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Implication of Research 

 

The research on GPT-based story points effort estimation in agile software development has 

profound implications for the industry. By leveraging natural language processing and machine 

learning, these models enhance accuracy and reduce subjectivity in effort estimation. They 

provide a standardized, objective approach that saves time and scales well for complex projects. 

Moreover, GPT-based models continuously learn and improve, integrating seamlessly with 

existing agile tools. This research opens doors to more efficient project planning, resource 

allocation, and decision-making, ultimately enhancing the overall effectiveness of the agile 

development process. 
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Abstract 

The process of accurately estimating the effort required to complete user stories is a crucial 

activity in software development. It has the potential to significantly impact both the 

predictability and efficiency of the agile software development cycle. Nevertheless, a 

considerable proportion of teams are currently facing difficulties in this area, resulting in 

postponed timelines and unmet deadlines across various domains. Despite the availability of 

several methodologies aimed at estimating the workload necessary for completing a story point, 

research has demonstrated that these algorithms are incapable of comprehending the precise 

contextual requirements of the user. Furthermore, a critical concern pertaining to the techniques 

of machine learning and deep learning employed in this domain is their elevated time complexity 

and suboptimal precision. The development of pre-trained transformers, such as GPT, has made 

a noteworthy contribution to effectively surmounting these challenges. It is possible that certain 

attention heads may not be effectively contributing to the task of estimating story points, leading 

to suboptimal outcomes. Notwithstanding the satisfactory performance of several iterations of 

GPT in previous instances. Through extensive evaluation on 23,313 issues across 16 open-source 

software projects. The evaluation compared five existing baseline approaches for within- and 

cross-project scenarios. The results revealed that the GPT2++ approach achieved an impressive 

accuracy of 92% and an MAE (Mean Absolute Error) of 1.18. Specifically, the GPT2++ approach 

outperformed existing baseline approaches in two ways: 1. For within-project estimations, the 

GPT2++ approach was found to be 23% to 59% more accurate than the existing baseline 

approaches. 2. For cross-project estimations, the GPT2++ approach demonstrated a higher 

accuracy of 3% to 46% compared to the existing baseline approaches. The ablation study reveals 

that the GPT-2 architecture employed in this approach significantly enhances GPT2++ by 6% to 

47% in terms of performance and boosts the F1 score by 87%. This underscores the remarkable 

progress of AI in Agile story point estimation. 
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Chapter 1 
 

 

 
 

Introduction 
 

 

 

 

 

 
 

1.1 Overview 

 
The accurate prediction of the complexity of user stories and the corresponding effort 

required for their completion is crucial for the successful execution and predictability of the 

software development cycle (figure 1.1). Notwithstanding this fact, a considerable 

proportion of enterprises still encounter challenges in this domain, resulting in time lags and 

failure to meet established timelines. Regrettably, the algorithms currently at our disposal 

for evaluating the requisite labor involved in completing story points encounter difficulties 

in comprehensively discerning the user's contextual expectations, thereby yielding 

suboptimal outcomes. 

 
 

Figure 1.1 Working of Agile Software Development. 
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Furthermore, research has demonstrated that the utilization of machine learning and deep 

learning algorithms for estimation purposes may present challenges due to their significant time 

complexity and limited accuracy. Pre-trained transformer models, specifically the Generative 

Pre-trained Transformer (GPT) described in figure 1.2, have demonstrated their ability to address 

the challenges associated with this scenario. GPT models exhibit promising potential in 

enhancing the precision of story points estimation and have demonstrated remarkable efficacy 

in diverse natural language processing domains. 

 

 

 

Figure 1.2 Working Flow of GPT Transformer. 

 

 
The application of said models presents the prospect of enhancing the evaluation of various 

other attributes of natural language. In order to optimize the performance of these models, it is 

imperative to identify and eliminate any attention heads that are not effectively fulfilling their 



4 | P a g e 
 

intended purpose.In the industry of software project management, precise estimation of the 

workload is crucial for effective planning and monitoring. Cost and time overrun issues have 

historically been a problem for software development projects. According to the results of a 

study by McKinsey and the University of Oxford [1], notable software projects typically 

overspend their budgets by 66% and their schedules by 33%. As per the results of an 

independent study that examined 1,471 software projects and yielded similar outcomes, 

roughly 16.67% of software projects encountered cost overruns of 200% and time overruns 

exceeding 70%. [2] The study was carried out on an equivalent number of software projects. 

Effort estimation activities are imperative for the adequate planning and administration of a 

software project. In order to ensure timely completion of the project within the allocated 

budget, it is imperative to undertake the following measures: [3] [4] [5]. The assessment of the 

amount of work required can serve as the basis for a diverse range of activities pertaining to 

planning, scheduling, budgeting, and costing, as stated in reference [6]. 

 

Figure 1.3 Story Points Effort Estimation Process in Agile Software Development 

 

 

These activities (figure 1.3) have the potential to be executed in diverse settings by a broad 

spectrum of individuals. Inaccurate estimations possess the capacity to adversely affect the 

outcomes of the project [7]. This is due to the fact that such estimations can potentially result 

in detrimental consequences. The objective of this study is to enhance the accuracy of story 

point estimation through the elimination of ineffective attention heads in the GPT-2++ model. 
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Ultimately, it is expected that this will result in more precise estimations of the workload 

required to satisfy storypoints with reduced time requirements compared to previous methods. 

Our research in the domain of story-point estimation surpasses prior efforts by incorporating 

pre-trained transformers, such as GPT-2++, to circumvent the limitations imposed by 

previously developed techniques. This is undertaken as a means of surmounting the limitations 

imposed by pre-existing methodologies.This inquiry is primarily focused on achieving one of 

two primary objectives. One of our key goals when it comes to estimating how long it will take 

to finish a specific user story is to have a better knowledge of the challenges that are faced by 

software development teams. This will allow us to predict more accurately the estimated time 

required. Looking at the difficulties that arise when machine learning and deep learning are put 

into practice, as well as the limits of the approaches that are now accessible. Finally, a method 

is introduced for increasing the accuracy of the estimation of story points that is produced by 

the GPT-2++ model by getting rid of the attention heads that aren't very efficient.Explanation 

of attention described in figure 1.4. 

 

 

Figure 1.4 Multi-head Self Attention in Transformer GPT-2 

 

 

 

This technique should provide significant benefits to the estimation of story points, both in 

terms of accuracy and efficiency; therefore, project management should become more reliable 
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and resources should be used more efficiently. Teams that are now working on the production 

of software in the "real world" may be able to put the results of this study to good use. An 

accurate estimation of story points makes it feasible for teams to more effectively plan and 

monitor progress, which in turn leads to more efficient project execution and fewer delays. In 

addition, the study provides a contribution to the larger field of software estimation by 

investigating new approaches for strengthening attention processes in pre-trained 

transformers. This was done to make the work more accurate. The subsequent sections will 

provide an overview of the challenges associated with story-point estimation, review prior 

studies on machine learning methods and pre-trained transformers, and present our approach 

to enhancing story-point estimation via the identification and elimination of unnecessary 

attention heads. Ultimately, presented a succinct summary of the results and explore potential 

avenues for future investigation in this domain. 

 

 

1.2 Motivation 

 
The selection of the topic "GPT Transformer Based Story Points Effort Estimation in Agile software 

Development" is justified for several reasons, one of which is that it will serve as the central theme of this 

research: 

• Precisely determining the quantity of story points necessary for a software development 

undertaking is a crucial measure; however, the process of estimation is widely recognized as a difficult 

task and frequently results in unmet deadlines and additional delays. 

• GPT-2++ is a state-of-the-art language model that has demonstrated remarkable potential in various 

natural language processing domains. One of the applications that is under consideration pertains to the 

estimation of story points, which has demonstrated remarkable potential across all domains. 

 

• It is probable that some attention heads in GPT-2++ are not efficiently contributing to the 

computation of story points, leading to suboptimal results. Assuming this hypothetical scenario, the 

outcomes would ensue. 
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• The removal of these inefficient attention heads could potentially improve the performance of GPT- 

2++ in terms of story point estimation. Consequently, this would result in estimations that are more 

accurate and efficacious. 

 

• The potential implications of the findings of this research could have significant consequences for 

the reliability and efficacy of software development in the future. 

• The domains of artificial intelligence and natural language processing have been increasingly 

attracting the interest of software developers. The novelty of this concept notwithstanding, it has received 

limited scholarly attention in the past, rendering it a compelling subject for academic inquiry. 

 

 

1.3 Advantages 

 
The implementation of our revised GPT-2++ recommendation when estimating the quantity of 

story points to be accomplished yields various advantages: 

• Improved Accuracy: One potential approach to enhancing the performance of GPT-2++ 

in the context of story point estimation involves eliminating attention heads that do not 

significantly contribute to the model's accuracy. As a result of this, we will have an improved 

ability to predict pivotal moments within the story. 

• Enhanced Predictability: Enhancing the predictability and productivity of software 

development can be achieved through the provision of estimates that are both precise and 

efficient in evaluating the immense amount of work involved. necessary to finish user stories. 

• Reduced Time and Resources: Making the switch to the enhanced GPT-2++ will reduce 

the amount of time and effort needed to train a model from the very beginning of the process. 

• Ease of Use: The approach that is going to be proposed for the purpose of story point 

estimation will be user-friendly, and it will be able to be tweaked so that it will work more 

effectively on certain datasets. 
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• Generalization Ability: The model that have suggested is adaptable and can easily 

generalize to new sets of information, both of which make it an outstanding candidate for usage 

in a wide range of natural language processing applications. 

• Better Decision Making: Organizations can enhance their decision-making regarding 

software development by utilizing precise and effective estimates of the workload required to 

complete a user story. 

• Improved Competitiveness: Businesses can improve their global competitiveness if they 

create software that is not only more trustworthy but also more efficient. 

 
 

1.4 Application 

 
The proposed model, referred to as the extended GPT-2++, has been designed to estimate the 

effort required to complete a story point. This model has several notable applications in the 

field of software development. 

• Agile Software Development: Various methodologies have been developed for 

facilitating the development of agile software, including Scrum, Kanban, and Lean. These 

approaches may potentially derive advantages from the implementation of this strategy. 

• Project Management: The adoption of this model by project managers can enable the 

estimation of the duration necessary to complete specific user stories, thereby facilitating more 

accurate allocation of resources and time. 

• Quality Assurance: Professionals specializing in quality assurance can utilize this 

framework to furnish a projected expense for the examination and authentication associated with 

user stories, thereby enabling more accurate preparation and administration of stated projects. 

 
• Software Testing: Software testers may use this strategy to make an educated guess as to 

how long it will take to test each individual user story. This gives them the ability to manage 

resources and activities in a more effective manner and better prioritize tasks. 
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• Software Maintenance: By providing estimates of the amount of time and resources 

needed to solve certain bugs and other problems, this method may be used to enhance the 

planning and management of software maintenance activities. This can be done by improving 

planning and management of software maintenance tasks. 

• Business Analysis: The model has the potential to be utilized in the context of business 

analysis, with the aim of providing an approximation of the workload associated with the 

execution of specific business demands. Additionally, it can aid in the optimization of planning 

and management strategies for the implementation of business requirements. Furthermore, it can 

be utilized to furnish a projection of the duration necessary to accomplish the undertaking. 

 
 

1.5 Problem Statement 

 
The present challenges in accurately estimating the requisite level of complexity and workload to fulfill 

user stories are resulting in software development teams falling behind schedule and failing to meet 

deadlines. This presents a challenge, as there are difficulties in accurately predicting the degree of 

complexity and effort necessary to fulfill user stories. There exists a possibility that certain attention heads 

may not be effectively contributing to the task of estimating story points, leading to suboptimal outcomes. 

Regardless of the fact that diverse iterations of GPT have exhibited commendable performance in 

previous studies, By eliminating non-constructive attention heads in the GPT-2++ model, it is possible to 

enhance the precision of story point estimation as well as the predictability and productivity of the 

development cycle. Enhancing the precision of the story point estimation procedure is an objective to be 

pursued. 

 

1.6 Research Objectives 

 
The following might be the main objectives of the study on the use of modified GPT-2++ for assessing 

story point effort in software development by removing superfluous attention heads: 

• This study aims to investigate if removing the ineffective attention heads from GPT-2++ may 

 

enhance its performance in calculating story points . 
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• To compare the performance of the GPT-2++ model with increased attention heads to the standard 

GPT-2++ model and to established techniques for story point estimation. 

• The aim is to identify the GPT-2++ model's most effective and significant attention heads in terms 

of their contribution to the estimate of story points. 

• The goal of this study is to ascertain if using a more advanced version of GPT-2++ to generate 

story point estimation to improve the predictability and effectiveness of the software development 

process. 

• With the intention of improving software development, the goal is to propose novel approaches 

for anticipating story points using the upgraded GPT-2++ model. 

• This research's goal is to examine and evaluate any potential negative effects of using improved 

GPT-2++ for estimating story points. This research also tries to suggest viable answers to these problems. 

The goal is to find, investigate, and evaluate any possible benefits of using upgraded GPT2++ for story 

point estimation. 

 

 

1.7 Proposed Work 

 
The present study introduces a novel approach aimed at enhancing the precision and efficiency 

of effort estimation in software development. This approach leverages the capabilities of 

preexisting transformers, specifically GPT-2++, to achieve its objective. The limitations of 

current estimation algorithms and the restrictions imposed on this field by machine learning and 

deep learning methodologies are acknowledged. It is hypothesized that the utilization of the 

sophisticated natural language processing functionalities provided by GPT-2++ will enable a 

more accurate interpretation and contextualization of customer requirements, thereby 

facilitating the provision of more precise estimates. The methodology employed involves data 

cleansing, integration of GPT-2++ into the estimation pipeline, model fine-tuning, and 

performance evaluation. The implementation of this approach enables project planners and 
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managers to generate more accurate predictions regarding the quantity of story points required 

for a given task, and subsequently allocate resources in accordance with these estimations. 

 
 

1.8 Thesis Organization 

 
This research paper's subsequent sections provide a thorough summation of supporting 

evidence for the main premise. The sections outlined below are depicted in Figure 1.5. 

 
 

Chapter 1: 

 

The significance of making an accurate effort estimation in agile software development. 

Difficulties that companies have in accurately calculating the amount of time and effort required 

for user stories. Limitations of currently available algorithms and methods to machine learning. 

Pre-trained transformers, GPT models, have the potential to improve estimation. The purpose 

of this research is to improve story points estimation by getting rid of attention heads in GPT2++ 

that aren't very effective. And also, the significance of precise estimating in relation to the 

planning, monitoring, and carrying out of projects. 

 
 

Chapter 2: 

 

A comprehensive review of the difficulties associated with software project management, 

including budget and time overruns. Previous research on software estimating and the 

consequences of using estimates that are too wrong. Analysis of current methods for estimating 

story points, including those based on machine learning and deep learning. An overview of 

pretrained transformers and the positive impact they have had in various natural language 

processing applications. 
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Chapter 3: 

 

An explanation of the study approach that was used to accomplish the outlined objectives. Brief 

description of the procedures of collecting data, doing preprocessing, and training models in the 

GPT-2++ paradigm, the identification and assessment of attention heads. Also, the actions 

performed to eliminate attention-grabbing phrases that aren't working and to improve 

assessment of story points. 

 
 

Chapter 4: 

 

Presentation of the results from the research, together with an analysis of those findings. 

Detailed Comparison of the newly developed method for estimating story points with the 

methods used in the past. Analysis of the precision and effectiveness that may be attained by 

the removal of attention head clutter. Discussion of the significance of the study results as well 

as possible applications of the findings. 

 
 

Chapter 5: 

 

A synopsis of the study's goals, its procedures, and its most important results. The significance 

of providing precise estimation of effort for software development projects. A contribution to 

the area of software estimation as well as the implementation of pre-trained transformers. 

Suggestions for doing further study and adventuring in this domain. The research presented in 

this thesis follows a natural progression from the introductory and background sections to the 

literature review, the research objectives and methodology, the presentation and discussion of 

the results, and finally the conclusion and suggestions for future study. 
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1.9 Summary 

 
Chapter one presents a comprehensive analysis of the difficulties that businesses encounter 

when evaluating the complexity and time required for the effort estimation. Additionally, it 

highlights the importance of accurately assessing story points during the software development 

process. The declaration highlights the limitations of current machine learning algorithms and 

methodologies, while showcasing the capabilities of pre-trained transformers, specifically GPT 

models, in enhancing estimations. The present chapter explicates the aim of the investigation, 

which is to augment the story points effort estimation through the elimination of attention heads 

in GPT-2++ that exhibit low efficacy. Furthermore, it underscores the significance of precise 

estimation in the domains of project planning, monitoring, and execution. The chapter that 

follows discusses the research objective, which pertains to enhancing story point estimation 

through the elimination of underperforming attention heads in GPT-2++. 
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Chapter 2 
 

 

 

 
 

Literature Review 
 

 

 

 

 

 

2.1 Overview 

 
This chapter will discuss various challenges that agile software development currently encounters in 

relation to estimating story points. It will encompass an exploration of diverse methodologies proposed 

by scholars, along with a comprehensive evaluation of their advantages, disadvantages, and in-depth 

analytical examination. 

 

2.2 Related Work 

 
The estimation methodologies were broadly categorized into three distinct groups: expert-based 

techniques, model-based techniques, and hybrid techniques. The predominant approach utilized 

in practical applications was commonly referred to as expert-based processes, also known as 

methodologies, that relied on human expertise to formulate estimations [8] [9]. However, 

developing an assessment that relied on the viewpoints of professionals could potentially 

require a significant amount of time and financial resources. Moreover, achieving success 

necessitated continuous access to essential experts. Diverse model-based approaches exhibited 

varying degrees of adaptability in incorporating user input and leveraging prior models, yet they 

uniformly relied on insights gleaned from previously completed endeavors. 

2.3 Estimation Strategies 

 
It was noted that companies had been adopting Agile for over 20 years, experiencing different 

trends and evolutions. Scrum emerged as a popular framework within Agile, encompassing 

iterative development, focused work aim, cooperation, client participation, face-to-face 
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communication, minimal documentation, frequent testing, collective responsibility, and 

knowledge transfer [10]. A comparison was made between the Traditional and Agile planning 

procedures, analyzing algorithm-based estimating techniques like Source Line of Code 

(SLOC), Functional Point, Object Point, and Constructive Cost Model (COCOMO), as well as 

non-algorithmic techniques such as Expert Judgment and the Analogy approach Wideband 

Delphi [11]. 

Estimating mobile development estimates involved utilizing the COSMIC (Common Software 

Measurement International Consortium) Functional Point Measurement (FMS) methods. 

Specific Function, Data Manipulation Function, Inquiry Function, User Support Function, and 

Developed View Functionality were among the functional process measurements used in Agile 

estimations [12]. The study further compared estimation models like Use Case Point (CP), 

Functional Point (FP), COCOMO, Algorithm-Based Model (ABM), Expert Judgment Model, 

and Estimation [13]. The Agile approach scored higher on flexibility and collaboration when 

compared to Traditional methods. The potential for failure in Agile projects was evaluated based 

on factors such as team meetings, site visits, training, documentation, communications clarity, 

and project personnel [14]. 

To achieve better realization at a low cost, a hybrid approach recommended the use of 

development methodologies with features like Large Scale (LS), High Reliability, High 

Productivity, High Estimation Accuracy, Early Realization, and Ease of Change [15]. 

Component estimate systems were developed for multi-agent systems, and ontologies and other 

knowledge-based approaches were found to improve work estimates in Agile development [16]. 

The use of expert-based estimations was shown to increase accuracy in Agile project time 

estimates [17]. A reference model for estimates was created based on an analysis of narrative 

point life cycle and frequently used story points [18]. Additionally, a comparison was made 

between the benefits and drawbacks of different SDLC methodologies, including Waterfall and 

Agile [19]. 
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An algorithm for estimating costs, called the Algorithm for Estimating Costs (TEC), aimed for 

precision by considering environmental and technological factors. Total Technical Factors 

(TTF), Use Case Points (TUCP), and Environmental Factors (TEF) formed the foundation of 

this algorithm [20]. Weighted and Complexity Factors were employed to determine Functional 

Points for various needs, injecting infusion factors to the Functional Point projections [21]. It 

was found that Agile projects had a higher success rate compared to Waterfall, with a factor of 

two difference in success rates according to the Standish Group's 2018 Chaos Report [22]. 

Various estimation models, including analogy-based effort estimation (AEE), regression-based 

estimation model (REM), software-sized estimation model (SSEM), functional estimation 

model (FEM), work breakdown structure (WBS), and story point estimation (SPE), were 

discussed, with WBS and SPE being recommended as the best fit for Agile projects [23]. 

Furthermore, it was discovered that using the average size of User Stories instead of the 

Consensus size led to reduced overall accuracy [24]. Research on Agile mobile app 

development indicated that Poker was used in 63% of projects, Analogy in 47%, and expert 

judgment in 38% [25]. 

 

2.4 Traditional Approaches 

 
The COCOMO model for construction cost, which was developed by Boehm and colleagues in 

1998, exemplified a fixed model due to its utilization of fixed parameters and their interactions. 

Over time, this particular model gained significant popularity. The development of these 

estimation models involved utilizing data gathered from a diverse array of previously executed 

projects. Consequently, their relevance was often limited to projects that shared similarities with 

the one utilized for constructing the model, thereby restricting their utility. Various 

methodologies were proposed in the literature to address this problem, including 

regressionbased approaches [26, 27], neural network models [28, 29], fuzzy logic Bayesian 

belief networks [30], and analogical reasoning techniques. 
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It was important to note that a universal approach might not have been optimal for all types of 

projects [31]. Several recent studies proposed the integration of results from multiple estimators, 

similar to the concepts presented in studies utilizing hybrid techniques [32, 33]. 

Considerable efforts had been devoted to project estimation in general; however, only a 

negligible fraction of these endeavors had been directed towards developing models that were 

tailored to the requirements of agile project management. This modification was deemed 

necessary based on the findings of reference [34], which indicated that contemporary business 

enterprises necessitated the adoption of alternative methodologies for cost estimation and 

planning. Advanced techniques utilized algorithms for machine learning to offer support for 

agile project work estimations. A recent publication [35] discussed a certain strategy for 

facilitating the construction of a story-point estimate model. This strategy entailed the 

derivation of TF-IDF features from the problem statement to achieve the intended outcome. 

Subsequently, univariate feature selection methodologies were employed to incorporate the 

recently generated features into classifiers, such as the support vector machine (SVM). In 

another study [36], the CFP method was utilized to precisely gauge the duration required to 

complete an agile project. Regression models and neural networks were employed within an 

iterative software development framework to construct a predictive model for estimating the 

amount of labor needed [37]. This model provided estimations for the aggregate quantity of 

human labor that would be required. Unlike the conventional approach of creating an estimation 

model at the end of a project, the iterative approach involved constructing such a model 

subsequent to each iteration with the aim of projecting the requisite workload for the 

forthcoming iteration, facilitating the development of more precise project planning. 

The Bayesian network model, as introduced in reference [38], held utility for software 
 

development endeavors that employed the Extreme Programming methodology within the 

domain of agile software development. However, the utilization of a multifaceted approach in 

their model, encompassing factors such as process efficacy and potential for future expansion, 
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necessitated the acquisition of novel data and significant alterations. In another examination 

conducted by researchers [39], Bayesian networks were employed to examine the 

interrelationships present within a software development project based on Scrum methodology. 

The primary aim of a software development project that employed the Scrum methodology was 

to identify potential issues at the earliest possible stage to avert more significant setbacks. The 

authors conducted a simulation to examine the impact of product quality on the advancement 

of sprints and the quality of sprint planning. 

The methodology presented in this context differed from its predecessors in two notable aspects. 

Firstly, deep learning techniques were employed to automatically obtain semantic 

characteristics that delineated the actual connotation of problem descriptions. Secondly, these 

characteristics were utilized to estimate story points, thereby distinguishing this approach from 

alternative methodologies. The successful implementation of this method required the 

completion of both steps. The matter of ascertaining the appropriate amount of time and/or risk 

that should be allocated towards rectifying a fault had previously been the focus of scholarly 

inquiry and investigation [40-43]. 

2.5 Deep Learning Techniques to Estimate Effort 

 
In contrast, the agile software development methodology advocated the utilization of "story 

points" as a means of estimating work. The implementation of LSTM had been observed in 

various language models [44], voice recognition systems [45], and video analysis tools [46], 

among other applications, indicating its potential benefits in diverse domains. The Deep-SE 

model exhibited a high degree of generalizability, as it could be applied to a diverse array of 

tasks by mapping textual data to either a numerical score or a categorical label. The attribute 

of generalizability endowed the system with greater adaptability and utility. Examples of 

academic tasks where this attribute could be applied included assessing written compositions 

and conducting sentiment analysis. 
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Deep learning had been increasingly adopted in the field of software engineering. In previous 

work, a universal deep learning framework utilizing LSTMs had been presented to depict the 

software engineering process [47]. The outcomes of this research were evident in the structure. 

The simulation of a programming language using recurrent neural networks was conducted by 

the authors in reference [48]. The RNN models were modified to enhance their ability to 

detect occurrences of code replication in subsequent research. The team had also developed a 

linguistic model for code using LSTM technology, and the research outcomes were 

disseminated in a publication [49]. The purpose of releasing this model was to share the 

research findings. The LSTM model outperformed the RNN model in terms of accuracy. 

In reference [50], the generation of the output sequence was facilitated by a specific Recurrent 

Neural Network (RNN) Encoder-Decoder model. This model, consisting of an encoder RNN 

and a decoder RNN, could receive a query in natural language related to the API and generate 

a series of API calls as output. Reference [51] presented research that utilized a Recurrent 

Neural Network (RNN) Encoder-Decoder model to address prevalent issues in the realm of C 

programming. The Deep Belief Network, a renowned deep learning model introduced in 2006, 

had been effectively integrated into functional software [52]. 

To summarize, the Agile software development cycle consisted of four main stages: product 

backlog refinement, sprint planning, sprint execution, and sprint delivery. The collaborative 

effort between product owners and customer representatives led to the creation of a prioritized 

list of software needs, known as the product backlog [53]. During the product backlog 

refinement process, the team conducted a thorough review of the listed tasks and implemented 

necessary modifications. Work breakdowns required the team to establish a set of activities 

exhibiting similarities and differences, often referred to as narratives or task components. 

Thoroughness was particularly emphasized for significant assignments like Epics, which 

provided a comprehensive account of a feature. Task prioritization and sequencing decisions 

were influenced by the anticipated workload. The final stage involved organizing sprints, 
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where the team defined the sprint objective, evaluated their capacity, selected work items for 

the sprint backlog based on capacity, and conducted rapid iterations to produce a fully 

functional product [54]. 

2.6 Deep-SE Utilization 

 
One approach that was used in providing an indication of the level of difficulty associated with 

a given task was to assign a designated quantity of Story Points (SP) to each task. It was 

observed that the term "issue" was significantly more frequent in usage than the term "task" 

within JIRA. Teams employed various strategies, including Planning Poker, Analogy, and 

expert judgment, based on factors such as total work, complexity, risk, and uncertainty, to 

estimate narrative points, as stated in reference [55]. 

Usman et al. [56] indicated that subjective assessments, which relied on the expertise of domain 

experts, could introduce bias. They arrived at this deduction through their academic study. It 

was recognized that inaccurate estimation of the number of stories needed to complete a sprint 

could lead to negative consequences such as decreased efficiency, increased costs, project 

failure, client dissatisfaction, and potential business closure. 

A recent study introduced a novel approach known as Deep-SE[57], which utilized 

comprehensive deep learning methods to forecast the quantity of story points involved in agile 

projects. The validation of the model was accomplished through the utilization of data derived 

from both ongoing and completed projects. 

 

2.7 Targeted Dataset by Deep-SE and GPT 

 
The Deep-SE model had a corpus of 23,313 bugs, which were collected from 16 distinct 

opensource projects using the JIRA bug tracking software. Each issue consisted of a title, a 

synopsis, and a significant plot advancement, all of which were relevant to the matter at hand. 

Figure 2.1 depicted the JIRA issue and its corresponding pivotal moment. Deep-SE employed 

a deep learning framework, specifically the Long Short-Term Memory (LSTM) and Recurrent 
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Highway Network (RHWN), to capture semantic features representing the meaning of a given 

problem. The issue was duly reported, and Deep-SE was requested to investigate. 

Deep-SE demonstrated superior performance compared to other machine learning-based 

techniques, such as LSTM+RF, BoW+RF, Doc2Vec+RF, and TFIDF+SVM [58], with an 

average Mean Absolute Error of 2.08, indicating higher quality outcomes. The Deep-SE 

process involved four distinct phases. The initial step involved adding written content to the 

designated area, which was recognized as a challenging task due to the need to comprehend 

problem statements expressed in simple language. 

Deep-SE utilized an unannotated corpus of specialized data, such as issue reports, to acquire 

knowledge of the distributed representation of words. This was achieved by creating a 

pretrained language model and investigating lexical representations in a distributed manner. 

One approach was to integrate the title and description of the report into a unified document, 

with the description preceding the title. Words in the problem report were represented as 

vectors with continuous real values. 

In the second step, long-short-term memory (LSTM) was employed to generate a 

representation of the document. Deep-Semantic Extraction utilized LSTM units, a specific 

type of Recurrent Neural Network (RNN), for textual analysis. The output state vectors of the 

LSTM were then consolidated into a single vector representing the document. 

The third step involved the use of the RHWN method to develop a detailed model of the data. 

Deep-SE mitigated the issue of overfitting by subjecting the document vector to multiple 

refinements through a Recurrent Highway Network (RHWN), resulting in a conclusive vector 

representing the document. This characteristic made Deep-SE resilient to overfitting. 

In the fourth step, regressors were utilized. Deep-SE employed a feedforward neural network 

with a linear activation function to approximate the narrative point based on the document 

vector.Software development work estimation could be broadly categorized into three 

approaches: expert-based, model-based, and hybrid approaches. The prevalent methodology 
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involved expert-based approaches that relied on human expertise to provide approximations 

 

[59] [60]. Expert-based estimating required the involvement of specialists for accurate 

projections. Model-based methodologies utilized past data, but the construction of individual 

models varied. The CO-COMO model, a widely recognized construction cost model [61], was 

a static model with predetermined components and variables. The predictive models were 

developed by leveraging data from multiple studies but were typically limited in applicability 

to the specific projects for which they were initially developed. Scholars employed various 

methodologies, such as regression [62], neural networks [63, 64], fuzzy logic [65], Bayesian 

belief networks [66], analogy-based approaches [67], and multi-objective evolutionary 

methods [68], to construct distinctive models. However, a single tactic could not be 

universally effective for all project types [69]. Recent research [70] advised aggregating 

estimates from multiple estimators in a sequential manner. 

2.8 Hybrid Methodologies 

 
The present study and its associated literature [71, 75] utilized hybrid methodologies that 

integrated expert opinions with readily available data. While there was a significant corpus of 

literature on project estimation in general, less attention was given to formulating models 

specifically tailored to agile projects. Agile, dynamic, and incremental projects required 

alternative planning and estimation approaches [76]. Machine learning methodologies were 

increasingly used for task estimation in agile projects. A recent research publication [77, 78] 

proposed a method for extracting TF-IDF features from issue descriptions to construct a model 

for narrative point estimations. The retrieved features underwent standardized selection before 

being inputted into regression models like the support vector machine. 

There was comparatively less attention paid to the development of models specifically tailored 

to agile projects, despite a significant corpus of literature on project estimation in general. 

Agile, dynamic, and incremental projects necessitated alternative methodologies for planning 

and estimation [79]. Machine learning methodologies were employed to facilitate task 
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estimation in agile endeavors. A recent research publication [80] introduced a novel approach 

for constructing a model for narrative point estimates by extracting TF-IDF features from issue 

descriptions. The features underwent standardized selection before being inputted into 

regression models like the support vector machine. 

In Extreme Programming software projects, an iterative development methodology, the 

authors presented a Bayesian network model for effort estimation, as documented in reference 

[81]. However, their methodology relied on factors such as process efficiency and 

improvement, requiring thorough experimentation and fine-tuning. Bayesian networks were 

commonly used in Scrum-based software development projects to model interrelationships 

and identify potential challenges. For instance, the quality of sprint progress and planning 

could impact the final product's quality. Recent developments involved the utilization of deep 

learning techniques to automatically learn semantic features capturing the essence of problem 

descriptions. This approach made significant progress in estimating issues based on narrative 

points, surpassing previous efforts. Previous studies explored the estimation of defect 

resolution time and the potential risks associated with resuming issue resolution after a pause 

[82, 83]. 

2.9 Transfer Learning Techniques 

 
The proposed model deviated significantly from [84] by utilizing transfer learning techniques 

with GloVe and pre-trained embedding vectors to expedite the training process. Word2Vec 

and GloVe were contemporary methodologies generating superior vector representations [85, 

86]. GloVe outperformed Word2Vec due to its comprehensive dataset of term occurrences 

from various regions, as demonstrated by Pennington et al. [87]. GloVe [88] served two 

purposes: similarity and entity identification, based on statistical analysis of word-word 

cooccurrences within a corpus. Empirical evidence showed that the model introduced in 

reference [89] exhibited superior performance compared to previous ones [90–95]. Notably, 

this model enabled end-to-end trainability without requiring human feature engineering, 
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starting from raw input data and culminating in prediction outcomes. The proposed model 

employed deep learning and a hierarchical attention mechanism to detect significant phrases 

and clauses. The Hierarchical Attention Network (HAN) effectively captured the fundamental 

principles of document organization. Document structure was hierarchical, with words 

forming sentences and sentences forming a complete document. To create a document 

representation, individual sentence representations were generated and aggregated into a 

cohesive document representation. The density of information conveyed by individual words 

and phrases varied throughout the text. Constructing a final document vector involved 

aggregating significant sentence vectors, composed of essential word vectors. Three surveys 

were retrieved that examined distinct facets of estimation in individuals with Autism Spectrum 

Disorder (ASD). 

2.10 Demerits of Methodologies and Proposed Solutions 

 

The study, as reported in 2005 [96], encompassed feedback from project managers employed 

at 18 commercial enterprises located in Norway. A comparison of schedule and effort overruns 

was conducted across 52 projects, utilizing both adaptive (incremental, agile) and sequential 

(waterfall) process models. Projects employing a flexible process model exhibited a lower 

incidence of effort overruns compared to those utilizing sequential approaches, according to 

the study. The findings of this survey were utilized in a scholarly investigation [97] that 

analyzed various aspects of software estimation within the Norwegian corporate domain, 

including effort and schedule overruns, estimation techniques, estimation competence, and 

related factors. However, the present investigation did not distinguish between agile and 

waterfall methodologies. 

The subsequent survey [98] examined the impact of consumer engagement on project 

prolongation. Comprehensive interviews were conducted with agile project managers employed 

by a Norwegian medium-sized enterprise, using a data set of 18 projects. The study's findings 
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suggest that collaboration with the client through regular communication can decrease the 

frequency of effort overruns. Another survey [99] focused on the anticipated duration for 

executing a user narrative. The findings revealed that the utilization of coarsegrained user 

stories by developers was associated with a higher incidence of obstacles, including estimation 

concerns. Despite the widespread use of surveys to evaluate estimation in Autism Spectrum 

Disorder (ASD), none provided a comprehensive report on estimation methods, predictors, 

reliability, or the developmental context in which they are employed. To address this, an 

empirical investigation was conducted involving practitioners from software enterprises 

utilizing agile methodologies or practices, irrespective of geographical location. 

The efficacy of a project plan depends significantly on the utilization of a precise and reliable 

approach for estimating labor demands. Studies in the field of agile methodology have shown 

that effort assessment often involves the use of narrative points. Estimation techniques based 

on human judgment, such as Planning Poker, are commonly employed [100]. Limitations 

associated with these techniques have been the focus of inquiries. Research findings [101] 

demonstrated the influence of social and cognitive biases on estimations. Estimators may 

simplify complex tasks due to social judgmental bias, potentially influenced by organizational 

pressure. A study by Abdel-Hamid et al. (1992) examined the impact of advancing deadlines 

on project outcomes, revealing that schedule pressure from inaccurate estimations resulted in 

increased development expenses and more issues. DeMarco [102] noted a potential bias 

among human estimators to underestimate task completion time. These discoveries suggest 

the potential for employing machine-mediated approximation in developer estimation 

sessions. Various research endeavors have explored the feasibility of using machines to 

approximate labor input, frequently employing machine learning models to forecast issue 

resolution duration [103, 104, 105]. Neural Networks [106] and association rules [107] have 

also been observed in certain scenarios. Despite the emphasis on problem resolution time 

estimation, existing research has not quantified it in terms of narrative points. The sole 
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recognized classifier for narrative point estimation was formulated by the researcher identified 

as [108], trained using user stories from an agile organization with over 1300 issues [109]. 

However, it should be noted that the project consisted of only 13 issues. 
 
 

Figure 2.1 Learning Curves with Lines at MMRE=0.61 was a MMRE of 0.9 

 

 

Using the SVM technique, researchers were able to achieve promising results. Several 

machine learning classifiers were experimented with to estimate narrative points, similar to 

Abrahamsson et al. The SVM method was identified as the most effective for processing 

problem reports, but additional attributes were incorporated to improve outcomes. A dataset 

of over 300 problems from more than 9 different projects was used, with MMREs of 0.61 or 

less achieved in 8 of them in figure 2.1. The impact of problem count on the MMRE was also 

discussed. Augen [110] conducted a study on developer-mediated assessment of user stories 

and compared developers' estimates of story points to actual points given to the work. The 

MMRE for developer estimates was found to be 0.48, and the classifier's estimations aligned 

with those of the developers, with an average MMRE of 0.46. 

A method to estimate Story Points (SP) from issue descriptions was proposed, primarily as a 

supplementary tool for expert estimators in agile teams. Abrahamsson et al. [111] were the first 

to propose a mechanical approach, using Machine Learning (ML) algorithms trained on 17 
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characteristics derived from user narratives. Porru et al. [112] recast SP estimation as a 

categorization problem, using features from bug reports and achieving reliable results. Another 

study [113] combined features from user stories with developer-related characteristics to 

improve estimation accuracy. User tales were semantically categorized using auto-encoder 

neural networks in [114]. Choetkiertikul et al. [115] developed Deep-SE, an endto-end SP 

prediction system that utilized deep learning architectures. Deep-SE achieved statistically 

significant lower MAE compared to previous techniques. Abadeer and Sabetzadeh [116-117] 

confirmed Deep-SE's performance on a commercial project. The current research focused on 

exploring whether clustering could enhance SP estimate precision by reducing problem 

descriptor variation. The largest dataset used for SP estimate to date, consisting of 26 open- 

source projects and 31,960 problems, was employed. 

2.11 Performance Indicators 

 
Effort estimation has garnered significant attention in academia due to its importance in 

project planning and resource management. Machine learning has been explored to construct 

predictive models in software engineering for estimating bug resolution time or work required 

for problem resolution. Various methods, including Neural Networks and conventional 

machine learning algorithms, have been compared in terms of their classification task 

performance. Bug report characteristics have been used to predict narrative points in agile 

settings. The research differs from others by explicitly including developer characteristics and 

analyzing their influence on story point prediction. Different performance indicators such as 

MMRE, MAE, and SA have been proposed and used to evaluate the prediction models in this 

research[118-120]. 

The table 2.1 provides a comprehensive summary of the findings and limitations of a 

research study. The study aimed to investigate a specific topic and gather relevant data to 

draw conclusions. The findings of the research are presented in a detailed manner, 
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highlighting the key results and their implications. Additionally, the limitations of the study 

are discussed, acknowledging the constraints and potential. 

Table 2.1 Detailed Summery of Researchers Findings and Limitations 

 

Year Authors Title/Based on Findings Limitations 

2022 Wu, X., 

Zhou, L., 

& 

Xiong, 

Z. [121] 

With historical 

data, an 

LSTM-based 

algorithm for 

estimating 

software work is 

developed. 

LSTM can efficiently model 

temporal relationships in 

software development 

projects and estimate effort with 

high accuracy. 

The study did not look 

at the effects of 

employing different 

kinds of recurrent 

neural networks as 

well as the possible 

limits of LSTM in 

coping with 

extremely long-term 

dependence. 

2022 Shang et al. 

[122] 

The present study 

investigates the 

efficacy of 

deep transfer 

learning in the 

context of 

software effort 

estimation, 

particularly 

when dealing 

with 

imbalanced data. 

Superior performance was 

attained in comparison to 

conventional models when 

analysing a dataset of 20 

projects sourced from the 

PROMISE repository, which 

contained imbalanced data. 

The utilisation of transfer 

learning has the potential to 

enhance the efficacy of 

models when dealing with 

imbalanced datasets. 

To attain a high level of 

precision, the 

model necessitates a 

substantial quantity of 

data. 

2022 Dong et al. 

[123] 

A comparative 

study on the 

application of 

deep learning 

for the purpose of 

software 

development 

effort estimation. 

The present study undertook a 

comparative analysis of the 

efficacy of diverse deep 

learning models in relation to a 

dataset comprising 13 

projects sourced from the 

PROMISE repository. 

The generalizability of 

the study may be 

constrained due to the 

small size of the dataset. 

2022 Akram et 

al. [124] 

Application of 

GPT-2 in Agile 

Software 

Development for 

Effort 

Estimation 

The GPT-2 model has the 

capability to furnish precise 

estimations of effort for tasks in 

agile software 

development. However, it 

may necessitate substantial 

refinement and training data 

to attain the most favourable 

outcomes. 

The study suffers 

from a restricted 

sample size and a 

dearth of comparative 

analysis with respect to 

human experts. 

2021 Li et al. 

[125] 

The utilisation of 

deep 

learning in 

software effort 

estimation, 

Superior performance was 

attained in comparison to 

conventional models when 

analysing a dataset comprising 

13 projects 

The absence of 

comparative analysis 

with other machine 

learning models. 
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  incorporating 

transfer 

learning 

techniques. 

obtained from the PROMISE 

repository. The utilisation of 

transfer learning has the 

potential to enhance the 

efficacy of models when 

applied to limited datasets. 

 

2021 Yu et al. 

[126] 

The present 

study proposes 

a deep 

ensemble 

learning model 

for the purpose 

of software 

effort 

estimation. 

The experimental results 

indicate that superior 

performance was attained in 

comparison to conventional 

models when evaluating a 

dataset consisting of 20 

projects sourced from an 

open repository. 

Attaining high 

accuracy with the 

model necessitates a 

substantial quantity of 

data. The 

sequential nature of 

tasks necessitates an 

increase in 

computation power. 

2021 Rehman, 

A., 

Malik, 

A. W., 

Hussain, 

W., & 

Lee, Y. 

K. [127] 

This study 

presents an 

extensive 

literature 

review on the 

topic of 

estimating 

software effort 

utilising 

machine 

learning 

techniques. 

The utilisation of machine 

learning techniques has the 

potential to substantially 

enhance the precision of 

effort estimation. However, 

the efficacy of distinct 

models may fluctuate based 

on the attributes of the 

project data. 

The research did not 

conduct a 

comparative analysis 

of the efficacy of 

various machine 

learning models in 

diverse scenarios, 

including the 

utilisation of distinct 

optimisation 

algorithms or 

hyperparameters. 

2021 Hussain 

et al. 

[128] 

" The present 

study proposes 

an approach for 

agile software 

development 

effort 

estimation 

utilising GPT-2 

technology. 

The GPT model has 

demonstrated the ability to 

generate precise estimations 

of effort for tasks in agile 

software development, 

exhibiting a comparatively 

minimal margin of error in 

contrast to alternative 

machine learning models. 

The model was not 

subjected to fine- 

tuning to enhance its 

performance. 

2021 Singh, J. 

& Kaur, 

H.[129] 

This paper 

presents a 

thorough 

examination of 

the use of 

machine 

learning 

techniques for 

software effort 

estimation. 

The superiority of machine 

learning techniques over 

conventional methods in 

terms of accuracy has been 

demonstrated. However, the 

selection of data quality, 

features, and models can 

pose significant challenges. 

The selection of 

suitable algorithms 

and techniques for 

feature selection can 

be critical 

determinants. 

2020 Zhang & 

Liu 

[130] 

The present 

study pertains 

to the 

development of 

a software cost 

estimation 

Superior performance was 

attained in comparison to 

conventional models when 

analysing a dataset 

comprising of four projects 

The model's ability to 

capture intricate 

feature relationships 

may be constrained 

by the limited number 

of features 
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  model utilising 

deep learning 

techniques, 

incorporating 

dynamic 

feature 

selection. 

sourced from the ISBSG 

repository. 

employed and the 

high computational 

demands arising from its 

sequential nature. 

2020 Aljahdali et 

al. 

[131] 

This study 

proposes a 

novel approach 

for feature 

selection in 

software effort 

estimation 

through the 

utilisation of 

machine 

learning 

techniques. 

Superior performance was 

attained in comparison to 

conventional models when 

analysing a dataset 

comprising of 25 projects 

sourced from the ISBSG 

repository. 

The methodology 

employed exhibits 

constraints in its 

applicability to a 

restricted dataset and its 

potential for 

generalisation to 

alternative datasets may 

be limited. 

2020 Alam et al. 

[132] 

The proposed 

approach for 

estimating 

effort in Agile 

software 

development is 

based on GPT 

technology. 

The GPT-2 model has 

demonstrated the ability to 

generate precise estimations of 

the effort required for 

agile software development 

tasks. However, it may 

necessitate substantial 

refinement and a substantial 

amount of training data to attain 

its maximum potential. 

The study did not place 

a particular emphasis 

on the 

estimation of story 

points and did not 

consider the latest 

advancements in deep 

learning. 

2020 Zhou et al. 

[133] 

A model for 

estimating 

software effort 

based on deep 

learning 

techniques. 

The experimental results 

indicate that the performance of 

the proposed models surpasses 

that of 

conventional models when 

evaluated on a dataset 

comprising 20 projects. 

To attain a high level of 

precision, the 

model necessitates a 

substantial quantity of 

data. 

2020 Gu et al. 

[134] 

This study 

proposes a 

deep learning 

methodology for 

software 

cost estimation 

that 

incorporates 

feature 

selection and 

ensemble 

techniques. 

Superior performance was 

attained in comparison to 

conventional models when 

analyzing a dataset 

comprising 16 projects 

sourced from the ISBSG 

repository. 

The model's ability to 

capture intricate inter- 

feature 

relationships may be 

constrained by the 

restricted number of 

features employed. 
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2019 AlJarrah, 

O., & 

AlAzzeh, 

M. [136] 

This study is an 

empirical 

investigation 

into the effects of 

hyperparameter 

optimization 

on software effort 

estimation 

using neural 

networks. 

The optimization of 

hyperparameters has the 

potential to enhance the 

precision of neural networks in 

the domain of effort estimation. 

The study did not 

account for the 

potential influence of 

utilizing distinct 

optimization 

algorithms or the 

potential 

ramifications of 

varying sample sizes on 

the outcomes. 

2019 Nabi et al. 

[137] 

The present study 

focuses 

on the topic of 

effort 

estimation in 

the context of 

agile software 

development, 

specifically 

utilizing 

transformers. 

The utilization of 

Transformers has been observed 

to yield precise 

effort estimations for agile 

software development 

assignments, albeit 

necessitating substantial 

refinement and training data to 

attain optimal efficacy. 

The study is limited by 

a small sample 

size and a dearth of 

comparative analysis 

with alternative 

machine learning 

models. 

2019 Hassan et 

al. 

[138] 

A Critical 

Review of 

Deep Learning 

Techniques for 

Software 

Development 

Effort 

Prediction 

A comprehensive analysis was 

conducted on several 

deep learning methodologies for 

the purpose of effort 

estimation. The techniques 

evaluated included recurrent 

neural networks and 

convolutional neural 

networks. The findings indicate 

that these 

methodologies exhibited 

superior performance 

compared to conventional 

techniques, albeit constrained 

by the accessibility of topnotch 

data. 

The study did not place 

particular 

emphasis on the 

estimation of story 

points or the 

implementation of agile 

development 

methodologies. 

Additionally, the study 

did not 

consider more 

contemporary 

advancements in 

pretrained language 

models such as GPT. 

2019 Oliveira, 

A. L. & 

Madeira, 

H.[139] 

The utilization of 

MultiObjective 

Genetic 

Programming 

(MOGP) 

The utilization of 

multiobjective genetic 

programming exhibits 

promising results in the 

domain of effort estimation. 

Insufficient 

comprehension of 

the context and lack of 

expertise in the data 

collection 



34 | P a g e 
 

2.12 Summary 

 
There are numerous methods available for estimating software projects. Expert-based methods 

are frequently employed due to their reliance on knowledge. Although they may be costly and 

require a significant amount of time, certain projects can be highly advantageous. 

Model-based methods utilize historical project data to make estimations for future projects. 

The COCOMO model is only applicable to highly specialized projects. Hybrid methods 

combine subjective judgments and quantitative models to enhance estimations. To accurately 

measure job effort, agile project management necessitates the use of new methods. Machine 

learning is utilized in contemporary solutions. Agile initiatives utilize LSTM (Long ShortTerm 

Memory) and RHWN (Recurrent Highway Networks) for the purpose of estimating story 

points. Deep-SE utilizes deep learning techniques to extract semantic aspects from problem 

descriptions and provide accurate estimates of narrative points. Less attention has been given 

to estimating the cost and duration of Agile projects compared to conventional methods. Using 

transfer learning with GloVe embeddings has been found to enhance both the accuracy and 

training time in Deep-SE. A hierarchical attention mechanism identifies problem description 

key phrases. The model can estimate relevant data. Estimation methods improve agile 

software project management. 
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Chapter 3 
 

 

 

 
 

Proposed Methodology 
 

 

 

 

 

 

 

 

3.1 Overview 
 

The objective of this research endeavor is to enhance the accuracy of the story-point estimation 

by eliminating ineffective attention heads from the GPT-2++ model. The initial measure that 

needs to be undertaken is to gather the maximum number of user stories and their 

corresponding components as is feasible for a human being. The dataset exhibits a broad range 

of tasks with varying degrees of complexity, rendering it an optimal candidate for model 

training purposes. 

Upon completion of the data collection process, the dataset is subjected to necessary 

transformations and cleaning procedures. In order to prepare the data for model training, it is 

necessary to undertake several preprocessing steps, including deduplication, tokenization, and 

encoding. Furthermore, it is necessary to perform data encoding and tokenization. The 

GPT2++ model serves as a foundational, pre-trained transformer utilized for the task of point 

estimation within story points. The efficacy of this model has been demonstrated across 

various NLP applications, rendering it a reliable approach for improving the precision of 

estimate calculations. 

Subsequent to the preprocessing of the dataset, the model is subsequently fine-tuned by 

leveraging the information contained therein. The model will receive instructions on how to 

generate an estimation of the time and resources required to implement a range of 

enhancements for a given user story. The utilization of this approach facilitates an 
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augmentation in the model's cognizance of historical events and the intricacies inherent in user 

stories. Upon completion of the GPT-2++ model training, an analysis of the attention heads is 

conducted to evaluate their efficacy. The utilization of attention pattern and weight analysis 

facilitates the identification of attention heads that provide the least precise estimations of 

story points. An analytical approach has been developed to eliminate the ineffective attention 

heads that were incorporated in the GPT-2++ architecture. This action was taken in order to 

eliminate attention-grabbing heads that were deemed inefficient. It is plausible that the 

proportional magnitudes of the extant attention heads necessitate modification to achieve 

greater equilibrium among them. To be able to achieve optimal levels of accuracy and 

efficiency in our estimations, it will be necessary to implement modifications to the cognitive 

process of attention. 

The efficacy of the updated GPT-2++ model is evaluated through the utilization of 

predetermined criteria. There are multiple approaches to assessing a model's ability to 

estimate, one of which involves evaluating its accuracy, precision, and F1 score. The 

evaluation of the revised model involves a comparison with the initial iteration of the GPT2++ 

model as well as a plethora of supplementary estimation methods. 

In the phases of experimentation and validation, novel techniques such as cross-validation are 

employed to evaluate the efficacy of increasingly comprehensive datasets. This stage follows 

the developmental phase. The enhanced GPT-2++ model is expected to yield more reliable 

and relevant results owing to its improved performance. 

After conducting a comprehensive analysis of the data, we proceeded to a discussion regarding 

the outcomes of the experiments and their possible implications. The objective of this study is 

to comprehend the impact of attention head removal on the accuracy and efficiency of story 

point estimations. Furthermore, we analyze and contemplate the challenges or limitations that 

emerged from the implementation of the approach in practical situations. 
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To sum up, the utilization of the GPT-2++ model and the removal of unproductive attention 

heads present a rational approach to enhance the estimation of story points, thereby leveraging 

this methodology. The initial stage in the process involves the collection of data, which is 

subsequently subjected to processing, refinement, concentration, elimination, and evaluation 

prior to the commencement of result analysis. The ultimate objective is to optimize project 

management and resource allocation through the implementation of estimating methodologies 

that are characterized by enhanced precision and efficiency. The aforementioned objective will 

be attained through the utilization of prognostic models. 

 

 

3.2 Research Methodology 

In this study, the text obtained from the users is subjected to a series of pre-processing steps 

and feature extraction techniques. These steps are essential to ensure that the text is in a 

suitable format for further analysis and modeling. Once the text has been cleaned and 

processed, it is then used in conjunction with an enhanced version of the GPT-2++ model. 

This model has been specifically designed to improve upon the limitations of the original GPT- 

2 model and is expected to yield more accurate and reliable results. The goal of this research 

is to develop an effort estimation system that is based on the user requirement text. By utilizing 

the cleaned text and the improved GPT-2++ model, it is anticipated that this system will be 

able to provide accurate estimations of the effort required for a given software development 

project. It is important to note that this research does not involve the addition of any new 

information. Rather, it focuses on the utilization of existing data and models to enhance the 

accuracy and reliability of the effort The subsequent paragraphs present a comprehensive 

analysis and elucidation of each stage in the procedure. 
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3.3 Proposed Method 

The proposed method aims to improve the accuracy and efficiency of story point estimation 

for software developers. This will be achieved by utilizing pre-trained transformers, 

specifically GPT-2++. The focus is on utilizing the advanced natural language processing 

capabilities of GPT-2++ due to the challenges in existing estimation methods and the 

limitations of machine learning and deep learning in this field. The goal is to improve the 

accuracy of estimates by integrating GPT-2++ into the estimation pipeline. This involves 

cleaning the data, fine-tuning the model, and evaluating its performance. By doing so, we can 

enhance our understanding and contextualization of client requests, leading to more precise 

estimates. This approach (figure 3.1) has the potential to be beneficial for project planners 

and managers as it helps in estimating story points and allocating resources. 

 
 

3.4 Problem Analysis 

Researching the difficulties software development teams face when trying to produce precise 

estimates of the time and effort required to complete certain story pieces is the first stage in this 

technique. Here, the limits of the currently available algorithms are examined, as well as the 

challenges that arise from applying machine learning and deep learning. This study provides 

insight into the current state of story point estimation and its growth prospects. 

 
 

3.5 Text Pre-Processing 

The raw data from the dataset must be cleaned up and modified for the purpose of the text 

preprocessing stage before it can be used for the job of effort estimation. In this regard, and for 

the sake of this study, we will use several alternative traditional pre-processing approaches 

while keeping in mind the agile software effort estimation scenario common in the use of Story 

Points. Because of this, the dataset will be cleansed, tokenized, and formatted before being 

added to the GPT-2++ model. 
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Figure 3.1 Flow of GPT-2++ for story point effort estimation by removing inefficient attention heads. 

 
Data Collection 

 

 

 

Data Preprocessing 

Data Cleaning 

Sub word- 

Tokenization 

 

Encoding 

 

 

 
Fine Tune GPT2 Model on 

Preprocessed Data 

 

Identifying Inefficient Attention Heads 

 

 

 

 

 

 

 
Removing Inefficient 

Attention Heads 

 

 

 

 

 
 

Retrain and Evaluate the Pruned Model 

 

Accuracy-Loss Based, MAE, F1-Score 

Below 

Threshold<0.005 

Evaluate the performance of the 

model with and without each attention 

head. 



41 | P a g e 
 

3.5.1 Text Cleaning 

 
Cleaning is an essential step in text preprocessing that involves removing any noise, errors, or 

inconsistencies present in the raw text data. It aims to improve the quality and reliability of the 

data before further analysis or modeling tasks. Some common techniques used in data cleaning 

for text preprocessing include pipeline describe in figure 3.2 [140]: 

• Step one in the analysis process [141] is to remove special characters and punctuation. 

 

This means getting rid of symbols, punctuation marks, and any non-alphanumeric characters 

that do not contribute to the analysis. Using this technique helps to ensure consistency and 

reduce noise in the text data. 

• Handling capitalization is an important aspect of text standardization and can help 

prevent duplication of words caused by inconsistent capitalization styles. One way to achieve 

this is by converting all text to either lowercase or uppercase. 

• Removing stop words involves eliminating commonly used words in a language that lack 

significant meaning, such as ―a,‖ ―the,‖ and ―and.‖ The removal of stop words can effectively 

reduce noise and enhance the accuracy of text analysis. 

• When it comes to handling numerical digits, their relevance depends on the specific task 

at hand. If they are not necessary, they can be removed or substituted with a placeholder. • 

Dealing with misspellings is important for improving the accuracy of subsequent analysis. 

Correcting common misspellings or typos in the text data can greatly contribute to this 

improvement. This can be accomplished by utilizing techniques such as spell checking or 

utilizing external dictionaries. 

• When dealing with HTML tags or markup in text data, it is possible to remove them to 

extract the clean text content. 

• Removing duplicates is an important step in data analysis. By identifying and eliminating 

duplicate records or text passages, to reduce redundancy and prevent bias in our analysis. 
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• When dealing with missing values in text data, it is important to use appropriate strategies 

such as imputation or removing incomplete records [140-141]. 

 

 

 

 

 
Figure 3.2 Text cleaning pipeline in GPT2++ 

 

 

 
 

3.5.2 Tokenization 

 
 

Tokenization, a crucial step in text preprocessing, is the process of dividing a given text into 

smaller units known as tokens. In the realm of natural language processing, tokens hold a 

significant role as they serve as the fundamental units of text analysis. These tokens can take 

various forms, such as individual words, phrases, sentences, or even characters, depending on 

the specific requirements of the task at hand. The selection of the appropriate tokenization 

strategy is crucial to accurately represent and process textual data. By understanding the nature 

and characteristics of tokens, researchers and practitioners can effectively leverage them to 

extract meaningful insights and facilitate various language-related tasks. The significance of 

tokenization in numerous natural language processing (NLP) endeavors cannot be overstated, 

as it establishes the foundation for subsequent analyses, including sentiment analysis, language 

modeling, and machine translation [142-145]. Tokenization process is explained in the figure 

3.3. 
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Figure 3.3 Tokenization of words and paragraphs in GPT2++ 

 

 

 
• Word Tokenization: is a common technique used in natural language processing (NLP) 

to divide text into individual words. This process involves segmenting a given text based on 

whitespace or punctuation marks. The purpose of word tokenization is to break down a sentence 

or a paragraph into its constituent words, which can then be further analyzed or processed. This 

approach is widely used in various NLP tasks such as text classification, sentiment analysis, 

and machine translation, among others. By dividing the text into discrete units, word 

tokenization the efficacy of the method under consideration is evident in its simplicity and 

effectiveness when applied to languages that possess distinct and unambiguous word 

boundaries. Nevertheless, one potential limitation of the system is its potential difficulty in 

handling languages that do not employ explicit spaces between words or possess intricate 

morphological structures [146]. 

 

 
• Character Tokenization: The process of character tokenization involves the 

segmentation of a given text into individual tokens, where each token represents a single 

character. This approach treats each character as a distinct unit, disregarding any linguistic or 

semantic context. By breaking down the text at the character level, character tokenization 

enables a granular analysis of textual data, facilitating various natural language processing 
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tasks. The utilization of this approach proves to be advantageous in tasks that require a focus 

on character-level details, such as transliteration, spelling correction, or the management of text 

that is noisy or lacks structure [146]. 

 

 
• Wordpiece Tokenization: In the field of natural language processing, word piece 

tokenization is a technique that bears resemblance to sub word tokenization, albeit functioning 

at a more intricate level of granularity. The process of dividing words into smaller sub word 

units, which encompass both prefixes and suffixes, is a fundamental aspect of linguistic 

analysis. This practice allows for a more comprehensive understanding of the morphological 

structure of words and aids in the examination of their constituent parts. By breaking down 

words into these sub word units, researchers can discern the various morphemes that contribute 

to their overall meaning and grams. The utilization of word piece tokenization has been 

observed in various models such as BERT (Bidirectional Encoder Representations from 

Transformers) and GPT (Generative Pre-trained Transformer). 

 

 

3.5.2.1 Optimal Choice of Tokenization 

 
 

The optimal choice of tokenization method is contingent upon the demands of the task at hand 

and the inherent attributes of the data being analyzed. In the context of analyzing English text at 

the word level, it is often adequate to employ word tokenization as a primary technique. In 

contrast, when confronted with languages that possess a high degree of morphological 

complexity or contain unfamiliar words, employing sub word tokenization methods such as Byte 

Pair Encoding (BPE) may yield superior results. 

 

• Sub-word Tokenization: The process of sub word tokenization involves the segmentation of 

words into smaller sub word units. This technique is employed to enhance the granularity of word 
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GPT 

STACK 

representation. By breaking words down into sub word units, the resulting tokens can capture 

more detailed information about the underlying language structure. Sub word tokenization is 

widely used in natural language processing tasks to improve the performance of various models 

The utilization of certain techniques has proven to be highly effective in addressing challenges 

associated with unknown words, morphologically rich languages, and the need to reduce 

vocabulary size. The utilization of sub word tokenization techniques, such as Byte Pair Encoding 

(BPE) and Sentence Piece, is prevalent in various natural language processing applications. These 

techniques have been widely adopted to effectively handle the challenges posed by the 

morphological complexity and out-of-vocabulary (OOV) words in different languages [147]. Sub 

word model is described in figure 3.4. 

 

 

 

 

 

 
 

 
Figure 3.4 Sub-word model in GPT2++ 



46 | P a g e 
 

3.5.3 Encoding 

 
The process of encoding in GPT-2++ involves the conversion of textual inputs into numerical 

representations, which are then comprehensible to the model. The GPT-2++ model, a state- 

ofthe-art language model, is designed to operate on numerical data. However, since text data is 

inherently non-numerical, an encoding process is required to convert the text data into a format 

that is suitable for the model to process. [148] This encoding step allows for the transformation 

of textual information into numerical representations, enabling the GPT-2++ model to 

efficiently evaluate and generate text. 

The encoding process is a fundamental aspect of data transmission and storage systems. It 

encompasses a series of steps that are crucial for ensuring accurate and efficient communication. 

This paper aims to provide a comprehensive overview of the typical steps involved in the 

encoding process. The first step in the encoding process (reference to the figure 

3.5) in data preparation. This involves: 
 

Vocabulary Mapping: Following the tokenization process, every individual token is associated 

with a distinct identifier derived from the vocabulary employed by the model. The vocabulary 

refers to a predetermined collection of tokens that are recognized and comprehended by the 

model. In the context of natural language processing, it is common practice to assign a unique 

numerical index or identifier to each token. [149] This indexing scheme enables the model to 

treat the tokens as numerical inputs during the processing phase. By representing tokens as 

numerical values, the model can effectively analyze and manipulate the text data. The process 

of mapping can be accomplished through the utilization of either a lookup table or a dictionary. 

Positional Encoding: [150] The GPT-2 model is a transformer-based architecture that leverages 

attention mechanisms to effectively capture sequential information. To furnish the model with 

positional information, the encoded tokens are augmented with positional encoding. Positional 

encoding is a technique used in natural language processing to assign a distinct vector 

representation to each token in a sequence, based on its position within that sequence. This 
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encoding method is commonly employed in various tasks, such as machine translation, text 

classification, and language generation. By incorporating positional information into the token 

representations, positional encoding helps models capture the sequential order of tokens and 

enables them to better understand the context and relationships between words in each 

sequence. The utilization of positional encoding in the model facilitates the discrimination of 

tokens by their respective positions, thereby enabling the model to effectively capture the 

sequential relationships that exist within the text. 

• Upon completion of the tokenization process, the text is subsequently mapped to the 

existing vocabulary and supplemented with positional encoding. This preparatory stage 

ensures that the text is suitably formatted for input into the GPT-2++ model, enabling 

subsequent processing and analysis. The model has the capability to generate predictions, 

estimate story points, and perform various language-related tasks by utilizing the encoded 

input. 

 
 

 
Figure 3.5 Encoding process in GPT2++ 
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3.6 GPT-2++ Model Integration 

The integration of the GPT-2++ model into the predictive analysis of future plot points enables 

the generation of more precise and reliable forecasts. In the realm of Natural Language 

Processing (NLP), the GPT-2++ pre-trained transformer model emerges as a highly efficacious 

model. The enhancement of tail-end estimates' accuracy can be achieved through leveraging the 

robustness and adaptability of the methodology. The application of the GPT-2++ model to the 

refined dataset allows for the implementation of essential modifications in the context of story- 

point estimation. 

 

3.6.1 Fine Tuning of GPT2++ Model on Story Points 

 
The process of fine-tuning a GPT-2 model on Story Points data entails the training of a 

preexisting GPT-2 model on a designated dataset comprising story points. This procedure aims 

to customize the model to effectively perform the task of story point estimation. The process 

facilitates the acquisition of knowledge by the model, enabling it to discern and comprehend 

the intricate patterns and interconnections that exist between the input text and the 

corresponding story points. Consequently, this enhanced understanding empowers the model to 

generate more precise and reliable predictions when presented with novel text inputs. The 

following section outlines the fundamental procedures entailed in the fine-tuning process of a 

GPT-2 model utilizing Story Points data: 

• Data Acquisition: To conduct this study, it is imperative to gather a comprehensive 

dataset comprising story points and their respective textual descriptions. To ensure the 

integrity and accuracy of the dataset, it is imperative that proper labeling is applied. Each 

data instance within the dataset should be accompanied by a text input and its 

corresponding story point value. This labeling scheme allows for clear identification and 

categorization of the data, facilitating subsequent analysis and interpretation. By adhering 
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to this labeling protocol, researchers can maintain consistency and reliability in their 

dataset, thereby enhancing the validity and robustness of any subsequent findings or 

conclusions drawn from the data. 

• Tokenization and Encoding: The initial step in the preprocessing of text data involves 

the application of tokenization, wherein the text is divided into individual tokens. This 

process can be accomplished through the utilization of subword tokenization or any other 

appropriate tokenization technique. To establish numerical representations for the tokens, 

it is necessary to map them using the vocabulary of the model. This process involves 

assigning a unique numerical value to each token based on its corresponding entry in the 

model's vocabulary. By doing so, the tokens can be transformed into a format that is 

compatible with numerical computations, enabling further analysis and processing. To 

incorporate sequential information into a model, positional encoding is commonly 

employed. This technique, originally introduced in the Transformer model, allows the 

model to understand the relative positions of tokens within a sequence. By adding 

positional encoding to the input embeddings, the model can differentiate between tokens. 

• Model Initialization: The pre-trained GPT-2 model is loaded for the purpose of this 

study. This model has undergone extensive training on a vast corpus of text data, enabling 

it to acquire a comprehensive understanding of language patterns and structures. The 

utilization of pre-trained models serves as an initial reference for the process of fine- 

tuning. 

• Definition of Loss Function: The loss function is a crucial component in the training 

process, as it quantifies the disparity between the predicted story point values and the 

ground truth values. It serves as a metric to evaluate the performance of the model and 

guide the optimization process. In the realm of classification tasks, it is customary to 

employ various loss functions to quantify the discrepancy between predicted and actual 

values. Commonly used loss functions here is mean absolute error (MAE). These loss 
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functions play a crucial role in assessing the performance of regression models and 

guiding the optimization process. 

• Epochs: Fine-tuning is a crucial step in training the GPT-2++ model, as it allows for the 

customization and adaptation of the model to specific tasks or datasets. In this case, the 

GPT2++ model is trained on the story points dataset, utilizing tokenized and encoded 

inputs. The process of fine-tuning involves training the model on a specific dataset, which 

in this case is the story points dataset. This dataset is prepared by tokenizing and encoding 

the inputs, ensuring that they are in a format that the GPT-2++ model can comprehend, 

and process effectively Feed the inputs through the model and compare the predicted story 

point values with the actual values from the dataset. To optimize the model's parameters, 

it is necessary to calculate the loss and subsequently backpropagate the gradients. This 

process allows for the adjustment of the model's weights and biases, ultimately improving 

its performance. By calculating the loss, which represents the discrepancy between the 

predicted and actual values, the model can assess its performance. The gradients, which 

indicate the direction and magnitude of the error, are then backpropagated the process 

should be iteratively repeated for multiple epochs until the model reaches convergence 

and attains satisfactory performance. 

• Evaluation: The performance of the fine-tuned model will be assessed through an 

evaluation process that involves analyzing its predictions on a distinct validation or test 

set. To assess the accuracy of the model's predictions, it is imperative to calculate 

evaluation metrics such as mean absolute error (MAE)[151]. These metrics serve as 
 

quantitative measures to gauge the level of accuracy achieved by the model. By 

employing these evaluation metrics, researchers and practitioners can effectively 

evaluate the performance of the model and make informed decisions based on the 

obtained results. 
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• Inference: Following the completion of training and evaluation, the model can be 

effectively employed for inference purposes, specifically for estimating the story point 

values of novel and unobserved text inputs. 

The process of fine-tuning the GPT-2 model using Story Points data enables the model to 

acquire knowledge pertaining to the distinct patterns and attributes associated with story point 

estimation. By employing the technique of adapting a pre-trained model to the specific task at 

hand, it is possible to enhance the accuracy and contextual awareness of predictions made for 

the purpose of estimating story points, which are derived from textual descriptions. 

 

 

3. 7 Identifying Inefficient Attention Heads 
 

In the context of the GPT-2++ model and its role in estimating story points, attention heads in 

the figure 3.6 are specific components or sub-modules within the model. These attention heads 

attend to different parts of the input text during processing. Attention heads are essential for 

capturing important information and determining the significance of different aspects of the 

input. 

 

The objective is to identify attention heads that do not provide meaningful information or 

contribute significantly to the estimation process. Researchers can prioritize their attention on 

the more relevant and effective components of the model by identifying these underperforming 

attention heads. This analysis helps improve the model by focusing on attentionheads that are 

more likely to provide accurate and reliable estimates of story points. This can improve the 

model‘s overall performance by allowing researchers to adjust the model to focus on the most 

important elements. It can also reduce the complexity of the model, which can result in faster 

inference times. This will enable teams to quickly and accurately estimate project timelines and 

releases, and to allocate resources efficiently. [151-154] The improved model should also lead 
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to more accurate and reliable predictions of project outcomes. There are several benefits 

associated with the utilization of attention heads and multi-attention heads in GPT-2++. 

 
• Enhanced representation: By allowing each attention head to concentrate on distinct 

aspects or relationships within the input sequence, a more comprehensive representation of the 

data is achieved [155]. 

 

 
• Improved modeling capacity: [156] By incorporating multiple attention heads, the model 

can simultaneously capture various types of dependencies and relationships within the input 

sequence. This results in a more comprehensive understanding of the data. 

 

 
• Enhanced context-awareness: Attention heads empower the model to focus on various 

segments of the input sequence, [157] enabling it to consider the context and relationships 

between words while generating output. 

 

 
• Improved generalization: The utilization of multi-attention heads enables the model to 

effectively capture a wide range of patterns and relationships within the data. This enhancement 

significantly improves the model's capacity to make accurate predictions on new or previously 

unseen inputs. 

 

 
• Interpretability: The attention weights generated by each attention head offer valuable 

insights into the model's focus and reasoning process. Analyzing these attention patterns can 

provide insights into how the model focuses on various aspects of the input and how it 

ultimately makes decisions [158]. 
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Figure 3.6 Self attention head and Multiheaded self-attention in GPT2++ 

 

 

 

To summarize, attention heads and multi-attention heads in GPT-2 allow the model to 

effectively capture intricate patterns and dependencies within the input sequence. This results 

in enhanced representation, context-awareness, generalization, and interpretability. These 

mechanisms play a crucial role in enhancing the model's capability to generate language output 

that is both coherent and contextually relevant. 

 

3.8 Removing Inefficient Attention Heads. 

 

 

To propose a strategy for removing dysfunctional 'attention heads' from the GPT-2++ model. 

Getting the greatest possible efficiency while estimating story points requires tweaking the 

model's design and optimizing the remaining attention heads. As the attention heads that aren't 

helping the process are deleted, this method will be used to ensure the model's integrity is 

maintained. There will be more encoder decoder layers built into the pre-trained transformer. 

To more accurately assess the amount of effort required to create a given number of story 

points, modified version in the figure 3.7 of the GPT-2++ that eliminates wasteful multi-head 

attention: 
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Figure 3.7 Proposed framework of the improved GPT-2++ for story point effort estimation by removing 

inefficient attention heads. 
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Input: user_stories_train (training dataset of user story with story points), user_stories_test 

(testing dataset of user story with story points), threshold (pruning threshold for attention) 

Output: estimated_efforts (Estimated story point efforts for testing), evaluation_metrics 

(Accuracy Assessment, Mean Absolute Error, F1-Score), pruned_model (pruned GPT-2++ 

model) 

• tokenize(user_stories_train) 

• tokenize(user_stories_test) 

• train_model(tokenized_user_stories_train) 

• attention_scores = analyze_attention_heads(trained_model) 

• pruned_model = prune_attention_heads (trained_model, attention_scores, threshold) 

• fine_tune_model (pruned_model, tokenized_user_stories_train) 

• tokenized_user_stories_test = preprocess(user_stories_test) 

• estimated_efforts = estimate_efforts(pruned_model, tokenized_user_stories_test) 

• evaluation_metrics = calculate_metrics (estimated_efforts, actual_efforts_test) 

• summarize_results(evaluation_metrics) 

• plotting results () 

Algorithm 1: Story Point Effort Estimation using Improved GPT-2++ By Removing 

Inefficient Attention Heads 
 

 

 

Figure 3.8 Algorithm of Story Point Effort Estimation using Improved GPT-2++ By Removing Inefficient 

Attention Heads 
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The Algorithm 1 in figure 3.8, titled "Story Point Effort Estimation using Improved GPT-2++ 

By Removing Inefficient Attention Heads," presents an innovative approach to enhance the 

accuracy and efficiency of story point estimation in software development projects. The 

algorithm builds upon the state-of-the-art GPT-2 language model, extending it with 

improvements to tackle the issue of inefficient attention heads. By identifying and pruning 

attention heads that contribute minimally to the model's performance, the modified GPT-2++ 

achieves more efficient training and inference. The algorithm employs subword tokenization 

techniques, such as Byte Pair Encoding (BPE) and SentencePiece, to handle out-of-vocabulary 

words effectively. Additionally, the use of a Multi-Layer Perceptron Regressor enhances the 

model's capacity to estimate story points accurately. With its ability to highlight essential words 

and provide supporting examples from the training set, the Improved GPT-2++ becomes a 

powerful tool for agile teams seeking consistent and reliable story point estimations based on 

historical data.All the steps of the algorithms are explained below : 

 
Step 1: Data Preparation and Proprocessing 

 

Building a repository of user experiences of 9 repositories containing data from 16 projects, 

including story points and estimated hours spent on completed activities. Before training the 

model, it is necessary to preprocess the data by doing things like tokenizing the text and 

encoding the story points or effort estimations. This is necessary since tokenization of the text 

is a prerequisite. 

 
 

Step 2: Model GPT-2++ training 

 

Make use of the cleaned data to train a GPT-2++ baseline model. The rest of the procedures will 

gradually build upon this basis. 
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Step 3: Evaluate attention head importance. 

 
• After training the GPT-2++ model to estimate story points, it must be fine-tuned. 

 

• Before doing ablation research, it is recommended to evaluate the performance of the 

model with and without each attention head. 

• Determine how the most relevant evaluation metrics for classification tasks, such as MSE, 

MAE, or any other acceptable measure, shift after removing each attention head. 

• Evaluate the effect of removing each attention head individually to establish its 

significance. 

 
 

Step 4: Set a threshold and rank attention heads. 

 

Set a standard for the minimal amount of focus that must be placed on heads Which in our case 

is 0.005. Optional restrictions include keeping just the K most important attention heads or 

maintaining only those attention heads with a significance score over a certain threshold. Put 

the points of focus in order of importance, from most important to least. 

 
Step 5: Remove inefficient attention heads. 

 

Eliminate any focus areas that are either not important at all or very somewhat so. Modify the 

setup such that it excludes the squandering focal points of interest. Make the necessary 

adjustments to attention procedures to ensure that the remaining heads can adequately cover the 

content. 

 
 

Step 6: Retrain and Evaluate the Pruned Model. 

 

To retrain the updated GPT-2++ model, the preprocessed dataset is used again. The 

effectiveness of the model in estimating story points should be evaluated using appropriate 

evaluation methodologies after the pruning process. This will be determined by contrasting the 

model's output before and after the trimming step is performed. To determine whether the 
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model's ability to accurately predict story points and effort has been significantly diminished 

after trimming, the trimmed model's performance will be compared to the untrimmed model's 

performance. By doing so, you may examine the model's pre-edit prediction accuracy for story 

effort and point value. Keep in mind that the steps outlined in this article are only a jumpingoff 

point, and that you will need to adjust them to fit the needs of own data and project. 

 

 

3.9 Model Evaluation 

Using standard metrics such as accuracy, Mean Absolute Error and F1 score, to evaluate the 

state-of-the-art GPT-2++ model's ability to estimate story points. The model is tested on a 

separate assessment dataset to ensure it can make reliable predictions about the story's 

progression. By comparing our findings with those of other, previously published 

methodologies, to evaluate the efficacy and efficiency gains. Evaluation Measures are defined 

below: 

• True Positive (TP): Instances correctly identified as positive when they are truly positive. 

 

• True Negative (TN): Instances correctly identified as negative when they are truly 

 
 

negative. 

 
• False Positive (FP): Instances incorrectly identified as positive when they are actually 

negative. 

• False Negative (FN): Instances incorrectly identified as negative when they are actually 

positive 

 

• Accuracy: It is a performance parameter that gauges the system's propensity for accurate 

prediction. 
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(1) 
 

 

 

 

• F-Measure: F-Measure combines results of precision and sensitivity using harmonic 

mean. 

 

 
 

                 (2) 

 

 
• Mean Absolute Error: is a commonly used metric to measure the average difference 

between predicted values and actual values in a regression problem. It provides a measure 

of how close the predictions are to the true values. 

 

 

 

 

 

 

 

 

(3) 

 

 

 

 

3.10 Validation and Analysis 

 

 

To evaluate the efficacy of the newly proposed model, a comparative analysis is conducted with 

existing methodologies employed for the purpose of story arc determination. This assessment 
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aims to ascertain the extent of improvement offered by the novel model in question. The 

performance evaluation of the proposed method is carried out on widely utilised datasets, 

wherein it is compared against established techniques. The adaptability of the model is 

subjected to rigorous testing across a multitude of scenarios in order to evaluate its performance 

and robustness. 

 

 

3.11 Assessment and Analysis 

 

The purpose of this paper is to present the assessment and analysis findings of the enhanced 

story point estimate model, to provide readers with a comprehensive understanding of its 

advantages and disadvantages. This research paper aims to provide explanations for the findings 

obtained from the study, as well as engage in discussions regarding the implications these 

findings have for software development teams. Furthermore, this paper aims to emphasis the 

potential practical advantages that can be derived from the implementation of this strategy. 

 

3.12 Comparison 

 

Upon completion of the construction of the model, a comprehensive evaluation will be 

conducted to assess its performance in comparison to the baseline GPT-2++ model, as well as 

other commonly used methods including GPT2P, GRU-SVM, BIGRU-SVM, LSTM-RF, and 

LSTM-SVM. The evaluation will focus on estimating story point values and will utilize 

standard metrics to gauge the effectiveness of the model. 

 

 

3.13 Summary 

 
The present research project employs a methodology that seeks to augment the evaluation of 

story elements in the GPT-2++ model. This is achieved through the removal of attention heads 

that have been deemed ineffective. The process entails several tasks, including the collection of 
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a diverse dataset comprising user stories and story points, data cleaning procedures, and the 

subsequent selection of the GPT-2++ model for modification. The present model has been 

instructed to acquire a comprehensive understanding of the correlation between the particulars 

of the user narrative and the prerequisites for undertaking the task at hand. Through the 

application of attention head analysis, it becomes possible to identify attention heads that 

exhibit inefficiency. Consequently, a systematic approach can be developed to eliminate these 

ineffective attention heads, thereby improving the overall structure and performance of the 

model. To evaluate the comparative effectiveness of the revised model in relation to the baseline 

and other estimating methodologies, a set of metrics has been developed. To ensure the accuracy 

of the obtained results, additional testing and verification procedures are conducted. The present 

methodology offers a systematic framework for enhancing story-point estimations, thereby 

leading to increased precision in project management and resource allocation. 
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Chapter 4 
 

 

 

 

 

 

Analysis and Results 
 

 

 

 

4.1 Overview 

 
The findings obtained from the research will be presented in this section, along with a 

comprehensive analysis of the data.The present research aims to compare the recently 

created approach for estimating story points with the methodologies employed in previous 

practices. This study aims to analyze the potential precision and effectiveness that can be 

achieved by the reduction of clutter in attention heads. This section will provide an analysis 

of the study outcomes in terms of their importance and potential applications. 

 

 
 

4.2 Evaluation and Analysis 

 
The present study entails the conduction of an analysis on the project data that has been 

collected. The utilization of models is primarily limited to their application in training and 

testing processes within the context of a singular project, commonly known as a "within-project 

assessment." To facilitate a thorough assessment of every project, the datasets linked to them 

are systematically arranged in chronological order. To address the issue of temporal validation 

bias and ensure a balanced comparison with Deep-SE, the datasets have been partitioned into 

three distinct segments: training, validation, and testing. The training set constitutes 60% of the 

total dataset, while the validation and testing set each account for 20% of the dataset. This 
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division allows for a comprehensive evaluation of the models' performance while minimizing 

the impact of temporal biases. 

 

4.2.1 Performance Based on Accuracy and Loss 

 
To prevent the occurrence of issues being recycled between sets, the data is partitioned into 

distinct groups. These groups include the training data, validation data, and testing data. By 

separating the data in this manner, each set serves a specific purpose in the research process 

without overlapping or duplicating information. The GPT2++ models undergo training on a 

designated training set, following which they are subjected to evaluation using the Mean 

Absolute Error (MAE) metric on a separate testing set. The internal project review encompasses 

a comprehensive analysis of the 16 datasets. Within this analysis, the primary objective is to 

identify the optimal hyper-parameter configuration for each model, based on the criterion of 

achieving the lowest loss value. Additionally, the Mean Absolute Error (MAE) is calculated using 

the testing data as a measure of model performance. 

 

This study aims to conduct a comprehensive comparison between our GPT2++ model and nine 

alternative approaches, namely LSTM+RF, LSTM+SVM, GPT2SP, GRU-SVM, BiGRU, SVM 

By evaluating these models, we seek to gain insights into their respective performance and 

determine the strengths and weaknesses of each approach. The findings of this comparative 

analysis provide evidence of the exceptional efficacy exhibited by our GPT2++ model. In line 

with the approach proposed by Choetkiertikul et al. [50], our methodology leverages the use of 

a Long Short-Term Memory (LSTM) network to generate a vector representation. This vector 

representation is subsequently employed as input for four distinct machine learning techniques, 

namely random forest, support vector machine, automatically transform linear models, and linear 

regression. 
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Table 4.1 Performance metric Accuracy table comparison 

 

 

 
 

Models 

Performance Metric 

 

(Accuracy) 

GPT2++ 92% 

GPT2SP 87% 

GRU-SVM 83% 

BiGRU-SVM 80% 

LSTM-RF 79.5% 

LSTM-SVM 77% 

 

 

 

 

Our GPT2++ has a substantially lower median MAE of 1.16 when compared to the nine existing 

baseline techniques, which results in an improvement in accuracy that is 34.57% higher. Our 

GPT2++ is between 38% and 75% more accurate than the Mean baseline (Figure 4.1), when 

measured in comparison to GPTSP in table 4.1. The precision with which our GPT2++ models 

estimate the number of agile story points is also seen in Figure 4.1 As shown by the nonparametric 

ScottKnott ESD ranking. GPT2++ models statistically outperform other existing baseline 

approaches with a non-negligible difference for within-project evaluations. GPT2++ approach is 

the only one to appear in Rank-1, followed by GPT2SP in Rank-2, and the remaining 5 baseline 

approaches in Rank-3 through Rank-5. The graph below shows the accuracy of our model 

compared to others. 
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Figure 4.1 Performance metric Accuracy graph comparison 

 

 
 

In order to assess the accuracy of our model GPT2++, series of experiments are conducting with 

varying numbers of epochs. Initially, Set the number of epochs to 20 and measured the 

corresponding accuracy. Subsequently, the number of epochs increased and continued to monitor 

the accuracy of our model. 

 

 
Figure 4.2 Performance metric Accuracy graph w.r.t 20 epochs 
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Figure 4.2 presents the observed decrease in Accuracy when inefficient heads are removed from 

a transformer model. The model in question was trained on a dataset using 20 epochs. The 

decrease in Accuracy is based on the evaluation of a Validation dataset. In accordance with the 

predetermined threshold criteria of 0.005, a total of eight heads were chosen based on the 

condition that the decrease in accuracy exceeded 0.005. 

 

 

 

 
 

 

 

 

Figure 4.3 Performance metric Accuracy graph w.r.t 30 epochs 

 

 

 

 
 

In a similar vein, the findings presented in Figure 4.3 illustrate the decline in accuracy that occurs 

when inefficient heads are eliminated. This analysis was conducted using a validation dataset, 

and the transformer model under consideration had undergone training for a total of 30 epochs. 

In accordance with the predetermined threshold criterion of 0.005, a total of 13 heads were 
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selected for the purpose of this study. The selection process was based on the condition that any 

decrease in accuracy beyond the threshold of 0.005 would render the data unfit for analysis. 

 

 

 

 
 

 

 

 

Figure 4.4 Performance metric Accuracy graph w.r.t 40 epochs 

 

 

 

 
The research study demonstrates the impact of removing inefficient heads on the accuracy of the 

model. The accuracy is evaluated based on the Validation dataset over a period of 40 epochs. 

The findings are visually represented in Figure 4.4. A Comprehensive Analysis of the Impact of 

Removing Inefficient Heads on Accuracy Reduction in Validation Datasets Table 4.2 presents a 

concise comparison of the number of attention heads used in the model and the corresponding 

accuracy achieved after 20, 30, and 40 epochs of training. The results demonstrate the impact of 

attention head count on the model's performance during multiple training iterations. Analyzing 

the accuracy metrics provides insights into the trade-offs between the complexity of the model 

and its predictive capabilities. This comparison helps identify the optimal attention head 
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configuration that strikes a balance between computational efficiency and predictive accuracy, 

aiding the selection of the most effective model for story point estimation tasks. 

 

 
 

Table 4.2 Performance metric Accuracy table comparison w.r.t 20,30,40 epochs 

 

 

Number of 

 

Heads 

Accuracy with 

20 epochs 

Accuracy with 

30 epochs 

Accuracy with 

40 epochs 

20 0.899 0.905 0.920 

19 0.898 0.902 0.920 

18 0.895 0.901 0.916 

17 0.894 0.900 0.915 

16 0.891 0.899 0.914 

15 0.888 0.896 0.913 

14 0.886 0.896 0.913 

13 0.883 0.896 0.911 

12 0.882 0.889 0.908 

11 0.882 0.886 0.907 

10 0.879 0.883 0.907 

9 0.877 0.883 0.905 

8 0.876 0.883 0.904 

7 0.870 0.879 0.898 

6 0.868 0.879 0.897 

5 0.868 0.877 0.896 
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4.2.2 Performance Measure Based on Mean Absolute Error 

 
The statistical metric employed in this study to assess the accuracy of the proposed GPT2++ 

model and other baselines is the Mean Absolute Error (MAE). MAE is a commonly used metric 

in statistical analysis for evaluating the performance of predictive models. The consideration of 

error magnitude without regard to their signs is a fundamental principle in the field of Mean 

Absolute Error (MAE) analysis. MAE is a widely used metric in various domains, including 

statistics, machine learning, and data analysis. This research paper aims to explore the 

significance of this principle and its implications in the context of error measurement and 

evaluation. The concept In the context of alternative metrics, it was determined that MdAE, 

MMRE, and SA were not chosen for further analysis. This decision was based on their inherent 

limitations in accurately capturing outlier estimates, their tendency to exhibit bias towards 

underestimation, and their striking resemblance to random guessing. In order to ascertain the 

statistical significance and effect size of the discrepancy in accuracy between GPT2++ and other 

baseline models, we utilise a non-parametric adaptation of the ScottKnott ESD test. The present 

study employs hierarchical clustering as a methodology to categorise median values and detect 

statistically significant disparities. The Non-Parametric Significance Kernel (NPSK) test is a 

statistical method utilised in order to minimise the occurrence of false positive results. Unlike 

other tests, the NPSK test does not depend on assumptions of normality, homogeneous 

distributions, or a specific minimum sample size. By avoiding these assumptions, the NPSK test 

provides a more robust and reliable approach to hypothesis testing. The methodology comprises 

two distinct steps. Firstly, the optimal group divisions are determined by utilising the 

KruskalChisq statistic, which is based on median values. This statistical measure allows for the 

identification of the most suitable divisions within the dataset. Secondly, the medians between 

the established groups are compared to evaluate the extent of differences. This assessment is 

conducted using the Cliff-JDJ formula, which provides a quantitative measure of the magnitude 
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of disparities between the groups. The ScottKnott ESD (Non-Parametric) analysis is performed 

utilising the ScottKnott ESD (R) software application (Version 3.0). 

 
Table 4.3 Performance metric Mean Absolute Error table comparison. 

 

 
 

Models 

Performance Metric 

 

(MAE) 

GPT2++ 0.18 

GPT2SP 0.41 

GRU-SVM 1.22 

BiGRU-SVM 1.48 

LSTM-RF 2.1 

LSTM-SVM 2.82 

 

 
The mean absolute error (MAE) in table 4.3 decreases as performance improves. Fundamental 

techniques for estimating potential situations that may occur during a project. The mean absolute 

error for each project was determined and recorded also in figure 4.5. 

 

 

Figure 4.5 Performance matric Mean Absolute Error comparison 
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4.2.2.1 With-in Project Assessment 

 

An examination of the data gathered throughout the study is done in this section. Models are 

only used for training and testing inside the framework of a particular project, or "within-project 

assessment‖ results are presented in figure 4.6. The datasets linked to each project are arranged 

chronologically and split into training (60%), validation (20%), and testing (20%) sets to ensure 

an accurate evaluation of each. The utilization of the same problems between training and 

testing is prevented by the division of the data into distinct groups for training, validation, and 

testing. On the testing set, the MAE measure is used to assess GPT2++ models that have been 

trained on the training set. The 16 datasets are covered by the analysis as part of the internal 

project evaluation. The MAE is computed for each dataset using the testing data, and the 

optimal hyper-parameter configurations are identified to minimize the loss value. It's vital to 

remember that the loss value is obtained from the validation data, whereas the MAE is evaluated 

on the testing data. 

 
 

In addition, GPT2++ is compared to five additional methods, GPT2SP[50], LSTM+RF, 

LSTM+SVM,GRU+SVM, BiGRU+SVM. The outcomes show that GPT2++ functions well. 

Similar to how Choetkiertikul et al. [50] discussed the use of LSTMs, four machine learning 

methods—random forest, support vector machine, automatically convert linear models, and 

linear regression—require an LSTM's vector representation as input. Additionally, Doc2Vec 

and Bag-of-Words, two additional feature representations, are used to create vector 

representations. The mean and median story points of the effort estimations are determined, 

respectively, using the mean and median story points from the training set. 
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Figure 4.6 Shows the relative improvement in MAE for within-project estimating situations using GPT2++ 

compared to the baseline comparisons. 

 

 

4.2.2.2 Cross Project Assessment 
 

It is the process of developing models for one project and then applying those models to another 

project to see how well they work. We, much as Choetkiertikul et al. [50], pay particular 

attention to both the linkages between repositories and the links inside individual repositories. 

The data from one repository is used to train the models, and then the data from another 

repository is used to assess the models. In figure 4.7 to carry out an assessment inside of a 

repository, a model must first be trained using data obtained from one repository's project, and 

then it must be tested with data obtained from another repository's project. Training is 

performed on the GPT2++models for each project using the training set, and evaluation is 

performed using the MAE measure on the testing set. Because Choetkiertikul et al. [50] 

suggests utilizing the same target project for both cross-repository and within-repository 

assessments, we also follow this recommendation. After that, we compare our GPT2++ to the 

results of Deep-SE [50] as well as ABE0 (analogy-based estimate). [79], [80], [81], [82]. An 
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estimate in story points is computed by the ABE0 for an issue in the target project by taking the 

story points of the three problems in the source project that are most like it and average them. 

Calculating the proportion of the MAE that has improved may be done. In other words, the MAE 

baseline is set at 100%. baseline MAE ours MAE baseline. 

 

 

 
Figure 4.7 MAE for cross-project estimate using GPT2++, Deep-SE, and ABE0 

. 

 

The use of GPT-2 language models results in a significant improvement for cross-project 

estimation scenarios, which demonstrates the advantages of using GPT-2 language models to 

learn the distributed representations of words in a more general setting. This contrasts with the 

Deep-SE project-specific pre-trained language models, which were used. Even though DeepSE 

can generalize its results from one project to another, it is restricted in its capacity to do so 

because it builds a pre-trained language model for each project to develop a vector 

representation of each word. 
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When comparisons are made between evaluations carried out solely inside a repository, 

GPT2++ performs just as well as Deep-SE and ABE0. It has come to our attention that the 

median MAE for GPT2++ is 2.4 (Rank-1), whereas that value for Deep-SE is 2.53 (Rank-1), 

and that value for ABE0 is 2.82 (Rank-2). Even though both GPT2++ and Deep-SE have 

comparable performance, GPT2++ has been shown to perform better in 62.5% of the tests 

carried out inside the repository. 

 

 

4.2.2.3 Performance Based on Sub word Tokenization 
 

To gain a deeper understanding of the topic at hand, it is crucial to thoroughly observe and 

analyze the mean absolute error of GPT2++ while adjusting its various components as described 

in figure 4.8. The GPT2++ model comprises two essential components: BPE subword 

tokenization and the GPT-2 architecture. These components form the foundational elements of 

GPT2++ and are vital to its functioning. In this study, the focus is on retaining the GPT-2 

architecture as the basis for the research while modifying the subword tokenization technique 

from BPE to either WordPieceSP or SentencePieceSP. This modification aims to enhance the 

understanding of the impact and significance of subword tokenization in the context of the 

investigation. By exploring alternative subword tokenization methods, a more comprehensive 

understanding of the contributions made by different tokenization approaches is sought. The 

utilization of Word Level tokenization, as seen in Deep-SE, during the transition from the 

LSTM+RHWN architecture to the GPT-2 architecture allows for a better understanding of the 

impact introduced by the GPT-2 Transformer. The objective of this study is to examine the mean 

absolute error (MAE) of five distinct models across sixteen diverse datasets, focusing on the 

within-project scenario as the experimental framework. 
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Figure 4.8 shows the effect on GPT2++ model when we alter either the tokenization or the 

architecture. 

 
 

However, in the case of GPT2++, BPE remains the optimal subword tokenization strategy. The 

model is fine-tuned with the hyper-parameter setting that minimizes loss, determined from the 

validation data, while the mean absolute error (MAE) is calculated using the testing data. The 

proposed Transformer-based design for GPT2++ significantly reduces the MAE by 67%, 

indicating a substantial improvement. Comparing different architectures with the same wordlevel 

tokenization (Word-LevelSP+GPT2 and Word-LevelSP+LSTM+RHWNDeepSE), we observe 

that Deep-SE experiences a remarkable 6% to 47% improvement in MAE, with a median 

percentage increase of 34%. This improvement is attributed to the Transformer design employing 

the masked multi-head self-attention mechanism. Unlike the LSTM unit, which needs to refresh 

information in the short-term memory cell at each time step, the masked multi-head self-attention 

approach allows for equal interaction between each word in a sequence, capturing dependencies 

more accurately and providing richer semantic interpretations. By utilizing a masked mechanism, 

the models are prohibited from attending to subsequent positions, ensuring their focus remains 

within the intended context. 
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When analyzing the results of multiple subword tokenization strategies using the same GPT-2 

architecture (BPE+GPT2SP, WordPieceSP+GPT2, and SentencePieceSP+GPT2), minor 

differences in MAE are observed. This suggests that the GPT-2++ design consistently 

outperforms the GPT2SP approach, regardless of the subword tokenization strategy employed. 

The limited impact of tokenization strategies can be attributed to the diverse nature of tasks 

performed by the Transformer models in subsequent phases. Concerns have been raised by 

researchers regarding the potential impact of different tokenization strategies on Transformer 

models used for code generation tasks in software engineering, as it may lead to bugs in the 

generated code. However, our study demonstrates the robustness and resilience of the 

Transformer models employed, as the influence of tokenization strategies is found to be limited. 

 
 

In summary, the GPT2++ model with BPE subword tokenization consistently demonstrates 

superior performance, resulting in a significant reduction in MAE. The Transformer-based 

design, incorporating the masked multi-head self-attention mechanism, effectively captures 

dependencies and semantic interpretations. The findings indicate that the impact of different 

subword tokenization strategies on the Transformer models used in our analysis is minimal, 

highlighting their overall resilience. 

4.2.3 Performance Based on F1-Score 
 

In this study, we examine the Mean Absolute Error (MAE) distributions of our proposed GPT2++ 

model and two baseline approaches. To compare the statistical significance of these distributions, 

we employ a non-parametric variant of the ScottKnott ESD test.The outcomes of this 

comparative analysis are presented in figure 4.9, which illustrates the performance of our 

GPT2++ model in relation to the two established methods for cross-project estimation. The 

investigation involved the determination of the mean absolute error (MAE) for each project under 

consideration. Furthermore, an evaluation of the performance metrics of our proposed GPT2++ 
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model in comparison to five other state-of-the-art methods is presented in Table 4.4. The 

experimental findings unequivocally demonstrate that GPT2++ exhibited superior performance 

compared to other State-of-the-art approaches in terms of accuracy, F-Measure, and Mean Square 

Error. 

Table 4.4 Performance metric F1 Score table comparison. 

 

 
 

Models 

Performance Metric 

 

(F1 Score) 

GPT2++ 0.87 

GPT2SP 0.84 

GRU-SVM 0.82 

BiGRU-SVM 0.79 

LSTM-RF 0.76 

LSTM-SVM 0.74 

 

 

 
 

 

 
Figure 4.9 Performance metric F1 Score graph comparison. 
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4.3 GPT2++ Agile Story Point Estimator Tool 

 
In this section, artificial intelligence (AI)-based story point estimation system, which is named 

GPT2++ presented in figure 4.10. This system has been developed as a web-based tool, equipped 

with explanations, and supporting examples. The primary objective of the proof-of-concept is to 

execute a survey study aimed at examining the difficulties associated with story point estimation 

tasks and to emphasis the importance of providing explanatory support for AI-based story point 

estimation. 

 

Figure 4.10 A snapshot of the proposed GPT2++ tool 
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To enhance practitioners' comprehension of the estimation process and facilitate the widespread 

utilization of the GPT2SP model, a web-based story point estimation tool has been developed 

as a proof-of-concept (refer to Figure 4.10). The tool serves three main purposes, aiming to 

address a specific issue. 

 
 

This study focuses on investigating the process of story point estimation in software 

development projects. The objectives include: 1) estimating the story point, 2) identifying the 

most influential word in the estimation process, and 3) providing supporting examples from the 

training set of the project under consideration. The first objective is to accurately estimate the 

story point, which is a commonly used metric in agile software development for quantifying 

the effort required to complete a user story or task. Accurate story point estimation enables 

effective project planning and resource allocation. Various techniques and methodologies 

employed by software development teams for story point estimation will be explored. The 

second objective is to highlight the key word or phrase that significantly contributes to story 

point estimation. By identifying these influential words, insights can be gained into the factors 

that influence estimation and potentially improve accuracy. This analysis will involve 

examining a dataset of user stories. The supporting examples used in this study are selected 

based on their inclusion of the most significant keyword and having the same story point as the 

target issue. 

The research paper focuses on the utilization of two concepts of Explainable Artificial 

Intelligence (AI) in the development of the GPT2++tool. The third objective concepts are 

feature-based explanations and example-based explanations. Incorporating these concepts 

enhances the interpretability and transparency of the AI system. Feature-based explanations 

assist practitioners in understanding the key words that significantly influence story point 

estimation for a given issue. These explanations provide valuable insights into the estimation 

process factors. By identifying the most important words, practitioners can enhance their 
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understanding and make informed decisions. On the other hand, example-based explanations 

extend the casebased reasoning paradigm, where optimal supporting examples are searched 

based on identical words and story points within the same project. 

 
 

4.3.1 Example Usage of Tool GPT2++ 

 
 

Application of the GPT2SP Tool. An issue (TIMOB-20252) from the Titanium project is used as 

an example to demonstrate the use of the GPT2++ tool. The title of the problem is "Windows: 

Windows 10 SDK is not detected." When you enter this title into the GPT2++tool, the model 

predicts a story point of 5.0. Based on the actual ground-truth, it is discovered that the story point 

estimation for this issue is correct. The GPT2++ utility offers two main explanations for this 

problem. To begin, it determines the most important word that contributed to the estimation of 

tale points, which in this case is "Windows." This suggests that the presence of the phrase 

"Windows" was important in identifying the story point. Furthermore, based on the most 

important word, the GPT2++ tool provides the top three supporting instances. TIMOB-178452, 

TIMOB-178463, and TIMOB-178474 are three examples. These instances are related by the 

word "Windows" and have the same story elements as the target issue. This finding implies that 

topics with comparable story elements frequently have similar keywords. As a result, the 

GPT2++ tool may help Agile teams achieve consistency in story point prediction using historical 

data. 

Overall, this example exhibits the GPT2++ tool's actual use, demonstrating its capacity to 

estimate story points accurately while also providing valuable explanations and accompanying 

examples to aid in the estimation process. 
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4.4 Summary 

 
Mean Absolute Error (MAE) is applied in both the internal and external experiments of this 

study, and it is also utilized by Choetkiertikul et al. to evaluate DeepSE. This research was 

carried out in the United Kingdom. The mean absolute error (MAE) is a statistical measure that 

examines how much various predictions disagree, ignoring the directions in which the errors 

are made. Other metrics such as MdAE, MMRE, and SA are not preferred since they are unable 

to capture outlier estimates, they have a bias toward underestimating, and they are comparable 

to random guessing. Calculating the significance of the accuracy gap between GPT2++ and 

other baselines is accomplished with the use of the non-parametric ScottKnott ESD test. This 

test ranks treatments according to mean values and ensures that there are major variations 

between groups. When conducting internal evaluations, datasets are often segmented into 

training, validation, and testing sets to eliminate temporal validation bias. When training 

GPT2++ models, the training set is used; after that, the models are evaluated using the MAE 

metric on the testing set. During cross-project evaluations, which take place when models that 

were trained on one repository are evaluated on another, GPT2++ is compared to Deep-SE and 

ABE0. GPT2++ performs much better than the baselines and is statistically preferable because 

of its lower mean absolute error (MAE) value. Ablation study is used to investigate how the 

performance of GPT2++ is affected by the interactions between BPE sub word tokenization 

and the GPT-2 architecture. The research results show that GPT2++, which makes use of the 

Transformer design, significantly improves Deep-SE's MAE, but the other sub word 

tokenization techniques have just a little impact on MAE. This is because GPT2++ uses the 

Transformer architecture. 
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Chapter 5 
 

 

 

 

 

 

Conclusion and Future Work 

 

 

 
5.1 Overview of Research 

 
The purpose of this project is to find solutions to the problems that software development teams 

have when attempting to provide realistic estimates of the complexity and work necessary to 

finish user stories. Although algorithms already exist, there is a lack of understanding of the 

underlying context of user wants, which leads to outputs that are less than optimum and missed 

deadlines. The methodologies of machine learning and deep learning both have drawbacks, the 

most notable of which are their high time complexity and low accuracy. 

Pre-trained transformers, GPT models, have showed potential in improving story-point 

estimation as a means of overcoming the issues described above. However, within the 

framework of the GPT-2++ model, there is a possibility that some attention heads may not 

effectively contribute to the process of estimating story points, which will result in findings that 

are not as good as they might be. The purpose of this study is to determine which attention 

heads are not productive and then get rid of them to get a more accurate estimate of the number 

of story points. 

The purpose of this study is to make the process of computing story points more precise, 

predictable, and time-efficient by getting rid of attention heads that aren't doing their job. 

Among the anticipated results is an improvement in both the predictability of and the efficiency 

with which one can estimate the amount of work necessary for user stories. This increase in 
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estimating accuracy and efficiency would be beneficial to project management since it would 

enable improved planning and resource allocation. 

Collecting a varied dataset of user stories and the story points that correlate to those stories is an 

integral part of the study technique. 

Following the completion of preprocessing, which involves cleaning and transforming the data, 

the GPT-2++ model is fine-tuned by making use of the dataset. A study of the attention heads is 

carried out to determine which attention heads are ineffective. Afterward, the ineffective attention 

heads are removed by making the necessary adjustments. 

The performance of the updated GPT-2++ model is evaluated based on the given evaluation 

metrics, and the results are compared to baseline models and current estimating techniques. 

Experimentation and validation are components of the study, both of which are used to establish 

the dependability and generalizability of the findings. 

By enhancing attention processes in pre-trained transformers, the results of this study hope to 

contribute to the area of software estimation. The projected results include a more precise and 

efficient assessment of story points, which will lead to improved software project planning, 

monitoring, and execution in the real world. 

In conclusion, the purpose of this study is to improve story-point estimate by getting rid of 

attention heads in the GPT-2++ model that aren't very successful. Data collection, 

preprocessing, model training, attention head analysis, elimination, assessment, and validation 

are all components of this technique. The anticipated advantages include increased accuracy 

and efficiency in estimating costs, which would eventually lead to more dependable project 

management and efficient use of available resources. 

5.2 Summary of Research Contributions 

The discipline of software estimating, and story-point estimation in particular, benefits from 

several important advances made by this study. 
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• Identification of Challenges: The findings of this study give a full knowledge of the 

issues that software development teams confront when attempting to correctly estimate 

the level of complexity and labor necessary to execute user stories. It brings to light the 

restrictions imposed by currently available algorithms as well as the challenges related 

with machine learning and deep learning strategies. 

• Integration of Pre-trained Transformers: The project investigates the possibility of 

improving the accuracy of story-point estimate by exploiting sophisticated natural 

language processing capabilities. 

This is done by introducing pre-trained transformers, notably the GPT-2++ model, into the 

estimation process. 

• Attention Head Analysis: The study presents an original method for assessing attention 

heads within the context of the GPT-2++ model. It does this by analyzing the attention 

patterns and weights, which allows it to determine which attention heads do not 

successfully contribute to an accurate evaluation of the story points. 

• Attention Head Elimination: Using the analysis as a foundation, the study proposes a 

strategy for removing inefficient attention heads from the GPT-2++ model. To improve 

estimating precision and performance, this procedure entails adjusting the weights of 

the remaining attention heads or altering the processes that control attention. 

• Improved Estimation Accuracy and Efficiency: According to the findings of the 

study, the updated GPT-2++ model can achieve improved estimate accuracy and 

efficiency in the process of computing story points by getting rid of attention heads that 

are inefficient. This enhancement may have a substantial influence on the planning, 

monitoring, and resource allocation of the project. 

• Practical Application and Real-World Impact: The results of this study have 

ramifications that may be used in practice for software development teams working in the "real 

world." Teams can more effectively plan, monitor progress, and execute projects, which leads 
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to fewer delays and better project results when they have the capacity to estimate story points 

more correctly. 

• Advancement of Research in Software Estimation: This study contributes to the more 

general topic of software estimation by looking at many novel techniques that might 

improve attention processes in pre-trained transformers. It provides insights into 

enhancing the estimate accuracy of complicated tasks via the integration of modern 

approaches for processing natural languages. 

This study adds to the knowledge and enhancement of story-point estimation by addressing 

issues in reliably estimating the effort necessary to complete user stories. In summary, the 

research addresses challenges in accurately estimating the amount of work that is required to 

accomplish user stories. To improve both the accuracy and the efficiency of the estimating 

process, the approach makes use of pre-trained transformers, evaluates attention heads, and gets 

rid of the inefficient ones. The relevance of this study is further validated by its practical 

ramifications as well as the developments that have been achieved in software estimation. 

 

 

5.3 Conclusion of the Research 

 
In conclusion, the evaluation of the difficulty and effort involved in user stories is critical to the 

production of productive software development cycles. However, the currently available 

algorithms for story-point task evaluation usually fail to comprehend the contextual 

complexities of user requirements, which results in delays and missed deadlines. Both machine 

learning and deep learning have been hampered by issues such as high time complexity and 

poor accuracy, despite the promise that both hold. The development of pre-trained transformers, 

particularly GPT, has, on the other hand, significantly contributed to a reduction in the severity 

of these issues. However, there is a possibility that some focus areas in GPT models may not 

successfully contribute to the estimation of story points, which may result in results that are less 
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than desirable. This study intends to enhance story point estimation by identifying inefficient 

focus areas inside the GPT-2 model and then removing them from the model entirely. The 

objective is to simplify the process of producing an accurate estimate of the amount of time and 

effort needed to accomplish a certain number of story points. By addressing these issues, we 

will hopefully be able to make software development teams more productive as a whole and 

make it easier to evaluate the degree of difficulty associated with user stories. 

 

5.4 Future Work 

 
The results that were provided in this abstract have paved the path for further study into 

enhancing the story point estimation process used in the software sector. The following are 

examples of potential subjects for further research: 

The present analysis focuses on recognizing and eliminating wasted attention heads within the 

GPT-2 model however, more research may be undertaken to examine methods of improving 

attention mechanisms that are custom-tailored for story-point estimation. In the meantime, this 

examination is centered on the GPT-2 model. One strategy would be to investigate a variety of 

attention structures, while another would be to devise innovative approaches to increase the 

significance of the attention heads and their contribution to the estimating task. Both strategies 

would be useful. 

An in-depth understanding of the context around user needs is necessary for an accurate 

evaluation of the story points. Future work may study methods to combine domain-specific 

information, industry-specific ontologies, or other data sources to get a better understanding of 

the context of user stories. This will allow for a more comprehensive understanding of the user 

stories themselves. Because of this, it may be necessary to make use of unique pre-training 

methods that include the use of datasets that are relevant to a certain domain or the inclusion of 

external knowledge graphs. 



89 | P a g e 
 

It is feasible to further improve the software development lifecycle by integrating the updated 

story point estimate method with extant project management tools and frameworks. This may 

be done to achieve the goal of further optimizing the software development lifecycle. In the 

future, we will be able to provide connectors and plugins for well-known project management 

software to facilitate the process of incorporating the estimating procedure into the program. 

The incorporation of accurate story-point predictions into the processes of planning and 

monitoring in such a manner would be of tremendous use to teams. 

 

Extensive benchmarking and comparative study of different story-point estimate approaches, 

including the proposed enhanced GPT-based method, will give helpful insights into their 

relative strengths and constraints. These insights may be used to improve the suggested method. 

To do this, we may evaluate the effectiveness of various algorithms by using a standard set of 

evaluation criteria and data sets. The findings of such an investigation would be helpful in 

establishing which approaches are the most efficient, as well as which approaches to estimating 

are the most appropriate for a wide range of circumstances. 

Before the suggested innovations can be implemented, they need to first be tested and their 

performance assessed in real software development projects. It would be beneficial for future 

study to explore the possibility of putting the enhanced story point estimate process into practice 

by collaborating with key industry stakeholders. This would make it feasible to obtain genuine 

data, assess performance in real-world scenarios, and request user input for future 

enhancements. All these things would be achievable thanks to this. 

By studying these potential work approaches, researchers and practitioners may continue to 

enhance story-point estimates in software development. This will result in more exact, efficient, 

and trustworthy estimating techniques, which will eventually contribute to the success of 

software projects. 
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5.5 Summary 

 
By addressing the problems that now exist, the purpose of this study is to enhance the accuracy 

and productivity of story-point estimate in software development teams. We emphasize the 

limits of the algorithms and techniques to machine learning that are currently in use, and we 

investigate the possibility of pre-trained transformers, more especially the GPT-2++ model. To 

improve the accuracy of the estimate process, the study is focused on locating and removing 

inefficient attention heads from inside the GPT-2++ model. The redesigned model delivers 

higher estimating accuracy and efficiency because of the removal of these ineffective attention 

heads. This, in turn, leads to enhanced project planning, monitoring, and resource allocation. 

The study provides several key advances, including the identification of difficulties, the 

integration of pre-trained transformers, the introduction of attention head analysis and deletion, 

and the demonstration of practical application and real-world effect. The results provide a 

contribution to the progression of research in software estimate and have consequences for the 

improvement of project outcomes in the industry of software development. 

In the future, additional research can be carried out to optimize attention mechanisms that are 

tailored for story-point estimation, investigate ways to incorporate domain-specific 

information, integrate the revised estimation process with project management tools, perform 

benchmarking and comparative studies, and validate the proposed enhancements in actual 

software development projects. These prospective directions intend to enhance the accuracy, 

efficacy, and dependability of the techniques used for estimating story points, which will 

eventually contribute to the success of software projects. 
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