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Abstract 
 

Infinite Impulse Response filters (IIR) with different approximations was first realized in 19th 

century.  IIR filters have gained enormous popularity in the recent years due to its inherent ability 

to filter out the signals depending upon the approximation being used. A lot of work has been 

done on IIR filters since then, however concept of feedback compensation has been partially 

neglected.  This thesis involves investigating a procedure to build an effective IIR filter with one 

of its trademark specifications. Different approximations have also been discussed to make IIR 

filter. Comparisons have also been made between different approximations with pros and cons of 

these approximations have also been stated. 

 

The second part of thesis represents an implementation and tradeoff analysis of compensated IIR 

filter with Error feedback (EF). Hardware analysis is made so that a better comparison can be 

made between the two techniques i.e. IIR filter with error feedback and without feedback. A 

simple method is devised to reduce the quantization error of the biquadratic section 

implementation by means of EF approach. The compensation method including the EF 

application utilized the fact that filter with an EF is more resistant to noise then filter without EF. 

Then an iterative method can be used afterwards to reduce the silicon area. First a standard 

recursive IIR filter is developed with basic quantization properties. Then a more advanced EF-

compensated biquadratic section is designed. The compensated portion of the filter involves the 

calculation of feedback coefficients. Different methods have been stated for calculation of 

feedback coefficients. The quantization error of both the solutions is compared numerically and 

graphically.  Although EF implementation results in more usage of resources and more 

complexity but its results are less error prone at the output of the quantizer. The designs are 

implemented using Xilinx ACCELDSP 10.1 and graphs have been developed using Matlab. 
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CHAPTER 1 

1.1 Introduction 

This thesis analyzes the use of Infinite Impulse response filter to reduce the quantization error in 

biquadratic section implementation at the output of the quantizer. The goal of this work is to 

present the methodology and results of optimization of the biquadratic section implementation 

hardware cost with the help of the quantization error feedback (EF). The optimized structure has 

to keep all the properties of the biquadratic section without the error feedback, roundoff noise 

level including. The standard and the EF implemented biquadratic section implementations are 

both analyzed, their parameters and values are compared from various points of view (utilized 

logic, maximal clock frequency and quantization signal to noise ratio). 

 

Error Feedback (EF) is a general method that can be used to reduce errors inherent in any 

quantization operation. It is better to reduce as much quantization error as possible at the output 

of the quantizer to get better results. To our knowledge, error feedback techniques are widely 

used in applications like predictive speech coding, predictive image coding, and sigma-delta 

analog-to-digital conversion. Error feedback can also be used to reduce quantization errors 

generated in finite word length implementations of recursive digital filters. Especially with fixed-

point implementations of narrow-band low-pass filters its effect is much more appreciable than 

any other low noise structures.   

 

To implement compensated structure i.e. a biquadratic structure with EF logic embedded with it 

we might have to add some extra resources and logic but the overall results obtained are much 

more emphatic and precise as compared to the filters with non EF logic. There are different types 

of IIR filters with each one having their own advantages and disadvantages but here the type 

used is an Elliptic IIR filter. An elliptic filter (also known as a Cauer filter)is an electronic filter 

with equalized ripple (equiripple) behavior in both the pass band and the stop band. The amount 

of ripple in each band is independently adjustable, and no other filter of equal order can have a 

faster transition in gain between the pass band and the stop band, for the given values of ripple 

(whether the ripple is equalized or not). Alternatively, one may give up the ability to 
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independently adjust the pass band and stop band ripple, and instead design a filter which is 

maximally insensitive to component variations. Elliptic filters are generally specified by 

requiring a particular value for the pass band ripple, stop band ripple and the sharpness of the 

cutoff. This will generally specify a minimum value of the filter order which must be used. 

Another design consideration is the sensitivity of the gain function to the values of the electronic 

components used to build the filter. The filter order and specifications used in this thesis work 

are chosen as to maximize the effect of EF quantization so that the resulting structure obtained is 

as less error prone as possible. 

 

This thesis in general explores a method to generate an IIR filter structure with and without error 

feedback logic. There are many different methods by which the goal of minimization of error can 

be achieved. A complete biquadratic filter structure has been implemented here with poles and 

zeros are chosen to be close to the unit circle for better optimization of results. Different 

algorithms can also be added if required for the calculation of feedback coefficients involved in 

the calculation of compensated portion of the filter. After the calculation of feedback coefficients 

the compensated portion of the IIR filter is implemented. The results of both the sections i.e. 

with EF and without EF are analyzed and compared. Matlab graphs and Virtex tool are used for 

the analysis and comparison of both the techniques in terms of minimization of error, resources 

used i.e. Flip Flops (FF) and Look up Tables(LUT) and frequency.  First the biquadratic sections 

with and without EF are implemented in Matlab and then to implement both the sections on 

hardware they are coded in Modelsim verilog tool. Synthesis results are obtained finally using 

the Virtex 2 FPGA tool. The results of both the techniques are compared and results obtained 

from FPGA synthesis report are finally plotted in Matlab for better optimization and comparison 

of results. Finally in the end we propose some methods and ideas for better improvement and 

optimization of results. 
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CHAPTER 2 

2.1 Infinite Impulse Response (IIR) Filter 

In this chapter we’ll try to describe the designing, implementation and basic types of an Infinite 

Impulse Response (IIR) filter.IIR filters have usually infinite impulse responses, hence they can 

be, matched with analog filters all of which have infinite impulse responses. Three different 

types of an IIR filter are also explained with their respective properties and comparison between 

them. This digital filter has a gain curve that approximates the filter characteristics of a 

corresponding analog filter. IIR filters are digital filters which are used where analog filters are 

used to approximate the gain and phase response of analog filters. However, an area where using 

an IIR filter gives a definite edge is that when it is implemented in hardware it provide much 

more flexibility, reduces degradation and noise at the output of quantizer, provides better 

accuracy in terms of number of bits used and provides filter reproducibility. Some basic areas 

where they are used commonly are for sound and music enhancement, telecommunications, 

video image processing, biomedical instrumentation, and radar and sonar processing. There are 

many mathematical formulas that approximate an analog filter with an IIR filter, but the method 

we are using in this thesis is to approximate the IIR filter such that the poles and zeros are placed 

very close to unit circle [1]. 

 

Usually the specifications for a digital filter are given in terms of normalized frequencies. Also, 

in many applications, the specifications for an analog filter are realized by a digital filter in the 

combination of an Analog to digital converter (ADC) in the front end with a Digital to Analog 

converter (DAC) at the receiving end, and these specifications will be in the analog domain. The 

magnitude and frequency responses of the analog filters are shown in Figure 2-1. 
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Figure 2-1: Magnitude responses of filter: (a) lowpass filter (b) highpass filter (c) bandpass filter 

(d) bandstop filter. 
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The primary advantage of IIR filters over FIR filters is that they typically meet a given set of 

specifications with a much lower filter order than a corresponding FIR filter. Although IIR filters 

have nonlinear phase, data processing within MATLAB is commonly performed “off-line,” that 

is, the entire data sequence is available prior to filtering. This allows for a noncausal, zero-phase 

filtering approach which eliminates the nonlinear phase distortion of an IIR filter. 

 

The thesis core portion contains a recursive portion and a feedback portion. T describe first 

portion of thesis which contains filter without EF portion contains only a recursive part. The 

recursive portion of the algorithm can be stated as: 

 

                                    
1 0

( ) ( ) ( ) ( ) ( )
N M

k k
y n a k y n k b k x n k

= =

= − − + −∑ ∑                                       (2.1)  

Where N specifies feedforward filter order, b specifies feedforward filter coefficients, a specifies 

feedforward filter coefficients, x (n) specifies the input signal whereas y(n) specifies the output 

signal. A more condensed form of the difference equation stated above can be written as:   

 

     0
0 1

( ) 1/ ( ) ( ) ( ) ( )
M N

k k

y n a b k x n k a k y n k
= =

⎛ ⎞
= − − −⎜ ⎟

⎝ ⎠
∑ ∑          (2.2) 

 

Equivalent form of equation (2.2) can be written as: 

 

     
0 1

( ) ( ) ( ) ( )
M N

k k
b k x n k a k y n k

= =

− = −∑ ∑      Where a(0)=1                      (2.3)  

The transfer function of IIR filter deduced from the above mentioned equation can be written as: 

   
0

0

( )
( )

( )

M
k

k
N

k

k

b k z
H z

a k z

−

=

−

=

=
∑

∑
         Where a(0)=1                (2.4)  

Considering that in most IIR filter designs coefficient a(0)=1, the IIR filter transfer function 

takes the more traditional form:   
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0

1

( )
( )

1 ( )

M
k

k
N

k

k

b k z
H z

a k z

−

=

−

=

=
+

∑

∑
                             (2.5) 

The transfer function stated above helps us to identify whether the system is bounded-input 

bounded-output stable or not [1]. 

 

Before Implementing the implementation of IIR filter, the transfer function must be evaluated 

onto the unit circle i.e. z=ejω (where “ω” is normalized frequency in radians). Some properties of 

evaluation of the transfer function onto unit circle is given as: 

 

                    
0 0

0 0

( ) cos( ) ( )sin( )
( )

( )sin( ) ( )sin( )

M M

j k k
N M

k k

b k k j b k k
H e

a k k j a k k

ω
ω ω

ω ω

= =

= =

−
=

−

∑ ∑

∑ ∑
         (2.6) 

In the above mentioned equation H(ejω) is the frequency response of the filter or in other words it 

can be written as the discrete time Fourier transform (DTFT) of the filter. It can also be written 

as the product of frequency response and phase response i.e.  

 

   
( )( ) ( ) .j j jH e H e eω ω θ ω= ,        (2.7) 

where 
( )jH e ω

 is magnitude response and 
( )je θ ω

 is phase responses of the transfer function. 

If x[n] is the input signal to the filter with a frequency response of X(ejw) such that… 

 

   
( )( ) ( ) .j j jX e X e eω ω α ω=         (2.8) 

  

If 
( )jX e ω

 is the magnitude response and 
( )je α ω

is phase response of the input signal then  
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The frequency response Y(ejω) can also be written as the product of frequency responses of the 

filter and the input signal i.e. Y(ejω)=X(ejω).H(ejω) . The expression for the frequency response of 

the output signal can also be written as: 

 

   
{ ( ) ( )}( ) ( ) ( )j j j j a jY e X e H e eω ω ω ω θ ω+=       (2.9) 

 

Eq (2.9) shows that the magnitude of the output signal is multiplied by H(ejω) and consequently 

its phase will increase by �(ejw) of the filter[1][2].  

 

   

1/ 2
2 2

0 0

2 2

0 0

[ ( )cos( )] [ ( )sin( )]
( )

[ ( )cos( )] [ ( )sin( )]

M M

j k k
N M

k k

b k k b k k
H e

a k k a k k

ω
ω ω

ω ω

= =

= =

⎧ ⎫+⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪+
⎪ ⎪⎩ ⎭

∑ ∑

∑ ∑
  (2.10) 

 

The phase �(ejw) can also be stated as: 

 

   
1 10 0

0 0

( )sin( ) ( )sin( )
( ) tan tan

( )cos( ) ( )cos( )

M M

k k
M N

k k

b k k a k k
j

b k k a k k

ω ω
θ ω

ω ω

− −= =

= =

= − +
∑ ∑

∑ ∑
  (2.11) 

Therefore magnitude squared function deduced from the above mentioned equations is 

 

   
2

( ) ( ) ( )j j jH e H e H eω ω ω−=         (2.12) 

 

     
*( ) ( )j jH e H eω ω=  

 

where H*(ejω)= H(e-jω) is the complex conjugate of filter frequency response H(ejω). It can be 

shown that the magnitude response is an even function of ω while the phase response is an odd 



  
8   

   

function of ω. Very often it is convenient to compute and plot the log magnitude of  ( )jH e ω  as 

10log 
2

( )jH e ω measured in decibels. 

 
Designing an IIR filter usually means that we find a transfer function H(z) in the form of 

equation (2.3) such that its magnitude response (or the phase response, the group delay, or both 

the magnitude and group delay) approximates the specified magnitude response in terms of a 

certain criterion. For example, we may want to amplify the input signal by a constant without 

any delay or with a constant amount of delay. But it is easy to see that the magnitude response of 

a filter or the delay is not a constant in general and that they can be approximated only by the 

transfer function of the filter.  

 

In general IIR filters have infinite duration impulse responses hence they can be matched to 

analog filters all of which generally have infinite long impulse responses. Two analytical 

methods are commonly used for the design of IIR digital filters, and they depend significantly on 

the approximation theory for the design of continuous-time filters, which are also called analog 

filters. Therefore, it is essential to review the theory of magnitude approximation for analog 

filters before discussing the design of IIR digital filters. 

 

 2.2 Approximation of Analog Filters 

 

 

 
Figure 2-2: An approach to design IIR filter 

 

The first approach is normally used in MATLAB to design IIR filters . A straight forward use of 

the built-in functions don’t give the insight look into the design methodology. Hence in IIR 

filters designing technique following three steps are very important to follow. 

 

• Design Analog lowpass filters. 

Design Analog Low 
Pass Filter 

Apply frequency 
band 

transformation 

Apply filter 
Transformation 

Desired IIR filter 
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• Study and apply filter transformations to obtain effective digital low pass filters. 

• Study and apply frequency band transformations to obtain other digital filters from a 

simple digital low pass filters. 

 

The transfer function of an analog filter H(s) is a rational function of the complex frequency 

variable “s”, with real coefficients and is of the form [3]: 

                           

2
0 1 2

2
0 1 2

...( ) ,

...

t
t

k
k

c c s c s c sH s t k
d d s d s d s

+ + +
= ≤

+ + +          (2.13) 

The frequency response or the Fourier transform of the filter is obtained as a function of the 

frequency ω, by evaluating H(s) as a function of jω, 

 

                 

2 3
0 1 2 3

2 3
0 1 2 3

...( ) ,

...

t t
t

k k
k

c jc c jc j cH j t k
d jd d jd j d

ω ω ω ωω
ω ω ω ω

+ − −
= ≤

+ − −                    (2.14) 

 

( )( ) jH j e φ ωω=  

where H(jω) is the frequency response, |H(jω)| is the magnitude response, and θ(jω) is the phase  

response. We also find the magnitude squared and the phase response from the following: 

 

     
2( ) ( ) ( )H j H j H jω ω ω= −                       (2.15) 

           

         
*( ) ( )H j H jω ω=  

 

       
2 ( )( )

( )
H j e

H j
θ ωω

ω
=

−             (2.16) 
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The magnitude response of an analog filter is an even function of ω, whereas the phase response 

is an odd function. Although these properties of H(jω) are similar to those of H(ejω), there are 

some differences. For example, the frequency variable ω in H(jω) is (are) in radians per second, 

whereas ω in H(ejω) is the normalized frequency in radians. The magnitude response |H(jω)| (and 

the phase response) is (are) aperiodic in ω over the doubly infinite interval −∞ < ω < ∞, whereas 

the magnitude response ห݁ܪఠห (and the phase response) is (are) periodic with a period of 2π on 

the normalized frequency scale. 

 

A comparison can be made between the FIR and IIR filters based on their properties. The main 

difference between an FIR and IIR filter can be stated as follows: 

 

• Recursive (IIR) filters can be used to achieve the same processing as almost all non-

recursive (FIR) filters but have the advantage of needing fewer multipliers/ coefficients 

and so are simpler in terms of hardware. 

 

• As with any system that uses feedback, a recursive filter can be unstable – this is not the 

case with FIR filters - these are always stable. (In addition to that IIR filters also have a 

'phase problem' compared to FIR filters)[2]. 

 
• IIR filters can achieve a given filtering characteristic using less memory and calculations 

than a similar FIR filter. 

 
However, IIR filters are more susceptible to problems of finite-length arithmetic, such as noise 

generated by calculations, and limit cycles. (This is a direct consequence of feedback: when the 

output isn't computed perfectly and is fed back, the imperfection can compound). Therefore in 

implementing the IIR filters some assumptions have to make to make the results better and for 

the better optimization of the whole process. 
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CHAPTER 3 

Basic Analog IIR filter Approximations 

 
Many types of analog filters can be built. Anyone could be a lowpass, highpass, bandpass, or a 

stopband filter depending upon the user specifications. Although the type of IIR filter used in our 

research work is Elliptic low pass filter, but it’s appropriate to discuss some analog IIR filter 

approximations so that a better comparison can be made between all the approximations. 

Comparison between different filter approximations also enables us to justify our selection of 

Elliptic lowpass filter in our system model. 

 

3.1 Introduction to Basic IIR filters Approximations 

Many types of analog filters can be built. Anyone could be a lowpass, highpass, bandpass, or a 

stopband filter as described earlier. However, because of the nature of electrical circuits used to 

build analog filters, any of these filter types can be divided into four basic analog approximations 

that meet the graphical specification. These approximations are based on where the gain curve 

has ripples or deviations from a smoothly varying curve. In the first approximation, called the 

Butterworth, there are no ripples in any passband or stopband. Thus the digital IIR filter has no 

ripples in it either. The general gain curve is given in Figure 3.1 for a lowpass filter specification. 

Similar graphical specifications could be drawn for highpass, bandpass, or bandstop filters.  
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Figure 3-1: Butterworth lowpass IIR filter 
 
Notice in Figure 3.1 that the important characteristic is that the gain curve smoothly varies in the 

passband and the stopband up to half the sampling frequency. 

 

The second analog filter approximation to an ideal analog graphical filter specification is the 

Chebyshev, which has ripples in the passbands, but has a smoothly decreasing gain curve as 

compared to Butterworth filters in the stopband. In Figure 3.2 lowpass IIR filter is used to 

illustrate a Chebyshev approximation. Similar gain curves could be drawn for a highpass, 

bandpass, or bandstop filter. Notice in Figure 3.2 that the gain curve has ripple in the passband, 

because the gain increases before it decreases. For higher-order filters the ripple is more obvious, 

with several cycles of increasing and decreasing gain in the passband. This is an unwanted 

deviation from the ideal analog filter. However, as the Chebyshev filter will have a narrower 

transition band between the stop and passbands, it trades off ripple in the passband for a gain 

curve that more closely approximates the ideal graphical specification by having a narrower 

transition band than the Butterworth filter [4]. 

 

 
Figure 3-2: Chebyshev lowpass IIR filter 

 
 

 
The third analog filter approximation to an ideal analog graphical filter specification is an elliptic 

filter. An elliptic filter (also known as a Cauer filter) is an electronic filter with equalized ripple 

(equiripple) behavior in both the passband and the stopband. The amount of ripple in each band 

is independently adjustable, and no other filter of equal order can have a faster transition in gain 
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between the passband and the stopband, for the given values of ripple (whether the ripple is 

equalized or not). Alternatively, one may give up the ability to independently adjust the passband 

and stopband ripple, and instead design a filter which is maximally insensitive to component 

variations. As the ripple in the stopband approaches zero, the filter becomes a type I Chebyshev 

filter. As the ripple in the passband approaches zero, the filter becomes a type II Chebyshev filter 

and finally, as both ripple values approach zero, the filter becomes a Butterworth filter.  

Elliptic filter has ripples in the passbands, but has a smoothly decreasing gain curve as compared 

to Butterworth and Chebyshev filters in the stopband. In Figure 3.3 lowpass IIR filter is used to 

illustrate a Chebyshev approximation. Similar gain curves could be drawn for a highpass, 

bandpass, or bandstop filter. Notice in Figure 3.3 that the gain curve has ripple in the passband, 

because the gain increases before it decreases. For higher-order filters the ripple is more obvious, 

with several cycles of increasing and decreasing gain in the passband [4]. This is an unwanted 

deviation from the ideal analog filter. However, as the Elliptic filter will have a narrower 

transition band between the stop and passbands, it trades off ripple in the passband for a gain 

curve that more closely approximates the ideal graphical specification by having a narrower 

transition band than the Butterworth and Chebyshev filters. 

 

 
 

Figure 3-3: Elliptic IIR filter 
 

The design of elliptic filters is more difficult than the Butterworth and Chebyshev filters, because 

their design relies on the use of tables or series expansions. Butterworth filter  shown in Fig 3-1 

shows that it is the smoothest one but it has no ripples. The last one is the Elliptic filter shown in 
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Fig 3-2 shows that it is the sharpest one but it shows ripples in both the pass-band and the stop-

band. The Chebyshev filter in the middle have an average behavior, being quite sharp with 

ripples in part of the spectrum [6]. 

 

3.2 Butterworth Filter Approximations 

The Butterworth filter is one type of electronic filter design. It is designed to have a frequency 

response which is as flat as mathematically possible in the passband. Another name for it is 

maximally flat magnitude filter. The frequency response of the Butterworth filter is maximally 

flat (has no ripples) in the passband, and rolls off towards zero in the stopband. When viewed on 

a logarithmic Bode plot, the response slopes off linearly towards negative infinity. For a first-

order filter, the response rolls off at −6 dB per octave (−20 dB per decade) (all first-order 

lowpass filters have the same normalized frequency response). For a second-order lowpass filter, 

the response ultimately decreases at −12 dB per octave, a third-order at −18 dB, and so on. 

Butterworth filters have a monotonically changing magnitude function with ω, unlike other filter 

types that have non-monotonic ripple in the passband and/or the stopband[5][6].  

 

 
Figure 3-4: The Bode plot of a first-order Butterworth low-pass filter 

 
 

Compared with a Chebyshev Type I/Type II filter or an elliptic filter, the Butterworth filter has a 

slower roll-off, and thus will require a higher order to implement a particular stopband 
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specification. However, Butterworth filter will have a more linear phase response in the passband 

than the Chebyshev Type I/Type II and elliptic filters. 

 

This ideal lowpass filter as describe earlier passes all frequencies of the input continuous time 

signal in the interval |ω| ≤ ωc with equal gain and completely filter out all the frequencies outside 

this interval. In the bandpass filter response the frequencies between ω1 and ω2 and between 

−ω1 and −ω2 only are transmitted and all other frequencies are completely filtered out. 

For the ideal lowpass filter, the magnitude response in the interval 0 ≤ ω ≤ ωc is shown as a 

constant value normalized to one and is zero over the interval ωc ≤ ω < ∞. Since the magnitude 

response is an even function, we know the magnitude response for the interval −∞ < ω < 0. 

For the lowpass filter, the frequency interval 0 ≤ ω ≤ ωc is called the passband, and the interval 

ωc ≤ ω < ∞ is called the stopband. Since a transfer function H(s) of the form (2.13) cannot 

provide such an ideal magnitude characteristic, it is common practice to prescribe tolerances 

within which these specifications have to be met by |H(jω)|. For example, the tolerance of δp on 

the ideal magnitude of one in the passband and a tolerance of δs on the magnitude of zero in the 

stopband are shown in Figure 3-5. A tolerance between the passband and the stopband is also 

provided by a transition band shown in this figure. This is typical of the magnitude response 

specifications for an ideal filter. 
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Figure 3-5: Magnitude response of an ideal lowpass analog filter showing the tolerances 

 

In order that it approximates the magnitude of the ideal lowpass filter, let us impose the 

following conditions: 

• The magnitude at ω = 0 is normalized to one. 

• The magnitude monotonically decreases from this value to zero as ω→∞. 

• The maximum number of its derivatives evaluated at ω = 0 are zero. 

 

The magnitude response that satisfies conditions 2 and 3 is known as the Butterworth response, 

whereas the response that satisfies only condition 3 is known as the maximally flat magnitude 

response, which may not be monotonically decreasing. The magnitude squared function 

satisfying the three conditions is therefore of the form[1]: 
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We scale the frequency ω by ωp and define the normalized analog frequency Ω= ω/ωp so that the 

passband of this filter is Ωp = 1. Now the magnitude of the lowpass filter satisfies the three 

conditions listed above and also the condition that its passband be normalized to Ωp = 1. Such a 

filter is called a prototype lowpass Butterworth filter having a transfer function H(p) = H(s/p), 

which has its magnitude squared function given by: 

 

       

2
2

2

1( )
1 n

n

H j
D

Ω =
+ Ω         (3.2) 

Before we proceed with the analytical design procedure, we normalize the magnitude of the filter 

by H0 for convenience and scale the frequencies ωp and ωs by ωp so that the bandwidth of the 

prototype filter and its stopband frequency become Ωp = 1 and Ωs = ωs/ωp, respectively. The 

specifications about the magnitude at Ωp and Ωs are satisfied by the proper choice of D2n and n in 

the function (3.2) as explained below. If, for example, the magnitude at the passband frequency 

is required to be 1/√2, which means that the log magnitude required is −3 dB, then we choose 

D2n = 1. If the magnitude at the passband frequency  Ω= Ωp = 1 is required to be 1 − δp, then we 

choose D2n, normally denoted by �2, such that:  
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Let us consider the common case of a Butterworth filter with a log magnitude of −3 dB at the 

bandwidth of Ωp to develop the design procedure for a Butterworth lowpass filter[6][1]. In this 

case, we use the function for the prototype filter, in the form 

        2

2 1( )
1 n

H jΩ =
+Ω         (3.4) 

This satisfies the following properties: 

• The magnitude squared of the filter response at  Ω= 0 is one. 

• The magnitude squared at Ω = 1 is 1/2 for all integer values of n; so the log magnitude is 

−3 dB. 
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• The magnitude decreases monotonically to zero as Ω →∞; the asymptotic rate is −40n 

dB/decade. 

 

Figure 3-6: Magnitude responses of Butterworth lowpass filters. 

The magnitude response of Butterworth lowpass filters is shown for n = 2, 3. . . 6 in Figure 3-6. 

 

3.3 Chebyshev Filter Approximations 

Chebyshev filters are analog or digital filters having a steeper roll-off and more passband ripple 

(type I) or stopband ripple (type II) than Butterworth filters. Chebyshev filters have the property 

that they minimize the error between the idealized filter characteristic and the actual over the 

range of the filter, but with ripples in the passband. Because of the passband ripple inherent in 

Chebyshev filters, filters which have a smoother response in the passband but a more irregular 

response in the stopband are preferred for some applications. 
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3.3.1 Chebyshev Type-I Approximation 

These are the most common Chebyshev filters. The gain (or amplitude) response as a function of 

angular frequency ω of the nth order low pass filter is: 

     

2
2 0
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1 ( )n

HH j
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Ω =
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The Chebyshev I approximation for an ideal lowpass filter shows a magnitude that has the same 

values for the maxima and for the minima in the passband and decreases monotonically as the 

frequency increases above the cutoff frequency[1]. It has equal-valued ripples in the passband 

between the maximum and minimum values as shown in Figure 3-7. 

 
Figure 3-7: Magnitude response of Chebyshev (equiripple filter) 

 

where Cn(Ω) is the Chebyshev polynomial of degree n. It is defined by: 

     
1( ) cos( cos )nC n −Ω = Ω         (3.6) 

Typically the specifications for a lowpass Chebyshev filter specify the maximum and minimum 

values of the magnitude in the passband; the cutoff frequency ωp, which is the highest frequency 

of the passband; a frequency ωs in the stopband; and the magnitude at the frequency ωs. As in the 

case of the Butterworth filter, we normalize the magnitude and the frequency and reduce the 
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given specifications to those of the normalized prototype lowpass filter and follow similar steps 

to find the poles of H(p). 

 

A property of Chebyshev I filters is that the total number of maxima and minima in the closed 

interval [−1 1] is n + 1. The square of the magnitude response of Chebyshev lowpass filters is 

shown in Figure 3-8 to indicate this particular property of the Chebyshev lowpass filters[6]. 

 
Figure 3-8: Magnitude response of Chebyshev type-I filters. 

 

To elaborate the concepts of Chebyshev type-1 approximation equation (3-5) can be re-written 

as: 
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where � is the ripple factor, ω0 is the cutoff frequency and Tn is a Chebyshev polynomial of the 

nth order. The passband exhibits equiripple behavior, with the ripple determined by the ripple 

factor �. In the passband, the Chebyshev polynomial alternates between 0 and 1 so the filter gain 

will alternate between maxima at G = 1 and minima at G ൌ 1/√1  Ԗଶ. At the cutoff frequency 

ω0 the gain again has the value 1/√1  Ԗଶbut continues to drop into the stop band as the 

frequency increases. This behavior is shown in the diagram on the right. (note: the common 

definition of the cutoff frequency to −3 dB does not hold for Chebyshev filters. 
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3.3.2 Chebyshev Type-II Approximation 

Also known as inverse Chebyshev, this type is less common because it does not roll off as fast as 

type I and requires more components. It has no ripple in the passband, but does have equiripple 

in the stopband. The Chebyshev II filters have a magnitude response that is maximally flat at ω = 

0; it decreases monotonically as the frequency increases and has an equiripple response in the 

stopband. Typical magnitudes of Chebyshev II filters are shown in Figure 3-9. 

 

Figure 3-9: Magnitude response of Chebyshev type-II filters. 

 

This class of filters is also called Inverse Chebyshev filters. The transfer functions of Chebyshev 

II filters are derived by applying the following two transformations: 

 

• a frequency transformation Ω=1/ω in |ܪሺ݆Ωሻ|ଶof the lowpass normalized prototype filter 

gives the magnitude squared function of the highpass filter |ܪሺ1/݆Ωሻ|ଶ,with an 

equiripple passband in |Ω|>1 and a monotonically decreasing response in the stopband 

0<|Ω|<1.  

• magnitude squared function  of the inverse Chebyshev lowpass filter is: 
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The magnitude squared function |HሺjΩሻ|ଶ of a lowpass Chebshev-1 filter and 1-|Hሺ1/jΩሻ|ଶ are 
shown in Figure 3-10 

 

 

Figure 3-10: Transformation of Chebyshev I to Chebyshev II filter response 

 
We make two important observations in Figure 3-10. The normalized cutoff frequency Ω= 1 

becomes the lowest frequency in the stopband of the inverse Chebyshev filter at which the 

magnitude is Ԗଶ/1  Ԗ2. Hence the frequencies ωp and ωs specified for the inverse Chebyshev 

filter must be scaled by ωs and not by ωp to obtain the prototype of the inverse Chebyshev filter. 

The magnitude response of Chebyshev II lowpass filter is shown in Figure 3-11. 
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Figure 3-11: Magnitude response of Chebyshev II lowpass filter 

 

3.4 Elliptic Filter Approximations 

An elliptic filter (also known as a Cauer filter) is an electronic filter with equalized ripple 

(equiripple) behavior in both the passband and the stopband. The amount of ripple in each band 

is independently adjustable, and no other filter of equal order can have a faster transition in gain 

between the passband and the stopband, for the given values of ripple (whether the ripple is 

equalized or not). Alternatively, one may give up the ability to independently adjust the passband 

and stopband ripple, and instead design a filter which is maximally insensitive to component 

variations. They exhibit an equiripple response in the passband and also in the stopband. The 

order of the elliptic filter that is required to achieve the given specifications is lower than the 

order of the Chebyshev filter, and the order of the Chebyshev filter is lower than that of the 

Butterworth filter. As the ripple in the stopband approaches zero, the filter becomes a type I 

Chebyshev filter. As the ripple in the passband approaches zero, the filter becomes a type II 
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Chebyshev filter and finally, as both ripple values approach zero, the filter becomes a 

Butterworth filter. 

The gain of a lowpass elliptic filter as a function of angular frequency ω is given by: 

    2 2
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where Rn is the nth-order elliptic rational function (sometimes known as a Chebyshev rational 

function) and ω0 is the cutoff frequency :ε is the ripple factor :ξ is the selectivity factor. 

An elliptic filter has a system function with both poles and zeros. The magnitude of its frequency 

response is[5]: 
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where ܷே൫ஐ/ஐ൯is a Jacobian elliptic function. The Jacobian elliptic function UN(x) is a rational 

function of order N with the following property: 
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Elliptic filters have an equiripple passband and an equiripple stopband. Because the ripples are 

distributed uniformly across both bands (unlike the Butterworth and Chebyshev filters, which 

have a monotonically decreasing passband and/or stopband), these filters are optimum in the 

sense of having the smallest transition width for a given filter order, cutoff frequency Ωp, and 

passband and stopband ripples. The frequency response for a 4th-order elliptic filter is shown in 

Fig. 3-12. [6] 
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Figure 3-12: The magnitude of the frequency response of a sixth-order elliptic filter 

The design of elliptic filters is more difficult than the Butterworth and Chebyshev filters, because 

their design relies on the use of tables or series expansions. However, the filter order necessary to 

meet a given set of specifications may be estimated using the formula: 
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3.4.1 Advantages of Elliptic filter 

The elliptical filter has an extremely sharp cutoff frequency, which makes it ideally suited for 

filter design cases where there must be severe attenuation in frequencies just entering the stop-

band of the filter.  Further, because the rippling effect is distributed across both the pass- and 

stop-bands in the elliptic filter, it makes it an excellent candidate for a low pass filter where the 

amount of error needs to be minimized on both sides of the cutoff frequency.  The Chebyshev 

filter, with a slower roll-off and an imbalanced ripple, does not offer either of these advantages.  

Therefore, in cases where there are signals that are very close and must be cut off at exactly or 

very close to one particular frequency, the elliptic filter is recommended. 
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CHAPTER 4 

System Model 
 

Figure 4.1 gives the block diagram of the Single Carrier Communication system that we have 

simulated in MATLAB. This chapter will explain the whole model in detail. 

 

Let a= [a1, a2…an] and b= [b1, b2…bn] are IIR recursive filter coefficients and β= [β1, β2…βn] be 

the feedback coefficients then the system model to be implemented is shown as follows: 

 

 
Figure 4-1: The biquadratic section is implemented here using Direct Form1 
(DF-1) structure. Original signal coefficients are quantized to N-bits and filter 
coefficients are quantized to W-bits. Feedback coefficients are also quantized 
to N-bits. β represents feedback coefficients [Ref] 
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 Feedback compensation is implemented by calculating the quantization error at the output of the 

quantizer “Q”. The output of the first iteration and the error are separated. The product of 

feedback coefficients β and the error signal e[n] at the quantizer are fed back to be summed up 

with the next iteration of the input signal. 

4.1 Recursive portion of IIR filter 

First the biquadratic portion implementing the feedforward path i.e. the recursive part of the filter 

is implemented using Direct Form-1 structure. System model implementing the recursive portion 

of the filter is shown in Figure 4-2. 

 

Figure 4-2: Biquadratic section is implemented as Direct Form-1 

 The macro block of filter implements the function: 
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where Q is the operation of the quantization.  A detailed description of the IIR filter structure has 

already been explained in the first chapter. Although the basic IIR structure implemented in this 

thesis is Direct Form-1 but it is important to have a look at the basic structures of IIR filter, 

because any of the proposed structure can be implemented depending upon the project and user 

requirements. Each structure differs from all other structures on the basis of resource usage like 

the number of delays and no. of adders and multipliers used to build the logic. 
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4.2 IIR filters structures 

A linear time-invariant discrete-time system is in general represented by a linear constant-

coefficient difference equation characterizing the input-output relation of the system. As a 

network structure, such a difference equation can be represented by a block diagram or a signal 

flow graph. A signal flow graph is a network of directed branches that connect at nodes. It is 

equivalent to block diagrams which we are already familiar with, except for a few notational 

differences. In a signal flow graph, the value carried by a specific branch is equal to the value of 

its originating node. Nodes in signal flow graphs represent variables. The value carried by a 

specific node is the sum of all branches coming into it. If there is only one entering branch, the 

node is a “branching note” rather than a “summing node.” Two special types of nodes exist: 

source nodes have no entering branches, they present external signal sources; sink nodes have 

only entering branches, they extract output from a graph. From the difference equation 

representation, it can be seen that the realization of the causal IIR digital filters requires some 

form of feedback so by convention, normally the delay element has been represented by a branch 

gain of z-1. The signal flow graph representation of an LTI system is not unique. In fact, for any 

given rational system function, equivalent sets of difference equations and network structures 

exist. In practical implementations, factors such as number of multipliers and adders, regularity 

of the structure, and finite-word-length effects are taken into account when deciding which 

network structure to use.  

 

The difference equations representing IIR filters can be manipulated to represent the filter using 

various mathematical operations giving the same result. This gives different realizations of IIR 

filters when they are coded. Four different realizations are given in this section, the first being 

the direct form using the standard notation for a recursive difference equation. However, some 

simple mathematical manipulation gives the canonical form, which uses less storage of previous 

values. Finally, the denominator of the transfer function for IIR filters is usually factored into 

first- and second-order factors to reduce the effect of numerical precision on the filter. The IIR 

filter transfer function can then be written as a product of numerator factors over denominator 

factors, or the transfer function can be written as a partial fraction expansion as given in any 
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analog signal processing course or algebra course. Each of these product terms or sum terms can 

be in direct or canonical form. An N-th order IIR digital transfer function is characterized by 

2N+1 unique coefficients, and in general, requires 2N+1 multipliers and2N two-input adders for 

implementation. 

 

There are four different IIR filter structures; each of them is described briefly as follows: 

• Direct Form I&II 

• Transpose direct form 

• Cascade form 

• Parallel form 

4.2.1 Direct form I & II 

These filter structures are one in which the multiplier coefficients are precisely the coefficients of 

the transfer function and they are very easy to implement structures that’s why we’ve chose this 

filter structuring technique in this thesis.  

 

Consider the following general form of a difference equation and the corresponding system 

transfer function: 
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As the name Direct Form-I suggests, the difference equation (4.2) is implemented as given using 

delays, multipliers, and adders. For the purpose of illustration, let M = N = 3. Then the difference 

equation (4.2) can be re-written as: 

 

y(n) = b0x(n)+b1x(n-1)+ b2x(n-2)+ b3x(n-3)-a1y(n-1) –a2y(n-2) –a3y(n-3)  
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which can be implemented in Figure 4-3.  The direct form I structure implements each part of the 

rational function H(z) separately with a cascade connection between them. The numerator part is 

a tapped delay line followed by the denominator part, which is a feedback tapped delay line. 

Thus there are two separate delay lines in this structure, and hence it requires eight delay 

elements. We can reduce this delay element count or eliminate one delay line by interchanging 

the order in which the two parts are connected in the cascade. 

 

 
Figure 4-3: Direct form I of an IIR filter 

To elaborate Direct Form-I, equation (4.2) can be re-written as: 
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The realization of H1(z) in direct form I is shown in Figure 4-3 as the filter connected in cascade 

with the realization of the FIR filter H2(z) also in direct form I structure. The structure for the 

IIR filter is also called a direct form because the gain constants of the multipliers are directly 

available from the coefficients of the transfer function. We note that H1(z) = V (z)/X(z) and 

H2(z) = Y(z)/V(z). We also note that the signals at the output of the three delay elements of the 

filter for H1(z) are the same as those at the output of the three delay elements of filter H2(z). 

Hence we let the two circuits share one set of three delay elements, thereby reducing the number 

of delay elements. The result of merging the two circuits is shown in Figure 4-4 and is identified 

as the direct form II realization of the IIR filter[1]. 

 

 
Figure 4-4: Direct form II of an IIR filter 

 



  
32   

   

4.2.2 Transpose Direct Form 

Using signal flow graphs, we can transform a given system into a different network structure 

while maintaining the same system function. One such transformation is transposition. 

4.2.2.1 Transposition Theorem 

There are two basic rules of Transposition theorem which are as follows: 

1. Reverse direction of all branches  
 

2. Interchange input and output  
 

For single-input single-out systems, interchanging the input and output nodes after reversing the 

flow graph gives the same transfer function as the original system. Although the transfer 

functions remain the same, different network structures represent different algorithms, which are 

equivalent under ideal infinite precision arithmetic. With finite precision arithmetic, the 

implementation structure determines internally generated noise which affects the overall system 

behavior[4][6].  

The transposed form of the circuit shown in Figure 4-4 is shown in Figure given below: 
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Figure 4-5: Direct form II transposed structure of an IIR filter 

 

Both of them i.e. the Direct Forms and their Transpose use the minimum number of delay 

elements equal to the order of the IIR filter and hence are canonic realizations. The two filters 

realizing H1(z) and H2(z) can be cascaded in the reverse order [i.e., H(z) = H2(z)H1(z)], and when 

their transpose is obtained, we see that the three delay elements of H2(z) can be shared with 

H1(z), and thus another realization identified as direct form I as well as its transpose can be 

obtained. 

4.2.3 Cascade Form 

As previously shown, the IIR filter can be realized or coded in direct form or canonical form. 

This is taken even further by factoring the numerator and denominator of the transfer function of 

the IIR filter into first and second-order factors. Then it could be written as a product of terms 

with first- and second-order numerators and denominators. This is usually done, since it 

contributes to numerical stability. However if several poles are multiplied together to form the 
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denominator, numerical truncation or rounding of the coefficients of the resulting polynomial in 

z could produce a pole magnitude greater than one which can introduce instability in a circuit. 

The terms are usually then written in the canonical first- or second-order form. These terms are 

then each converted to difference equations using the shifting property, and each difference 

equation is then coded.  

 
The filter function (4.2) can be decomposed as the product of transfer functions in the form: 
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where K = N/2 when N is even and the polynomials D1(z), D2(z), D3(z), and so on are second 

order polynomials, with complex zeros appearing in conjugate pairs in any such polynomial. 

When N is odd, K = (N − 1)/2, and one of the denominator polynomials is a first-order 

polynomial. The numerator polynomials N1(z),N2(z), . . . may be first-order or second-order 

polynomials or a constant: 
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Each of the transfer functions H1(z),H2(z), . . . , HK(z) is realized by the direct form I or direct 

form II or their transpose structures and then connected in cascade. They can also be cascaded in 

many other sequential order, for example, H(z) = H1(z)H3(z)H5(z) or H(z) = 

H2(z)H1(z)H4(z)H3(z) . . . . 
 

There are more choices in the realization of H(z) in the cascade connection in addition to those 

indicated above. We can pair the numerators N1(z),N2(z), . . . and denominators 
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D1(z),D2(z),D3(z), . . . in many different combinations; in other words, we can pair the poles and 

zeros of the polynomials in different ways. So the number of realizations that can be obtained 

from a nominal IIR transfer function is very large, in general[1]. Besides the difference in the 

algorithms for each of these realizations and the consequent effects of finite wordlength when the 

coefficients of the filter and the signal samples are quantized to a finite number, we have to 

consider the effect on the overall magnitude of the output sequence and the need for scaling the 

magnitude of the output sequence at each stage of the cascade connection and so on. 

4.2.4 Parallel Form of an IIR filter 

The IIR transfer function can also be expanded as the sum of second-order structures. It is 

decomposed into its partial fraction form, combining the terms with complex conjugate poles 

together such that we have an expansion with real coefficients only[6].  

There are many different ways to develop a parallel IIR structure. An alternative way to factoring 

H(z ) is to expand the system function using a partial fraction expansion. For example, with 
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if p > q and ai< ak (the roots of the denominator polynomial are distinct), H ( z ) may be 

expanded as a sum of p first-order factors as follows: 
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where the coefficients Ak and αk are, in general, complex. This expansion corresponds to a sum 

of p first-order system functions and may be realized by connecting these systems in parallel. If 

h(n) is real, the poles of H(z) will occur in complex conjugate pairs, and these complex roots in 

the partial fraction expansion may be combined to form second-order systems with real 

coefficients: 

 



  
36   

   

         

1
0 1

1 2
1 1 2

( )
1

N
k k

k k k

zH z
z z

γ γ
α α

−

− −
=

+
=

+ +∑        (4.10) 

 

The resultant sixth order parallel structure is shown in Fig 4-6 

 

Figure 4-6: A sixth-order IIR filter implemented as a parallel connection 
                                     of three second-order direct form II structures. 
 
4.2.5: IIR Filter Structure Comparison 
 
All the structures that have been defined above have their own pros& cons. We have chosen 

Direct form- I form to build a feedforward path as well as compensated part i.e. feedback path 

because of two main reasons. 

 

1. Direct Form-I structure is very easy to build than most of the other IIR structures. 

2. It is very easy to build any other IIR filter structure from Direct Form-I structure by 

merging of different resources like delays, multiplies and adders etc. In other words 

Direct Form-I is highly compatible with all of the other IIR structural techniques.  
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However, a comparison can be made between all of the above mentioned IIR filter structuring 

techniques by using a fourth order IIR filter. All the techniques are used one by one to build the 

IIR structural logic. In addition to the above mentioned techniques some more techniques have 

also been introduced to build IIR structure [7]. The results showing the number of resources are 

shown in table given below: 

 

Structures 

Number of 

multiplications 

Number of additions 

and subtractions 

Total number 

of operations 

Required 

bandwidth 

Direct Form 16 16 40 21 

Cascade 13 16 34 12 

Parallel 18 16 39 11 

Transpose 18 16 35 23 

Ladder 17 32 50 14 

Wave Digital 11 30 47 12 

Table 4-1: Comparison of complexity of different IIR filters 
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CHAPTER 5 

Implementation 

 
After the calculations of feedforward path i.e. the recursive portion of the filter, next step is that 

the output of the filter y[n]is then fed to the input of the quantizer for effective quantization of 

the filter coefficients. 

5.1 Quantization of filter coefficients 

Numbers are represented as either fixed-point or floating-point data types. A fixed-point data 

type is characterized by the word size in bits, the binary point, and whether it is signed or 

unsigned. The binary point position defines a scaling of the fixed-point values. Floating-point 

data types are characterized by a sign bit, a fraction (or mantissa) field, and an exponent field. 

We choose the (signed) fixed-point representation since it often offers advantages in terms of 

power consumption, size, memory usage, speed, and cost of the final product, compared to the 

floating-point representation. 

 
Figure 5-1: Binary fixed point number representation 

 

A common representation of a binary fixed-point number (either signed or unsigned) is shown in 

Figure 5-1, which illustrates the following points. 

• bi are the binary digits (bits: 0 or 1) 

• The size of the word in bits is given by “l” 

• The binary point position defines a scaling for the fixed-point numbers. In our example, 

the binary point position is chosen the position left of b2. 
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A real world value V can then be approximated by a quantized number  V  as follows: 

          .V V S Q≈ =                 (5.1) 

which shows following points in detail 
• S = 2E the slope, and E an (integer) fixed power-of-two exponent; 

 
• Q = -bl-12l-1 + ∑ ܾ .ଶ 

ିଶ
ୀ  the quantization 

The range of a number gives the limits of the representation while the precision gives the 

distance between successive numbers in the representation. The range and precision of a fixed-

point number depends on the length of the word and the scaling. For a fixed word size l the range 

of the filter coefficients will determine the slope S (in order to avoid underflow or overflow), and 

as a consequence the exponent E. The approximation ~V of the real-world value V can then be 

found by rounding, truncation or magnitude truncation as shown in figure 5-2. 

 

 
Figure 5-2: Rounding and Truncation 

 

Feedback compensation is implemented by calculating the quantization error at the output of the 

quantizer “Q”. The output of the first iteration and the error are separated. The product of 

feedback coefficients β and the error signal e[n] at the quantizer are fed back to be summed up 

with the next iteration of the input signal [8]. 

 Let us consider the 2nd order error feedback quantizer mentioned in Figure 4-1. The main 

relation that we can deduct between full precision output y[n] i.e. non-quantized output and filter 

output y[n] can be defined by the quantizer operation Q that is: 
^
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^
[ ] { [ ]}y n Q y n=               (5.2) 

         
^
[ ] [ ] [ ]y n e n y n+ =                 (5.3) 

Equation (5.3) specifies that when full precision output is quantized, error signal is generated 

which is denoted by e[n]. The error part is amplified or rectified by the values of coefficients in 

the recursive portion of the filter. The products of filter coefficients a and input signal x[n] are 

add up with the product of filter output y[n] and filter coefficient b to produce full precision 

output y[n]. 

The error feedback is implemented by modifying the quantizer in the filter structure. In a fixed-

point implementation, the quantization is usually performed by discarding the lower bits of the 

double-precision accumulator (two’s complement truncation), and thus the quantization error 

equals this residue left in the lower part. The error is fed back through a simple FIR filter, as 

shown in Figure 4-1. 

 

5.2 Implementation of Compensation Logic 

After the quantization of filter coefficients, error signal e[n] is generated at the output of the 

quantizer which is then multiplied with the feedback coefficients to obtain the compensation 

logic of our proposed system model, in other words error feedback loop is thus generated. The 

difference equation with the EF path is given below:      

   

2 2 2^

0 1 1

[ ] . [ ] . [ ] . [ ]i i i
i i i

y n Q b x n i a y n i e n iβ
= = =

⎧ ⎫
− − + − + −⎨ ⎬
⎩ ⎭
∑ ∑ ∑           (5.4) 

Some basically different ways to formulate and apply the EF can be distinguished in the existing 

literature. We divide the proposed EF schemes into four categories according to how the 

parameters of the EF quantizer, the structure, the coefficients, and the order, are determined: 

 

^
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5.2.1 At Unit Circle 

One technique is to calculate the feedback coefficients like placing the zeros at unit circle i.e. by 

taking value of coefficients at points z=1 and z= -1. By analyzing this property we can say that 

this technique is useful for narrowband low pass and high pass filters. Their hardware 

implementation was studied in earlier works [9], [10]. 

5.2.2 Predetermined Values 

In this technique all the values i.e. the order and structure of the error feedback quantizer as well 

its type is determined by means of recursive portion of the proposed IIR filter. The techniques 

simply emphasizes on obtaining the feedback coefficients by placing the zeros of the 

compensated path over the denominator poles. The structure and formation of the compensated 

(EF) portion of the filter is true replica of the recursive portion of the filter. In some cases even 

non-recursive portion of the filter is also considered while calculating the error feedback path 

which is also called error feed forward [11].  

By feeding the values of the coefficients from recursive portion of the filter, feedback 

coefficients can be obtained. An easy and more comprehensive way to obtain filter feedback 

coefficient values is by setting them equal to the values of denominator poles which are already 

determined during recursive portion of the filter i.e. β=a means by setting the values of the 

feedback coefficients exactly equal to denominator poles. 

5.2.3 Modified Quantization 

This particular technique emphasizes the use of general and isolated error feedback quantizer 

from the rest of recursive feedback portion. Limitation of this method is that it is only useful 

while handling fewer quantization bits. As soon as quantization bits starts to grow up in number 

the complexity in calculation and excessive use of resources makes it very hard to handle. 

Minimization of quantization noise power is basic issue in modified quantization that needs to be 

taken care of. Optimization of coefficients is done in this method by quantization of noise power 

at filter output using least mean square criterion [11], [12], [13] and [14].  
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Lot of Algorithms have been devised so far proposing formulas to calculate optimal error 

feedback coefficients using modified quantization e.g. method proposed by Higgins & Munson 

[9] use numerical integration to calculate optimal error feedback coefficients. 

5.2.4 Symmetric Method 

As described earlier the lower order optimal error feedback method is easier to handle i.e. when 

quantization bits are lesser in number. 

A simple method to reduce cost while using higher order filter i.e. using more quantization bits is 

by constraining the error feedback coefficients to have symmetric or asymmetric values [15]. 

This method is mostly proposed and implemented in structures where coefficient symmetry is 

devised and thus results in noise reduction with minimum loses as compared to optimal solution. 

The quantization error always behaves like width extension which leads to lower noise levels and 

better area utilization. The closer the poles are to the unit circle, lesser will be the noise at the 

filter output and better filter properties will be attained. To minimize quantization error, 

coefficients β are chosen precisely so that zeros of error feedback path approximately 

compensate the poles of the transfer function denominator. Placement of zeros of EF path can be 

calculated using any one of above mentioned techniques. 

5.3 Comparison of Compensation Logic with Non Compensation 
Logic 

Implementation of compensation first requires choosing the length of feedback coefficients. The 

technique becomes much more effective if the coefficient width in bits is chosen the same as the 

width of filter coefficients i.e. β1 and β2 have same bit widths as that of a1 and a2. Increasing or 

decreasing the bits of feedback coefficients will result in a less optimal solution. If the coefficient 

bit width of feedback coefficient β is greater than filter coefficient a then the occupied logic will 

increase requiring a larger multiplier to do the calculations which is not an optimal solution. 

Our main system model has already been described in Figure 4-1. To implement the system logic 

we have to first design an Elliptic Low Pass filter using Filter Designing Toolbox (FDA tool) in 

Matlab. We can give any specifications to the toolbox based on the needs of the user. After the 
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implementation of the filter next the quantization is applied on the coefficient values of the filter. 

At the output of the quantizer an error signal e[n] is generated along with the output. This error 

signal is then multiplied with the feedback coefficient values and fed back again to be summed 

up eventually with the next incoming input. The values of feedback coefficients can be obtained 

using any one of the above mentioned techniques. Both the structures i.e. with error feedback 

(WEF) and without error feedback (WOEF) are tested using MATLAB based on different levels 

of quantization to elaborate the results more clearly and for better comparison.  In this thesis we 

have used five different levels of Quantization and then compared the results of both the 

standards to check their efficiency in terms of reduction of error. The graphical and numerical 

results obtained will be shown later in this report. 

5.4 Hardware Implementation 

After the implementation of system model in Matlab, the logic is then implemented on Hardware 

using Xilinx AccelDSP 10.1 tool so that a better comparison can be made between the two 

standards based on usage of resources like Flip Flops (FF’s), Slice Registers, Lookup tables 

(LUT’s) etc. Before going any further into the hardware implementation of the system model 

first we briefly have a look at the AccelDSP tool. 

5.4.1 AccelDSP 10.1 

The AccelDSP™ Synthesis Tool is a product that allows you to transform a MATLAB floating 

point design into a hardware module that can be implemented in a Xilinx FPGA .This section 

describes briefly about the AccelDSP coding style guidelines for the MATLAB floating point 

model. In order to synthesize the basic structure of a MATLAB design using AccelDSP™ 

Synthesis Tool, the design must be represented by a minimum of two M-files, a script M-file and 

a function M-file. These two basic files may also reference other related function files. 

The two main elements of the script file are (1) the streaming loop and (2) the top-level design 

function call. Other constructs may be intermixed with these basic elements, but are not 

recognized by the AccelDSP Synthesis Tool for hardware synthesis. These secondary constructs 

are typically used for design verification. 
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5.4.1.1 Streaming Loop 

For hardware synthesis, the infinite streams of data entering and leaving the design must be 

partitioned into manageable groups or “slices” in order to properly process the data. A streaming 

loop (a for loop or while loop) is the construct that performs this task. A MATLAB script file 

must have a streaming loop. 

5.4.1.2 The top-level design function call 

The top-level design function call represents the hardware to be synthesized. This function must 

reside inside the streaming loop. During the pre-analyze phase, the AccelDSP Synthesis Tool 

attempts to automatically identify the top-level design function. If it cannot, the tool prompts you 

to manually identify the design function call in the AccelDSP Project Explorer window. 

 

AccelDSP generally follows some steps before synthesizing the results .The results are shown as 

follows: 

• Reads and analyzes a MATLAB floating-point design 

• Automatically creates an equivalent MATLAB fixed-point design 

• Invokes a MATLAB simulation to verify the fixed-point design 

• Provides you with the power to quickly explore design trade-offs of algorithms that are 

optimized for the target FPGA architectures 

• Creates a synthesizable RTL HDL model and a Testbench to ensure bit-true, cycle 

accurate design verification 

• Provides scripts that invoke and control down-stream tools such as HDL simulators, RTL 

logic synthesizers, and Xilinx ISE implementation tools. 

 

The AccelDSP Synthesis Tool provides a direct link to MATLAB so you don’t have to leave the 

tool to run a MATLAB simulation. If you have already verified the floating point model, you 

may skip this step. After the verification and analyzing of floating point model the next step is to 

generate fixed point process. During the Generate Fixed Point process, the streaming loop and 

the top-level design function are identified. Default assumptions are made about design objects 

in your design like variables and loops. If need be, you can change the properties before 
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generating the RTL model. Also note that you can view and change the quantization parameters 

on variables from the Generate Fixed Point. 

 

Next step is to verify the Fixed point Model. Click on the Verify Fixed Point icon to start the 

MATLAB verification process. MATLAB is automatically invoked on the fixed-point model. 

It may take a few moments to invoke MATLAB and run the simulation. The fixed point plot is 

displayed when the simulation is finished. 

 

The fixed point of a simple IIR filter is shown below on the right. 

 
Figure 5-3: Verification of fixed point model 

 

Visually compare the fixed-point plot with the floating-point plot. If you are satisfied with the 

results, you are ready to proceed to synthesis. If the fixed-point plot deviates too much from the 

floating-point plot, you may need to adjust the quantizer properties on some design variables, 

and then repeat the verification process. When you are satisfied with the fixed-point verification 

results, you are ready to generate the RTL design. 

 

Next step is to generate an RTL design for your proposed system model. The results are 

summarized in the generated report. The HDL module that is generated (not synthesized) by the 

AccelDSP Synthesis Tool when the MATLAB design function is synthesized to an RTL model. 
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When you execute the Verify RTL step in the AccelDSP flow, an HDL simulator runs a 

simulation on the Testbench which, in turn, applies stimulus to the inputs of the RTL model and 

compares the result to a known golden data. VHDL or Verilog folder can also be expanded to 

view the generated HDL files and the associated Testbench files. After the successful generation 

of the RTL design, next step is to verify that particular RTL design. The AccelDSP Synthesis 

Tool causes the simulation tool to compile the Testbench and simulate the RTL model. When the 

simulation is finished, a 'PASSED' message is shown in the transcript window. 

 

Last step is to synthesize the RTL model. Once you verify the RTL Model, you are ready to 

transform the model into a gate-level netlist. This is normally done by invoking your RTL 

Synthesis tool on the RTL model and synthesized the design to a gate-level EDIF netlist. 

 

5.5 Results 

After the implementation of system model mentioned in Figure 4-1 in MATLAB, we then 

implemented it in hardware using ACCELDSP tool. Main purpose of doing this is to compare 

the results of both the standards i.e. IIR filter with error feedback and IIR filter without error 

feedback. The results obtained from MATLAB and from a synthesizable report generated via 

ACCELDSP are tabulated in table 5-1: 
 

 

Table 5-1: Comparison between WOEF and WEF techniques based on different parameters 

 

Quantization 
bits 16-bits 18-bits 20-bits 24-bits 

WEF/WOEF WEF WOEF WEF WOEF WEF WOEF WEF WOEF 
ERROR 61 79 47 54 39 50 36 54 
Quantized Error 9*10-4 1.2*10-3 2.0*10-4 1.8*10-4 2.99*10-6 2.37*10-6 1.64*10-7 1.35*10-7 

Slice Registers 390 273 398 285 410 299 428 314 

LUT FF’s 170 57 176 65 181 71 187 76 
LUT FF’s with 
unused LUT 231 125 238 131 247 139 256 153 

LUT  FF’s pairs 159 148 159 149 160 149 162 152 

Clock Frequency 
[MHZ] 63.6 76.6 63.6 76.8 64.7 76.8 65.8 77.1 
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The results are obtained using different levels of quantization so that better comparison can be 

concluded from the result. A number of values have been calculated via Xilinx ACCELDSP 10.1 

tool using 16, 18, 20 and 24 bits of quantization. In first case i.e. in 16-bits case both the signal 

sample width “N” and the filter coefficient width “W” is 16-bits. FF and LUT are used to build 

the logic. Clock frequency specifies the maximum system frequency determined by Xilinx 

timing Analyzer.     

 Comparing the error values of IIR-with error feedback(WEF) macros with the IIR-without error 

feedback(WOEF) macros from the table mentioned above we can conclude that by adding an 

extra compensation logic with an already built recursive IIR logic we can reduce the quantization 

error at the output after few number of iterations. Thus in comparison with the simple IIR-WOEF 

the compensated logic in addition with recursive logic i.e. IIR-WEF provides a more optimum 

and less error prone solution. 

We can also compare the results of both the techniques with the help of graphs made in 

MATLAB as shown below. 

 

Figure 5-4: Error values using both techniques i.e. WEF and WOEF using different quantization 
bits. Blue& dotted specifies WOEF, Green& simple specifies WEF. 

 



  
48   

   

 

Figure 5-5: Quantized Error values using both techniques i.e. WEF and WOEF using different 
quantization bits. Blue& dotted specifies WOEF, Green& simple specifies WEF. 

Graphically we can see that the IIR filters with embedded compensation logic with them are 

much less error prone than the IIR filters without compensation logic. Quantized error is 

normalized error/2n where “n” specifies number of quantization bits. 

Now we can also deduce a well defined comparison from the results obtained from ACCELDSP 

tool graphically using Matlab graphs. The graphs are shown below: 

 

Figure 5-6: Slice registers usage in both techniques i.e. WEF and WOEF using different 
quantization bits. Blue& dotted specifies WOEF, Green& simple specifies WEF. 
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Figure 5-7: LUT FF’s with unused LUT’s used in both techniques i.e. WEF and WOEF using 
different quantization bits. Blue& dotted specifies WOEF, Green& simple specifies 
WEF. 

 

Figure 5-8: LUT FF pairs used in both techniques i.e. WEF and WOEF using different 
quantization bits. Blue& dotted specifies WOEF, Green& simple specifies WEF. 
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Figure 5-9: LUT FF’s used in both techniques i.e. WEF and WOEF using different quantization 
bits. Blue& dotted specifies WOEF, Green& simple specifies WEF. 

 

 

 

Figure 5-10: Clock Frequency in both techniques i.e. WEF and WOEF using different 
quantization bits. Blue& dotted specifies WOEF, Green& simple specifies WEF. 
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A comparison has been made between IIR-WEF macros and IIR-WEF macros based on the 

usage of Slice registers, LUT flip flops pairs with unused flip flops and unused LUT. Using the 

numerical and graphical results obtained in this paper we can easily deduced that IIR-WEF 

occupies more silicon area because it uses more resources to build a less error prone logic. It 

takes more resources in the form of Slice Registers, LUT and FF used to build noise 

compensation logic as can be seen from the graphs mentioned above. 

From the graphical and numerical results it can be deduced that while IIR with EF technique 

minimizes error at the output of the quantizer when compare to IIR- WOEF technique, the 

amount of silicon area occupied by IIR macros with EF is more than the area occupied by IIR 

macros WOEF. However, in IIR-WEF it is possible to reach lower roundoff noise level to 

compensate the above mentioned drawback [11]. The idea is to minimize the logic area by 

reducing the IIR-WEF filter coefficient width until the same roundoff noise level is achieved as 

WOEF. 
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CHAPTER 6 

Design Improvements 

 
As discussed earlier that IIR-WEF technique is much less error prone as compared to IIR- 

WOEF technique, but it costs more area (LUT’s and FF’s) to build the desired logic.  However, 

in IIR-WEF it is possible to reach lower roundoff noise level to compensate the above mentioned 

drawback. If the area of concern is the number of resources used, then in IIR-WEF technique the 

area can be reduced by simply reaching lower roundoff noise level i.e. in other words reduce the 

number of quantization bits. However, it can be seen in Table 5-1 that the difference of 

quantization bits in order to occupy same area in terms of LUT’s and FF’s is quite large. For 

example IIR-WEF occupies same area to build our proposed model using 18 quantization bits 

that IIR-WOEF technique takes 32 quantization bits to build. Quantization bits as explained 

earlier are a measure of precision and accuracy. If we take our proposed IIR-WEF model to 

lower roundoff noise level by reducing the number of quantization bits, the effect will be 

somehow negative in terms of precision and accuracy. To compensate for this, architecture can 

be proposed which is used to build IIR-WEF model using same number of quantization bits and 

area as compared to IIR-WOEF model, yet it is much less error prone than the IIR-WOEF 

model. 

6.1 Timeshared Architecture 

The ration of the sampling frequency to circuit clock frequency dictates major decisions in the 

design of a digital system. In most of signal processing applications, the circuit clock frequency 

is greater than twice the sample accusation frequency. If such an application is mapped on a 

dedicated fully parallel architecture, it will obviously not utilize the HW in every clock cycle. As 

a consequence of the circuit clock running at higher rate than the sampling clock, the HW 

components will only execute computation at sampling rate. A logical design decision should be 

to use only required number of HW computational resources and share them for multiple 

computations of the algorithm in different clock cycles. HW functional blocks shared among 
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various computation increases HW utilization. The architecture where one functional block is 

reuse in time to execute different computations of the algorithm is termed as time-shared or 

folded architecture. 

 

Any synchronous digital design sharing the HW building blocks for different computation in 

different cycles will require a controller. The controller directs different computations of the 

algorithm to use the resource in different clock cycles. This type of a controller is also called a 

scheduler. There are several options of designing the controller or scheduler. In this chapter we 

cover the controller design for time-shared architectures. 
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Figure 6‐1: Time Shared Architecture of Proposed system model shown in Figure 4‐1. 
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Figure 6-1 shows the time architecture model of our proposed system model and it can be used to 

address the solution of our problem i.e. to reduce the area in IIR-WEF technique without 

reducing quantization bits. The main motive behind using Time Architecture technique is to 

reduce the silicon area (i.e. LUT’s and FF’s) occupied by IIR-WEF technique by introducing 

reusability of resources. The model takes following steps to generate the compensated filter 

output ݕ^݊  

1. Instead of using separate input signals for input x[n], y[n], a[n], b[n] and β[n], FIFO 

registers are used to store each of the signals as shown in Figure 6-1. 

2. Multiplexers (MUX) must be used in addition to select the input we want to use during a 

specific iteration. The select line of MUX will be used to select any one of the signal 

from a FIFO register e.g. a select line will be used to select a0 and b0 from their respective 

FIFO registers during first iteration so that b0 can be multiplied with x0 (i.e. the input 

signal) which is selected from its respective FIFO register. Same is the case with filter 

error feedback coefficients β. 

3. Accumulator (ACC) is used to store temporarily the product of input signal with filter 

feedforward and feedback coefficients. The output of the ACC is the fed to the quantizer 

where output y[n] and error signal e[n] are generated. 

4. The select lines for the multiplexers and Multipliers/adders are common for input signals 

and FIFO registers which makes this time architecture design for IIR-WEF model much 

more economical in terms of occupied silicon area compared with our proposed system 

model.  

5. The architecture shown in Figure 6-1 will reduce the error at the output of the quantizer 

compared with IIR-WOEF design yet using same number of resources and occupied area 

(LUT’s and FF’s). 

6. The only disadvantage is that the time architecture will require more number of cycles to 

compute the output i.e. the frequency will increase in IIR-WEF design. 
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CHAPTER 7 

7.1 Conclusions 

The structure that has been implemented here with an Error feedback (EF) logic decreases the 

error at the output of the quantizer which allows us to implement a filter with coefficients 

quantized to lower bits that provides better efficiency. An approach to estimate signal samples 

width N and IIR filter coefficients W with logic area estimation, error and usage of resources is 

presented here in this paper. The suitable characteristics for better design optimization were 

chosen. The filter with an error feedback and without error feedback logic was implemented 

using Virtex2 FPGA and the results were compared using numerical and graphical means. The 

amount of occupied logic and Quantization error can be reduced depending on position of filter 

poles. 

The efficiency of the EF schemes was examined by test implementations of some standard 

filters. It was found that the error feedback is a very powerful and versatile method to cut down 

the quantization noise in any recursive filter implemented as a cascade of second-order direct 

form I sections. Second-order error feedback seems to be sufficient for standard cascade 

implementations, whereas the new high-order schemes are attractive for use with high order 

direct form sections. 

The tools used to build our proposed model are MATLAB and ACCELDSP 10.1. At the end it is 

concluded that compensation logic provides a very efficient and less error prone solution with 

the expense of more resources and logic area usage compared to the model with no 

compensation logic embedded with it. A method has also been discussed as how we can reduce 

the logic area of a model with compensation logic embedded with it to make it much more 

efficient. 

 

7.2 Further Optimizations 
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Some further optimizations to improve logic area consumption can be made by setting the value 

of poles exactly equal to the value of zeros. By setting the width of poles coefficients a equal to 

zeros coefficients b results in minimization of resources in terms of FF and Registers usage.  

 Different implementation platforms can also be used in addition to Virtex2 platform for better 

comparison of results. 

Above mentioned system model can also be made using a different IIR filter structure like 

cascade or parallel IIR filter structures and the results of compensated logic implemented on 

different structures can be compared so that the best and most optimal model with a better 

structure can be deduced. 
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