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ABSTRACT 
 
Streaming Applications usually run in parallel or in series that incrementally transform a stream 

of raw input data into a stream of processed output data. The only issue in streaming application 

is project realization time. This issue poses a design challenge to break such an application into 

distinguishable blocks and then to map them into independent hardware processing elements. For 

this, there is required a generic controller that automatically maps such a stream of data into 

independent processing elements without any dependencies and manual considerations. In my 

thesis work, we have designed and developed a framework of Kahn Process Networks (KPN) for 

such streaming applications that will be mapped on MPSoC. This is designed in such a way that 

we have a generic C-based compiler that will take the mapping specifications as an input from 

the user and then it will automate these design constraints and automatically generate the 

synthesized RTL optimized code for specified application. 
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CHAPTER 1 

 

INTRODUCTION 
 

Streaming applications are usually represented as a set of simultaneous processes that take a 

stream of input data and then transforms them into processed output stream of data. Implementing 

such an application on hardware poses a large challenging modeling problem. For this, KPN is the 

best ever representation to model such applications on hardware. KPN is a set of independent 

processes that communicate through point-to-point fashion over unbounded buffers with blocking 

Read and Non-blocking Write. This provides a very simple mechanism to map an application on 

hardware or software as KPN. The Reads and Writes also elevate the design from the use of 

complicated schedules. By this, streaming applications are mapped on independent processes 

working autonomously after acquiring sufficient data samples on its input buffers. Such data 

samples are called tokens in KPN’s terminology and such an execution is called firing of tokens.  

 

Streaming applications are usually mapped on FPGA and ASIC. The main idea behind this 

work is to propose a system in which streaming applications will be broken down into set of 

separate independent processing elements (these processing elements will be set of FPGAs or 

ASICs), mapped through KPN and inter-process communication between these processing 

elements will be performed through NOC Switch. This paper demonstrates the mapping 

constraints on these processing elements and then finally generates a generic customized 

controller that automatically maps these applications on hardware. By this, the designer can 

simply add any number of available processors in streaming applications and automatically map 

different types of streaming applications on hardware without any manual settings and 

dependencies. 
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1.1 RELATED WORK 
 

No C-based compiler has yet been introduced in research that can automatically generate RTL 

synthesized KPN model based on the specifications of streaming application. But there are so 

many design issues in KPN implementation. A lot of research has been undergone in KPN buffer 

sizing, artificial deadlock detection and real time scheduler for KPN.  

 

In 1974, Kahn proposed semantics of simple language for parallel programming. This was his 

PhD. thesis work in which he proposed a parallel computation model where any application can 

be modeled into set of concurrent independent processes with unbounded FIFOs (First In First 

Out) buffers at its inputs and outputs. Theses independent concurrent processing elements can be 

executed on any parallel processing units without incurring any overhead and dependencies. His 

main contribution of work is illustrated in [1]. [2] introduced some new features of KPN with 

regards to its task level parallelism and its deterministic behavior. In real sense, no memory 

allocation can be unbounded, so a lot of research has been made in optimum buffer sizing for 

KPN implementation. [3] proposed an automatic buffer sizing for KPN on MpSoC. They 

proposed an idea of automatic buffer sizing by starting with some fixed sizing and incrementally 

increase buffer sizing wherever needed. In KPN, FIFO read is blocking and FIFO write is non-

blocking based on the assumption of unbounded buffer size. When we start imposing the impact 

of finite memory sizes then an artificial deadlock issue arises. [4] demonstrated the effectiveness 

of KPN in media and signal processing applications and presented the method of effective and 

bounded execution of KPN. [5,6] deals with this artificial deadlock detection when all the 

processes in the process network are blocked then they claim of finding the effective solution.[7] 

suggested a new idea of an early detection of artificial deadlocks in the process network of eclipse 

shape. In recent so many years, KPN has been modified in the set of different DSP designs 

because it is compositional and it allows parallelism. The output of the KPN is independent of the 

flow of sequence of execution. [8] presented the idea of designing and analysis of DSP designs 

using Kahn process networks. [9] proposed the idea of basic transformation of basic DSP designs 

into Kahn networks, but he did not focus on the task level decomposition of the particular DSP 

design and also the automatic controller for it. [10] diminished the concept of artificial deadlock 
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in process networks and proposed a design of real time scheduler for process networks on 

multiprocessor system on chip. Because of KPN’s effectiveness, it is consistently used for 

mapping streaming (Audio or Video) applications on MPSoC. Compaan and Laura in [11] 

projected a system design where they take an application written in Matlab and automatically give 

the transformation which can be mapped on to target platform. YAPI in [12] provided a C++ 

interface that gives KPN implementation on single processor. [13] offered the idea of KPN 

exploration on multiprocessor system on chip.  

 

In this thesis work, my field of interest lies in streaming application mapping. For that, I have 

proposed an architecture in which I have designed a C-based compiler that can automate the 

design constraints and automatically generates the synthesized HDL implementation of KPN that 

is application independent.   
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CHAPTER 2 
 

LITERATURE REVIEW 
 

 

Now days, there is continuous trend of technology advancement in the field of embedded 

multiprocessor on chip (MPSOC). For the real-time streaming application, it is always desirable 

to cater the delay and jitter in transmission. The embedded system must be very efficient in terms 

of its speed and its area consumption. To ensure its high speed, several architectures were 

proposed in which multiprocessor-on-a-chip is one of them. MPSOC ensures its fast processing 

with the help of multiprocessors core on a singe chip. Any application is broken down into set of 

sub-units and each sub-unit is actually mapped on these individual independent processors. The 

inter-processor communication is guaranteed in MPSOC by the help of NOC (Network-on-chip) 

switch. This is how MPSOC works. My thesis work is to figure out the efficient ways of 

automatically mapping any application on MPSOC. Implementing a digital signal processing 

(DSP) applications on the MPSOC is a complicated problem. My literature starts with how many 

ways of representing DSP designs graphically. Data Flow Graphs (DFG) is the most commonly 

used graphs for representing DSP designs. Then, Kahn Process Networks (KPN) is considered an 

excellent model for modeling any applications on MPSOC, because of its so many 

implementation easiness like task-level parallelism, explicit behavior and determinism.  

 

This chapter is organized as follows. Section I lists the several ways of graphically representing 

DSP designs. Section II focuses on the detailed aspects of KPN and also its modifications with 

respect to DSP constraints.  
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SECTION I 
DSP DESIGN REPRESENTATIONS 

 

2.1 MODELING DSP DESIGNS 
 

There are commonly two methods that are used for representing DSP designs. Flow graphs are 

totally different in the sense that they particularly focus on the graphical view of DSP designs. 

• Language Driven Description 

• Graphics/ Flow Graphs Specifications 

 

2.1.1 LANGUAGE DRIVEN DESCRIPTION 
 

Language driven specification relies on the languages that represent DSP designs. They are used 

for software development. Usually languages are interpretive or executable. Interpretive 

language is a MATLAB that provides the flexibility to designer but usually does not produce an 

optimized version of the design. There are so many techniques to make the MATLAB code an 

efficient one like loops reduction and so on and on. Executable languages are critical in 

designing but they promote the efficient representation of design because at here, designer 

actually works at the memory usage and actively deals with register, so fast and efficient design 

is possible in executable languages as compared to interpretive driven MATLAB. 

 

Figure 2-1 shows the block diagram of general organization of representing DSP algorithms.  

This diagram demonstrates that generally, the DSP designs can be represented by two ways. It 

can be represented by an executable language description or by using flow graphs specifications.  

Next, the diagram shows that the language can be an executable or an interpretive one. Also it 
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sub-categorizes the flow graphs in to so many ways that are application dependent.  As flow 

graphs can be a block diagram, signal flow graphs (Representation in terms of signals 

information), the data flow graphs (representing graphs by data driven strategy), the 

Parameterized data flow graphs (parameterize some variables for history information of node), 

Cyclo-static graphs (that ultimately maps in to a periodic fashion). Also data flow graphs can 

more be cauterized in terms of  

 

DSP Algorithm
Representation

Language Driven Executable
Description

Graphics/ Flow Graph-Driven
Specification

Interpretive Executable Block
Diagram SFG DFG

SDFG SR-
SDFG

MR-
SDFG HSDF

PSDF CSDF CPSDF DDFG

 

 Figure 2-1: General Organization of DSP Algorithm Representation 
 

2.2 FLOW GRAPHS 
 

As language driven specification is a way of representing DSP designs but it does not usually 

ensure visibility of design units. Flow graphs are always considered the better way of 

representing any applications. Based on this visual interpretation, it is generally well suitable 

with the perspective of mapping the design on to several processors because independent sub-

units can easily be moved to separate computing platform. Also, this visual representation allows 
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the designer to re-use the components in the form of design instances. This helps in 

hardware/software co-simulation and assessment of design space in HW/SW for better 

portioning. 

There are so many types of graphs that are used for representing applications. 

2.2.1 Block Diagram 
 

Block diagram is a very simple form of representing designs. It has set of functional 

blocks communicated through a set of edges ensuring a form of connectivity between 

these functional blocks. These functional blocks are usually the adders, multipliers and 

delay elements in the circuit design. These adders, multipliers and delay elements are the 

basic building blocks of representing DSP designs. 

+

x

x

+

xx[n]

bo

a1

a2

y[n]

 

Figure 2-2: Block Diagram 
 

2.2.2 Signal Flow Graphs (SFG) 
 

Signal Flow Graphs are well thought-out the simple form of the block diagram. In SFG, 

the multiplier unit (that is either multiplying with a constant or a delay element) is 

replaced by the edge of the block diagram and the addition, subtraction and input-output 

relationships are ensured by the nodes. 
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-1

 

Figure 2-3: Signal Flow Graphs 
 

SFG and block diagram are attractive for representing DSP algorithms but when there is 

the issue of mapping architecture, they are not well-suited because they are not focusing 

on any synchronization issues and data consumption and production at each node. In 

short, the designer can not put any limitations on the node’s execution to ensure 

synchronization. 

  

2.2.3 Data Flow Graphs (DFG) 
 

The highly computational workstations have been a reasonable choice for intensive 

multimedia applications. The major demand from these workstations is the high 

throughput and high performance. These requirements had been for years but, with the 

advancements of commercial workstations, these issues are resolved. Like the hardware 

development costs are sharing server market, software development costs are abridged 

because operating systems gives upgradeability, portability and maintainability.  

 

Kahn Process Networks (KPN) is a data-flow modeling technique that is used to model 

various streaming based multimedia and signal processing applications. KPN can also run 

in event driven applications and multi-rate systems. The key features of KPN lies in their 

parallelism and their communication in a specific task is explicit; means they are very 

suitable in multiprocessor environment. The major advantage of KPN is that they allow 
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processes the asynchronous construct, by this the process can work independently and 

concurrently.  

 

A matter of concern for my thesis is particularly a mapping of DSP designs on any 

reconfigurable computing platform. Data Flow graphs are the most widely used data flow 

graph model used for representing DSP designs. This is the flavor of DSP that the 

application can easily be broken into sub units. These subunits are formed in such a way 

that they can easily be worked independently and executed on parallel computing 

platform with out the threat of any data coherency issues. In such a scenario, DFG is the 

best model of representation. In DFG, an application is represented by a set of computing 

units also called nodes or vertices and set of edges. These nodes are interconnected to one 

another by the help of directed graphs. Each node has its corresponding edges at the input 

and output. Each node is defined with the corresponding number of data values also 

called tokens. Node will not execute as long as it finds sufficient number of data values 

or tokens at its respective input edges. After firing the sufficient number of tokens, the 

node takes throughput number if clock cycles for its internal processing. For storing these 

particular number of tokens on the input and output edges, we have an associated FIFO 

buffers for temporarily holding these data tokens. Each edge also has its associated 

algorithmic delays. Figure 2-4 showing the DFG model in which we have four nodes or 

actors A, B, C, and D. e1, e2, e3, e4 and e5 are the connected edges working as a mean of 

communication channel among these processing units. These edges have set of FIFO 

buffers for temporarily holding data values or tokens.  

A B C D

e

e e

e

e

5

1

2

3 4

 

Figure 2-4: Basic DFG Model 
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Data flow graphs is my point of concern because they are well suited especially for 

representing signal processing applications. In any DSP designs, the subunits are usually 

multi-rate systems and their representation as a DFG is straightforward. Also, DFG 

representation allows the very cost-effective solution in terms of hardware reuse. Also 

this representation works on component basis so testing, verification and module level 

optimization can be carefully performed.   

 

2.2.3.1 Synchronous Data Flow Graphs (SDFG) 
 

As data flow graphs are particularly focusing on the directed graphs in which we 

have number of processing elements (Actors) and their associated connectivity 

information. When the actors are executed, they consume required number of 

tokens at all the input edges and after processing, send the processed data tokens 

to the output buffer. When this rate of consumption and production is defined at 

compile time, then the data flow graphs are called the Synchronous data flow 

graphs (SDF). This helps in the provision of so much optimization techniques. In 

short, in SDF, the number of token consumption and production at each link is 

fixed or constant. This easily helps in predicting the pattern or flow of sequence 

of operation and memory constraints at compile time. Also in SDF, the run time 

behavior is very predictable.  

 

In Multimedia and streaming applications, usually, the application is running on 

fixed sampling rate ensuring the fixed or constant number of data tokens at the 

input and output edges. Thus for signal processing applications, each processing 

unit has predefined number of samples for consumption and production. For 

example, a decimator that is just throwing out data samples. It is defined by a rate. 

If it is decimating by 2 means that it will take two samples at its input edge and 

passes one sample to its output and throwing the second one. In this case the rate 
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of consumption and production ratio is 2:1. Figure shows that in SDF, the nodes 

are represented by their names and execution time. Each edge is represented at its 

head and tail by the consumption and the production token rates. In this figure, we 

have three nodes A, B and C having execution time represented in circles as T1 

and T2 and T3. Also each edge is marked with the data or token consumption and 

production rates. Each node will not execute its processing as long as it finds 

sufficient tokens on its input buffers. Also there is another parameter that can be 

labeled on SDF i.e. algorithmic delays. These algorithmic delays specify that 

Node B will take three iterations old data tokens for its firings. Conclusively, SDF 

is the most commonly used model for representing DSP designs that is 

particularly my point of concern in my thesis.  

A, T1 B, T2
CB PBPA

C, T3
Cc

 

Figure 2-5: Basic DFG Model showing Nodes general characteristics 
 

 

2.2.3.2 Single Rate SDFG and Multi-Rate SDFG 
 

In Single Rate SDFG, the number of tokens consumption at the input of the node 

is same as the number of tokens produced by this node at its output edge. While in 

case of multi-rate SDFG, the rate of consumption and production parameters are 

not same. These specifications are relatively very important especially for 

designing purpose. If it is assumed that the graph is a single-rate one then the 

optimization techniques can easily be engaged. But in my thesis work, I am 

focusing on DSP designs that are usually multi-rate in nature, so optimization is a 

big design challenge and a key research issue as well. 
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2.2.3.3 Homogeneous Synchronous Data Flow Graphs (HSDF) 
 

Homogeneous SDF is a special case of SDF. In HSDF, the rate of consumption 

and production parameters at each node is one. This is important because it gives 

the information of throughput (Number of cycles taken by node for its execution). 

Also, it reduces the complexity of hardware at the expense of large number of 

node’s occurrence. Based on this occurrence, task level parallelism is possible and 

application can easily be run on so many parallel computing units. 

 
2.2.4 Parameterized Synchronous Data Flow Graphs (PSDF) 

 

SDF is particularly ineffective to dynamic behavior of node. Parameterized SDF 

comes in this case where structured and dynamic parameter changes are required. 

PSDF graph is comprised of PSDF actors and PSDF edges. The combination of 

PSDF actors and PSDF edges control the functionality of a node and also 

different configuration settings like rate of consumption and production and data 

flow characteristics of node. Each PSDF system consists of three graph 

parameters that are separately controlled, the init graph, the sub-init graph and the 

body graph. Init and sub-init graph control the configuration settings of bode 

graph while the body graph controls the main functional specifications of the 

processing unit or actor (Node). These init and sub-init graph reserves the 

previous history of node’s execution as well for efficient modeling of dynamism. 

Figure shows a mapping of simple SDF to the parameterized Data Flow graph. 

Figure depicts that each node is parameterized by the three set of graphs. A.Init 

and A.Subinit controls the functionality of node A’s body by setting the body 

parameters and A.body is resided with the actual functionality of node. 
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A

A.Init A. Subinit

A.Body
A B1 1

 

Figure 2-6: PSDF Model 
 

 

2.2.5 Cyclo-Static Data Flow Graphs (CSDF) 

 

Cyclo-Static SDF is one of most powerful extension of SDF. In CSDF, the rate of 

token consumption and production varies but according to the fixed periodic 

pattern. This periodic pattern is called the phase of the actor. This form is 

particularly suitable for signal processing techniques because of variable nature of 

data firing rate. For example an application having nodes X, Y and Z. Following 

the diagram shows that each node is having different number of data firing rate 

according to specific function execution order of the node. Node X, Y and Z have 

execution time of [1,3], [2,4] and [3,7] respectively. Based on specific function’s 

execution, each node is consuming and producing varying number of data tokens. 

X
[1,3]

Y
[2,4]

Z
[3,7]

[2,3][2,4] [1,4] [2,1]

 

Figure 2-7: PSDF Example 
 

Figure shows generic way of cyclo-static data flow graphs representing DSP 

designs modeling in such a way that each node has an execution sequence 

fj(i)……fj(Pj) of length Pj. Each fj(i) is called the phase of the sequence. For each 

actor Aj, the node executes the sequence fj(j%Pj) and produce the token rate 

specified by the sequence Xj(j%Pj). 
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Aj Bk
[Xj (1),.....Xj (Pj)] [Yk (1),.....Yk (Pk)]

[f j (1),.....fj (Pj)] [f k (1),.....f k (Pk)]  

Figure 2-8: Generalized PSDF Model 
 

 

2.2.6  Parameterized Cyclo-Static Data Flow Graphs (PCSDF) 

 

As CSDF is a meta-modeling technique but it requires fixed compile time 

information of node’s execution time and tokens consumption and production 

rates. Each node has a series of periodic sequences for its execution. 

Parameterized CSDF allows the better optimization techniques in terms of 

hardware reconfiguration by using dynamic behavior of node at run time. Figure 

depicts that, In PCSDF, each node or actor is parameterized for its functionality 

but here the data behaviors of each node vary cyclically. In fact, it is a cyclic 

pattern that does for parameterization of node.  

Aj Bk
[Xj (1),.....Xj (Pj)] [Yk (1),.....Yk (Pk)]

[f j (1),.....fj (Pj)] [f k (1),.....f k (Pk)]

Aj.Init Aj.
Subinit

Aj.Body

Bk.Init Bk.
Subinit

Bk.Body

 

Figure 2-9: Generalized PCSDF Model 
 

Theoretically, in PCSDF, there are two controlling parameters that are particularly 

concerned in the data flow behavior of PCSDF. These are 
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2 Period of cycle of each phase with respect to each actor. 

3 Rate of consumption and production parameter for each phase with respect 

to each actor. 

 

2.2.7 Dynamic Data Flow Graphs (DDFG) 

 

In Dynamic Data Flow graphs, the number of tokens produced and consumed at run time. 

This gives better optimization techniques and efficient memory usage. 
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SECTION II 
PROCESS NETWORKS MODELS 

 

High performance systems in terms of cost, power, area, compilation time or throughput and 

limited memory usage are always the measures for all system designers especially on any 

hardware configurable platform. The main aim of any system designer is to efficiently use the 

available resources and keep the system at the level of the design specifications. For multimedia 

streaming and signal processing applications, compilation time and memory usage are the main 

point of threats for designers. Usually, the designer has limited memory available and its 

efficient use is dependent on the process’s context switches. To cater this huge problem, there 

exist so many process network models that take cares of specific parameters of the design 

requirements. If we talk about particularly the multimedia and signal processing applications, 

timeliness and limited memory are the points of concern because, for example, delayed 

transmission will not make any sense in any videoconferencing session and also streaming 

applications deal with large number of video and audio frames and efficient memory usage come 

for their storage purpose. Based on these design requirements, Process Network (PN) models are 

particularly considered best models of computation for such applications. Usually, signal 

processing applications deal with real infinite amount of data samples. PN must be capable 

enough to automatically schedule such a continuous stream of data in a given amount of data. 

There are so many types of process network models but Kahn Process Network (KPN) is the 

commonly used one. Here we will discuss it in more detail. 

 

2.3  Process Network Model 

PN is a model of computation in which we have set of processing units like nodes or processes. 

These processes take continuous stream of data packets called tokens from infinite length FIFO 

(First-In First Out) buffers and write the transformed or processed data on to FIFO buffers on 

infinite length. KPN (Kahn Process Network is a most commonly used model of computation for 

streaming applications. In this typical KPN model, As FIFO buffers are assumed to be of infinite 
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length, so writing to buffers is non-blocking but there may be the case where the process 

attempts to read the data from empty queue so we have a blocking read operation. In short, KPN 

is a computational model in which all the processing elements can run concurrently with 

blocking read and non-blocking write operation.  

 

Here are the some key features of KPN model: 

• Its determinism-- means it does not affect the functional behavior of application only the 

topology of network changes.  

• The execution order does not matter—application is explicit 

• Facilitate the components reuse and design complexity. 

• All the nodes have their own FIFO buffers so there is no concept of global memory and it 

is well suitable for multiprocessor architectures—it allows task level parallelism 

• Good optimization techniques can be prevailed because of easy component’s handling 

• All the nodes have automatic synchronization because of blocking read operation  

 

Before further going on the details of KPN, We list some basic definitions that will be commonly 

used for KPN understandings. 

2.3.1 Output Completeness – the output of this modeling must yield the same results as are 

defined by the algorithm. This is very important in the sense that for every raw data, we 

must acquire the transformed processed data according to the proposed algorithm. 

 

2.3.2 Execution Order – Refers to the matter of reading from and writing into the FIFO 

buffers. As is defined above that the execution order is not an issue in the case of KPN 

because any sequence of execution will yield the same desired output. This execution 

order can be defined at compile time or run time. Generally, the execution order is either 

static or dynamic. 

• Static – Execution order is first defined and then that order is followed in network 

execution. In short, the execution of processes is fixed and defined at compile time. 
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• Dynamic – Execution order is not fixed and usually defined at run time. It goes 

continuously changing according to network conditions.  

 

2.3.3 Boundedness – The execution order helps nodes in determining the sequence of their 

proper execution but this cause the nodes to wait for control that will be given to them at 

respective times. Because of this, unconsumed tokens will be accumulated on FIFO 

buffers waiting for their turn of execution. Boundedness ensures that these tokens are 

bounded for the complete execution of the program. More specifically the network may 

be strictly bounded, bounded or unbounded. 

 

2.3.4 Strictly Bounded – Unconsumed tokens on all FIFO queues give rise to complete 

execution. 

• Bounded – Unconsumed tokens on all FIFO queues must at-least give rise to one 

complete execution. 

• Unbounded – Unconsumed tokens on all FIFO queues do not give any single complete 

execution. 

 

2.3.5 Termination – Termination relates to the number or amount of data values that are 

processed by the network. If all the input buffers are taking finite amount of data then at 

some later time, the program will definitely terminate. But if any singe input FIFO buffer 

takes continuous stream of data then the program will never terminate. 

 

2.3.6 Memory Allocation and Buffer Sizing – Memory reservation is a definite issue 

especially for streaming multimedia applications because of their heavy storage 

requirements. As the basic KPN implementation lies on this concept that each processing 

element is connected with the FIFO buffers of infinite length but the memory allocation 

of infinite length is impossible to do. When KPN gets optimized according to desired 

specifications then the issue comes of the optimum size of FIFO buffers. Optimum size 

of the FIFO buffers is a big challenge of today’s research. 

 



 

19 

 

2.3.7 Artificial Deadlocks –Artificial deadlock is a case where node gets blocked just because 

of the insufficient memory allocation of FIFO buffers.  There are usually two drawbacks 

of KPN implementation with respect to memory. There may be more memory allotted 

between network processes or not enough memory allocation. When node gets 

insufficient memory then it gets blocked not because of inadequate tokens on FIFO 

buffers but because of small buffer sizes. There are so many researches that have been 

carried out in this regard. One option is that to start with some fixed size of buffers and 

then based on dynamic conditions/network traffic conditions, the size of buffers are 

varied. Ultimately all the buffers automatically reach to optimum buffer size range. 

 

 

2.4 KAHN PROCESS NETWORK: 
 

Kahn Process Network (KPN) is a computational model that provides the facility of parallel 

computation i.e. concurrency. At first, the application is divided into set of sub-units. It is the 

designer choice that how effectively the application can be broken down into components. As I 

have already figure out earlier that this reduces the system’s complexity and the ability of 

component’s reuse. Once the application is broken down, then it is mapped to any reconfigurable 

hardware platform. To configure them we have some process network models among which 

KPN is considered the best one.  

 

2.4.1 KAHN PROCESS NETWORK MODEL 
 

KPN model is commonly represented as directed graph in which all the nodes or actors are 

generally represented as processing elements. These processing elements are any processors that 

will perform some form of dedicated task. The actual component’s functionality is performed at 

here. The inter-communication among these processing elements is ensured by designing a 

proper topology. In this topology, we have a complete list of connectivity and the complete FIFO 

buffers requirements. In KPN, each component of any streaming application i.e. processing 



 

20 

 

elements communicates with one another by a set of infinite length FIFO buffers. Conclusively, 

network is described as a graph G = (V, E, F), where 

 V= Vertex or Node or processing element 

 E= Connected edges between nodes 

 F= Functionality defined in the network element. 

 

Figure 2.10 demonstrates the basic KPN model in which an application is broken down into set 

of processing units and their communication is performed through set of FIFOs. Each processing 

unit is defined with its name and number of cycles or time units, they take in execution. Also, 

each processing node is connected to set of FIFOs at its input and output. These nodes will not 

execute as long as it finds desired number of RC (Rate of Consumption) tokens on its input FIFO 

buffers. The processing units will check on its input FIFOs, when it acquires sufficient tokens, it 

will start executing. The control is given to this processing unit as long as it executes. After its 

execution, RP (Rate of Production) number of processed tokens will be written on its output 

buffers. In this model, Node ‘A’ is taking the continuous stream of data. When its input FIFO 

buffer ‘F1’ will store two tokens, then process A will fire and takes eight cycles for its execution. 

After completing this processing, it will write two, three and one tokens on FIFOs ‘F2’, ‘F3’ and 

‘F4’. Process ‘B’ and ‘C’ will execute when they find two and one tokens on its input FIFO 

buffers i.e. ‘F2’ and ‘F4’. Process ‘D’ will not execute until it finds two, three and one tokens on 

its input buffers i.e. ‘F5’, ‘F3’ and ‘F6’. Process ‘D’ is continuously writing data to its output 

buffer ‘F7’. This is how streaming applications are mapped through KPN structure. 
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Figure 2-10: General KPN Model 
 

 

2.4.2 KPN FOR MODELING STREAMING APPLICATIONS 
 

Figure 2-11 shows the very basic example of JPEG compression. Implementing JPEG is a good 

example to explain effectiveness of KPN in streaming applications. The raw image taken from the 

source is saved in FIFO ‘F1’. Node ‘1’ performs the RGB to YCbCr conversion and stores the 

transforms image to FIFO ‘F2’. The Node ‘2’ waits to perform the conversion to take place and 

once FIFO ‘F2’ acquires this data, it fires and computes DCT and writes the result in FIFO 

‘F3’.Now Node ‘3’ and ‘4’ sequentially fire and compute Quantization and Entropy coding and 

write data in FIFO ‘F4’ and ‘F5’. This is how any streaming application can be mapped through 

KPN structure without incurring any overheads. 
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Figure 2-11: KPN modeling for streaming applications 
 

 

2.4.3 RESTRICTIONS OF KPN MODEL: 
 

KPN follows the strict behavior of FIFO operation for buffering data.  My thesis work is 

particularly focusing on KPN implementation for multimedia streaming applications. Particularly 

speaking, these applications do not follow this stringent behavior of FIFO operations causing 

some limitations in classical KPN model. Thus, a modified KPN will be desirable for streaming 

applications. Some of the major restrictions happen because of strict FIFO behavior are 

• Reading of data or tokens from the FIFO buffers require strict FIFO operation but there are 

so many signal processing techniques that do not require such a stringent behavior for their 

execution. For example, if the application mode is performing decimation in time then it doe 

not need all the consecutive data tokens. This is one of the major flaws because of classical 

KPN implementation. 

 

•  There are so many signal processing applications that require the data multiple times. For 

example, in convolution, the node performs point to point multiplication and then additive 
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sum to generate one output sample. After that, there is a simple shift by one in time domain 

and then again node performs this same operation using the old previous stored data tokens. 

But in this standard implementation, once the data gets read from the FIFO buffer then it is 

flushed out from the memory without considering any behavior of node at run time.  

 

• There may be some cases when the node does not have need of the data currently 

stored/available in FIFO buffer but the node can not take the desired data until this useless 

information will first extract from the buffer. Thus node does not need that where data is read 

sparsely. 

 

2.4.4 CUSTOMIZED KPN MODEL: 
 

They are so many solutions of handling this problem occur just because of typical FIFO 

behavior. The very simple solution is use a local memory provided to each network node. This 

local memory is meant for keeping the copy of data that node is expecting to use in near future.  

 

KPN model comes in so many implementation module among them MPSoC (Multi-Processors 

System on Chip) is considered the best embedded system design for multimedia streaming 

applications. In MPSoC, we have some form of KPN to model the problem and then it can 

automatically be transformed to MPSOC. Figure 2-12 demonstrates the basic MPSOC 

representation. In MPSOC, the KPN is used to model the application on the set of independent 

processing hardware. This application is modeled in such a way that all the processing elements 

or processors can run independently using their own local memory. The intercommunication 

among these processors is ensured through a NOC (Network On Chip) switch bar. Each 

processing element or processor is generally called a tile. Each tile has its own local memory M, 

the memory controller MC and set of FIFO buffers. The communication among FIFOs lying on 

different processors is ensured by a cross bar switch, a P2P network or a shared bus or a more 
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elaborated form of NOC (Network-On-Chip) component bar.  Each tile also has a logic called 

Communication Controller CC.  

TILETILETILE

P

M

MC

CC

P

M

MC

CC

NOC

P MProcessor Memory

P

M

MC

CC

 

Figure 2-12: General MPSoC Model 
 

 

This is where my thesis work actually starts. I am particularly concerned about the mapping of 

multimedia streaming applications on to this processing hardware i.e. MPSOC. I have been 

assigned  a task that to design a generic controller that automatically and efficiently maps any 

kind of streaming applications on to the reconfigurable platform i.e. MPSOC. There are some 

researches that have been carried out in efficient execution of process networks and the design of 

real time scheduler for KPN on multiprocessor system. 
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2.4.5 EFFICIENT KPN SCHEDULING 
 

All the applications require their efficient mapping on to the multiprocessor environment. Thus a 

generic controller or scheduler is an essential component for designer. The main role of 

scheduler is to provide the control to the particular node for their turn to execution. Usually this 

scheduling can be performed statically or dynamically. Static scheduling though is a simpler one 

which is defined at compile time but no doubt it does not give the efficient algorithm 

implementation. Also, static scheduler for particularly streaming multimedia applications is not 

feasible because of built-In dynamism in such applications.  

 

Dynamism is a main point of concern for my thesis. It requires the efficient modeling of ready 

processes at run time. There are usually two approaches for determining the set of ready 

processes at run time. These approaches are broadly categorized as  

• Demand Driven Scheduling 

• Data Driven Scheduling 

 

In Demand driven scheduling, the scheduling comes by the actual demand of data. As the 

demand arises then the ready processes start reading data form input FIFO buffers. Generally the 

demand is originated from the output node.  As the demand is propagated, the set of ready 

processes become active and they try to read data from their input buffers but if they try to read 

data from some empty buffers then the ready processes go to blocked mode and wait until they 

acquire the sufficient tokens in all their input FIFO buffers. Meanwhile the set of all the ready 

processes start their execution if they have required number of data tokens. The main objective 

of the demand driven scheduling is to perform execution only when is needed.  

 

In data driven scheduling, the ready processes always keep themselves in the polling state. It 

continuously checks the input buffers. When the node gets desired number of tokens on all its 
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input buffers then it starts performing its execution. This scheduling technique is meant for 

continuous node’s execution as long as it has required number of tokens. The process will only 

stop when it will have no longer data available on its input buffers. Both techniques have their 

respective disadvantages. The main disadvantage of data driven approach is that it will allow 

process to run with out considering this fact that whether it is required for output node. There 

may be the case that the intermediate nodes continuously run and data gets overwhelmed in the 

intermediate buffers. The main drawback of the demand driven is that it will run give control to 

processes only when is needed but it requires so many context switches and complexity in 

hardware for flooding the demand information in network’s topology.  

 

The final approach is to design a data-driven scheduler with bounded FIFO size. The classical 

KPN focuses on the unlimited memory size which is non-realizable. The fixed buffer size makes 

modification in basic KPN model. Now the process will go to blocked state not only when it is 

reading from empty FIFO or insufficient tokens availability case but also when it attempts to 

write in fully loaded FIFO. This deadlock is usually called artificial deadlock because it is an 

artificial one generated because of empty or full FIFO. In this final approach, the processes are 

scheduled on data driven strategy with efficient memory utilization but the optimum buffer 

sizing is a big research challenge.  
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CHAPTER 3 
 

 

SYSTEM DESIGN 
 

 

This section describes the implementation details of our research strategy. There are so 

many types of data flow graphs but DFG are the most commonly used representation for DSP 

designing perspective. Our aim is to design a generic system model that visualizes this DFG 

model and based on these specifications, it automatically generates a RTL high level synthesized 

implementation of KPN that can easily be mapped on any reconfigurable platform and also on 

MPSOC. Our design starts with the configuration file that lists all the necessary parameters to 

generate automatic controller for critical DSP designs. Also, we want that this controller must be 

very efficient in terms of hardware requirements i.e. it must utilize optimum size of memory 

buffers and other hardware units. Lastly, we really want to make certain that this controller must 

satisfy the flavors of KPN that makes it valuable to other existing mapping schemes. 

 

3.1 SYSTEM MODEL: 
 

Figure 3.1 shows the system model of our proposed scheme. In this model, we have first 

designed the configuration file. This file is designed in such a way that it takes all the 

requirement specifications for generating an automatic KPN. It list the total number of nodes, 

their interconnections, Rate of consumption and Rate of production parameters (These 

parameters the required number of token at the input and output of node to perform its 

processing/execution), the required number of FIFOS, information about each link, Algorithmic 
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delays, self loop information and last but not the least the input and output streams that will carry 

the actual data. Input stream relates to the raw data that needs to be processed by our network 

and output stream is a continuous ejection of processed data from out proposed model. This 

configuration file is passed to our network model that is a C-based compiler. This compiler takes 

this configuration file as an input and then automatically generates the high level RTL based 

synthesized code for this particular application program. The number of files that are generated 

automatically by our compiler are the controller file that is managing all the intercommunication 

between different process nodes. It actually sends control signals to each sub unit for a certain 

level of synchronization. Also it generates a FIFO file that is fulfilling the basic operation of any 

FIFO buffer. Also this FIFO file tells the information of number of tokens resided in FIFO 

memory. Based on this information, the compiler manipulates the requirement that the sufficient 

number of tokens have been stored in this FIFO or not. If so, then the controller sends the control 

signals to the respective process node to start its execution and acquire the required token at its 

input FIFO. Also this compiler generates another set of files that are actually describing the N 

number of process nodes. These process nodes are actually the computation units that are the 

particular sub-unit of the application and these sub-units actually derive the raw input data and 

transform them in to the desired processed data. Our compiler focuses on these process nodes in 

such a way that configuration tells about the number of cycles that are needed for the execution 

of a particular process nodes, the compiler waits for these throughput number of clock cycles in 

the intention that the process node is processing at that time. In short, the control is provided to 

process node that then performs its execution and writes the processed output to its output FIFO 

buffer. 
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Figure 3-1: System Model 
 

3.2 THESIS ORGANIZATION: 
 

Figure 3.2 shows my thesis work organization. At first, I put my idea to realization with 

the help of MATLAB tool. MATLAB was used at first to verify my designing as well as the 

required number of variables used for my design modeling. Then, I designed a configuration file 

that lists all the requirement specifications of the design. After verifying my design in MATLAB, 

its simulation verification and extracting parameters, I designed a manual KPN controller for a 

specific application i.e. for specific DFG. This was needed to extract the parameters that need to 

be generalized for generic KPN controller. Also, by this manual KPN controller, my design got 

verified on hardware or any reconfigurable platform. After that, I designed the final version of 

my KPN controller in Visual C++ that is actually a C-based Compiler generating an automatic 

synthesized controller and test bench for any given application. At the end, I calculated the 

performance of generalized controller with the manual controller and verified that my controller 

is working at the par with the manual controller that is very time consuming to design. Manual 

controller is specific for specific application and if design goes fail then designers have to 

regenerate again a new modified controller.  
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Figure 3-2: Thesis Organization 



 

31 

 

3.3 ALGORITHM: 
1.) KPN_Controller(); //Main File 

Nodes  Number of available nodes 

Links  Total number of available links 

FIFOs  Total number of FIFOs required, 

storing information at links 

For i  1 to Links 

RC[i]  Rate of consumption parameter 

at link i 

RP[i]  Rate of consumption parameter 

at link I  

Delay[i]  Algorithmic delay at link i 

End for 

Topology Matrix Generation based on link 

information  

For i  1 to Nodes 

 Throughput[i] Execution time for node 

i 

End for 

For i  1 to Nodes 

 Sufficient # of RC tokens found at its 

each connected Links 

 Call FIFO_Read(); //Read Tokens from 

Respective FIFOs 

Done=Call Process_node(); 

//Functionality of node is performed  

       //that takes 

Throughput # of 

cycles 

If(Done) 

Call FIFO_Write(); //Write 

processed data tokens to output FIFOs 

 End If 

End for  

End of Procedure “KPN_Controller();” 

2.) 2.)  FIFO_Read(); //Reading Data from FIFO 

If(Read) 

  If(FIFO_Empty_Flag) 

  Process is Blocked 

Else 

 Output  FIFO(index) 

End If 

Else 

 Do Nothing 

End If 

End of Procedure “FIFO_Read()” 

3.) 3.) FIFO_Write(); //Writing Data to FIFO 
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If(Write) 

  If(FIFO_Full_Flag) 

  Process is Blocked 

Else 

 FIFO(index)  Input Data 

End If 

Else 

 Do Nothing 

End If 

End of Procedure “FIFO_Write()” 

4.) Process(); 

For i  1 to throughput 

 //Processing; 

End For 

Done =1; 

Return (Done); 

End of Procedure “Process” 
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This algorithm states the functionality of these set of files that are generated automatically by 

my C-based compiler. These files are elaborated shortly at here. 

1. KPN_Controller.V 

This is my main file that is sending control signals to all the other modules and manages the 
complete coordination and timing constraints among each component. It is a central controller 
that will continuously view the status of each element and provide the control to each block when 
ever is desirable.  

 

2. FIFO.V 

FIFO Verilog File that provides basic FIFO operation that involves simple reads and writes into 
FIFO. It also gives the information of rate of consumption status of the FIFO. By, this, we can 
calculate whether RC tokens are accumulated in FIFO buffer or not. 

 

3. Process.V 

This compiler generates set of Verilog files depicting all the processing nodes behaviors. N 
processing nodes files are generated specifying number of data input units, output units and total 
number of time units by each processing node to perform its successful execution.  

 

4. Test_Bench.V 

This C-based compiler also generates the Verilog based test bench module that verifies the 
controller behavior managing all the sub units in the design. 
 

5. B_Counter.V 

This is a simple bit counter that is called by the FIFO module. This will cause the read and write 
pointer of FIFO to increment. This increment is performed based on the conditions that whether 
data has been read or not on current read pointer location and whether data has been written on 
current write pointer location or not. 
 

6. Test_RC_RP.V 

The node can not execute as long as it acquires sufficient number of tokens from all its 
respective FIFO buffers. This module checks at the abstract level that all the FIFOs connected to 
the particular node have adequate number of data tokens or not. 
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CHAPTER 4 
 

 

EXPERIMENTAL RESULTS 

 

EXAMPLE 1: 
 

A,3 C,1B,2

F1 F2 F3 F4
Data_In Data_Out

1 11 1 1 1

 

Fig. 1: Example 1 

 

Description: 
 

This DFG shows that there are three processing elements A, B and C. These processing elements 
are taking 3, 2 and 1 clock cycles for their execution. Also, these processing nodes will execute 
only as long as it acquires sufficient number of data tokens on their input buffers. There are four 
FIFO buffers for temporarily holding data values. Also, nodes are listed with their rate of 
consumption and production parameters. Rate of consumption is defining the number of data 
tokens sufficient for node to process and rate of production parameter defines the number of data 
values that are produced by the respective processing element.   

 

 

Configuration File Specifications 
Nodes=3; 

FIFO_Buffers=4; 

Token_Size=8; 
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Topology_matrix =  [1, -1, 0, 0, 0; 0, 1, -1, 0, 0; 0, 0, 1, -1, 0; 0, 0, 0, 1, -1]; 

Self_Loops=[0 0 0]; 

Algo_Delays=[0 0 0 0]; 

Data_In=1:20; 

Throughput_node1=3; 

Throughput_node2=2; 

Throughput_node3=1; 

 

Based on these specifications in MATLAB, C-based configuration file is generated that will be 
passed to C-based designed compiler. Then, this compiler will automatically generate 
synthesized HDL code of this DSP design. 

 

KPN Based Centralized Controller 

 

A

CLK-G CLK-g RESET

CLK-G

CLK-g

Data_In Data_Out
B C

KPN BASED CENTRALIZED CONTROLLER

EN_F4EN_F1 EN_F2 EN_F3START_BSTART_A START_C

DATA LINES
SAMPLE CLOCK
CIRCUIT CLOCK

CONTROL SIGNALS
RESET SIGNAL
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COMPILER OUTPUT 

 

 

CODE GENERATION TOOL SNAPSHOT 
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Verilog Source Code of given DSP Design generated by C-Compiler: 
 

1. KPN_Controller.V 
 

module main_File(wr_en1,rc_n1,rc_n2,rc_n3,data_in, 

                 data_out,thru_n1,thru_n2,thru_n3,clk,reset); 

                 //Here i assumed the token size to be 08 bits 

//Input Signals 

input clk,reset; 

//Write enable signal for fifo_1 

input wr_en1; 

 

//Throughputs for each node 

input [3:0]thru_n1,thru_n2,thru_n3; 

//Input Stream data will bestored at here 

input [7:0]data_in; 

 

//Rate of consumption at each link 

input [23:0]rc_n1,rc_n2,rc_n3; 

//Output Data 

output [7:0]data_out; 

reg [7:0]data_out; 

//Temporary wires and Registers holding Outputs from FIFOs and processes  

//and holding control signals as well 

wire [7:0]d_out1,d_out2,d_out3,d_out4; 

          wire [7:0]Output1,Output2,Output3; 

          wire rd_en1,rd_en2,rd_en3,rd_en4,wr_en2,wr_en3,wr_en4; 
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reg read1,read2,read3, 

    write2,write3,write4; 

//Flags showing FIFO Status i.e (Fifo Full and Fifo Empty) 

wire f_full_flag1,f_full_flag2,f_full_flag3,f_full_flag4, 

     f_empty_flag1,f_empty_flag2,f_empty_flag3,f_empty_flag4; 

 

//Enable the process and Done Signals showing process has completed its execution 

//and ready to write data at ints output buffer 

wire pr_en1,pr_en2,pr_en3, 

     pr_done1,pr_done2,pr_done3; 

//Pointer that stores the Difference between w_ptr and r_ptr 

wire [3:0]diff_ptr1,diff_ptr2,diff_ptr3,diff_ptr4; 

 

//Call FIFO Instances 

fifo f1(diff_ptr1,d_out1,f_full_flag1,f_empty_flag1,data_in,rd_en1,wr_en1,clk,reset); 

fifo f2(diff_ptr2,d_out2,f_full_flag2,f_empty_flag2,Output1,rd_en2,wr_en2,clk,reset); 

fifo f3(diff_ptr3,d_out3,f_full_flag3,f_empty_flag3,Output2,rd_en3,wr_en3,clk,reset); 

fifo f4(diff_ptr4,d_out4,f_full_flag4,f_empty_flag4,Output3,rd_en4,wr_en4,clk,reset); 

//Process Instantiations 

ProcessA A1(clk,reset,pr_en1,d_out1,Output1,thru_n1,pr_done1); 

ProcessB B1(clk,reset,pr_en2,d_out2,Output2,thru_n2,pr_done2); 

ProcessC C1(clk,reset,pr_en3,d_out3,Output3,thru_n3,pr_done3); 

 

//Test Module checking sufficient tokens have acquired in each fifo to start execution 

test t1(rc_n1,diff_ptr1,4'b0,4'b0,4'b0,4'b0,pr_en1); 
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test t2(rc_n2,4'b0,diff_ptr2,4'b0,4'b0,4'b0,pr_en2); 

test t3(rc_n3,4'b0,4'b0,diff_ptr3,4'b0,4'b0,pr_en3); 

//Simple assignments 

//assign data_out=d_out4; 

assign rd_en1=read1; 

assign rd_en2=read2; 

assign rd_en3=read3; 

assign rd_en4=1; 

assign wr_en2=write2; 

assign wr_en3=write3; 

assign wr_en4=write4; 

 

/////Writing in Output Buffer at each posedge of sample clock  

always @(posedge clk) 

begin 

 if(reset) 

 begin 

  data_out<=0;//write4=wr_enn4; write6=wr_enn6; 

 end 

 else 

 begin 

  data_out<=d_out4; 

 end 

end 

 

//When Pr_en1 is active high or low 
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always @(posedge clk) 

if(pr_en1) 

 begin if(pr_done1) 

   begin read1=1;end 

 else 

   begin read1=0;end 

 end   

else 

 begin read1=0;end 

  

 //When pr_en2 is active high or low 

always @(posedge clk) 

if(pr_en2) 

 begin if(pr_done2) 

   begin read2=1;end 

 else 

   begin read2=0;end 

 end 

else 

 read2=0; 

 

//When pr_en3 is active high or low  

always @(posedge clk) 

if(pr_en3) 

 begin if(pr_done3) 

   begin read3=1;end 
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 else 

   begin read3=0;end 

 end 

else 

 begin read3=0;end 

 

///////////////Enabling Write Pointer of FIFOs after Process's execution  

//When pr_done1 is active high or low  

always @(pr_done1)  

if(pr_done1) 

 if(pr_en1) 

 write2=1; 

 else 

 write2=0; 

else 

 write2=0; 

//When pr_done2 is active high or low 

always @(pr_done2)  

if(pr_done2) 

 if(pr_en2) 

 write3=1; 

 else 

 write3=0; 

else 

 write3=0; 
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//When pr_done3 is active high or low  

always @(pr_done3)  

if(pr_done3) 

 if(pr_en3) 

 begin write4=1;end 

 else 

 begin write4=0;end 

else 

 begin write4=0;end 

 endmodule 

 

2. FIFO.V 
 

//================================================ 

//fifo.v; verilog code for asynchronous FIFO 

//This module describes FIFO 

//================================================ 

 

module fifo(diff,d_out,f_full_flag,f_empty_flag,d_in,r_en,w_en,clk,reset); 

 

parameter width=8; //FIFO width 

parameter f_depth=16; //FIFO depth 

parameter f_ptr_width=4; //because depth =16; 

 

output [width-1:0] d_out; reg [width-1:0] d_out; //outputs  
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output f_full_flag,f_empty_flag; 

output [3:0]diff; 

input [width-1:0] d_in; 

input r_en,w_en,clk; 

input reset; 

//internal registers,wires 

wire [f_ptr_width-1:0] r_ptr,w_ptr; 

reg r_next_en,w_next_en; 

reg [f_ptr_width-1:0] ptr_diff; 

reg [width-1:0] f_memory[f_depth-1:0]; 

 

assign diff=ptr_diff; 

assign f_full_flag=(ptr_diff==(f_depth-1)); //assign FIFO status 

assign f_empty_flag=(ptr_diff==0); 

//instantiate address counters  

b_counter r_b_counter(.c_out(r_ptr),.c_reset(reset),.c_clk(clk),.en(r_next_en)); 

b_counter w_b_counter(.c_out(w_ptr),.c_reset(reset),.c_clk(clk),.en(w_next_en)); 

//--------------------------------------------------------- 

always @(posedge clk) //write to memory 

begin 

 

if(reset) 

 d_out<=0; //f_memory[r_ptr]; 

if(w_en)  

begin 

  if(!f_full_flag) 
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  f_memory[w_ptr]<=d_in;  

       end 

if(r_en)  

begin 

  if(!f_empty_flag) 

  d_out<=f_memory[r_ptr]; 

       end 

end 

//---------------------------------------------------------  

always @(*) //ptr_diff changes as clock changes 

begin  

 if(w_ptr>r_ptr) 

  ptr_diff<=w_ptr-r_ptr; 

 else if(w_ptr<r_ptr) 

  ptr_diff<=((f_depth-r_ptr)+w_ptr);  

 else ptr_diff<=0; 

end 

//--------------------------------------------------------- 

always @(*) //after empty flag activated fifo read counter should not increment; 

begin  

 if(r_en && (!f_empty_flag)) 

  r_next_en=1; 

 else  

  r_next_en=0; 

end 

//-------------------------------------------------------- 
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always @(*) //after full flag activated fifo write counter should not increment; 

begin  

 if(w_en && (!f_full_flag)) 

  w_next_en=1; 

 else  

  w_next_en=0; 

end 

//--------------------------------------------------------- 

endmodule 

 

3. B_COUNTER.V 
 

//================================================ 

//b_counter.v; 4 bit asynchronous binary up counter 

//================================================ 

 

module b_counter(c_out,c_reset,c_clk,en); 

parameter c_width=4; //counter width 

output [c_width-1:0] c_out; reg [c_width-1:0] c_out; 

input c_reset,c_clk,en; 

 

always @(posedge c_clk or posedge c_reset) 

 if (c_reset) 

  c_out <= 0; 

 else if(en)  

  c_out <= c_out + 1; 

endmodule 
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//================================================ 

 

4. PROCESS_A.V 
 

module ProcessA(clk,reset,pr_en,Input1,Output1,Throughput,pr_done); 

parameter width=8; //FIFO width 

 

input [width-1:0]Input1; 

input [3:0]Throughput; 

input pr_en,clk,reset; 

 

output [width-1:0]Output1; 

output pr_done; 

reg pr_done; 

 

//Temporary Registers and wires 

reg [3:0]Th_Counter; 

wire [3:0]Count_Inc=Th_Counter+1; 

assign Output1=Input1; 

//Simply Waste Clock Cycles for process internal algorithm execution 

always @(posedge clk) 

begin 

 if(reset) 

 begin 

  pr_done<=1; 

  Th_Counter<=0; 
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 end 

 else 

 begin 

     if(pr_en) 

      Th_Counter=Count_Inc;  

     else 

      Th_Counter=Th_Counter;//Do Nothing 

 end 

end 

 

always @(Th_Counter) 

if(Th_Counter == Throughput) 

begin 

 pr_done=1; 

 #5 Th_Counter=0; 

end 

else 

 if(pr_en) 

 pr_done=0; 

 else pr_done=1; 

endmodule 

 

5. PROCESS_B.V 
 

module ProcessB(clk,reset,pr_en,Input1,Output1,Throughput,pr_done); 

parameter width=8; //FIFO width 
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input [width-1:0]Input1; 

input [3:0]Throughput; 

input pr_en,clk,reset; 

 

output [width-1:0]Output1; 

output pr_done; 

reg pr_done; 

 

//Temporary Registers and wires 

reg [3:0]Th_Counter; 

wire [3:0]Count_Inc=Th_Counter+1; 

assign Output1=Input1; 

//Simply Waste Clock Cycles for process internal algorithm execution 

always @(posedge clk) 

begin 

 if(reset) 

 begin 

  pr_done<=1; 

  Th_Counter<=0; 

 end 

 else 

 begin 

     if(pr_en) 

      Th_Counter=Count_Inc;  

     else 

      Th_Counter=Th_Counter;//Do Nothing 
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 end 

end 

 

always @(Th_Counter) 

if(Th_Counter == Throughput) 

begin 

 pr_done=1; 

 #5 Th_Counter=0; 

end 

else 

 if(pr_en) 

 pr_done=0; 

 else pr_done=1; 

endmodule 

 

6. PROCESS_C.V 
 

module ProcessC(clk,reset,pr_en,Input1,Output1,Throughput,pr_done); 

parameter width=8; //FIFO width 

 

input [width-1:0]Input1; 

input [3:0]Throughput; 

input pr_en,clk,reset; 

 

output [width-1:0]Output1; 

output pr_done; 

reg pr_done; 
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//Temporary Registers and wires 

reg [3:0]Th_Counter; 

wire [3:0]Count_Inc=Th_Counter+1; 

assign Output1=Input1; 

 

//Simply Waste Clock Cycles for process internal algorithm execution 

always @(posedge clk) 

begin 

 if(reset) 

 begin 

  pr_done<=1; 

  Th_Counter<=0; 

 end 

 else 

 begin 

     if(pr_en) 

      Th_Counter=Count_Inc;  

     else 

      Th_Counter=Th_Counter;//Do Nothing 

 end 

end 

 

always @(Th_Counter) 

if(Th_Counter == Throughput) 

begin 
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 pr_done=1; 

 #5 Th_Counter=0; 

end 

else 

 if(pr_en) 

 pr_done=0; 

 else pr_done=1; 

endmodule 

 

7. TEST.V 
 

module test(RC,diff1,diff2,diff3,diff4,diff5,pr_en); 

 

input [19:0]RC; 

input [3:0]diff1,diff2,diff3,diff4,diff5; 

 

output pr_en; 

reg pr_en; 

 

always @(diff1 or diff2 or diff3 or diff4 or diff5 or RC) 

if(diff1 >= RC[3:0] && diff2 >= RC[7:4] && diff3 >= RC[11:8] && 
diff4>=RC[15:12] &&  

   diff5>=RC[19:16]) 

 begin 

 pr_en=1; 

 end 

else 
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 begin 

 pr_en=0; 

 end 

  

endmodule 

 

8. STIMULUS.V 
 

module stim; 

 

reg clk,reset; 

reg wr_en1; 

reg [3:0]thru_n1,thru_n2,thru_n3; 

reg [7:0]data_in; 

reg [23:0]rc_n1,rc_n2,rc_n3; 

 

wire [7:0]data_out; 

 

main_File m1(wr_en1,rc_n1,rc_n2,rc_n3,data_in,data_out, 

                 thru_n1,thru_n2,thru_n3,clk,reset); 

 

initial 

begin 

clk=0; 

forever 

#5 clk=~clk; 

end 
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initial 

begin 

rc_n1=20'b0000_0000_0000_0000_0001; 

rc_n2=20'b0000_0000_0000_0001_0000; 

rc_n3=20'b0000_0000_0001_0000_0000; 

 

thru_n1=3;thru_n2=2;thru_n3=1; 

 

reset=1; 

#15 reset=0; 

 

data_in=1; 

#10 

repeat(15) 

#30 data_in=data_in+1; 

end 

 

initial 

#200 $stop; 

 

initial 

begin 

wr_en1=1; 

end 

endmodule 
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SIMULATION RESULTS 
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FIFO (1_2) BEHAVIOR 
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FIFO (3_4) BEHAVIOR 
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PROCESSES (A_B_C) BEHAVIOR 
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TEST_RC_RP FOR PROCESS_A, B, C  
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SYNTHESIS RESULTS 

RTL CODE SYNTHESIS ON FPGA (SPARTAN 3E) 

 

DEVICE UTILIZATION SUMMARY 

Device Utilization Summary (estimated values) [-] 

Logic Utilization Used Available Utilization 

Number of Slices 129 768 16% 

Number of Slice Flip Flops 96 1536 6% 

Number of 4 input LUTs 268 1536 17% 

Number of bonded IOBs 78 100 78% 

Number of GCLKs 1 8 12% 

 

COMPARISON OF MANUAL AND COMPILER GENERATED RTL CODES 
ON FPGA (SPARTAN 3E) 
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EXAMPLE 2 
 

A,3 C,1B,2

F1 F2 F3 F5
Data_In Data_Out

E,1D,2

F7 F8

F4

F6

11 1 1 1 1 1

1 1

1 1

1 1 1

 

Fig. 2: Example 2 

 

 

Description: 
 

This DFG shows that there are five processing elements A, B, C, D and F. These processing 
elements are taking 3, 2, 1, 2 and 1 clock cycles for their execution. Also, these processing nodes 
will execute only as long as it acquires sufficient number of data tokens on their input buffers. 
There are eight FIFO buffers for temporarily holding data values. Also, nodes are listed with 
their rate of consumption and production parameters. Rate of consumption is defining the 
number of data tokens sufficient for node to process and rate of production parameter defines the 
number of data values that are produced by the respective processing element.  

 

Configuration File Specifications 
 

Nodes=5; 

FIFO_Buffers=8; 

Token_Size=8; 

Topology_matrix =  [1 -1 0 0 0 0 0;0 1 -1 0 0 0 0;0 0 1 -1 0 0 0; 
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                                     0 0 0 1 -1 0 0;0 -1 0 0 1 0 0;0 0 0 0 1 -1 0; 

0 0 0 0 0 1 -1]; 

Self_Loops=[0 0 1 0 0]; 

Algo_Delays=[0 0 0 0 0 0 0 0]; 

Data_In=1:20; 

Throughput_node1=3; 

Throughput_node2=2; 

Throughput_node3=1; 

Throughput_node4=2; 

Throughput_node5=1; 

Based on these specifications in MATLAB, C-based configuration file is generated that will be passed to 
C-based designed compiler. Then, this compiler will automatically generate synthesized HDL code of this 
DSP design. 

KPN Based Centralized Controller 

 

 

A

CLK-G CLK-g RESET

CLK-G

CLK-g

Data_In Data_Out
B C

KPN BASED CENTRALIZED CONTROLLER

EN_F5EN_F1 EN_F2 EN_F6START_BSTART_A START_C

D E

CLK-g

EN_F3 EN_F8EN_F7START_DDONE START_E

EN_F4

DATA LINES
SAMPLE CLOCK
CIRCUIT CLOCK

CONTROL SIGNALS
RESET SIGNAL
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COMPILER OUTPUT 

 

CODE GENERATION TOOL SNAPSHOT 
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Verilog Source Code of given DSP Design generated by C-Compiler: 
 

1. KPN_CONTROLLER.V 
 

module main_File(wr_en1,rc_n1,rc_n2,rc_n3,rc_n4,rc_n5,data_in, 

                 data_out,thru_n1,thru_n2,thru_n3,thru_n4, 

                 thru_n5,clk,reset); 

                  

//Here i assumed the token size to be 08 bits 

//Input Signals 

input clk,reset; 

 

//Write enable signal for fifo_1 

input wr_en1; 

 

//Throughputs for each node 

input [3:0]thru_n1,thru_n2,thru_n3,thru_n4,thru_n5; 

 

//Input Stream data will bestored at here 

input [7:0]data_in; 

 

//Rate of consumption at each link 

input [23:0]rc_n1,rc_n2,rc_n3,rc_n4,rc_n5; 

 

//Output Data 
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output [7:0]data_out; 

reg [7:0]data_out; 

 

//Temporary wires and Registers holding Outputs from FIFOs and processes  

//and holding control signals as well 

wire [7:0]d_out1,d_out2,d_out3,d_out4, 

          d_out5,d_out6,d_out7,d_out8; 

           

wire [7:0]Output1,Output2,Output3,Output4, 

          Output5,Output6,Output7; 

           

wire rd_en1,rd_en2,rd_en3,rd_en4,wr_en2,wr_en3,wr_en4; 

 

reg read1,read2,read3,read4,read5,read6,read7,read8, 

    write2,write3,write4,write5,write6,write7,write8; 

 

//Flags showing FIFO Status i.e (Fifo Full and Fifo Empty) 

wire f_full_flag1,f_full_flag2,f_full_flag3,f_full_flag4, 

     f_full_flag5,f_full_flag6,f_full_flag7,f_full_flag8, 

     f_empty_flag1,f_empty_flag2,f_empty_flag3,f_empty_flag4, 

     f_empty_flag5,f_empty_flag6,f_empty_flag7,f_empty_flag8; 

 

//Enable the process and Done Signals showing process has completed its execution 

//and ready to write data at ints output buffer 
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wire pr_en1,pr_en2,pr_en3,pr_en4,pr_en5, 

     pr_done1,pr_done2,pr_done3,pr_done4,pr_done5; 

 

//Pointer that stores the Difference between w_ptr and r_ptr 

wire [3:0]diff_ptr1,diff_ptr2,diff_ptr3,diff_ptr4, 

          diff_ptr5,diff_ptr6,diff_ptr7,diff_ptr8; 

 

//Call FIFO Instances 

fifo f1(diff_ptr1,d_out1,f_full_flag1,f_empty_flag1,data_in,rd_en1,wr_en1,clk,reset); 

fifo f2(diff_ptr2,d_out2,f_full_flag2,f_empty_flag2,Output1,rd_en2,wr_en2,clk,reset); 

fifo f3(diff_ptr3,d_out3,f_full_flag3,f_empty_flag3,Output2,rd_en3,wr_en3,clk,reset); 

fifo f4(diff_ptr4,d_out4,f_full_flag4,f_empty_flag4,Output3,rd_en4,wr_en4,clk,reset); 

fifo f5(diff_ptr5,d_out5,f_full_flag5,f_empty_flag5,Output4,rd_en5,wr_en5,clk,reset); 

fifo f6(diff_ptr6,d_out6,f_full_flag6,f_empty_flag6,Output5,rd_en6,wr_en6,clk,reset); 

fifo f7(diff_ptr7,d_out7,f_full_flag7,f_empty_flag7,Output6,rd_en7,wr_en7,clk,reset); 

fifo f8(diff_ptr8,d_out8,f_full_flag8,f_empty_flag8,Output7,rd_en8,wr_en8,clk,reset); 

 

//Process Instantiations 

ProcessA A1(clk,reset,pr_en1,d_out1,d_out6,Output1,thru_n1,pr_done1); 

ProcessB B1(clk,reset,pr_en2,d_out2,Output2,thru_n2,pr_done2); 

ProcessC C1(clk,reset,pr_en3,d_out3,d_out4,Output3,Output4,thru_n3,pr_done3); 

ProcessD D1(clk,reset,pr_en4,d_out5,Output5,Output6,thru_n4,pr_done4); 

ProcessE E1(clk,reset,pr_en5,d_outd_out7,Output7,thru_n5,pr_done5); 
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//Test Module checking sufficient tokens have acquired in each fifo to start execution 

test t1(rc_n1,diff_ptr1,4'b0,4'b0,4'b0,diff_ptr6,4'b0,pr_en1); 

test t2(rc_n2,4'b0,diff_ptr2,4'b0,4'b0,4'b0,4'b0,pr_en2); 

test t3(rc_n3,4'b0,4'b0,diff_ptr3,diff_ptr4,4'b0,4'b0,pr_en3); 

test t4(rc_n4,4'b0,4'b0,4'b0,diff_ptr5,4'b0,4'b0,pr_en4); 

test t5(rc_n5,4'b0,4'b0,4'b0,4'b0,diff_ptr7,4'b0,pr_en5); 

 

//Simple assignments 

//assign data_out=d_out4; 

assign rd_en1=read1; 

assign rd_en2=read2; 

assign rd_en3=read3; 

assign rd_en4=read4; 

assign rd_en5=read5; 

assign rd_en6=read6; 

assign rd_en7=read7; 

assign rd_en8=1; 

 

assign wr_en2=write2; 

assign wr_en3=write3; 

assign wr_en4=write4; 

assign wr_en5=write5; 

assign wr_en6=write6; 

assign wr_en7=write7; 
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assign wr_en8=write8; 

 

//Activate final read signal 

always @(diff_ptr8) 

if(diff_ptr8>=1) 

 read8=1; 

else 

 read8=0; 

  

//When Pr_en1 is active high or low 

always @(posedge clk) 

if(pr_en1) 

 begin if(pr_done1) 

   begin read1=1;read6=1;end 

 else 

   begin read1=0;read6=0;end 

 end   

else 

 begin read1=0;read6=0;end 

  

//When pr_en2 is active high or low 

always @(posedge clk) 

if(pr_en2) 

 begin if(pr_done2) 
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   begin read2=1;end 

 else 

   begin read2=0;end 

 end 

else 

 read2=0; 

 

//When pr_en3 is active high or low  

always @(posedge clk) 

if(pr_en3) 

 begin if(pr_done3) 

   begin read3=1;read4=1;end 

 else 

   begin read4=0;read3=0;end 

 end 

else 

 begin read3=0;read4=0;end 

 

//When pr_en4 is active high or low 

always @(posedge clk) 

if(pr_en4) 

        begin if(pr_done4) 

   begin read5=1;end 

 else 
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   begin read5=0;end 

 end 

else 

 read5=0; 

 

//When pr_en5 is active high or low 

always @(posedge clk) 

if(pr_en5) 

 begin if(pr_done5) 

   begin read7=1;end 

 else 

   begin read7=0;end 

 end 

else 

 read7=0; 

 

 

///////////////Enabling Write Pointer of FIFOs after Process's execution  

//When pr_done1 is active high or low  

always @(pr_done1)  

if(pr_done1) 

 if(pr_en1) 

 write2=1; 

 else 
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 write2=0; 

else 

 write2=0; 

 

//When pr_done2 is active high or low 

always @(pr_done2)  

if(pr_done2) 

 if(pr_en2) 

 write3=1; 

 else 

 write3=0; 

else 

 write3=0; 

  

//When pr_done3 is active high or low  

always @(pr_done3)  

if(pr_done3) 

 if(pr_en3) 

 begin write4=1;write5=1;end 

 else 

 begin write4=0;write5=0;end 

else 

 begin write4=0;write5=0;end 
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//When pr_done4 is active high or low  

always @(pr_done4)  

if(pr_done4) 

 if(pr_en4) 

 begin write6=1;write7=1;end 

 else 

 begin write6=0;write7=0;end 

else 

 begin write6=0;write7=0;end 

 

//When pr_done5 is active high or low 

always @(pr_done5)  

if(pr_done5) 

 if(pr_en5) 

 write8=1; 

 else 

 write8=0; 

else 

 write8=0; 

 

/////Writing in Output Buffer at each posedge of sample clock  

always @(posedge clk) 

begin 

 if(reset) 
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 begin 

  data_out<=0; 

 end 

 else 

 begin 

  data_out<=d_out8; 

 end 

end 

endmodule 

 

2. FIFO.V 
//================================================ 

//fifo.v; verilog code for asynchronous FIFO 

//This module describes FIFO 

//=============================================== 

 

module fifo(diff,d_out,f_full_flag,f_empty_flag,d_in,r_en,w_en,clk,reset); 

parameter width=8; //FIFO width 

parameter f_depth=16; //FIFO depth 

parameter f_ptr_width=4; //because depth =16; 

 

output [width-1:0] d_out; reg [width-1:0] d_out; //outputs  

output f_full_flag,f_empty_flag; 

output [3:0]diff; 
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input [width-1:0] d_in; 

input r_en,w_en,clk; 

input reset; 

 

//internal registers,wires 

wire [f_ptr_width-1:0] r_ptr,w_ptr; 

reg r_next_en,w_next_en; 

reg [f_ptr_width-1:0] ptr_diff; 

reg [width-1:0] f_memory[f_depth-1:0]; 

 

assign diff=ptr_diff; 

assign f_full_flag=(ptr_diff==(f_depth-1)); //assign FIFO status 

assign f_empty_flag=(ptr_diff==0); 

 

//instantiate address counters  

 

b_counter r_b_counter(.c_out(r_ptr),.c_reset(reset),.c_clk(clk),.en(r_next_en)); 

b_counter w_b_counter(.c_out(w_ptr),.c_reset(reset),.c_clk(clk),.en(w_next_en)); 

 

 

//--------------------------------------------------------- 

always @(posedge clk) //write to memory 

begin 
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if(reset) 

 d_out<=0; //f_memory[r_ptr]; 

if(w_en)  

begin 

  if(!f_full_flag) 

  f_memory[w_ptr]<=d_in;  

       end 

if(r_en)  

begin 

  if(!f_empty_flag) 

  d_out<=f_memory[r_ptr]; 

       end 

 

end 

//---------------------------------------------------------  

always @(*) //ptr_diff changes as clock changes 

begin  

 if(w_ptr>r_ptr) 

  ptr_diff<=w_ptr-r_ptr; 

 else if(w_ptr<r_ptr) 

  ptr_diff<=((f_depth-r_ptr)+w_ptr);  

 else ptr_diff<=0; 

end 

//--------------------------------------------------------- 
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always @(*) //after empty flag activated fifo read counter should not increment; 

begin  

 if(r_en && (!f_empty_flag)) 

  r_next_en=1; 

 else  

  r_next_en=0; 

end 

//-------------------------------------------------------- 

always @(*) //after full flag activated fifo write counter should not increment; 

begin  

 if(w_en && (!f_full_flag)) 

  w_next_en=1; 

 else  

  w_next_en=0; 

end 

endmodule 

 

3. B_COUNTER.V 
 

//================================================ 

//b_counter.v; 4 bit asynchronous binary up counter 

//================================================ 

module b_counter(c_out,c_reset,c_clk,en); 

 

parameter c_width=4; //counter width 
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output [c_width-1:0] c_out; reg [c_width-1:0] c_out; 

input c_reset,c_clk,en; 

 

always @(posedge c_clk or posedge c_reset) 

 if (c_reset) 

  c_out <= 0; 

 else if(en)  

  c_out <= c_out + 1; 

endmodule 

 

//================================================ 

 

4. PROCESS_A.V 
 

module ProcessA(clk,reset,pr_en,Input1,Input2,Output1,Throughput,pr_done); 

parameter width=8; //FIFO width 

 

input [width-1:0]Input1,Input2; 

input [3:0]Throughput; 

input pr_en,clk,reset; 

 

output [width-1:0]Output1; 

output pr_done; 

reg pr_done; 
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//Temporary Registers and wires 

reg [3:0]Th_Counter; 

wire [3:0]Count_Inc=Th_Counter+1; 

assign Output1=Input1+Input2; 

//Simply Waste Clock Cycles for process internal algorithm execution 

always @(posedge clk) 

begin 

 if(reset) 

 begin 

  pr_done<=1; 

  Th_Counter<=0; 

 end 

 else 

 begin 

     if(pr_en) 

      Th_Counter=Count_Inc;  

     else 

      Th_Counter=Th_Counter;//Do Nothing 

 end 

end 

 

always @(Th_Counter) 

if(Th_Counter == Throughput) 

begin 
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 pr_done=1; 

 #5 Th_Counter=0; 

end 

else 

 if(pr_en) 

 pr_done=0; 

 else pr_done=1; 

endmodule 

 

5. PROCESS_B.V 
 

module ProcessB(clk,reset,pr_en,Input1,Output1,Throughput,pr_done); 

parameter width=8; //FIFO width 

 

input [width-1:0]Input1; 

input [3:0]Throughput; 

input pr_en,clk,reset; 

 

output [width-1:0]Output1; 

output pr_done; 

reg pr_done; 

 

//Temporary Registers and wires 

reg [3:0]Th_Counter; 

wire [3:0]Count_Inc=Th_Counter+1; 
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assign Output1=Input1; 

//Simply Waste Clock Cycles for process internal algorithm execution 

always @(posedge clk) 

begin 

 if(reset) 

 begin 

  pr_done<=1; 

  Th_Counter<=0; 

 end 

 else 

 begin 

     if(pr_en) 

      Th_Counter=Count_Inc;  

     else 

      Th_Counter=Th_Counter;//Do Nothing 

 end 

end 

 

always @(Th_Counter) 

if(Th_Counter == Throughput) 

begin 

 pr_done=1; 

 #5 Th_Counter=0; 

end 
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else 

 if(pr_en) 

 pr_done=0; 

 else pr_done=1; 

endmodule 

 

6. PROCESS_C.V 
 

module ProcessC(clk,reset,pr_en,Input1,Input2,Output1,Output2,Throughput,pr_done); 

parameter width=8; //FIFO width 

 

input [width-1:0]Input1,Input2; 

input [3:0]Throughput; 

input pr_en,clk,reset; 

 

output [width-1:0]Output1,Output2; 

output pr_done; 

reg pr_done; 

 

//Temporary Registers and wires 

reg [3:0]Th_Counter; 

wire [3:0]Count_Inc=Th_Counter+1; 

assign Output1=Input1; 

assign Output2=Input2; 

//Simply Waste Clock Cycles for process internal algorithm execution 
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always @(posedge clk) 

begin 

 if(reset) 

 begin 

  pr_done<=1; 

  Th_Counter<=0; 

 end 

 else 

 begin 

     if(pr_en) 

      Th_Counter=Count_Inc;  

     else 

      Th_Counter=Th_Counter;//Do Nothing 

 end 

end 

 

always @(Th_Counter) 

if(Th_Counter == Throughput) 

begin 

 pr_done=1; 

 #5 Th_Counter=0; 

end 

else 

 if(pr_en) 
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 pr_done=0; 

 else pr_done=1; 

endmodule 

 

7. PROCESS_D.V 
 

module ProcessD(clk,reset,pr_en,Input1,Output1,Output2,Throughput,pr_done); 

parameter width=8; //FIFO width 

 

input [width-1:0]Input1; 

input [3:0]Throughput; 

input pr_en,clk,reset; 

 

output [width-1:0]Output1,Output2; 

output pr_done; 

reg pr_done; 

 

//Temporary Registers and wires 

reg [3:0]Th_Counter; 

wire [3:0]Count_Inc=Th_Counter+1; 

assign Output1=Input1; 

assign Output2=Input1; 

//Simply Waste Clock Cycles for process internal algorithm execution 

always @(posedge clk) 

begin 
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 if(reset) 

 begin 

  pr_done<=1; 

  Th_Counter<=0; 

 end 

 else 

 begin 

     if(pr_en) 

      Th_Counter=Count_Inc;  

     else 

      Th_Counter=Th_Counter;//Do Nothing 

 end 

end 

 

always @(Th_Counter) 

if(Th_Counter == Throughput) 

begin 

 pr_done=1; 

 #5 Th_Counter=0; 

end 

else 

 if(pr_en) 

 pr_done=0; 

 else pr_done=1; 
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endmodule 

 

 

8. PROCESS_E.V 
 

module ProcessE(clk,reset,pr_en,Input1,Output1,Throughput,pr_done); 

parameter width=8; //FIFO width 

 

input [width-1:0]Input1; 

input [3:0]Throughput; 

input pr_en,clk,reset; 

 

output [width-1:0]Output1; 

output pr_done; 

reg pr_done; 

 

//Temporary Registers and wires 

reg [3:0]Th_Counter; 

wire [3:0]Count_Inc=Th_Counter+1; 

assign Output1=Input1; 

//Simply Waste Clock Cycles for process internal algorithm execution 

always @(posedge clk) 

begin 

 if(reset) 

 begin 
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  pr_done<=1; 

  Th_Counter<=0; 

 end 

 else 

 begin 

     if(pr_en) 

      Th_Counter=Count_Inc;  

     else 

      Th_Counter=Th_Counter;//Do Nothing 

 end 

end 

 

always @(Th_Counter) 

if(Th_Counter == Throughput) 

begin 

 pr_done=1; 

 #5 Th_Counter=0; 

end 

else 

 if(pr_en) 

 pr_done=0; 

 else pr_done=1; 

endmodule 
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9. TEST_RC_RP.V 
 

module test(RC,diff1,diff2,diff3,diff4,diff5,diff6,pr_en); 

input [23:0]RC; 

input [3:0]diff1,diff2,diff3,diff4,diff5,diff6; 

output pr_en; 

reg pr_en; 

always @(diff1 or diff2 or diff3 or diff4 or diff5 or diff6 or RC) 

if(diff1 >= RC[3:0] && diff2 >= RC[7:4] && diff3 >= RC[11:8] && 
diff4>=RC[15:12] &&  

   diff5>=RC[19:16] && diff6 >= RC[23:20]) 

 begin 

 pr_en=1; 

 end 

else 

 begin 

 pr_en=0; 

 end 

 endmodule 

 

10. STIMULUS.V 
 

module stim; 

reg clk,reset; 

reg wr_en1; 
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reg [3:0]thru_n1,thru_n2,thru_n3,thru_n4,thru_n5; 

reg [7:0]data_in; 

reg [23:0]rc_n1,rc_n2,rc_n3,rc_n4,rc_n5; 

wire [7:0]data_out; 

main_File m1(wr_en1,rc_n1,rc_n2,rc_n3,rc_n4,rc_n5,data_in,data_out, 

                 thru_n1,thru_n2,thru_n3,thru_n4,thru_n5,clk,reset); 

 

initial 

begin 

clk=0; 

forever 

#5 clk=~clk; 

end 

initial 

begin 

reset=1; 

thru_n1=3;thru_n2=2;thru_n3=1;thru_n4=2;thru_n5=3; 

#15 reset=0; 

rc_n1=24'b0000_0000_0000_0000_0000_0001; 

rc_n2=24'b0000_0000_0000_0000_0001_0000; 

rc_n3=24'b0000_0000_0000_0001_0000_0000; 

rc_n4=24'b0000_0000_0001_0000_0000_0000; 

rc_n5=24'b0000_0001_0000_0000_0000_0000; 

data_in=1; 
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#10 

repeat(15) 

#30 data_in=data_in+1; 

end 

initial 

#200 $stop; 

initial 

begin 

wr_en1=1; 

end 

endmodule 
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SIMULATION RESULTS 
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FIFO_(1_2) BEHAVIOR 
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PROCESS (A_B) BEHAVIOR 
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PROCESS (C_D) BEHAVIOR 
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TEST (A_B_C) BEHAVIOR 
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SYNTHESIS RESULTS 

RTL CODE SYNTHESIS ON FPGA VIRTEX-4) 

 

DEVICE UTILIZATION SUMMARY 

 

Device Utilization Summary (estimated values) 

  

[-] 

Logic Utilization Used Available Utilization 

Number of Slices 235 6144 3% 

Number of Slice Flip Flops 105 12288 0% 

Number of 4 input LUTs 439 12288 3% 

Number of bonded IOBs 151 240 62% 

Number of GCLKs 1 32 3% 

 

COMPARISON OF MANUAL AND COMPILER GENERATED RTL CODES 
ON FPGA (SPARTAN 3E) 
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CHAPTER 5 

 

 

 

CONCLUSION AND FUTURE WORK 

 
In this scheme, I have developed a structure of KPN that can easily be mapped on any 

reconfigurable platforms. For that, I ask the specification from the user of specific format, and 

then the compiler reads it and gives an automatic HDL based controller for hardware mapping. 

Future work will be the automatic generation of this specification file. By simply viewing the 

streaming application, an automatic design file will be generated that will be then passed to this 

generalized compiler which is giving the hardware implementation of KPN framework. 

 

Conclusively, I have proposed and implemented a framework of KPN taking the input 

specifications of streaming applications resulting into automatic synthesized RTL code 

generation. This is essential because the actual critical streaming applications is constituent of 

thousands or millions of such independent components or processing elements and 

managing/controlling their processing in a big challenge. Also, Execution time of such application 

requires more than a week and when a matter of designing a manual controller for such 

application comes, it becomes a huge overhead. Lastly, if the design goes fail then all your effort 

will go down. For this consideration, we have come to this point that designers just need to put 

their application specifications/demands and an automatic synthesized RTL optimized controller 

will be generated without any manual considerations and overheads fulfilling their current design 

demands and if required, then it can easily be upgraded according to restructured design. 
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APPENDIX A 

C-CODE OF GIVEN DSP DESIGN: 
 

1. DEFINITIONS.H 
 

void FIFO(); 

void TEST(); 

void B_COUNTER(); 

void Process_A(); 

void Process_B(); 

void Process_C(); 

void Process_D(); 

void Process_E(); 

void KPN(); 

void STIM(); 

 

2. MAIN_C.C 
 
#include<conio.h> 
#include<process.h> 
#include<stdio.h> 
 
#include"definitions.h" 
//#include"FIFO.h" 
 
void main() 
{ 
 FIFO(); 
 TEST(); 
 B_COUNTER(); 
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 Process_A(); 
 Process_B(); 
 Process_C(); 
 Process_D(); 
 Process_E(); 
 KPN(); 
 STIM(); 
 getche(); 
} 

 

3. KPN_CONTROLLER.C 
 

#include<conio.h> 

#include<process.h> 

#include<stdio.h> 

 

void KPN() 

{ 

 FILE *fp; 

 fp=fopen("Main_File.V","w"); 

 if(fp==NULL) 

 { 

  puts("Cannot Open Target File"); 

  exit(0); 

 } 

/*----------------------------------------------------------------------| 

|----------------------WRITING TO FILE Main_KPN.V---------------------------| 

|-----------------------------------------------------------------------*/ 
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fprintf(fp,"module 
Main_File(wr_en1,rc_n1,rc_n2,rc_n3,rc_n4,rc_n5,data_in,data_out,thru_n1,thru_n2,thr
u_n3,thrU_n4,thru_n5,clk,reset);\n"); 

 

//Input Signals 

fprintf(fp,"input clk,reset;\n"); 

 

//Write enable signal for fifo_1 

fprintf(fp,"input wr_en1;\n"); 

 

//Throughputs for each node 

fprintf(fp,"input [3:0]thru_n1,thru_n2,thru_n3,thru_n4,thru_n5;\n"); 

 

//Input Stream data will bestored at here 

fprintf(fp,"input [7:0]data_in;\n"); 

 

//Rate of consumption at each link 

fprintf(fp,"input [19:0]rc_n1,rc_n2,rc_n3,rc_n4,rc_n5;\n\n"); 

 

//Output Data 

fprintf(fp,"output [7:0]data_out;\n"); 

fprintf(fp,"reg [7:0]data_out;\n\n"); 

 

//Temporary wires and Registers holding Outputs from FIFOs and processes  
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//and holding control signals as well 

fprintf(fp,"wire [7:0]d_out1,d_out2,d_out3,d_out4,d_out5,d_out6,d_out7,d_out8;\n"); 

fprintf(fp,"wire [7:0]Output1,Output2,Output3,Output4,Output5,Output6,Output7;\n"); 

fprintf(fp,"wire 
rd_en1,rd_en2,rd_en3,rd_en4,rd)en5,rd_en5,rd_en6,rd_en7,rd_en8,wr_en2,wr_en3,wr_
en4,wr_en5,wr_en6,wr_en7,wr_en8;\n\n"); 

 

fprintf(fp,"reg 
read1,read2,read3,read4,read5,read6,read7,write2,write3,write4,write5,write6,write7,wr
ite8;\n\n"); 

 

//Flags showing FIFO Status i.e (Fifo Full and Fifo Empty) 

fprintf(fp,"wire f_full_flag1,f_full_flag2,f_full_flag3,f_full_flag4;\n"); 

fprintf(fp,"wire f_empty_flag1,f_empty_flag2,f_empty_flag3,f_empty_flag4;\n\n"); 

 

//Enable the process and Done Signals showing process has completed its execution 

//and ready to write data at ints output buffer 

fprintf(fp,"wire pr_en1,pr_en2,pr_en3,pr_done1,pr_done2,pr_done3;\n\n"); 

 

//Pointer that stores the Difference between w_ptr and r_ptr 

fprintf(fp,"wire [3:0]diff_ptr1,diff_ptr2,diff_ptr3,diff_ptr4;\n\n"); 

 

//Call FIFO Instances 

fprintf(fp,"FIFO 
f1(diff_ptr1,d_out1,f_full_flag1,f_empty_flag1,data_in,rd_en1,wr_en1,clk,reset);\n"); 

fprintf(fp,"FIFO 
f2(diff_ptr2,d_out2,f_full_flag2,f_empty_flag2,Output1,rd_en2,wr_en2,clk,reset);\n"); 



 

100 

 

fprintf(fp,"FIFO 
f3(diff_ptr3,d_out3,f_full_flag3,f_empty_flag3,Output2,rd_en3,wr_en3,clk,reset);\n"); 

fprintf(fp,"FIFO 
f4(diff_ptr4,d_out4,f_full_flag4,f_empty_flag4,Output3,rd_en4,wr_en4,clk,reset);\n\n"); 

 

fprintf(fp,"FIFO 
f5(diff_ptr5,d_out5,f_full_flag5,f_empty_flag5,Output4,rd_en5,wr_en5,clk,reset);\n"); 

fprintf(fp,"FIFO 
f6(diff_ptr6,d_out6,f_full_flag6,f_empty_flag6,Output5,rd_en6,wr_en6,clk,reset);\n"); 

fprintf(fp,"FIFO 
f7(diff_ptr7,d_out7,f_full_flag7,f_empty_flag7,Output6,rd_en7,wr_en7,clk,reset);\n"); 

fprintf(fp,"FIFO 
f8(diff_ptr8,d_out8,f_full_flag8,f_empty_flag8,Output7,rd_en8,wr_en8,clk,reset);\n\n"); 

 

//Process Instantiations 

fprintf(fp,"ProcessA 
A1(clk,reset,pr_en1,d_out1,Output1,Output6,thru_n1,pr_done1);\n"); 

fprintf(fp,"ProcessB B1(clk,reset,pr_en2,d_out2,Output2,thru_n2,pr_done2);\n"); 

fprintf(fp,"ProcessC 
C1(clk,reset,pr_en3,d_out3,Output3,Output4,thru_n3,pr_done3);\n"); 

fprintf(fp,"ProcessD D1(clk,reset,pr_en4,d_out4,Output5,thru_n4,pr_done4);\n"); 

fprintf(fp,"ProcessE E1(clk,reset,pr_en5,d_out5,Output7,thru_n5,pr_done5);\n\n"); 

 

//Test Module checking sufficient tokens have acquired in each fifo to start execution 

fprintf(fp,"TEST t1(rc_n1,diff_ptr1,4'b0,4'b0,4'b0,4'b0,pr_en1);\n"); 

fprintf(fp,"TEST t2(rc_n2,4'b0,diff_ptr2,4'b0,4'b0,4'b0,pr_en2);\n"); 

fprintf(fp,"TEST t3(rc_n3,diff_ptr1,4'b0,4'b0,4'b0,4'b0,pr_en3);\n"); 
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fprintf(fp,"TEST t4(rc_n4,4'b0,diff_ptr2,4'b0,4'b0,4'b0,pr_en4);\n"); 

fprintf(fp,"TEST t5(rc_n5,4'b0,4'b0,diff_ptr3,4'b0,4'b0,pr_en5);\n\n"); 

 

 

//Simple assignments 

//assign data_out=d_out4; 

fprintf(fp,"assign rd_en1=read1;\n"); 

fprintf(fp,"assign rd_en2=read2;\n"); 

fprintf(fp,"assign rd_en3=read3;\n"); 

fprintf(fp,"assign rd_en4=read4;\n"); 

fprintf(fp,"assign rd_en5=read5;\n"); 

fprintf(fp,"assign rd_en6=read6;\n"); 

fprintf(fp,"assign rd_en7=read7;\n"); 

fprintf(fp,"assign rd_en4=1;\n\n"); 

fprintf(fp,"assign wr_en2=write2;\n"); 

fprintf(fp,"assign wr_en3=write3;\n"); 

fprintf(fp,"assign wr_en4=write4;\n"); 

fprintf(fp,"assign wr_en5=write5;\n"); 

fprintf(fp,"assign wr_en6=write6;\n"); 

fprintf(fp,"assign wr_en7=write7;\n"); 

fprintf(fp,"assign wr_en8=write8;\n\n"); 

 

 

//When Pr_en1 is active high or low 
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fprintf(fp,"always @(posedge clk)\n"); 

fprintf(fp,"if(pr_en1)\n"); 

fprintf(fp,"\tif(pr_done1)\n\t\tread1=1;\n\telse\n\t\tread1=0;\n\n"); 

fprintf(fp,"else\n"); 

fprintf(fp,"\tread1=0;\n\n"); 

  

//When pr_en2 is active high or low 

fprintf(fp,"always @(posedge clk)\n"); 

fprintf(fp,"if(pr_en2)\n"); 

fprintf(fp,"\tif(pr_done2)\n\t\tread2=1;\n\telse\n\t\tread2=0;\n\n\n"); 

fprintf(fp,"else\n"); 

fprintf(fp,"\tread2=0;\n\n"); 

 

//When pr_en3 is active high or low  

fprintf(fp,"always @(posedge clk)\n"); 

fprintf(fp,"if(pr_en3)\n"); 

fprintf(fp,"\tif(pr_done3)\n\t\tread3=1;\n\telse\n\t\tread3=0;\n\n"); 

fprintf(fp,"else\n"); 

fprintf(fp,"\tread3=0; \n\n"); 

 

//When pr_en4 is active high or low  

fprintf(fp,"always @(posedge clk)\n"); 

fprintf(fp,"if(pr_en4)\n"); 

fprintf(fp,"\tif(pr_done4)\n\t\tread4=1;\n\telse\n\t\tread4=0;\n\n"); 
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fprintf(fp,"else\n"); 

fprintf(fp,"\tread4=0; \n\n"); 

  

 

//When pr_en3 is active high or low  

fprintf(fp,"always @(posedge clk)\n"); 

fprintf(fp,"if(pr_en5)\n"); 

fprintf(fp,"\tif(pr_done5)\n\t\tread3=1;\n\telse\n\t\tread5=0;\n\n"); 

fprintf(fp,"else\n"); 

fprintf(fp,"\tread5=0; \n\n"); 

  

 

  

//When pr_done1 is active high or low  

fprintf(fp,"always @(pr_done1)\n"); 

fprintf(fp,"if(pr_done1)\n"); 

fprintf(fp,"\tif(pr_en1)\n\t\twrite2=1;\n\telse\n\t\twrite2=0;\n"); 

fprintf(fp,"else\n"); 

fprintf(fp,"\twrite2=0;\n\n"); 

 

//When pr_done2 is active high or low 

fprintf(fp,"always @(pr_done2) \n"); 

fprintf(fp,"if(pr_done2)\n"); 

fprintf(fp,"\tif(pr_en2)\n\t\twrite3=1;\n\telse\n\t\twrite3=0;\n"); 
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fprintf(fp,"else\n"); 

fprintf(fp,"\twrite3=0;\n\n"); 

  

//When pr_done3 is active high or low  

fprintf(fp,"always @(pr_done3)\n"); 

fprintf(fp,"if(pr_done3)\n"); 

fprintf(fp,"\tif(pr_en3)\n\t\twrite4=1;\n\telse\n\t\twrite4=0;\n"); 

fprintf(fp,"else\n"); 

fprintf(fp,"\twrite4=0; \n\n"); 

 

//When pr_done4 is active high or low  

fprintf(fp,"always @(pr_done4)\n"); 

fprintf(fp,"if(pr_done4)\n"); 

fprintf(fp,"\tif(pr_en4)\n\t\twrite5=1;\n\telse\n\t\twrite5=0;\n"); 

fprintf(fp,"else\n"); 

fprintf(fp,"\twrite5=0; \n\n"); 

 

//When pr_done3 is active high or low  

fprintf(fp,"always @(pr_done5)\n"); 

fprintf(fp,"if(pr_done5)\n"); 

fprintf(fp,"\tif(pr_en5)\n\t\twrite6=1;\n\telse\n\t\twrite6=0;\n"); 

fprintf(fp,"else\n"); 

fprintf(fp,"\twrite6=0; \n\n"); 
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fprintf(fp,"always @(posedge clk)\n"); 

fprintf(fp,"begin\n"); 

fprintf(fp,"\tif(reset)\n"); 

fprintf(fp,"\tbegin\n"); 

fprintf(fp,"\t\tdata_out<=0;\n"); 

fprintf(fp,"\tend\n"); 

fprintf(fp,"\telse\n"); 

fprintf(fp,"\tbegin\n"); 

fprintf(fp,"\t\tdata_out<=d_out4;\n"); 

fprintf(fp,"\tend\n\n"); 

fprintf(fp,"end\n\n"); 

fprintf(fp,"endmodule\n"); 

 

puts("Data Main_File.V Copied"); 

fclose(fp); 

} 

 

4. FIFO.C 
 

#include<conio.h> 

#include<process.h> 

#include<stdio.h> 

 

void FIFO() 



 

106 

 

{ 

 FILE *fp; 

 fp=fopen("FIFO.V","w"); 

 if(fp==NULL) 

 { 

  puts("Cannot Open Target File"); 

  exit(0); 

 } 

 

/*----------------------------------------------------------------------| 

|----------------------WRITING TO FILE FIFO.V---------------------------| 

|-----------------------------------------------------------------------*/ 

int f_width=8;//Token size=8 bits 

int f_depth=16;//Fifo Depth=16 locations of 8 bits wide 

int f_ptr_width=4;//ptr size to address 16 locations 

int flag; 

int ptr_diff=0; 

int rd_ptr,wr_ptr; 

 

 fprintf(fp,"module 
FIFO(ptr_diff,output_data,f_full_flag,f_empty_flag,input_data,rd_enable,wr_enable,cloc
k,reset);\n"); 

    fprintf(fp,"parameter f_depth=16; //FIFO depth\n\n"); 

 fprintf(fp,"input rd_enable,wr_enable,clock,reset;\n"); 

 fprintf(fp,"input [%d:0]input_data;\n",(f_width-1)); 
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 //fprintf(fp,"input [7:0]Data_In;\n\n"); 

 

 fprintf(fp,"output [%d:0]ptr_diff;\n",(f_ptr_width-1)); 

 fprintf(fp,"output [%d:0]output_data;\n",(f_width-1)); 

 fprintf(fp,"output f_full_flag,f_empty_flag;\n\n"); 

 

//Outputs need to be declared as reg for behavioral modeling 

 fprintf(fp,"//Outputs need to be declared as reg for behavioral modeling\n"); 

 fprintf(fp,"reg [%d:0]output_data;\n\n",(f_width-1)); 

 

//Internal wires, registers and register file declarations 

 fprintf(fp,"//Internal wires, registers and register file declarations\n"); 

 fprintf(fp,"reg [%d:0]diff;\n",(f_ptr_width-1)); 

 fprintf(fp,"wire [%d:0]rd_ptr,wr_ptr;\n",(f_ptr_width-1)); 

 fprintf(fp,"reg rd_next_en,wr_next_en;\n"); 

 fprintf(fp,"reg [%d:0]f_memory[0:%d];\n\n",(f_width-1),(f_depth-1)); 

 

//Simple assignments 

 fprintf(fp,"assign ptr_diff=diff;\n"); 

 if(ptr_diff==(f_depth-1)) //IF_ELSE for checking FIFO is FULL 

  flag=1; 

 else 

  flag=0; 

 fprintf(fp,"assign f_full_flag=(ptr_diff==(f_depth-1));\n"); 
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 if(ptr_diff==0)//IF_ELSE checking the empty status of FIFO Buffer 

  flag=1; 

 else 

  flag=0; 

 fprintf(fp,"assign f_empty_flag=(ptr_diff==0);\n\n"); 

 

//instantiate address counters for increments and decrements 

 fprintf(fp,"b_counter 
rd_b_counter(.c_out(rd_ptr),.c_reset(reset),.c_clk(clock),.en(rd_next_en));\n"); 

 fprintf(fp,"b_counter 
wr_b_counter(.c_out(wr_ptr),.c_reset(reset),.c_clk(clock),.en(wr_next_en));\n\n\n"); 

 

/*----------Always block starts at here ----------- 

|--------------------------------------------------*/ 

 fprintf(fp,"always @(posedge clock)\n"); 

 fprintf(fp,"begin\n\n"); 

 

 fprintf(fp,"if(reset)\n"); 

 fprintf(fp,"\toutput_data=%d;\n\n",0); //Output must be reset to zero when reset 
signal is asserted 

 

 //if write signal is asserted then first you need to check whether fifo is full or not 

 //if not, then input data is written into fifo buffer 

 fprintf(fp,"if(wr_enable) begin\n"); 

 fprintf(fp,"\tif(!f_full_flag)\n"); 

 fprintf(fp,"\t\tf_memory[wr_ptr]<=input_data;\n");  
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 fprintf(fp,"\tend\n\n"); 

 

 //if read signal is asserted then first you need to check whether fifo is empty or 
not 

 //if not, then fifo buffer is being read 

 fprintf(fp,"if(rd_enable) begin\n"); 

 fprintf(fp,"\tif(!f_empty_flag)\n"); 

 fprintf(fp,"\t\toutput_data<=f_memory[rd_ptr];\n"); 

 fprintf(fp,"\tend\n\n"); 

 

 

 fprintf(fp,"end\n\n"); 

 

 

//---------------------------------------------------------  

 fprintf(fp,"always @(*)\n\n"); //ptr_diff changes as clock changes 

 fprintf(fp,"begin \n\n"); 

 fprintf(fp,"if(wr_ptr>rd_ptr)\n"); 

 fprintf(fp,"\tdiff<=wr_ptr-rd_ptr;\n\n"); 

 fprintf(fp,"else if(wr_ptr<rd_ptr)\n"); 

 fprintf(fp,"\tdiff<=%d;\n\n",((f_depth-rd_ptr)+wr_ptr)); 

 fprintf(fp,"else diff<=0;\n\n"); 

 fprintf(fp,"end\n\n\n"); 

 

//--------------------------------------------------------- 
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 fprintf(fp,"always @(*)\n\n"); //after empty flag activated fifo read counter should 
not increment; 

 fprintf(fp,"begin \n\n"); 

 fprintf(fp,"if(rd_enable && (!f_empty_flag))\n"); 

 fprintf(fp,"\trd_next_en=1;\n\n"); 

 fprintf(fp,"else \n"); 

 fprintf(fp,"\trd_next_en=0;\n\n"); 

 fprintf(fp,"end\n\n\n"); 

 

//-------------------------------------------------------- 

 fprintf(fp,"always @(*)\n\n"); //after full flag activated fifo write counter should 
not increment; 

 fprintf(fp,"begin \n\n"); 

 fprintf(fp,"if(wr_enable && (!f_full_flag))\n"); 

 fprintf(fp,"\twr_next_en=1;\n\n"); 

 fprintf(fp,"else \n"); 

 fprintf(fp,"\twr_next_en=0;\n\n"); 

 fprintf(fp,"end\n\n"); 

 

//--------------------------------------------------------- 

 fprintf(fp,"endmodule"); 

 

puts("Data FIFO.V Copied"); 

fclose(fp); 

} 
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5. B_COUNTER.C 
 

#include<conio.h> 

#include<process.h> 

#include<stdio.h> 

 

void B_COUNTER() 

{ 

int c_width=4; 

 

 FILE *fp; 

 fp=fopen("b_counter.V","w"); 

 

 if(fp==NULL) 

 { 

 puts("Cannot Open Source File"); 

  exit(0); 

 } 

 

 /*----------------------------------------------------------------------| 

 |----------------------WRITING TO FILE b_counter.V----------------------| 

 |-----------------------------------------------------------------------*/ 

 fprintf(fp,"module b_counter(c_out,c_reset,c_clk,en);\n\n"); 

 fprintf(fp,"parameter c_width=%d;\n\n",c_width); 
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 //Input Specifications 

 fprintf(fp,"input c_reset,c_clk,en;\n\n"); 

 

 //Output specifications and also it needs to be declared as reg for behavioral 
modeling 

 fprintf(fp,"output [%d:0]c_out;\n",(c_width-1)); 

 fprintf(fp,"reg [%d:0]c_out;\n\n",(c_width-1)); 

 

 /*----------Always block starts at here ----------- 

 |--------------------------------------------------*/ 

 fprintf(fp,"always @(posedge c_clk or posedge c_reset)\n"); 

 fprintf(fp,"if(c_reset)\n"); 

 fprintf(fp,"\tc_out<=0;\n"); 

 fprintf(fp,"else if(en)\n"); 

 fprintf(fp,"\tc_out<=c_out+1;\n"); 

 fprintf(fp,"else\n"); 

 fprintf(fp,"\tc_out<=c_out;\n\n"); 

 

 fprintf(fp,"endmodule"); 

  

puts("Data B_Counter.V Copied"); 

fclose(fp); 

} 
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6. PROCESS_A.C 
 

#include<conio.h> 

#include<process.h> 

#include<stdio.h> 

 

void Process_A(){ 

 

 FILE *fp; 

 fp=fopen("ProcessA.V","w"); 

 

 if(fp==NULL) 

 { 

 puts("Cannot Open Source File"); 

  exit(0); 

 } 

 

 /*---------------------------------------------------------------------- 

 |----In Actual sense, this block contains the actual processing element 

 that needs to be executed. But we are just sketshing the hardware, so at  

 here, we will just waste throughput number of clock cycles-------------*/ 

 

 

 /*----------------------------------------------------------------------| 

 |----------------------WRITING TO FILE Process_A.V------------------------| 
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 |-----------------------------------------------------------------------*/ 

 

//Input Specifications 

fprintf(fp,"module 
ProcessA(clk,reset,pr_en,Input1,Output1,Output2,Throughput,pr_done);\n"); 

fprintf(fp,"parameter width=8; //FIFO width\n\n"); 

fprintf(fp,"input [width-1:0]Input1;\n"); 

fprintf(fp,"input [3:0]Throughput;\n"); 

fprintf(fp,"input pr_en,clk,reset;\n\n"); 

 

//Output Specifications 

fprintf(fp,"output [width-1:0]Output1;\n"); 

fprintf(fp,"output pr_done;\n"); 

fprintf(fp,"reg pr_done;\n\n"); 

 

//Temporary Registers and wires 

fprintf(fp,"reg [3:0]Th_Counter;\n"); 

fprintf(fp,"wire [3:0]Count_Inc;\n"); 

fprintf(fp,"assign Count_Inc=Th_Counter+1;\n\n"); 

 

fprintf(fp,"assign Output1=Input1;\n\n"); 

fprintf(fp,"assign Output2=Input1;\n\n"); 

 

//Simply Waste Clock Cycles for process internal algorithm execution 
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/*-------Always block starts at here --------- 

|---------------------------------------------*/ 

 

fprintf(fp,"always @(posedge clk)\n"); 

fprintf(fp,"begin\n"); 

 

fprintf(fp,"if(reset)\n"); 

fprintf(fp,"\tbegin\n"); 

fprintf(fp,"\t\tpr_done<=0;\n"); 

fprintf(fp,"\t\tTh_Counter<=0;\n"); 

fprintf(fp,"\tend\n\n"); 

 

fprintf(fp,"else\n"); 

fprintf(fp,"\tbegin\n"); 

fprintf(fp,"\t\tif(pr_en)\n"); 

fprintf(fp,"\t\tTh_Counter=Count_Inc;\n\n"); 

fprintf(fp,"\t\telse\n"); 

fprintf(fp,"\t\tTh_Counter=Th_Counter;//Do Nothing\n\n"); 

fprintf(fp,"\tend\n\n"); 

 

fprintf(fp,"end\n\n"); 

 

 

 /*-------Always block For Counting starts at here --------- 
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 |----------------------------------------------------------*/ 

 

fprintf(fp,"always @(Th_Counter)\n"); 

fprintf(fp,"if(Th_Counter == Throughput)\n"); 

fprintf(fp,"begin\n"); 

fprintf(fp,"\tpr_done=1;\n"); 

fprintf(fp,"\t#5 Th_Counter=0;\n"); 

fprintf(fp,"end\n\n"); 

 

fprintf(fp,"else\n"); 

fprintf(fp,"\tif(pr_en)\n\t\tpr_done=0;\n\telse\n\t\tpr_done=1;\n\n"); 

 

fprintf(fp,"endmodule"); 

 

puts("Data Process_A.V Copied"); 

fclose(fp); 

 

} 

 

7. PROCESS_B.C 
 

#include<conio.h> 

#include<process.h> 

#include<stdio.h> 
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void Process_B(){ 

 

 FILE *fp; 

 fp=fopen("ProcessB.V","w"); 

 

 if(fp==NULL) 

 { 

 puts("Cannot Open Source File"); 

  exit(0); 

 } 

 

 /*---------------------------------------------------------------------- 

 |----In Actual sense, this block contains the actual processing element 

 that needs to be executed. But we are just sketshing the hardware, so at  

 here, we will just waste throughput number of clock cycles-------------*/ 

 

 

 /*----------------------------------------------------------------------| 

 |----------------------WRITING TO FILE Process_B.V------------------------| 

 |-----------------------------------------------------------------------*/ 

 

//Input Specifications 

fprintf(fp,"module ProcessB(clk,reset,pr_en,Input1,Output1,Throughput,pr_done);\n"); 

fprintf(fp,"parameter width=8; //FIFO width\n\n"); 
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fprintf(fp,"input [width-1:0]Input1;\n"); 

fprintf(fp,"input [3:0]Throughput;\n"); 

fprintf(fp,"input pr_en,clk,reset;\n\n"); 

 

//Output Specifications 

fprintf(fp,"output [width-1:0]Output1;\n"); 

fprintf(fp,"output pr_done;\n"); 

fprintf(fp,"reg pr_done;\n\n"); 

 

//Temporary Registers and wires 

fprintf(fp,"reg [3:0]Th_Counter;\n"); 

fprintf(fp,"wire [3:0]Count_Inc;\n"); 

fprintf(fp,"assign Count_Inc=Th_Counter+1;\n\n"); 

 

fprintf(fp,"assign Output1=Input1;\n\n"); 

 

//Simply Waste Clock Cycles for process internal algorithm execution 

 

/*-------Always block starts at here --------- 

|---------------------------------------------*/ 

 

fprintf(fp,"always @(posedge clk)\n"); 

fprintf(fp,"begin\n"); 
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fprintf(fp,"if(reset)\n"); 

fprintf(fp,"\tbegin\n"); 

fprintf(fp,"\t\tpr_done<=0;\n"); 

fprintf(fp,"\t\tTh_Counter<=0;\n"); 

fprintf(fp,"\tend\n\n"); 

 

fprintf(fp,"else\n"); 

fprintf(fp,"\tbegin\n"); 

fprintf(fp,"\t\tif(pr_en)\n"); 

fprintf(fp,"\t\tTh_Counter=Count_Inc;\n\n"); 

fprintf(fp,"\t\telse\n"); 

fprintf(fp,"\t\tTh_Counter=Th_Counter;//Do Nothing\n\n"); 

fprintf(fp,"\tend\n\n"); 

 

fprintf(fp,"end\n\n"); 

 

 

 /*-------Always block For Counting starts at here --------- 

 |----------------------------------------------------------*/ 

 

fprintf(fp,"always @(Th_Counter)\n"); 

fprintf(fp,"if(Th_Counter == Throughput)\n"); 

fprintf(fp,"begin\n"); 

fprintf(fp,"\tpr_done=1;\n"); 
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fprintf(fp,"\t#5 Th_Counter=0;\n"); 

fprintf(fp,"end\n\n"); 

 

fprintf(fp,"else\n"); 

fprintf(fp,"\tif(pr_en)\n\t\tpr_done=0;\n\telse\n\t\tpr_done=1;\n\n"); 

 

fprintf(fp,"endmodule"); 

 

puts("Data Process_B.V Copied"); 

fclose(fp); 

 

} 

 

8. PROCESS_C.C 
 

#include<conio.h> 

#include<process.h> 

#include<stdio.h> 

 

void Process_C(){ 

 

 FILE *fp; 

 fp=fopen("ProcessC.V","w"); 

 

 if(fp==NULL) 
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 { 

 puts("Cannot Open Source File"); 

  exit(0); 

 } 

 

 /*---------------------------------------------------------------------- 

 |----In Actual sense, this block contains the actual processing element 

 that needs to be executed. But we are just sketshing the hardware, so at  

 here, we will just waste throughput number of clock cycles-------------*/ 

 

 

 /*----------------------------------------------------------------------| 

 |----------------------WRITING TO FILE Process_C.V------------------------| 

 |-----------------------------------------------------------------------*/ 

 

//Input Specifications 

fprintf(fp,"module 
ProcessC(clk,reset,pr_en,Input1,Output1,Output2,Throughput,pr_done);\n"); 

fprintf(fp,"parameter width=8; //FIFO width\n\n"); 

fprintf(fp,"input [width-1:0]Input1;\n"); 

fprintf(fp,"input [3:0]Throughput;\n"); 

fprintf(fp,"input pr_en,clk,reset;\n\n"); 

 

//Output Specifications 

fprintf(fp,"output [width-1:0]Output1;\n"); 
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fprintf(fp,"output pr_done;\n"); 

fprintf(fp,"reg pr_done;\n\n"); 

 

//Temporary Registers and wires 

fprintf(fp,"reg [3:0]Th_Counter;\n"); 

fprintf(fp,"wire [3:0]Count_Inc;\n"); 

fprintf(fp,"assign Count_Inc=Th_Counter+1;\n\n"); 

 

fprintf(fp,"assign Output1=Input1;\n\n"); 

fprintf(fp,"assign Output2=Input1;\n\n"); 

 

//Simply Waste Clock Cycles for process internal algorithm execution 

 

/*-------Always block starts at here --------- 

|---------------------------------------------*/ 

 

fprintf(fp,"always @(posedge clk)\n"); 

fprintf(fp,"begin\n"); 

 

fprintf(fp,"if(reset)\n"); 

fprintf(fp,"\tbegin\n"); 

fprintf(fp,"\t\tpr_done<=0;\n"); 

fprintf(fp,"\t\tTh_Counter<=0;\n"); 

fprintf(fp,"\tend\n\n"); 
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fprintf(fp,"else\n"); 

fprintf(fp,"\tbegin\n"); 

fprintf(fp,"\t\tif(pr_en)\n"); 

fprintf(fp,"\t\tTh_Counter=Count_Inc;\n\n"); 

fprintf(fp,"\t\telse\n"); 

fprintf(fp,"\t\tTh_Counter=Th_Counter;//Do Nothing\n\n"); 

fprintf(fp,"\tend\n\n"); 

 

fprintf(fp,"end\n\n"); 

 

 /*-------Always block For Counting starts at here --------- 

 |----------------------------------------------------------*/ 

 

fprintf(fp,"always @(Th_Counter)\n"); 

fprintf(fp,"if(Th_Counter == Throughput)\n"); 

fprintf(fp,"begin\n"); 

fprintf(fp,"\tpr_done=1;\n"); 

fprintf(fp,"\t#5 Th_Counter=0;\n"); 

fprintf(fp,"end\n\n"); 

 

fprintf(fp,"else\n"); 

fprintf(fp,"\tif(pr_en)\n\t\tpr_done=0;\n\telse\n\t\tpr_done=1;\n\n"); 
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fprintf(fp,"endmodule"); 

 

puts("Data Process_C.V Copied"); 

fclose(fp); 

} 

 

9. PROCESS_D.C 
 

#include<conio.h> 

#include<process.h> 

#include<stdio.h> 

 

void Process_D(){ 

 

 FILE *fp; 

 fp=fopen("ProcessD.V","w"); 

 

 if(fp==NULL) 

 { 

 puts("Cannot Open Source File"); 

  exit(0); 

 } 

 

 /*---------------------------------------------------------------------- 

 |----In Actual sense, this block contains the actual processing element 
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 that needs to be executed. But we are just sketshing the hardware, so at  

 here, we will just waste throughput number of clock cycles-------------*/ 

 

 /*----------------------------------------------------------------------| 

 |----------------------WRITING TO FILE Process_D.V------------------------| 

 |-----------------------------------------------------------------------*/ 

 

//Input Specifications 

fprintf(fp,"module ProcessD(clk,reset,pr_en,Input1,Output1,Throughput,pr_done);\n"); 

fprintf(fp,"parameter width=8; //FIFO width\n\n"); 

fprintf(fp,"input [width-1:0]Input1;\n"); 

fprintf(fp,"input [3:0]Throughput;\n"); 

fprintf(fp,"input pr_en,clk,reset;\n\n"); 

 

//Output Specifications 

fprintf(fp,"output [width-1:0]Output1;\n"); 

fprintf(fp,"output pr_done;\n"); 

fprintf(fp,"reg pr_done;\n\n"); 

 

//Temporary Registers and wires 

fprintf(fp,"reg [3:0]Th_Counter;\n"); 

fprintf(fp,"wire [3:0]Count_Inc;\n"); 

fprintf(fp,"assign Count_Inc=Th_Counter+1;\n\n"); 
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fprintf(fp,"assign Output1=Input1;\n\n"); 

 

//Simply Waste Clock Cycles for process internal algorithm execution 

 

/*-------Always block starts at here --------- 

|---------------------------------------------*/ 

 

fprintf(fp,"always @(posedge clk)\n"); 

fprintf(fp,"begin\n"); 

 

fprintf(fp,"if(reset)\n"); 

fprintf(fp,"\tbegin\n"); 

fprintf(fp,"\t\tpr_done<=0;\n"); 

fprintf(fp,"\t\tTh_Counter<=0;\n"); 

fprintf(fp,"\tend\n\n"); 

 

fprintf(fp,"else\n"); 

fprintf(fp,"\tbegin\n"); 

fprintf(fp,"\t\tif(pr_en)\n"); 

fprintf(fp,"\t\tTh_Counter=Count_Inc;\n\n"); 

fprintf(fp,"\t\telse\n"); 

fprintf(fp,"\t\tTh_Counter=Th_Counter;//Do Nothing\n\n"); 

fprintf(fp,"\tend\n\n"); 
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fprintf(fp,"end\n\n"); 

 

 /*-------Always block For Counting starts at here --------- 

 |----------------------------------------------------------*/ 

 

fprintf(fp,"always @(Th_Counter)\n"); 

fprintf(fp,"if(Th_Counter == Throughput)\n"); 

fprintf(fp,"begin\n"); 

fprintf(fp,"\tpr_done=1;\n"); 

fprintf(fp,"\t#5 Th_Counter=0;\n"); 

fprintf(fp,"end\n\n"); 

 

fprintf(fp,"else\n"); 

fprintf(fp,"\tif(pr_en)\n\t\tpr_done=0;\n\telse\n\t\tpr_done=1;\n\n"); 

 

fprintf(fp,"endmodule"); 

puts("Data Process_D.V Copied"); 

fclose(fp); 

 

} 

 

10. PROCESS_E.C 
 

#include<conio.h> 

#include<process.h> 
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#include<stdio.h> 

 

void Process_E(){ 

 FILE *fp; 

 fp=fopen("ProcessE.V","w"); 

 

 if(fp==NULL) 

 { 

 puts("Cannot Open Source File"); 

  exit(0); 

 } 

 

 /*---------------------------------------------------------------------- 

 |----In Actual sense, this block contains the actual processing element 

 that needs to be executed. But we are just sketshing the hardware, so at  

 here, we will just waste throughput number of clock cycles-------------*/ 

 

 

 /*----------------------------------------------------------------------| 

 |----------------------WRITING TO FILE Process_E.V------------------------| 

 |-----------------------------------------------------------------------*/ 

 

//Input Specifications 

fprintf(fp,"module ProcessE(clk,reset,pr_en,Input1,Output1,Throughput,pr_done);\n"); 
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fprintf(fp,"parameter width=8; //FIFO width\n\n"); 

fprintf(fp,"input [width-1:0]Input1;\n"); 

fprintf(fp,"input [3:0]Throughput;\n"); 

fprintf(fp,"input pr_en,clk,reset;\n\n"); 

 

//Output Specifications 

fprintf(fp,"output [width-1:0]Output1;\n"); 

fprintf(fp,"output pr_done;\n"); 

fprintf(fp,"reg pr_done;\n\n"); 

 

//Temporary Registers and wires 

fprintf(fp,"reg [3:0]Th_Counter;\n"); 

fprintf(fp,"wire [3:0]Count_Inc;\n"); 

fprintf(fp,"assign Count_Inc=Th_Counter+1;\n\n"); 

 

fprintf(fp,"assign Output1=Input1;\n\n"); 

 

//Simply Waste Clock Cycles for process internal algorithm execution 

 

/*-------Always block starts at here --------- 

|---------------------------------------------*/ 

 

fprintf(fp,"always @(posedge clk)\n"); 

fprintf(fp,"begin\n"); 
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fprintf(fp,"if(reset)\n"); 

fprintf(fp,"\tbegin\n"); 

fprintf(fp,"\t\tpr_done<=0;\n"); 

fprintf(fp,"\t\tTh_Counter<=0;\n"); 

fprintf(fp,"\tend\n\n"); 

 

fprintf(fp,"else\n"); 

fprintf(fp,"\tbegin\n"); 

fprintf(fp,"\t\tif(pr_en)\n"); 

fprintf(fp,"\t\tTh_Counter=Count_Inc;\n\n"); 

fprintf(fp,"\t\telse\n"); 

fprintf(fp,"\t\tTh_Counter=Th_Counter;//Do Nothing\n\n"); 

fprintf(fp,"\tend\n\n"); 

 

fprintf(fp,"end\n\n"); 

 

 /*-------Always block For Counting starts at here --------- 

 |----------------------------------------------------------*/ 

 

fprintf(fp,"always @(Th_Counter)\n"); 

fprintf(fp,"if(Th_Counter == Throughput)\n"); 

fprintf(fp,"begin\n"); 

fprintf(fp,"\tpr_done=1;\n"); 
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fprintf(fp,"\t#5 Th_Counter=0;\n"); 

fprintf(fp,"end\n\n"); 

 

fprintf(fp,"else\n"); 

fprintf(fp,"\tif(pr_en)\n\t\tpr_done=0;\n\telse\n\t\tpr_done=1;\n\n"); 

 

fprintf(fp,"endmodule"); 

 

puts("Data Process_E.V Copied"); 

fclose(fp); 

} 

 

11. TEST_RC_RP.C 
 

#include<stdio.h> 

#include<process.h> 

#include<conio.h> 

 

void TEST() 

{ 

 

 FILE *fp; 

 fp=fopen("TEST.V","w"); 

 

 if(fp==NULL) 
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 { 

  puts("Cannot Open Target File"); 

  exit(0); 

 } 

 

/*----------------------------------------------------------------------| 

|----------------------WRITING TO FILE TEST.V---------------------------| 

|-----------------------------------------------------------------------*/ 

int f_width=8;//Token size=8 bits 

int f_depth=16;//Fifo Depth=16 locations of 8 bits wide 

int f_ptr_width=4;//ptr size to address 16 locations 

int flag; 

int ptr_diff=0; 

int rd_ptr,wr_ptr; 

 

 fprintf(fp,"module TEST(RC,diff1,diff2,diff3,diff4,diff5,pr_en);\n"); 

 fprintf(fp,"input [19:0]RC;\n"); 

 fprintf(fp,"input [3:0]diff1,diff2,diff3,diff4,diff5;\n\n"); 

 

 fprintf(fp,"output pr_en;\n"); 

 fprintf(fp,"reg pr_en;\n\n"); 

 

 fprintf(fp,"always @(diff1 or diff2 or diff3 or diff5 or diff5 or RC)\n\n"); 

 fprintf(fp,"if(diff1>=RC[19:16] && diff2>=RC[15:12] && 
diff3>=RC[11:8]\n"); 
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 fprintf(fp,"&& diff4>=RC[7:4] && diff5>=RC[3:0])\n"); 

 

 fprintf(fp,"\tbegin\n"); 

 fprintf(fp,"\tpr_en=1;\n"); 

 fprintf(fp,"\tend\n"); 

 

 fprintf(fp,"else\n"); 

 fprintf(fp,"\tbegin\n"); 

 fprintf(fp,"\tpr_en=0;\n"); 

 fprintf(fp,"\tend\n\n"); 

 fprintf(fp,"endmodule\n"); 

puts("Data Test.V Copied"); 

 

fclose(fp); 

} 

 

12. STIMULUS.C 
#include<conio.h> 

#include<process.h> 

#include<stdio.h> 

 

void STIM() 

{ 

 FILE *fp; 

 fp=fopen("stim.V","w"); 
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 if(fp==NULL) 

 { 

  puts("Cannot Open Target File"); 

  exit(0); 

 } 

/*----------------------------------------------------------------------| 

|----------------------WRITING TO FILE STIMULUS.V---------------------------| 

|-----------------------------------------------------------------------*/ 

fprintf(fp,"module stim;\n\n"); 

fprintf(fp,"reg clock,reset;\n"); 

fprintf(fp,"reg Wr_Enable_F1;\n"); 

fprintf(fp,"reg 
[3:0]Thru_Node1,Thru_Node2,Thru_Node3,Thru_Node4,Thru_Node5;\n"); 

fprintf(fp,"reg [7:0]Input_Data;\n"); 

fprintf(fp,"reg [19:0]Rc_Node1,Rc_Node2,Rc_Node3,Rc_Node4,Rc_Node5;\n\n"); 

fprintf(fp,"wire [7:0]Output_Data;\n\n"); 

fprintf(fp,"Main_File 
mm(Wr_Enable_F1,Rc_Node1,Rc_Node2,Rc_Node3,Rc_node4,Rc_node5,Input_Data,O
utput_Data,\n\t"); 

fprintf(fp,"   Thru_Node1,Thru_Node2,Thru_Node3,Thru_n3,Thru_n5,clock,reset);\n\n"); 

fprintf(fp,"initial\n"); 

fprintf(fp,"begin\n"); 

fprintf(fp,"clock=0;\n"); 

fprintf(fp,"forever\n"); 

fprintf(fp,"#5 clock=~clock;\n"); 
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fprintf(fp,"end\n\n"); 

fprintf(fp,"initial\n"); 

fprintf(fp,"begin\n"); 

fprintf(fp,"reset=1;\n"); 

 

fprintf(fp,"\nThru_Node1=3;Thru_Node2=2;Thru_Node3=1;Thru_Node4=2;Thru_Node
5=1;\n"); 

fprintf(fp,"#15 reset=0;\n"); 

fprintf(fp,"\nRc_Node1=20'b0001_0000_0000_0000_0000;\n"); 

fprintf(fp,"Rc_Node2=20'b0000_0001_0000_0000_0000;\n"); 

fprintf(fp,"Rc_Node3=20'b0000_0000_0001_0000_0000;\n"); 

fprintf(fp,"Rc_Node4=20'b0000_0001_0000_0000_0000;\n"); 

fprintf(fp,"Rc_Node5=20'b0000_0000_0001_0000_0000;\n"); 

fprintf(fp,"Input_Data=1;\n\n"); 

fprintf(fp,"#10\n"); 

fprintf(fp,"repeat(15) #30 Input_Data=Input_Data+1;\n"); 

fprintf(fp,"end\n"); 

fprintf(fp,"initial\n"); 

fprintf(fp,"#200 $stop;\n\n"); 

 

fprintf(fp,"initial\n"); 

fprintf(fp,"begin\n"); 

fprintf(fp,"Wr_Enable_F1=1;\n"); 

 

fprintf(fp,"end\n\n"); 
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fprintf(fp,"endmodule\n"); 

 

puts("Data STIM.V Copied"); 

fclose(fp); 

 

} 

 



 

137 

 

 

REFERENCES 
 

[1] Gilles Kahn, “The semantics of a simple language for parallel programming”. In Jack L. 

Rosenfeld, editor, Information Processing 74: Proceedings of the IFIP Congress 74, pages 

471-475. IFIP, North-Holland, August 1974. 

[2] Edward A. Lee and Thomas M. Parks, “Dataflow process networks,”  Proceedings of the 

IEEE, vol. 83, no. 5, pp. 773–799, May 1995. 

[3] Eric Cheung, Harry Hsieh, and Feris Baralin, “Automatic Buffer Sizing for Rate-

Constrained KPNApplications on Multiprocessor System-on- Chip,” Proceedings of IEEE, 

pages 37-44, 2007. 

[4] Marc Geilen and Twan Basten, “Requirements on the execution of kahn process networks,” 

In Programming Languages and Systems, 12th European Symposium on Programming, 

ESOP 2003, pages 319-334, Warsaw, Poland, April 2003. Lecture Notes in Computer 

Science vol. 2618. 

[5] Twan Basten and Jan Hoogerbrugge, “Efficient execution of process networks”. In A. 

Chalmers, M. Mirmehdi, and H. Muller, editors, Proc. Communicating Process 

Architectures, pages 1-14, Bristol, UK, September 2001. IOS Press 

[6] Thomas M. Parks, “Bounded Scheduling of Process Networks,”  PhD Thesis, EECS 

Department, University of California, Berkeley, CA, December 1995. 

[7] Bharath N., S.K. Nandy,  and Nagaraju Bussa, “Artificial Deadlock Detection in Process 

Networks for Eclipse”, Proceedings of 16th International Conference on Application-

Specific Systems, Architectures and Processors, IEEE Computer Society, 1063-6862/05, 

2005 

[8] Ceponis J., Kazanavicius E., Mikuckas A., “Design and Analysis of DSP systems using 

Kahn process Networks,” DSP Lab, Kaunas University of technology, ISSN 1392-

2114Ultragarsas, Nr .4(45), 2002. 



 

138 

 

[9] Zvironas A., Kazanavicius E. Partitioning of DSP tasks to Kahn network. KTU. Kaunas. 

Ultragarsas. ISSN1392-2114, 2002.  Nr.  2(43). 

[10] Javed DULLOO, Philippe MARQUET, “Design of a Real-Time Scheduler for Kahn 

Process Networks on Multiprocessor systems,” Rapport LIFL # 2003-06, september 2003. 

[11] Todor Stefanov, Claudiu Zissulescu, Alexandru Turjan, Bart Kienhuis, and Ed Deprettere, 

“System Design using Kahn Process Netwroks: The Compaan/Laura Approach,” Presented 

at DATE’04, Paris 16-20 Feb 2004. 

[12] E. A. de Kock, W. J. M. Smits, P. van der Wolf, J.-Y. Brunel, W. M. Kruijtzer, P. Lieverse, 

K. A. Vissers, and G. Essink, “Yapi: application modeling for signal processing systems,” 

in DAC ’00: Proceedings of the 37th conference on Design automation. New York, NY, 

USA: ACM Press, 2000, pp. 402–405. 

[13] P. Lieverse, T. Stefanov, P. van der Wolf, and E. Deprettere, “System level design with 

spade: an m-jpeg case study,” in ICCAD ’01: Proceedings of the 2001 IEEE/ACM 

international conference on Computer-aided design. Piscataway, NJ, USA: IEEE Press, 

2001, pp. 31–38. 

[14] Dr. Shoab A. Khan, Book: “Digital Design for Signal Processing Systems” to be published. 
 

 
 


	Thesis Title Page.pdf
	Thesis Draft.pdf

