interesting 

facts. The following text highlights these possibilities. 

4.1.1.1 Exploiting the Butterfly: 

Viterbi can be logically optimized by observing its butterfly structure which shows many 

optimization possibilities. Different techniques that can make good use of the structure 

are explained below. 



19 
 

 

Figure 4-1: Symmetry in Viterbi’s Butterfly 

4.1.1.1.1 Loop unrolling: 

Optimization may also be achieved by techniques like loop-unrolling, which reduces the 

loop iterations by repeatedly writing the part of code that needs to be looped. This 

effectively increases the execution speed at the cost of increased code-memory space 

requirements. As can be seen in Figure-2-3, each trellis stage requires a set of 

operations that need to be performed for each state, i.e. calculating metrics and 

deciding for the next optimal path. The butterfly structure however depicts a natural 

symmetry in the algorithm i.e. all the consecutive states can be paired as they show 

similar transitions. The required operations for the consecutive states are hence 

unwound so that the optimizer is permitted to find combinations of possible parallel 

instructions/operations. In this way a reduction by a factor of two can be observed in the 

number of loop iterations. 

4.1.1.1.2 Branch Metric: 

The butterfly reveals another interesting optimization possibility as shown in Figure-4-1, 

i.e. if one branch metric value say, „a‟ is known, the rest three are obvious.  It means 

that out of four values we need to store only one reference value while the other three 



20 
 

can be easily evaluated. In this way a total of 3/4th of the required memory space can be 

saved.  

4.1.1.1.3 Elimination of transition memory: 

Lastly, for the process of trace back, no transition memory is really required to be 

maintained as the butterfly symmetry clearly states that if the current node is ‘n’ or 

‘n+32’ the previous states must be either ‘2*n’ or ‘2*n+1’ and so, with the addition of few 

simple operations, a great deal of memory space can be saved. 

4.1.1.2 Use of Look-up Tables: 

An important decision lies with the usage of if-else/switch structure and look-up tables. 

While the If-else/switch statements are simpler to code, they have an obvious 

disadvantage of blocking the pipeline. The if-else structure is treated as a branch 

instruction which cannot always be correctly predicted as a taken branch or not. The 

instructions following the branch instruction may or may not be executed depending on 

the condition being checked and thus it blocks the pipelined path.  

The use of look-up tables has no such disadvantage. Instead, it helps increasing the 

execution speed but at the cost of increased data-memory requirements. The switch 

structure can be replaced by a look-up table by mapping all the cases as indices and 

placing all the resulting values into the arrays at the corresponding indices of the array.  

4.1.1.3 Off-line Processing:  

Look-up tables may also be employed to substitute such arithmetic and logical 

operations whose results are obvious / static. Results of certain operations can be pre-

calculated and stored in such tables. This is called off-line processing.  

For instance, in case of Hard Viterbi implementation, for each state and input a value of 

branch metric has to be calculated which requires an XOR (modulo-2 add) operation. 

This operation may take 3 to 4 clock cycles. However if we pre-calculate all the possible 

branch metrics and keep them in a look-up table, it will require a single memory read 

cycle. Hence a great deal of improvement in execution speed is observed. 



21 
 

4.1.1.4 Optimal MAC:  

Where use of look-up tables is really advantageous in case of hard Viterbi decoding; 

for Soft Viterbi implementation, use of Look-up tables for keeping the branch metric 

values must be avoided. As discussed before, Soft decisions increase the number of 

different possible signal levels in the incoming encoded information. This requires an 

additional look-up table for mapping these signal levels to array indices so that the 

branch metric values placed in metric-look-up table can be accessed. This doubles 

the memory access time. Instead, a MAC (Multiply and Accumulate) operation 

requires less execution time as compared to the memory access time required for the 

looking-up process and so a better logic implementation can be achieved using MAC 

operation. 

4.1.2 Code Optimization 

Once a suitable level of optimization has been achieved logically, the code is 

analyzed at the architectural level to look for further optimization possibilities. This 

step is especially done as a part of hardware implementation. During this phase, an 

effort is made to exploit the core architecture to seek as many benefits as possible. 

The code optimization part can benefit from the following features and techniques [7]. 

4.1.2.1 Specialized Instructions:  

Optimization at this level greatly depends on the instruction set architecture of the 

hardware platform in consideration (DSP, in our discussion). DSPs are equipped with 

a set of well tuned specialized instructions that form a flexible and densely encoded 

instruction set compiling to a very small memory size. Use of such specialized 

instructions in the code is really advantageous in producing an optimized product, in 

terms of both memory and speed. With the help of multi-functional instructions many 

of the processor resources may be used in a single instruction. MAC instruction is 

one of the examples of such specialized instructions. It executes the MAC operation 

i.e. Multiply/Accumulate in a single cycle. However if such an operation is done with 

the help of individual Multiply and Add instructions, it will take more than 1 cycle.  

 



22 
 

4.1.2.2 Parallel Operations:  

Capability of executing operations in parallel is one of the most desirable features in 

any DSP processor as it helps achieving a higher level of optimization and thus 

largely improves the system's throughput. A wide range of DSP processors are 

available in market with varying features, designed for different kinds of applications; 

Super-scalar and VLIW architectures being a popular choice wherever a speedy 

system is targeted. These systems permit issuance of more than a single instruction, 

to the execution units, per cycle. Super-scalar machines can dynamically issue 

multiple instructions per clock cycle whereas VLIW Processors use a long instruction 

word that contains a usually fixed number of instructions that are fetched, decoded, 

issued, and executed synchronously. Though these architectures are really 

advantageous still they add to the complexity and cost of the system which cannot 

always be afforded. In such a situation an inexpensive simpler system, with added 

capability of allowing some instructions to be issued in parallel, like ADSP Blackfin, 

provides efficient implementations both in terms of cost and performance. 

4.1.2.3 Loop Unrolling w.r.t Code: 

Looping structures present in the code can be unrolled for improving the execution 

speed but, as discussed before, at the cost of increased code memory size. Unrolling 

the loop makes it possible to take maximum benefits of the core architecture. For 

example once the statements are unrolled, independent operations/processes may 

be carried out in parallel to each other.  

4.1.2.4 Zero Overhead Loops:  

Software loop overhead can be significantly reduced by assigning the control of the 

loop to the hardware. The loop counter register holds a value which is based on the 

test instructions. This counter is decremented and looping continues until the counter 

reaches zero. Such a strategy loads off the operating system from the overhead of 

testing loop condition every time (for each iteration) and thus a significant 

improvement in performance is observed. 



23 
 

CHAPTER  –  5 :     SYSTEM DESIGN  

 

This section discusses the implementation details of our design on a DSP platform. 

Our aim is to design an optimized version of Viterbi having a constraint length K=7 

i.e. for a total of 64 states with a code rate of 1/2. The size of input buffer is 10 

samples and the trace back depth is set as 100. 

5.1 System Model  

Figure-5-1 shows the implemented system model. As shown, the digital input stream 

X is convolutionally encoded and the resultant (digital) stream Y is 

modulated/mapped onto different signal levels i.e. an analog signal Z is formed. This 

modulated signal is transmitted through the channel where it is corrupted by the 

channel noise (Additive White Gaussian Noise here). 

 

 

 

The corrupted signal
^

Z , when received, is passed on to the de-mapper/demodulator. 

The demodulator's output, as discussed before, may be configured as analog or 

digital. If the decision is binary then a digital stream based on hard values is 

generated, otherwise analog values, based on soft decisions, are produced. Once the 

Analog  

Convolutional 

Encoder 

Mapper/

Modulator 

Viterbi 

Decoder 

De-mapper/ 

Demodulator 

Digital 

Input 

AWGN 

Channel 

Analog vs. 

Digital  Analog  

Digital 

Output 

X Y Z 

X Y Z 
^ ^ ^ 

Transmitter 

Receiver 

Figure 5-1: System Model 

 



24 
 

configuration has been decided, the demodulated stream 
^

Y is passed on to the 

corresponding Viterbi Decoder (Hard or Soft). The decoded output
^

X can then be 

compared to the actual input of the transmitter block X to calculate the Bit Error Rate 

(BER). 

5.1.1 Inside the Decoder 

Figure-5-2 shows Decoder's internal design. As shown, once the input buffer is filled 

with the requisite amount of input samples, the data is sent out to the Trellis unit in 

form of chunks. Length of the buffer dictates the input latency but here we assume 

that the buffer is already filled whenever the data is required and so the input latency 

is zero. The Trellis unit builds up the trellis. The buffer keeps on feeding the trellis 

until the length of the trellis reaches the trace back depth. At this point, the trellis is 

traced back by the Trace Back unit to produce the decoded data. 

 

 

Once the trellis is fully traced back, the next call to the trace back unit needs to be 

initiated immediately after single buffer fetch instead of waiting for the re-fill of the 

whole trellis. This significantly eliminates the latency required for re-filling all the trellis 

stages and reduces the processing time required for tracing back the whole trellis at 

once and thus increases the system’s average speed.  

The trellis can be implemented with the help of circular buffer so that the same 

memory is re-used because once it is traced back the data occupying the trellis is no 

longer useful. This helps reducing a significant amount of required memory space. 

 

 

 

Trellis 

Unit 

TraceBack 

Unit 

Input 

Buffer 

Decoded 

Output 

From 

Demodulator 

Figure 5-2: Decoder Configuration 



25 
 

 

5.2 Flow Chart  

 

 

 
 

  

Start 

Initial Design of Viterbi in 

MATLAB 

Design Verified?? 

Design in C++ 

Verify Design at different 

SNR values 

Logic Optimizations Code Optimizations 

Design Verified?? 

Verify Design at different 

SNR values 

Design in DSP Assembly 

Code Optimizations 

Design Verified?? 

Verify Design at different 

SNR values 

Stop Calculate Throughput 

Yes No 

Yes 

Yes 

No 

No 



26 
 

CHAPTER  –  6 :    EXPERIMENTAL RESULTS 
 

This chapter covers the details of the experiments that were carried out for testing the 

designed system. The results of these experiments show a massive improvement in 

performance both in terms of speed and memory as explained in this chapter.  

6.1 Methodology: 

6.1.1 Phase I:  MATLAB 

MATLAB, a high performance technical language, proves to be a very handy tool for 

initiating any technical project. The toolboxes available in MATLAB provide a set of 

built in commands and functions that facilitate the designers to implement several 

complex modules in a simpler way. Our concern for our work has been the 

communication systems toolbox which provides with all the necessary modules 

required in our design. So, the first step of implementation involves the coding in 

MATLAB.  

An initial design of the system can be easily developed in MATLAB and can be 

further analyzed and improved through simulations. The steps include: 

i. The input to the system is a randomly generated bit stream (vector) of length 

1000.  

ii. This input is then convolutionally encoded (K=7, code rate=1/2) using the built-

in function as discussed in previous chapter.  

iii. The resultant encoded data has to be transmitted through the channel but 

before transmission it is mapped onto different signal levels. The encoded 

information is modulated through BPSK modulation scheme Vpp =  [-√2, +√2].  

iv. After this mapping process has been finished, the signal is transmitted through 

AWGN channel. MATLAB has a pre-defined routine for AWGN channel. By 

passing the SNR and Signal Power values as arguments, any signal can be 

sent and thus corrupted through the channel. The Signal-to-Noise ratio (SNR) 

is continuously varied from minimum to maximum so that the system can be 

tested well for the whole SNR range. 



27 
 

v. The corrupted signal is then demodulated/de-mapped within the range [-

15,+15] for soft decisions and [0,1] for hard decisions. 

vi. The de-mapped data is sent to the Viterbi decoder module. This is where our 

interest lies. A great deal of logic optimization techniques may be applied over 

here to produce a first level efficient code. This code can then be compared to 

the available Vitdec function in MATLAB. A comparison of the resultant Bit 

error rates of our developed Hard Viterbi codes, Soft Viterbi code and the 

available Vitdec MATLAB function is provided in the next section. 

6.1.2 Phase II: C++ 

Once a working system is developed on MATLAB and the results are verified, the 

next step is to initiate the optimization process for final implementation. Before 

planning for the hardware implementation and optimization, an intermediate design 

on C/C++ is important. Most of the available DSPs support the C/C++ codes so it is 

always a necessary step to code the system for the supported language i.e. C/C++ in 

our work.  

A greater level of logical optimization can be achieved at this level as all the built-in 

routines used in MATLAB need to be expanded into their definitions in C/C++. These 

expansions and re-definitions allow us to introduce further improvements into the 

design.  

Some code optimization techniques like loop unrolling may also be applied in this 

phase. The good thing about this intermediate product is that it can be taken directly, 

without much modification (which is required if some libraries are not supported), to 

the hardware platform. 

6.1.3 Phase III:  Final Design on DSP 

The last phase of the implementation process is based on the work done on the 

hardware platform. This phase involves the application of code optimization 

techniques, which largely depends on the core architecture of the hardware. So, 

before the application of any such technique, a firm knowhow of the processor's 

architecture is required. Different DSPs with differing features are available in the 

market.  



28 
 

6.2 Bit Error Rate Calculation and Comparison: 

As stated before, in the first step of building the code in MATLAB, the code has to be 

analyzed for the minimum (output) BER (at least less than or comparable to that of 

the existing ones).  

The BER calculation is done for 10 SNR values. From the theory of Communication 

systems, it is a known fact that Bit Error Rate and SNR values are inversely 

proportional to each other i.e. BER will be maximum at lower SNR values while it will 

reach zero as the SNR approaches the maximum limit. 

The Bit Error rate is computed using the following formula: 

 

       No of bits in error in the decoded stream  

     Total no of bits 

The BER comparisons are also made for the code developed in C++ and Blackfin’s 

assembly to check for the bit accuracy. 

6.3.1.1 Results  

Figure-6.1 shows a comparison of resultant average Bit Error Rates (for fifty 

executions) among the built-in MATLAB code for (Hard) Viterbi decoding -- Vitdec 

and our designed codes for Hard and Soft Viterbi decoding, and for the Un-coded bit 

stream, for different SNR values. 



29 
 

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SNR

B
E

R

BER Comparisons

 

 

BER of Uncoded Stream

BER through Vitdec

BER through Hard Viterbi

BER through Soft Viterbi

 

Figure 6-1: Bit Error Rate Comparisons 

The Un-coded Bit stream obviously presents the worst case. The next curve shows 

the performance of Vitdec which is the next worse over here. Our hard Viterbi code 

shows a better performance over Vitdec while the Soft Viterbi decoder shows the 

best performance in terms of BER as the BER value approaches zero at such a small 

SNR value slightly more than „2‟.  

6.3.1.1 Comparative Results on C++ and DSP 

Once the code has been ported to C++ environment and that on DSP’s, the bit-

accuracy and performance need to be verified. For this reason Bit-Error-Rates, for 



30 
 

the same SNR range, of the output (decoded) bits by the C++ code and Blackfin’s 

assembly code have been presented in Figures 6.2 and 6.3.  

As clear from these figures, all the three versions of Viterbi’s design (MATLAB, C++ 

and DSP) show exactly the same performance characteristics, proving the bit-

accuracy of the design. 

 

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

SNR

B
E

R

Bit Error Rate (C++)

 

 

 

Figure 6-2: Bit Error Rate Comparison (C++) 

 



31 
 

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

SNR

B
E

R

Bit Error Rate (DSP)

 

 

 

Figure 6-3: Bit Error Rate Comparison (DSP) 

 

6.3 Benchmarking – System’s Execution time and Throughput: 

The designed code, after the application of logic and code optimization techniques, is 

taken to the hardware platform where an analysis, about its total execution time in 

terms of cycles (and so the throughput), has to be made. 

6.3.1 ADSP BF-533  (For K=7 and code rate= 1/2) 

The primary implementation has discussed before is on ADSP-BF533. For a 

constraint length equal to 7 with code rate=1/2, the single trellis call takes 266 

execution cycles per bit. The traceback module takes 30.3 cycles per bit. The total 

execution time (including all calls to the trellis and traceback modules) is 334 cycles 

per bit.  

The clock frequency is 600MHz and so the calculated throughput is  

=600MHz/334 cycles-per-bit 

=1.7Mbps 



32 
 

6.3.2 TMS320C6201 (For K=7 and code rate= 1/2) 

Performance of the same design (K=7, code rate=1/2) is estimated for TMS320C620. 

As the clock frequency of TMS320C6201 is 200MHz, so the calculated throughput is  

=200MHz/334 cycles-per-bit 

=598kbps 

6.3.3 ADSP-BF 533 (For K=9 and code rate= 1/2) 

The third part of analysis is performed by increasing the constraint length from 7 to 9. 

If the constraint length increases the number loop iterations for forming the trellis also 

increases (as the number of states has increased). Now the trellis takes 1163.5 

execution cycles-per-bit. The traceback module takes 43.74 cycles-per-bit and the 

overall execution time per bit is 1211.44 cycles.  

The calculated throughput is  

=600MHz/1211.44 cycles-per-bit 

=495kbps 

6.3.4 TMS320C6201 (For K=9 and code rate= 1/2) 

Performance of the new design (K=7, code rate=1/2) is estimated for TMS320C620 

as well. As the clock frequency of TMS320C6201 is 200MHz, so the calculated 

throughput is  

=200MHz/1211.44 cycles-per-bit 

=165kbps 

These results are summarized in Table 6-1. Table 6-1 shows the benchmarking 

results after simulating the same code on different platforms with different clock 

frequencies and constraint length. The code rate however, has been kept constant 

i.e. 1/2. Another important point to be made is that the total no of cycles per bit 

contains not only the execution cycles required for Trellis and Trace-back Units but 

also includes the cycles consumed by the rest of the system.  



33 
 

As clear from the Table 6-1, the output data rate in case of BF533 is 1.7Mbps. If the 

same code is analyzed for a clock frequency of 200MHz like that of TMS320C6201 

then reduction in data rate is obvious (Table 1). For a constraint length K=9, the data 

rate is further reduced to 495kbps (ADSP-BF533) and 165kbps (TMS320C6201- 

ignoring VLIW here). 

Table 6-1:  Benchmarking Results 

Modules Cycles per bit 

For K=7 

Clk Freq 

=600MHz 

Cycles per bit 

For K=7 

Clk Freq 

=200MHz 

Cycles per bit 

For K=9 

Clk Freq 

=600MHz 

Cycles per bit 

For K=9 

Clk Freq 

=200MHz 

Trellis 266 266 1163.5 1163.5 

Traceback 30.3 30.3 43.74 43.74 

Total 334 334 1211.44 1211.44 

Data Rate 1.7Mbps 598kbps 495kbps 165kbps 

 

6.3.5 Comparison with previously published work  

G. Kang presents his work on a K=9 Viterbi with a code rate = 1/3 implemented on a 

TMS320C6201 DSP with clock frequency= 200MHz [3]. Table 6.2 shows an estimate 

of the performance on this same scenario and compares it with that of the Kang’s 

claim. 

Table 6-2:  Comparison with other researchers 

 Our Estimate for the same 

scenario  

Kang’s Result  

Data Rate  165kbps  88kbps  

 

As clear, the presented optimized code provides a data rate which is almost 2 times 

to that claimed by the researchers in [3]. 



34 
 

CHAPTER – 7 :    CONCLUSION AND FUTURE WORK 

 

This work describes a generalized implementation of Viterbi decoder that has been 

optimized for a DSP platform. Different optimization techniques have been discussed 

including the ones that optimize the logic and those which optimize the code at the 

architectural level. Such techniques enabled to present a product which can be 

implemented on any DSP platform. For a 1/2 code rate we have implemented the 

design on ADSP-BF533 and estimated its performance for TMS320C6201 DSP as 

well. With K=7, an output data rate of 1.7Mbps on ADSP-BF533 (600MHz) has been 

achieved whereas 598kbps throughput has been estimated for TMS320C6201 DSP 

(200MHz). If the constraint length K=9 is considered then this data rate reduces to 

165kbps on TMS320C6201 DSP. Briefly, an extremely optimized system both in 

terms of memory and execution speed has been developed. This system can be 

employed as a decoding unit in any CDMA/WCDMA communication system. 

The embedded application designing is a vast and open field of research always 

welcoming innovative ideas because the lust for speed will continue forever. 

Particularly for Viterbi’s implementation, some research can be done for exploring the 

influence of different factors like input buffer length, trace-back depth and 

inclusion/exclusion of transition memory from the design on the optimization of the 

system.  

 

 

 

 

 

 

 



35 
 

REFERENCES : 

 

[1] B. SKLAR, DIGITAL COMMUNICATIONS, FUNDAMENTALS AND APPLICATIONS, 

2ND ED. PEARSON EDUCATION, 2006. 

[2]  G. DAVID FORNEY, JR., THE VITERBI ALGORITHM: A PERSONAL HISTORY, 

PRESENTED AT THE VITERBI CONFERENCE, UNIVERSITY OF SOUTHERN 

CALIFORNIA, LOS ANGELES, MARCH 8, 2005. 

[3]  G. KANG, P. ZHANG., THE IMPLEMENTATION OF VITERBI DECODER ON 

TMS320C6201 DSP IN W-CDMA SYSTEM, COMMUNICATION TECHNOLOGY 

PROCEEDINGS, 2000. WCC - ICCT 2000. INTERNATIONAL CONFERENCE ON, 

VOLUME 2,  ISSUE , 2000 PAGE(S):1693 - 1696 VOL.2. 

[4] G. C. AHLQUIST, M. RICE, AND B. NELSON., ERROR CONTROL CODING IN 

SOFTWARE RADIOS: AN FPGA APPROACH, IEEE PERSONAL 

COMMUNICATIONS, MAG., AUG. 1999, PP. 35-39. 

[5]  E.Y.S AUGSBURGER, WM. RHETT DAVIS, B.NIKOLI., 500 MB/S SOFT OUTPUT 

VITERBI DECODER, SOLID-STATE CIRCUITS CONFERENCE, 2002. ESSCIRC 

2002.  PROCEEDINGS OF THE 28TH EUROPEAN VOLUME , ISSUE , 24-26 SEPT. 

2002 PAGE(S): 523 - 526 

[6]  BUPESH PANDITA, SUBIR K ROY., DESIGN AND IMPLEMENTATION OF A 

VITERBI DECODER USING FPGAS, VLSI DESIGN, 1999. PROCEEDINGS. 

TWELFTH INTERNATIONAL CONFERENCE ON VOLUME , ISSUE , 7-10 JAN 1999 

PAGE(S):611 - 614. 

[7]  MIT DEPARTMENT OF EECS, CAMBRIDGE, MA., CODE OPTIMIZATION  

TECHNIQUES FOR EMBEDDED DSP MICROPROCESSORS, DESIGN 

AUTOMATION, 1995. DAC APOS; 95. 32ND CONFERENCE ON VOLUME , ISSUE , 

1995 PAGE(S):599 - 604 

[8]  ADSP-BF533 BLACKFIN PROCESSOR HARDWARE REFERENCE, ANALOG 

DEVICES INC, JULY 2006. 

[9]  ADSP-BF53X BLACKFIN PROCESSOR INSTRUCTION SET REFERENCE, 

ANALOG DEVICES INC, MAY 2003. 

[10]  TMS320C6000 CPU AND INSTRUCTION SET USERS GUIDE, TEXAS 

INSTRUMENTS CORPORATION, JULY 2006, PP. 1-4. 



36 
 

APPENDIX-A 

CODES 

A.1 MATLAB  

 

Soft Viterbi: 

function d = softvitty (code, numInputSymbols, … 

numOutputSymbols, numStates, nextStates, outputs) 

 

% Look up table for keeping the Signal Power values (soft) 

softout=[-15,-15;-15,15;15,-15;15,15]; 

 

% Initializing 1st Column of trellis  

State_metric(1,1)=4500; 

State_metric(2:64,1)=-4500; 

 

d=[ ]; 

k=1; 

 

% Building the trellis 

for  i=1:2:length(code) 

    for j=0:2:63 



37 
 

        n1=floor(j/2); 

        n2=n1+32; 

 

State_metric(n1+1,k+1)=max(State_metric(j+1,k)+ 

mac(code(i),code(i+1),softout(outputs(j+1,1)+1,1),softout(outputs(j+1,1)+1,2)), 

State_metric(j+2,k)+mac(code(i),code(i+1),softout(outputs(j+2,1)+1,1),softout(o

utputs(j+2,1)+1,2))); 

        State_metric(n2+1,k+1)=max(State_metric(j+1,k)+ 

mac(code(i),code(i+1),softout(outputs(j+2,1)+1,1),softout(outputs(j+2,1)+1,2)), 

State_metric(j+2,k)+mac(code(i),code(i+1),softout(outputs(j+1,1)+1,1),softout(o

utputs(j+1,1)+1,2))); 

    end 

    k=k+1; 

end 

 

% Searching for the node with the best metric (Maximum Likelihood here) 

mini=find(State_metric(:,k)==max(State_metric(:,k))); 

mini=mini-1; 

 

% Trace Back 

        for i=length(State_metric)-1:-1:1 

            d=[floor(mini(1)/32) d] 



38 
 

            mini=bitand(mini,31)*2 

            if(State_metric(mini+1,i)>State_metric(mini+2,i)) 

                mini=mini; 

            else  

                mini=mini+1; 

            end 

        end 

Hard Viterbi (No Transition Memory): 

function d=vitty(code,numInputSymbols ,… 

numOutputSymbols,numStates,nextStates,outputs) 

 

% Lookup Table for keeping Branch Metric Values 

Branch_Metric=[0,1,1,2;1,0,2,1;1,2,0,1;2,1,1,0]; 

State_metric=[]; 

 

% Initializing the 1st Column of Trellis (Best Metric: Minimum Likelihood) 

State_metric(1,1)=0; 

State_metric(2:64,1)=200; 

d=[ ]; 

 

 



39 
 

% Building the Trellis 

for i=1:length(code) 

    for j=0:2:63 

       n1=floor(j/2); 

       n2=n1+32; 

      %%%%%%% Calculating State Metric %%%%%%%%%%%%%%%%  

State_metric(n1+1,i+1)  =  min(State_metric(j+1,i)+  

Branch_Metric(code(i)+1,outputs(j+1,1)+1), 

State_metric(j+2,i)+ Branch_Metric(code(i)+1,outputs(j+1,2)+1)); 

 

        

State_metric(n2+1,i+1)  =  min(State_metric(j+1,i)+ 

       Branch_Metric(code(i)+1,outputs(j+1,2)+1), 

       State_metric(j+2,i)+ Branch_Metric(code(i)+1,outputs(j+1,1)+1)); 

    end 

end 

 

mini=find(State_metric(:,i+1)==min(State_metric(:,i+1))); 

mini=mini-1; 

 

 



40 
 

%%%%%%% Trace Back %%%%%%%%%%%%%%%%  

 

        for i=length(code):-1:1 

            d=[floor(mini(1)/32) d]; 

            mini=bitand(mini,31)*2; 

            if(State_metric(mini+1,i)<State_metric(mini+2,i)) 

                mini=mini; 

            else  

                mini=mini+1; 

            end 

       end 

Hard Viterbi (Including Transition Memory): 

function d=vitty2(code,numInputSymbols ,… 

numOutputSymbols,numStates,nextStates,outputs) 

 

% Lookup Table for keeping Branch Metric Values 

Branch_Metric=[0,1,1,2;1,0,2,1;1,2,0,1;2,1,1,0]; 

State_metric=[]; 

 

% Initializing the 1st Column of Trellis (Best Metric: Minimum Likelihood) 

State_metric(1,1)=0; 



41 
 

State_metric(2:64,1)=200; 

d=[ ]; 

index=State_metric; 

 

% Building the Trellis 

for i=1:length(code) 

    for j=0:2:63 

       n1=floor(j/2); 

       n2=n1+32; 

%%%%%% Keep the track of the best metric path %%%%%%%%%%%%%%% 

        if ( State_metric(j+1,i)+Branch_Metric(code(i)+1,outputs(j+1,1)+1) 

          <State_metric(j+2,i)+Branch_Metric(code(i)+1,outputs(j+1,2)+1) ) 

             index(n1+1,i+1)=j; 

        else 

             index(n1+1,i+1)=j+1;         end 

 if( State_metric(j+1,i)+Branch_Metric(code(i)+1,outputs(j+1,2)+1) 

<State_metric(j+2,i)+Branch_Metric(code(i)+1,outputs(j+1,1)+1) ) 

             index(n2+1,i+1)=j; 

        else 

             index(n2+1,i+1)=j+1; 

        end 



42 
 

      %%%%%%% Calculating State Metric %%%%%%%%%%%%%%%%  

State_metric(n1+1,i+1)  =  min(State_metric(j+1,i)+  

Branch_Metric(code(i)+1,outputs(j+1,1)+1), 

State_metric(j+2,i)+ Branch_Metric(code(i)+1,outputs(j+1,2)+1)); 

  

State_metric(n2+1,i+1)  =  min(State_metric(j+1,i)+ 

       Branch_Metric(code(i)+1,outputs(j+1,2)+1), 

       State_metric(j+2,i)+ Branch_Metric(code(i)+1,outputs(j+1,1)+1)); 

    end 

end 

mini=find(State_metric(:,i+1)==min(State_metric(:,i+1))); 

mini=mini-1; 

%%%%%%% Trace Back %%%%%%%%%%%%%%%%  

        for i=length(code):-1:1 

            d=[ floor(mini(1)/32)  d]; 

            mini=index(mini(1)+1,i+1); 

        end  

 

MAC: 

function rslt=mac(a,b,c,d); 

rslt=a*c+b*d; 



43 
 

 

Modulation: 

function out= Modulate(in) 

for i=1:length(in) 

    if(in(i)==1) 

        out(i)=15; 

    else 

        out(i)=-15; 

    end 

end 

 

Demodulate: 

function out= demodulate(in) 

for i=1:length(in) 

    if(in(i)<=0) 

        out(i)=0; 

    else 

        out(i)=1; 

    end 

end 



44 
 

Hard Viterbi Calling Routine: 

function d= vittest(code,t); 

code_str=[]; 

for k=1:t.numInputSymbols:length(code) 

    c=code(1,k:k+t.numInputSymbols-1); 

    m=num2str(c(1)); 

    for l=2:length(c) 

        m=strcat (m,num2str(c(l))); 

    end 

    code_str=[code_str; m]; 

end 

code1=(bin2dec(code_str))'; 

d=vitty(code1,t.numInputSymbols,t.numOutputSymbols,t.numStates,t.nextStat

es,t.outputs); 

d2=vitty2(code1,t.numInputSymbols,t.numOutputSymbols,t.numStates,t.nextSt

ates,t.outputs); 

 

 

 

 

 



45 
 

Main Function: 

%%%%% Random Input %%%%%% 

msg = mod(ceil(abs(randn(1,200))),2) 

 

%%%%% Converting convolutional code polynomial to trellis description 

t=poly2trellis(7,[117 155]); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%  numInputSymbols: 2 

%  numOutputSymbols: 4 

%  numStates: 64 

%  nextStates: [64x2 double] 

%  outputs: [64x2 double] 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%%%%% Passing Through convolutional Encoder %%%%%%%%% 

code=convenc(msg,t); 

 

%%%%%%%% QPSK modulation %%%%%%%% 

input=QPSK(code); 

input2=QPSK(msg)   %% Uncoded Message 



46 
 

%%%%%%% These vectors will hold the BER values %%%%%%%% 

acc=[]; 

vit_ac=[]; 

sft_ac=[]; 

ber_b4=[]; 

vitdec_avg=zeros(1,11); 

vithard_avg=zeros(1,11); 

ber_b4_avg=zeros(1,11); 

softvit_avg=zeros(1,11); 

 

%%%%%%% Calculate Signal Power %%%%%%%% 

sigpower=(sum(input.^2))/length(input); 

 

for i=1:50 

    SNR=[]; 

    acc=[]; 

    vit_ac=[]; 

    sft_ac=[]; 

    ber_b4=[]; 

 

 



47 
 

    for cal=1:10:100 

 

        %%%%%% Corrupting the code %%%%%%%%% 

        npower=cal/100*sigpower; 

        SNR=[SNR  sigpower/npower]; 

 

        %%%%%%% Corrupting the soft coded values %%%%%%%%% 

        corrupted=floor( awgn (input,sigpower/npower,sigpower,'linear')); 

        uncoded=floor ( awgn(input2,sigpower/npower,sigpower,'linear')); 

         

        %%%%%%% Demodulation %%%%%%%%% 

        hard_input=demodulate(corrupted); 

        rec_uncoded=demodulate(uncoded); 

 

        %%%%%%% Call Vitdec %%%%%%%%%%%%%%%%%%%%%%% 

        d1=vitdec(hard_input,t,2,'trunc','hard'); 

 

        %%%%%%%%%%% Calling Hard Viterbi programs %%%%%%%%% 

        d=vittest(hard_input,t); 

        %%%%%%%%%%% Soft Viterbi %%%%%%%%%%%%%%%%%%%%% 

        d3=softvitty(corrupted,t.numInputSymbols, … 



48 
 

        t.numOutputSymbols,t.numStates,t.nextStates,t.outputs) 

 

        %%% Comparison of the decoded values with the original input msg 

%%%% 

        vit_ac_calc=d1==msg; 

        acc_calc=d==msg; 

        acc_calc2=d2==msg; 

        sft_ac_calc=d3==msg 

        ber_b4_decod=rec_uncoded==msg; 

 

        %%%%%%%%% Accumulating BER result  %%%%%%%%%%%%%%%% 

        acc=[acc ((length(msg)-sum(acc_calc))/length(msg))]; 

        vit_ac=[vit_ac ((length(msg)-sum(vit_ac_calc))/length(msg))]; 

        acc2=[acc2 ((length(msg)-sum(acc_calc2))/length(msg))]; 

        sft_ac=[sft_ac ((length(msg)-sum(sft_ac_calc))/length(msg))]; 

        ber_b4=[ber_b4 ((length(code)-sum(ber_b4_decod))/length(code))]; 

    end 

    vitdec_avg=vitdec_avg+vit_ac; 

    vithard_avg=vithard_avg+acc; 

    vithard2_avg=vithard2_avg+acc2; 

    softvit_avg=softvit_avg+sft_ac; 



49 
 

    ber_b4_avg=ber_b4_avg+ber_b4; 

end 

 

vitdec_avg=vitdec_avg/i; 

vithard_avg=vithard_avg/i; 

vithard2_avg=vithard2_avg/i; 

softvit_avg=softvit_avg/i; 

ber_b4_avg=ber_b4_avg/i; 

 

%%%%%%%%%% Plots %%%%%%%%%%%%%%% 

plot(SNR,ber_b4_avg,'-o','Linewidth',2); 

hold on 

plot(SNR,vitdec_avg,'-.*','Linewidth',2);  

plot(SNR,vithard_avg,': '̂,'Linewidth',2); 

plot(SNR,softvit_avg,'--s','Linewidth',2); 

Xlabel('SNR','FontSize',25); 

Ylabel('BER','FontSize',25); 

Title('BER Comparisons','FontSize',25) 

legend('BER of Uncoded Stream','BER through Vitdec','BER through Hard 

Viterbi','BER through Soft Viterbi');   

hold off; 



50 
 

 

A.2 C++  

MAIN CODE: 

#include"vit_data.h" 

#include<stdio.h> 

#include<math.h> 

#include<iostream.h> 

#include<conio.h> 

 

const int MAX=101; 

int msg_len=48;  

int STATE_METRIC[64][101]; 

int siz=10; 

int chunks=10; 

int trace_back_depth=siz*chunks+1; 

int ptr=0; 

int d[100];  

///////////////////////////// MAIN FUNCTION ////////////////////////////////////// 

void main() 

{ 

    int count; 



51 
 

    int i=0,k=0;   

       FILE *stream; 

       stream=fopen("msg.bin","rb"); 

       if(stream!=NULL) 

            count=fread(msgs,4,400,stream);  

       STATE_METRIC[0][0]=4500; 

       for(i=1;i<64;i++) 

           { 

  STATE_METRIC[i][0]=-4500; 

           } 

       i=0; 

      while(i<10) 

           { 

   viterbi(i*siz); 

i++; 

           } 

      traceback(d,0); 

      while(i<(msg_len/siz)) 

  { 

   viterbi(i*siz); 

   traceback(d,ptr-siz);  



52 
 

   i++; 

   

  } 

fclose(stream); 

} 

///////////////////////////////////////// VITERBI DECODER /////////////////////////////////////////// 

void viterbi(int k) 

{ 

 int i=0; 

 short n1; 

 for(i=k;i<k+siz;i++) 

 { 

           for(int j=0;j<32;j++) 

  { 

   n1=j*2; 

STATE_METRIC[j][(ptr+1)%trace_back_depth]   

= max(STATE_METRIC[n1][ptr]+mac(msg[i][0],msg[i][1],output[j][0],output[j][1]), 

 STATE_METRIC[n1+1][ptr]+mac(msg[i][0],msg[i][1],-1*output[j][0],-1*output[j][1])); 

 STATE_METRIC[j+32][(ptr+1)%trace_back_depth] 

=max(STATE_METRIC[n1][ptr]+mac(msg[i][0],msg[i][1],-1*output[j][0],-1*output[j][1]), 

STATE_METRIC[n1+1][ptr]+mac(msg[i][0],msg[i][1],output[j][0],output[j][1])); 



53 
 

} 

ptr=(ptr+1)%trace_back_depth; 

} 

} 

///////////////////// Find Maximum ////////////////////////////////////// 

int max(int a,int b) 

{ 

 int maxi=a; 

 if (b>a) 

  maxi=b; 

 return(maxi); 

} 

///////////////////// Traceback ////////////////////////////////////// 

void traceback(int d[],int end) 

{ 

 short max_ind=0; 

 for(int j=1;j<64;j++) 

 { 

  if(STATE_METRIC[j][ptr]>STATE_METRIC[max_ind][ptr]) 

   max_ind=j; 

 } 



54 
 

          for(int i=ptr-1;i>=end;i--) 

 { 

  d[i]=max_ind/32; 

  max_ind=(max_ind & 31)*2;   

                      if(STATE_METRIC[max_ind][i]<STATE_METRIC[max_ind+1][i]) 

   max_ind+=1; 

 } 

} 

///////////////////// MAC (Multiply Accumulate) ////////////////////////////////////// 

int mac(int msg1,int msg2,int out1,int out2) 

{ 

  return(msg1*out1+msg2*out2); 

} 

Vit_Data.h: 

#ifndef vit_ data_h 

#define vit_ data_h 

void viterbi(int); 

int max(int a,int b); 

void traceback(int[ ], int); 

int mac(int msg1,int msg2,int out1,int out2); 

 



55 
 

const int output[32][2] ={ {-15,-15},{15,-15},{15,15},{-15,15},{15,15},{-15,15},{-15,-

15},{15,-15},{-15,-15},{15,-15},{15,15},{-15,15},{15,15},{-15,15},{-15,-15},{15,-15}, 

{-15,15},{15,15},{15,-15},{-15,-15},{15,-15},{-15,-15},{-15,15},{15,15}, 

{-15,15},{15,15},{15,-15}, {-15,-15},{15,-15},{-15,-15},{-15,15},{15,15} }; 

const short Branch_Metric[4][4]={{0,1,1,2},{1,0,2,1},{1,2,0,1},{2,1,1,0}}; 

#endif  

A.3 ADSP-BF533 Assembly (Visual DSP++) 

Trellis: 

///////////////////////////////////////// TRELLIS FORMATION /////////////////////////////////////////// 

#include <asm_sprt.h> 

.section my_asm_section; 

.global _trellis; 

.extern _STATE_METRIC; 

.extern _ptr; 

.extern _output; 

_trellis: 

P2=R0;  // i 

P5=R1; 

P0.h=_ptr; 

P0.l=_ptr; 

I0.h=_output; 

I0.l=_output; 

P3=10; //siz 

P2=P2+P5; // msg[i][0]  

P4=32;  // no of states/2 

I1.h=_STATE_METRIC; 

R1=[P0]; 

R1=R1<<2;        // ptr 

B3=0; 

M1=R1; I3=R1; 

I1.l=_STATE_METRIC;  

I2=I1;  

B2=I2; 

M3=4; 

B0=I0; 



56 
 

L0=128;  

L3=404; 

I1+=M1; 

L2=25856; 

I3+=M3;  

M3=I3; 

I2+=M3; 

B1=I1;L1=25856;  

M1=404; 

M2=12928; 

M3=12924; 

M0=I2; 

LSETUP (begin_loop, end_loop) 

LC0=P3; 

begin_loop:   

R0=[P2++];    // read msg[i][0] 

R1=[P2++];   // read msg[i][1] 

LSETUP (begin_loop2, end_loop2) 

LC1=P4; 

begin_loop2:  

R2.l=W[I0++];     // output[j][0] 

R3.l=W[I0++]||A0=R0.l*R2.l(IS);  

R4=(A0+=R1.l*R3.l)(IS)||R2=[I1++M1]; 

R6=[I1++M1]||R3=R2+R4,R7=R2-R4(S); 

R2=R6+R4,R6=R6-R4(S);    

R5=Max(R3,R6); 

R7=max(R7,R2)||[I2++M2]=R5; 

[I2++M2]=R7;  

end_loop2:  I2+=M1;  

I1=M0; 

I2-=M3; 

end_loop:     M0=I2; 

RTS; 

_trellis.end: 



57 
 

 

Trace back: 

 

.section my_asm_section; 

.global _traceback_asm; 

.extern _STATE_METRIC; 

_traceback_asm: 

 

P2=400; 

P0.l=_STATE_METRIC; 

P0.h=_STATE_METRIC; 

R6=P0; 

P3=63; 

P1=R0; 

P0=P0+P2; 

R0=[P0]; 

P2=404; 

R3=1; 

R2=31; 

R4=0; 

r1=[P0+404]; 

P0=P0+P2; 

LSETUP (begin_loop, end_loop) 

LC0=P3; 

begin_loop: 

       cc=R1<=R0; 

 if CC jump equ; 

 R0=R1; 

 R4=R3;    

      

 equ:  

 R3+=1;  

 R1=[P0+404];   

end_loop: P0=P0+P2;   

   

R7=101; // no of columns 

P2=100;// Loop counter 

R5=99; 

M3=404; 

L3=0; 

LSETUP (begin_loop2, end_loop2) 

LC1=P2; 

begin_loop2: 



58 
 

R3=R4>>5; 

[P1++]=R3; 

R4=R4&R2; 

R4=R4<<1; 

R7*=R4; 

R3=R7+R5; 

R3=R3<<2; 

R3=R3+R6; 

I3=R3; 

R5+=-1; 

R7=101; 

R3=[I3++M3]; 

R0=[I3++M3]; 

CC=R3<R0; 

if !CC jump end_loop2; 

R4+=1; 

end_loop2: NOP; 

RTS; 

_traceback_asm.end: 

 


