Floating Point DSP Algorithms Implementation
Using Dedicated Multipliers on FPGAs

Yasir Munir

2007-NUST-MS PhD-ComE-10

Thesis Advisor

Dr. Shoab A. Khan

Submitted to the Department of Computer Engineering
in fulfillment of the requirements for the degree of
Masters of Science

In

Computer Engineering

College of Electrical & Mechanical Engineering,
National University of Sciences and Technology, Pakistan
2009



E;L—?f*’ ‘ C&"Q—;jj‘ 9i",e—-—:-§,

IN THE NAME OF ALLAH ALMIGHTY, THE MOST
BENEFICIENT, THE MOST MERCIFUL, AND THE MOST
COMPASSIONATE



DEDICATION

This work is dedicated to my parents whose prayers and encouragement
made me do this and to all those people who went off their way to help me

to bring out the best in me and to make me what I am today.

Thank you



ACKNOWLEDGEMENT

In the name of ALLAH Almighty, Most Gracious, Most Merciful who has blessed us

with the physical and mental capabilities to complete the assigned project.

[ would like to thank my respected Project Supervisor, Dr. Shoab A. Khan, and the
advisory committee members, whose special interest, kind guidance,
encouragement, flexibility, and kind behavior throughout the project helped me a lot

in completing the given task.

My heartiest gratitude to my parents, brother and sister whose prayers made me
pass through the ups and downs in the duration of the project. I would like to admit
that I owe all my achievements in my truly, sincere and most loving parents, who

mean to me, and whose prayers are a source of determination for me.
It would be incomplete without thanking some of my friends whose sincere help

make me succeed. Specially, | am thankful to Mr. Aqeel Ahmad, Mr. Haris Masood,

and Mr. Umar Ali who helped me making out of this successfully.

YASIR MUNIR



DECLARATION

[ hereby declare and affirm that the thesis titled “Floating Point DSP Algorithms
Implementation Using dedicated Multipliers on FPGAs” is neither whole nor as a
part thereof has been copied out from any source (except data,). It is further
declared that I developed this report entirely on the basis of my personal efforts
made under the sincere guidance of my project supervisor and due to help of ALLAH

Almighty.

If any part of this project proved to be copied or found be a part of some other, I

shall stand by the consequences.
No portion of this work presented in this report has been submitted in support of

any application for any degree and qualification of this or any other university or

institute of learning. If found I will stand responsible.

YASIR MUNIR



TABLE OF CONTENTS

ABSTRACT 1
CHAPTER 1 2
INTRODUCTION 2
EXISTING DEDICATED MULTIPLIER ARCHITECTURES.......uvtiiiitreeeiitieeeeeteeeeesteeeeenseeeessseeesensnesesnsnsessenseeeens 6
FLOATING POINT ARITHMETIC SUPPORT ......cceotiutririieeeeeiiitiereeeeeeeeesiaereeeeeseeesissseseseseeesisssssesesseesssressseseennns 7
ORGANIZATION ....uuitiirieeeeeeeeiitreeeeeeeeeettreeeeeeeeestttrareeeeeeeaattaaaeseeeeeaaaasseseseeeaaassseseeeeeeaaiasaseeeeeeenaantreseseeeeanes 8
CHAPTER 2 9
IEEE-754 FLOATING POINT STANDARD 9
THE FORMAT ..ottt ettt ettt e e e e ettt e e e e e e e et e e e e e s s aaaaeeeeesseasaaaeeeeessesaaasaeeeeesesnnrsenseeeeeans 9
SiAGLE-PrecCiSION FOFMAL ..............c..ccoiiiiiieii ettt ettt ettt ettt 10
DOUDLC-PTECISTON FOFTAL ... e e e e e e e e e e e e e e e e e e e e e e 11
EXIended PreCiSTON FFOFIAL ...............eeeeeeeeeeeeeeeeeeeeeeeee e 12
SPECIAL CASE NUMBERS.......ccoiiiiitttitteeeeeeiititeeeeeeeeeesteteeeeseeesiitesessesseasstaaseesesesssssaseseeessasssrsseeeesssenssees 12

L 216):N1) 1 [ SRS 12
ALGORITHM FOR FLOATING-POINT CALCULATION ......cootiuuriiieeeieeiiireeeeeeeeesitreeeeeeeeeeiasreeeseeeeensssnereeeseennns 13
COMMON APPLICATIONS ....uuuttvrieeeeeeeeiiteeeeeeeeeeesiuareeeeeeeeesaaseeeseseeasissreseseseeasitrssteeseeesssseseeeeeeensrrereeeeeennns 14
EXAMPLE. ....ooiiiiiieeeeeee e ettt e et e e et e e e e e eet————taeeeeea———aaaaeeeaaarraraaaeeaaaas 14
CHAPTER 3 16
INTRODUCTION TO FPGAS 16
HISTORY ..o 17

Y (01 ) 2] N D A4 53 00 521 125 N 18
GIUTCS <. e e e e e e e 19
FPGA COMPARISONS ....ooiiiiittiieieeeeeeeeeiteeeeeeeeeestaeeeeeesseesaaaeeseesseasaaaeeeeesseessatassteesseessaraseeeeessesnsraereeeesennns 20

V@ SUS CPLIDS ...t e e e eaan 21
SECURITY CONSIDERATIONS .....coiuutirieeeeeeiiiueeeeeeeeeeeissseeeeeeeensisssesseseeessstsssseesesessssssesessessmsissseseessenssnnes 21

J N o B (00N N (0) SRR 21
ARCHITECTURE .....ccoiiittttieeeeeeeeiieeeeeeeeeeeeareeeeeeeeeeaaaeeeeeeeeeeatasseeeeeeeaesaaseseeeeeaiatasseeeeeeeaasasseeeeeeenesnrreeeeas 23
FPGA DESIGN AND PROGRAMMING ......u0vtiiieeiiiiirreeeeeeeeeiisreeeeeeeeeiisseeeeeeeeesiisssssseseessiisssseseeseenssssseseseennns 25
BASIC PROCESS TECHNOLOGY TYPES [8] ... utteiiiiiieeiiiieeiiiee e ettt e eeiteeesiveeeeiveeeeeneseeesnesaeesssnseeessssesesssees 26

Y N 0] 3\ VN 6] N N 6] 24 2 27
CHAPTER 4 30
DSP48 30
INTRODUGCTION .....uuttiiiiiee e ettt e eeete e e e e e et e e e e e s eeaaaeeeeeeeseesaaaaeeeeesseanataaseeesseesaasaeeeeessennssaereeeseennns 30
ARCHITECTURE ....uuutiiviieeieiieiieeeee e e e eeete e e e e e eeesaaaeeeeeeeseeaaaaeeeeesseassaaaeeseesseasataasseesseesataseeeeeesasnssaereeeeeaanns 31
Number of DSP48 Slices per Virtex-4 DEVICe.............c..ccocvueveiceeiieeiiesieeieeieeeeeieeie e sve e 33

DISP SLICE PRIMITIVE ....coooiiiuiitiiieeeieeiitteeee e e e eeeeiaee e e e e e eeeaaaeeeeeeeeesaaaaeeeeeeeeesataeseeeseeessstsseeseeeeesntrereeeeeeanns 34
DSP48 SLICE ATTRIBUTES ....uvvvviiiieeiieiitreeeeeeeeesitareeeeeeeeesaaseeeeeseessissessseseeesissssteeseeessssssseseeeeessssrereseseennns 36
DSP48 TILE AND INTERCONNECT .......cuuuttieeeeeeeeiitrreeeeeeeeeiisseeeeeeeeeiisseseseeeeesiisssssseeeessissssseseeesesssssseseseenans 37
SIMPLIFIED DSP48 SLICE OPERATION.........uuuviiieeeeiiiiirreeeeeeeeeiiisreeeeeeeeeeisseseeeeeesseissseseeeesessisssesseseenssssnes 40

Vi



A, B, C, AND P PORT LOGIC ...uvvviiiiiiieiieiiii ettt e ettt e e e e et ae e e e e e eeeaaaereeeeeeens
OPMODE, SUBTRACT, AND CARRYINSEL PORT LOGIC ......ccooouviiiiiiieeeeeee e
TWO’S COMPLEMENT MULTIPLIER..........ccceiutieieitreeeeeiteeeeeeaeeeeeeseeeeesseeeeensseesentsesesesseesenaseeesnsessseneesennnnees
X, Y, AND Z MULTIPLEXER ......uututtiiiieeieeiiiureeeeeeeeeiisreeeeeeeeeeisseseeeeeeesisseseseseesaitssseseseeessssssseeeeseenensnsseeeees
THREE-INPUT ADDER/SUBTRACTER .......cceiiuvieieiteeeeeiteeeeeiteeeeeeseeeeesseeeeeeseeeeeetseeseesseeseaseeeensesesnseesesnnnes
FORMING LARGER MULTIPLIERS .....cooiiiiiiiiie oot

CHAPTER 5

PROPOSED MULTIPLIER DESIGN

CHAPTER 6

FIR FILTER IMPLEMENTATION

BASIC FIR FILTERS ....uviiitiietis ettt ettt ettt ettt e et e et s e taeeateeetaeeateeevaeeasesenseeensesensaeeasesenseeenreean
IMPLEMENTATION OF 3-TAP FIR FILTER ON FPGA ...ttt
S-TAP FIR FILTER ...cuviiiutiiitiieetieeeie e et ettt et ettt e et e e taeeetveeeaaeeetaeeetaeeeaseeeaseestseeeaseessseeeassensseenaseensseeasneenes
T-TAP FIR FILTER ....ccuttiiiiiiie ettt ettt e eettee e ettt e e ettt e e et e e eestaeeeesebaeeesssaaeeassseeeesssaeeessssaeannsseeesnssseesssssaeans
O-TAP FIR FILTER ...cccuutiiiiiiiie ettt ettt e eettee ettt e e ettt e e et eeeestaeeeesebaeeessbaaeeessseeeasssaeesssssaeanssseeessssseesssssenans
TO-TAP FIR FILTER ...cuitiiieiiiiie ettt ettt ettt e ettt e e ettt e e ettt e e ettt e e essbaaeeessbaeaesssaeeesssaaeassseeeasssseesnsssens

CHAPTER 7

CONCLUSION AND FUTURE WORK

REFERENCES

53

55
56
56
56
57
61
62
62
62
64

67
67

67
69
71
73
75
76

80
80

81

Vi



List of Figures

Figure 2-1: Single-Precision Representation

Figure 2-2: Double-Precision Representation

Figure 3-1: General structure of FPGA [8]

Figure 4-1: DSP48 Slice Primitive [12]

Figure 4-2: DSP48 Interconnect and Relative Dedicated Element Sizes

Figure 4-3: A DSP48 Tile Consisting of Two DSP48 Slices [12]

Figure 4-4: Simplified DSP48 Slice Model [12]

Figure 4-6: A Input Logic

Figure 4-6: B Input Logic

Figure 4-6: C Input Logic

Figure 4-9: P Output Logic

Figure 4-10: OPMODE, SUBTRACT, and CARRYINSEL Port Logic

Figure 4-11: 35x35-Bit Multiplication from 18x18-Bit Multipliers

Figure 5-1: Flow chart showing floating point Multiplication

Figure 5-2: Multiplier Implementation using DSP48

Figure 5-3: Details of DSP48 block usage in figure 5-2

Figure 5-4: 35x35-Bit Multiplication from 18x18-Bit Multipliers

Figure 5-5: Comparison of two implementations of floating point multiplier

Figure 6-1: Conventional Tapped Delay Line FIR Filter

Figure 6-2: Graphical comparison of two implementations of 3-Tap FIR filter

Figure 6-3: Graphical comparison of two implementations of 5-Tap FIR filter

Figure 6-4: Graphical comparison of two implementations of 7-Tap FIR filter

Figure 6-5: Graphical comparison of two implementations of 9-Tap FIR filter

Figure 6-6: Graphical comparison of two implementations of 10-Tap FIR filter

Figure 6-7: Graphical comparison of frequency rate obtained of two implementations
of 3,5, 7,9 and10-Tap FIR filter

Figure 6-8: Percentage improvement obtained after the comparison of the two

implementations of 3, 5, 7, 9 & 10-Tap FIR filter

10
11
17
34
38
39
41
44
44
44
45
46
51
54
58
58
60
65
69
71
73
74
76
77

79

viii



Table 2-1:
Table 4-1:

Table 4-2

Table 5-3

Table 6-2:

Table 6-3

Table 6-4:
Table 6-5:

Table 6-6:
Table 6-7:

Table 6-8:
Table 6-9:

Table 6-10: Device utilization summary of 10-tap filter using proposed multiplier

List of Tables

Representation of special case numbers in IEE-754 standard

Number of DSP48 Slices per Virtex-4 Family Member

: The details of each port of DSP48 slice and its brief functionality
Table 4-3:
Table 4-4:
Table 4-5:
Table 4-6:
Table 5-1:
Table 5-2:

OPMODE Control Bits Select X Multiplexer Outputs

OPMODE Control Bits Select Y Multiplexer Outputs

OPMODE Control Bits Select Z Multiplexer Outputs

OPMODE Control Bits Adder/Subtracter Function [12]
Representation of special case numbers in IEE-754 standard

Summary of DSP48 Implementation of 24 bit mantissa multiplication

: Device utilization summary of the proposed multiplier
Table 5-4:
Table 6-1:

Device utilization summary of the multiplier designed by Mark in [7]
Device utilization summary of 3-tap FIR filter implementation using
multiplier in [7]

Device utilization summary of 3-tap filter using proposed multiplier

: Device utilization summary of 5-tap FIR filter implementation using

multiplier in [7]
Device utilization summary of 5-tap filter using proposed multiplier
Device utilization summary of 7-tap FIR filter implementation using

multiplier in [7]

Device utilization summary of 7-tap FIR filter using proposed multiplier

Device utilization summary of 9-tap FIR filter implementation using
multiplier in [7]

Device utilization summary of 9-tap filter using proposed multiplier
Device utilization summary of 10-tap FIR filter implementation using

multiplier in [7]

Table 6-11: The percentage improvement obtained after the comparison of the

two implementations of 5, 7, 9 & 10-Tap FIR filter

12
33
35
48
48
48
50
55
61
65
65
69

70
71

72

73

75

75
76

77
79



Abstract

The use of FPGAs for the implementation of DSP algorithms is increasing day by
day due to improvement in their size and performance. FPGAs are generally good at
fixed point arithmetic but they usually prove inefficient in terms of area and space
when used for implementation of floating point algorithms. This is due to the fact that
floating point algorithms are complex and it has always been hard to implement these
on FPGAs, especially multiplication based algorithms. To cater this problem we have
proposed a new technique for implementing floating point multiplier on FPGAs in this
thesis. The new design methodology helps us to reduce the area utilization on FPGAs
which is a major concern while implementing a floating point algorithm. The key point
is to use dedicated multipliers available on FPGAs. These multipliers are fixed point
multipliers and we have used them for the simple multiplication of mantissa parts of
floating point numbers. So, instead of implementing the whole floating point multiplier
on FPGA, the idea is to use the built in fixed point multiplier whenever a multiplication
is required. All other issues are handled separately, like sign checking, normalization of
floating point numbers, pre and post adjustment of exponents, shifting of mantissas by
appropriate number of bits and rounding, flags etc. The multiplier is 32-bit and is in
accordance with the IEEE-754 floating point standard. This technique helps in the
reduction of area utilization while implementing floating point algorithms on FPGASs.
As a proof of this argument we have also implemented a FIR filter using this multiplier
and got satisfactory results regarding area utilization. In the end a comparison of my

results with others has also been made.



Chapter 1

Introduction

Field Programmable Gate Array (FPGA) is a set of programmable logic cells that
are interconnected by means of programmable switches. These logic cells are also
called Configurable Logic Blocks (CLBs). Unlike an Application Specific Integrated
Circuit (ASIC) which can perform a single specific function for the lifetime of the
chip an FPGA can be reprogrammed to perform a different function in a matter of
microseconds [1]. Before it is programmed an FPGA knows nothing about how to
communicate with the devices surrounding it. This is both a blessing and a curse as it
allows a great deal of flexibility in using the FPGA while greatly increasing the
complexity of programming it [1]. With the passage of time the abilities and
performance of FPGAs are increasing. More and more features are being added to them
every year. In 1984 when Xilinx launched the industry’s first FPGA, it was able to
implement just a few thousands gates. Due to the technological advancements, FPGAs
are now capable to implement more than a million gates. This has drawn the attention
of Digital Signal Processing (DSP) design engineers and the use of FPGAs for DSP
applications is increasing day by day. FPGAs are good candidate for DSP applications
due to their architecture, flexibility and pipelining capabilities. FPGAs, with their
newly acquired digital signal processing capabilities, are now expanding their roles to
help offload computationally intensive digital signal processing functions from the

processor [2].

Some applications require a high degree of accuracy like robotic arm control or
motor control. This accuracy cannot be met with the use of fixed point architecture
because of the fact that in fixed point architecture the radix point is always fixed. This

places a limit on the precision and magnitude of the numbers being represented. So to



avoid the loss of precision, a floating point architecture is always needed. Very large

and very small numbers can be represented in a floating point format.

On the other hand FPGAs are generally good at fixed point arithmetic but they
generally prove inefficient when used for floating point algorithms. The floating point
algorithms usually consume more chip area which is a limited resource in FPGAs. This
problem becomes even more prominent when using standard 32-bit floating point
numbers. In addition to this the floating point algorithms are usually harder to
implement on FPGAs. This is due to the fact that the floating point algorithms are
complex in nature, particularly multiplication-based operations. The major reason for
this complexity is the need for normalization of the floating point numbers. This

requires the shifting of mantissas and adjustment of exponents [3], [4].

To cater this problem we have proposed a new technique for implementing
floating point multiplier on FPGAs in this paper. The new design methodology helps us
to reduce the area utilization on FPGAs which is a major concern while implementing a
floating point algorithm. The key point is to use dedicated multipliers available on
FPGAs. These multipliers are fixed point multipliers and we have used them for the
simple multiplication of mantissa parts of floating point numbers. So, instead of
implementing the whole floating point multiplier on FPGA, the idea is to use the built
in fixed point multiplier whenever a multiplication is required. All other issues are
handled separately, like sign checking, normalization of floating point numbers, pre
and post adjustment of exponents, shifting of mantissas by appropriate number of bits
and rounding, flags etc. The multiplier is 32-bit and is in accordance with the IEEE-754
floating point standard. This technique helps in the reduction of area utilization while
implementing floating point algorithms on FPGAs. As a proof of this argument we have
also implemented a FIR filter using this multiplier and got satisfactory results
regarding area utilization. In the end a comparison of my results with others has also

been made.



As FPGA device densities increase, field programmable gate arrays (FPGAs) are
increasingly being applied to DSP applications. This is due to the enormous speed up
possible over conventional digital signal processors (for some applications) usually
due to parallel computation on multiple data streams. For some applications, however,
FPGAs suffer in performance and logic utilization relative to digital signal processors
due to the use of general purpose logic for computation as opposed to hardwired
computation units. This is particularly the case for multiplication and multiply-

accumulate operations. [3]

Digital Signal Processing (DSP), thanks to explosive development of wired and
wireless networks and multimedia, represents one of the most fascinating areas in
electronics. The applications of DSP continue to expand, driven by trends such as the
increased use of video and still images and the demand for increasingly reconfigurable
systems such as Software Defined Radio (SDR). Many of these applications combine the
need for significant DSP processing efficiency with cost sensitivity, creating demand for
high-performance, low-cost DSP solutions. Traditionally, digital signal processing
algorithms are being implemented using general purpose programmable DSP chips.
Alternatively, for high-performance applications, special-purpose fixed function DSP
chipsets and application specific integrated circuits (ASICs) are used. Typical DSP
devices are based on the concept of RISC processors with an architecture that consists
of fast array multipliers. In spite of using pipeline architecture, the speed of such

implementation is limited by the speed of array multiplier.

Multiplications, followed by additions, subtractions or accumulations are the
basis of most DSP applications. The number of multipliers embedded in DSP processor
is generally in the range of one to four. The microprocessor will sequence data to pass
it through the multipliers and other functions, storing intermediate results in
memories or accumulators. Performance is increased primarily by increasing the clock
speed used for multiplication. Typical clock speeds are between tens of MHz to 1GHz.
Performance, as measured by millions of Multiply And Accumulate (MAC) operations
per second, typically ranges from 10 to 4000. The technological advancements in Field

4



Programmable Gate Arrays (FPGAs) in the past decade have opened new paths for DSP
design engineers. FPGAs, with their newly acquired digital signal processing
capabilities, are now expanding their roles to help offload computationally intensive

digital signal processing functions from the processor [2].

FPGAs are an array of programmable logic cells interconnected by a matrix of
programmable connections. Each cell can implement a simple logic function defined by
a designer’s CAD tool. Typical programmable circuit has a large number (64 to over
300,000) of such cells that can be used to form complex digital circuits. The ability to
manipulate the logic at the gate level means that designer can construct a custom
processor to efficiently implement the desired function. FPGAs offer performance
target not achievable by DSP processors. However, to achieve the high-performance,
FPGA-based designs have come at a cost. Efficient utilization of possibilities provided
by modern programmable devices requires knowledge of hardware specific design
methods. Designing DSP system targeted for FPGA devices is very different than
designing it for DSP processors. Most algorithms being in use were developed for
software implementation. Such algorithms can be difficult to translate into hardware.
Thus the efficiency of FPGA-based DSP is heavily dependent on experience of the
designer and his ability to tailor the algorithm to efficient hardware implementation.

Moreover CAD tools for FPGA based DSP design are immature [2].

However DSP-oriented FPGAs provide the ability to implement many functions
in parallel on one chip. General-purpose routing, logic and memory resources are used
to interconnect the functions, perform additional functions, sequence and, as
necessary, store data. This provides possibility to increase the performance of digital

system by exploitation of parallelism of implemented algorithms [2].

In this thesis, FPGA based implementation of floating point algorithms are
discussed. A new design of floating point multiplier is proposed which uses the
dedicated multipliers available on FPGAs As the example FIR implementation on FPGA

using the multiplier is used.



Digital multipliers are needed in many system applications, including digital
filters, correlators and other DSP applications. Multipliers often make ineffective use of
a programmable part by consuming significant logic and routing resources. One
solution is to use dedicated multiplier devices connected to FPGAs, however, this often

results in performance degradation due to inter-chip communication delays.

Existing Dedicated Multiplier Architectures

Lee and Flynn [16] have constructed a carry built-in architecture to implement
arithmetic operations through multi-ported look up tables. The carry architecture is
built-in with a multi-port LUT with additional support for carry logic by the use of a
bypass multiplexer. They have achieved 5 times greater throughput density for
particular applications such as variable multiplier, FIR filter, Viterbi decoder and Jacobi
[teration method. Due to the additional logic necessary they have achieved this result
at the cost of a 10% area penalty, however the use of LUTs instead of dedicated

arithmetic logic imposes a performance penalty.

Haynes and Cheung [11] described a technique to implement a multiplier with
the aid of new flexible array block (4 x 4 multiplier). An array of these blocks is capable
of being configured to perform any 4m bits x 4n bits signed/unsigned binary
multiplication. The blocks are designed to be embedded within a conventional FPGA
structure to increase the functionality of the device by freeing valuable general
reconfigurable resources, particularly when used in the area of image processing. In
general, the lack of a regular CLB structure reduces the flexibility of the design. When
these blocks are used within an FPGA structure then a special routing architecture is

required in order to overcome this problem.

Similar work has been done by Nabeel et al in [5]. They have presented
different ways of implementing floating point adders and multipliers and have

investigated suitable combination of area and speed. They have used a non-standard

6



representation of floating point numbers. They have used 16-bit and 18-bit instead of
standard 32-bit format. So this representation is application specific and may
according to their need and may cause loss of accuracy if used for other applications
that demand accuracy. In [6] Loucas et al have also explored FPGA implementations of
addition and multiplication for IEEE single precision floating-point numbers. The
implementations tradeoff area and speed for accuracy. The adder is a bit-parallel
adder, and the multiplier is a digit-serial multiplier. The multiplier takes 12 clock
cycles to produce the result. In [7] the author has presented an open source floating
point multiplier. We have also used this multiplier for the implementation of FIR filter
and found out that it consumes a lot of area on FPGA. We have also made a comparison

of its results with our work.

Floating Point Arithmetic Support

Floating point multiplication is more difficult to implement in hardware due to
the need to shift the mantissa by an appropriate number of bits and adjust the
exponent. In hardware, a floating point multiplier generally consists of a fixed-point
multiplier and other extra circuitry for sign checking, pre and post shifting of the
exponents. Shifting can be performed with barrel or logarithmic shifters. In general,
barrel shifters are built with a linear chain of multiplexers with input bits and control

signals.

When implemented in conventional lookup-table (LUT) based FPGAs, these
multiplexers are implemented using LUTs resulting in poor utilization of the device
and slow performance. To avoid this problem, an additional programmable multiplexer
is provided between the multiplier unit and carry circuit for efficient implementation
of barrel shifters. This enhances the area-efficiency and performance of the proposed
architecture for floating-point arithmetic operations. Further investigations are
planned into architectural enhancements to better support floating point arithmetic in

FPGAs [3].



Organization

The thesis is organized in the following sections to easily make the readers understand;

Chapter 2 elaborates the IEEE-754 Floating point architecture. It discusses the
standard formats of floating point numbers in use today. A brief review is

presented.

Chapter 3 gives an overview of the FPGAs, its architecture and usability. It also

elaborates the need of FPGAs and how to program it.

Chapter 4 provides technical details for the XtremeDSP™ Digital Signal
Processing (DSP) element, the DSP48 slice. The DSP48 slices facilitate higher

levels of DSP integration than previously possible in FPGAs.

Chapter 5 completely describes the proposed design of floating point multiplier.
It completely elaborates the design of the multiplier and its usage in floating

point algorithms.

Chapter 6 shows the results of the implementation of FIR filter using the proposed
multiplier and these results have also been compared with simple implementation of

FIR filter without using this multiplier.

Chapter 7 concludes the thesis with some suggestion of Future Work to improve

the multiplier design.



Chapter 2

IEEE-754 Floating Point Standard

This section presents a brief review of IEEE-754 floating point number
representation [13]. There are several ways to represent real numbers on
computers, and floating point format is one of them. Floating-point representation
basically represents real numbers in scientific notation. Scientific notation
represents numbers as a base number and an exponent. For example, 123.456 could
be represented as 1.23456 x 102. In hexadecimal, the number 123.abc might be

represented as 1.23abc x 162.

Floating-point solves a number of representation problems. Fixed-point has a
fixed window of representation, which limits it from representing very large or very
small numbers. Also, fixed-point is prone to a loss of precision when two large

numbers are divided.

On the other hand, floating point format employs a sort of "sliding window"
of precision appropriate to the scale of the number. This allows it to represent

numbers from 1,000,000,000,000 to 0.0000000000000001 with ease.

The IEEE-754 standard [13] defines four formats for floating-point numbers.
The four formats are: single precision, double precision, single-extended precision,
and double-extended precision. The most commonly used floating-point formats are

single precision and double precision.

The Format

The single-precision, double-precision, and extended precision formats are
available to represent floating-point numbers. IEEE floating point numbers have

three basic components: the sign, the exponent, and the mantissa. The mantissa is



composed of the fraction and an implicit leading digit. The exponent base is implicit

and need not be stored.

Single-Precision Format

In the single-precision format, the most significant bit (MSB) is a sign bit,
followed by 8 intermediate bits to represent an exponent, and 23 least significant
bits (LSBs) to represent the mantissa. As a result, the total width of single-precision
numbers is 32 bits. The bias for the single-precision format is 127. Refer to Figure

2-1.

Sign Exponent Mantissa/Significand
31 30 24 23 ]
-1-Bit-| | 8-Bits | | 238its |

Figure 2-1: Single-Precision Representation
The Sign Bit
The sign bit is as simple as it gets. 0 denotes a positive number; 1 denotes a

negative number. Flipping the value of this bit flips the sign of the number.

The Exponent

The exponent field needs to represent both positive and negative exponents.
To do this, a bias is added to the actual exponent in order to get the stored exponent.
For IEEE single-precision floats, this value is 127. Thus, an exponent of zero means
that 127 is stored in the exponent field. A stored value of 200 indicates an exponent
of (200-127), or 73. Exponents of -127 (all 0s) and +128 (all 1s) are reserved for
special numbers. For double precision, the exponent field is 11 bits, and has a bias of
1023.
The Mantissa/Significand

The mantissa, also known as the significand, represents the precision bits of
the number. It is composed of an implicit leading bit and the fraction bits. To find

out the value of the implicit leading bit, consider that any number can be expressed

10



in scientific notation in many different ways. For example, the number five can be

represented as any of these:

5.00 x 100
0.05 x 102
5000 x 103

In order to maximize the quantity of represent able numbers, floating-point
numbers are typically stored in normalized form. This basically puts the radix point

after the first non-zero digit. In normalized form, five is represented as 5.0 x 100.

A nice little optimization is available to us in base two, since the only possible
non-zero digit is 1. Thus, we can just assume a leading digit of 1, and don't need to
represent it explicitly. As a result, the mantissa has effectively 24 bits of resolution,

by way of 23 fraction bits.
The Value
The formula for computing the value of binary floating point number is given below:

Value = (-1)Sx 1.M x 2(E-127)

Double-Precision Format

In the double-precision format, the MSB is a sign bit, followed by 11
intermediate bits to represent an exponent, and 52 LSBs to represent the mantissa.
As a result, the total width of double-precision numbers is 64 bits. The bias for

double-precision format is 1023. Refer to Figure 2-2.

Sign Exponent Mantissa/Significand
63 62 52 51 0
p-snﬂ 11-Bits } } 52Bits |

Figure 2-2: Double-Precision Representation

11



Extended Precision Format

In single-extended precision format, the MSB is a sign bit. However, there are
no fixed widths for the exponent and mantissa fields. The exponent field has a
minimum of 11 bits and its width must be less than the width of the mantissa field.
The mantissa field has a minimum of 31 bits. The sum of the widths of the sign bit,
the exponent field, and the mantissa field is a minimum of 43 bits and a maximum of
64 bits. The bias for the single-extended precision format is unspecified in the IEEE-

754 standard.

Special Case Numbers

Table 2-1 shows the special case numbers defined by the [EEE-754 1985

Standard for Binary Arithmetic and their data bit representations.

Table 2-1: Representation of special case numbers in IEE-754 standard

Sign Exponent | Mantissa Representation
X AllO’s AllO’s Zero
0 All 0’s Non-zero Positive Denormalized
1 All 0’s Non-zero Negative Denormalized
0 All 1’s All 0’s Positive Infinity
1 All I’s AllO’s Negative Infinity
X All 1’s Non-zero Not a Number (NaN)

Rounding

In the IEEE-754 standard, there are four types of rounding modes: round-to-
nearest-even, round-toward-zero, round-toward-positive-infinity, and round-
toward-negative-infinity. The most commonly used rounding mode is round-to-
nearest-even. This multiplier uses only the round-to-nearest-even mode. With the

round-to-nearest-even mode, the result is rounded to the nearest floating-point

12



number. If the result is exactly halfway between two floating-point numbers, it is

rounded so that the LSB becomes zero, which is even.

Algorithm for Floating-Point Calculation

Given two decimal inputs, A and B, the result R of the multiplication is as

follows:

R = (M, x 2F2) x (M}, x 2Eb) = (M, x Mp) x 2Ea+Eb
where:
e Eaisthe exponent bit of A
e Ebis the exponent bit of B
e M, is the mantissa bit of A

e My is the mantissa bit of B

Therefore, R has the following values:

e Sign = (sign bit of A) XOR (sign bit of B)
e Exponent = exponent of A + exponent of B - bias

e Mantissa = mantissa of A x mantissa of B

The exponent of A and the exponent of B are stored with bias adjustments in the
IEEE-754 floating-point number. Therefore, when the two exponents are added

together, the extra exponent must be removed.

The following calculations show how the addition of two bias numbers

causes an extra bias:

e Exp_A_bias = Exp_A_actual + bias
e Exp_B_bias = Exp_B_actual + bias
e Exp_A_bias + Exp_B_bias

13



= Exp_A_actual + bias + Exp_B_actual + bias

= Exp_A_actual + Exp_B_actual + bias + bias

For an IEEE-754 standard floating-point number, only one bias adjustment is
needed. Adding two bias numbers together causes an extra bias on the result of the

calculation. The extra bias must be removed to obtain the correct result.

Common Applications

The advantage of floating-point numbers is that they can represent a much
larger range of values. In a fixed-point number representation, the radix point is
always at the same location. While the convention simplifies numeric operations
and conserves memory, it places a limit on the magnitude and precision of the
number representation. In situations that require a large range of numbers or high
resolution, a relocatable radix point is desirable. Very large and very small numbers
can be represented in a floating-point format. Multiplication of floating-point

numbers is also commonly required in DSP-based applications.

Example

Here is an example of converting a decimal number into IEEE single precision

floating point number. The number to be converted is 39887.5625

e Binary representation of it integral part is: 3988710 =1001101111001111,

e Binary representation of its fractional partis: 0.5625 =1001;

e So the binary representation of 39887.562510 =1001101111001111.1001

e Now we have to normalize the number. Normalization involves the shifting
of mantissa until the radix point is after the first non-zero bit. The exponent

is adjusted accordingly. So after normalization we get:

1001101111001111.10012=1.0011011110011111001> x 215

14



Ignoring the leading 1 the mantissa is: 00110111100111110010000
Adding bias (127) to the exponent we get: 15 + 127 =142 =10001110;
As the given number is positive so the sign bit is: 0

So final representation of 39887.5625 in 32-bit floating point number is:

0

10001110|00110111100111110010000

15



Chapter 3

Introduction to FPGAs

A field-programmable gate array (FPGA) is an integrated circuit designed
to be configured by the customer or designer after manufacturing—hence "field-
programmable"”. The FPGA configuration is generally specified using a hardware
description language (HDL), similar to that used for an application-specific
integrated circuit (ASIC) (circuit diagrams were previously used to specify the
configuration, as they were for ASICs, but this is increasingly rare). Any logical
function can be implemented using FPGAs that an ASIC could perform. The ability of
updating the functionality after shipping, and the low non-recurring engineering
costs relative to an ASIC design (not withstanding the generally higher unit cost),

proved beneficial for many applications.

FPGAs are consisted of programmable logic components called "logic blocks",
and a hierarchy of reconfigurable interconnects that allow the blocks to be "wired
together"—similar to a one-chip programmable breadboard. Complex
combinational functions can be performed by configuring the logic blocks, or merely
simple logic gates like AND and XOR. In most FPGAs, the logic blocks also contain
memory elements, which may be simple flip-flops or more complete blocks of

memory [7]. Figure 3-1 shows the general structure of FPGA.

16



Jllv J1[? J:L‘l

=

LY N T | G f:*; Programmatie

3c

interconnect
4 L
b b Programmable
,——f“”’j/ logic blocks
b~ —r =
= =) =) = =
r""_; r"'-_‘

AT AT T

Figure 3-1: General structure of FPGA [8]

History

The FPGA industry sprouted from programmable read only memory (PROM)
and programmable logic devices (PLDs). PROMs and PLDs both have an option of to
be programmed in batches in a factory or in the field (field programmable);

however programmable logic was hard-wired between logic gates.

Ross Freeman and Bernard Vonderschmitt, the Co-Founders of Xilinx,
invented the first commercially viable field programmable gate array in 1985 - the
XC2064. The XC2064 was consisted of programmable gates and programmable
interconnects between gates, the beginnings of a new technology and market. The
XC2064 boasted a mere 64 configurable logic blocks (CLBs), having two 3-input
lookup tables (LUTs). Freeman was entered into the National Inventor's Hall of

Fame for his invention after more than 20 years.

Few of the industry’s foundational concepts and technologies for
programmable logic arrays, gates, and logic blocks are founded in patents awarded

to David W. Page and LuVerne R. Peterson in 1985.

17



Later in 1980s the Naval Surface Warfare Department funded an experiment
proposed by Steve Casselman to develop a computer that would implement 600,000
reprogrammable gates. Casselman succeeded and his system was awarded a patent

in 1992,

Xilinx continued unchallenged and rapidly growing from 1985 to the mid-
1990s, when competitors sprouted up, eroding significant market-share. By 1993,
Actel was serving nearly 18 percent of the market. The 1990s were the most
important period of time for FPGAs, both in sophistication and the volume of
production. FPGAs were primarily used in telecommunications and networking in
early 1990s. By the end of the decade, FPGAs found their way into consumer,

automotive, and industrial applications.

FPGAs became very famous in 1997, when Adrian Thompson merged genetic
algorithm technology and FPGAs to create a sound recognition device. Thomson'’s
algorithm allowed the use of an array of 64 x 64 cells in a Xilinx FPGA chip to decide

the configuration needed to accomplish a sound recognition task.
Modern Developments

A recent trend has been to take the coarse-grained architectural approach a
step further by combining the logic blocks and interconnects of traditional FPGAs
with embedded microprocessors and related peripherals to form a complete
"system on a programmable chip". This work reflects the architecture by Ron Perlof
and Hana Potash of Burroughs Advanced Systems Group which combined a
reconfigurable CPU architecture on a single chip called the SB24. That was done in
1982. Examples of such hybrid technologies can be found in the Virtex-4 devices and
Xilinx Virtex-II PRO, which include one or more PowerPC processors embedded
within the FPGA's logic fabric. The Atmel FPSLIC is another device, which uses an

AVR processor in combination with Atmel's programmable logic architecture.

18



An alternate approach of using hard-macro processors is to make use of

"soft" processor cores that are implemented within the FPGA logic.

As mentioned earlier, many modern FPGAs have the ability to be
reprogrammed at "run time," and this leads to the idea of reconfigurable computing
or reconfigurable systems — CPUs that reconfigure themselves to suit the task at
hand. The Mitrion Virtual Processor from Mitrionics is an example of a
reconfigurable soft processor, implemented on FPGAs. However, instead of
supporting the dynamic reconfiguration at runtime, it adapts itself to a specific

program.

Additionally, new, non-FPGA architectures are beginning to emerge.
Software-configurable microprocessors for example the Stretch S5000 adopt a
hybrid approach by providing an array of processor cores and FPGA-like
programmable cores on the same chip. Some of the major FPGA chip makers are

Xilinx and Altera.

Gates

FPGA size has seen a tremendous growth in past years. In 1984, Xilinx
launched the industry’s first FPGA that could implement few thousands of gates.

Today, an FPGA (Xilinx’s Virtex) is capable of implementing one million gates [8].

e 1987:9,000 gates, Xilinx
e 1992: 600,000, Naval Surface Warfare Department
e Early 2000s: Millions

The reasons for such a quantum leap are simple: [18]

e Technological improvements.
e Quick prototyping demands for complex digital systems targeting

Application Specific Integrated Circuits (ASICs).

19



e Suitable for low volume, high-density and quick turn-around of complex
digital systems.

e In-system reprogrammability.
FPGA Comparisons

Historically, FPGAs have been slower, less energy efficient and generally
achieved less functionality than their fixed ASIC counterparts. A combination of
fabrication improvements, volume, research and development, and the 1/0
capabilities of new supercomputers have largely closed the performance gap

between ASICs and FPGAs.

A shorter time to market, ability to re-program in the field to fix bugs, and
lower non-recurring engineering costs are its advantages. Vendors can also develop
their hardware on ordinary FPGAs, but manufacture their final version so it can no

longer be modified after the design has been committed.

Xilinx claims that several market and technology dynamics are changing the

ASIC/FPGA paradigm:
IC costs are rising aggressively [8]

e ASIC complexity has bolstered development time and costs
e R&D resources and headcount is decreasing
e Revenue losses for slow time-to-market are increasing

e Financial constraints in a poor economy are driving low-cost technologies

These trends make FPGAs a better alternative than ASICs for a growing number
of higher-volume applications than they have been historically used for, to which

the company attributes the growing number of FPGA design starts (see History).

Some FPGAs have the ability of partial re-configuration that lets one portion of

the device can be re-programmed while other portions continue running.

20



Versus CPLDs

The primary differences between CPLDs and FPGAs are architectural. A CPLD
has a bit restrictive structure consisting of one or more programmable sum-of-
products logic arrays feeding a relatively small number of clocked registers. The
result of this is less flexibility, with more predictable timing delays and a higher
logic-to-interconnect ratio. On the other hand, The FPGA architectures are
dominated by interconnects. This makes them far more flexible (in terms of the
range of designs that are practical for implementation within them) and complex to

design for.

Another significant difference between CPLDs and FPGAs is the presence in
most FPGAs of higher-level embedded functions (such as adders and multipliers)
and embedded memories, as well as to have logic blocks implements decoders or

mathematical functions.
Security Considerations

With respect to security, FPGAs have both advantages and disadvantages as
compared to ASICs or secure microprocessors. FPGAs' flexibility makes tremendous
modifications during fabrication at a lower risk. The loaded design for many FPGAs
is exposed while it is loaded (typically on every power-on). To deal with this issue,

some FPGAs support bitstream encryption.
Applications

Applications of FPGAs include digital signal processing, software-defined
radio, aerospace and defense systems, ASIC prototyping, medical imaging, computer
vision, speech recognition, cryptography, bioinformatics, computer hardware

emulation, radio astronomy and a growing range of other areas.

21



Originally, FPGAs began as competitors to CPLDs and competed in a similar
space, that of glue logic for PCBs. As their capabilities, size and speed increased, they
began to take over larger and larger functions to the state where some are now
marketed as full systems on chips (SoC). Particularly, in the late 1990s, with the
introduction of dedicated multipliers into FPGA architectures, applications, which

had traditionally been the sole reserve of DSPs, began to incorporate FPGAs instead.

FPGAs especially find applications in any area or algorithm that can make use
of the massive parallelism offered by their architecture. One such area is code

breaking, in particular brute-force attack, of cryptographic algorithms.

FPGAs are rapidly used in conventional high performance computing
applications where computational kernels such as FFT or Convolution are

performed on the FPGA instead of a microprocessor.

The inherent parallelism of the logic resources on an FPGA allows a
considerable computational throughput even at a low MHz clock rates. The
flexibility of the FPGA allows higher performance by trading off precision and range
in the number format for an increased number of parallel arithmetic units. This has
given a new type of processing called reconfigurable computing, where time

intensive tasks are offloaded from software to FPGAs.

The use of FPGAs in high performance computing is currently limited by the
complexity of FPGA design compared to conventional software and the extremely
long turn-around times of current design tools, where 4-8 hours wait is necessary

after even minor changes to the source code.

FPGAs have been reserved for specific vertical applications where the
volume of production is small. For these low-volume applications, the premium that
companies pay in hardware costs per unit for a programmable chip is more

affordable than the development resources spent on creating an ASIC for a low-

22



volume application. The new cost and performance dynamics have broadened the

range of viable applications today.

Architecture

The most common FPGA architecture consists of an array of configurable
logic blocks (CLBs), I/0 pads, and routing channels. All the routing channels have
generally the same width (number of wires). Multiple Input/output pads may fit

into the height of one row or the width of one column in the array.

An application circuit must be mapped into an FPGA with sufficient
resources. The number of CLBs and I/0s required is easily determined from the
design, while the number of routing tracks needed may vary considerably even
among designs with the same amount of logic. (For instance, a crossbar switch
requires much more routing than a systolic array with the same gate count.) Since
unused routing tracks increase the cost (and decrease the performance) of the part
without providing any benefit, FPGA manufacturers try to provide just enough
tracks so that most designs that will fit in terms of LUTs and 10s can be routed. This
is determined by estimates like the ones derived from Rent's rule or by experiments

with existing designs.

A classic FPGA logic block is consisted of a 4-input lookup table (LUT), and a
flip-flop, as shown below. Now, the manufacturers have started moving to 6-input

LUTs in their high performance parts, claiming increased performance.

There is only one output, which can either be the registered or the
unregistered LUT output. The logic block contains four inputs for the LUT and a
clock input. Since clock signals (and often other high-fanout signals) are normally
routed via special-purpose dedicated routing networks in commercial FPGAs, these

and other signals are separately managed.

23



For the given example architecture, the locations of the FPGA logic block pins

are shown below.

Each input is accessible from one side of the logic block, while the output pin
can connect to routing wires in both the channels to the right and the channel below

the logic block.

Each logic block output pin can connect to any of the wiring segments in the

channels joined to it.

In the same way, an [/0 pad can connect to any one of the wiring segments in
the channel adjacent to it. For example, an [/O pad at the top of the chip can connect
to any of the W wires (where W is the channel width) in the horizontal channel

immediately below it.

The FPGA routing is unsegmented generally. Each wiring segment spans only
one logic block before it terminates in a switch box. By switching on some of the
programmable switches within a switch box, longer paths can be constructed. Some
FPGA architectures use longer routing lines for higher speed interconnect that span

multiple logic blocks.

Whenever a horizontal and a vertical channel intersect, there is a switch box.
In such architecture, when a wire enters a switch box, there are three
programmable switches that allow it to connect to three other wires in adjacent
channel segments. The topology, or pattern, of switches used in this architecture is
the planar or domain-based switch box topology. In such a switch box topology, a
wire in track number one connects only to wires in track number one in adjacent
channel segments, wires in track number 2 connect only to other wires in track

number 2 and so on.

Modern FPGA families are expanded upon the above capabilities to include
higher level functionality fixed into the silicon. The silicon, having these common
functions embedded into it, reduces the area required and gives those functions

24



increased speed compared to building them from primitives. Multipliers, generic
DSP blocks, embedded processors, high speed 10 logic and embedded memories are

the examples of these.

FPGAs are also commonly used for systems validation including pre-silicon
validation, post-silicon validation, and firmware development. This allows chip
companies to validate their design before the chip is produced in the factory, to

reduce the time to market.
FPGA Design and Programming

To define the behavior of the FPGA, the user provides a hardware description
language (HDL) or a schematic design. The HDL formed might be easier to work
with when dealing with the large structures because it's possible to just specify
them numerically rather than having to draw every piece by hand. On the other

hand, schematic entry can allow for easier visualization of a design.

Using an electronic design automation tool, a technology-mapped netlist is
generated. The netlist can then be fitted to the actual FPGA architecture using a
process called place-and-route, usually performed by the FPGA company’s
proprietary place-and-route software. The user will validate the map, place and
route results via timing analysis, simulation, and other verification methodologies.
Once the design and validation process is complete, the binary file generated (also

using the FPGA company's proprietary software) is used to (re)configure the FPGA.

Going from schematic/HDL source files to actual configuration: The source
files are fed to a software suite from the FPGA/CPLD vendor that through different
steps will produce a file. This file is then transferred to the FPGA/CPLD via a serial

interface (JTAG) or to an external memory device like an EEPROM.

The most common HDLs are Verilog and VHDL, although in an attempt to

reduce the complexity of designing in HDLs, which have been compared to the

25



equivalent of assembly languages, there are moves to raise the abstraction level

through the introduction of alternative languages.

For simplification of the design of complex systems in FPGAs, there exist
libraries of predefined complex functions and circuits that have been tested and
optimized to speed up the design process. These predefined circuits are commonly
called IP cores, and are available from the third-party IP suppliers (rarely free and
typically released under proprietary licenses) and FPGA vendors. Other predefined
circuits are available from developer communities for example Open Cores
(typically released under free and open source licenses such as the GPL, BSD or

similar license), and other sources.

In a common design flow, an FPGA application developer will simulate the
design at multiple stages throughout the design process. At the beginning, the RTL
description in VHDL or Verilog is simulated by creating test benches to simulate the
system and observe results. After the synthesis engine has mapped the design to a
netlist, the netlist is translated to a gate level description where simulation is
repeated to confirm the synthesis proceeded without errors. Finally the design is
presented in the FPGA at which point propagation delays can be added and the

simulation run again with these values back-annotated onto the netlist.
Basic Process Technology Types [8]

e SRAM - based on static memory technology. In-system programmable and
re-programmable. Requires external boot devices. CMOS.

e Antifuse - One-time programmable. CMOS.

e EPROM - Erasable Programmable Read-Only Memory technology. Usually
one-time programmable in production because of plastic packaging.
Windowed devices can be erased with ultraviolet (UV) light. CMOS.

e EEPROM - Electrically Erasable Programmable Read-Only Memory
technology. Can be erased, even in plastic packages. Some, but not all,

EEPROM devices can be in-system programmed. CMOS.

26



e Flash - Flash-erase EPROM technology. It can be erased, even in plastic
packages. Few flash devices can be in-system programmed. Generally, a flash
cell is smaller than an equivalent EEPROM cell and is therefore less
expensive to manufacture. CMOS.

o Fuse - One-time programmable. Bipolar.
Major Manufacturers

Xilinx and Altera are the current FPGA market leaders and long-time industry
rivals. They control over 80 percent of the market together, with Xilinx alone

representing over 50 percent.

Xilinx also provides free Windows and Linux design software, while Altera
provides free Windows tools; the Solaris and Linux tools are only available via a

rental scheme.

Other competitors are Lattice Semiconductor (SRAM based with integrated
configuration Flash, instant-on, low power, live reconfiguration), Actel (antifuse,
flash-based, mixed-signal), SiliconBlue Technologies (low power), Achronix (RAM
based, 1.5 GHz fabric speed), and QuickLogic (handheld focused CSSP, no general
purpose FPGAs!).

Dedicated Multiplier Blocks

FPGA manufacturers have for years now been extending their chips’ ability to

implement digital signal processing efficiently, for example by introducing low-latency

carry-chain-routing lines that speed-up addition and subtraction operations spanning

multiple logic blocks. Such mechanism is relatively efficient when implementing

addition and subtraction operations. However, it is not optimal in cost, performance,

and power for multiplication and division functions. As a result, Altera (with Stratix),

QuickLogic (with QuickDSP, now renamed Eclipse Plus) and Xilinx (with Virtex-II,

Virtex-II Pro and DSP48 in Virtex-4) embedded in their chips dedicated multiplier

27



function blocks. Altera moved even further along the integration path, providing fully
functional MAC blocks called the DSP blocks. This allows design methodologies known

from DSP processors to be used [2].

Why FPGA for DSP Algorithms

Floating point operations are hard to implement on FPGAs because of the
complexity of their algorithms. They usually require excessive chip area, a resource
that is always limited in FPGAs. This problem becomes even harder if 32-bit floating

point operations are required.

On contrary, many scientific problems require floating point arithmetic
with high levels of accuracy in their calculations. Furthermore, many of these
problems have a high degree of regularity that makes them good candidates for
hardware accelerated implementations. Thus, the necessity for 32-bit floating point

operators implemented in FPGAs arises. [6]

The architecture of FPGAs makes them suitable for dedicated functions like Digital
Signal processing (DSP). Most of the DSP algorithms require multiplication and
addition in real -time. The unit carrying out this function is called MAC (multiply
accumulate). Three choices of technology exist for the implementation of DSP

algorithms. These are [18]:

e Programmable DSP chips typically have only one MAC unit that can perform
one MAC in less than a clock cycle. DSP processors or programmable DSP chips
are flexible, but they might not be fast enough. The reason is that the DSP
processor is general purpose and has architecture that constantly requires

instructions to be fetched, decoded and executed.

28



ASICs can have multiple dedicated MACs that perform DSP functions in parallel.
But, they have high cost for low volume production and the inability to make

design modifications after production makes them less attractive.

The FPGA architecture allows multiple MACs and pipelining. Their ability to be
modified easily makes them an ideal candidate for DSP functions. The only
drawback is the speed, and this can easily be overridden by using computational

algorithms suitable for FPGAs.

29



Chapter 4

DSP48

Introduction

This chapter provides technical details for the XtremeDSP™ Digital Signal
Processing (DSP) element, the DSP48 slice. The DSP48 slices facilitate higher levels
of DSP integration than previously possible in FPGAs. Many DSP algorithms are
supported with minimal use of the general-purpose FPGA fabric, resulting in low

power, high performance, and efficient device utilization [12].

At first look, the DSP48 slice is an 18 x 18 bit two’s complement multiplier
followed by a 48-bit sign-extended adder/subtracter/accumulator, a function that is

widely used in digital signal processing (DSP).

A second look reveals many subtle features that enhance the usefulness,
versatility, and speed of this arithmetic building block.Programmable pipelining of
input operands, intermediate products, and accumulator outputs enhances
throughput. The 48-bit internal bus allows for practically unlimited aggregation of
DSP slices.

One of the most important features is the ability to cascade a result from one
XtremeDSP Slice to the next without the use of general fabric routing. This path
provides high-performance and low-power post addition for many DSP filter
functions of any tap length. For multi-precision arithmetic this path supports a
right-wire-shift. Thus, a partial product from one XtremeDSP Slice can be right-

justified and added to the next partial product computed in an adjacent such slice.

30



Using this technique, the XtremeDSP Slices can be configured to support any size

operands.

Another key feature for filter composition is the ability to cascade an input
stream from slice to slice. The C input port allows the formation of many 3-input
mathematical functions, such as 3-input addition and 2-input multiplication with a

single addition.

Architecture

The Virtex-4 DSP slices are organized as vertical DSP columns. Within the
DSP column, two vertical DSP slices are combined with extra logic and routing to

form a DSP tile. The DSP tile is four CLBs tall.

Each DSP48 slice has a two-input multiplier followed by multiplexers and a
three-input adder/subtracter. The multiplier accepts two 18-bit, two's complement
operands producing a 36-bit, two's complement result. The result is sign extended
to 48 bits and can optionally be fed to the adder/subtracter. The adder/subtracter
accepts three 48-bit, two's complement operands, and produces a 48-bit two's
complement result.Higher level DSP functions are supported by cascading
individual DSP48 slices in a DSP48 column. One input (cascade B input bus) and the
DSP48 slice output (cascade P output bus) provide the cascade capability. For
example, a Finite Impulse Response (FIR) filter design can use the cascading input to
arrange a series of input data sample and the cascading output to arrange a series of

partial output results.

Architecture highlights of the DSP48 slices are [12]:

e 18-bit x 18-bit, two's-complement multiplier with a full-precision 36-bit

result, sign extended to 48 bits.

31



Three-input, flexible 48-bit adder/subtracter with optional registered

accumulation feedback.

Dynamic user-controlled operating modes to adapt DSP48 slice functions

from clock cycle to clock cycle.

Cascading 18-bit B bus, supporting input sample propagation.

Cascading 48-bit P bus, supporting output propagation of partial results.

Multi-precision multiplier and arithmetic support with 17-bit operand right

shift to align wide multiplier partial products (parallel or sequential

multiplication).

Performance enhancing pipeline options for control and data signals are

selectable by configuration bits.

Input port C typically used for multiply-add operation, large three-operand

addition, or flexible rounding mode.

Separate reset and clock enable for control and data registers.

[/0 registers, ensuring maximum clock performance and highest possible

sample rates with no area cost.

OPMODE multiplexers.

32



Number of DSP48 Slices per Virtex-4 Device

Table 4-1 shows the number of DSP48 slices for each device in the Virtex-4
families. The Virtex-4 SX family offers the highest ratio of DSP48 slices to logic,

making it ideal for math-intensive applications.

Table 4-1: Number of DSP48 Slices per Virtex-4 Family Member

Device ID No. of DSP48s No. of
Columns
XC4VLX15 32 1
XC4VLX25 48 1
XC4VLX40 64 1
XC4VLX60 64 1
XC4VLX80 80 1
XC4VLX100 96 1
XC4VLX160 96 1
XC4VLX200 96 1
XC4VSX25 128 4
XC4VSX35 192 4
XC4VSX55 512 8
XC4VFX12 32 1
XC4VFX20 32 1
XC4VFX40 48 1
XC4VFX60 128 2
XC4VFX100 160 2
XC4VFX140 192 2

33



DSP Slice Primitive

Figure 4-1 shows the DSP48 Slice primitive. The details of each port and its

brief functionality is given in Table 4-2.

A[17:0] BCOUT[17:0]

18 18
—z— BT PCOUT[47:0] [
Cl47:0] P[47:0] ==
48 48
—“—*| OPMODE|6:0]

| SUBTRACT
——= CARRYIN
== CARRYINSEL[1:0]

—=| CEA
—=| CEB
— CEC
———=| CEM
—= CEFP
—= CECTRL
——=| CECINSUBE
— CECARRYIN

—=| RASTA
——— | RSTE
— RSTC
—| RSTM
——=| RSTP
— ASTCTHL
—=| RSTCARRYIN

CLK

———| BCIN[17:0]
———-| PCIN[47:0]

Figure 4-1: DSP48 Slice Primitive [12]



Table 4-2: The details of each port of DSP48 slice and its brief functionality

Signal Name | Direction | Size Functionality

A I 18 The multiplier's A input. This signal can also be used as the
adder's Most Significant Word (MSW) input.

B I 18 The multiplier's B input. This signal can also be used as the
adder's Least Significant Word (LSW) input.

C I 48 | The adder's C input.

OPMODE I 7 Controls .the input to the X, Y, and Z multiplexers in the
DSP48 slices

SUBTRACT [ 1 0 = add, 1 = subtract.

CARRYIN I 1 | The carry input to the carry select logic.

CARRYINSEL I 2 Selects carry source.

CEA I 1 Clock enable: 0 = hold, 1 = enable AREG.

CEB I 1 Clock enable: 0 = hold, 1 = enable BREG.

CEC I 1 | Clock enable: 0 = hold, 1 = enable CREG.

CEM I 1 Clock enable: 0 = hold, 1 = enable MREG.

CEP I 1 | Clock enable: 0 = hold, 1 = enable PREG.
Clock enable: 0 = hold, 1 = enable OPMODEREG,

CECTRL [ 1 CARRYINSELREG.

CECINSUB I 1 Clock en.able: 0=hold, 1= e.nable SUBTRACTREG and
general interconnect carry input.

CECARRYIN I 1 Clock enable: 0 = hold, 1 = enable (carry input from internal
paths).

RSTA I 1 Reset: 0 = no reset, 1 = reset AREG.

RSTB I 1 Reset: 0 = no reset, 1 = reset BREG.

RSTC I 1 Reset: 0 = no reset, 1 = reset CREG.

RSTM I 1 Reset: 0 = no reset, 1 = reset MREG.

RSTP I 1 Reset: 0 = no reset, 1 = reset PREG.
Reset: 0 = no reset, 1 = reset SUBTRACTREG, OPMODEREG,

RSTCTRL ! 1 CARRYINSELREG.

RSTCARRYIN I 1 Beset: 0=no reseF, 1 =reset (carry input from general
interconnect and internal paths).

CLK I The DSP48 clock.
The multiplier's cascaded B input. This signal can also be

BCIN I 18 used as the adder's LSW input.

PCIN I 48 || Cascaded adder's Z input from the previous DSP slice.

BCOUT 0 18 | The B cascade output.

PCOUT 0 48 || The P cascade output.

P 0 48 | The Product output.

35




DSP48 Slice Attributes

The synthesis attributes for the DSP48 slice are described in detail

throughout this section. With the exception of the B_INPUT and LEGACY_MODE

attributes, all other attributes call out pipeline registers in the control and

datapaths. The value of the attribute sets the number of pipeline registers[12].

The attribute settings are as follows:

The AREG and BREG attributes can take a value of 0, 1, or 2. The values

define the number of pipeline registers in the A and B input paths.

The CREG, MREG, and PREG attributes can take a value of 0 or 1. The value
defines the number of pipeline registers at the output of the multiplier
(MREG) and at the output of the adder (PREG) (shown in Figure 4-9). The
CREG attribute is used to select the pipeline register at the C input (shown in
Figure 4-8).

The CARRYINREG, CARRYINSELREG, OPMODEREG, and SUBTRACTREG
attributes take a value of 0 if no pipelining register is on these paths, and
they take a value of 1 if there is one pipeline register in their path. The
CARRYINSELREG, OPMODEREG, and SUBTRACTREG paths are shown in
Figure 4-10.

The B_INPUT attribute defines whether the input to the B port is routed from
the parallel input (attribute: DIRECT) or the cascaded input from the
previous slice (attribute: CASCADE).

The LEGACY_MODE attribute serves two purposes. The first purpose is
similar in nature to the MREG attribute. It defines whether or not the

multiplier is flow through in nature (i.e, LEGACY_MODE value equal to

36



MULT18x18) or contains a single pipeline register in the middle of the
multiplier (i.e., LEGACY_MODE value equal to MULT18x18S is the same as
MREG value equal to one.) While this is redundant to the MREG attribute, it
was deemed useful for customers used to the Virtex-II and Virtex-II Pro
multipliers because the DSP48 setup and hold timing most closely matches
those of the Virtex-II and Virtex-II Pro MULT18x18S when the MREG is used.
Any disagreement between the MREG attribute and LEGACY_MODE attribute
settings are flagged as a software Design Rule Check (DRC) error. The second
purpose for the attribute is to convey to the timing tools whether the A and B
port through the combinatorial multiplier path (slower timing) or faster X
multiplexer bypass path for A:B should be used in the timing calculations.
Because the OPMODE can change dynamically, the timing tools cannot

determine this without an attribute.

To summarize the timing tools behavior:

— If (attribute: NONE), then timing analysis/simulation bypasses the
multiplier for the highest performance. The lowest power dissipation
is achieved by setting MREG to one while CEM input is grounded.

— If (attribute: MULT18x18), then timing analysis/simulation uses the
combinatorial path through the multiplier. In this case, MREG must be
set to zero or a DRC error occurs.

— If (attribute: MULT18x18S), then timing analysis/simulation uses a
pipelined multiplier. In this case MREG must be set to one or a DRC

error occurs.

DSP48 Tile and Interconnect

Two DSP48 slices, a shared 48-bit C bus, and dedicated interconnect form a

DSP48 tile. The DSP48 tiles stack vertically in a DSP48 column. The height of a

DSP48 tile is the same as four CLBs and also matches the height of one block RAM.

This “regularity” enhances the routing of wide datapaths. Smaller Virtex-4 family

37



members have one DSP48 column, while the larger Virtex-4 family members have

two, four, or eight DSP48 columns.

As shown in Figure 4-2, the multipliers and block RAM share interconnect
resources in the Virtex-II and Virtex-II Pro architectures. Virtex-4 devices, however,
have independent routing for the DSP48 tiles and block RAM, effectively doubling

the available data bandwidth between the elements.

Virtex-II and Virtex-II Pro Devices

Multiplier | Block RAM

Interconnect

Virtex-4 Devices

DSP48|DSP48

Block RAM Slice Slica

Interconnect
Interconnect

Figure 4-2: DSP48 Interconnect and Relative Dedicated Element Sizes

Figure 4-3 shows two DSP48 slices and their associated datapaths stacked
vertically in a DSP48 column. The inputs to the shaded multiplexers are selected by
configuration control signals. These attributes are set in the HDL source code or by

the User Constraint File (UCF).

38



0
é
@

Nota 7

Notes:

| BCOUT PCOUT |
|
Mata 4 |
| 8 Nota 1 . . I
| 1 35
I 18 T % |
- 48 |
| sa—— 18 — 48 |48
5 o |~ |
1 |/ CIN |
] Mots 2 *, I
=}
[ I\ = N I
: Mata 3 35— v + =P
— 48
I ~| |—‘q |i s || L :
| |/ SUBTRACT |
| \ Mots &
1 =l |
| Z I
I — 4 '
|
148 |18 Motes 4, 5 I
| Zi - .
|
| Nata 5 — " 1' 48 |
1 BCIN ‘Wira Shift Right by 17 bits PCIN .
— ____________________________I
: BCOU PCOW I
Mote &
| 8 Mata 1 :
: 18 % > % |
] 45 |
A 18 — 45 |48 |
| 18 38
I 4 Nata 2 o :
B \ 72
|ae \ . \I I
| ) Mats 3 fc - S =
I D ﬁ - e ) I
| L/ SUBTRACT |
| 48 Maots B I
| Zam
| z I
I — e '
|
([ o I
| Motes 4, 5 |
| (1] 48 |
I I
: I
|

L1

‘Wira Shift Right by 17 bits

Figure 4-3: A DSP48 Tile Consisting of Two DSP48 Slices [12]

1. The 18-bit A bus and B bus are concatenated, with the A bus being the most

significant.

2. The X)Y, and Z multiplexers are 48-bit designs. Selecting any of the 36-bit

inputs provides a 48-bit sign-extended output.

3. The multiplier outputs two 36-bit partial products, sign extended to 48 bits.

The partial products feed the X and Y multiplexers. When OPMODE selects

39



the multiplier, both X and Y multiplexers are utilized and the
adder/subtracter combines the partial products into a valid multiplier result.

4. The multiply-accumulate path for P is through the Z multiplexer. The P
feedback through the X multiplexer enables accumulation of P cascade when
the multiplier is not used.

5. The Right Wire Shift by 17 bits path truncates the lower 17 bits, and sign
extends the upper 17 bits.

6. The gray-colored multiplexers are programmed at configuration time.

7. The shared C register supports multiply-add, wide addition, or rounding.

8. Enabling SUBTRACT implements Z - (X+Y+CIN) at the output of the

adder/subtracter.

Simplified DSP48 Slice Operation

The math portion of the DSP48 slice consists of an 18-bit x 18-bit, two’s
complement multiplier followed by three 48-bit datapath multiplexers (with
outputs X, Y, and Z) followed by a three-input, 48-bit adder/subtracter.

The data and control inputs to the DSP48 slice feed the arithmetic portions
directly or are optionally registered one or two times to assist the construction of
different, highly pipelined, DSP application solutions. The data inputs A and B can be
registered once or twice. The other data inputs and the control inputs can be

registered once. Full speed operation is 500 MHz when using the pipeline registers.

In its most basic form, the output of the adder/subtracter is a function of its
inputs. The inputs are driven by the upstream multiplexers, carry select logic, and
multiplier array. Equation 4-1 summarizes the combination of X, Y, Z, and CIN by the
adder/subtracter. The CIN, X multiplexer output, and Y multiplexer output are
always added together. This combined result can be selectively added to or

subtracted from the Z multiplexer output.

Adder Out=(Z £ (X +Y + CIN)) Equation 4-1

40



Equation 4-2 describes a typical use where A and B are multiplied, and the
result is added to or subtracted from the C register. More detailed operations based
on control and data inputs are described in later sections. Selecting the multiplier
function consumes both X and Y multiplexer outputs to feed the adder. The two 36-
bit partial products from the multiplier are sign extended to 48 bits before being

sent to the adder/subtracter.

Adder Out=C £ (A x B + CIN) Equation 4-2

Figure 4-4 shows the DSP48 slice in a very simplified form. The seven
OPMODE bits control the selection of the 48-bit datapaths of the three multiplexers
feeding each of the three inputs to the adder/subtracter. In all cases, the 36-bit input
data to the multiplexers is sign extended, forming 48-bit input datapaths to the
adder/subtracter. Based on 36-bit operands and a 48-bit accumulator output, the
number of “guard bits” (i.e., bits available to guard against overflow) is 12.
Therefore, the number of multiply accumulations possible before overflow occurs is
4096. Combinations of OPMODE, SUBTRACT, CARRYINSEL, and CIN control the

function of the adder/subtracter.

OPMODE
Controls
Behavior \
P
: /
A:B — x
: {/
[~
Ly P
Cc T/
Zero ——— E AN \
PCIN —g35 1 z OPMODE, CARRYINSEL, CIN,
and SUBTRACT Control Behavior
2 ——
T — e

Figure 4-4: Simplified DSP48 Slice Model [12]

41



A, B, C, and P Port Logic

The DSP48 slice input and output data ports support many common DSP and
math algorithms. The DSP48 slice has two direct 18-bit input data ports labeled A
and B. Two DSP48 slices within a DSP48 tile share a direct 48-bit input data port
labeled C. Each DSP48 slice has one direct 48-bit output port labeled P, a cascaded
input datapath (B cascade), and a cascaded output datapath (P cascade), providing a
cascaded input and output stream between adjacent DSP48 slices. The B cascade is
selected via the B_INPUT attribute. The cascade is a dedicated resource that is
always connected to the adjacent DSP48 and can be dynamically selected via the Z

MUX (OPMODE 6:4).

Applications benefiting from this feature include FIR filters, complex
multiplication, multi-precision multiplication, complex MACs, adder cascade, and

adder tree (the final summation of several multiplier outputs) support.

The 18-bit A and B port can supply input data to the 18-bit x 18-bit, two's
complement multiplier. When concatenated, A and B can bypass the multiplier and
feed the X multiplexer input. The 48-bit C port is used as a general input to the Y and
Z multiplexer to perform multiply, add, subtract, three-input add/subtract functions,

or rounding.

Multiplexers controlled by configuration bits select flow-through paths,
optional registers, or cascaded inputs. The data port registers allow users to
typically trade off increased clock frequency (i.e., higher performance) vs. data
latency. Also, a configuration controlled pipeline register between the multiplier and
adder/subtracter is known as the M register. The registers have independent clock

enables and resets, described in Table 4-2 and shown in Figure 4-1.

42



The configuration bit enables the C register to select between two potentially
different clock domains, shown in Figure 4-8. The selection of the clock multiplexer
is not set by user attributes. If the C register is used, the DSP48 slices packed in the
same DSP48 tile must either be in the same clock domain or meet multicycle clock

constraints.

The shared C input within the DSP tile can be used by the two slices within a tile in

any one of the following modes:

1. Neither DSP48 slice uses the C port
The C inputs in both slices are unconnected or are connected to GND, 0 in the

HDL code. The place and route software maps the two slices in one tile.

2. Both DSP48 slices use the same C port inputs
The C inputs in both slices are connected to C in the HDL code. The place and

route software maps the two slices in one tile.

3. Only one DSP48 slice is actually using the C port
There are some very specific rules when only one DSP48 slice uses the C
port. The purpose of these new rules is to make sure there is "agreement”
among the implementation tools, the simulation tools, and the customers’

desired results.

The A, B, C, and P port logics are shown in Figure 4-6, Figure 4-7, Figure 4-8,
and Figure 4-9, respectively [12].

43



A —
18 18
A lnputto
18 18 Multiplier
D Q D Ql—
18
EN EN
o RST s RST
CEA
RSTA
Figure 4-6: A Input Logic
B ———r0o
18
3 —
18
BCIN 18 < < B Input to
18 18 Multiplier
D o Q
18
EM EM
> RAST > RST
CEB - T
RSTB
Figure 4-7: B Input Logic
C v
48
7 To Both DSP48 Slices
a8
CLK_0 ——
CLK_1———

Figure 4-8: C Input Logic

44



= DSP48 Slice Output
48

CEP ——EN N /

AST

RASTP ———

Figure 4-9: P Output Logic

OPMODE, SUBTRACT, and CARRYINSEL Port Logic

The OPMODE, SUBTRACT, and CARRYINSEL port logic supports flowthrough
or registered input control signals. Similar to the datapaths, multiplexers controlled
by configuration bits select flowthrough or optional registers. The control port
registers allow users to trade off increased clock frequency (i.e., higher

performance) vs. data latency.

The registers have independent clock enables and resets, described in Table
4-2 and shown in Figure 4-1. The OPMODE, SUBTRACT, and CARRYINSEL registers
are reset by RSTCTRL. The SUBTRACT register has a separate enable labeled
CECINSUB from OPMODE and CARRYINSEL. This enable signal is also used to enable
the carry input from the general interconnect. Figure 4-10 shows the OPMODE,
SUBTRACT, and CARRYINSEL port logic [12].

45



To the X, Y, £ Multiplexers and
7 Carry Input Select Logic

OPMODE -
? L
D Q

CECTAL ——————&—FN

>
RST
ASTCTAL - !

SUBTRACT T—"1-#

To Adder/Subtracter

CECINSUBE ———T—(EN

N S

>
RST
"_r".—l
CARRYIMNSEL bl b +
2 To Carry Input Select Logic
2
o a
EN
>HST
|

Figure 4-10: OPMODE, SUBTRACT, and CARRYINSEL Port Logic

Two’s Complement Multiplier

The two's complement multiplier inside the DSP48 slice accepts two 18-bit x
18-bit, two's complement inputs and produces a 36-bit, two's complement result.
Cascading of multipliers to achieve larger products is supported with a 17-bit right-
shifted cascaded bus input to the adder/subtracter to right justify partial products
by the correct number of bits. MACC functions can also right justify intermediate
results for multi-precision. The multiplier can emulate unsigned math by setting the

MSB of an 18-bit operand to zero.

46



X, Y, and Z Multiplexer

The OPMODE inputs provide a way for the design to change its functionality
from clock cycle to clock cycle (e.g., when altering the initial or final state of the
DSP48 relative to the middle part of a given calculation). The OPMODE bits can be
optionally registered under the control of the configuration memory cells (as

denoted by the gray MUX symbol in Figure 4-10).

Table 4-3, Table 4-4, and Table 4-5 list the possible values of OPMODE and
the resulting function at the outputs of the three multiplexers (X, Y, and Z
multiplexers). The multiplexer outputs supply three operands to the following
adder/subtracter. Not all possible combinations for the multiplexer select bits are
allowed. Some are marked in the tables as “illegal selection” and give undefined
results. If the multiplier output is selected, then both the X and Y multiplexers are

consumed, supplying the multiplier output to the adder/subtracter.

There are seven possible non-zero operands for the three-input adder as
selected by the three multiplexers and the 36-bit operands are sign extended to 48

bits at the multiplexer outputs:

Multiplier output, supplied as two 36-bit partial products
Multiplier bypass bus consisting of A concatenated with B
C bus, 48 bits, shared by two slices

Cascaded P bus, 48 bits, from a neighbor DSP48 slice
Registered P bus output, 48 bits, for accumulator functions

Cascaded P bus, 48 bits, right shifted by 17 bits from a neighbor DSP48 slice

N o 1k W

Registered P bus output, 48 bits, right shifted by 17 bits, for accumulator

functions

a7



Table 4-3: OPMODE Control Bits Select X Multiplexer Outputs

OPMODE Binary X Multiplexer Output
Z Y X
XXX XX 00 Zero (Default)
XXX XX 01 Multiplier Output
XXX XX 10 P
XXX XX 11 A concatenate B

Table 4-4: OPMODE Control Bits Select Y Multiplexer Outputs

OPMODE Binary .
Y Multiplexer Output
Z Y X
XXX 00 XX Zero (Default)
XXX 01 XX Multiplier Output
XXX 10 XX Illegal Selection
XXX 11 XX C

Table 4-5: OPMODE Control Bits Select Z Multiplexer Outputs

OPMODE Binary )
Z Multiplexer Output
Z Y X
000 XX XX Zero (Default)
001 XX XX PCIN
010 XX XX P
011 XX XX C
100 XX XX Illegal Selection
101 XX XX Shift (PCIN)
110 XX XX Shift (P)
111 XX XX lllegal Selection

Three-Input Adder/Subtracter

The adder/subtracter output is a function of control and data inputs.
OPMODE, as shown in the previous section, selects the inputs to the X, Y, Z
multiplexer directed to the associated three adder/subtracter inputs. It also

describes how selecting the multiplier output consumes both X and Y multiplexers.

48



As with the input multiplexers, the OPMODE bits specify a portion of this
function. Table 4-6 shows OPMODE combinations and the resulting functions. The
symbol * in the table means either add or subtract and is specified by the state of
the SUBTRACT control signal (SUBTRACT = 1 is defined as “subtraction”). The
outputs of the X and Y multiplexer and CIN are always added together. This result is
then added to or subtracted from the output of the Z multiplexer. When the
multiplier output is selected, both X and Y multiplexers are used to feed the

multiplier partial products to the adder input.

49



Table 4-6: OPMODE Control Bits Adder/Subtracter Function [12]

OP|I:\JI’IEC))(DE OE’iI\:?Z)r;E XYZ Multiplexer Outputs and Adder/Subtracter Output
[6:0] Z Y X z Y X Adder/Subtracter Output
0x00 000 00 0o 0 0 0 +CIN
0x02 goo 00 10 0 0 P +(P + CIN)
0x03 goo o0 11 o o AB +(A:B + CIN)
0x05 ooo 01 01 o Note 1 +{A = B+ CIN)
Ox0c goo 11 oo o] - o] =(C + CIN)
Ox0e 000 11 10 0 - P +(C + P + CIN)
0x0f goo 11 11 0 C AB +{(A:B+C+CIN)
0x10 001 00 0O PCIN 0 0 PCIN = CIN
0x12 001 00 10 PCIN 0 P PCIN = (P + CIN)
0x13 001 00 11 PCIN 0 AB PCIN = (A:B + CIN)
Oxls 001 01 01 PCIN Note 1 PCIN + (A =B + CIN)
Oxle 001 11 00 PCIN C 0 PCIN = (C + CIN)
Oxle 001 11 10 PCIN C P PCIN £ (C + P+ CIN)
Ox1f 001 11 11 PCIN C AB PCIN = (A:B + C + CIN)
0x20 010 00 00 r o o P+ CIN
Ox=22 010 00 10 P o] P P+ (P +CIN)
0x23 010 00 11 P 0 AB P+ (A:B+ CIN)
0x25 010 01 01 P Note 1 P+ (AxB+CIN)
0x2c 010 11 60 P - o P+ (C + CIN)
0x2e 010 11 10 P C P P+ (C+P+CIN)
0x2 £ 010 11 11 P C A:B P+ (A:B+C+CIN)
0x30 011 00 00 C 0 0 C+CIN
0x32 011 o0 10 - o P C + (P + CIN)
0x33 011 00 11 - o A:B C + (A:B + CIN)
0x35 011 01 01 - Note 1 C+(AxB+CIN)
0x3c 011 11 00 C C 0 C+(C+CIN)
Ox3e 011 11 10 C C P C+(C+P+CIN)
0x3 £ 011 11 11 C C AB C+(A:B+ C+CIN)
0x50 101 00 00 Shift (PCIN) 0 0 Shift(PCIN) £ CIN
0x52 101 00 10 Shift (PCIN) 0 P Shift(PCIN) = (P + CIN)
0x53 101 00 11 Shift (PCIN) 0 AB Shift(PCIN) = (A:B + CIN)
0x55 101 01 01 Shift (PCIN) Note 1 Shift(PCIN) = (A = B + CIN)
0x5¢ 101 11 00 Shift (PCIN) C 0 Shift(PCIN) = (C + CIN)
Ox5e 101 11 10 Shift (PCIN) C P Shift(PCIN) = (C + P + CIN)
0x5 £ 101 11 11 Shift (PCIN) C AB Shift(PCIN) = (A:B + C + CIN)@
0x60 110 00 00 Shift (P) o] o] Shift(P) + CIN
OxE2 110 00 10 Shift (P) 0 P Shift(P) = (P + CIN)
0x63 110 00 11 Shift (P) 0 AB Shift(P) = (A:B + CIN)@
0x65 110 01 01 Shift (P) Note 1 Shift(P) = (A x B + CIN)
Oxbe 110 11 00 Shift (P) 0 Shift(P) + (C + CIN)
OxEe 110 11 10 Shift (P) P Shift(P) = (C + P + CIN)
OxEE 110 11 11 Shift (P) A:B Shift(P) = (A:B + C + CIN)

50



Forming Larger Multipliers

Figure 4-11 illustrates the formation of a 35 x 35-bit multiplication from
smaller 18 x 18-bit multipliers. The notation “0,B[16:0]” denotes B has a leading

zero followed by 17 bits, forming a positive two's complement number.

When separating two's complement numbers into two parts, only the most-
significant part carries the original sign. The least-significant part must have a
forced zero in the sign position meaning they are positive operands. While it seems
logical to separate a positive number into the sum of two positive numbers, it can be
counter intuitive to separate a negative number into a negative most-significant part
and a positive least-significant part. However, after separation, the most-significant
part becomes “more negative” by the amount the least-significant part becomes
“more positive.” The 36-bit input operands include a forced zero sign bit in the least-

significant part. So the valid number of bits in the input operands is only 35-bits.

By = A[34:17] Ar, = 0,A[16:0]
x By = B[34:17] Br, = 0,B[16:0]
. . E--_I = g":'-_-_l = 34 bits
Sign Extend 36 Bits of '0' 3.1 L E.0
| |
By, * Ay = 35 bits | 17-Bit Offset
Sign Extend 18 Bits - - '
g [34:17] [16:0] |
; ! :
. . By * Ar = 35 bit
Sign Extend 18 Bits | | - = ) . :
[34:17] [16:0] |
|
By * Ay = 36 bits . 34-Bit Offset |
315:18 [17:0] |
i i |
t y v v
P[69:52] P[51:34] P[33:17] P[16:0]

Figure 4-11: 35x35-Bit Multiplication from 18x18-Bit Multipliers

51



The DSP48 slices with 18 x 18 multipliers and post adder can now be used to
implement the sum of the four partial products shown in Figure 4-11. The lessor
significant partial products must be right-shifted by 17 bit positions before being
summed with the next most-significant partial products. This is accomplished with a
built in wire shift applied to PCIN supplied as one selectable Z multiplexer input.
The entire process of multiplication, shifting, and addition using adder cascade to
form the 70-bit result can remain in the dedicated silicon of the DSP48 slice,

resulting in maximum performance with minimal power consumption.

52



Chapter 5

Proposed Multiplier Design

Here [ am going to discuss the procedure of implementing the floating point
multiplier on FPGA by using it’s built in fixed point multiplier as a floating point
multiplier. The new design methodology helps us to reduce the area utilization on
FPGAs which is a major concern while implementing a floating point algorithm. The
key point is to use dedicated multipliers available on FPGAs. These multipliers are
fixed point multipliers and we have used them for the simple multiplication of
mantissa parts of floating point numbers. So, instead of implementing the whole
floating point multiplier on FPGA, the idea is to use the built in fixed point multiplier
whenever a multiplication is required. All other issues like sign checking,
normalization of floating point numbers, pre and post adjustment of exponents,
shifting of mantissas by appropriate number of bits and rounding, flags etc are

discussed here briefly.

The multiplier is 32-bit and is in accordance with the IEEE-754 floating point
standard. This technique helps in the reduction of area utilization while

implementing floating point algorithms on FPGAs.

A floating-point multiplier is nothing new. The IEEE-754 standard was
published in 1985. The process of floating point multiplication is simpler and is
similar to the integer multiplication as we are dealing with sign-magnitude

representation. The process is shown in Figure 5-1.

53



Binary floating-point numbers will be split into their component parts: the

sign, exponent, and mantissa. These three portions will be represented by

uppercase letters: S, E, and M, respectively. As prescribed by the single precision

format, E is eight bits wide [7:0] and M is twenty-three bits wide [22:0].

MULTIPLY

Input numbers
Q, c or NaN ?

Prenormalization

A 4

Add Exponents

R € 0/c/NaN

v

Subtract Bias (127)

A

Report Overflow

A

Report Underflow

Exponent
Overflow?,

Exponent
Underflow?

Multiply Mantissas
using dedicated
multipliers

v

Normalize

A

Figure 5-1: Flow chart showing floating point Multiplication

Report

RETURN

54



Special Case Numbers Detection

The multiplier cannot always determine a result by simply doing a
multiplication. There are certain inputs that require the multiplier to take special
action. Table 5-1 shows the special case numbers defined by the IEEE-754 1985

Standard for Binary Arithmetic and their data bit representations.

Table 5-1: Representation of special case numbers in IEE-754 standard

Sign Exponent | Mantissa Representation
X All 0’s All 0’s Zero
0 All 0’s Non-zero Positive Denormalized
1 All 0’s Non-zero Negative Denormalized
0 All 1’s All0’s Positive Infinity
1 All 1’s All0’s Negative Infinity
X All 1's Non-zero Not a Number (NaN)

First of all the inputs are checked for the special case numbers (zeros, Not a
Number (NaN), infinity). These numbers are detected and appropriated action is

performed by the multiplier as specified below.

Not a number (NaN) - The IEEE 754 Standard specifies that an
implementation will return a NaN that is given to it as input, or either one if both
inputs are NaN's. The multiplier can be configured to return either the first NaN or
the higher of the two. The Intel Pentium series returns the higher of the two NaN'’s
and, as this multiplier was tested using a processor from that series, the multiplier is

by default set to do the same.

Infinity - Nearly anything multiplied by infinity is properly signed infinity,

with the exception of NaN, described above, and zero, described below.

Infinity and zero - The result of the multiplication of infinity and zero is
undefined. The multiplier will therefore return a predefined NaN.

55



If none of these cases apply, the special case path signals that the result of the

standard path should be chosen.

Pre Normalizing

After this step if the input numbers are not zero, infinity or NaN, the numbers
are normalized and the stage is called prenormalization. In IEEE-754 format,
normalized numbers have an implicit leading 1, and that denormalized numbers do
not. To keep the multiplication stage simple, both inputs are converted into the
same form. In the pre normalization stage, both the input numbers are normalized

so that they have an implicit leading one.

Sign Bit
If A and B be the two input numbers and R be the result of multiplying A and
B, then
A= (Sa,EaMa),
B= (Sg,Ep,Mg),
R= (Sr,Er,MR)

Where, S, E and M represent the sign, exponent, and mantissa of the respective

numbers. The sign Sg of the result is calculated as:

SR=SA® SB

Adding Exponents

The exponent Er of the result is calculated as follows:

ER=EA+EB-127

As the exponents of A and B are stored with bias, we have to subtract 127

(bias for 32-bit numbers) from their sum in order to get the right result. The result

56



could be either an exponent overflow or underflow which is checked and reported

here.

Mantissa Multiplication

Now for the multiplication of mantissas, we have to add the implicit 1to the
beginning of the mantissas thus converting them from 23 bits to 24 bits as the
numbers are in normalized form. The Mantissa Mr of the result is obtained as

follows:

Mg = (1.Ma) * (1.Mg)

For the multiplication of mantissas we propose here to use the dedicated
multiplier available on the FPGA device. By doing this a great reduction in area
utilization is achieved (as shown in the next section) which is always a major
concern while implementing a multiplication based floating point algorithm on
FGPA.For the multiplication of two mantissas the dedicated or built in multipliers
available on FPGAs are used. [ have used the Xilinx® Virtex4 FPGA and it has built in
multiplier known as DSP48. Its functions and usages have already been discussed in
chapter 4 in detail. Here is how it is used to multiply two 24bit mantissas. Figure 5-2

illustrates the process of multiplication.

57



A2 | fse] & | wm |
Special Case Numbers?
[ I
1 8 8 23 23
X O Y Y —
Q-) 24 lu
A 4
) DSP48
¢7o
Exponent
Adjust Normalization&
- —— .
Rounding
1 8 23
A y
|SR| Er | Mg

Figure 5-2: Multiplier Implementation using DSP48

As it is a 18x18 multiplier, and we need 24bit multiplier so we have to use
two or more DSP48 blocks to perform the multiplication. Figure 5-3 illustrates the
formation of a 35 x 35-bit multiplication from smaller 18 x 18-bit multipliers. Four

DSP48 slices have been used for 35x35 multiplier.

o ——  P[69:34]
0,Ma[23:7 [ ] 18 —
{O.MAR3:7]} }d: " m M e
A2
L D P[33:17]
B Right wire shift 17bits
0,Ma[6:0],10'00 18 —
{0.Ms[23:71} 18 L \. i L]
0.Ma[23:7 ] 18 —
{0.MA[23:7]) Di N " m M 4
] 18 \W/ | ] B
L V4
B D P[16:0]
Right wire shift 17bits
0,Ma[6:0],10'00 18
©MBOL1060}——— | X " m M s
{0.Mg[6:0],10'b0} 18 \’J L

Zero

Figure 5-3: Details of DSP48 block usage in figure 5-2

58



Here for the multiplication of 24 bit mantissas the numbers are broken down
into two parts so that they can be used with 18x18 multipliers. When separating
two's complement numbers into two parts, only the most-significant part carries the
original sign. The least-significant part must have a forced zero in the sign position
meaning they are positive operands. As we are here dealing with the unsigned
number multiplication so a zero is also placed in the sign bit of the most significant
part. While it seems logical to separate a positive number into the sum of two
positive numbers, it can be counter intuitive to separate a negative number into a
negative most-significant part and a positive least-significant part. However, after
separation, the most-significant part becomes “more negative” by the amount the
least-significant part becomes “more positive.” The 36-bit input operands include a
forced zero sign bit in the least-significant part. So the valid number of bits in the

input operands is only 35-bits.

The breakdown of the mantissa Ma is as follow:

Let Ay be the most significant part of the 35x35 multiplier. A zero is placed in
the sign bit indicating unsigned multiplication. Upper 17 bits (most significant bits)

of the mantissa Ma are copied to the remaining 17 bits of Ay.

Let AL be the least significant part of the 35x35 multiplier. A zero is placed in
the sign bit indicating unsigned multiplication. Remaining 7 bits (most significant
bits) of the mantissa Ma are copied to the most significant 7 bits of Ay, after the sign

bit. The remaining 10 bits of Ay, are filled with zeros.
The breakdown of the mantissa Mg is as follow:

Let By be the most significant part of the 35x35 multiplier. A zero is placed in
the sign bit indicating unsigned multiplication. Upper 17 bits (most significant bits)

of the mantissa Mg are copied to the remaining 17 bits of By,

59



Let B be the least significant part of the 35x35 multiplier. A zero is placed in
the sign bit indicating unsigned multiplication. Remaining 7 bits (most significant
bits) of the mantissa Mg are copied to the most significant 7 bits of By, after the sign

bit. The remaining 10 bits of By, are filled with zeros.

Figure 5-4 illustrates how the multiplication of mantissas in parts is

performed using the above mentioned breakdown.

Au = {0.MA23:7]} AL = {0,M4[6:0],10'b0}
X By ={0,Mg[23:7]} B. = {0,Mg[6:0],10'b0}

BL * AL = 34 bits

Sign Extended 36 bits [33: 17] [16 : 0]
: BL * Ay = 35 bits
Sign Extended 18 L "u .
J bits [34 : 17] [16 : O] 17-Bit Offset
Sign Extended 18 By * AL = 35 bits .
bits [34: 17] [16 : O] 17-Bit Offset
By * Ay = 36 bits :
(35 : 18] (17 : 0] 34-Bit Offset
P[69:52] P[51:34] P[33:17] P[16:0]

Figure 5-4: 35x35-Bit Multiplication from 18x18-Bit Multipliers

All the slices have fixed behavior as specified by the OPMODE. With reference
to Figure 5-3 and Figure 5-4, slice 1 is being used for the multiplication of A;, and B;.
At this stage we obtain the lower 17 bits of the final product. Slice 2 is being used for
the multiplication of Ay and Bi. The partial product from the slice 1 is being shifted
right by 17 bits and the added to the multiplication result obtained in slice 2. Slice 3
is being used for the multiplication of A, and By. The result from slice 2 is being

added here to the multiplication result obtained in slice 3 without shifting. The slice

60



3 is in accumulation mode where the multiplication result is being accumulated with
the partial product from slice 2 through PCIN port. Here the [33:17] bits of the final
product are obtained. Slice 4 is being used for the multiplication of Ay and By. The
partial product from slice 3 is shifted 17 bits right and added to the result of
multiplication in slice 4. Here upper [69:34] bits of final product are obtained. Table
5-2 summarizes the above explained procedure and shows how 35 x 35 multiply is

being used for 24 bit mantissa multiplication using four DSP48 slices.

Table 5-2: Summary of DSP48 Implementation of 24 bit mantissa multiplication

Inputs
Slice Function OPMODE || Output
A B C
AL BL ; .
Lo comae:0110b0) | (0Ms[6:0],10'b0} Multiply 0x05 | P[16:0]
A B 17 bit shifted
2 v Lo feedback 0x55 -
{0,MA[23:7]) {0,M3[6:0],10'b0} Multiply Add
AL Bu Multiply _
3| (oMa6:07,10b0} (0,Ms[23:7]} Accumulate 0x25 | P[33:17]
A B 17 bit shifted
4 v v feedback 0x55 || P[69:34]
{0,Ma[23:7]} {0,M5[23:7]} Multiply Add

Post Normalizing

In the post normalization stage, the multiplier normalizes the product. This
phase normalizes the result. Normalization consists of shifting the mantissa digits
until the most significant digit is non-zero. Each shift causes a decrement or
increment of the exponent and thus could cause an exponent overflow or underflow.

This is checked and reported here.

61



Rounding

The product of two n-bit numbers has the potential of being 2(n+1) bits
wide. The result of floating point multiplication, however, must fit into the same n
bits as the multiplier and the multiplicand. This, of course, often leads to loss of
precision. The authors of the IEEE standard attempted to keep this loss as minimal

as possible with the introduction of standard rounding modes.

According to IEEE 74 standard there are four rounding modes: round to
nearest even, round to zero, round to positive infinity, and round to negative

infinity.

Flags

Although the IEEE 754 standard defines five flags, only two are relevant to
this implementation of a multiplier. Note that if the special case result is chosen,

none of the flags will be set.

Overflow - The magnitude of the result is too large to be represented. In
addition to setting the overflow flag, the multiplier will return an appropriately

signed infinity.

Underflow - The result is too small to be represented as a normalized
number. The multiplier will return a denormalized number, or it will return zero if
the number is too small to be represented as a denormalized number. There are two
conditions that lead to underflow: tininess and loss of accuracy. Each of these
conditions has two methods for detecting it defined by the standard. The differences

between the methods are subtle, and only matter in corner cases.

Example

Let us take two numbers for the multiplication. These numbers be:

62



A=1125x2%and B=1.5x23

Adding bias (127) to the exponents of the two numbers we get:

4+127 =131 and 3+127 =130

Converting their integral and fractional parts their binary representation is as

follows:

A =1.001 x 210000011
B = 1.100 x 210000010

Single precision floating point representation of these two numbers is as

follows. Note that the leading 1 is not stored with the mantissa:

A=

0(10000011 |00100000000000000000000

0(10000010 |10000000000000000000000

First of all the inputs are checked for the special case numbers. As it obvious
that these two numbers are normal numbers so NaN,xc or 0 not detected and

multiplication process continues

Sign of the product is calculated as 0 @ 0 = 0 so the final product is positive

number

Exponent of the product is calculated as

63



131+130-127=134=10000110

No overflow or underflow detected here so multiplication process continues.

Next for the multiplication of mantissas of the two numbers first the implicit 1

is appended at the beginning as shown below:

Mantissa A: 100100000000000000000000
Mantissa B: 110000000000000000000000

For the multiplication of mantissas these are broken down into two parts as
shown below and then these are given at the inputs of DSP 48 slices as explained

above.

Au = {0,10010000000000000}
Av = {0,0000000,0000000000}
By = {0,11000000000000000}
By, = {0, 0000000,0000000000}

The result obtained after the normalization and rounding is as follows:

0(10000110|10110000000000000000000

This is same as 1.6875x 27.

Results of Implementing the Multiplier

The device utilization summary in Table 5-3 shows the implementation of the

proposed multiplier. The multiplier is implemented using Virtex ® 4 FPGA.

64



Table 5-3: Device utilization summary of the proposed multiplier

Logic Utilization Used Available Utilization
Number of Slices 143 6144 2%
Number of Slice Flip Flops 5 12288 0%
Numberof 4 input LUTs 265 12288 2%
Number of bonded I0OBs 103 240 42%
Number of DSP48s 4 32 12%

Similarly for comparison purpose the Table 5-4 shows the multiplier implementation

designed by Mark in [7].

Table 5-4: Device utilization summary of the multiplier designed by Mark in [7]

Logic Utilization Used Awailable Utilization
Number of Slices 643 6144 10%
Numberof 4 input LUTs 1150 12288 9%
Number of bonded IOBs 103 240 42%

Figure 5-5 presents a comparison of the two implementations of floating point

multiplier in graphical form.

12

E."iaﬂklﬂ BEE&IEIE I_?I
!]]?L-{'_\' npq'ls-'n
10 —
| |
8 -

5

Slices LUTs

Percentage
(238

Attributes
Figure 5-5: Comparison of two implementations of floating point multiplier

65



If we compare the two implementations we can see that the proposed
multiplier is much efficient in area utilization which is the goal of this research. If we
look at the frequency rate obtained the proposed multiplier is running at a speed of
409.870MHz while the multiplier in [7] is running at 23.858MHz. So the design of
multiplier proposed here is not only efficient in terms of area utilization but also in
terms of frequency rate obtained. By using this multiplier the floating point algorithms

can be implemented efficiently both in terms of area and frequency.

66



Chapter 6

FIR Filter Implementation

Digital filters are typically used to modify attributes of signal in the time or
frequency domain trough the process called linear convolution. There are only a few
applications (e.g. adaptive filters) where general programmable filter architecture is
required. In many cases the coefficients do not change over time - linear time-
invariant filters (LTI). Digital filters are generally classified as being finite impulse
response (FIR) or infinite impulse response (IIR). According to the names, an FIR filter
consists of a finite number of samples values, reducing the above presented
convolution to a finite sum per output sample. An IIR filter requires that an infinite
sum has to be performed. In this paper implementation of the LTI FIR filters will be

discussed [2].

Basic FIR Filters

FIR filters are wused extensively in video broadcasting and wireless
communications. DSP filter applications include, but are not limited to, the following

[12]:

e Wireless Communications

e Image Processing

e Video Filtering

e Multimedia Applications

e Portable Electrocardiogram (ECG) Displays
¢ Global Positioning Systems (GPS)

67



Equation 6-1 shows the basic equation for a single-channel FIR filter.

k=N-

1
yinl= Y h(k)x(n—k) Equation 6-1
k=0

The terms in the equation can be described as input samples, output samples,
and coefficients. Imagine x as a continuous stream of input samples and y as a
resulting stream (i.e., a filtered stream) of output samples. The n and k in the equation
correspond to a particular instant in time, so to compute the output sample y(n) at
time n, a group of input samples at N different points in time, or x(n), x(n-1), X(n-2), ...
x(n-N+1) is required. The group of N input samples are multiplied by N coefficients

and summed together to form the final result y.

The main components used to implement a digital filter algorithm include
adders, multipliers, storage, and delay elements. The DSP48 slice includes all of the
above elements, making it ideal to implement digital filter functions. All of the input
samples from the set of n samples are present at the input of each DSP48 slice. Each
slice multiplies the samples with the corresponding coefficients within the DSP48

slice. The outputs of the multipliers are combined in the cascaded adders.

In Figure 6-1, the sample delay logic is denoted by Z-1, where the -1 represents
a single clock delay. The delayed input samples are supplied to one input of the
multiplier. The coefficients (denoted by h(0) to h(N-1)) are supplied to the other input
of the multiplier through individual ROMs, RAMs, registers, or constants. Y(n) is
merely the summation of a set of input samples, and in time, multiplied by their

respective coefficients.

68



B 7-1 z1 71 z1

=) 20 =

/‘\y{n)
O/

X(n)

() () ()
/"‘\@ ()

N O\

Figure 6-1: Conventional Tapped Delay Line FIR Filter

Implementation of 3-Tap FIR Filter on FPGA

Available digital filter software allows for very easy computation of coefficients
of given filter. However, the challenge is in mapping the FIR structure into suitable
architecture. Digital filters are typically implemented as multiply-accumulate
algorithms with use of special DSP devices. In case of programmable structures direct
or transposed forms are preferred for maximum speed and lowest resource utilization.
Efficient hardware implementation of filter’s structure is possible by optimization of

multipliers and adders implementation [2].

[ have implemented 3-tap filter on FPGA using the multiplier which I have
designed and has been discussed in the previous chapter. This multiplier is used
whenever a multiplication is required. Talbe 6-1 shows the device utilization of 3-tap

FIR filter using multiplier designed by [7]

Table 6-1: Device utilization summary of 3-tap FIR filter implementation using multiplier in [7]

Logic Utilization Used Available Utilization

Number of Slices 3496 6144 56%
Number of Slice Flip Flops 135 12288 1%
Number of 4 input LUTs 6774 12288 55%
Number of bonded [0Bs 67 240 27%
Number of GCLKs 1 32 3%
Number of DSP48s 16 32 50%

69



Similarly, Table 6-2 shows the device utilization when the 3-tap FIR filter is
implemented on FPGA using the multiplier that is described in the previous chapter.
By comparing these two results it is clear that the 2nd implementation is far better than
the first one in terms of area utilization. There is a significant decrease in the area

utilization when my multiplier is used.

Table 6-2: Device utilization summary of 3-tap filter using proposed multiplier

Logic Utilization Used Available Utilization

Number of Slices 162 6144 2%
Number of Slice Flip Flops 149 12288 1%
Number of 4 input LUTs 293 12288 2%
Number of bonded [0Bs 67 240 27%
Number of GCLKs 1 32 3%
Number of DSP48s 7 32 21%

If we look at the timing summary it is obvious that the second implementation
is also better in terms of frequency. The implementation of the filter using the
multiplier designed by [7] is running at a lower frequency (11.754MHz) while the
other implementation using my multiplier design is running at higher frequency
(125.469MHz). So there is a significant improvement in my design in terms of both
frequency and the area. A complete comparison and analysis in terms of area of the

two implementations is shown in Figure 6-2.

70



60 3%

55 mMark's Design {7}
T B Ay Diesizn 18]
50 . =
40
Q
&
= —
S 30 2727
0 =
; 5
o
20
10
¥ . 33
0 r:—|11=| =1 HE I
Slices Flip Flops LUTs IOEs GCLKs D5P43s
Attributes

Figure 6-2: Graphical comparison of two implementations of 3-Tap FIR filter

[ have also analyzed another aspect of the design that if we increase the
number of the taps of the filter then what happens. The results and comparisons of the
two implementations are presented below. These results have been prepared for 5-

tap, 7-tap, 9-tap and 10-tap FIR filters.

5-Tap FIR Filter

Talbe 6-3 shows the device utilization of 5-tap FIR filter using multiplier
designed by [7].

Table 6-3: Device utilization summary of 5-tap FIR filter implementation using multiplier in [7]

Logic Utilization Used Available Utilization

Number of Slices 5461 6144 88%
Number of Slice Flip Flops 199 12288 1%
Number of 4 input LUTs 10554 12288 85%
Number of bonded 10Bs 67 240 27%
Number of GCLKs 1 32 3%
Number of DSP48s 24 32 75%

71



Similarly, Table 6-4 shows the device utilization when the 5-tap FIR filter is
implemented on FPGA using the multiplier that is described in the previous chapter.
By comparing these two results it is clear that the 2nd implementation is far better than
the first one in terms of area utilization. There is a significant decrease in the area

utilization when my multiplier is used.

Table 6-4: Device utilization summary of 5-tap filter using proposed multiplier

Logic Utilization Used Available Utilization

Number of Slices 207 6144 3%
Number of Slice Flip Flops 223 12288 1%
Number of 4 input LUTs 375 12288 3%
Number of bonded [0Bs 67 240 27%
Number of GCLKs 1 32 3%
Number of DSP48s 11 32 34%

If we look at the timing summary it is obvious that the second implementation
is also better in terms of frequency. The implementation of the filter using the
multiplier designed by [7] is running at a lower frequency (8.014MHz) while the other
implementation using my multiplier design is running at higher frequency
(118.344MHz). So there is a significant improvement in my design in terms of both
frequency and the area. A complete comparison and analysis in terms of area of the

two implementations is shown in Figure 6-3.

72



100

Lt

a0 oy AT

| P L o LR
80 T
70

Percentage
[¥]]
L]

40 B
30 7T |
20
[
10 3 — 3 | 3
0 — | = i
Slices Flip Flops LUTs IOBs GCLESs DSP48s

Attributes

Figure 6-3: Graphical comparison of two implementations of 5-Tap FIR filter

7-Tap FIR Filter

Talbe 6-5 shows the device utilization of 7-tap FIR filter using multiplier
designed by [7]

Table 6-5: Device utilization summary of 7-tap FIR filter implementation using multiplier in [7]

Logic Utilization Used Available Utilization

Number of Slices 5881 6144 95%
Number of Slice Flip Flops 249 12288 2%
Number of 4 input LUTs 11339 12288 92%
Number of bonded 10Bs 66 240 27%
Number of GCLKs 1 32 3%
Number of DSP48s 32 32 100%

Similarly, table 6-6 shows the device utilization when the 7-tap FIR filter is
implemented on FPGA using the multiplier that is described in the previous chapter.
By comparing these two results it is clear that the 2nd implementation is far better than
the first one in terms of area utilization. There is a significant decrease in the area

utilization when my multiplier is used.

73



Table 6-6: Device utilization summary of 7-tap FIR filter using proposed multiplier
Available

Logic Utilization Used

Number of Slices 255
Number of Slice Flip Flops 289
Number of 4 input LUTs 432
Number of bonded I0Bs 66
Number of GCLKs 1
Number of DSP48s 15

6144
12288
12288

240
32
32

Utilization
4%
2%
3%
27%
3%
46%

If we look at the timing summary it is obvious that the second implementation

is also better in terms of frequency. The implementation of the filter using the

multiplier designed by [7] is running at a lower frequency (5.770MHz) while the other

implementation using my multiplier design is running at higher frequency

(123.384MHz). So there is a significant improvement in my design in terms of both

frequency and the area. A complete comparison and analysis in terms of area of the

two implementations is shown in Figure 6-4.

IMark's Desisn {7
- E?\-’['\'nﬁc'imﬁ 100
100 43 5 - =
80
u
&
1=
g &0
3 —
40
=5 .
20
|
&+ EE 3 i 3 H
0 = T | [ — — |
Slices Flip Flops LUTs IOBs GCLESs DSP48s
Attributes

Figure 6-4: Graphical comparison of two implementations of 7-Tap FIR filter

74



9-Tap FIR Filter

Talbe 6-7 shows the device utilization of 9-tap FIR filter using multiplier
designed by [7]

Table 6-7: Device utilization summary of 9-tap FIR filter implementation using multiplier in [7]

Logic Utilization Used Available Utilization
Number of Slices 9010 6144 146%
Number of Slice Flip Flops 318 12288 2%
Number of 4 input LUTs 17425 12288 141%
Number of bonded [0Bs 66 240 27%
Number of GCLKs 1 32 3%
Number of DSP48s 32 32 100%

Similarly, Table 6-8 shows the device utilization when the 9-tap FIR filter is
implemented on FPGA using the multiplier that is described in the previous chapter.
By comparing these two results it is clear that the 2nd implementation is far better than
the first one in terms of area utilization. There is a significant decrease in the area

utilization when my multiplier is used.

Table 6-8: Device utilization summary of 9-tap filter using proposed multiplier

Logic Utilization Used Available Utilization

Number of Slices 308 6144 5%
Number of Slice Flip Flops 361 12288 2%
Number of 4 input LUTs 510 12288 4%
Number of bonded [0Bs 66 240 27%
Number of GCLKs 1 32 3%
Number of DSP48s 19 32 59%

If we look at the timing summary it is obvious that the second implementation
is also better in terms of frequency. The implementation of the filter using the
multiplier designed by [7] is running at a lower frequency (5.024MHz) while the other
implementation using my multiplier design is running at higher frequency

(125.436MHz). So there is a significant improvement in my design in terms of both

75



frequency and the area. A complete comparison and an

two implementations is shown in Figure 6-5.

160

alysis in terms of area of the

136

farks Dresip

141

140

P Tlacios
L=

H
A = Ir e T 3

an]
an]

100

80

Percentage

&0

40

P

- -

4=

I N

I8

|
|
o |

Slices LUTs IOBs

Flip Flops
Attributes

GCLESs D5P43s

Figure 6-5: Graphical comparison of two implementations of 9-Tap FIR filter

10-Tap FIR Filter

Talbe 6-9 shows the device utilization of 10-tap FIR filter using multiplier

designed by [7]

Table 6-9: Device utilization summary of 10-tap FIR filter implementation using multiplier in [7]
Logic Utilization Used

Number of Slices 9829

Number of Slice Flip Flops 348

Number of 4 input LUTs 19010

Number of bonded 10Bs 66

Number of GCLKs 1

Number of DSP48s 32

Available Utilization
6144 159%
12288 2%
12288 154%
240 27%
32 3%
32 100%

Similarly, Table 6-10 shows the device utilization when the 10-tap FIR filter is

implemented on FPGA using the multiplier that is described in the previous chapter.

By comparing these two results it is clear that the 2nd implementation is far better than

76



the first one in terms of area utilization. There is a significant decrease in the area

utilization when my multiplier is used.

Table 6-10 Device utilization summary of 10-tap filter using proposed multiplier

Logic Utilization Used Available Utilization

Number of Slices 328 6144 5%
Number of Slice Flip Flops 397 12288 3%
Number of 4 input LUTs 543 12288 4%
Number of bonded I0Bs 66 240 27%
Number of GCLKs 1 32 3%
Number of DSP48s 21 32 65%

If we look at the timing summary it is obvious that the second implementation
is also better in terms of frequency. The implementation of the filter using the
multiplier designed by [7] is running at a lower frequency (4.667MHz) while the other
implementation using my multiplier design is running at higher frequency
(131.356MHz). So there is a significant improvement in my design in terms of both
frequency and the area. A complete comparison and analysis in terms of area of the

two implementations is shown in Figure 6-6.

II! -+ i l_l

-

o

_.
o
s’
1

N

¥ 1]
s

A r T :
| LA I L]
3 =

1Ay

Percentage

40 5

20
3 - = EN | 2 2
T ) ] I
[:] | (| ——1] |

Slices Flip Flops LUTs IOBs GCLE:s DSP48s

=
=7

Attributes
Figure 6-6: Graphical comparison of two implementations of 10-Tap FIR filter

77



Figure 6-7 shows the comparison of two implementations of FIF filters in terms

of frequency rate obtained. These comparisons are of 3-Tap, 5-Tap, 7-Tap, 9-Tap and

10-Tap FIR filters. It is obvious from the graph that the implementations that used the

proposed multipliers are far better than the other one.

140
120
o
T 100
2
ﬁ 80
v’
E' 60
Q
>
o 40
LL
20
0

mMarks Desien (71 BNy Desion 31356
195 429 e = 4Aaz aa3f
=3 2538+ =2 1
1 115 344 ] | |
| i_‘ | | |
T 754 i
[ LY 5 =T = n 4 ?
B A - - o0
| || I [l | N |
3-Tap 53-Tap 7-Tap 3-Tap 10-Tap
FIR Filter

Figure 6-7: Graphical comparison of frequency rate obtained of two implementations of 3, 5,7, 9
and10-Tap FIR filter

If we look at the percentage improvement obtained in each case than it is

observed that the improvement in each case is almost the same. Percentage

improvements obtained in each case is summarized in Table 6-11 and graphically

shown in Figure 6-8.

78



Table 6-11: The percentage improvement obtained after the comparison of the two

implementations of 5,7,9

& 10-Tap FIR filter

Attribut Percentage Improvement (%)
rounes 5-Tap 7-Tap 9-Tap

Number of Slices

No. of Slice Flip Flops

Number of 4 input LUTs

Number of bonded I0OBs

Number of GCLKs

Number of DSP48s

120

100

80

60

Perc ‘entage

+0)

20

3—'111}}

5

58 4 41 35

T~

3—'l]1|1 ?—'l'.lp LJ'—TJI} lEl—'I;lln
FIR Filter

——Slices
a-L1Ts
——DSP48=

—=Frequency

Figure 6-8: Percentage improvement obtained after the comparison of the two implementations

of 3,5,7,9 & 10-Tap FIR filter

79



Chapter 7

Conclusion and Future Work

The presented results lead to the conclusion that if the designer decides to use the
methodology discussed above, they can get a significant improvement in terms of area
utilization. They will b able to implement their designs using 32-bit IEEE standard format
on FPGAs. However, best results can be obtained by utilizing the parallelism in
implemented algorithms and by applying advanced synthesis methods based on
decomposition. We have shown that IEEE single precision floating point arithmetic
can be successfully implemented on FPGAs. Our implementations give respectable
performance both in terms of area and frequency. The main objectives throughout our
work were to minimize the area utilization for implementation of floating point
algorithms, while at the same time keeping the speed of the operations at a reasonable
level and maintaining IEEE 32-bit accuracy. The results presented above show that
these requirements have been satisfied to a great extent; however, this does not
mean that further improvements are not possible. The design can be pipelined to get
more benefits from it. Furthermore, it can be designed in a way that the other formats can
also be implemented. By changing the number of bits from 32 to other formats can also

be useful. Analysis can also be made by using other devices instead of Xilinx’s Virtex-4.

80



References

[1]

[2]

[3]

[4]

[5]

[6]

Richard Wain, Ian Bush, Martyn Guest, Miles Deegan, Igor Kozin and Christine
Kitchen “An overview of FPGAs and FPGA programming; Initial experiences at
Daresbury” Computational Science and Engineering Department, CCLRC
Daresbury Laboratory, Daresbury, Warrington, Cheshire, WA4 4AD, UK
November 2006

Mariusz Rawski, Bogdan ]. Falkowski, and Tadeusz kLuba “Digital Signal
Processing Designing for FPGA Architectures” ELEC. ENERG. vol. 20, no. 3,
December 2007, 437-459

Kamal Rajagopalan, Peter Sutton School of Computer Science and Electrical
Engineering “A Flexible Multiplication Unit For An FFPGA Logic Block” The

University of Queensland Brisbane Queensland Australia

Per Karlstrom Andreas Ehliar Dake Liu “High Performance, Low Latency FPGA
based Floating Point Adder and Multiplier Units in a Virtex 4” Department of

Electrical Engineering Linkping University

Nabeel Shirazi, A1 Walters, and Peter Athanas “Quantitative Analysis of
Floating Point Arithmetic on FPGA Based Custom Computing Machines” In IEEE
Symposium on FPGAs for Custom Computing Machines, pages 155-162, April
1995.

Loucas Louca, Todd A. Cook, William H. Johnson “Implementation of IEEE

Single Precision Floating Point Addition and Multiplication on FPGAs” Dept. of

Electrical and Computer Engineering Rutgers University

81



[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Free Floating-Point Madness: Multiplier Mark E. Phair, Harvey Mudd College
For Dr. David Harris, Harvey Mudd College May 14, 2002

http: //en.wikipedia.org/wiki/Field-programmable gate array

U. Meyer-Baese, “Digital Signal Processing with Field Programmable Gate

Arrays” Berlin: Springer-Verlag, 2004.

M. Rawski, P. Tomaszewicz, and T. Luba, “Logic synthesis importance in FPGA
based designing of information and signal processing systems,” in Proc. of
International Conference on Signal and Electronics Systems, Pozna’n, Poland,

2004, pp. 425-428.

Haynes, S.D., and Cheung, P.Y. “Configurable Multiplier Blocks for use within a
FPGA”, IEEE Trans.Computers, Vol .3, No.1, 1998, pp 638-639

Xilinx Corporation Inc, “XtremeDSP for Virtex-4 FPGAs”, 2008.

IEEE Standards Board. “IEEE Standard for Binary Floating-point Arithmetic”.
Technical Report ANSI/IEEE Std 754-1985, The Institute of Electrical and

Electronics Engineers, New York, 1985.

John L. Hennessy and David A. Patterson, “Computer Architecture A

quantitative Approach”, Second Edition. Morgan Kaufmann, 1996.

M. Rawski, P. Tomaszewicz, H. Selvaraj, and T. Luba, “Efficient implementation
of digital filters with use of advanced synthesis methods targeted fpga
architectures,” in Proc. of Eighth Euromicro Conference on Digital System Design

(DSD 2005), Porto, Portugal, Aug. 2005, pp. 460-466.

82



[16] Lee, H. and Flynn, M. “Coarse Grained Carry Architecture for FPGA”, Proceedings
of the ACM/SIGDA international symposium on FPGAs, Feb 10 2000, Monterey, CA.

[17] Ramy Raafat, Amira Mohamed, Rodina Samy “A Decimal Fully Parallel and
pipelined Floating Point Multiplier “Electronics and Communication

Department, Cairo University, Egypt.
[18] Syed Shahzad Shah, Saqib Yaqub, and Faisal Suleman “Distributed Arithmetic

for the Design of High Speed FIR Filter using FPGAs“ Chameleon Logics, #301,

Kiran Plaza F-8 Markaz, Islamabad.

83



