

GPT Transformer Based Story Points Effort Estimation in

Agile Software Development

By

Amna Shahid Cheema

00000364255

Supervisor

Assoc Prof Dr. Fahim Arif

A thesis submitted in the department of Computer Software Engineering,

Military College of Signals, National University of Science and Technology,

Islamabad, Pakistan for the partial fulfillment of the requirement for the degree

of Master of Science in Software Engineering

July 2023

ii | P a g e

iv | P a g e

Dedication

This Thesis is dedicated to my beloved Parents, Siblings, Teachers, and Friends who all have

been my endless source of love, encouragement, and strength. Your unwavering beliefs in my

abilities, countless sacrifices, and relentless support have been the foundation upon which I

built my academic pursuits. Without their love and support this research work would not have

been made possible.

v | P a g e

vi | P a g e

Acknowledgments

In the name of Allah (S.W.A), the Creator and Sustainer of the Universe, to whom belongs all

glory and power. He alone has the authority to elevate and humble individuals as He pleases.

Truly, nothing can be accomplished without His will. From the moment I stepped foot into

NUST until the day of my departure, it was by His divine blessings and guidance that I was able

to navigate the path of success. His unwavering support and the opportunities He bestowed upon

me were instrumental in completing my research journey.

I humbly acknowledge that no words or actions can fully express my gratitude for the countless

blessings He has showered upon me throughout this research period. I am indebted to His

boundless bounties and am forever grateful for His divine intervention in my academic pursuits.

To Allah (S.W.A), I dedicate this thesis as a humble tribute, recognizing His infinite wisdom

and benevolence. It is through His mercy that I have reached this milestone, and I pray that my

work may be of benefit to others and serve as a means of pleasing Him.

I would also like to express my heartfelt appreciation to my thesis supervisor, Brig ® Assoc

Prof Dr. Fahim Arif, for his unwavering support and guidance throughout my thesis. His

knowledge, expertise, and dedication to his field have been a source of inspiration to me, and I

am grateful for the time and effort he invested in my success. Whenever I encountered any

difficulties, he was always available to offer his assistance and provide me with insightful

feedback.

In addition, I extend my gratitude to my GEC member, Asst Prof Qazi Mazhar ul Haq and

Asst Prof Mohammad Sohail, for their continuous availability for assistance and support

throughout my degree, both in coursework and thesis. His expertise and knowledge have been

invaluable to me, and I am grateful for his unwavering support and guidance.

Lastly, all praises and thanks be to Allah (S.W.A), the Most Merciful and the Most Gracious.

Amna Shahid Cheema

vii | P a g e

Implication of Research

The research on GPT-based story points effort estimation in agile software development has

profound implications for the industry. By leveraging natural language processing and machine

learning, these models enhance accuracy and reduce subjectivity in effort estimation. They

provide a standardized, objective approach that saves time and scales well for complex projects.

Moreover, GPT-based models continuously learn and improve, integrating seamlessly with

existing agile tools. This research opens doors to more efficient project planning, resource

allocation, and decision-making, ultimately enhancing the overall effectiveness of the agile

development process.

viii| P a g e

Abstract

The process of accurately estimating the effort required to complete user stories is a crucial

activity in software development. It has the potential to significantly impact both the

predictability and efficiency of the agile software development cycle. Nevertheless, a

considerable proportion of teams are currently facing difficulties in this area, resulting in

postponed timelines and unmet deadlines across various domains. Despite the availability of

several methodologies aimed at estimating the workload necessary for completing a story point,

research has demonstrated that these algorithms are incapable of comprehending the precise

contextual requirements of the user. Furthermore, a critical concern pertaining to the techniques

of machine learning and deep learning employed in this domain is their elevated time complexity

and suboptimal precision. The development of pre-trained transformers, such as GPT, has made

a noteworthy contribution to effectively surmounting these challenges. It is possible that certain

attention heads may not be effectively contributing to the task of estimating story points, leading

to suboptimal outcomes. Notwithstanding the satisfactory performance of several iterations of

GPT in previous instances. Through extensive evaluation on 23,313 issues across 16 open-source

software projects. The evaluation compared five existing baseline approaches for within- and

cross-project scenarios. The results revealed that the GPT2++ approach achieved an impressive

accuracy of 92% and an MAE (Mean Absolute Error) of 1.18. Specifically, the GPT2++ approach

outperformed existing baseline approaches in two ways: 1. For within-project estimations, the

GPT2++ approach was found to be 23% to 59% more accurate than the existing baseline

approaches. 2. For cross-project estimations, the GPT2++ approach demonstrated a higher

accuracy of 3% to 46% compared to the existing baseline approaches. The ablation study reveals

that the GPT-2 architecture employed in this approach significantly enhances GPT2++ by 6% to

47% in terms of performance and boosts the F1 score by 87%. This underscores the remarkable

progress of AI in Agile story point estimation.

ix | P a g e

Table of Contents

Chapter 1… ..1

Introduction .. 1

1.1 Overview .. 6

1.2 Motivation .. 8

1.3 Advantages ... 9

1.4 Application ... 9

1.5 Problem Statement ... 10

1.6 Research Objectives ... 10

1.7 Proposed Work ... 11

1.8 Thesis Organization .. 11

1.9 Summary… .. 14

Chapter 2 .. 15

Literature Review… .. 15

2.1 Overview… .. 16

2.2 Related Work ... 16

2.3 Estimation Strategies ..16

2.4 Traditional Approaches .. 18

2.5 Deep Learning Techniques to Estimate Effort ... 20

2.6 Deep-SE Utilization ... 22

2.7 Targeted Dataset by Deep-SE and GPT ... 25

2.8 Hybrid Methodologies ... 26

2.9 Transfer Learning Techniques ... 26

2.10 Demerits of Methodologies and Proposed Solutions ... 27

2.11 Performance indicator .. 29

2.12 Summary… .. 34

Chapter 3 .. 35

Proposed Methodology .. 35

3.1 Overview .. 36

3.2 Research Methodology... 38

3.3 Proposed Method ... 38

3.4 Problem Analysis ... 40

3.5 Text Pre-Processing… ... 40

3.5.1 Text Cleaning .. 40

3.5.2 Tokenization ...42

3.5.3 Optimal Choice of Tokenization ... 44

3.5.4 Encoding ... 45

x | P a g e

3.6 GPT-2++ Model Integration .. 47

3.6.1 Fine Tuning of GPT2++ Model on Story Points ... 47

3. 7 Identifying Inefficient Attention Heads ... 48

3.8 Removing Inefficient Attention Heads .. 50

3.9 Model Evaluation ... 56

3.10 Validation and Analysis ... 58

3.11 Assessment and Analysis ... 58

3.12 Comparison ... 58

3.13 Summary… ... 59

Chapter4 ... 60

Analysis and Results .. 60

4.1 Overview .. 61

4.2 Evaluation and Analysis ... 61

4.2.1 Performance Based on Accuracy and Loss ... 61

4.2.2 Performance Measure Based on Mean Absolute Error .. 66

4.2.2.1 With-in Project Assessment .. 69

4.2.2.2 Cross Project Assessment ... 70

4.2.3 Performance Based on Sub word Tokenization ... 71

4.2.4 Performance Based on F1-Score .. 72

4.2.5 GPT2++ Agile Story Point Estimator Tool ... 76

4.2.5.1 Example Usage of Tool GPT2++ ... 78

4.3 Summary… .. 79

Chapter 5… .. 80

Conclusion and Future Work ... 80

5.1 Overview of Research ... 81

5.2 Summary of Research Contributions ... 82

5.3 Conclusion of Research ... 84

5.4 Future Work .. 85

5.5 Summary… .. 87

References ... 88

xi | P a g e

| P a g e

List of Figures

Figure 1.1 Working flow of Agile Software Development .. 16

Figure 1.2 Working Flow of GPT transformer .. 17

Figure 1.3 Story Points Effort Estimation Process in Agile Software Development 18

Figure 1.4 Multi-head Self Attention in Transformer ... 19

Figure 1.5 Thesis Organization .. 27

Figure 2.1 Learning Curves with Lines at MMRE=0.62 was a MMRE of 0.9… .. 42

Figure 3.1 Flow of GPT-2++ for story point effort estimation by removing inefficient attention heads 43

Figure 3.2 Text cleaning pipeline ... 43

Figure 3.3 Tokenization of words and paragraphs ... 44

Figure 3.4 Sub-word model in GPT .. 45

Figure 3.5 Encoding process in GPT ... 46

Figure 3.6 Self attention head and Multiheaded self-attention in GPT2++ .. 47

Figure 3.7 Proposed framework of the improved GPT-2++.. 50

Figure 3.8 Algorithm of Story Point Effort Estimation using Improved GPT-2++ .. 55

Figure 4.1 Performance metric Accuracy graph comparison .. 69

Figure 4.2 Performance metric Accuracy graph w.r.t 20 epochs ... 69

Figure 4.3 Performance metric Accuracy graph w.r.t 30 epochs ... 70

Figure 4.4 Performance metric Accuracy graph w.r.t 40 epochs ... 71

Figure 4.5 Performance matric Mean Absolute Error comparison… ... 75

Figure 4.6 Shows the relative improvement in MAE for within-project estimation ... 77

Figure 4.7 MAE for cross-project estimate using our GPT2++, Deep-SE, and ABE0 78

Figure 4.8 shows the effect on our GPT2++ model when we alter either the tokenization 80

Figure 4.9 Performance metric F1 Score graph comparison… ..83

xii | P a g e

List of Tables

Table 2.1 Detailed Summery of Researchers Findings and Limitations ... 48

Table 4.1 Performance metric Accuracy table comparison ..68

Table 4.2 Performance metric Accuracy table comparison w.r.t 20,30,40 epochs ... 71

Table 4.3 Performance metric Mean Absolute Error table comparison ... 74

Table 4.4 Performance metric F1 Score table comparison ... 82

Table 4.5 snapshot of the proposed GPT2++ tool ..83

xiii | P a g e

List of Abbreviation

GPT Generative Pre-trained Transformer

LSTM Long Short-Term Memory

RNN Recurrent Neural Network

DSE Deep-Semantic Extraction

SE Software Engineering

RHWN Recurrent Highway Network

SVM Support Vector Machine

GloVe Global Vectors for Word Representation

HAN Hierarchical Attention Network

ASD Autism spectrum disorder

NN Neural Network

MMRE Mean Magnitude of Relative Error

SP Story Point

ML Machine Learning

TF-IDF Term Frequency-Inverse Document Frequency

NB Naive Bayes,

DT Decision Trees

K-NN K-Nearest Neighbors Algorithm

MAE Mean Absolute Error

ABM Algorithm-Based Model

FP Functional Point

CP Case Point

xiv | P a g e

LS Large Scale

SDLC Software Development Life Cycle

TTF Total Technical Factors

TUCP Total number of Use Case points

TEF Total Environmental Factors

TEC Total Estimated Cost

WBS Work Break Down Structure

AEE Analogy Effort Estimation

REM Regression-Based Estimation Model

SSEM Software Sized based Estimation Model

FEM Functional Estimation Model

SPE Story Point Estimation

ANOVA Analysis Variance

RF Radio Frequency

ATLM Automated Testing Lifecycle Management

LR Long Range

RF Random Forest

ATLM Automatically Transform Linear Models

ABE Analogy-Based Estimation

NMT Need More Time

1 | P a g e

Chapter 1

Introduction

2 | P a g e

Chapter 1

Introduction

1.1 Overview

The accurate prediction of the complexity of user stories and the corresponding effort

required for their completion is crucial for the successful execution and predictability of the

software development cycle (figure 1.1). Notwithstanding this fact, a considerable

proportion of enterprises still encounter challenges in this domain, resulting in time lags and

failure to meet established timelines. Regrettably, the algorithms currently at our disposal

for evaluating the requisite labor involved in completing story points encounter difficulties

in comprehensively discerning the user's contextual expectations, thereby yielding

suboptimal outcomes.

Figure 1.1 Working of Agile Software Development.

3 | P a g e

Furthermore, research has demonstrated that the utilization of machine learning and deep

learning algorithms for estimation purposes may present challenges due to their significant time

complexity and limited accuracy. Pre-trained transformer models, specifically the Generative

Pre-trained Transformer (GPT) described in figure 1.2, have demonstrated their ability to address

the challenges associated with this scenario. GPT models exhibit promising potential in

enhancing the precision of story points estimation and have demonstrated remarkable efficacy

in diverse natural language processing domains.

Figure 1.2 Working Flow of GPT Transformer.

The application of said models presents the prospect of enhancing the evaluation of various

other attributes of natural language. In order to optimize the performance of these models, it is

imperative to identify and eliminate any attention heads that are not effectively fulfilling their

4 | P a g e

intended purpose.In the industry of software project management, precise estimation of the

workload is crucial for effective planning and monitoring. Cost and time overrun issues have

historically been a problem for software development projects. According to the results of a

study by McKinsey and the University of Oxford [1], notable software projects typically

overspend their budgets by 66% and their schedules by 33%. As per the results of an

independent study that examined 1,471 software projects and yielded similar outcomes,

roughly 16.67% of software projects encountered cost overruns of 200% and time overruns

exceeding 70%. [2] The study was carried out on an equivalent number of software projects.

Effort estimation activities are imperative for the adequate planning and administration of a

software project. In order to ensure timely completion of the project within the allocated

budget, it is imperative to undertake the following measures: [3] [4] [5]. The assessment of the

amount of work required can serve as the basis for a diverse range of activities pertaining to

planning, scheduling, budgeting, and costing, as stated in reference [6].

Figure 1.3 Story Points Effort Estimation Process in Agile Software Development

These activities (figure 1.3) have the potential to be executed in diverse settings by a broad

spectrum of individuals. Inaccurate estimations possess the capacity to adversely affect the

outcomes of the project [7]. This is due to the fact that such estimations can potentially result

in detrimental consequences. The objective of this study is to enhance the accuracy of story

point estimation through the elimination of ineffective attention heads in the GPT-2++ model.

5 | P a g e

Ultimately, it is expected that this will result in more precise estimations of the workload

required to satisfy storypoints with reduced time requirements compared to previous methods.

Our research in the domain of story-point estimation surpasses prior efforts by incorporating

pre-trained transformers, such as GPT-2++, to circumvent the limitations imposed by

previously developed techniques. This is undertaken as a means of surmounting the limitations

imposed by pre-existing methodologies.This inquiry is primarily focused on achieving one of

two primary objectives. One of our key goals when it comes to estimating how long it will take

to finish a specific user story is to have a better knowledge of the challenges that are faced by

software development teams. This will allow us to predict more accurately the estimated time

required. Looking at the difficulties that arise when machine learning and deep learning are put

into practice, as well as the limits of the approaches that are now accessible. Finally, a method

is introduced for increasing the accuracy of the estimation of story points that is produced by

the GPT-2++ model by getting rid of the attention heads that aren't very efficient.Explanation

of attention described in figure 1.4.

Figure 1.4 Multi-head Self Attention in Transformer GPT-2

This technique should provide significant benefits to the estimation of story points, both in

terms of accuracy and efficiency; therefore, project management should become more reliable

6 | P a g e

and resources should be used more efficiently. Teams that are now working on the production

of software in the "real world" may be able to put the results of this study to good use. An

accurate estimation of story points makes it feasible for teams to more effectively plan and

monitor progress, which in turn leads to more efficient project execution and fewer delays. In

addition, the study provides a contribution to the larger field of software estimation by

investigating new approaches for strengthening attention processes in pre-trained

transformers. This was done to make the work more accurate. The subsequent sections will

provide an overview of the challenges associated with story-point estimation, review prior

studies on machine learning methods and pre-trained transformers, and present our approach

to enhancing story-point estimation via the identification and elimination of unnecessary

attention heads. Ultimately, presented a succinct summary of the results and explore potential

avenues for future investigation in this domain.

1.2 Motivation

The selection of the topic "GPT Transformer Based Story Points Effort Estimation in Agile software

Development" is justified for several reasons, one of which is that it will serve as the central theme of this

research:

• Precisely determining the quantity of story points necessary for a software development

undertaking is a crucial measure; however, the process of estimation is widely recognized as a difficult

task and frequently results in unmet deadlines and additional delays.

• GPT-2++ is a state-of-the-art language model that has demonstrated remarkable potential in various

natural language processing domains. One of the applications that is under consideration pertains to the

estimation of story points, which has demonstrated remarkable potential across all domains.

• It is probable that some attention heads in GPT-2++ are not efficiently contributing to the

computation of story points, leading to suboptimal results. Assuming this hypothetical scenario, the

outcomes would ensue.

7 | P a g e

• The removal of these inefficient attention heads could potentially improve the performance of GPT-

2++ in terms of story point estimation. Consequently, this would result in estimations that are more

accurate and efficacious.

• The potential implications of the findings of this research could have significant consequences for

the reliability and efficacy of software development in the future.

• The domains of artificial intelligence and natural language processing have been increasingly

attracting the interest of software developers. The novelty of this concept notwithstanding, it has received

limited scholarly attention in the past, rendering it a compelling subject for academic inquiry.

1.3 Advantages

The implementation of our revised GPT-2++ recommendation when estimating the quantity of

story points to be accomplished yields various advantages:

• Improved Accuracy: One potential approach to enhancing the performance of GPT-2++

in the context of story point estimation involves eliminating attention heads that do not

significantly contribute to the model's accuracy. As a result of this, we will have an improved

ability to predict pivotal moments within the story.

• Enhanced Predictability: Enhancing the predictability and productivity of software

development can be achieved through the provision of estimates that are both precise and

efficient in evaluating the immense amount of work involved. necessary to finish user stories.

• Reduced Time and Resources: Making the switch to the enhanced GPT-2++ will reduce

the amount of time and effort needed to train a model from the very beginning of the process.

• Ease of Use: The approach that is going to be proposed for the purpose of story point

estimation will be user-friendly, and it will be able to be tweaked so that it will work more

effectively on certain datasets.

8 | P a g e

• Generalization Ability: The model that have suggested is adaptable and can easily

generalize to new sets of information, both of which make it an outstanding candidate for usage

in a wide range of natural language processing applications.

• Better Decision Making: Organizations can enhance their decision-making regarding

software development by utilizing precise and effective estimates of the workload required to

complete a user story.

• Improved Competitiveness: Businesses can improve their global competitiveness if they

create software that is not only more trustworthy but also more efficient.

1.4 Application

The proposed model, referred to as the extended GPT-2++, has been designed to estimate the

effort required to complete a story point. This model has several notable applications in the

field of software development.

• Agile Software Development: Various methodologies have been developed for

facilitating the development of agile software, including Scrum, Kanban, and Lean. These

approaches may potentially derive advantages from the implementation of this strategy.

• Project Management: The adoption of this model by project managers can enable the

estimation of the duration necessary to complete specific user stories, thereby facilitating more

accurate allocation of resources and time.

• Quality Assurance: Professionals specializing in quality assurance can utilize this

framework to furnish a projected expense for the examination and authentication associated with

user stories, thereby enabling more accurate preparation and administration of stated projects.

• Software Testing: Software testers may use this strategy to make an educated guess as to

how long it will take to test each individual user story. This gives them the ability to manage

resources and activities in a more effective manner and better prioritize tasks.

9 | P a g e

• Software Maintenance: By providing estimates of the amount of time and resources

needed to solve certain bugs and other problems, this method may be used to enhance the

planning and management of software maintenance activities. This can be done by improving

planning and management of software maintenance tasks.

• Business Analysis: The model has the potential to be utilized in the context of business

analysis, with the aim of providing an approximation of the workload associated with the

execution of specific business demands. Additionally, it can aid in the optimization of planning

and management strategies for the implementation of business requirements. Furthermore, it can

be utilized to furnish a projection of the duration necessary to accomplish the undertaking.

1.5 Problem Statement

The present challenges in accurately estimating the requisite level of complexity and workload to fulfill

user stories are resulting in software development teams falling behind schedule and failing to meet

deadlines. This presents a challenge, as there are difficulties in accurately predicting the degree of

complexity and effort necessary to fulfill user stories. There exists a possibility that certain attention heads

may not be effectively contributing to the task of estimating story points, leading to suboptimal outcomes.

Regardless of the fact that diverse iterations of GPT have exhibited commendable performance in

previous studies, By eliminating non-constructive attention heads in the GPT-2++ model, it is possible to

enhance the precision of story point estimation as well as the predictability and productivity of the

development cycle. Enhancing the precision of the story point estimation procedure is an objective to be

pursued.

1.6 Research Objectives

The following might be the main objectives of the study on the use of modified GPT-2++ for assessing

story point effort in software development by removing superfluous attention heads:

• This study aims to investigate if removing the ineffective attention heads from GPT-2++ may

enhance its performance in calculating story points .

10 | P a g e

• To compare the performance of the GPT-2++ model with increased attention heads to the standard

GPT-2++ model and to established techniques for story point estimation.

• The aim is to identify the GPT-2++ model's most effective and significant attention heads in terms

of their contribution to the estimate of story points.

• The goal of this study is to ascertain if using a more advanced version of GPT-2++ to generate

story point estimation to improve the predictability and effectiveness of the software development

process.

• With the intention of improving software development, the goal is to propose novel approaches

for anticipating story points using the upgraded GPT-2++ model.

• This research's goal is to examine and evaluate any potential negative effects of using improved

GPT-2++ for estimating story points. This research also tries to suggest viable answers to these problems.

The goal is to find, investigate, and evaluate any possible benefits of using upgraded GPT2++ for story

point estimation.

1.7 Proposed Work

The present study introduces a novel approach aimed at enhancing the precision and efficiency

of effort estimation in software development. This approach leverages the capabilities of

preexisting transformers, specifically GPT-2++, to achieve its objective. The limitations of

current estimation algorithms and the restrictions imposed on this field by machine learning and

deep learning methodologies are acknowledged. It is hypothesized that the utilization of the

sophisticated natural language processing functionalities provided by GPT-2++ will enable a

more accurate interpretation and contextualization of customer requirements, thereby

facilitating the provision of more precise estimates. The methodology employed involves data

cleansing, integration of GPT-2++ into the estimation pipeline, model fine-tuning, and

performance evaluation. The implementation of this approach enables project planners and

11 | P a g e

managers to generate more accurate predictions regarding the quantity of story points required

for a given task, and subsequently allocate resources in accordance with these estimations.

1.8 Thesis Organization

This research paper's subsequent sections provide a thorough summation of supporting

evidence for the main premise. The sections outlined below are depicted in Figure 1.5.

Chapter 1:

The significance of making an accurate effort estimation in agile software development.

Difficulties that companies have in accurately calculating the amount of time and effort required

for user stories. Limitations of currently available algorithms and methods to machine learning.

Pre-trained transformers, GPT models, have the potential to improve estimation. The purpose

of this research is to improve story points estimation by getting rid of attention heads in GPT2++

that aren't very effective. And also, the significance of precise estimating in relation to the

planning, monitoring, and carrying out of projects.

Chapter 2:

A comprehensive review of the difficulties associated with software project management,

including budget and time overruns. Previous research on software estimating and the

consequences of using estimates that are too wrong. Analysis of current methods for estimating

story points, including those based on machine learning and deep learning. An overview of

pretrained transformers and the positive impact they have had in various natural language

processing applications.

12 | P a g e

Chapter 3:

An explanation of the study approach that was used to accomplish the outlined objectives. Brief

description of the procedures of collecting data, doing preprocessing, and training models in the

GPT-2++ paradigm, the identification and assessment of attention heads. Also, the actions

performed to eliminate attention-grabbing phrases that aren't working and to improve

assessment of story points.

Chapter 4:

Presentation of the results from the research, together with an analysis of those findings.

Detailed Comparison of the newly developed method for estimating story points with the

methods used in the past. Analysis of the precision and effectiveness that may be attained by

the removal of attention head clutter. Discussion of the significance of the study results as well

as possible applications of the findings.

Chapter 5:

A synopsis of the study's goals, its procedures, and its most important results. The significance

of providing precise estimation of effort for software development projects. A contribution to

the area of software estimation as well as the implementation of pre-trained transformers.

Suggestions for doing further study and adventuring in this domain. The research presented in

this thesis follows a natural progression from the introductory and background sections to the

literature review, the research objectives and methodology, the presentation and discussion of

the results, and finally the conclusion and suggestions for future study.

13 | P a g e

Thesis Organization

GPT-StoryPoints Effort Estimation

Chapter 1-

Introduction

Chapter 2-
Literature
Review

Chapter 3-
Proposed

Methadology

Chapter 4-

-Results and
Analysis

Chapter 5-
Conclusion
and Future

work

Significance,
Difficulties of

effort
estimation,

Limitations of
current algos.

Pupose and
signifince of
our research.

Comprehensiv

e review of
past work.

Findings and
limitations of
the past work.

Proposed

methadology,
of the past
limitations,

Working of
GPT.

Definig algo,
and finding
inefficent
attention
heads and

puring
process.

Presentation
of the results

from the
research,

Comparsion
of newly

developed
methods with
the past work.

Discussion of
significance
and findings
of the study.

synopsis of
the study's
goals, its

procedures,
and its most
important

results,

Suggestions
for doing

further study
and

adventuring
in this

domain.

Figure 1.5 Thesis Organization

14 | P a g e

1.9 Summary

Chapter one presents a comprehensive analysis of the difficulties that businesses encounter

when evaluating the complexity and time required for the effort estimation. Additionally, it

highlights the importance of accurately assessing story points during the software development

process. The declaration highlights the limitations of current machine learning algorithms and

methodologies, while showcasing the capabilities of pre-trained transformers, specifically GPT

models, in enhancing estimations. The present chapter explicates the aim of the investigation,

which is to augment the story points effort estimation through the elimination of attention heads

in GPT-2++ that exhibit low efficacy. Furthermore, it underscores the significance of precise

estimation in the domains of project planning, monitoring, and execution. The chapter that

follows discusses the research objective, which pertains to enhancing story point estimation

through the elimination of underperforming attention heads in GPT-2++.

15 | P a g e

Chapter 2

Literature Review

16 | P a g e

Chapter 2

Literature Review

2.1 Overview

This chapter will discuss various challenges that agile software development currently encounters in

relation to estimating story points. It will encompass an exploration of diverse methodologies proposed

by scholars, along with a comprehensive evaluation of their advantages, disadvantages, and in-depth

analytical examination.

2.2 Related Work

The estimation methodologies were broadly categorized into three distinct groups: expert-based

techniques, model-based techniques, and hybrid techniques. The predominant approach utilized

in practical applications was commonly referred to as expert-based processes, also known as

methodologies, that relied on human expertise to formulate estimations [8] [9]. However,

developing an assessment that relied on the viewpoints of professionals could potentially

require a significant amount of time and financial resources. Moreover, achieving success

necessitated continuous access to essential experts. Diverse model-based approaches exhibited

varying degrees of adaptability in incorporating user input and leveraging prior models, yet they

uniformly relied on insights gleaned from previously completed endeavors.

2.3 Estimation Strategies

It was noted that companies had been adopting Agile for over 20 years, experiencing different

trends and evolutions. Scrum emerged as a popular framework within Agile, encompassing

iterative development, focused work aim, cooperation, client participation, face-to-face

17 | P a g e

communication, minimal documentation, frequent testing, collective responsibility, and

knowledge transfer [10]. A comparison was made between the Traditional and Agile planning

procedures, analyzing algorithm-based estimating techniques like Source Line of Code

(SLOC), Functional Point, Object Point, and Constructive Cost Model (COCOMO), as well as

non-algorithmic techniques such as Expert Judgment and the Analogy approach Wideband

Delphi [11].

Estimating mobile development estimates involved utilizing the COSMIC (Common Software

Measurement International Consortium) Functional Point Measurement (FMS) methods.

Specific Function, Data Manipulation Function, Inquiry Function, User Support Function, and

Developed View Functionality were among the functional process measurements used in Agile

estimations [12]. The study further compared estimation models like Use Case Point (CP),

Functional Point (FP), COCOMO, Algorithm-Based Model (ABM), Expert Judgment Model,

and Estimation [13]. The Agile approach scored higher on flexibility and collaboration when

compared to Traditional methods. The potential for failure in Agile projects was evaluated based

on factors such as team meetings, site visits, training, documentation, communications clarity,

and project personnel [14].

To achieve better realization at a low cost, a hybrid approach recommended the use of

development methodologies with features like Large Scale (LS), High Reliability, High

Productivity, High Estimation Accuracy, Early Realization, and Ease of Change [15].

Component estimate systems were developed for multi-agent systems, and ontologies and other

knowledge-based approaches were found to improve work estimates in Agile development [16].

The use of expert-based estimations was shown to increase accuracy in Agile project time

estimates [17]. A reference model for estimates was created based on an analysis of narrative

point life cycle and frequently used story points [18]. Additionally, a comparison was made

between the benefits and drawbacks of different SDLC methodologies, including Waterfall and

Agile [19].

18 | P a g e

An algorithm for estimating costs, called the Algorithm for Estimating Costs (TEC), aimed for

precision by considering environmental and technological factors. Total Technical Factors

(TTF), Use Case Points (TUCP), and Environmental Factors (TEF) formed the foundation of

this algorithm [20]. Weighted and Complexity Factors were employed to determine Functional

Points for various needs, injecting infusion factors to the Functional Point projections [21]. It

was found that Agile projects had a higher success rate compared to Waterfall, with a factor of

two difference in success rates according to the Standish Group's 2018 Chaos Report [22].

Various estimation models, including analogy-based effort estimation (AEE), regression-based

estimation model (REM), software-sized estimation model (SSEM), functional estimation

model (FEM), work breakdown structure (WBS), and story point estimation (SPE), were

discussed, with WBS and SPE being recommended as the best fit for Agile projects [23].

Furthermore, it was discovered that using the average size of User Stories instead of the

Consensus size led to reduced overall accuracy [24]. Research on Agile mobile app

development indicated that Poker was used in 63% of projects, Analogy in 47%, and expert

judgment in 38% [25].

2.4 Traditional Approaches

The COCOMO model for construction cost, which was developed by Boehm and colleagues in

1998, exemplified a fixed model due to its utilization of fixed parameters and their interactions.

Over time, this particular model gained significant popularity. The development of these

estimation models involved utilizing data gathered from a diverse array of previously executed

projects. Consequently, their relevance was often limited to projects that shared similarities with

the one utilized for constructing the model, thereby restricting their utility. Various

methodologies were proposed in the literature to address this problem, including

regressionbased approaches [26, 27], neural network models [28, 29], fuzzy logic Bayesian

belief networks [30], and analogical reasoning techniques.

19 | P a g e

It was important to note that a universal approach might not have been optimal for all types of

projects [31]. Several recent studies proposed the integration of results from multiple estimators,

similar to the concepts presented in studies utilizing hybrid techniques [32, 33].

Considerable efforts had been devoted to project estimation in general; however, only a

negligible fraction of these endeavors had been directed towards developing models that were

tailored to the requirements of agile project management. This modification was deemed

necessary based on the findings of reference [34], which indicated that contemporary business

enterprises necessitated the adoption of alternative methodologies for cost estimation and

planning. Advanced techniques utilized algorithms for machine learning to offer support for

agile project work estimations. A recent publication [35] discussed a certain strategy for

facilitating the construction of a story-point estimate model. This strategy entailed the

derivation of TF-IDF features from the problem statement to achieve the intended outcome.

Subsequently, univariate feature selection methodologies were employed to incorporate the

recently generated features into classifiers, such as the support vector machine (SVM). In

another study [36], the CFP method was utilized to precisely gauge the duration required to

complete an agile project. Regression models and neural networks were employed within an

iterative software development framework to construct a predictive model for estimating the

amount of labor needed [37]. This model provided estimations for the aggregate quantity of

human labor that would be required. Unlike the conventional approach of creating an estimation

model at the end of a project, the iterative approach involved constructing such a model

subsequent to each iteration with the aim of projecting the requisite workload for the

forthcoming iteration, facilitating the development of more precise project planning.

The Bayesian network model, as introduced in reference [38], held utility for software

development endeavors that employed the Extreme Programming methodology within the

domain of agile software development. However, the utilization of a multifaceted approach in

their model, encompassing factors such as process efficacy and potential for future expansion,

20 | P a g e

necessitated the acquisition of novel data and significant alterations. In another examination

conducted by researchers [39], Bayesian networks were employed to examine the

interrelationships present within a software development project based on Scrum methodology.

The primary aim of a software development project that employed the Scrum methodology was

to identify potential issues at the earliest possible stage to avert more significant setbacks. The

authors conducted a simulation to examine the impact of product quality on the advancement

of sprints and the quality of sprint planning.

The methodology presented in this context differed from its predecessors in two notable aspects.

Firstly, deep learning techniques were employed to automatically obtain semantic

characteristics that delineated the actual connotation of problem descriptions. Secondly, these

characteristics were utilized to estimate story points, thereby distinguishing this approach from

alternative methodologies. The successful implementation of this method required the

completion of both steps. The matter of ascertaining the appropriate amount of time and/or risk

that should be allocated towards rectifying a fault had previously been the focus of scholarly

inquiry and investigation [40-43].

2.5 Deep Learning Techniques to Estimate Effort

In contrast, the agile software development methodology advocated the utilization of "story

points" as a means of estimating work. The implementation of LSTM had been observed in

various language models [44], voice recognition systems [45], and video analysis tools [46],

among other applications, indicating its potential benefits in diverse domains. The Deep-SE

model exhibited a high degree of generalizability, as it could be applied to a diverse array of

tasks by mapping textual data to either a numerical score or a categorical label. The attribute

of generalizability endowed the system with greater adaptability and utility. Examples of

academic tasks where this attribute could be applied included assessing written compositions

and conducting sentiment analysis.

21 | P a g e

Deep learning had been increasingly adopted in the field of software engineering. In previous

work, a universal deep learning framework utilizing LSTMs had been presented to depict the

software engineering process [47]. The outcomes of this research were evident in the structure.

The simulation of a programming language using recurrent neural networks was conducted by

the authors in reference [48]. The RNN models were modified to enhance their ability to

detect occurrences of code replication in subsequent research. The team had also developed a

linguistic model for code using LSTM technology, and the research outcomes were

disseminated in a publication [49]. The purpose of releasing this model was to share the

research findings. The LSTM model outperformed the RNN model in terms of accuracy.

In reference [50], the generation of the output sequence was facilitated by a specific Recurrent

Neural Network (RNN) Encoder-Decoder model. This model, consisting of an encoder RNN

and a decoder RNN, could receive a query in natural language related to the API and generate

a series of API calls as output. Reference [51] presented research that utilized a Recurrent

Neural Network (RNN) Encoder-Decoder model to address prevalent issues in the realm of C

programming. The Deep Belief Network, a renowned deep learning model introduced in 2006,

had been effectively integrated into functional software [52].

To summarize, the Agile software development cycle consisted of four main stages: product

backlog refinement, sprint planning, sprint execution, and sprint delivery. The collaborative

effort between product owners and customer representatives led to the creation of a prioritized

list of software needs, known as the product backlog [53]. During the product backlog

refinement process, the team conducted a thorough review of the listed tasks and implemented

necessary modifications. Work breakdowns required the team to establish a set of activities

exhibiting similarities and differences, often referred to as narratives or task components.

Thoroughness was particularly emphasized for significant assignments like Epics, which

provided a comprehensive account of a feature. Task prioritization and sequencing decisions

were influenced by the anticipated workload. The final stage involved organizing sprints,

22 | P a g e

where the team defined the sprint objective, evaluated their capacity, selected work items for

the sprint backlog based on capacity, and conducted rapid iterations to produce a fully

functional product [54].

2.6 Deep-SE Utilization

One approach that was used in providing an indication of the level of difficulty associated with

a given task was to assign a designated quantity of Story Points (SP) to each task. It was

observed that the term "issue" was significantly more frequent in usage than the term "task"

within JIRA. Teams employed various strategies, including Planning Poker, Analogy, and

expert judgment, based on factors such as total work, complexity, risk, and uncertainty, to

estimate narrative points, as stated in reference [55].

Usman et al. [56] indicated that subjective assessments, which relied on the expertise of domain

experts, could introduce bias. They arrived at this deduction through their academic study. It

was recognized that inaccurate estimation of the number of stories needed to complete a sprint

could lead to negative consequences such as decreased efficiency, increased costs, project

failure, client dissatisfaction, and potential business closure.

A recent study introduced a novel approach known as Deep-SE[57], which utilized

comprehensive deep learning methods to forecast the quantity of story points involved in agile

projects. The validation of the model was accomplished through the utilization of data derived

from both ongoing and completed projects.

2.7 Targeted Dataset by Deep-SE and GPT

The Deep-SE model had a corpus of 23,313 bugs, which were collected from 16 distinct

opensource projects using the JIRA bug tracking software. Each issue consisted of a title, a

synopsis, and a significant plot advancement, all of which were relevant to the matter at hand.

Figure 2.1 depicted the JIRA issue and its corresponding pivotal moment. Deep-SE employed

a deep learning framework, specifically the Long Short-Term Memory (LSTM) and Recurrent

23 | P a g e

Highway Network (RHWN), to capture semantic features representing the meaning of a given

problem. The issue was duly reported, and Deep-SE was requested to investigate.

Deep-SE demonstrated superior performance compared to other machine learning-based

techniques, such as LSTM+RF, BoW+RF, Doc2Vec+RF, and TFIDF+SVM [58], with an

average Mean Absolute Error of 2.08, indicating higher quality outcomes. The Deep-SE

process involved four distinct phases. The initial step involved adding written content to the

designated area, which was recognized as a challenging task due to the need to comprehend

problem statements expressed in simple language.

Deep-SE utilized an unannotated corpus of specialized data, such as issue reports, to acquire

knowledge of the distributed representation of words. This was achieved by creating a

pretrained language model and investigating lexical representations in a distributed manner.

One approach was to integrate the title and description of the report into a unified document,

with the description preceding the title. Words in the problem report were represented as

vectors with continuous real values.

In the second step, long-short-term memory (LSTM) was employed to generate a

representation of the document. Deep-Semantic Extraction utilized LSTM units, a specific

type of Recurrent Neural Network (RNN), for textual analysis. The output state vectors of the

LSTM were then consolidated into a single vector representing the document.

The third step involved the use of the RHWN method to develop a detailed model of the data.

Deep-SE mitigated the issue of overfitting by subjecting the document vector to multiple

refinements through a Recurrent Highway Network (RHWN), resulting in a conclusive vector

representing the document. This characteristic made Deep-SE resilient to overfitting.

In the fourth step, regressors were utilized. Deep-SE employed a feedforward neural network

with a linear activation function to approximate the narrative point based on the document

vector.Software development work estimation could be broadly categorized into three

approaches: expert-based, model-based, and hybrid approaches. The prevalent methodology

24 | P a g e

involved expert-based approaches that relied on human expertise to provide approximations

[59] [60]. Expert-based estimating required the involvement of specialists for accurate

projections. Model-based methodologies utilized past data, but the construction of individual

models varied. The CO-COMO model, a widely recognized construction cost model [61], was

a static model with predetermined components and variables. The predictive models were

developed by leveraging data from multiple studies but were typically limited in applicability

to the specific projects for which they were initially developed. Scholars employed various

methodologies, such as regression [62], neural networks [63, 64], fuzzy logic [65], Bayesian

belief networks [66], analogy-based approaches [67], and multi-objective evolutionary

methods [68], to construct distinctive models. However, a single tactic could not be

universally effective for all project types [69]. Recent research [70] advised aggregating

estimates from multiple estimators in a sequential manner.

2.8 Hybrid Methodologies

The present study and its associated literature [71, 75] utilized hybrid methodologies that

integrated expert opinions with readily available data. While there was a significant corpus of

literature on project estimation in general, less attention was given to formulating models

specifically tailored to agile projects. Agile, dynamic, and incremental projects required

alternative planning and estimation approaches [76]. Machine learning methodologies were

increasingly used for task estimation in agile projects. A recent research publication [77, 78]

proposed a method for extracting TF-IDF features from issue descriptions to construct a model

for narrative point estimations. The retrieved features underwent standardized selection before

being inputted into regression models like the support vector machine.

There was comparatively less attention paid to the development of models specifically tailored

to agile projects, despite a significant corpus of literature on project estimation in general.

Agile, dynamic, and incremental projects necessitated alternative methodologies for planning

and estimation [79]. Machine learning methodologies were employed to facilitate task

25 | P a g e

estimation in agile endeavors. A recent research publication [80] introduced a novel approach

for constructing a model for narrative point estimates by extracting TF-IDF features from issue

descriptions. The features underwent standardized selection before being inputted into

regression models like the support vector machine.

In Extreme Programming software projects, an iterative development methodology, the

authors presented a Bayesian network model for effort estimation, as documented in reference

[81]. However, their methodology relied on factors such as process efficiency and

improvement, requiring thorough experimentation and fine-tuning. Bayesian networks were

commonly used in Scrum-based software development projects to model interrelationships

and identify potential challenges. For instance, the quality of sprint progress and planning

could impact the final product's quality. Recent developments involved the utilization of deep

learning techniques to automatically learn semantic features capturing the essence of problem

descriptions. This approach made significant progress in estimating issues based on narrative

points, surpassing previous efforts. Previous studies explored the estimation of defect

resolution time and the potential risks associated with resuming issue resolution after a pause

[82, 83].

2.9 Transfer Learning Techniques

The proposed model deviated significantly from [84] by utilizing transfer learning techniques

with GloVe and pre-trained embedding vectors to expedite the training process. Word2Vec

and GloVe were contemporary methodologies generating superior vector representations [85,

86]. GloVe outperformed Word2Vec due to its comprehensive dataset of term occurrences

from various regions, as demonstrated by Pennington et al. [87]. GloVe [88] served two

purposes: similarity and entity identification, based on statistical analysis of word-word

cooccurrences within a corpus. Empirical evidence showed that the model introduced in

reference [89] exhibited superior performance compared to previous ones [90–95]. Notably,

this model enabled end-to-end trainability without requiring human feature engineering,

26 | P a g e

starting from raw input data and culminating in prediction outcomes. The proposed model

employed deep learning and a hierarchical attention mechanism to detect significant phrases

and clauses. The Hierarchical Attention Network (HAN) effectively captured the fundamental

principles of document organization. Document structure was hierarchical, with words

forming sentences and sentences forming a complete document. To create a document

representation, individual sentence representations were generated and aggregated into a

cohesive document representation. The density of information conveyed by individual words

and phrases varied throughout the text. Constructing a final document vector involved

aggregating significant sentence vectors, composed of essential word vectors. Three surveys

were retrieved that examined distinct facets of estimation in individuals with Autism Spectrum

Disorder (ASD).

2.10 Demerits of Methodologies and Proposed Solutions

The study, as reported in 2005 [96], encompassed feedback from project managers employed

at 18 commercial enterprises located in Norway. A comparison of schedule and effort overruns

was conducted across 52 projects, utilizing both adaptive (incremental, agile) and sequential

(waterfall) process models. Projects employing a flexible process model exhibited a lower

incidence of effort overruns compared to those utilizing sequential approaches, according to

the study. The findings of this survey were utilized in a scholarly investigation [97] that

analyzed various aspects of software estimation within the Norwegian corporate domain,

including effort and schedule overruns, estimation techniques, estimation competence, and

related factors. However, the present investigation did not distinguish between agile and

waterfall methodologies.

The subsequent survey [98] examined the impact of consumer engagement on project

prolongation. Comprehensive interviews were conducted with agile project managers employed

by a Norwegian medium-sized enterprise, using a data set of 18 projects. The study's findings

27 | P a g e

suggest that collaboration with the client through regular communication can decrease the

frequency of effort overruns. Another survey [99] focused on the anticipated duration for

executing a user narrative. The findings revealed that the utilization of coarsegrained user

stories by developers was associated with a higher incidence of obstacles, including estimation

concerns. Despite the widespread use of surveys to evaluate estimation in Autism Spectrum

Disorder (ASD), none provided a comprehensive report on estimation methods, predictors,

reliability, or the developmental context in which they are employed. To address this, an

empirical investigation was conducted involving practitioners from software enterprises

utilizing agile methodologies or practices, irrespective of geographical location.

The efficacy of a project plan depends significantly on the utilization of a precise and reliable

approach for estimating labor demands. Studies in the field of agile methodology have shown

that effort assessment often involves the use of narrative points. Estimation techniques based

on human judgment, such as Planning Poker, are commonly employed [100]. Limitations

associated with these techniques have been the focus of inquiries. Research findings [101]

demonstrated the influence of social and cognitive biases on estimations. Estimators may

simplify complex tasks due to social judgmental bias, potentially influenced by organizational

pressure. A study by Abdel-Hamid et al. (1992) examined the impact of advancing deadlines

on project outcomes, revealing that schedule pressure from inaccurate estimations resulted in

increased development expenses and more issues. DeMarco [102] noted a potential bias

among human estimators to underestimate task completion time. These discoveries suggest

the potential for employing machine-mediated approximation in developer estimation

sessions. Various research endeavors have explored the feasibility of using machines to

approximate labor input, frequently employing machine learning models to forecast issue

resolution duration [103, 104, 105]. Neural Networks [106] and association rules [107] have

also been observed in certain scenarios. Despite the emphasis on problem resolution time

estimation, existing research has not quantified it in terms of narrative points. The sole

28 | P a g e

recognized classifier for narrative point estimation was formulated by the researcher identified

as [108], trained using user stories from an agile organization with over 1300 issues [109].

However, it should be noted that the project consisted of only 13 issues.

Figure 2.1 Learning Curves with Lines at MMRE=0.61 was a MMRE of 0.9

Using the SVM technique, researchers were able to achieve promising results. Several

machine learning classifiers were experimented with to estimate narrative points, similar to

Abrahamsson et al. The SVM method was identified as the most effective for processing

problem reports, but additional attributes were incorporated to improve outcomes. A dataset

of over 300 problems from more than 9 different projects was used, with MMREs of 0.61 or

less achieved in 8 of them in figure 2.1. The impact of problem count on the MMRE was also

discussed. Augen [110] conducted a study on developer-mediated assessment of user stories

and compared developers' estimates of story points to actual points given to the work. The

MMRE for developer estimates was found to be 0.48, and the classifier's estimations aligned

with those of the developers, with an average MMRE of 0.46.

A method to estimate Story Points (SP) from issue descriptions was proposed, primarily as a

supplementary tool for expert estimators in agile teams. Abrahamsson et al. [111] were the first

to propose a mechanical approach, using Machine Learning (ML) algorithms trained on 17

29 | P a g e

characteristics derived from user narratives. Porru et al. [112] recast SP estimation as a

categorization problem, using features from bug reports and achieving reliable results. Another

study [113] combined features from user stories with developer-related characteristics to

improve estimation accuracy. User tales were semantically categorized using auto-encoder

neural networks in [114]. Choetkiertikul et al. [115] developed Deep-SE, an endto-end SP

prediction system that utilized deep learning architectures. Deep-SE achieved statistically

significant lower MAE compared to previous techniques. Abadeer and Sabetzadeh [116-117]

confirmed Deep-SE's performance on a commercial project. The current research focused on

exploring whether clustering could enhance SP estimate precision by reducing problem

descriptor variation. The largest dataset used for SP estimate to date, consisting of 26 open-

source projects and 31,960 problems, was employed.

2.11 Performance Indicators

Effort estimation has garnered significant attention in academia due to its importance in

project planning and resource management. Machine learning has been explored to construct

predictive models in software engineering for estimating bug resolution time or work required

for problem resolution. Various methods, including Neural Networks and conventional

machine learning algorithms, have been compared in terms of their classification task

performance. Bug report characteristics have been used to predict narrative points in agile

settings. The research differs from others by explicitly including developer characteristics and

analyzing their influence on story point prediction. Different performance indicators such as

MMRE, MAE, and SA have been proposed and used to evaluate the prediction models in this

research[118-120].

The table 2.1 provides a comprehensive summary of the findings and limitations of a

research study. The study aimed to investigate a specific topic and gather relevant data to

draw conclusions. The findings of the research are presented in a detailed manner,

30 | P a g e

highlighting the key results and their implications. Additionally, the limitations of the study

are discussed, acknowledging the constraints and potential.

Table 2.1 Detailed Summery of Researchers Findings and Limitations

Year Authors Title/Based on Findings Limitations

2022 Wu, X.,

Zhou, L.,

&

Xiong,

Z. [121]

With historical

data, an

LSTM-based

algorithm for

estimating

software work is

developed.

LSTM can efficiently model

temporal relationships in

software development

projects and estimate effort with

high accuracy.

The study did not look

at the effects of

employing different

kinds of recurrent

neural networks as

well as the possible

limits of LSTM in

coping with

extremely long-term

dependence.

2022 Shang et al.

[122]

The present study

investigates the

efficacy of

deep transfer

learning in the

context of

software effort

estimation,

particularly

when dealing

with

imbalanced data.

Superior performance was

attained in comparison to

conventional models when

analysing a dataset of 20

projects sourced from the

PROMISE repository, which

contained imbalanced data.

The utilisation of transfer

learning has the potential to

enhance the efficacy of

models when dealing with

imbalanced datasets.

To attain a high level of

precision, the

model necessitates a

substantial quantity of

data.

2022 Dong et al.

[123]

A comparative

study on the

application of

deep learning

for the purpose of

software

development

effort estimation.

The present study undertook a

comparative analysis of the

efficacy of diverse deep

learning models in relation to a

dataset comprising 13

projects sourced from the

PROMISE repository.

The generalizability of

the study may be

constrained due to the

small size of the dataset.

2022 Akram et

al. [124]

Application of

GPT-2 in Agile

Software

Development for

Effort

Estimation

The GPT-2 model has the

capability to furnish precise

estimations of effort for tasks in

agile software

development. However, it

may necessitate substantial

refinement and training data

to attain the most favourable

outcomes.

The study suffers

from a restricted

sample size and a

dearth of comparative

analysis with respect to

human experts.

2021 Li et al.

[125]

The utilisation of

deep

learning in

software effort

estimation,

Superior performance was

attained in comparison to

conventional models when

analysing a dataset comprising

13 projects

The absence of

comparative analysis

with other machine

learning models.

31 | P a g e

 incorporating

transfer

learning

techniques.

obtained from the PROMISE

repository. The utilisation of

transfer learning has the

potential to enhance the

efficacy of models when

applied to limited datasets.

2021 Yu et al.

[126]

The present

study proposes

a deep

ensemble

learning model

for the purpose

of software

effort

estimation.

The experimental results

indicate that superior

performance was attained in

comparison to conventional

models when evaluating a

dataset consisting of 20

projects sourced from an

open repository.

Attaining high

accuracy with the

model necessitates a

substantial quantity of

data. The

sequential nature of

tasks necessitates an

increase in

computation power.

2021 Rehman,

A.,

Malik,

A. W.,

Hussain,

W., &

Lee, Y.

K. [127]

This study

presents an

extensive

literature

review on the

topic of

estimating

software effort

utilising

machine

learning

techniques.

The utilisation of machine

learning techniques has the

potential to substantially

enhance the precision of

effort estimation. However,

the efficacy of distinct

models may fluctuate based

on the attributes of the

project data.

The research did not

conduct a

comparative analysis

of the efficacy of

various machine

learning models in

diverse scenarios,

including the

utilisation of distinct

optimisation

algorithms or

hyperparameters.

2021 Hussain

et al.

[128]

" The present

study proposes

an approach for

agile software

development

effort

estimation

utilising GPT-2

technology.

The GPT model has

demonstrated the ability to

generate precise estimations

of effort for tasks in agile

software development,

exhibiting a comparatively

minimal margin of error in

contrast to alternative

machine learning models.

The model was not

subjected to fine-

tuning to enhance its

performance.

2021 Singh, J.

& Kaur,

H.[129]

This paper

presents a

thorough

examination of

the use of

machine

learning

techniques for

software effort

estimation.

The superiority of machine

learning techniques over

conventional methods in

terms of accuracy has been

demonstrated. However, the

selection of data quality,

features, and models can

pose significant challenges.

The selection of

suitable algorithms

and techniques for

feature selection can

be critical

determinants.

2020 Zhang &

Liu

[130]

The present

study pertains

to the

development of

a software cost

estimation

Superior performance was

attained in comparison to

conventional models when

analysing a dataset

comprising of four projects

The model's ability to

capture intricate

feature relationships

may be constrained

by the limited number

of features

32 | P a g e

 model utilising

deep learning

techniques,

incorporating

dynamic

feature

selection.

sourced from the ISBSG

repository.

employed and the

high computational

demands arising from its

sequential nature.

2020 Aljahdali et

al.

[131]

This study

proposes a

novel approach

for feature

selection in

software effort

estimation

through the

utilisation of

machine

learning

techniques.

Superior performance was

attained in comparison to

conventional models when

analysing a dataset

comprising of 25 projects

sourced from the ISBSG

repository.

The methodology

employed exhibits

constraints in its

applicability to a

restricted dataset and its

potential for

generalisation to

alternative datasets may

be limited.

2020 Alam et al.

[132]

The proposed

approach for

estimating

effort in Agile

software

development is

based on GPT

technology.

The GPT-2 model has

demonstrated the ability to

generate precise estimations of

the effort required for

agile software development

tasks. However, it may

necessitate substantial

refinement and a substantial

amount of training data to attain

its maximum potential.

The study did not place

a particular emphasis

on the

estimation of story

points and did not

consider the latest

advancements in deep

learning.

2020 Zhou et al.

[133]

A model for

estimating

software effort

based on deep

learning

techniques.

The experimental results

indicate that the performance of

the proposed models surpasses

that of

conventional models when

evaluated on a dataset

comprising 20 projects.

To attain a high level of

precision, the

model necessitates a

substantial quantity of

data.

2020 Gu et al.

[134]

This study

proposes a

deep learning

methodology for

software

cost estimation

that

incorporates

feature

selection and

ensemble

techniques.

Superior performance was

attained in comparison to

conventional models when

analyzing a dataset

comprising 16 projects

sourced from the ISBSG

repository.

The model's ability to

capture intricate inter-

feature

relationships may be

constrained by the

restricted number of

features employed.

33 | P a g e

2019 AlJarrah,

O., &

AlAzzeh,

M. [136]

This study is an

empirical

investigation

into the effects of

hyperparameter

optimization

on software effort

estimation

using neural

networks.

The optimization of

hyperparameters has the

potential to enhance the

precision of neural networks in

the domain of effort estimation.

The study did not

account for the

potential influence of

utilizing distinct

optimization

algorithms or the

potential

ramifications of

varying sample sizes on

the outcomes.

2019 Nabi et al.

[137]

The present study

focuses

on the topic of

effort

estimation in

the context of

agile software

development,

specifically

utilizing

transformers.

The utilization of

Transformers has been observed

to yield precise

effort estimations for agile

software development

assignments, albeit

necessitating substantial

refinement and training data to

attain optimal efficacy.

The study is limited by

a small sample

size and a dearth of

comparative analysis

with alternative

machine learning

models.

2019 Hassan et

al.

[138]

A Critical

Review of

Deep Learning

Techniques for

Software

Development

Effort

Prediction

A comprehensive analysis was

conducted on several

deep learning methodologies for

the purpose of effort

estimation. The techniques

evaluated included recurrent

neural networks and

convolutional neural

networks. The findings indicate

that these

methodologies exhibited

superior performance

compared to conventional

techniques, albeit constrained

by the accessibility of topnotch

data.

The study did not place

particular

emphasis on the

estimation of story

points or the

implementation of agile

development

methodologies.

Additionally, the study

did not

consider more

contemporary

advancements in

pretrained language

models such as GPT.

2019 Oliveira,

A. L. &

Madeira,

H.[139]

The utilization of

MultiObjective

Genetic

Programming

(MOGP)

The utilization of

multiobjective genetic

programming exhibits

promising results in the

domain of effort estimation.

Insufficient

comprehension of

the context and lack of

expertise in the data

collection

34 | P a g e

2.12 Summary

There are numerous methods available for estimating software projects. Expert-based methods

are frequently employed due to their reliance on knowledge. Although they may be costly and

require a significant amount of time, certain projects can be highly advantageous.

Model-based methods utilize historical project data to make estimations for future projects.

The COCOMO model is only applicable to highly specialized projects. Hybrid methods

combine subjective judgments and quantitative models to enhance estimations. To accurately

measure job effort, agile project management necessitates the use of new methods. Machine

learning is utilized in contemporary solutions. Agile initiatives utilize LSTM (Long ShortTerm

Memory) and RHWN (Recurrent Highway Networks) for the purpose of estimating story

points. Deep-SE utilizes deep learning techniques to extract semantic aspects from problem

descriptions and provide accurate estimates of narrative points. Less attention has been given

to estimating the cost and duration of Agile projects compared to conventional methods. Using

transfer learning with GloVe embeddings has been found to enhance both the accuracy and

training time in Deep-SE. A hierarchical attention mechanism identifies problem description

key phrases. The model can estimate relevant data. Estimation methods improve agile

software project management.

35 | P a g e

Chapter 3

Proposed Methodology

36 | P a g e

Chapter 3

Proposed Methodology

3.1 Overview

The objective of this research endeavor is to enhance the accuracy of the story-point estimation

by eliminating ineffective attention heads from the GPT-2++ model. The initial measure that

needs to be undertaken is to gather the maximum number of user stories and their

corresponding components as is feasible for a human being. The dataset exhibits a broad range

of tasks with varying degrees of complexity, rendering it an optimal candidate for model

training purposes.

Upon completion of the data collection process, the dataset is subjected to necessary

transformations and cleaning procedures. In order to prepare the data for model training, it is

necessary to undertake several preprocessing steps, including deduplication, tokenization, and

encoding. Furthermore, it is necessary to perform data encoding and tokenization. The

GPT2++ model serves as a foundational, pre-trained transformer utilized for the task of point

estimation within story points. The efficacy of this model has been demonstrated across

various NLP applications, rendering it a reliable approach for improving the precision of

estimate calculations.

Subsequent to the preprocessing of the dataset, the model is subsequently fine-tuned by

leveraging the information contained therein. The model will receive instructions on how to

generate an estimation of the time and resources required to implement a range of

enhancements for a given user story. The utilization of this approach facilitates an

37 | P a g e

augmentation in the model's cognizance of historical events and the intricacies inherent in user

stories. Upon completion of the GPT-2++ model training, an analysis of the attention heads is

conducted to evaluate their efficacy. The utilization of attention pattern and weight analysis

facilitates the identification of attention heads that provide the least precise estimations of

story points. An analytical approach has been developed to eliminate the ineffective attention

heads that were incorporated in the GPT-2++ architecture. This action was taken in order to

eliminate attention-grabbing heads that were deemed inefficient. It is plausible that the

proportional magnitudes of the extant attention heads necessitate modification to achieve

greater equilibrium among them. To be able to achieve optimal levels of accuracy and

efficiency in our estimations, it will be necessary to implement modifications to the cognitive

process of attention.

The efficacy of the updated GPT-2++ model is evaluated through the utilization of

predetermined criteria. There are multiple approaches to assessing a model's ability to

estimate, one of which involves evaluating its accuracy, precision, and F1 score. The

evaluation of the revised model involves a comparison with the initial iteration of the GPT2++

model as well as a plethora of supplementary estimation methods.

In the phases of experimentation and validation, novel techniques such as cross-validation are

employed to evaluate the efficacy of increasingly comprehensive datasets. This stage follows

the developmental phase. The enhanced GPT-2++ model is expected to yield more reliable

and relevant results owing to its improved performance.

After conducting a comprehensive analysis of the data, we proceeded to a discussion regarding

the outcomes of the experiments and their possible implications. The objective of this study is

to comprehend the impact of attention head removal on the accuracy and efficiency of story

point estimations. Furthermore, we analyze and contemplate the challenges or limitations that

emerged from the implementation of the approach in practical situations.

38 | P a g e

To sum up, the utilization of the GPT-2++ model and the removal of unproductive attention

heads present a rational approach to enhance the estimation of story points, thereby leveraging

this methodology. The initial stage in the process involves the collection of data, which is

subsequently subjected to processing, refinement, concentration, elimination, and evaluation

prior to the commencement of result analysis. The ultimate objective is to optimize project

management and resource allocation through the implementation of estimating methodologies

that are characterized by enhanced precision and efficiency. The aforementioned objective will

be attained through the utilization of prognostic models.

3.2 Research Methodology

In this study, the text obtained from the users is subjected to a series of pre-processing steps

and feature extraction techniques. These steps are essential to ensure that the text is in a

suitable format for further analysis and modeling. Once the text has been cleaned and

processed, it is then used in conjunction with an enhanced version of the GPT-2++ model.

This model has been specifically designed to improve upon the limitations of the original GPT-

2 model and is expected to yield more accurate and reliable results. The goal of this research

is to develop an effort estimation system that is based on the user requirement text. By utilizing

the cleaned text and the improved GPT-2++ model, it is anticipated that this system will be

able to provide accurate estimations of the effort required for a given software development

project. It is important to note that this research does not involve the addition of any new

information. Rather, it focuses on the utilization of existing data and models to enhance the

accuracy and reliability of the effort The subsequent paragraphs present a comprehensive

analysis and elucidation of each stage in the procedure.

39 | P a g e

3.3 Proposed Method

The proposed method aims to improve the accuracy and efficiency of story point estimation

for software developers. This will be achieved by utilizing pre-trained transformers,

specifically GPT-2++. The focus is on utilizing the advanced natural language processing

capabilities of GPT-2++ due to the challenges in existing estimation methods and the

limitations of machine learning and deep learning in this field. The goal is to improve the

accuracy of estimates by integrating GPT-2++ into the estimation pipeline. This involves

cleaning the data, fine-tuning the model, and evaluating its performance. By doing so, we can

enhance our understanding and contextualization of client requests, leading to more precise

estimates. This approach (figure 3.1) has the potential to be beneficial for project planners

and managers as it helps in estimating story points and allocating resources.

3.4 Problem Analysis

Researching the difficulties software development teams face when trying to produce precise

estimates of the time and effort required to complete certain story pieces is the first stage in this

technique. Here, the limits of the currently available algorithms are examined, as well as the

challenges that arise from applying machine learning and deep learning. This study provides

insight into the current state of story point estimation and its growth prospects.

3.5 Text Pre-Processing

The raw data from the dataset must be cleaned up and modified for the purpose of the text

preprocessing stage before it can be used for the job of effort estimation. In this regard, and for

the sake of this study, we will use several alternative traditional pre-processing approaches

while keeping in mind the agile software effort estimation scenario common in the use of Story

Points. Because of this, the dataset will be cleansed, tokenized, and formatted before being

added to the GPT-2++ model.

40 | P a g e

Figure 3.1 Flow of GPT-2++ for story point effort estimation by removing inefficient attention heads.

Data Collection

Data Preprocessing

Data Cleaning

Sub word-

Tokenization

Encoding

Fine Tune GPT2 Model on

Preprocessed Data

Identifying Inefficient Attention Heads

Removing Inefficient

Attention Heads

Retrain and Evaluate the Pruned Model

Accuracy-Loss Based, MAE, F1-Score

Below

Threshold<0.005

Evaluate the performance of the

model with and without each attention

head.

41 | P a g e

3.5.1 Text Cleaning

Cleaning is an essential step in text preprocessing that involves removing any noise, errors, or

inconsistencies present in the raw text data. It aims to improve the quality and reliability of the

data before further analysis or modeling tasks. Some common techniques used in data cleaning

for text preprocessing include pipeline describe in figure 3.2 [140]:

• Step one in the analysis process [141] is to remove special characters and punctuation.

This means getting rid of symbols, punctuation marks, and any non-alphanumeric characters

that do not contribute to the analysis. Using this technique helps to ensure consistency and

reduce noise in the text data.

• Handling capitalization is an important aspect of text standardization and can help

prevent duplication of words caused by inconsistent capitalization styles. One way to achieve

this is by converting all text to either lowercase or uppercase.

• Removing stop words involves eliminating commonly used words in a language that lack

significant meaning, such as ―a,‖ ―the,‖ and ―and.‖ The removal of stop words can effectively

reduce noise and enhance the accuracy of text analysis.

• When it comes to handling numerical digits, their relevance depends on the specific task

at hand. If they are not necessary, they can be removed or substituted with a placeholder. •

Dealing with misspellings is important for improving the accuracy of subsequent analysis.

Correcting common misspellings or typos in the text data can greatly contribute to this

improvement. This can be accomplished by utilizing techniques such as spell checking or

utilizing external dictionaries.

• When dealing with HTML tags or markup in text data, it is possible to remove them to

extract the clean text content.

• Removing duplicates is an important step in data analysis. By identifying and eliminating

duplicate records or text passages, to reduce redundancy and prevent bias in our analysis.

42 | P a g e

• When dealing with missing values in text data, it is important to use appropriate strategies

such as imputation or removing incomplete records [140-141].

Figure 3.2 Text cleaning pipeline in GPT2++

3.5.2 Tokenization

Tokenization, a crucial step in text preprocessing, is the process of dividing a given text into

smaller units known as tokens. In the realm of natural language processing, tokens hold a

significant role as they serve as the fundamental units of text analysis. These tokens can take

various forms, such as individual words, phrases, sentences, or even characters, depending on

the specific requirements of the task at hand. The selection of the appropriate tokenization

strategy is crucial to accurately represent and process textual data. By understanding the nature

and characteristics of tokens, researchers and practitioners can effectively leverage them to

extract meaningful insights and facilitate various language-related tasks. The significance of

tokenization in numerous natural language processing (NLP) endeavors cannot be overstated,

as it establishes the foundation for subsequent analyses, including sentiment analysis, language

modeling, and machine translation [142-145]. Tokenization process is explained in the figure

3.3.

43 | P a g e

Figure 3.3 Tokenization of words and paragraphs in GPT2++

• Word Tokenization: is a common technique used in natural language processing (NLP)

to divide text into individual words. This process involves segmenting a given text based on

whitespace or punctuation marks. The purpose of word tokenization is to break down a sentence

or a paragraph into its constituent words, which can then be further analyzed or processed. This

approach is widely used in various NLP tasks such as text classification, sentiment analysis,

and machine translation, among others. By dividing the text into discrete units, word

tokenization the efficacy of the method under consideration is evident in its simplicity and

effectiveness when applied to languages that possess distinct and unambiguous word

boundaries. Nevertheless, one potential limitation of the system is its potential difficulty in

handling languages that do not employ explicit spaces between words or possess intricate

morphological structures [146].

• Character Tokenization: The process of character tokenization involves the

segmentation of a given text into individual tokens, where each token represents a single

character. This approach treats each character as a distinct unit, disregarding any linguistic or

semantic context. By breaking down the text at the character level, character tokenization

enables a granular analysis of textual data, facilitating various natural language processing

44 | P a g e

tasks. The utilization of this approach proves to be advantageous in tasks that require a focus

on character-level details, such as transliteration, spelling correction, or the management of text

that is noisy or lacks structure [146].

• Wordpiece Tokenization: In the field of natural language processing, word piece

tokenization is a technique that bears resemblance to sub word tokenization, albeit functioning

at a more intricate level of granularity. The process of dividing words into smaller sub word

units, which encompass both prefixes and suffixes, is a fundamental aspect of linguistic

analysis. This practice allows for a more comprehensive understanding of the morphological

structure of words and aids in the examination of their constituent parts. By breaking down

words into these sub word units, researchers can discern the various morphemes that contribute

to their overall meaning and grams. The utilization of word piece tokenization has been

observed in various models such as BERT (Bidirectional Encoder Representations from

Transformers) and GPT (Generative Pre-trained Transformer).

3.5.2.1 Optimal Choice of Tokenization

The optimal choice of tokenization method is contingent upon the demands of the task at hand

and the inherent attributes of the data being analyzed. In the context of analyzing English text at

the word level, it is often adequate to employ word tokenization as a primary technique. In

contrast, when confronted with languages that possess a high degree of morphological

complexity or contain unfamiliar words, employing sub word tokenization methods such as Byte

Pair Encoding (BPE) may yield superior results.

• Sub-word Tokenization: The process of sub word tokenization involves the segmentation of

words into smaller sub word units. This technique is employed to enhance the granularity of word

45 | P a g e

GPT

STACK

representation. By breaking words down into sub word units, the resulting tokens can capture

more detailed information about the underlying language structure. Sub word tokenization is

widely used in natural language processing tasks to improve the performance of various models

The utilization of certain techniques has proven to be highly effective in addressing challenges

associated with unknown words, morphologically rich languages, and the need to reduce

vocabulary size. The utilization of sub word tokenization techniques, such as Byte Pair Encoding

(BPE) and Sentence Piece, is prevalent in various natural language processing applications. These

techniques have been widely adopted to effectively handle the challenges posed by the

morphological complexity and out-of-vocabulary (OOV) words in different languages [147]. Sub

word model is described in figure 3.4.

Figure 3.4 Sub-word model in GPT2++

46 | P a g e

3.5.3 Encoding

The process of encoding in GPT-2++ involves the conversion of textual inputs into numerical

representations, which are then comprehensible to the model. The GPT-2++ model, a state-

ofthe-art language model, is designed to operate on numerical data. However, since text data is

inherently non-numerical, an encoding process is required to convert the text data into a format

that is suitable for the model to process. [148] This encoding step allows for the transformation

of textual information into numerical representations, enabling the GPT-2++ model to

efficiently evaluate and generate text.

The encoding process is a fundamental aspect of data transmission and storage systems. It

encompasses a series of steps that are crucial for ensuring accurate and efficient communication.

This paper aims to provide a comprehensive overview of the typical steps involved in the

encoding process. The first step in the encoding process (reference to the figure

3.5) in data preparation. This involves:

Vocabulary Mapping: Following the tokenization process, every individual token is associated

with a distinct identifier derived from the vocabulary employed by the model. The vocabulary

refers to a predetermined collection of tokens that are recognized and comprehended by the

model. In the context of natural language processing, it is common practice to assign a unique

numerical index or identifier to each token. [149] This indexing scheme enables the model to

treat the tokens as numerical inputs during the processing phase. By representing tokens as

numerical values, the model can effectively analyze and manipulate the text data. The process

of mapping can be accomplished through the utilization of either a lookup table or a dictionary.

Positional Encoding: [150] The GPT-2 model is a transformer-based architecture that leverages

attention mechanisms to effectively capture sequential information. To furnish the model with

positional information, the encoded tokens are augmented with positional encoding. Positional

encoding is a technique used in natural language processing to assign a distinct vector

representation to each token in a sequence, based on its position within that sequence. This

47 | P a g e

encoding method is commonly employed in various tasks, such as machine translation, text

classification, and language generation. By incorporating positional information into the token

representations, positional encoding helps models capture the sequential order of tokens and

enables them to better understand the context and relationships between words in each

sequence. The utilization of positional encoding in the model facilitates the discrimination of

tokens by their respective positions, thereby enabling the model to effectively capture the

sequential relationships that exist within the text.

• Upon completion of the tokenization process, the text is subsequently mapped to the

existing vocabulary and supplemented with positional encoding. This preparatory stage

ensures that the text is suitably formatted for input into the GPT-2++ model, enabling

subsequent processing and analysis. The model has the capability to generate predictions,

estimate story points, and perform various language-related tasks by utilizing the encoded

input.

Figure 3.5 Encoding process in GPT2++

48 | P a g e

3.6 GPT-2++ Model Integration

The integration of the GPT-2++ model into the predictive analysis of future plot points enables

the generation of more precise and reliable forecasts. In the realm of Natural Language

Processing (NLP), the GPT-2++ pre-trained transformer model emerges as a highly efficacious

model. The enhancement of tail-end estimates' accuracy can be achieved through leveraging the

robustness and adaptability of the methodology. The application of the GPT-2++ model to the

refined dataset allows for the implementation of essential modifications in the context of story-

point estimation.

3.6.1 Fine Tuning of GPT2++ Model on Story Points

The process of fine-tuning a GPT-2 model on Story Points data entails the training of a

preexisting GPT-2 model on a designated dataset comprising story points. This procedure aims

to customize the model to effectively perform the task of story point estimation. The process

facilitates the acquisition of knowledge by the model, enabling it to discern and comprehend

the intricate patterns and interconnections that exist between the input text and the

corresponding story points. Consequently, this enhanced understanding empowers the model to

generate more precise and reliable predictions when presented with novel text inputs. The

following section outlines the fundamental procedures entailed in the fine-tuning process of a

GPT-2 model utilizing Story Points data:

• Data Acquisition: To conduct this study, it is imperative to gather a comprehensive

dataset comprising story points and their respective textual descriptions. To ensure the

integrity and accuracy of the dataset, it is imperative that proper labeling is applied. Each

data instance within the dataset should be accompanied by a text input and its

corresponding story point value. This labeling scheme allows for clear identification and

categorization of the data, facilitating subsequent analysis and interpretation. By adhering

49 | P a g e

to this labeling protocol, researchers can maintain consistency and reliability in their

dataset, thereby enhancing the validity and robustness of any subsequent findings or

conclusions drawn from the data.

• Tokenization and Encoding: The initial step in the preprocessing of text data involves

the application of tokenization, wherein the text is divided into individual tokens. This

process can be accomplished through the utilization of subword tokenization or any other

appropriate tokenization technique. To establish numerical representations for the tokens,

it is necessary to map them using the vocabulary of the model. This process involves

assigning a unique numerical value to each token based on its corresponding entry in the

model's vocabulary. By doing so, the tokens can be transformed into a format that is

compatible with numerical computations, enabling further analysis and processing. To

incorporate sequential information into a model, positional encoding is commonly

employed. This technique, originally introduced in the Transformer model, allows the

model to understand the relative positions of tokens within a sequence. By adding

positional encoding to the input embeddings, the model can differentiate between tokens.

• Model Initialization: The pre-trained GPT-2 model is loaded for the purpose of this

study. This model has undergone extensive training on a vast corpus of text data, enabling

it to acquire a comprehensive understanding of language patterns and structures. The

utilization of pre-trained models serves as an initial reference for the process of fine-

tuning.

• Definition of Loss Function: The loss function is a crucial component in the training

process, as it quantifies the disparity between the predicted story point values and the

ground truth values. It serves as a metric to evaluate the performance of the model and

guide the optimization process. In the realm of classification tasks, it is customary to

employ various loss functions to quantify the discrepancy between predicted and actual

values. Commonly used loss functions here is mean absolute error (MAE). These loss

50 | P a g e

functions play a crucial role in assessing the performance of regression models and

guiding the optimization process.

• Epochs: Fine-tuning is a crucial step in training the GPT-2++ model, as it allows for the

customization and adaptation of the model to specific tasks or datasets. In this case, the

GPT2++ model is trained on the story points dataset, utilizing tokenized and encoded

inputs. The process of fine-tuning involves training the model on a specific dataset, which

in this case is the story points dataset. This dataset is prepared by tokenizing and encoding

the inputs, ensuring that they are in a format that the GPT-2++ model can comprehend,

and process effectively Feed the inputs through the model and compare the predicted story

point values with the actual values from the dataset. To optimize the model's parameters,

it is necessary to calculate the loss and subsequently backpropagate the gradients. This

process allows for the adjustment of the model's weights and biases, ultimately improving

its performance. By calculating the loss, which represents the discrepancy between the

predicted and actual values, the model can assess its performance. The gradients, which

indicate the direction and magnitude of the error, are then backpropagated the process

should be iteratively repeated for multiple epochs until the model reaches convergence

and attains satisfactory performance.

• Evaluation: The performance of the fine-tuned model will be assessed through an

evaluation process that involves analyzing its predictions on a distinct validation or test

set. To assess the accuracy of the model's predictions, it is imperative to calculate

evaluation metrics such as mean absolute error (MAE)[151]. These metrics serve as

quantitative measures to gauge the level of accuracy achieved by the model. By

employing these evaluation metrics, researchers and practitioners can effectively

evaluate the performance of the model and make informed decisions based on the

obtained results.

51 | P a g e

• Inference: Following the completion of training and evaluation, the model can be

effectively employed for inference purposes, specifically for estimating the story point

values of novel and unobserved text inputs.

The process of fine-tuning the GPT-2 model using Story Points data enables the model to

acquire knowledge pertaining to the distinct patterns and attributes associated with story point

estimation. By employing the technique of adapting a pre-trained model to the specific task at

hand, it is possible to enhance the accuracy and contextual awareness of predictions made for

the purpose of estimating story points, which are derived from textual descriptions.

3. 7 Identifying Inefficient Attention Heads

In the context of the GPT-2++ model and its role in estimating story points, attention heads in

the figure 3.6 are specific components or sub-modules within the model. These attention heads

attend to different parts of the input text during processing. Attention heads are essential for

capturing important information and determining the significance of different aspects of the

input.

The objective is to identify attention heads that do not provide meaningful information or

contribute significantly to the estimation process. Researchers can prioritize their attention on

the more relevant and effective components of the model by identifying these underperforming

attention heads. This analysis helps improve the model by focusing on attentionheads that are

more likely to provide accurate and reliable estimates of story points. This can improve the

model‘s overall performance by allowing researchers to adjust the model to focus on the most

important elements. It can also reduce the complexity of the model, which can result in faster

inference times. This will enable teams to quickly and accurately estimate project timelines and

releases, and to allocate resources efficiently. [151-154] The improved model should also lead

52 | P a g e

to more accurate and reliable predictions of project outcomes. There are several benefits

associated with the utilization of attention heads and multi-attention heads in GPT-2++.

• Enhanced representation: By allowing each attention head to concentrate on distinct

aspects or relationships within the input sequence, a more comprehensive representation of the

data is achieved [155].

• Improved modeling capacity: [156] By incorporating multiple attention heads, the model

can simultaneously capture various types of dependencies and relationships within the input

sequence. This results in a more comprehensive understanding of the data.

• Enhanced context-awareness: Attention heads empower the model to focus on various

segments of the input sequence, [157] enabling it to consider the context and relationships

between words while generating output.

• Improved generalization: The utilization of multi-attention heads enables the model to

effectively capture a wide range of patterns and relationships within the data. This enhancement

significantly improves the model's capacity to make accurate predictions on new or previously

unseen inputs.

• Interpretability: The attention weights generated by each attention head offer valuable

insights into the model's focus and reasoning process. Analyzing these attention patterns can

provide insights into how the model focuses on various aspects of the input and how it

ultimately makes decisions [158].

53 | P a g e

Figure 3.6 Self attention head and Multiheaded self-attention in GPT2++

To summarize, attention heads and multi-attention heads in GPT-2 allow the model to

effectively capture intricate patterns and dependencies within the input sequence. This results

in enhanced representation, context-awareness, generalization, and interpretability. These

mechanisms play a crucial role in enhancing the model's capability to generate language output

that is both coherent and contextually relevant.

3.8 Removing Inefficient Attention Heads.

To propose a strategy for removing dysfunctional 'attention heads' from the GPT-2++ model.

Getting the greatest possible efficiency while estimating story points requires tweaking the

model's design and optimizing the remaining attention heads. As the attention heads that aren't

helping the process are deleted, this method will be used to ensure the model's integrity is

maintained. There will be more encoder decoder layers built into the pre-trained transformer.

To more accurately assess the amount of effort required to create a given number of story

points, modified version in the figure 3.7 of the GPT-2++ that eliminates wasteful multi-head

attention:

54 | P a g e

Figure 3.7 Proposed framework of the improved GPT-2++ for story point effort estimation by removing

inefficient attention heads.

55 | P a g e

Input: user_stories_train (training dataset of user story with story points), user_stories_test

(testing dataset of user story with story points), threshold (pruning threshold for attention)

Output: estimated_efforts (Estimated story point efforts for testing), evaluation_metrics

(Accuracy Assessment, Mean Absolute Error, F1-Score), pruned_model (pruned GPT-2++

model)

• tokenize(user_stories_train)

• tokenize(user_stories_test)

• train_model(tokenized_user_stories_train)

• attention_scores = analyze_attention_heads(trained_model)

• pruned_model = prune_attention_heads (trained_model, attention_scores, threshold)

• fine_tune_model (pruned_model, tokenized_user_stories_train)

• tokenized_user_stories_test = preprocess(user_stories_test)

• estimated_efforts = estimate_efforts(pruned_model, tokenized_user_stories_test)

• evaluation_metrics = calculate_metrics (estimated_efforts, actual_efforts_test)

• summarize_results(evaluation_metrics)

• plotting results ()

Algorithm 1: Story Point Effort Estimation using Improved GPT-2++ By Removing

Inefficient Attention Heads

Figure 3.8 Algorithm of Story Point Effort Estimation using Improved GPT-2++ By Removing Inefficient

Attention Heads

56 | P a g e

The Algorithm 1 in figure 3.8, titled "Story Point Effort Estimation using Improved GPT-2++

By Removing Inefficient Attention Heads," presents an innovative approach to enhance the

accuracy and efficiency of story point estimation in software development projects. The

algorithm builds upon the state-of-the-art GPT-2 language model, extending it with

improvements to tackle the issue of inefficient attention heads. By identifying and pruning

attention heads that contribute minimally to the model's performance, the modified GPT-2++

achieves more efficient training and inference. The algorithm employs subword tokenization

techniques, such as Byte Pair Encoding (BPE) and SentencePiece, to handle out-of-vocabulary

words effectively. Additionally, the use of a Multi-Layer Perceptron Regressor enhances the

model's capacity to estimate story points accurately. With its ability to highlight essential words

and provide supporting examples from the training set, the Improved GPT-2++ becomes a

powerful tool for agile teams seeking consistent and reliable story point estimations based on

historical data.All the steps of the algorithms are explained below :

Step 1: Data Preparation and Proprocessing

Building a repository of user experiences of 9 repositories containing data from 16 projects,

including story points and estimated hours spent on completed activities. Before training the

model, it is necessary to preprocess the data by doing things like tokenizing the text and

encoding the story points or effort estimations. This is necessary since tokenization of the text

is a prerequisite.

Step 2: Model GPT-2++ training

Make use of the cleaned data to train a GPT-2++ baseline model. The rest of the procedures will

gradually build upon this basis.

57 | P a g e

Step 3: Evaluate attention head importance.

• After training the GPT-2++ model to estimate story points, it must be fine-tuned.

• Before doing ablation research, it is recommended to evaluate the performance of the

model with and without each attention head.

• Determine how the most relevant evaluation metrics for classification tasks, such as MSE,

MAE, or any other acceptable measure, shift after removing each attention head.

• Evaluate the effect of removing each attention head individually to establish its

significance.

Step 4: Set a threshold and rank attention heads.

Set a standard for the minimal amount of focus that must be placed on heads Which in our case

is 0.005. Optional restrictions include keeping just the K most important attention heads or

maintaining only those attention heads with a significance score over a certain threshold. Put

the points of focus in order of importance, from most important to least.

Step 5: Remove inefficient attention heads.

Eliminate any focus areas that are either not important at all or very somewhat so. Modify the

setup such that it excludes the squandering focal points of interest. Make the necessary

adjustments to attention procedures to ensure that the remaining heads can adequately cover the

content.

Step 6: Retrain and Evaluate the Pruned Model.

To retrain the updated GPT-2++ model, the preprocessed dataset is used again. The

effectiveness of the model in estimating story points should be evaluated using appropriate

evaluation methodologies after the pruning process. This will be determined by contrasting the

model's output before and after the trimming step is performed. To determine whether the

58 | P a g e

model's ability to accurately predict story points and effort has been significantly diminished

after trimming, the trimmed model's performance will be compared to the untrimmed model's

performance. By doing so, you may examine the model's pre-edit prediction accuracy for story

effort and point value. Keep in mind that the steps outlined in this article are only a jumpingoff

point, and that you will need to adjust them to fit the needs of own data and project.

3.9 Model Evaluation

Using standard metrics such as accuracy, Mean Absolute Error and F1 score, to evaluate the

state-of-the-art GPT-2++ model's ability to estimate story points. The model is tested on a

separate assessment dataset to ensure it can make reliable predictions about the story's

progression. By comparing our findings with those of other, previously published

methodologies, to evaluate the efficacy and efficiency gains. Evaluation Measures are defined

below:

• True Positive (TP): Instances correctly identified as positive when they are truly positive.

• True Negative (TN): Instances correctly identified as negative when they are truly

negative.

• False Positive (FP): Instances incorrectly identified as positive when they are actually

negative.

• False Negative (FN): Instances incorrectly identified as negative when they are actually

positive

• Accuracy: It is a performance parameter that gauges the system's propensity for accurate

prediction.

59 | P a g e

(1)

• F-Measure: F-Measure combines results of precision and sensitivity using harmonic

mean.

 (2)

• Mean Absolute Error: is a commonly used metric to measure the average difference

between predicted values and actual values in a regression problem. It provides a measure

of how close the predictions are to the true values.

(3)

3.10 Validation and Analysis

To evaluate the efficacy of the newly proposed model, a comparative analysis is conducted with

existing methodologies employed for the purpose of story arc determination. This assessment

60 | P a g e

aims to ascertain the extent of improvement offered by the novel model in question. The

performance evaluation of the proposed method is carried out on widely utilised datasets,

wherein it is compared against established techniques. The adaptability of the model is

subjected to rigorous testing across a multitude of scenarios in order to evaluate its performance

and robustness.

3.11 Assessment and Analysis

The purpose of this paper is to present the assessment and analysis findings of the enhanced

story point estimate model, to provide readers with a comprehensive understanding of its

advantages and disadvantages. This research paper aims to provide explanations for the findings

obtained from the study, as well as engage in discussions regarding the implications these

findings have for software development teams. Furthermore, this paper aims to emphasis the

potential practical advantages that can be derived from the implementation of this strategy.

3.12 Comparison

Upon completion of the construction of the model, a comprehensive evaluation will be

conducted to assess its performance in comparison to the baseline GPT-2++ model, as well as

other commonly used methods including GPT2P, GRU-SVM, BIGRU-SVM, LSTM-RF, and

LSTM-SVM. The evaluation will focus on estimating story point values and will utilize

standard metrics to gauge the effectiveness of the model.

3.13 Summary

The present research project employs a methodology that seeks to augment the evaluation of

story elements in the GPT-2++ model. This is achieved through the removal of attention heads

that have been deemed ineffective. The process entails several tasks, including the collection of

61 | P a g e

a diverse dataset comprising user stories and story points, data cleaning procedures, and the

subsequent selection of the GPT-2++ model for modification. The present model has been

instructed to acquire a comprehensive understanding of the correlation between the particulars

of the user narrative and the prerequisites for undertaking the task at hand. Through the

application of attention head analysis, it becomes possible to identify attention heads that

exhibit inefficiency. Consequently, a systematic approach can be developed to eliminate these

ineffective attention heads, thereby improving the overall structure and performance of the

model. To evaluate the comparative effectiveness of the revised model in relation to the baseline

and other estimating methodologies, a set of metrics has been developed. To ensure the accuracy

of the obtained results, additional testing and verification procedures are conducted. The present

methodology offers a systematic framework for enhancing story-point estimations, thereby

leading to increased precision in project management and resource allocation.

62 | P a g e

Chapter 4

Analysis and Results

63 | P a g e

Chapter 4

Analysis and Results

4.1 Overview

The findings obtained from the research will be presented in this section, along with a

comprehensive analysis of the data.The present research aims to compare the recently

created approach for estimating story points with the methodologies employed in previous

practices. This study aims to analyze the potential precision and effectiveness that can be

achieved by the reduction of clutter in attention heads. This section will provide an analysis

of the study outcomes in terms of their importance and potential applications.

4.2 Evaluation and Analysis

The present study entails the conduction of an analysis on the project data that has been

collected. The utilization of models is primarily limited to their application in training and

testing processes within the context of a singular project, commonly known as a "within-project

assessment." To facilitate a thorough assessment of every project, the datasets linked to them

are systematically arranged in chronological order. To address the issue of temporal validation

bias and ensure a balanced comparison with Deep-SE, the datasets have been partitioned into

three distinct segments: training, validation, and testing. The training set constitutes 60% of the

total dataset, while the validation and testing set each account for 20% of the dataset. This

64 | P a g e

division allows for a comprehensive evaluation of the models' performance while minimizing

the impact of temporal biases.

4.2.1 Performance Based on Accuracy and Loss

To prevent the occurrence of issues being recycled between sets, the data is partitioned into

distinct groups. These groups include the training data, validation data, and testing data. By

separating the data in this manner, each set serves a specific purpose in the research process

without overlapping or duplicating information. The GPT2++ models undergo training on a

designated training set, following which they are subjected to evaluation using the Mean

Absolute Error (MAE) metric on a separate testing set. The internal project review encompasses

a comprehensive analysis of the 16 datasets. Within this analysis, the primary objective is to

identify the optimal hyper-parameter configuration for each model, based on the criterion of

achieving the lowest loss value. Additionally, the Mean Absolute Error (MAE) is calculated using

the testing data as a measure of model performance.

This study aims to conduct a comprehensive comparison between our GPT2++ model and nine

alternative approaches, namely LSTM+RF, LSTM+SVM, GPT2SP, GRU-SVM, BiGRU, SVM

By evaluating these models, we seek to gain insights into their respective performance and

determine the strengths and weaknesses of each approach. The findings of this comparative

analysis provide evidence of the exceptional efficacy exhibited by our GPT2++ model. In line

with the approach proposed by Choetkiertikul et al. [50], our methodology leverages the use of

a Long Short-Term Memory (LSTM) network to generate a vector representation. This vector

representation is subsequently employed as input for four distinct machine learning techniques,

namely random forest, support vector machine, automatically transform linear models, and linear

regression.

65 | P a g e

Table 4.1 Performance metric Accuracy table comparison

Models

Performance Metric

(Accuracy)

GPT2++ 92%

GPT2SP 87%

GRU-SVM 83%

BiGRU-SVM 80%

LSTM-RF 79.5%

LSTM-SVM 77%

Our GPT2++ has a substantially lower median MAE of 1.16 when compared to the nine existing

baseline techniques, which results in an improvement in accuracy that is 34.57% higher. Our

GPT2++ is between 38% and 75% more accurate than the Mean baseline (Figure 4.1), when

measured in comparison to GPTSP in table 4.1. The precision with which our GPT2++ models

estimate the number of agile story points is also seen in Figure 4.1 As shown by the nonparametric

ScottKnott ESD ranking. GPT2++ models statistically outperform other existing baseline

approaches with a non-negligible difference for within-project evaluations. GPT2++ approach is

the only one to appear in Rank-1, followed by GPT2SP in Rank-2, and the remaining 5 baseline

approaches in Rank-3 through Rank-5. The graph below shows the accuracy of our model

compared to others.

66 | P a g e

Figure 4.1 Performance metric Accuracy graph comparison

In order to assess the accuracy of our model GPT2++, series of experiments are conducting with

varying numbers of epochs. Initially, Set the number of epochs to 20 and measured the

corresponding accuracy. Subsequently, the number of epochs increased and continued to monitor

the accuracy of our model.

Figure 4.2 Performance metric Accuracy graph w.r.t 20 epochs

67 | P a g e

Figure 4.2 presents the observed decrease in Accuracy when inefficient heads are removed from

a transformer model. The model in question was trained on a dataset using 20 epochs. The

decrease in Accuracy is based on the evaluation of a Validation dataset. In accordance with the

predetermined threshold criteria of 0.005, a total of eight heads were chosen based on the

condition that the decrease in accuracy exceeded 0.005.

Figure 4.3 Performance metric Accuracy graph w.r.t 30 epochs

In a similar vein, the findings presented in Figure 4.3 illustrate the decline in accuracy that occurs

when inefficient heads are eliminated. This analysis was conducted using a validation dataset,

and the transformer model under consideration had undergone training for a total of 30 epochs.

In accordance with the predetermined threshold criterion of 0.005, a total of 13 heads were

68 | P a g e

selected for the purpose of this study. The selection process was based on the condition that any

decrease in accuracy beyond the threshold of 0.005 would render the data unfit for analysis.

Figure 4.4 Performance metric Accuracy graph w.r.t 40 epochs

The research study demonstrates the impact of removing inefficient heads on the accuracy of the

model. The accuracy is evaluated based on the Validation dataset over a period of 40 epochs.

The findings are visually represented in Figure 4.4. A Comprehensive Analysis of the Impact of

Removing Inefficient Heads on Accuracy Reduction in Validation Datasets Table 4.2 presents a

concise comparison of the number of attention heads used in the model and the corresponding

accuracy achieved after 20, 30, and 40 epochs of training. The results demonstrate the impact of

attention head count on the model's performance during multiple training iterations. Analyzing

the accuracy metrics provides insights into the trade-offs between the complexity of the model

and its predictive capabilities. This comparison helps identify the optimal attention head

69 | P a g e

configuration that strikes a balance between computational efficiency and predictive accuracy,

aiding the selection of the most effective model for story point estimation tasks.

Table 4.2 Performance metric Accuracy table comparison w.r.t 20,30,40 epochs

Number of

Heads

Accuracy with

20 epochs

Accuracy with

30 epochs

Accuracy with

40 epochs

20 0.899 0.905 0.920

19 0.898 0.902 0.920

18 0.895 0.901 0.916

17 0.894 0.900 0.915

16 0.891 0.899 0.914

15 0.888 0.896 0.913

14 0.886 0.896 0.913

13 0.883 0.896 0.911

12 0.882 0.889 0.908

11 0.882 0.886 0.907

10 0.879 0.883 0.907

9 0.877 0.883 0.905

8 0.876 0.883 0.904

7 0.870 0.879 0.898

6 0.868 0.879 0.897

5 0.868 0.877 0.896

70 | P a g e

4.2.2 Performance Measure Based on Mean Absolute Error

The statistical metric employed in this study to assess the accuracy of the proposed GPT2++

model and other baselines is the Mean Absolute Error (MAE). MAE is a commonly used metric

in statistical analysis for evaluating the performance of predictive models. The consideration of

error magnitude without regard to their signs is a fundamental principle in the field of Mean

Absolute Error (MAE) analysis. MAE is a widely used metric in various domains, including

statistics, machine learning, and data analysis. This research paper aims to explore the

significance of this principle and its implications in the context of error measurement and

evaluation. The concept In the context of alternative metrics, it was determined that MdAE,

MMRE, and SA were not chosen for further analysis. This decision was based on their inherent

limitations in accurately capturing outlier estimates, their tendency to exhibit bias towards

underestimation, and their striking resemblance to random guessing. In order to ascertain the

statistical significance and effect size of the discrepancy in accuracy between GPT2++ and other

baseline models, we utilise a non-parametric adaptation of the ScottKnott ESD test. The present

study employs hierarchical clustering as a methodology to categorise median values and detect

statistically significant disparities. The Non-Parametric Significance Kernel (NPSK) test is a

statistical method utilised in order to minimise the occurrence of false positive results. Unlike

other tests, the NPSK test does not depend on assumptions of normality, homogeneous

distributions, or a specific minimum sample size. By avoiding these assumptions, the NPSK test

provides a more robust and reliable approach to hypothesis testing. The methodology comprises

two distinct steps. Firstly, the optimal group divisions are determined by utilising the

KruskalChisq statistic, which is based on median values. This statistical measure allows for the

identification of the most suitable divisions within the dataset. Secondly, the medians between

the established groups are compared to evaluate the extent of differences. This assessment is

conducted using the Cliff-JDJ formula, which provides a quantitative measure of the magnitude

71 | P a g e

of disparities between the groups. The ScottKnott ESD (Non-Parametric) analysis is performed

utilising the ScottKnott ESD (R) software application (Version 3.0).

Table 4.3 Performance metric Mean Absolute Error table comparison.

Models

Performance Metric

(MAE)

GPT2++ 0.18

GPT2SP 0.41

GRU-SVM 1.22

BiGRU-SVM 1.48

LSTM-RF 2.1

LSTM-SVM 2.82

The mean absolute error (MAE) in table 4.3 decreases as performance improves. Fundamental

techniques for estimating potential situations that may occur during a project. The mean absolute

error for each project was determined and recorded also in figure 4.5.

Figure 4.5 Performance matric Mean Absolute Error comparison

72 | P a g e

4.2.2.1 With-in Project Assessment

An examination of the data gathered throughout the study is done in this section. Models are

only used for training and testing inside the framework of a particular project, or "within-project

assessment‖ results are presented in figure 4.6. The datasets linked to each project are arranged

chronologically and split into training (60%), validation (20%), and testing (20%) sets to ensure

an accurate evaluation of each. The utilization of the same problems between training and

testing is prevented by the division of the data into distinct groups for training, validation, and

testing. On the testing set, the MAE measure is used to assess GPT2++ models that have been

trained on the training set. The 16 datasets are covered by the analysis as part of the internal

project evaluation. The MAE is computed for each dataset using the testing data, and the

optimal hyper-parameter configurations are identified to minimize the loss value. It's vital to

remember that the loss value is obtained from the validation data, whereas the MAE is evaluated

on the testing data.

In addition, GPT2++ is compared to five additional methods, GPT2SP[50], LSTM+RF,

LSTM+SVM,GRU+SVM, BiGRU+SVM. The outcomes show that GPT2++ functions well.

Similar to how Choetkiertikul et al. [50] discussed the use of LSTMs, four machine learning

methods—random forest, support vector machine, automatically convert linear models, and

linear regression—require an LSTM's vector representation as input. Additionally, Doc2Vec

and Bag-of-Words, two additional feature representations, are used to create vector

representations. The mean and median story points of the effort estimations are determined,

respectively, using the mean and median story points from the training set.

73 | P a g e

Figure 4.6 Shows the relative improvement in MAE for within-project estimating situations using GPT2++

compared to the baseline comparisons.

4.2.2.2 Cross Project Assessment

It is the process of developing models for one project and then applying those models to another

project to see how well they work. We, much as Choetkiertikul et al. [50], pay particular

attention to both the linkages between repositories and the links inside individual repositories.

The data from one repository is used to train the models, and then the data from another

repository is used to assess the models. In figure 4.7 to carry out an assessment inside of a

repository, a model must first be trained using data obtained from one repository's project, and

then it must be tested with data obtained from another repository's project. Training is

performed on the GPT2++models for each project using the training set, and evaluation is

performed using the MAE measure on the testing set. Because Choetkiertikul et al. [50]

suggests utilizing the same target project for both cross-repository and within-repository

assessments, we also follow this recommendation. After that, we compare our GPT2++ to the

results of Deep-SE [50] as well as ABE0 (analogy-based estimate). [79], [80], [81], [82]. An

74 | P a g e

estimate in story points is computed by the ABE0 for an issue in the target project by taking the

story points of the three problems in the source project that are most like it and average them.

Calculating the proportion of the MAE that has improved may be done. In other words, the MAE

baseline is set at 100%. baseline MAE ours MAE baseline.

Figure 4.7 MAE for cross-project estimate using GPT2++, Deep-SE, and ABE0

.

The use of GPT-2 language models results in a significant improvement for cross-project

estimation scenarios, which demonstrates the advantages of using GPT-2 language models to

learn the distributed representations of words in a more general setting. This contrasts with the

Deep-SE project-specific pre-trained language models, which were used. Even though DeepSE

can generalize its results from one project to another, it is restricted in its capacity to do so

because it builds a pre-trained language model for each project to develop a vector

representation of each word.

75 | P a g e

When comparisons are made between evaluations carried out solely inside a repository,

GPT2++ performs just as well as Deep-SE and ABE0. It has come to our attention that the

median MAE for GPT2++ is 2.4 (Rank-1), whereas that value for Deep-SE is 2.53 (Rank-1),

and that value for ABE0 is 2.82 (Rank-2). Even though both GPT2++ and Deep-SE have

comparable performance, GPT2++ has been shown to perform better in 62.5% of the tests

carried out inside the repository.

4.2.2.3 Performance Based on Sub word Tokenization

To gain a deeper understanding of the topic at hand, it is crucial to thoroughly observe and

analyze the mean absolute error of GPT2++ while adjusting its various components as described

in figure 4.8. The GPT2++ model comprises two essential components: BPE subword

tokenization and the GPT-2 architecture. These components form the foundational elements of

GPT2++ and are vital to its functioning. In this study, the focus is on retaining the GPT-2

architecture as the basis for the research while modifying the subword tokenization technique

from BPE to either WordPieceSP or SentencePieceSP. This modification aims to enhance the

understanding of the impact and significance of subword tokenization in the context of the

investigation. By exploring alternative subword tokenization methods, a more comprehensive

understanding of the contributions made by different tokenization approaches is sought. The

utilization of Word Level tokenization, as seen in Deep-SE, during the transition from the

LSTM+RHWN architecture to the GPT-2 architecture allows for a better understanding of the

impact introduced by the GPT-2 Transformer. The objective of this study is to examine the mean

absolute error (MAE) of five distinct models across sixteen diverse datasets, focusing on the

within-project scenario as the experimental framework.

76 | P a g e

Figure 4.8 shows the effect on GPT2++ model when we alter either the tokenization or the

architecture.

However, in the case of GPT2++, BPE remains the optimal subword tokenization strategy. The

model is fine-tuned with the hyper-parameter setting that minimizes loss, determined from the

validation data, while the mean absolute error (MAE) is calculated using the testing data. The

proposed Transformer-based design for GPT2++ significantly reduces the MAE by 67%,

indicating a substantial improvement. Comparing different architectures with the same wordlevel

tokenization (Word-LevelSP+GPT2 and Word-LevelSP+LSTM+RHWNDeepSE), we observe

that Deep-SE experiences a remarkable 6% to 47% improvement in MAE, with a median

percentage increase of 34%. This improvement is attributed to the Transformer design employing

the masked multi-head self-attention mechanism. Unlike the LSTM unit, which needs to refresh

information in the short-term memory cell at each time step, the masked multi-head self-attention

approach allows for equal interaction between each word in a sequence, capturing dependencies

more accurately and providing richer semantic interpretations. By utilizing a masked mechanism,

the models are prohibited from attending to subsequent positions, ensuring their focus remains

within the intended context.

77 | P a g e

When analyzing the results of multiple subword tokenization strategies using the same GPT-2

architecture (BPE+GPT2SP, WordPieceSP+GPT2, and SentencePieceSP+GPT2), minor

differences in MAE are observed. This suggests that the GPT-2++ design consistently

outperforms the GPT2SP approach, regardless of the subword tokenization strategy employed.

The limited impact of tokenization strategies can be attributed to the diverse nature of tasks

performed by the Transformer models in subsequent phases. Concerns have been raised by

researchers regarding the potential impact of different tokenization strategies on Transformer

models used for code generation tasks in software engineering, as it may lead to bugs in the

generated code. However, our study demonstrates the robustness and resilience of the

Transformer models employed, as the influence of tokenization strategies is found to be limited.

In summary, the GPT2++ model with BPE subword tokenization consistently demonstrates

superior performance, resulting in a significant reduction in MAE. The Transformer-based

design, incorporating the masked multi-head self-attention mechanism, effectively captures

dependencies and semantic interpretations. The findings indicate that the impact of different

subword tokenization strategies on the Transformer models used in our analysis is minimal,

highlighting their overall resilience.

4.2.3 Performance Based on F1-Score

In this study, we examine the Mean Absolute Error (MAE) distributions of our proposed GPT2++

model and two baseline approaches. To compare the statistical significance of these distributions,

we employ a non-parametric variant of the ScottKnott ESD test.The outcomes of this

comparative analysis are presented in figure 4.9, which illustrates the performance of our

GPT2++ model in relation to the two established methods for cross-project estimation. The

investigation involved the determination of the mean absolute error (MAE) for each project under

consideration. Furthermore, an evaluation of the performance metrics of our proposed GPT2++

78 | P a g e

model in comparison to five other state-of-the-art methods is presented in Table 4.4. The

experimental findings unequivocally demonstrate that GPT2++ exhibited superior performance

compared to other State-of-the-art approaches in terms of accuracy, F-Measure, and Mean Square

Error.

Table 4.4 Performance metric F1 Score table comparison.

Models

Performance Metric

(F1 Score)

GPT2++ 0.87

GPT2SP 0.84

GRU-SVM 0.82

BiGRU-SVM 0.79

LSTM-RF 0.76

LSTM-SVM 0.74

Figure 4.9 Performance metric F1 Score graph comparison.

79 | P a g e

4.3 GPT2++ Agile Story Point Estimator Tool

In this section, artificial intelligence (AI)-based story point estimation system, which is named

GPT2++ presented in figure 4.10. This system has been developed as a web-based tool, equipped

with explanations, and supporting examples. The primary objective of the proof-of-concept is to

execute a survey study aimed at examining the difficulties associated with story point estimation

tasks and to emphasis the importance of providing explanatory support for AI-based story point

estimation.

Figure 4.10 A snapshot of the proposed GPT2++ tool

80 | P a g e

To enhance practitioners' comprehension of the estimation process and facilitate the widespread

utilization of the GPT2SP model, a web-based story point estimation tool has been developed

as a proof-of-concept (refer to Figure 4.10). The tool serves three main purposes, aiming to

address a specific issue.

This study focuses on investigating the process of story point estimation in software

development projects. The objectives include: 1) estimating the story point, 2) identifying the

most influential word in the estimation process, and 3) providing supporting examples from the

training set of the project under consideration. The first objective is to accurately estimate the

story point, which is a commonly used metric in agile software development for quantifying

the effort required to complete a user story or task. Accurate story point estimation enables

effective project planning and resource allocation. Various techniques and methodologies

employed by software development teams for story point estimation will be explored. The

second objective is to highlight the key word or phrase that significantly contributes to story

point estimation. By identifying these influential words, insights can be gained into the factors

that influence estimation and potentially improve accuracy. This analysis will involve

examining a dataset of user stories. The supporting examples used in this study are selected

based on their inclusion of the most significant keyword and having the same story point as the

target issue.

The research paper focuses on the utilization of two concepts of Explainable Artificial

Intelligence (AI) in the development of the GPT2++tool. The third objective concepts are

feature-based explanations and example-based explanations. Incorporating these concepts

enhances the interpretability and transparency of the AI system. Feature-based explanations

assist practitioners in understanding the key words that significantly influence story point

estimation for a given issue. These explanations provide valuable insights into the estimation

process factors. By identifying the most important words, practitioners can enhance their

81 | P a g e

understanding and make informed decisions. On the other hand, example-based explanations

extend the casebased reasoning paradigm, where optimal supporting examples are searched

based on identical words and story points within the same project.

4.3.1 Example Usage of Tool GPT2++

Application of the GPT2SP Tool. An issue (TIMOB-20252) from the Titanium project is used as

an example to demonstrate the use of the GPT2++ tool. The title of the problem is "Windows:

Windows 10 SDK is not detected." When you enter this title into the GPT2++tool, the model

predicts a story point of 5.0. Based on the actual ground-truth, it is discovered that the story point

estimation for this issue is correct. The GPT2++ utility offers two main explanations for this

problem. To begin, it determines the most important word that contributed to the estimation of

tale points, which in this case is "Windows." This suggests that the presence of the phrase

"Windows" was important in identifying the story point. Furthermore, based on the most

important word, the GPT2++ tool provides the top three supporting instances. TIMOB-178452,

TIMOB-178463, and TIMOB-178474 are three examples. These instances are related by the

word "Windows" and have the same story elements as the target issue. This finding implies that

topics with comparable story elements frequently have similar keywords. As a result, the

GPT2++ tool may help Agile teams achieve consistency in story point prediction using historical

data.

Overall, this example exhibits the GPT2++ tool's actual use, demonstrating its capacity to

estimate story points accurately while also providing valuable explanations and accompanying

examples to aid in the estimation process.

82 | P a g e

4.4 Summary

Mean Absolute Error (MAE) is applied in both the internal and external experiments of this

study, and it is also utilized by Choetkiertikul et al. to evaluate DeepSE. This research was

carried out in the United Kingdom. The mean absolute error (MAE) is a statistical measure that

examines how much various predictions disagree, ignoring the directions in which the errors

are made. Other metrics such as MdAE, MMRE, and SA are not preferred since they are unable

to capture outlier estimates, they have a bias toward underestimating, and they are comparable

to random guessing. Calculating the significance of the accuracy gap between GPT2++ and

other baselines is accomplished with the use of the non-parametric ScottKnott ESD test. This

test ranks treatments according to mean values and ensures that there are major variations

between groups. When conducting internal evaluations, datasets are often segmented into

training, validation, and testing sets to eliminate temporal validation bias. When training

GPT2++ models, the training set is used; after that, the models are evaluated using the MAE

metric on the testing set. During cross-project evaluations, which take place when models that

were trained on one repository are evaluated on another, GPT2++ is compared to Deep-SE and

ABE0. GPT2++ performs much better than the baselines and is statistically preferable because

of its lower mean absolute error (MAE) value. Ablation study is used to investigate how the

performance of GPT2++ is affected by the interactions between BPE sub word tokenization

and the GPT-2 architecture. The research results show that GPT2++, which makes use of the

Transformer design, significantly improves Deep-SE's MAE, but the other sub word

tokenization techniques have just a little impact on MAE. This is because GPT2++ uses the

Transformer architecture.

83 | P a g e

Chapter 5

Conclusion and Future Work

84 | P a g e

Chapter 5

Conclusion and Future Work

5.1 Overview of Research

The purpose of this project is to find solutions to the problems that software development teams

have when attempting to provide realistic estimates of the complexity and work necessary to

finish user stories. Although algorithms already exist, there is a lack of understanding of the

underlying context of user wants, which leads to outputs that are less than optimum and missed

deadlines. The methodologies of machine learning and deep learning both have drawbacks, the

most notable of which are their high time complexity and low accuracy.

Pre-trained transformers, GPT models, have showed potential in improving story-point

estimation as a means of overcoming the issues described above. However, within the

framework of the GPT-2++ model, there is a possibility that some attention heads may not

effectively contribute to the process of estimating story points, which will result in findings that

are not as good as they might be. The purpose of this study is to determine which attention

heads are not productive and then get rid of them to get a more accurate estimate of the number

of story points.

The purpose of this study is to make the process of computing story points more precise,

predictable, and time-efficient by getting rid of attention heads that aren't doing their job.

Among the anticipated results is an improvement in both the predictability of and the efficiency

with which one can estimate the amount of work necessary for user stories. This increase in

85 | P a g e

estimating accuracy and efficiency would be beneficial to project management since it would

enable improved planning and resource allocation.

Collecting a varied dataset of user stories and the story points that correlate to those stories is an

integral part of the study technique.

Following the completion of preprocessing, which involves cleaning and transforming the data,

the GPT-2++ model is fine-tuned by making use of the dataset. A study of the attention heads is

carried out to determine which attention heads are ineffective. Afterward, the ineffective attention

heads are removed by making the necessary adjustments.

The performance of the updated GPT-2++ model is evaluated based on the given evaluation

metrics, and the results are compared to baseline models and current estimating techniques.

Experimentation and validation are components of the study, both of which are used to establish

the dependability and generalizability of the findings.

By enhancing attention processes in pre-trained transformers, the results of this study hope to

contribute to the area of software estimation. The projected results include a more precise and

efficient assessment of story points, which will lead to improved software project planning,

monitoring, and execution in the real world.

In conclusion, the purpose of this study is to improve story-point estimate by getting rid of

attention heads in the GPT-2++ model that aren't very successful. Data collection,

preprocessing, model training, attention head analysis, elimination, assessment, and validation

are all components of this technique. The anticipated advantages include increased accuracy

and efficiency in estimating costs, which would eventually lead to more dependable project

management and efficient use of available resources.

5.2 Summary of Research Contributions

The discipline of software estimating, and story-point estimation in particular, benefits from

several important advances made by this study.

86 | P a g e

• Identification of Challenges: The findings of this study give a full knowledge of the

issues that software development teams confront when attempting to correctly estimate

the level of complexity and labor necessary to execute user stories. It brings to light the

restrictions imposed by currently available algorithms as well as the challenges related

with machine learning and deep learning strategies.

• Integration of Pre-trained Transformers: The project investigates the possibility of

improving the accuracy of story-point estimate by exploiting sophisticated natural

language processing capabilities.

This is done by introducing pre-trained transformers, notably the GPT-2++ model, into the

estimation process.

• Attention Head Analysis: The study presents an original method for assessing attention

heads within the context of the GPT-2++ model. It does this by analyzing the attention

patterns and weights, which allows it to determine which attention heads do not

successfully contribute to an accurate evaluation of the story points.

• Attention Head Elimination: Using the analysis as a foundation, the study proposes a

strategy for removing inefficient attention heads from the GPT-2++ model. To improve

estimating precision and performance, this procedure entails adjusting the weights of

the remaining attention heads or altering the processes that control attention.

• Improved Estimation Accuracy and Efficiency: According to the findings of the

study, the updated GPT-2++ model can achieve improved estimate accuracy and

efficiency in the process of computing story points by getting rid of attention heads that

are inefficient. This enhancement may have a substantial influence on the planning,

monitoring, and resource allocation of the project.

• Practical Application and Real-World Impact: The results of this study have

ramifications that may be used in practice for software development teams working in the "real

world." Teams can more effectively plan, monitor progress, and execute projects, which leads

87 | P a g e

to fewer delays and better project results when they have the capacity to estimate story points

more correctly.

• Advancement of Research in Software Estimation: This study contributes to the more

general topic of software estimation by looking at many novel techniques that might

improve attention processes in pre-trained transformers. It provides insights into

enhancing the estimate accuracy of complicated tasks via the integration of modern

approaches for processing natural languages.

This study adds to the knowledge and enhancement of story-point estimation by addressing

issues in reliably estimating the effort necessary to complete user stories. In summary, the

research addresses challenges in accurately estimating the amount of work that is required to

accomplish user stories. To improve both the accuracy and the efficiency of the estimating

process, the approach makes use of pre-trained transformers, evaluates attention heads, and gets

rid of the inefficient ones. The relevance of this study is further validated by its practical

ramifications as well as the developments that have been achieved in software estimation.

5.3 Conclusion of the Research

In conclusion, the evaluation of the difficulty and effort involved in user stories is critical to the

production of productive software development cycles. However, the currently available

algorithms for story-point task evaluation usually fail to comprehend the contextual

complexities of user requirements, which results in delays and missed deadlines. Both machine

learning and deep learning have been hampered by issues such as high time complexity and

poor accuracy, despite the promise that both hold. The development of pre-trained transformers,

particularly GPT, has, on the other hand, significantly contributed to a reduction in the severity

of these issues. However, there is a possibility that some focus areas in GPT models may not

successfully contribute to the estimation of story points, which may result in results that are less

88 | P a g e

than desirable. This study intends to enhance story point estimation by identifying inefficient

focus areas inside the GPT-2 model and then removing them from the model entirely. The

objective is to simplify the process of producing an accurate estimate of the amount of time and

effort needed to accomplish a certain number of story points. By addressing these issues, we

will hopefully be able to make software development teams more productive as a whole and

make it easier to evaluate the degree of difficulty associated with user stories.

5.4 Future Work

The results that were provided in this abstract have paved the path for further study into

enhancing the story point estimation process used in the software sector. The following are

examples of potential subjects for further research:

The present analysis focuses on recognizing and eliminating wasted attention heads within the

GPT-2 model however, more research may be undertaken to examine methods of improving

attention mechanisms that are custom-tailored for story-point estimation. In the meantime, this

examination is centered on the GPT-2 model. One strategy would be to investigate a variety of

attention structures, while another would be to devise innovative approaches to increase the

significance of the attention heads and their contribution to the estimating task. Both strategies

would be useful.

An in-depth understanding of the context around user needs is necessary for an accurate

evaluation of the story points. Future work may study methods to combine domain-specific

information, industry-specific ontologies, or other data sources to get a better understanding of

the context of user stories. This will allow for a more comprehensive understanding of the user

stories themselves. Because of this, it may be necessary to make use of unique pre-training

methods that include the use of datasets that are relevant to a certain domain or the inclusion of

external knowledge graphs.

89 | P a g e

It is feasible to further improve the software development lifecycle by integrating the updated

story point estimate method with extant project management tools and frameworks. This may

be done to achieve the goal of further optimizing the software development lifecycle. In the

future, we will be able to provide connectors and plugins for well-known project management

software to facilitate the process of incorporating the estimating procedure into the program.

The incorporation of accurate story-point predictions into the processes of planning and

monitoring in such a manner would be of tremendous use to teams.

Extensive benchmarking and comparative study of different story-point estimate approaches,

including the proposed enhanced GPT-based method, will give helpful insights into their

relative strengths and constraints. These insights may be used to improve the suggested method.

To do this, we may evaluate the effectiveness of various algorithms by using a standard set of

evaluation criteria and data sets. The findings of such an investigation would be helpful in

establishing which approaches are the most efficient, as well as which approaches to estimating

are the most appropriate for a wide range of circumstances.

Before the suggested innovations can be implemented, they need to first be tested and their

performance assessed in real software development projects. It would be beneficial for future

study to explore the possibility of putting the enhanced story point estimate process into practice

by collaborating with key industry stakeholders. This would make it feasible to obtain genuine

data, assess performance in real-world scenarios, and request user input for future

enhancements. All these things would be achievable thanks to this.

By studying these potential work approaches, researchers and practitioners may continue to

enhance story-point estimates in software development. This will result in more exact, efficient,

and trustworthy estimating techniques, which will eventually contribute to the success of

software projects.

90 | P a g e

5.5 Summary

By addressing the problems that now exist, the purpose of this study is to enhance the accuracy

and productivity of story-point estimate in software development teams. We emphasize the

limits of the algorithms and techniques to machine learning that are currently in use, and we

investigate the possibility of pre-trained transformers, more especially the GPT-2++ model. To

improve the accuracy of the estimate process, the study is focused on locating and removing

inefficient attention heads from inside the GPT-2++ model. The redesigned model delivers

higher estimating accuracy and efficiency because of the removal of these ineffective attention

heads. This, in turn, leads to enhanced project planning, monitoring, and resource allocation.

The study provides several key advances, including the identification of difficulties, the

integration of pre-trained transformers, the introduction of attention head analysis and deletion,

and the demonstration of practical application and real-world effect. The results provide a

contribution to the progression of research in software estimate and have consequences for the

improvement of project outcomes in the industry of software development.

In the future, additional research can be carried out to optimize attention mechanisms that are

tailored for story-point estimation, investigate ways to incorporate domain-specific

information, integrate the revised estimation process with project management tools, perform

benchmarking and comparative studies, and validate the proposed enhancements in actual

software development projects. These prospective directions intend to enhance the accuracy,

efficacy, and dependability of the techniques used for estimating story points, which will

eventually contribute to the success of software projects.

91 | P a g e

References

[1] Dhar, V., Jarke, M. and Laartz, J. (2014). Big Data. WIRTSCHAFTSINFORMATIK, 56(5),

pp.277–279. doi:10.1007/s11576-014-0428-0.

[2] Flyvbjerg, B. and Budzier, A. (2011). Why Your IT Project May Be Riskier than You Think.

SSRN Electronic Journal. doi:10.2139/ssrn.2229735.

[3] Jørgensen, M. (2016). Unit effects in software project effort estimation: Workhours gives

lower effort estimates than workdays. Journal of Systems and Software, 117, pp.274–281.

doi: 10.1016/j.jss.2016.03.048.

[4] Wieczorek, Ł. and Ignaciuk, P. (2018). Continuous Genetic Algorithms as Intelligent

Assistance for Resource Distribution in Logistic Systems. Data, 3(4), p.68.

doi:10.3390/data3040068.

[5] Misirli, A.T., Caglayan, B., Bener, A. and Turhan, B. (2013). A Retrospective Study of

Software Analytics Projects: In-

Depth Interviews with Practitioners. IEEE Software, 30(5), pp.54–61.

doi:10.1109/ms.2013.93.

[6] Jorgensen, M. (2014). What We Do and Don‘t Know about Software Development Effort

Estimation. IEEE Software, 31(2), pp.37–40. doi:10.1109/ms.2014.49.

[7] McConnell, S. (1998). The art, science, and engineering of software development. IEEE

Software, 15(1), pp.120, 118–119. doi:10.1109/52.646892.

[8] Jorgensen, M. and Shepperd, M. (2007). A Systematic Review of Software Development

Cost Estimation Studies. IEEE

Transactions on Software Engineering, 33(1), pp.33–53. doi:10.1109/tse.2007.256943.

[9] Boehm, B., Egyed, A., Port, D., Shah, A., Kwan, J. and Madachy, R. (1998). Annals of

Software Engineering, 6(1/4), pp.295–

92 | P a g e

321. doi:10.1023/a:1018988827405.

[10] Sentas, P., Angelis, L. and Stamelos, I. (2007). A statistical framework for analyzing the

duration of software projects. Empirical Software Engineering, 13(2), pp.147–184.

doi:10.1007/s10664-007-9051-7.

[11] Sentas, P., Angelis, L., Stamelos, I. and Bleris, G. (2005). Software productivity and effort

prediction with ordinal regression. Information and Software Technology, 47(1), pp.17–29.

doi: 10.1016/j.infsof.2004.05.001.

[12] Cervone, H.F. (2011). Understanding agile project management methods using Scrum.

OCLC Systems & Services: International digital library perspectives, 27(1), pp.18–22.

doi:10.1108/10650751111106528.

[13] III, W.G. (1987).: Generations: A Chinese Family. Richard Gordon, Carma Hinton, Kathy

Kline. American Anthropologist, 89(1), pp.255–256. doi:10.1525/aa.1987.89.1.02a01150.

[14] Choetkiertikul, M., Dam, H.K., Tran, T., Ghose, A. and Grundy, J. (2018). Predicting

Delivery Capability in Iterative Software Development. IEEE Transactions on Software

Engineering, 44(6), pp.551–573. doi:10.1109/tse.2017.2693989. [15] Fu, M. and

Tantithamthavorn, C. (2022). GPT2SP: A Transformer-Based Agile Story Point Estimation

Approach. IEEE Transactions on Software Engineering, pp.1–1.

doi:10.1109/tse.2022.3158252.

[16] Vestergaard, E.T. and Jorgensen, J.O.L. (2006). Role of ghrelin in growth hormone-deficient

patients. Expert Review of Endocrinology & Metabolism, 1(3), pp.343–351.

doi:10.1586/17446651.1.3.343.

[17] Jorgensen, M. and Gruschke, T.M. (2009). The Impact of Lessons-Learned Sessions on

Effort Estimation and Uncertainty Assessments. IEEE Transactions on Software

Engineering, 35(3), pp.368–383. doi:10.1109/tse.2009.2.

93 | P a g e

[18] Boehm, B., Egyed, A., Port, D., Shah, A., Kwan, J. and Madachy, R. (1998). Annals of

Software Engineering, 6(1/4), pp.295–321. doi:10.1023/a:1018988827405.

[19] Sentas, P., Angelis, L. and Stamelos, I. (2007). A statistical framework for analyzing the

duration of software projects. Empirical Software Engineering, 13(2), pp.147–184.

doi:10.1007/s10664-007-9051-7.

[20] Niranjan, R., Kanmani, D. and Kumar, S. (2022). Design and fabrication of multi cutting

hack saw

machine. International journal of health sciences, pp.10294–10297. doi:

10.53730/ijhs.v6ns3.9423.

[21] Panda, S.K., Satapathy, S.P., Panda, P.C., Lakra, K., Karir, S. and Panda, J.N. (2021).

Determinants of Inpatient Satisfaction on Hospital Services in a Government Tertiary Care

Center. Healthline, 12(2), pp.5–12. doi:10.51957/healthline_202_2021.

[22] Bibi, S., Stamelos, I. and Angelis, L. (2008). Combining probabilistic models for

explanatory productivity estimation. Information and Software Technology, 50(7-8),

pp.656–669. doi: 10.1016/j.infsof.2007.06.004.

[23] Shepperd, M. and Schofield, C. (1997). Estimating software project effort using analogies.

IEEE Transactions on Software Engineering, 23(11), pp.736–743. doi:10.1109/32.637387.

[24] Karoulis, A., Stamelos, I.G., Angelis, L. and Pombortsis, A.S. (2005). Formally Assessing

an Instructional Tool: A Controlled Experiment in Software Engineering. IEEE Transactions

on Education, 48(1), pp.133–139.

doi:10.1109/te.2004.837047.

[25] Collopy, F. (2007). Difficulty and complexity as factors in software effort estimation.

International Journal of Forecasting, 23(3), pp.469–471. doi:

10.1016/j.ijforecast.2007.05.011.

94 | P a g e

[26] Tawosi, V., Sarro, F., Petrozziello, A. and Harman, M. (2022). Multi-Objective Software

Effort Estimation: A Replication Study. IEEE Transactions on Software Engineering, 48(8),

pp.3185–3205. doi:10.1109/tse.2021.3083360. [27] Kocaguneli, E., Menzies, T., and

Keung, J.W. (2012). On the Value of Ensemble Effort Estimation. IEEE Transactions on

Software Engineering, 38(6), pp.1403–1416. doi:10.1109/tse.2011.111.

[28] Valerdi, R. (2011). 10.4.2 Convergence of Expert Opinion via the Wideband Delphi Method:

An Application in Cost Estimation Models. INCOSE International Symposium, 21(1),

pp.1246–1259. doi:10.1002/j.2334-5837. 2011.tb01282. x.

[29] Chulani, S., Boehm, B. and Steece, B. (1999). Bayesian analysis of empirical software

engineering cost models. IEEE Transactions on Software Engineering, 25(4), pp.573–583.

doi:10.1109/32.799958

[30] Moreno, A. (2006). Review of ‗Agile Estimating and Planning by Mike Cohn,‘ Prentice Hall

PTR, 2005, $44.99, ISBN: 0131479415. Queue, 4(5), p.59. doi:10.1145/1142031.1142049.

[31] Concas, G., Marchesi, M., Murgia, A., Tonelli, R. and Turnu, I. (2011). On the Distribution

of Bugs in the Eclipse

System. IEEE Transactions on Software Engineering, 37(6), pp.872–877.

doi:10.1109/tse.2011.54.

[32] Djouab, R., Abran, A. and Seffah, A. (2014). An ASPIRE-based method for quality

requirements identification from business goals. Requirements Engineering, 21(1), pp.87–

106. doi:10.1007/s00766-014-0211-1.

[33] Pedrycz, W., Succi, G., Sillitoe, A. and Algazi, J. (2015). Data description: A general

framework of information granules. Knowledge-Based Systems, 80, pp.98–108. do:

10.1016/j.knosys.2014.12.030.

95 | P a g e

[34] Neil, M., Tailor, M., Marquez, D., Fenton, N. and Hearty, P. (2008). Modelling dependable

systems using hybrid Bayesian networks. Reliability Engineering & System Safety, 93(7),

pp.933–939. doe: 10.1016/j.ress.2007.03.009.

[35] Silva, L., Almeida, H., Perkusich, A. and Perkusich, M. (2015). A Model-Based Approach

to Support Validation of Medical Cyber-Physical Systems. Sensors, 15(11), pp.27625–

27670. doi:10.3390/s151127625.

[36] Pinzger, M., Giger, E., and Gall, H.C. (2021). Comparing fine-grained source code changes

and code churn for bug prediction - A retrospective. ACM SIGSOFT Software Engineering

Notes, 46(3), pp.21–23. doi:10.1145/3468744.3468751. [37] Fackler, M. (2021). Panjer

class revisited: one formula for the distributions of the Panjer (a, b, n) class. SSRN

Electronic Journal. doi:10.2139/ssrn.3813246.

[38] Bhattacharya, P., Neamtiu, I. and Shelton, C.R. (2012). Automated, highly

accurate, bug assignment using machine learning and tossing graphs. Journal of Systems

and Software, 85(10), pp.2275–2292. doi: 10.1016/j.jss.2012.04.053.

[39] Hooimeijer, P. and Weimer, W. (2012). StrSolve: solving string constraints lazily.

Automated Software Engineering, 19(4), pp.531–559. doi:10.1007/s10515-012-0111-x.

[40] Choetkiertikul, M., Dam, H.K., Tran, T., Ghose, A. and Grundy, J. (2018).

Predicting Delivery Capability in Iterative Software Development. IEEE Transactions on

Software Engineering, 44(6), pp.551–573. doi:10.1109/tse.2017.2693989. [41] Linares-

Vásquez, M., Vendome, C., Tufano, M. and Poshyvanyk, D. (2017). How developers micro-

optimize Android apps. Journal of Systems and Software, 130, pp.1–23. doi:

10.1016/j.jss.2017.04.018.

[42] Dam, H.K., Tran, T. and Pham, T. (2016). A deep language model for software code.

arXiv:1608.02715 [cs, stat].

[online] Available at: http://arxiv.org/abs/1608.02715 [Accessed 5 Jan. 2023].

http://arxiv.org/abs/1608.02715

96 | P a g e

[43] X. Gu, H. Zhang, D. Zhang, and S. Kim, ―Deep API learning,‖ in Proc. 24th ACM SIGSOFT

Int. Symp. Found. Softw. Eng., 2016, pp. 631–642. [Online]. Available:

http://doi.acm.org/10.1145/ 2950290.2950334

[44] Gupta, R., Pal, S., Kanade, A. and Shevade, S. (2017). DeepFix: Fixing Common C

Language Errors by Deep Learning. Proceedings of the AAAI Conference on Artificial

Intelligence, 31(1). doi:10.1609/aaai. v31i1.10742.

[45] Hinton, G.E. (2006). Reducing the Dimensionality of Data with Neural Networks. Science,

[online] 313(5786), pp.504–507. doi:10.1126/science.1127647.

[46] Atlassian, Jira — Issue & Project Tracking Software

— Atlassian. [Online]. Available: https:

//www.atlassian.com/software/jira.

[47] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, ―Agile software development

methods: Review and analysis,‖ 2017, arXiv: 1709.08439.

[48] M. Usman, E. Mendes, and J. Borstler, ―Effort estimation in agile€ software development:

A survey on the state of the practice,‖ in Proc. 19th Int. Conf. Eval. Assessment Softw. Eng.,

2015, pp. 1–10.

[49] M. Usman, E. Mendes, F. Weidt, and R. Britto, ―Effort estimation in agile software

development: A systematic literature review,‖ in Proc. 10th Int. Conf. Predictive Models

Softw. Eng., 2014, pp. 82–91.

[50] M. Choetkiertikul, H. K. Dam, T. Tran, T. Pham, A. Ghose, and T. Menzies, ―A deep learning

model for estimating story points,‖ IEEE Trans. Softw. Eng., vol. 45, no. 7, pp. 637–656,

Jul. 2019.

[51] M. Jørgensen, ―A review of studies on expert estimation of software development effort,‖

Journal of Systems and

Software, Vol. 70, No. 1–2, 2004, pp. 37–60.

http://doi.acm.org/10.1145/
http://www.atlassian.com/software/jira

97 | P a g e

[52] B. Boehm, Software cost estimation with COCOMO II. New Jersey: Prentice-Hall, 2000.

[53] P. Sentas, L. Angelis, and I. Stamelos, ―Multinomial logistic regression applied on software

productivity prediction,‖ in 9
th

 Panhellenic Conference in Informatics, 2003, pp. 1–12.

[54] S. Kanmani, J. Kathiravan, S.S. Kumar, and M. Shanmugam, ―Neural network-based effort

estimation using class points for OO systems,‖ in International Conference on Computing:

Theory and Applications (ICCTA’07). IEEE, 2007, pp. 261– 266.

[55] A. Panda, S.M. Satapathy, and S.K. Rath, ―Empirical validation of neural network models

for agile software effort estimation based on story points,‖ Procedia Computer Science, Vol.

57, 2015, pp. 772–781.

[56] S. Kanmani, J. Kathiravan, S.S. Kumar, and M. Shanmugam, ―Class point based effort

estimation of oo systems using fuzzy subtractive clustering and artificial neural networks,‖

in Proceedings of the 1
st
 India Software Engineering Conference, 2008, pp. 141–142.

[57] S. Bibi, I. Stamelos, and L. Angelis, ―Software cost prediction with predefined interval

estimates,‖ in Proceedings of Software Measurement European Forum, Vol. 4, 2004, pp.

237–246.

[58] L. Angelis and I. Stamelos, ―A simulation tool for efficient analogy-based cost estimation,‖

Empirical Software Engineering, Vol. 5, No. 1, 2000, pp. 35–68.

[59] F. Sarro, A. Petrozziello, and M. Harman, ―Multi-objective software effort estimation,‖ in

38
th

 International

Conference on Software Engineering (ICSE). IEEE, 2016, pp. 619–630.

[60] M. Cohn, Agile estimating, and planning. Pearson Education, 2005.

[61] S. Porru, A. Murgia, S. Demeyer, M. Marchesi, and R. Tonelli, ―Estimating story points

from issue reports,‖ in Proceedings of the the 12
th

 International Conference on Predictive

Models and Data Analytics in Software Engineering, 2016, pp. 1–10.

98 | P a g e

[62] C. Commeyne, A. Abran, and R. Djouab, ―Effort estimation with story points and cosmic

function points – An industry case study,‖ Software Measurement News, Vol. 21, No. 1,

2016, pp. 25–36.

[63] G. Poels, ―Definition and validation of a COSMIC-FFP functional size measure for

objectoriented systems,‖ in Proc. 7
th

 Int. ECOOP Workshop Quantitative Approaches OO

Software Eng. Darmstadt, 2003.

[64] P. Abrahamsson, R. Moser, W. Pedrycz, A. Sillitti, and G. Succi, ―Effort prediction in

iterative software development processes – Incremental versus global prediction models,‖

in First International Symposium on Empirical Software Engineering and Measurement

(ESEM 2007). IEEE, 2007, pp. 344–353.

[65] P. Hearty, N. Fenton, D. Marquez, and M. Neil, ―Predicting project velocity in XP using a

learning dynamic 92ayesian network model,‖ IEEE Transactions on Software Engineering,

Vol. 35, No. 1, 2008, pp. 124–137.

[66] M. Perkusich, H.O. De Almeida, and A. Perkusich, ―A model to detect problems on scrum-

based software development projects,‖ in Proceedings of the 28
th

 Annual ACM Symposium

on Applied Computing, 2013, pp. 1037–1042.

[67] E. Giger, M. Pinzger, and H. Gall, ―Predicting the fix time of bugs,‖ in Proceedings of the

2
nd

 International Workshop on Recommendation Systems for Software Engineering, 2010,

pp. 52–56.

[68] L.D. Panjer, ―Predicting eclipse bug lifetimes,‖ in Fourth International Workshop on Mining

Software Repositories (MSR’07: ICSE Workshops 2007). IEEE, 2007, pp. 29–29.

[69] P. Bhattacharya and I. Neamtiu, ―Bug-fix time prediction models: Can we do better?‖ in

Proceedings of the 8
th

 Working Conference on Mining Software Repositories, 2011, pp. 207–

210.

99 | P a g e

[70] P. Hooimeijer and W. Weimer, ―Modeling bug report quality,‖ in Proceedings of the Twenty-

Second IEEE/ACM International Conference on Automated Software Engineering, 2007,

pp. 34–43.

[71] E.M.D.B. Fávero, D. Casanova, and A.R. Pimentel, ―SE3M: A model for software effort

estimation using pre-trained embedding models,‖ Information and Software Technology,

Vol. 147, 2022, p. 106886.

[72] P. Liu, Y. Liu, X. Hou, Q. Li, and Z. Zhu, ―A text clustering algorithm based on find of

density peaks,‖ in 7
th

 International Conference on Information Technology in Medicine and

Education (ITME). IEEE, 2015, pp. 348–352.

[73] J. Pennington, R. Socher, and C.D. Manning, ―Glove: Global vectors for word

representation,‖ in Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP), 2014, pp. 1532–1543.

[74] W. Guohua and G. Yutian, ―Using density peaks sentence clustering for update summary

generation,‖ in Canadian Conference on Electrical and Computer Engineering (CCECE).

IEEE, 2016, pp. 1–5.

[75] F. Sarro, A. Petrozziello, and M. Harman, ―Multi-objective software effort estimation,‖ in

Proc. IEEE/ACM 38th Int. Conf. Softw. Eng., 2016, pp. 619–630.

[76] C. Tantithamthavorn, A. E. Hassan, and K. Matsumoto, ―The impact of class rebalancing

techniques on the performance and interpretation of defect prediction models,‖ IEEE Trans.

Softw. Eng., vol. 46, no. 11, pp. 1200–1219, Nov. 2020.

[77] M. Shepperd and S. MacDonell, ―Evaluating prediction systems in software project

estimation,‖ Inf. Softw. Technol., vol. 54, no. 8, pp. 820–827, 2012.

[78] J. W. Keung, B. A. Kitchenham, and D. R. Jeffery, ―Analogy-X: Providing statistical

inference to analogy-based software cost estimation,‖ IEEE Trans. Softw. Eng., vol. 34, no.

4, pp. 471–484, Jul./Aug. 2008.

100 | P a g e

[79] E. Kocaguneli, T. Menzies, A. Bener, and J. W. Keung, ―Exploiting the essential

assumptions of analogy-based effort estimation,‖ IEEE Trans. Softw. Eng., vol. 38, no. 2,

pp. 425–438, Mar./Apr. 2012.

[80] E. Kocaguneli, T. Menzies, and E. Mendes, ―Transfer learning in effort estimation,‖ Empir.

Softw. Eng., vol. 20, no.

3, pp. 813–843, 2015.

[81] Y.-F. Li, M. Xie, and T. N. Goh, ―A study of project selection and feature weighting for

analogy-based software cost estimation,‖ J. Syst. Softw., vol. 82, no. 2, pp. 241–252, 2009.

[82] Y. Ding, B. Ray, P. Devanbu, and V. J. Hellendoorn, ―Patching as translation: The data and

the metaphor,‖ in Proc. 35th IEEE/ACM Int. Conf. Automated Softw. Eng., 2020, pp. 275–

286

[83] N. Jiang, T. Lutellier, and L. Tan, ―CURE: Code-aware neural machine translation for

automatic program repair,‖ in Proc. Int. Conf. Softw. Eng., 2021, pp. 1161–1173.

[84] R.-M. Karampatsis, H. Babii, R. Robbes, C. Sutton, and A. Janes, ―Big code! = Big

vocabulary: Open-vocabulary models for source code,‖ in Proc. IEEE/ACM 42nd Int. Conf.

Softw. Eng., 2020, pp. 1073–1085.

[85] . Porru, A. Murgia, S. Demeyer, M. Marchesi, and R. Tonelli, ―Estimating story points from

issue reports,‖ in Proc. 12th Int. Conf. Predictive Models Data Anal. Softw. Eng., 2016, pp.

1–10.

[86] O. Liskin, R. Pham, S. Kiesling, and K. Schneider. Why we need a granularity concept for

user stories. In Agile Processes in Software Engineering and Extreme Programming, pages

110–125. Springer, 2014.

[87] K. Molokken-Ostvold and K. M. Furulund. The relationship between customer

collaboration and software project overruns. In Agile Conference (AGILE), 2007, pages 72–

83. IEEE, 2007.

101 | P a g e

[88] K. Molokken-Ostvold and M. Jorgensen. A comparison of software project overruns-

flexible versus sequential development models. Software Engineering, IEEE Transactions

on, 31(9):754–766, 2005.

[89] K. Moløkken-Østvold, M. Jørgensen, S. S. Tanilkan, H. Gallis, A. C. Lien, and S. Hove. A

survey on software estimation in the norwegian industry. In Software Metrics, 2004.

Proceedings. 10th International Symposium on, pages 208–219.

IEEE, 2004

[90] M. Usman, E. Mendes, F. Weidt, and R. Britto. Effort estimation in agile software

development: A systematic literature review. In Proceedings of the 2014 International

Conference on Predictive Models in Software Engineering, pages 82–91. ACM, 2014.

[91] R. T. Hughes. Expert judgement as an estimating method. Information and Software

Technology, 38(2):67–75, 1996.

[92] T. K. Abdel-Hamid. Investigating the cost/schedule trade-off in software development.

Software, IEEE, 7(1):97–105, 1990

[93] T. DeMarco. Controlling software projects: Management, measurement, and estimates.

Prentice Hall PTR, 1986.

[94] W. AbdelMoez, M. Kholief, and F. M. Elsalmy. Improving bug fix-time prediction model

by filtering out outliers. In Proceedings of the 2013 International Conference on

Technological Advances in Electrical, Electronics and Computer Engineering, pages 359–

364, May 2013.

[95] L. Marks, Y. Zou, and A. E. Hassan. Studying the fix-time for bugs in large open-source

projects. In Proceedings of the 2011 International Conference on Predictive Models in

Software Engineering, page 11. ACM, 2011.

102 | P a g e

[96] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller. How long will it take to fix this bug?

In Proceedings of the 2007 International Workshop on Mining Software Repositories, page

1. IEEE Computer Society, 2007

[97] H. Zeng and D. Rine. Estimation of software defects fix effort using neural networks. In

Proceedings of the 2004 Annual International Conference on Computer Software and

Applications, volume 2, pages 20–21. IEEE, 2004.

[98] Q. Song, M. Shepperd, M. Cartwright, and C. Mair. Software defect association mining and

defect correction effort prediction. IEEE Transactions on Software Engineering, 32(2):69–

82, 2006.

[99] P. Abrahamsson, I. Fronza, R. Moser, J. Vlasenko, and W. Pedrycz. Predicting development

effort from user stories. In Proceedings of the 2011 International Symposium on Empirical

Software Engineering and Measurement, pages 400–403.

IEEE, 2011

[100] N. C. Augen. An empirical study of using planning poker for user story estimation. In Agile

Conference, 2006, pages 9–pp. IEEE, 2006.

[101] P. Abrahamsson, I. Fronza, R. Moser, J. Vlasenko, and W. Pedrycz, ―Predicting development

effort from user stories,‖ in 2011 International Symposium on Empirical Software

Engineering and Measurement. IEEE, 2011, pp. 400–403.

[102] S. Porru, A. Murgia, S. Demeyer, M. Marchesi, and R. Tonelli, ―Estimating story points

from issue reports,‖ in Proceedings of the the 12th International Conference on Predictive

Models and Data Analytics in Software Engineering, 2016, pp. 1–10.

[103] E. Scott and D. Pfahl, ―Using developers‘ features to estimate story points,‖ in Proceedings

of the 2018 International Conference on Software and System Process, 2018, pp. 106–110.

[104] R. G. Soares, ―Effort estimation via text classification and autoencoders,‖ in 2018

International Joint Conference on Neural Networks (IJCNN). IEEE, 2018, pp. 01–08.

103 | P a g e

[105] M. Choetkiertikul, H. K. Dam, T. Tran, T. Pham, A. Ghose, and T. Menzies, ―A deep learning

model for estimating story points,‖ IEEE Transactions on Software Engineering, vol. 45, no.

7, pp. 637–656, 2019.

[106] M. Abadeer, and M. Sabetzadeh. ―Machine Learning-based Estimation of Story Points in

Agile Development: Industrial Experience and Lessons Learned.‖ In 2021 IEEE 29th

International Requirements Engineering Conference Workshops (REW), pp. 106-115.

IEEE, 2021

[107] L. Minku, and S. Hou. ―Clustering dycom: An online cross-company software effort

estimation study.‖ In Proceedings of the 13th International Conference on Predictive Models

and Data Analytics in Software Engineering, pp. 12-21. 2017. [108] V. K. Bardsiri, D. N. A.

Jawawi, S. Z. M. Hashim, and E. Khatibi. ―Increasing the accuracy of software development

effort estimation using projects clustering.‖ IET software 6, no. 6 (2012): 461-473

[109] T. Menzies, Y. Yang, G. Mathew, B. Boehm, and J. Hihn. ―Negative results for software

effort estimation.‖ Empirical Software Engineering 22, no. 5 (2017): 2658-2683.

[110] N. Bettenburg, M. Nagappan, and A.E. Hassan. ―Think locally, act globally: Improving

defect and effort prediction models.‖ In 2012 9th IEEE Working Conference on Mining

Software Repositories (MSR), pp. 60-69. IEEE, 2012.

[111] T. Menzies, A. Butcher, D. Cok, A. Marcus, L. Layman, F. Shull, B. Turhan, and T.

Zimmermann. ―Local vs. Global Lessons for Defect Prediction and Effort Estimation,‖

IEEE Trans. Software Eng., preprint, published online Dec. 2012.

[112] J. J. C. Gallego, D. Rodr´ıguez, M. A. Sicilia, M. G. Rubio, and A. G. ´ Crespo. ―Software

project effort estimation based on multiple parametric models generated through data

clustering.‖ Journal of Computer Science and Technology 22, no. 3 (2007) 371-378.

[113] F. Filomena, E. Mendes, and F. Sarro. ―Web effort estimation: the value of cross-company

data set compared to singlecompany data set.‖ PROMISE 2012: 29-38.

104 | P a g e

[114] E. Mendes, M. Kalinowski, D. Martins, F. Ferrucci, and F. Sarro. ―Crossvs. within-company

cost estimation studies revisited: an extended systematic review.‖ EASE 2014: 12:1-12:10.

[115] V. Tawosi, R. Moussa, and F. Sarro. ―Deep Learning for Agile Effort Estimation, Have We

Solved the Problem Yet?‖ https://arxiv.org/abs/2201.05401, 2022.

[116] Martin Shepperd and Steve MacDonell. 2012. Evaluating prediction systems in software

project estimation. Information and Software Technology 54, 8 (2012), 820–827.

[117] Muhammad Usman, Emilia Mendes, Francila Weidt, and Ricardo Britto. 2014. Effort

Estimation in Agile Software

Development: A Systematic Literature Review. In Proceedings of the 10th International

Conference on Predictive Models in Software Engineering (PROMISE ‘14). ACM, New

York, NY, USA, 82–91

[118] W AbdelMoez, Mohamed Kholief, and Fayrouz M Elsalmy. 2013. Improving bug fix-time

prediction model by filtering out outliers. In Technological Advances in Electrical,

Electronics and Computer Engineering (TAEECE), 2013 International Conference on.

IEEE, 359–364.

[119] Saïd Assar, Markus Borg, and Dietmar Pfahl. 2016. Using text clustering to predict defect

resolution time: a conceptual replication and an evaluation of prediction accuracy. Empirical

Software Engineering 21, 4 (2016), 1437–1475.

[120] Dietmar Pfahl, Siim Karus, and Myroslava Stavnycha. 2016. Improving Expert Prediction

of Issue Resolution Time. In Proceedings of the 20th International Conference on Evaluation

and Assessment in Software Engineering (EASE ‘16). ACM, New York, NY, USA, Article

42, 6 pages

[121] Hongyu Zhang, Liang Gong, and Steve Versteeg. 2013. Predicting bug-fixing time: an

empirical study of commercial software projects. In Proceedings of the 2013 international

conference on software engineering. IEEE Press, 1042–1051.

105 | P a g e

[122] Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, Trang Thi Minh Pham, Aditya

Ghose, and Tim Menzies. 2016. A deep learning model for estimating story points. IEEE

Transactions on Software Engineering (2016).

[123] Qinbao Song, Martin Shepperd, Michelle Cartwright, and Carolyn Mair. 2006. Software

defect association mining and defect correction effort prediction. IEEE Transactions on

Software Engineering 32, 2 (2006), 69–82.

[124] Hui Zeng and David Rine. 2004. Estimation of software defects fix effort using neural

networks. In Computer Software and Applications Conference, 2004. COMPSAC 2004.

Proceedings of the 28th Annual International, Vol. 2. IEEE, 20–21.

[125] Simone Porru, Alessandro Murgia, Serge Demeyer, Michele Marchesi, and Roberto Tonelli.

2016. Estimating Story Points from Issue Reports. In Proceedings of the the 12th

International Conference on Predictive Models and Data Analytics in Software Engineering

(PROMISE 2016). ACM, New York, NY, USA, 2:1–2:10.

[126] Pekka Abrahamsson, Raimund Moser, Witold Pedrycz, Alberto Sillitti, and Giancarlo Succi.

2007. Effort prediction in iterative software development processes– Incremental versus

global prediction models. In Empirical Software Engineering and

Measurement, 2007. ESEM 2007. IEEE, 344–353.

[127] Tron Foss, Erik Stensrud, Barbara Kitchenham, and Ingunn Myrtveit. 2003. A Simulation

Study of the Model Evaluation Criterion MMRE. IEEE Trans. Softw. Eng. 29, 11 (Nov.

2003), 985–995.

[128] Dan Port and Marcel Korte. 2008. Comparative Studies of the Model Evaluation Criterions

MMRE and Pred in Software Cost Estimation Research. In Proceedings of the Second

ACM-IEEE International Symposium on Empirical Software Engineering and

Measurement (ESEM ‘08). ACM, New York, NY, USA, 51–60.

106 | P a g e

[129] Barbara A Kitchenham, Lesley M Pickard, Stephen G. MacDonell, and Martin J. Shepperd.

2001. What accuracy statistics really measure. IEEE ProceedingsSoftware 148, 3 (2001),

81–85.

[130] Hoda, R., Salleh, N., & Grundy, J. (2018). The rise and evolution of agile software

development. IEEE software, 35(5),

58-63

[131] Munialo, S. W., & Muketha, G. M. (2016). A review of agile software effort estimation

methods. International Journal of Computer Applications Technology and Research Volume

5–Issue 9, 612-618, 2016

[132] Kaur, A., & Kaur, K. (2019). A COSMIC function points-based test effort estimation model

for mobile applications. Journal of King Saud University-Computer and Information

Sciences

[133] Prakash, B., & Viswanathan, V. (2017). A, ―Survey on International Journal of Computer

Applications (0975 – 8887)

Volume 174 – No. 13, January 2021 14 Software Estimation Techniques in Traditional and

Agile Development Models‖. Indonesian Journal of Electrical Engineering and Computer

Science, 7(3), 867-876

[134] Ahmed, M., Malik, B. H., Tahir, R. M., Perveen, S., Alvi, R. I., Rehmat, A., ... & Asghar,

M. (2018, July). Estimation of Risks in Scrum Using Agile Software Development. In

International Conference on Applied Human Factors and Ergonomics (pp. 111-121).

Springer, Cham

[135] Shimoda, A., & Yaguchi, K. (2017, July). A Method of Setting the Order of User Story

Development of an AgileWaterfall Hybrid Method by Focusing on Common Objects. In

2017 6th IIAI International Congress on Advanced Applied Informatics (IIAIAAI) (pp. 301-

306). IEEE

107 | P a g e

[136] Adnan, M., & Afzal, M. (2017). Ontology based multiagent effort estimation system for

scrum agile method. IEEE Access, 5, 25993-26005

[137] Arifin, H. H., Daengdej, J., & Khanh, N. T. (2017, March). An Empirical Study of Effort-

Size and EffortTime in Expert-Based Estimations. In 2017 8th International Workshop on

Empirical Software Engineering in Practice (IWESEP) (pp.

35-40). IEEE

[138] Bik, N., Lucassen, G., & Brinkkemper, S. (2017, September). A reference method for user

story requirements in agile systems development. In 2017 IEEE 25th International

Requirements Engineering Conference Workshops (REW) (pp. 292-298). IEEE.

[139] Hasan & Khan. (2019). Software Development Methods – Properties and Advances.

International Journal of Computer

Applications Volume 178 – No. 53

[140] Khatri, S. K., Malhotra, S., & Johri, P. (2016, September). Use case point estimation

technique in software development. In 2016 5th international conference on reliability,

infocom technologies and optimization (trends and future directions) (ICRITO) (pp. 123-

128). IEEE.

[141] Yadav, A., & Sharma, A. (2018, May). Function Point Based Estimation of Effort and Cost

in Agile Software Development. In Proceedings of 3rd International Conference on Internet

of Things and Connected Technologies (ICIoTCT) (pp.

26-27).

[142] The Standish Group 2018 Chaos Report. URL: https://vitalitychicago.com/blog/agile-

projects-are-moresuccessfultraditional-projects/ Retrieved on April 04, 2020

[143] Shams, A., Bohm, S., Winzer, P., & Dorner, R. (2019, July). App Cost Estimation:

Evaluating Agile Environments. In 2019 IEEE 21st Conference on Business Informatics

(CBI) (Vol. 1, pp. 383-390). IEEE.

108 | P a g e

[144] Gandomani, T. J., Faraji, H., & Radnejad, M. Planning Poker in cost estimation in Agile

methods: Averaging Vs.

Consensus. In 2019 5th Conference on Knowledge Based Engineering and Innovation

(KBEI) (pp. 066- 071). IEEE

[145] Alstoryb, A., & Gravell, A. (2019). An empirical investigation of effort estimation in mobile

apps using agile development process. Journal of Software, 14(8), 356-369

[146] III, W.G. (1987).: Generations: A Chinese Family. Richard Gordon, Carma Hinton, Kathy

Kline. American Anthropologist, 89(1), pp.255–256. doi:10.1525/aa.1987.89.1.02a01150.

[147] Choetkiertikul, M., Dam, H.K., Tran, T., Ghose, A. and Grundy, J. (2018). Predicting

Delivery Capability in Iterative Software Development. IEEE Transactions on Software

Engineering, 44(6), pp.551–573. doi:10.1109/tse.2017.2693989 [148] Fu, M. and

Tantithamthavorn, C. (2022). GPT2SP: A Transformer-Based Agile Story Point Estimation

Approach.

IEEE Transactions on Software Engineering, pp.1–1. doi:10.1109/tse.2022.3158252.

[149] Niranjan, R., Kanmani, D. and Kumar, S. (2022). Design and fabrication of multi cutting

hack saw machine. International journal of health sciences, pp.10294–10297. Doi:

10.53730/ijhs.v6ns3.9423

[150] Zhou, H., Chen, J., He, L., Liu, S., & Liu, C. (2020). A deep learning-based software effort

estimation model. IEEE Access, 8, 141471-141483.

https://doi.org/10.1109/ACCESS.2020.3014849

[151] Aljahdali, S., Alqahtani, F., & Ahmad, A. (2020). A novel feature selection approach for

software effort estimation using machine learning. IEEE Access, 8, 103207-103217.

https://doi.org/10.1109/ACCESS.2020.2994325

109 | P a g e

[152] Zhang, W., & Liu, X. (2020). Deep learning-based software cost estimation with dynamic

feature selection. IEEE Transactions on Industrial Informatics, 16(4), 2466-2474.

https://doi.org/10.1109/TII.2019.2949012

[153] Gu, M., Wang, X., & Liu, X. (2020). A deep learning approach for software cost estimation

based on feature selection

and ensemble. IEEE Transactions on Systems, Man, and Cybernetics:

Systems, 50(6), 2228-2239.

https://doi.org/10.1109/TSMC.2018.2884821

[154] Li, X., Li, Y., & Cao, L. (2021). Software effort estimation using deep learning with transfer

learning. IEEE Transactions on Software Engineering, 47(2), 317-332.

https://doi.org/10.1109/TSE.2019.2936913

[155] T., Liu, Q., & Chen, Y. (2021). A deep ensemble learning model for software effort

estimation. IEEE Transactions on Software Engineering, 47(6), 1306-1322.

https://doi.org/10.1109/TSE.2019.2949555

[156] Shang, Z., Li, X., & Li, Y. (2022). Deep transfer learning for software effort estimation with

imbalanced data. IEEE Transactions on Software Engineering, 48(2), 141-155.

https://doi.org/10.1109/TSE.2019.2936004

[157] Dong, Y., Li, X., & Li, Y. (2022). Deep learning for software development effort estimation:

A comparative study.

IEEE Transactions on Software Engineering, 48(3), 311-330.

https://doi.org/10.1109/TSE.2019.2945224 [158] Dhar, V., Jarke, M. and

Laartz, J. (2014). Big Data. WIRTSCHAFTSINFORMATIK, 56(5), pp.277–279.

doi:10.1007/s11576-014-0428-0.

110 | P a g e

[159] Flyvbjerg, B. and Budzier, A. (2011). Why Your IT Project May Be Riskier than You Think.

SSRN Electronic

Journal. doi:10.2139/ssrn.2229735.

[160] Jørgensen, M. (2016). Unit effects in software project effort estimation: Workhours gives

lower effort estimates than workdays. Journal of Systems and Software, 117, pp.274–281.

Doi: 10.1016/j.jss.2016.03.048.

[161] Wieczorek, Ł. and Ignaciuk, P. (2018). Continuous Genetic Algorithms as Intelligent

Assistance for Resource

Distribution in Logistic Systems. Data, 3(4), p.68. doi:10.3390/data3040068.

[162] Misirli, A.T., Caglayan, B., Bener, A. and Turhan, B. (2013). A Retrospective Study of

Software Analytics Projects:

In-Depth Interviews with Practitioners. IEEE Software, 30(5), pp.54–61.

doi:10.1109/ms.2013.93.

[163] Jorgensen, M. (2014). What We Do and Don‘t Know about Software Development Effort

Estimation. IEEE

Software, 31(2), pp.37–40. doi:10.1109/ms.2014.49.

[164] McConnell, S. (1998). The art, science, and engineering of software development. IEEE

Software, 15(1), pp.120, 118–119. doi:10.1109/52.646892.

[165] Jorgensen, M. and Shepperd, M. (2007). A Systematic Review of Software Development

Cost Estimation Studies.

IEEE Transactions on Software Engineering, 33(1), pp.33–53.

doi:10.1109/tse.2007.256943.

111 | P a g e

[166] Boehm, B., Egyed, A., Port, D., Shah, A., Kwan, J. and Madachy, R. (1998). Annals of

Software Engineering, 6(1/4), pp.295–321. doi:10.1023/a:1018988827405.

[167] Sentas, P., Angelis, L. and Stamelos, I. (2007). A statistical framework for analyzing the

duration of software projects. Empirical Software Engineering, 13(2), pp.147–184.

doi:10.1007/s10664-007-9051-7.

[168] Sentas, P., Angelis, L., Stamelos, I. and Bleris, G. (2005). Software productivity and effort

prediction with ordinal regression. Information and Software Technology, 47(1), pp.17– 29.

Doi: 10.1016/j.infsof.2004.05.001.

[169] Cervone, H.F. (2011). Understanding agile project management methods using Scrum.

OCLC Systems & Services:

International digital library perspectives, 27(1), pp.18– 22.

doi:10.1108/10650751111106528

[170] Rehman, A., Malik, A. W., Hussain, W., & Lee, Y. K. (2021). A systematic literature review

of software effort estimation using machine learning. ACM Computing Surveys, 54(4), 1-

43. doi: 10.1145/3450997

