

HIGH LEVEL SYNTHESIS OF KAHN PROCESS

NETWORKS (KPN) FOR STREAMING APPLICATIONS

By

Attiya Mahmood

Submitted to the department of Computer Engineering in fulfillment of the
requirements for the degree of

Masters in Science

In

Computer Engineering

Thesis Supervisor

Dr. Shoab A. Khan

College of Electrical and Mechanical Engg,
National University of Sciences and Technology

2009

I

ACKNOWLEDGEMENT

All praises and thanks to ALMIGHTY ALLAH, Who made this difficult work possible. This
research work is the product of His blessings. I would like to express my heartfelt gratitude with
love to my family especially to my parents for being so supportive and caring throughout the
course of this study, my brothers and my sister without whom I would never be able to achieve
this milestone.

I extend my appreciation and thanks to my supervisor, Dr. Shoab Ahmed Khan, Professor,
Department of Computer Engineering, EME NUST, for his long lasting guidance, positive
criticism and kind cooperation offered to me during my MS tenure. I feel I may never be able to
pay him the deserved thanks. I wish to express my heartiest thanks to Mr. Ali Abbas, PhD
Student, College of Electrical and Mechanical Engg, NUST Rawalpindi, for his kind cooperation
and constructive suggestions at every step of my research.

The constant advice and encouragement of my friends and the work of early scientists which
blazed this study is also highly acknowledged.

Last but not the least, I appreciate all those who remember me in their prayers and encourage me
throughout the deals of my life.

ATTIYA MAHMOOD

II

Dedicated to …..
My mother, brothers and sister

 who always encourage me to go for another degree!

III

DECLARATION

I hereby declare that no portion of the work referred to in this research work has been submitted

or published in support of an application for another degree or qualification of this of any other

university or other institute of learning. If any act of plagiarism found, I am fully responsible for

every disciplinary action taken against me.

IV

ABSTRACT

Streaming Applications usually run in parallel or in series that incrementally transform a stream

of raw input data into a stream of processed output data. The only issue in streaming application

is project realization time. This issue poses a design challenge to break such an application into

distinguishable blocks and then to map them into independent hardware processing elements. For

this, there is required a generic controller that automatically maps such a stream of data into

independent processing elements without any dependencies and manual considerations. In my

thesis work, we have designed and developed a framework of Kahn Process Networks (KPN) for

such streaming applications that will be mapped on MPSoC. This is designed in such a way that

we have a generic C-based compiler that will take the mapping specifications as an input from

the user and then it will automate these design constraints and automatically generate the

synthesized RTL optimized code for specified application.

V

TABLE OF CONTENTS

ACKNOWLEDGEMENT .. I

DEDICATION .. II
DECLARATION ... III
ABSTRACT .. IV

TABLE OF CONTENTS .. VII

LIST OF FIGURES ... VII

CHAPTER 1 INTRODUCTION ... 1
1.1 RELATED WORK ... 2

CHAPTER 2 LITERATURE REVIEW .. 4

SECTION I ... 5
2.1 MODELING DSP DESIGNS .. 5

2.1.1 LANGUAGE DRIVEN DESCRIPTION ... 5
2.2 FLOW GRAPHS ... 6

2.2.1 BLOCK DIAGRAM .. 7
2.2.2 SIGNAL FLOW GRAPHS (SFG) ... 7
2.2.3 DATA FLOW GRAPHS (DFG) ... 8

2.2.3.1 Synchronous Data Flow Graphs (SDFG) ... 10
2.2.3.2 Single Rate SDFG and Multi-Rate SDFG ... 11
2.2.3.3 Homogeneous Synchronous Data Flow Graphs (HSDF) .. 12

2.2.4 PARAMETERIZED SYNCHRONOUS DATA FLOW GRAPHS (PSDF) .. 13
2.2.5 CYCLO-STATIC SYNCHRONOUS DATA FLOW GRAPHS (CSDF) ... 14
2.2.6 PARAMETERIZED CYCLO-STATIC SYNCHRONOUS DATA FLOW GRAPHS (PCSDF) 14
2.2.7 DYNAMIC DATA FLOW GRAPHS (DDF) .. ERROR! BOOKMARK NOT DEFINED.

SECTION II ... 16
2.4 KAHN PROCESS NETWORK: ... 19

2.4.1 KAHN PROCESS NETWORK MODEL... 19
2.4.2 KPN FOR MODELING STREAMING APPLICATIONS .. 21
2.4.3 RESTRICTIONS OF KPN MODEL: ... 22

VI

2.4.4 CUSTOMIZED KPN MODEL: ... 23
2.4.5 EFFICIENT KPN SCHEDULING ... 25

CHAPTER 3 SYSTEM DESIGN .. 27
3.1 SYSTEM MODEL: .. 27
3.2 THESIS ORGANIZATION: ... 29
3.3 ALGORITHM: ... 31

CHAPTER 4 EXPERIMENTAL RESULTS .. 34
EXAMPLE 1: ... 34

DESCRIPTION: .. 34
CONFIGURATION FILE SPECIFICATIONS .. 34
COMPILER OUTPUT .. 36
CODE GENERATION TOOL SNAPSHOT ... 36
VERILOG SOURCE CODE OF GIVEN DSP DESIGN GENERATED BY C-COMPILER: .. 37

EXAMPLE 2 .. 60
DESCRIPTION: .. 60
CONFIGURATION FILE SPECIFICATIONS .. 60
COMPILER OUTPUT .. 62
CODE GENERATION TOOL SNAPSHOT ... 62
VERILOG SOURCE CODE OF GIVEN DSP DESIGN GENERATED BY C-COMPILER: .. 63

CHAPTER 5 CONCLUSION AND FUTURE WORK .. 95

APPENDIX A SOURCE CODE OF C-BASED COMPILER ... 95
C-CODE OF GIVEN DSP DESIGN: .. 96

REFERENCES .. 137

VII

LIST OF FIGURES

FIGURE 2-1: GENERAL ORGANIZATION OF DSP ALGORITHM REPRESENTATION 6

FIGURE 2-2: BLOCK DIAGRAM ... 7

FIGURE 2-3: SIGNAL FLOW GRAPHS .. 8

FIGURE 2-4: BASIC DFG MODEL .. 9

FIGURE 2-5: BASIC DFG MODEL SHOWING NODES GENERAL CHARACTERISTICS 11

FIGURE 2-6: PSDF MODEL .. 13

FIGURE 2-7: PSDF EXAMPLE ... 13

FIGURE 2-8: GENERALIZED PSDF MODEL .. 14

FIGURE 2-9: GENERALIZED PCSDF MODEL ... 14

FIGURE 2-10: GENERAL KPN MODEL ... 21

FIGURE 2-11: KPN MODELING FOR STREAMING APPLICATIONS .. 22

FIGURE 2-12: GENERAL MPSOC MODEL ... 24

FIGURE 3-1: SYSTEM MODEL .. 29

FIGURE 3-2: THESIS ORGANIZATION ... 30

1

CHAPTER 1

INTRODUCTION

Streaming applications are usually represented as a set of simultaneous processes that take a

stream of input data and then transforms them into processed output stream of data. Implementing

such an application on hardware poses a large challenging modeling problem. For this, KPN is the

best ever representation to model such applications on hardware. KPN is a set of independent

processes that communicate through point-to-point fashion over unbounded buffers with blocking

Read and Non-blocking Write. This provides a very simple mechanism to map an application on

hardware or software as KPN. The Reads and Writes also elevate the design from the use of

complicated schedules. By this, streaming applications are mapped on independent processes

working autonomously after acquiring sufficient data samples on its input buffers. Such data

samples are called tokens in KPN’s terminology and such an execution is called firing of tokens.

Streaming applications are usually mapped on FPGA and ASIC. The main idea behind this

work is to propose a system in which streaming applications will be broken down into set of

separate independent processing elements (these processing elements will be set of FPGAs or

ASICs), mapped through KPN and inter-process communication between these processing

elements will be performed through NOC Switch. This paper demonstrates the mapping

constraints on these processing elements and then finally generates a generic customized

controller that automatically maps these applications on hardware. By this, the designer can

simply add any number of available processors in streaming applications and automatically map

different types of streaming applications on hardware without any manual settings and

dependencies.

2

1.1 RELATED WORK

No C-based compiler has yet been introduced in research that can automatically generate RTL

synthesized KPN model based on the specifications of streaming application. But there are so

many design issues in KPN implementation. A lot of research has been undergone in KPN buffer

sizing, artificial deadlock detection and real time scheduler for KPN.

In 1974, Kahn proposed semantics of simple language for parallel programming. This was his

PhD. thesis work in which he proposed a parallel computation model where any application can

be modeled into set of concurrent independent processes with unbounded FIFOs (First In First

Out) buffers at its inputs and outputs. Theses independent concurrent processing elements can be

executed on any parallel processing units without incurring any overhead and dependencies. His

main contribution of work is illustrated in [1]. [2] introduced some new features of KPN with

regards to its task level parallelism and its deterministic behavior. In real sense, no memory

allocation can be unbounded, so a lot of research has been made in optimum buffer sizing for

KPN implementation. [3] proposed an automatic buffer sizing for KPN on MpSoC. They

proposed an idea of automatic buffer sizing by starting with some fixed sizing and incrementally

increase buffer sizing wherever needed. In KPN, FIFO read is blocking and FIFO write is non-

blocking based on the assumption of unbounded buffer size. When we start imposing the impact

of finite memory sizes then an artificial deadlock issue arises. [4] demonstrated the effectiveness

of KPN in media and signal processing applications and presented the method of effective and

bounded execution of KPN. [5,6] deals with this artificial deadlock detection when all the

processes in the process network are blocked then they claim of finding the effective solution.[7]

suggested a new idea of an early detection of artificial deadlocks in the process network of eclipse

shape. In recent so many years, KPN has been modified in the set of different DSP designs

because it is compositional and it allows parallelism. The output of the KPN is independent of the

flow of sequence of execution. [8] presented the idea of designing and analysis of DSP designs

using Kahn process networks. [9] proposed the idea of basic transformation of basic DSP designs

into Kahn networks, but he did not focus on the task level decomposition of the particular DSP

design and also the automatic controller for it. [10] diminished the concept of artificial deadlock

3

in process networks and proposed a design of real time scheduler for process networks on

multiprocessor system on chip. Because of KPN’s effectiveness, it is consistently used for

mapping streaming (Audio or Video) applications on MPSoC. Compaan and Laura in [11]

projected a system design where they take an application written in Matlab and automatically give

the transformation which can be mapped on to target platform. YAPI in [12] provided a C++

interface that gives KPN implementation on single processor. [13] offered the idea of KPN

exploration on multiprocessor system on chip.

In this thesis work, my field of interest lies in streaming application mapping. For that, I have

proposed an architecture in which I have designed a C-based compiler that can automate the

design constraints and automatically generates the synthesized HDL implementation of KPN that

is application independent.

4

CHAPTER 2

LITERATURE REVIEW

Now days, there is continuous trend of technology advancement in the field of embedded

multiprocessor on chip (MPSOC). For the real-time streaming application, it is always desirable

to cater the delay and jitter in transmission. The embedded system must be very efficient in terms

of its speed and its area consumption. To ensure its high speed, several architectures were

proposed in which multiprocessor-on-a-chip is one of them. MPSOC ensures its fast processing

with the help of multiprocessors core on a singe chip. Any application is broken down into set of

sub-units and each sub-unit is actually mapped on these individual independent processors. The

inter-processor communication is guaranteed in MPSOC by the help of NOC (Network-on-chip)

switch. This is how MPSOC works. My thesis work is to figure out the efficient ways of

automatically mapping any application on MPSOC. Implementing a digital signal processing

(DSP) applications on the MPSOC is a complicated problem. My literature starts with how many

ways of representing DSP designs graphically. Data Flow Graphs (DFG) is the most commonly

used graphs for representing DSP designs. Then, Kahn Process Networks (KPN) is considered an

excellent model for modeling any applications on MPSOC, because of its so many

implementation easiness like task-level parallelism, explicit behavior and determinism.

This chapter is organized as follows. Section I lists the several ways of graphically representing

DSP designs. Section II focuses on the detailed aspects of KPN and also its modifications with

respect to DSP constraints.

5

SECTION I
DSP DESIGN REPRESENTATIONS

2.1 MODELING DSP DESIGNS

There are commonly two methods that are used for representing DSP designs. Flow graphs are

totally different in the sense that they particularly focus on the graphical view of DSP designs.

• Language Driven Description

• Graphics/ Flow Graphs Specifications

2.1.1 LANGUAGE DRIVEN DESCRIPTION

Language driven specification relies on the languages that represent DSP designs. They are used

for software development. Usually languages are interpretive or executable. Interpretive

language is a MATLAB that provides the flexibility to designer but usually does not produce an

optimized version of the design. There are so many techniques to make the MATLAB code an

efficient one like loops reduction and so on and on. Executable languages are critical in

designing but they promote the efficient representation of design because at here, designer

actually works at the memory usage and actively deals with register, so fast and efficient design

is possible in executable languages as compared to interpretive driven MATLAB.

Figure 2-1 shows the block diagram of general organization of representing DSP algorithms.

This diagram demonstrates that generally, the DSP designs can be represented by two ways. It

can be represented by an executable language description or by using flow graphs specifications.

Next, the diagram shows that the language can be an executable or an interpretive one. Also it

6

sub-categorizes the flow graphs in to so many ways that are application dependent. As flow

graphs can be a block diagram, signal flow graphs (Representation in terms of signals

information), the data flow graphs (representing graphs by data driven strategy), the

Parameterized data flow graphs (parameterize some variables for history information of node),

Cyclo-static graphs (that ultimately maps in to a periodic fashion). Also data flow graphs can

more be cauterized in terms of

DSP Algorithm
Representation

Language Driven Executable
Description

Graphics/ Flow Graph-Driven
Specification

Interpretive Executable Block
Diagram SFG DFG

SDFG SR-
SDFG

MR-
SDFG HSDF

PSDF CSDF CPSDF DDFG

 Figure 2-1: General Organization of DSP Algorithm Representation

2.2 FLOW GRAPHS

As language driven specification is a way of representing DSP designs but it does not usually

ensure visibility of design units. Flow graphs are always considered the better way of

representing any applications. Based on this visual interpretation, it is generally well suitable

with the perspective of mapping the design on to several processors because independent sub-

units can easily be moved to separate computing platform. Also, this visual representation allows

7

the designer to re-use the components in the form of design instances. This helps in

hardware/software co-simulation and assessment of design space in HW/SW for better

portioning.

There are so many types of graphs that are used for representing applications.

2.2.1 Block Diagram

Block diagram is a very simple form of representing designs. It has set of functional

blocks communicated through a set of edges ensuring a form of connectivity between

these functional blocks. These functional blocks are usually the adders, multipliers and

delay elements in the circuit design. These adders, multipliers and delay elements are the

basic building blocks of representing DSP designs.

+

x

x

+

xx[n]

bo

a1

a2

y[n]

Figure 2-2: Block Diagram

2.2.2 Signal Flow Graphs (SFG)

Signal Flow Graphs are well thought-out the simple form of the block diagram. In SFG,

the multiplier unit (that is either multiplying with a constant or a delay element) is

replaced by the edge of the block diagram and the addition, subtraction and input-output

relationships are ensured by the nodes.

8

x[n]
bo

a1

a2

y[n]

Z
-1

Z
-1

Figure 2-3: Signal Flow Graphs

SFG and block diagram are attractive for representing DSP algorithms but when there is

the issue of mapping architecture, they are not well-suited because they are not focusing

on any synchronization issues and data consumption and production at each node. In

short, the designer can not put any limitations on the node’s execution to ensure

synchronization.

2.2.3 Data Flow Graphs (DFG)

The highly computational workstations have been a reasonable choice for intensive

multimedia applications. The major demand from these workstations is the high

throughput and high performance. These requirements had been for years but, with the

advancements of commercial workstations, these issues are resolved. Like the hardware

development costs are sharing server market, software development costs are abridged

because operating systems gives upgradeability, portability and maintainability.

Kahn Process Networks (KPN) is a data-flow modeling technique that is used to model

various streaming based multimedia and signal processing applications. KPN can also run

in event driven applications and multi-rate systems. The key features of KPN lies in their

parallelism and their communication in a specific task is explicit; means they are very

suitable in multiprocessor environment. The major advantage of KPN is that they allow

9

processes the asynchronous construct, by this the process can work independently and

concurrently.

A matter of concern for my thesis is particularly a mapping of DSP designs on any

reconfigurable computing platform. Data Flow graphs are the most widely used data flow

graph model used for representing DSP designs. This is the flavor of DSP that the

application can easily be broken into sub units. These subunits are formed in such a way

that they can easily be worked independently and executed on parallel computing

platform with out the threat of any data coherency issues. In such a scenario, DFG is the

best model of representation. In DFG, an application is represented by a set of computing

units also called nodes or vertices and set of edges. These nodes are interconnected to one

another by the help of directed graphs. Each node has its corresponding edges at the input

and output. Each node is defined with the corresponding number of data values also

called tokens. Node will not execute as long as it finds sufficient number of data values

or tokens at its respective input edges. After firing the sufficient number of tokens, the

node takes throughput number if clock cycles for its internal processing. For storing these

particular number of tokens on the input and output edges, we have an associated FIFO

buffers for temporarily holding these data tokens. Each edge also has its associated

algorithmic delays. Figure 2-4 showing the DFG model in which we have four nodes or

actors A, B, C, and D. e1, e2, e3, e4 and e5 are the connected edges working as a mean of

communication channel among these processing units. These edges have set of FIFO

buffers for temporarily holding data values or tokens.

A B C D

e

e e

e

e

5

1

2

3 4

Figure 2-4: Basic DFG Model

10

Data flow graphs is my point of concern because they are well suited especially for

representing signal processing applications. In any DSP designs, the subunits are usually

multi-rate systems and their representation as a DFG is straightforward. Also, DFG

representation allows the very cost-effective solution in terms of hardware reuse. Also

this representation works on component basis so testing, verification and module level

optimization can be carefully performed.

2.2.3.1 Synchronous Data Flow Graphs (SDFG)

As data flow graphs are particularly focusing on the directed graphs in which we

have number of processing elements (Actors) and their associated connectivity

information. When the actors are executed, they consume required number of

tokens at all the input edges and after processing, send the processed data tokens

to the output buffer. When this rate of consumption and production is defined at

compile time, then the data flow graphs are called the Synchronous data flow

graphs (SDF). This helps in the provision of so much optimization techniques. In

short, in SDF, the number of token consumption and production at each link is

fixed or constant. This easily helps in predicting the pattern or flow of sequence

of operation and memory constraints at compile time. Also in SDF, the run time

behavior is very predictable.

In Multimedia and streaming applications, usually, the application is running on

fixed sampling rate ensuring the fixed or constant number of data tokens at the

input and output edges. Thus for signal processing applications, each processing

unit has predefined number of samples for consumption and production. For

example, a decimator that is just throwing out data samples. It is defined by a rate.

If it is decimating by 2 means that it will take two samples at its input edge and

passes one sample to its output and throwing the second one. In this case the rate

11

of consumption and production ratio is 2:1. Figure shows that in SDF, the nodes

are represented by their names and execution time. Each edge is represented at its

head and tail by the consumption and the production token rates. In this figure, we

have three nodes A, B and C having execution time represented in circles as T1

and T2 and T3. Also each edge is marked with the data or token consumption and

production rates. Each node will not execute its processing as long as it finds

sufficient tokens on its input buffers. Also there is another parameter that can be

labeled on SDF i.e. algorithmic delays. These algorithmic delays specify that

Node B will take three iterations old data tokens for its firings. Conclusively, SDF

is the most commonly used model for representing DSP designs that is

particularly my point of concern in my thesis.

A, T1 B, T2
CB PBPA

C, T3
Cc

Figure 2-5: Basic DFG Model showing Nodes general characteristics

2.2.3.2 Single Rate SDFG and Multi-Rate SDFG

In Single Rate SDFG, the number of tokens consumption at the input of the node

is same as the number of tokens produced by this node at its output edge. While in

case of multi-rate SDFG, the rate of consumption and production parameters are

not same. These specifications are relatively very important especially for

designing purpose. If it is assumed that the graph is a single-rate one then the

optimization techniques can easily be engaged. But in my thesis work, I am

focusing on DSP designs that are usually multi-rate in nature, so optimization is a

big design challenge and a key research issue as well.

12

2.2.3.3 Homogeneous Synchronous Data Flow Graphs (HSDF)

Homogeneous SDF is a special case of SDF. In HSDF, the rate of consumption

and production parameters at each node is one. This is important because it gives

the information of throughput (Number of cycles taken by node for its execution).

Also, it reduces the complexity of hardware at the expense of large number of

node’s occurrence. Based on this occurrence, task level parallelism is possible and

application can easily be run on so many parallel computing units.

2.2.4 Parameterized Synchronous Data Flow Graphs (PSDF)

SDF is particularly ineffective to dynamic behavior of node. Parameterized SDF

comes in this case where structured and dynamic parameter changes are required.

PSDF graph is comprised of PSDF actors and PSDF edges. The combination of

PSDF actors and PSDF edges control the functionality of a node and also

different configuration settings like rate of consumption and production and data

flow characteristics of node. Each PSDF system consists of three graph

parameters that are separately controlled, the init graph, the sub-init graph and the

body graph. Init and sub-init graph control the configuration settings of bode

graph while the body graph controls the main functional specifications of the

processing unit or actor (Node). These init and sub-init graph reserves the

previous history of node’s execution as well for efficient modeling of dynamism.

Figure shows a mapping of simple SDF to the parameterized Data Flow graph.

Figure depicts that each node is parameterized by the three set of graphs. A.Init

and A.Subinit controls the functionality of node A’s body by setting the body

parameters and A.body is resided with the actual functionality of node.

13

A

A.Init A. Subinit

A.Body
A B1 1

Figure 2-6: PSDF Model

2.2.5 Cyclo-Static Data Flow Graphs (CSDF)

Cyclo-Static SDF is one of most powerful extension of SDF. In CSDF, the rate of

token consumption and production varies but according to the fixed periodic

pattern. This periodic pattern is called the phase of the actor. This form is

particularly suitable for signal processing techniques because of variable nature of

data firing rate. For example an application having nodes X, Y and Z. Following

the diagram shows that each node is having different number of data firing rate

according to specific function execution order of the node. Node X, Y and Z have

execution time of [1,3], [2,4] and [3,7] respectively. Based on specific function’s

execution, each node is consuming and producing varying number of data tokens.

X
[1,3]

Y
[2,4]

Z
[3,7]

[2,3][2,4] [1,4] [2,1]

Figure 2-7: PSDF Example

Figure shows generic way of cyclo-static data flow graphs representing DSP

designs modeling in such a way that each node has an execution sequence

fj(i)……fj(Pj) of length Pj. Each fj(i) is called the phase of the sequence. For each

actor Aj, the node executes the sequence fj(j%Pj) and produce the token rate

specified by the sequence Xj(j%Pj).

14

Aj Bk
[Xj (1),.....Xj (Pj)] [Yk (1),.....Yk (Pk)]

[f j (1),.....fj (Pj)] [f k (1),.....f k (Pk)]

Figure 2-8: Generalized PSDF Model

2.2.6 Parameterized Cyclo-Static Data Flow Graphs (PCSDF)

As CSDF is a meta-modeling technique but it requires fixed compile time

information of node’s execution time and tokens consumption and production

rates. Each node has a series of periodic sequences for its execution.

Parameterized CSDF allows the better optimization techniques in terms of

hardware reconfiguration by using dynamic behavior of node at run time. Figure

depicts that, In PCSDF, each node or actor is parameterized for its functionality

but here the data behaviors of each node vary cyclically. In fact, it is a cyclic

pattern that does for parameterization of node.

Aj Bk
[Xj (1),.....Xj (Pj)] [Yk (1),.....Yk (Pk)]

[f j (1),.....fj (Pj)] [f k (1),.....f k (Pk)]

Aj.Init Aj.
Subinit

Aj.Body

Bk.Init Bk.
Subinit

Bk.Body

Figure 2-9: Generalized PCSDF Model

Theoretically, in PCSDF, there are two controlling parameters that are particularly

concerned in the data flow behavior of PCSDF. These are

15

2 Period of cycle of each phase with respect to each actor.

3 Rate of consumption and production parameter for each phase with respect

to each actor.

2.2.7 Dynamic Data Flow Graphs (DDFG)

In Dynamic Data Flow graphs, the number of tokens produced and consumed at run time.

This gives better optimization techniques and efficient memory usage.

16

SECTION II
PROCESS NETWORKS MODELS

High performance systems in terms of cost, power, area, compilation time or throughput and

limited memory usage are always the measures for all system designers especially on any

hardware configurable platform. The main aim of any system designer is to efficiently use the

available resources and keep the system at the level of the design specifications. For multimedia

streaming and signal processing applications, compilation time and memory usage are the main

point of threats for designers. Usually, the designer has limited memory available and its

efficient use is dependent on the process’s context switches. To cater this huge problem, there

exist so many process network models that take cares of specific parameters of the design

requirements. If we talk about particularly the multimedia and signal processing applications,

timeliness and limited memory are the points of concern because, for example, delayed

transmission will not make any sense in any videoconferencing session and also streaming

applications deal with large number of video and audio frames and efficient memory usage come

for their storage purpose. Based on these design requirements, Process Network (PN) models are

particularly considered best models of computation for such applications. Usually, signal

processing applications deal with real infinite amount of data samples. PN must be capable

enough to automatically schedule such a continuous stream of data in a given amount of data.

There are so many types of process network models but Kahn Process Network (KPN) is the

commonly used one. Here we will discuss it in more detail.

2.3 Process Network Model

PN is a model of computation in which we have set of processing units like nodes or processes.

These processes take continuous stream of data packets called tokens from infinite length FIFO

(First-In First Out) buffers and write the transformed or processed data on to FIFO buffers on

infinite length. KPN (Kahn Process Network is a most commonly used model of computation for

streaming applications. In this typical KPN model, As FIFO buffers are assumed to be of infinite

17

length, so writing to buffers is non-blocking but there may be the case where the process

attempts to read the data from empty queue so we have a blocking read operation. In short, KPN

is a computational model in which all the processing elements can run concurrently with

blocking read and non-blocking write operation.

Here are the some key features of KPN model:

• Its determinism-- means it does not affect the functional behavior of application only the

topology of network changes.

• The execution order does not matter—application is explicit

• Facilitate the components reuse and design complexity.

• All the nodes have their own FIFO buffers so there is no concept of global memory and it

is well suitable for multiprocessor architectures—it allows task level parallelism

• Good optimization techniques can be prevailed because of easy component’s handling

• All the nodes have automatic synchronization because of blocking read operation

Before further going on the details of KPN, We list some basic definitions that will be commonly

used for KPN understandings.

2.3.1 Output Completeness – the output of this modeling must yield the same results as are

defined by the algorithm. This is very important in the sense that for every raw data, we

must acquire the transformed processed data according to the proposed algorithm.

2.3.2 Execution Order – Refers to the matter of reading from and writing into the FIFO

buffers. As is defined above that the execution order is not an issue in the case of KPN

because any sequence of execution will yield the same desired output. This execution

order can be defined at compile time or run time. Generally, the execution order is either

static or dynamic.

• Static – Execution order is first defined and then that order is followed in network

execution. In short, the execution of processes is fixed and defined at compile time.

18

• Dynamic – Execution order is not fixed and usually defined at run time. It goes

continuously changing according to network conditions.

2.3.3 Boundedness – The execution order helps nodes in determining the sequence of their

proper execution but this cause the nodes to wait for control that will be given to them at

respective times. Because of this, unconsumed tokens will be accumulated on FIFO

buffers waiting for their turn of execution. Boundedness ensures that these tokens are

bounded for the complete execution of the program. More specifically the network may

be strictly bounded, bounded or unbounded.

2.3.4 Strictly Bounded – Unconsumed tokens on all FIFO queues give rise to complete

execution.

• Bounded – Unconsumed tokens on all FIFO queues must at-least give rise to one

complete execution.

• Unbounded – Unconsumed tokens on all FIFO queues do not give any single complete

execution.

2.3.5 Termination – Termination relates to the number or amount of data values that are

processed by the network. If all the input buffers are taking finite amount of data then at

some later time, the program will definitely terminate. But if any singe input FIFO buffer

takes continuous stream of data then the program will never terminate.

2.3.6 Memory Allocation and Buffer Sizing – Memory reservation is a definite issue

especially for streaming multimedia applications because of their heavy storage

requirements. As the basic KPN implementation lies on this concept that each processing

element is connected with the FIFO buffers of infinite length but the memory allocation

of infinite length is impossible to do. When KPN gets optimized according to desired

specifications then the issue comes of the optimum size of FIFO buffers. Optimum size

of the FIFO buffers is a big challenge of today’s research.

19

2.3.7 Artificial Deadlocks –Artificial deadlock is a case where node gets blocked just because

of the insufficient memory allocation of FIFO buffers. There are usually two drawbacks

of KPN implementation with respect to memory. There may be more memory allotted

between network processes or not enough memory allocation. When node gets

insufficient memory then it gets blocked not because of inadequate tokens on FIFO

buffers but because of small buffer sizes. There are so many researches that have been

carried out in this regard. One option is that to start with some fixed size of buffers and

then based on dynamic conditions/network traffic conditions, the size of buffers are

varied. Ultimately all the buffers automatically reach to optimum buffer size range.

2.4 KAHN PROCESS NETWORK:

Kahn Process Network (KPN) is a computational model that provides the facility of parallel

computation i.e. concurrency. At first, the application is divided into set of sub-units. It is the

designer choice that how effectively the application can be broken down into components. As I

have already figure out earlier that this reduces the system’s complexity and the ability of

component’s reuse. Once the application is broken down, then it is mapped to any reconfigurable

hardware platform. To configure them we have some process network models among which

KPN is considered the best one.

2.4.1 KAHN PROCESS NETWORK MODEL

KPN model is commonly represented as directed graph in which all the nodes or actors are

generally represented as processing elements. These processing elements are any processors that

will perform some form of dedicated task. The actual component’s functionality is performed at

here. The inter-communication among these processing elements is ensured by designing a

proper topology. In this topology, we have a complete list of connectivity and the complete FIFO

buffers requirements. In KPN, each component of any streaming application i.e. processing

20

elements communicates with one another by a set of infinite length FIFO buffers. Conclusively,

network is described as a graph G = (V, E, F), where

 V= Vertex or Node or processing element

 E= Connected edges between nodes

 F= Functionality defined in the network element.

Figure 2.10 demonstrates the basic KPN model in which an application is broken down into set

of processing units and their communication is performed through set of FIFOs. Each processing

unit is defined with its name and number of cycles or time units, they take in execution. Also,

each processing node is connected to set of FIFOs at its input and output. These nodes will not

execute as long as it finds desired number of RC (Rate of Consumption) tokens on its input FIFO

buffers. The processing units will check on its input FIFOs, when it acquires sufficient tokens, it

will start executing. The control is given to this processing unit as long as it executes. After its

execution, RP (Rate of Production) number of processed tokens will be written on its output

buffers. In this model, Node ‘A’ is taking the continuous stream of data. When its input FIFO

buffer ‘F1’ will store two tokens, then process A will fire and takes eight cycles for its execution.

After completing this processing, it will write two, three and one tokens on FIFOs ‘F2’, ‘F3’ and

‘F4’. Process ‘B’ and ‘C’ will execute when they find two and one tokens on its input FIFO

buffers i.e. ‘F2’ and ‘F4’. Process ‘D’ will not execute until it finds two, three and one tokens on

its input buffers i.e. ‘F5’, ‘F3’ and ‘F6’. Process ‘D’ is continuously writing data to its output

buffer ‘F7’. This is how streaming applications are mapped through KPN structure.

21

Figure 2-10: General KPN Model

2.4.2 KPN FOR MODELING STREAMING APPLICATIONS

Figure 2-11 shows the very basic example of JPEG compression. Implementing JPEG is a good

example to explain effectiveness of KPN in streaming applications. The raw image taken from the

source is saved in FIFO ‘F1’. Node ‘1’ performs the RGB to YCbCr conversion and stores the

transforms image to FIFO ‘F2’. The Node ‘2’ waits to perform the conversion to take place and

once FIFO ‘F2’ acquires this data, it fires and computes DCT and writes the result in FIFO

‘F3’.Now Node ‘3’ and ‘4’ sequentially fire and compute Quantization and Entropy coding and

write data in FIFO ‘F4’ and ‘F5’. This is how any streaming application can be mapped through

KPN structure without incurring any overheads.

22

Figure 2-11: KPN modeling for streaming applications

2.4.3 RESTRICTIONS OF KPN MODEL:

KPN follows the strict behavior of FIFO operation for buffering data. My thesis work is

particularly focusing on KPN implementation for multimedia streaming applications. Particularly

speaking, these applications do not follow this stringent behavior of FIFO operations causing

some limitations in classical KPN model. Thus, a modified KPN will be desirable for streaming

applications. Some of the major restrictions happen because of strict FIFO behavior are

• Reading of data or tokens from the FIFO buffers require strict FIFO operation but there are

so many signal processing techniques that do not require such a stringent behavior for their

execution. For example, if the application mode is performing decimation in time then it doe

not need all the consecutive data tokens. This is one of the major flaws because of classical

KPN implementation.

• There are so many signal processing applications that require the data multiple times. For

example, in convolution, the node performs point to point multiplication and then additive

23

sum to generate one output sample. After that, there is a simple shift by one in time domain

and then again node performs this same operation using the old previous stored data tokens.

But in this standard implementation, once the data gets read from the FIFO buffer then it is

flushed out from the memory without considering any behavior of node at run time.

• There may be some cases when the node does not have need of the data currently

stored/available in FIFO buffer but the node can not take the desired data until this useless

information will first extract from the buffer. Thus node does not need that where data is read

sparsely.

2.4.4 CUSTOMIZED KPN MODEL:

They are so many solutions of handling this problem occur just because of typical FIFO

behavior. The very simple solution is use a local memory provided to each network node. This

local memory is meant for keeping the copy of data that node is expecting to use in near future.

KPN model comes in so many implementation module among them MPSoC (Multi-Processors

System on Chip) is considered the best embedded system design for multimedia streaming

applications. In MPSoC, we have some form of KPN to model the problem and then it can

automatically be transformed to MPSOC. Figure 2-12 demonstrates the basic MPSOC

representation. In MPSOC, the KPN is used to model the application on the set of independent

processing hardware. This application is modeled in such a way that all the processing elements

or processors can run independently using their own local memory. The intercommunication

among these processors is ensured through a NOC (Network On Chip) switch bar. Each

processing element or processor is generally called a tile. Each tile has its own local memory M,

the memory controller MC and set of FIFO buffers. The communication among FIFOs lying on

different processors is ensured by a cross bar switch, a P2P network or a shared bus or a more

24

elaborated form of NOC (Network-On-Chip) component bar. Each tile also has a logic called

Communication Controller CC.

TILETILETILE

P

M

MC

CC

P

M

MC

CC

NOC

P MProcessor Memory

P

M

MC

CC

Figure 2-12: General MPSoC Model

This is where my thesis work actually starts. I am particularly concerned about the mapping of

multimedia streaming applications on to this processing hardware i.e. MPSOC. I have been

assigned a task that to design a generic controller that automatically and efficiently maps any

kind of streaming applications on to the reconfigurable platform i.e. MPSOC. There are some

researches that have been carried out in efficient execution of process networks and the design of

real time scheduler for KPN on multiprocessor system.

25

2.4.5 EFFICIENT KPN SCHEDULING

All the applications require their efficient mapping on to the multiprocessor environment. Thus a

generic controller or scheduler is an essential component for designer. The main role of

scheduler is to provide the control to the particular node for their turn to execution. Usually this

scheduling can be performed statically or dynamically. Static scheduling though is a simpler one

which is defined at compile time but no doubt it does not give the efficient algorithm

implementation. Also, static scheduler for particularly streaming multimedia applications is not

feasible because of built-In dynamism in such applications.

Dynamism is a main point of concern for my thesis. It requires the efficient modeling of ready

processes at run time. There are usually two approaches for determining the set of ready

processes at run time. These approaches are broadly categorized as

• Demand Driven Scheduling

• Data Driven Scheduling

In Demand driven scheduling, the scheduling comes by the actual demand of data. As the

demand arises then the ready processes start reading data form input FIFO buffers. Generally the

demand is originated from the output node. As the demand is propagated, the set of ready

processes become active and they try to read data from their input buffers but if they try to read

data from some empty buffers then the ready processes go to blocked mode and wait until they

acquire the sufficient tokens in all their input FIFO buffers. Meanwhile the set of all the ready

processes start their execution if they have required number of data tokens. The main objective

of the demand driven scheduling is to perform execution only when is needed.

In data driven scheduling, the ready processes always keep themselves in the polling state. It

continuously checks the input buffers. When the node gets desired number of tokens on all its

26

input buffers then it starts performing its execution. This scheduling technique is meant for

continuous node’s execution as long as it has required number of tokens. The process will only

stop when it will have no longer data available on its input buffers. Both techniques have their

respective disadvantages. The main disadvantage of data driven approach is that it will allow

process to run with out considering this fact that whether it is required for output node. There

may be the case that the intermediate nodes continuously run and data gets overwhelmed in the

intermediate buffers. The main drawback of the demand driven is that it will run give control to

processes only when is needed but it requires so many context switches and complexity in

hardware for flooding the demand information in network’s topology.

The final approach is to design a data-driven scheduler with bounded FIFO size. The classical

KPN focuses on the unlimited memory size which is non-realizable. The fixed buffer size makes

modification in basic KPN model. Now the process will go to blocked state not only when it is

reading from empty FIFO or insufficient tokens availability case but also when it attempts to

write in fully loaded FIFO. This deadlock is usually called artificial deadlock because it is an

artificial one generated because of empty or full FIFO. In this final approach, the processes are

scheduled on data driven strategy with efficient memory utilization but the optimum buffer

sizing is a big research challenge.

27

CHAPTER 3

SYSTEM DESIGN

This section describes the implementation details of our research strategy. There are so

many types of data flow graphs but DFG are the most commonly used representation for DSP

designing perspective. Our aim is to design a generic system model that visualizes this DFG

model and based on these specifications, it automatically generates a RTL high level synthesized

implementation of KPN that can easily be mapped on any reconfigurable platform and also on

MPSOC. Our design starts with the configuration file that lists all the necessary parameters to

generate automatic controller for critical DSP designs. Also, we want that this controller must be

very efficient in terms of hardware requirements i.e. it must utilize optimum size of memory

buffers and other hardware units. Lastly, we really want to make certain that this controller must

satisfy the flavors of KPN that makes it valuable to other existing mapping schemes.

3.1 SYSTEM MODEL:

Figure 3.1 shows the system model of our proposed scheme. In this model, we have first

designed the configuration file. This file is designed in such a way that it takes all the

requirement specifications for generating an automatic KPN. It list the total number of nodes,

their interconnections, Rate of consumption and Rate of production parameters (These

parameters the required number of token at the input and output of node to perform its

processing/execution), the required number of FIFOS, information about each link, Algorithmic

28

delays, self loop information and last but not the least the input and output streams that will carry

the actual data. Input stream relates to the raw data that needs to be processed by our network

and output stream is a continuous ejection of processed data from out proposed model. This

configuration file is passed to our network model that is a C-based compiler. This compiler takes

this configuration file as an input and then automatically generates the high level RTL based

synthesized code for this particular application program. The number of files that are generated

automatically by our compiler are the controller file that is managing all the intercommunication

between different process nodes. It actually sends control signals to each sub unit for a certain

level of synchronization. Also it generates a FIFO file that is fulfilling the basic operation of any

FIFO buffer. Also this FIFO file tells the information of number of tokens resided in FIFO

memory. Based on this information, the compiler manipulates the requirement that the sufficient

number of tokens have been stored in this FIFO or not. If so, then the controller sends the control

signals to the respective process node to start its execution and acquire the required token at its

input FIFO. Also this compiler generates another set of files that are actually describing the N

number of process nodes. These process nodes are actually the computation units that are the

particular sub-unit of the application and these sub-units actually derive the raw input data and

transform them in to the desired processed data. Our compiler focuses on these process nodes in

such a way that configuration tells about the number of cycles that are needed for the execution

of a particular process nodes, the compiler waits for these throughput number of clock cycles in

the intention that the process node is processing at that time. In short, the control is provided to

process node that then performs its execution and writes the processed output to its output FIFO

buffer.

29

Figure 3-1: System Model

3.2 THESIS ORGANIZATION:

Figure 3.2 shows my thesis work organization. At first, I put my idea to realization with

the help of MATLAB tool. MATLAB was used at first to verify my designing as well as the

required number of variables used for my design modeling. Then, I designed a configuration file

that lists all the requirement specifications of the design. After verifying my design in MATLAB,

its simulation verification and extracting parameters, I designed a manual KPN controller for a

specific application i.e. for specific DFG. This was needed to extract the parameters that need to

be generalized for generic KPN controller. Also, by this manual KPN controller, my design got

verified on hardware or any reconfigurable platform. After that, I designed the final version of

my KPN controller in Visual C++ that is actually a C-based Compiler generating an automatic

synthesized controller and test bench for any given application. At the end, I calculated the

performance of generalized controller with the manual controller and verified that my controller

is working at the par with the manual controller that is very time consuming to design. Manual

controller is specific for specific application and if design goes fail then designers have to

regenerate again a new modified controller.

30

START

Inital Design of KPN
Controller in MATLAB

Design
Verified

Configuration File
Generation

Designing a Verilog based Manual
Controller in Modelsim for specific

DSP application i.e. for DFG

Extracting parameters that
need to be generalized

Design
Verified

Designing a C-based Generic
Compiler in Visual C++ generating

automatic KPN

Design
Verified

Error Measurement
between manual and
automatic controller

END

Result
Satisfied

No

No

No

No

Yes

Yes

Yes

Yes

Figure 3-2: Thesis Organization

31

3.3 ALGORITHM:
1.) KPN_Controller(); //Main File

Nodes Number of available nodes

Links Total number of available links

FIFOs Total number of FIFOs required,

storing information at links

For i 1 to Links

RC[i] Rate of consumption parameter

at link i

RP[i] Rate of consumption parameter

at link I

Delay[i] Algorithmic delay at link i

End for

Topology Matrix Generation based on link

information

For i 1 to Nodes

 Throughput[i] Execution time for node

i

End for

For i 1 to Nodes

 Sufficient # of RC tokens found at its

each connected Links

 Call FIFO_Read(); //Read Tokens from

Respective FIFOs

Done=Call Process_node();

//Functionality of node is performed

 //that takes

Throughput # of

cycles

If(Done)

Call FIFO_Write(); //Write

processed data tokens to output FIFOs

 End If

End for

End of Procedure “KPN_Controller();”

2.) 2.) FIFO_Read(); //Reading Data from FIFO

If(Read)

 If(FIFO_Empty_Flag)

 Process is Blocked

Else

 Output FIFO(index)

End If

Else

 Do Nothing

End If

End of Procedure “FIFO_Read()”

3.) 3.) FIFO_Write(); //Writing Data to FIFO

32

If(Write)

 If(FIFO_Full_Flag)

 Process is Blocked

Else

 FIFO(index) Input Data

End If

Else

 Do Nothing

End If

End of Procedure “FIFO_Write()”

4.) Process();

For i 1 to throughput

 //Processing;

End For

Done =1;

Return (Done);

End of Procedure “Process”

33

This algorithm states the functionality of these set of files that are generated automatically by

my C-based compiler. These files are elaborated shortly at here.

1. KPN_Controller.V

This is my main file that is sending control signals to all the other modules and manages the
complete coordination and timing constraints among each component. It is a central controller
that will continuously view the status of each element and provide the control to each block when
ever is desirable.

2. FIFO.V

FIFO Verilog File that provides basic FIFO operation that involves simple reads and writes into
FIFO. It also gives the information of rate of consumption status of the FIFO. By, this, we can
calculate whether RC tokens are accumulated in FIFO buffer or not.

3. Process.V

This compiler generates set of Verilog files depicting all the processing nodes behaviors. N
processing nodes files are generated specifying number of data input units, output units and total
number of time units by each processing node to perform its successful execution.

4. Test_Bench.V

This C-based compiler also generates the Verilog based test bench module that verifies the
controller behavior managing all the sub units in the design.

5. B_Counter.V

This is a simple bit counter that is called by the FIFO module. This will cause the read and write
pointer of FIFO to increment. This increment is performed based on the conditions that whether
data has been read or not on current read pointer location and whether data has been written on
current write pointer location or not.

6. Test_RC_RP.V

The node can not execute as long as it acquires sufficient number of tokens from all its
respective FIFO buffers. This module checks at the abstract level that all the FIFOs connected to
the particular node have adequate number of data tokens or not.

34

CHAPTER 4

EXPERIMENTAL RESULTS

EXAMPLE 1:

A,3 C,1B,2

F1 F2 F3 F4
Data_In Data_Out

1 11 1 1 1

Fig. 1: Example 1

Description:

This DFG shows that there are three processing elements A, B and C. These processing elements
are taking 3, 2 and 1 clock cycles for their execution. Also, these processing nodes will execute
only as long as it acquires sufficient number of data tokens on their input buffers. There are four
FIFO buffers for temporarily holding data values. Also, nodes are listed with their rate of
consumption and production parameters. Rate of consumption is defining the number of data
tokens sufficient for node to process and rate of production parameter defines the number of data
values that are produced by the respective processing element.

Configuration File Specifications
Nodes=3;

FIFO_Buffers=4;

Token_Size=8;

35

Topology_matrix = [1, -1, 0, 0, 0; 0, 1, -1, 0, 0; 0, 0, 1, -1, 0; 0, 0, 0, 1, -1];

Self_Loops=[0 0 0];

Algo_Delays=[0 0 0 0];

Data_In=1:20;

Throughput_node1=3;

Throughput_node2=2;

Throughput_node3=1;

Based on these specifications in MATLAB, C-based configuration file is generated that will be
passed to C-based designed compiler. Then, this compiler will automatically generate
synthesized HDL code of this DSP design.

KPN Based Centralized Controller

A

CLK-G CLK-g RESET

CLK-G

CLK-g

Data_In Data_Out
B C

KPN BASED CENTRALIZED CONTROLLER

EN_F4EN_F1 EN_F2 EN_F3START_BSTART_A START_C

DATA LINES
SAMPLE CLOCK
CIRCUIT CLOCK

CONTROL SIGNALS
RESET SIGNAL

36

COMPILER OUTPUT

CODE GENERATION TOOL SNAPSHOT

37

Verilog Source Code of given DSP Design generated by C-Compiler:

1. KPN_Controller.V

module main_File(wr_en1,rc_n1,rc_n2,rc_n3,data_in,

 data_out,thru_n1,thru_n2,thru_n3,clk,reset);

 //Here i assumed the token size to be 08 bits

//Input Signals

input clk,reset;

//Write enable signal for fifo_1

input wr_en1;

//Throughputs for each node

input [3:0]thru_n1,thru_n2,thru_n3;

//Input Stream data will bestored at here

input [7:0]data_in;

//Rate of consumption at each link

input [23:0]rc_n1,rc_n2,rc_n3;

//Output Data

output [7:0]data_out;

reg [7:0]data_out;

//Temporary wires and Registers holding Outputs from FIFOs and processes

//and holding control signals as well

wire [7:0]d_out1,d_out2,d_out3,d_out4;

 wire [7:0]Output1,Output2,Output3;

 wire rd_en1,rd_en2,rd_en3,rd_en4,wr_en2,wr_en3,wr_en4;

38

reg read1,read2,read3,

 write2,write3,write4;

//Flags showing FIFO Status i.e (Fifo Full and Fifo Empty)

wire f_full_flag1,f_full_flag2,f_full_flag3,f_full_flag4,

 f_empty_flag1,f_empty_flag2,f_empty_flag3,f_empty_flag4;

//Enable the process and Done Signals showing process has completed its execution

//and ready to write data at ints output buffer

wire pr_en1,pr_en2,pr_en3,

 pr_done1,pr_done2,pr_done3;

//Pointer that stores the Difference between w_ptr and r_ptr

wire [3:0]diff_ptr1,diff_ptr2,diff_ptr3,diff_ptr4;

//Call FIFO Instances

fifo f1(diff_ptr1,d_out1,f_full_flag1,f_empty_flag1,data_in,rd_en1,wr_en1,clk,reset);

fifo f2(diff_ptr2,d_out2,f_full_flag2,f_empty_flag2,Output1,rd_en2,wr_en2,clk,reset);

fifo f3(diff_ptr3,d_out3,f_full_flag3,f_empty_flag3,Output2,rd_en3,wr_en3,clk,reset);

fifo f4(diff_ptr4,d_out4,f_full_flag4,f_empty_flag4,Output3,rd_en4,wr_en4,clk,reset);

//Process Instantiations

ProcessA A1(clk,reset,pr_en1,d_out1,Output1,thru_n1,pr_done1);

ProcessB B1(clk,reset,pr_en2,d_out2,Output2,thru_n2,pr_done2);

ProcessC C1(clk,reset,pr_en3,d_out3,Output3,thru_n3,pr_done3);

//Test Module checking sufficient tokens have acquired in each fifo to start execution

test t1(rc_n1,diff_ptr1,4'b0,4'b0,4'b0,4'b0,pr_en1);

39

test t2(rc_n2,4'b0,diff_ptr2,4'b0,4'b0,4'b0,pr_en2);

test t3(rc_n3,4'b0,4'b0,diff_ptr3,4'b0,4'b0,pr_en3);

//Simple assignments

//assign data_out=d_out4;

assign rd_en1=read1;

assign rd_en2=read2;

assign rd_en3=read3;

assign rd_en4=1;

assign wr_en2=write2;

assign wr_en3=write3;

assign wr_en4=write4;

/////Writing in Output Buffer at each posedge of sample clock

always @(posedge clk)

begin

 if(reset)

 begin

 data_out<=0;//write4=wr_enn4; write6=wr_enn6;

 end

 else

 begin

 data_out<=d_out4;

 end

end

//When Pr_en1 is active high or low

40

always @(posedge clk)

if(pr_en1)

 begin if(pr_done1)

 begin read1=1;end

 else

 begin read1=0;end

 end

else

 begin read1=0;end

 //When pr_en2 is active high or low

always @(posedge clk)

if(pr_en2)

 begin if(pr_done2)

 begin read2=1;end

 else

 begin read2=0;end

 end

else

 read2=0;

//When pr_en3 is active high or low

always @(posedge clk)

if(pr_en3)

 begin if(pr_done3)

 begin read3=1;end

41

 else

 begin read3=0;end

 end

else

 begin read3=0;end

///////////////Enabling Write Pointer of FIFOs after Process's execution

//When pr_done1 is active high or low

always @(pr_done1)

if(pr_done1)

 if(pr_en1)

 write2=1;

 else

 write2=0;

else

 write2=0;

//When pr_done2 is active high or low

always @(pr_done2)

if(pr_done2)

 if(pr_en2)

 write3=1;

 else

 write3=0;

else

 write3=0;

42

//When pr_done3 is active high or low

always @(pr_done3)

if(pr_done3)

 if(pr_en3)

 begin write4=1;end

 else

 begin write4=0;end

else

 begin write4=0;end

 endmodule

2. FIFO.V

//==

//fifo.v; verilog code for asynchronous FIFO

//This module describes FIFO

//==

module fifo(diff,d_out,f_full_flag,f_empty_flag,d_in,r_en,w_en,clk,reset);

parameter width=8; //FIFO width

parameter f_depth=16; //FIFO depth

parameter f_ptr_width=4; //because depth =16;

output [width-1:0] d_out; reg [width-1:0] d_out; //outputs

43

output f_full_flag,f_empty_flag;

output [3:0]diff;

input [width-1:0] d_in;

input r_en,w_en,clk;

input reset;

//internal registers,wires

wire [f_ptr_width-1:0] r_ptr,w_ptr;

reg r_next_en,w_next_en;

reg [f_ptr_width-1:0] ptr_diff;

reg [width-1:0] f_memory[f_depth-1:0];

assign diff=ptr_diff;

assign f_full_flag=(ptr_diff==(f_depth-1)); //assign FIFO status

assign f_empty_flag=(ptr_diff==0);

//instantiate address counters

b_counter r_b_counter(.c_out(r_ptr),.c_reset(reset),.c_clk(clk),.en(r_next_en));

b_counter w_b_counter(.c_out(w_ptr),.c_reset(reset),.c_clk(clk),.en(w_next_en));

//---

always @(posedge clk) //write to memory

begin

if(reset)

 d_out<=0; //f_memory[r_ptr];

if(w_en)

begin

 if(!f_full_flag)

44

 f_memory[w_ptr]<=d_in;

 end

if(r_en)

begin

 if(!f_empty_flag)

 d_out<=f_memory[r_ptr];

 end

end

//---

always @(*) //ptr_diff changes as clock changes

begin

 if(w_ptr>r_ptr)

 ptr_diff<=w_ptr-r_ptr;

 else if(w_ptr<r_ptr)

 ptr_diff<=((f_depth-r_ptr)+w_ptr);

 else ptr_diff<=0;

end

//---

always @(*) //after empty flag activated fifo read counter should not increment;

begin

 if(r_en && (!f_empty_flag))

 r_next_en=1;

 else

 r_next_en=0;

end

//--

45

always @(*) //after full flag activated fifo write counter should not increment;

begin

 if(w_en && (!f_full_flag))

 w_next_en=1;

 else

 w_next_en=0;

end

//---

endmodule

3. B_COUNTER.V

//==

//b_counter.v; 4 bit asynchronous binary up counter

//==

module b_counter(c_out,c_reset,c_clk,en);

parameter c_width=4; //counter width

output [c_width-1:0] c_out; reg [c_width-1:0] c_out;

input c_reset,c_clk,en;

always @(posedge c_clk or posedge c_reset)

 if (c_reset)

 c_out <= 0;

 else if(en)

 c_out <= c_out + 1;

endmodule

46

//==

4. PROCESS_A.V

module ProcessA(clk,reset,pr_en,Input1,Output1,Throughput,pr_done);

parameter width=8; //FIFO width

input [width-1:0]Input1;

input [3:0]Throughput;

input pr_en,clk,reset;

output [width-1:0]Output1;

output pr_done;

reg pr_done;

//Temporary Registers and wires

reg [3:0]Th_Counter;

wire [3:0]Count_Inc=Th_Counter+1;

assign Output1=Input1;

//Simply Waste Clock Cycles for process internal algorithm execution

always @(posedge clk)

begin

 if(reset)

 begin

 pr_done<=1;

 Th_Counter<=0;

47

 end

 else

 begin

 if(pr_en)

 Th_Counter=Count_Inc;

 else

 Th_Counter=Th_Counter;//Do Nothing

 end

end

always @(Th_Counter)

if(Th_Counter == Throughput)

begin

 pr_done=1;

 #5 Th_Counter=0;

end

else

 if(pr_en)

 pr_done=0;

 else pr_done=1;

endmodule

5. PROCESS_B.V

module ProcessB(clk,reset,pr_en,Input1,Output1,Throughput,pr_done);

parameter width=8; //FIFO width

48

input [width-1:0]Input1;

input [3:0]Throughput;

input pr_en,clk,reset;

output [width-1:0]Output1;

output pr_done;

reg pr_done;

//Temporary Registers and wires

reg [3:0]Th_Counter;

wire [3:0]Count_Inc=Th_Counter+1;

assign Output1=Input1;

//Simply Waste Clock Cycles for process internal algorithm execution

always @(posedge clk)

begin

 if(reset)

 begin

 pr_done<=1;

 Th_Counter<=0;

 end

 else

 begin

 if(pr_en)

 Th_Counter=Count_Inc;

 else

 Th_Counter=Th_Counter;//Do Nothing

49

 end

end

always @(Th_Counter)

if(Th_Counter == Throughput)

begin

 pr_done=1;

 #5 Th_Counter=0;

end

else

 if(pr_en)

 pr_done=0;

 else pr_done=1;

endmodule

6. PROCESS_C.V

module ProcessC(clk,reset,pr_en,Input1,Output1,Throughput,pr_done);

parameter width=8; //FIFO width

input [width-1:0]Input1;

input [3:0]Throughput;

input pr_en,clk,reset;

output [width-1:0]Output1;

output pr_done;

reg pr_done;

50

//Temporary Registers and wires

reg [3:0]Th_Counter;

wire [3:0]Count_Inc=Th_Counter+1;

assign Output1=Input1;

//Simply Waste Clock Cycles for process internal algorithm execution

always @(posedge clk)

begin

 if(reset)

 begin

 pr_done<=1;

 Th_Counter<=0;

 end

 else

 begin

 if(pr_en)

 Th_Counter=Count_Inc;

 else

 Th_Counter=Th_Counter;//Do Nothing

 end

end

always @(Th_Counter)

if(Th_Counter == Throughput)

begin

51

 pr_done=1;

 #5 Th_Counter=0;

end

else

 if(pr_en)

 pr_done=0;

 else pr_done=1;

endmodule

7. TEST.V

module test(RC,diff1,diff2,diff3,diff4,diff5,pr_en);

input [19:0]RC;

input [3:0]diff1,diff2,diff3,diff4,diff5;

output pr_en;

reg pr_en;

always @(diff1 or diff2 or diff3 or diff4 or diff5 or RC)

if(diff1 >= RC[3:0] && diff2 >= RC[7:4] && diff3 >= RC[11:8] &&
diff4>=RC[15:12] &&

 diff5>=RC[19:16])

 begin

 pr_en=1;

 end

else

52

 begin

 pr_en=0;

 end

endmodule

8. STIMULUS.V

module stim;

reg clk,reset;

reg wr_en1;

reg [3:0]thru_n1,thru_n2,thru_n3;

reg [7:0]data_in;

reg [23:0]rc_n1,rc_n2,rc_n3;

wire [7:0]data_out;

main_File m1(wr_en1,rc_n1,rc_n2,rc_n3,data_in,data_out,

 thru_n1,thru_n2,thru_n3,clk,reset);

initial

begin

clk=0;

forever

#5 clk=~clk;

end

53

initial

begin

rc_n1=20'b0000_0000_0000_0000_0001;

rc_n2=20'b0000_0000_0000_0001_0000;

rc_n3=20'b0000_0000_0001_0000_0000;

thru_n1=3;thru_n2=2;thru_n3=1;

reset=1;

#15 reset=0;

data_in=1;

#10

repeat(15)

#30 data_in=data_in+1;

end

initial

#200 $stop;

initial

begin

wr_en1=1;

end

endmodule

54

SIMULATION RESULTS

55

FIFO (1_2) BEHAVIOR

56

FIFO (3_4) BEHAVIOR

57

PROCESSES (A_B_C) BEHAVIOR

58

TEST_RC_RP FOR PROCESS_A, B, C

59

SYNTHESIS RESULTS

RTL CODE SYNTHESIS ON FPGA (SPARTAN 3E)

DEVICE UTILIZATION SUMMARY

Device Utilization Summary (estimated values) [-]

Logic Utilization Used Available Utilization

Number of Slices 129 768 16%

Number of Slice Flip Flops 96 1536 6%

Number of 4 input LUTs 268 1536 17%

Number of bonded IOBs 78 100 78%

Number of GCLKs 1 8 12%

COMPARISON OF MANUAL AND COMPILER GENERATED RTL CODES
ON FPGA (SPARTAN 3E)

0

50

100

150

200

250

300

of Slices Flip Flops 4-input LUTs Bounded
IOBs

GCLK

Manual

By Automatic Code
Generation

60

EXAMPLE 2

A,3 C,1B,2

F1 F2 F3 F5
Data_In Data_Out

E,1D,2

F7 F8

F4

F6

11 1 1 1 1 1

1 1

1 1

1 1 1

Fig. 2: Example 2

Description:

This DFG shows that there are five processing elements A, B, C, D and F. These processing
elements are taking 3, 2, 1, 2 and 1 clock cycles for their execution. Also, these processing nodes
will execute only as long as it acquires sufficient number of data tokens on their input buffers.
There are eight FIFO buffers for temporarily holding data values. Also, nodes are listed with
their rate of consumption and production parameters. Rate of consumption is defining the
number of data tokens sufficient for node to process and rate of production parameter defines the
number of data values that are produced by the respective processing element.

Configuration File Specifications

Nodes=5;

FIFO_Buffers=8;

Token_Size=8;

Topology_matrix = [1 -1 0 0 0 0 0;0 1 -1 0 0 0 0;0 0 1 -1 0 0 0;

61

 0 0 0 1 -1 0 0;0 -1 0 0 1 0 0;0 0 0 0 1 -1 0;

0 0 0 0 0 1 -1];

Self_Loops=[0 0 1 0 0];

Algo_Delays=[0 0 0 0 0 0 0 0];

Data_In=1:20;

Throughput_node1=3;

Throughput_node2=2;

Throughput_node3=1;

Throughput_node4=2;

Throughput_node5=1;

Based on these specifications in MATLAB, C-based configuration file is generated that will be passed to
C-based designed compiler. Then, this compiler will automatically generate synthesized HDL code of this
DSP design.

KPN Based Centralized Controller

A

CLK-G CLK-g RESET

CLK-G

CLK-g

Data_In Data_Out
B C

KPN BASED CENTRALIZED CONTROLLER

EN_F5EN_F1 EN_F2 EN_F6START_BSTART_A START_C

D E

CLK-g

EN_F3 EN_F8EN_F7START_DDONE START_E

EN_F4

DATA LINES
SAMPLE CLOCK
CIRCUIT CLOCK

CONTROL SIGNALS
RESET SIGNAL

62

COMPILER OUTPUT

CODE GENERATION TOOL SNAPSHOT

63

Verilog Source Code of given DSP Design generated by C-Compiler:

1. KPN_CONTROLLER.V

module main_File(wr_en1,rc_n1,rc_n2,rc_n3,rc_n4,rc_n5,data_in,

 data_out,thru_n1,thru_n2,thru_n3,thru_n4,

 thru_n5,clk,reset);

//Here i assumed the token size to be 08 bits

//Input Signals

input clk,reset;

//Write enable signal for fifo_1

input wr_en1;

//Throughputs for each node

input [3:0]thru_n1,thru_n2,thru_n3,thru_n4,thru_n5;

//Input Stream data will bestored at here

input [7:0]data_in;

//Rate of consumption at each link

input [23:0]rc_n1,rc_n2,rc_n3,rc_n4,rc_n5;

//Output Data

64

output [7:0]data_out;

reg [7:0]data_out;

//Temporary wires and Registers holding Outputs from FIFOs and processes

//and holding control signals as well

wire [7:0]d_out1,d_out2,d_out3,d_out4,

 d_out5,d_out6,d_out7,d_out8;

wire [7:0]Output1,Output2,Output3,Output4,

 Output5,Output6,Output7;

wire rd_en1,rd_en2,rd_en3,rd_en4,wr_en2,wr_en3,wr_en4;

reg read1,read2,read3,read4,read5,read6,read7,read8,

 write2,write3,write4,write5,write6,write7,write8;

//Flags showing FIFO Status i.e (Fifo Full and Fifo Empty)

wire f_full_flag1,f_full_flag2,f_full_flag3,f_full_flag4,

 f_full_flag5,f_full_flag6,f_full_flag7,f_full_flag8,

 f_empty_flag1,f_empty_flag2,f_empty_flag3,f_empty_flag4,

 f_empty_flag5,f_empty_flag6,f_empty_flag7,f_empty_flag8;

//Enable the process and Done Signals showing process has completed its execution

//and ready to write data at ints output buffer

65

wire pr_en1,pr_en2,pr_en3,pr_en4,pr_en5,

 pr_done1,pr_done2,pr_done3,pr_done4,pr_done5;

//Pointer that stores the Difference between w_ptr and r_ptr

wire [3:0]diff_ptr1,diff_ptr2,diff_ptr3,diff_ptr4,

 diff_ptr5,diff_ptr6,diff_ptr7,diff_ptr8;

//Call FIFO Instances

fifo f1(diff_ptr1,d_out1,f_full_flag1,f_empty_flag1,data_in,rd_en1,wr_en1,clk,reset);

fifo f2(diff_ptr2,d_out2,f_full_flag2,f_empty_flag2,Output1,rd_en2,wr_en2,clk,reset);

fifo f3(diff_ptr3,d_out3,f_full_flag3,f_empty_flag3,Output2,rd_en3,wr_en3,clk,reset);

fifo f4(diff_ptr4,d_out4,f_full_flag4,f_empty_flag4,Output3,rd_en4,wr_en4,clk,reset);

fifo f5(diff_ptr5,d_out5,f_full_flag5,f_empty_flag5,Output4,rd_en5,wr_en5,clk,reset);

fifo f6(diff_ptr6,d_out6,f_full_flag6,f_empty_flag6,Output5,rd_en6,wr_en6,clk,reset);

fifo f7(diff_ptr7,d_out7,f_full_flag7,f_empty_flag7,Output6,rd_en7,wr_en7,clk,reset);

fifo f8(diff_ptr8,d_out8,f_full_flag8,f_empty_flag8,Output7,rd_en8,wr_en8,clk,reset);

//Process Instantiations

ProcessA A1(clk,reset,pr_en1,d_out1,d_out6,Output1,thru_n1,pr_done1);

ProcessB B1(clk,reset,pr_en2,d_out2,Output2,thru_n2,pr_done2);

ProcessC C1(clk,reset,pr_en3,d_out3,d_out4,Output3,Output4,thru_n3,pr_done3);

ProcessD D1(clk,reset,pr_en4,d_out5,Output5,Output6,thru_n4,pr_done4);

ProcessE E1(clk,reset,pr_en5,d_outd_out7,Output7,thru_n5,pr_done5);

66

//Test Module checking sufficient tokens have acquired in each fifo to start execution

test t1(rc_n1,diff_ptr1,4'b0,4'b0,4'b0,diff_ptr6,4'b0,pr_en1);

test t2(rc_n2,4'b0,diff_ptr2,4'b0,4'b0,4'b0,4'b0,pr_en2);

test t3(rc_n3,4'b0,4'b0,diff_ptr3,diff_ptr4,4'b0,4'b0,pr_en3);

test t4(rc_n4,4'b0,4'b0,4'b0,diff_ptr5,4'b0,4'b0,pr_en4);

test t5(rc_n5,4'b0,4'b0,4'b0,4'b0,diff_ptr7,4'b0,pr_en5);

//Simple assignments

//assign data_out=d_out4;

assign rd_en1=read1;

assign rd_en2=read2;

assign rd_en3=read3;

assign rd_en4=read4;

assign rd_en5=read5;

assign rd_en6=read6;

assign rd_en7=read7;

assign rd_en8=1;

assign wr_en2=write2;

assign wr_en3=write3;

assign wr_en4=write4;

assign wr_en5=write5;

assign wr_en6=write6;

assign wr_en7=write7;

67

assign wr_en8=write8;

//Activate final read signal

always @(diff_ptr8)

if(diff_ptr8>=1)

 read8=1;

else

 read8=0;

//When Pr_en1 is active high or low

always @(posedge clk)

if(pr_en1)

 begin if(pr_done1)

 begin read1=1;read6=1;end

 else

 begin read1=0;read6=0;end

 end

else

 begin read1=0;read6=0;end

//When pr_en2 is active high or low

always @(posedge clk)

if(pr_en2)

 begin if(pr_done2)

68

 begin read2=1;end

 else

 begin read2=0;end

 end

else

 read2=0;

//When pr_en3 is active high or low

always @(posedge clk)

if(pr_en3)

 begin if(pr_done3)

 begin read3=1;read4=1;end

 else

 begin read4=0;read3=0;end

 end

else

 begin read3=0;read4=0;end

//When pr_en4 is active high or low

always @(posedge clk)

if(pr_en4)

 begin if(pr_done4)

 begin read5=1;end

 else

69

 begin read5=0;end

 end

else

 read5=0;

//When pr_en5 is active high or low

always @(posedge clk)

if(pr_en5)

 begin if(pr_done5)

 begin read7=1;end

 else

 begin read7=0;end

 end

else

 read7=0;

///////////////Enabling Write Pointer of FIFOs after Process's execution

//When pr_done1 is active high or low

always @(pr_done1)

if(pr_done1)

 if(pr_en1)

 write2=1;

 else

70

 write2=0;

else

 write2=0;

//When pr_done2 is active high or low

always @(pr_done2)

if(pr_done2)

 if(pr_en2)

 write3=1;

 else

 write3=0;

else

 write3=0;

//When pr_done3 is active high or low

always @(pr_done3)

if(pr_done3)

 if(pr_en3)

 begin write4=1;write5=1;end

 else

 begin write4=0;write5=0;end

else

 begin write4=0;write5=0;end

71

//When pr_done4 is active high or low

always @(pr_done4)

if(pr_done4)

 if(pr_en4)

 begin write6=1;write7=1;end

 else

 begin write6=0;write7=0;end

else

 begin write6=0;write7=0;end

//When pr_done5 is active high or low

always @(pr_done5)

if(pr_done5)

 if(pr_en5)

 write8=1;

 else

 write8=0;

else

 write8=0;

/////Writing in Output Buffer at each posedge of sample clock

always @(posedge clk)

begin

 if(reset)

72

 begin

 data_out<=0;

 end

 else

 begin

 data_out<=d_out8;

 end

end

endmodule

2. FIFO.V
//==

//fifo.v; verilog code for asynchronous FIFO

//This module describes FIFO

//===

module fifo(diff,d_out,f_full_flag,f_empty_flag,d_in,r_en,w_en,clk,reset);

parameter width=8; //FIFO width

parameter f_depth=16; //FIFO depth

parameter f_ptr_width=4; //because depth =16;

output [width-1:0] d_out; reg [width-1:0] d_out; //outputs

output f_full_flag,f_empty_flag;

output [3:0]diff;

73

input [width-1:0] d_in;

input r_en,w_en,clk;

input reset;

//internal registers,wires

wire [f_ptr_width-1:0] r_ptr,w_ptr;

reg r_next_en,w_next_en;

reg [f_ptr_width-1:0] ptr_diff;

reg [width-1:0] f_memory[f_depth-1:0];

assign diff=ptr_diff;

assign f_full_flag=(ptr_diff==(f_depth-1)); //assign FIFO status

assign f_empty_flag=(ptr_diff==0);

//instantiate address counters

b_counter r_b_counter(.c_out(r_ptr),.c_reset(reset),.c_clk(clk),.en(r_next_en));

b_counter w_b_counter(.c_out(w_ptr),.c_reset(reset),.c_clk(clk),.en(w_next_en));

//---

always @(posedge clk) //write to memory

begin

74

if(reset)

 d_out<=0; //f_memory[r_ptr];

if(w_en)

begin

 if(!f_full_flag)

 f_memory[w_ptr]<=d_in;

 end

if(r_en)

begin

 if(!f_empty_flag)

 d_out<=f_memory[r_ptr];

 end

end

//---

always @(*) //ptr_diff changes as clock changes

begin

 if(w_ptr>r_ptr)

 ptr_diff<=w_ptr-r_ptr;

 else if(w_ptr<r_ptr)

 ptr_diff<=((f_depth-r_ptr)+w_ptr);

 else ptr_diff<=0;

end

//---

75

always @(*) //after empty flag activated fifo read counter should not increment;

begin

 if(r_en && (!f_empty_flag))

 r_next_en=1;

 else

 r_next_en=0;

end

//--

always @(*) //after full flag activated fifo write counter should not increment;

begin

 if(w_en && (!f_full_flag))

 w_next_en=1;

 else

 w_next_en=0;

end

endmodule

3. B_COUNTER.V

//==

//b_counter.v; 4 bit asynchronous binary up counter

//==

module b_counter(c_out,c_reset,c_clk,en);

parameter c_width=4; //counter width

76

output [c_width-1:0] c_out; reg [c_width-1:0] c_out;

input c_reset,c_clk,en;

always @(posedge c_clk or posedge c_reset)

 if (c_reset)

 c_out <= 0;

 else if(en)

 c_out <= c_out + 1;

endmodule

//==

4. PROCESS_A.V

module ProcessA(clk,reset,pr_en,Input1,Input2,Output1,Throughput,pr_done);

parameter width=8; //FIFO width

input [width-1:0]Input1,Input2;

input [3:0]Throughput;

input pr_en,clk,reset;

output [width-1:0]Output1;

output pr_done;

reg pr_done;

77

//Temporary Registers and wires

reg [3:0]Th_Counter;

wire [3:0]Count_Inc=Th_Counter+1;

assign Output1=Input1+Input2;

//Simply Waste Clock Cycles for process internal algorithm execution

always @(posedge clk)

begin

 if(reset)

 begin

 pr_done<=1;

 Th_Counter<=0;

 end

 else

 begin

 if(pr_en)

 Th_Counter=Count_Inc;

 else

 Th_Counter=Th_Counter;//Do Nothing

 end

end

always @(Th_Counter)

if(Th_Counter == Throughput)

begin

78

 pr_done=1;

 #5 Th_Counter=0;

end

else

 if(pr_en)

 pr_done=0;

 else pr_done=1;

endmodule

5. PROCESS_B.V

module ProcessB(clk,reset,pr_en,Input1,Output1,Throughput,pr_done);

parameter width=8; //FIFO width

input [width-1:0]Input1;

input [3:0]Throughput;

input pr_en,clk,reset;

output [width-1:0]Output1;

output pr_done;

reg pr_done;

//Temporary Registers and wires

reg [3:0]Th_Counter;

wire [3:0]Count_Inc=Th_Counter+1;

79

assign Output1=Input1;

//Simply Waste Clock Cycles for process internal algorithm execution

always @(posedge clk)

begin

 if(reset)

 begin

 pr_done<=1;

 Th_Counter<=0;

 end

 else

 begin

 if(pr_en)

 Th_Counter=Count_Inc;

 else

 Th_Counter=Th_Counter;//Do Nothing

 end

end

always @(Th_Counter)

if(Th_Counter == Throughput)

begin

 pr_done=1;

 #5 Th_Counter=0;

end

80

else

 if(pr_en)

 pr_done=0;

 else pr_done=1;

endmodule

6. PROCESS_C.V

module ProcessC(clk,reset,pr_en,Input1,Input2,Output1,Output2,Throughput,pr_done);

parameter width=8; //FIFO width

input [width-1:0]Input1,Input2;

input [3:0]Throughput;

input pr_en,clk,reset;

output [width-1:0]Output1,Output2;

output pr_done;

reg pr_done;

//Temporary Registers and wires

reg [3:0]Th_Counter;

wire [3:0]Count_Inc=Th_Counter+1;

assign Output1=Input1;

assign Output2=Input2;

//Simply Waste Clock Cycles for process internal algorithm execution

81

always @(posedge clk)

begin

 if(reset)

 begin

 pr_done<=1;

 Th_Counter<=0;

 end

 else

 begin

 if(pr_en)

 Th_Counter=Count_Inc;

 else

 Th_Counter=Th_Counter;//Do Nothing

 end

end

always @(Th_Counter)

if(Th_Counter == Throughput)

begin

 pr_done=1;

 #5 Th_Counter=0;

end

else

 if(pr_en)

82

 pr_done=0;

 else pr_done=1;

endmodule

7. PROCESS_D.V

module ProcessD(clk,reset,pr_en,Input1,Output1,Output2,Throughput,pr_done);

parameter width=8; //FIFO width

input [width-1:0]Input1;

input [3:0]Throughput;

input pr_en,clk,reset;

output [width-1:0]Output1,Output2;

output pr_done;

reg pr_done;

//Temporary Registers and wires

reg [3:0]Th_Counter;

wire [3:0]Count_Inc=Th_Counter+1;

assign Output1=Input1;

assign Output2=Input1;

//Simply Waste Clock Cycles for process internal algorithm execution

always @(posedge clk)

begin

83

 if(reset)

 begin

 pr_done<=1;

 Th_Counter<=0;

 end

 else

 begin

 if(pr_en)

 Th_Counter=Count_Inc;

 else

 Th_Counter=Th_Counter;//Do Nothing

 end

end

always @(Th_Counter)

if(Th_Counter == Throughput)

begin

 pr_done=1;

 #5 Th_Counter=0;

end

else

 if(pr_en)

 pr_done=0;

 else pr_done=1;

84

endmodule

8. PROCESS_E.V

module ProcessE(clk,reset,pr_en,Input1,Output1,Throughput,pr_done);

parameter width=8; //FIFO width

input [width-1:0]Input1;

input [3:0]Throughput;

input pr_en,clk,reset;

output [width-1:0]Output1;

output pr_done;

reg pr_done;

//Temporary Registers and wires

reg [3:0]Th_Counter;

wire [3:0]Count_Inc=Th_Counter+1;

assign Output1=Input1;

//Simply Waste Clock Cycles for process internal algorithm execution

always @(posedge clk)

begin

 if(reset)

 begin

85

 pr_done<=1;

 Th_Counter<=0;

 end

 else

 begin

 if(pr_en)

 Th_Counter=Count_Inc;

 else

 Th_Counter=Th_Counter;//Do Nothing

 end

end

always @(Th_Counter)

if(Th_Counter == Throughput)

begin

 pr_done=1;

 #5 Th_Counter=0;

end

else

 if(pr_en)

 pr_done=0;

 else pr_done=1;

endmodule

86

9. TEST_RC_RP.V

module test(RC,diff1,diff2,diff3,diff4,diff5,diff6,pr_en);

input [23:0]RC;

input [3:0]diff1,diff2,diff3,diff4,diff5,diff6;

output pr_en;

reg pr_en;

always @(diff1 or diff2 or diff3 or diff4 or diff5 or diff6 or RC)

if(diff1 >= RC[3:0] && diff2 >= RC[7:4] && diff3 >= RC[11:8] &&
diff4>=RC[15:12] &&

 diff5>=RC[19:16] && diff6 >= RC[23:20])

 begin

 pr_en=1;

 end

else

 begin

 pr_en=0;

 end

 endmodule

10. STIMULUS.V

module stim;

reg clk,reset;

reg wr_en1;

87

reg [3:0]thru_n1,thru_n2,thru_n3,thru_n4,thru_n5;

reg [7:0]data_in;

reg [23:0]rc_n1,rc_n2,rc_n3,rc_n4,rc_n5;

wire [7:0]data_out;

main_File m1(wr_en1,rc_n1,rc_n2,rc_n3,rc_n4,rc_n5,data_in,data_out,

 thru_n1,thru_n2,thru_n3,thru_n4,thru_n5,clk,reset);

initial

begin

clk=0;

forever

#5 clk=~clk;

end

initial

begin

reset=1;

thru_n1=3;thru_n2=2;thru_n3=1;thru_n4=2;thru_n5=3;

#15 reset=0;

rc_n1=24'b0000_0000_0000_0000_0000_0001;

rc_n2=24'b0000_0000_0000_0000_0001_0000;

rc_n3=24'b0000_0000_0000_0001_0000_0000;

rc_n4=24'b0000_0000_0001_0000_0000_0000;

rc_n5=24'b0000_0001_0000_0000_0000_0000;

data_in=1;

88

#10

repeat(15)

#30 data_in=data_in+1;

end

initial

#200 $stop;

initial

begin

wr_en1=1;

end

endmodule

89

SIMULATION RESULTS

90

FIFO_(1_2) BEHAVIOR

91

PROCESS (A_B) BEHAVIOR

92

PROCESS (C_D) BEHAVIOR

93

TEST (A_B_C) BEHAVIOR

94

SYNTHESIS RESULTS

RTL CODE SYNTHESIS ON FPGA VIRTEX-4)

DEVICE UTILIZATION SUMMARY

Device Utilization Summary (estimated values)

[-]

Logic Utilization Used Available Utilization

Number of Slices 235 6144 3%

Number of Slice Flip Flops 105 12288 0%

Number of 4 input LUTs 439 12288 3%

Number of bonded IOBs 151 240 62%

Number of GCLKs 1 32 3%

COMPARISON OF MANUAL AND COMPILER GENERATED RTL CODES
ON FPGA (SPARTAN 3E)

0

50

100

150

200

250

300

350

400

450

of Slices Flip Flops 4-Input LUTs Bounded IOBs GCLK

Manual

Automatic Code
Generation

95

CHAPTER 5

CONCLUSION AND FUTURE WORK

In this scheme, I have developed a structure of KPN that can easily be mapped on any

reconfigurable platforms. For that, I ask the specification from the user of specific format, and

then the compiler reads it and gives an automatic HDL based controller for hardware mapping.

Future work will be the automatic generation of this specification file. By simply viewing the

streaming application, an automatic design file will be generated that will be then passed to this

generalized compiler which is giving the hardware implementation of KPN framework.

Conclusively, I have proposed and implemented a framework of KPN taking the input

specifications of streaming applications resulting into automatic synthesized RTL code

generation. This is essential because the actual critical streaming applications is constituent of

thousands or millions of such independent components or processing elements and

managing/controlling their processing in a big challenge. Also, Execution time of such application

requires more than a week and when a matter of designing a manual controller for such

application comes, it becomes a huge overhead. Lastly, if the design goes fail then all your effort

will go down. For this consideration, we have come to this point that designers just need to put

their application specifications/demands and an automatic synthesized RTL optimized controller

will be generated without any manual considerations and overheads fulfilling their current design

demands and if required, then it can easily be upgraded according to restructured design.

96

APPENDIX A

C-CODE OF GIVEN DSP DESIGN:

1. DEFINITIONS.H

void FIFO();

void TEST();

void B_COUNTER();

void Process_A();

void Process_B();

void Process_C();

void Process_D();

void Process_E();

void KPN();

void STIM();

2. MAIN_C.C

#include<conio.h>
#include<process.h>
#include<stdio.h>

#include"definitions.h"
//#include"FIFO.h"

void main()
{
 FIFO();
 TEST();
 B_COUNTER();

97

 Process_A();
 Process_B();
 Process_C();
 Process_D();
 Process_E();
 KPN();
 STIM();
 getche();
}

3. KPN_CONTROLLER.C

#include<conio.h>

#include<process.h>

#include<stdio.h>

void KPN()

{

 FILE *fp;

 fp=fopen("Main_File.V","w");

 if(fp==NULL)

 {

 puts("Cannot Open Target File");

 exit(0);

 }

/*--|

|----------------------WRITING TO FILE Main_KPN.V---------------------------|

|---*/

98

fprintf(fp,"module
Main_File(wr_en1,rc_n1,rc_n2,rc_n3,rc_n4,rc_n5,data_in,data_out,thru_n1,thru_n2,thr
u_n3,thrU_n4,thru_n5,clk,reset);\n");

//Input Signals

fprintf(fp,"input clk,reset;\n");

//Write enable signal for fifo_1

fprintf(fp,"input wr_en1;\n");

//Throughputs for each node

fprintf(fp,"input [3:0]thru_n1,thru_n2,thru_n3,thru_n4,thru_n5;\n");

//Input Stream data will bestored at here

fprintf(fp,"input [7:0]data_in;\n");

//Rate of consumption at each link

fprintf(fp,"input [19:0]rc_n1,rc_n2,rc_n3,rc_n4,rc_n5;\n\n");

//Output Data

fprintf(fp,"output [7:0]data_out;\n");

fprintf(fp,"reg [7:0]data_out;\n\n");

//Temporary wires and Registers holding Outputs from FIFOs and processes

99

//and holding control signals as well

fprintf(fp,"wire [7:0]d_out1,d_out2,d_out3,d_out4,d_out5,d_out6,d_out7,d_out8;\n");

fprintf(fp,"wire [7:0]Output1,Output2,Output3,Output4,Output5,Output6,Output7;\n");

fprintf(fp,"wire
rd_en1,rd_en2,rd_en3,rd_en4,rd)en5,rd_en5,rd_en6,rd_en7,rd_en8,wr_en2,wr_en3,wr_
en4,wr_en5,wr_en6,wr_en7,wr_en8;\n\n");

fprintf(fp,"reg
read1,read2,read3,read4,read5,read6,read7,write2,write3,write4,write5,write6,write7,wr
ite8;\n\n");

//Flags showing FIFO Status i.e (Fifo Full and Fifo Empty)

fprintf(fp,"wire f_full_flag1,f_full_flag2,f_full_flag3,f_full_flag4;\n");

fprintf(fp,"wire f_empty_flag1,f_empty_flag2,f_empty_flag3,f_empty_flag4;\n\n");

//Enable the process and Done Signals showing process has completed its execution

//and ready to write data at ints output buffer

fprintf(fp,"wire pr_en1,pr_en2,pr_en3,pr_done1,pr_done2,pr_done3;\n\n");

//Pointer that stores the Difference between w_ptr and r_ptr

fprintf(fp,"wire [3:0]diff_ptr1,diff_ptr2,diff_ptr3,diff_ptr4;\n\n");

//Call FIFO Instances

fprintf(fp,"FIFO
f1(diff_ptr1,d_out1,f_full_flag1,f_empty_flag1,data_in,rd_en1,wr_en1,clk,reset);\n");

fprintf(fp,"FIFO
f2(diff_ptr2,d_out2,f_full_flag2,f_empty_flag2,Output1,rd_en2,wr_en2,clk,reset);\n");

100

fprintf(fp,"FIFO
f3(diff_ptr3,d_out3,f_full_flag3,f_empty_flag3,Output2,rd_en3,wr_en3,clk,reset);\n");

fprintf(fp,"FIFO
f4(diff_ptr4,d_out4,f_full_flag4,f_empty_flag4,Output3,rd_en4,wr_en4,clk,reset);\n\n");

fprintf(fp,"FIFO
f5(diff_ptr5,d_out5,f_full_flag5,f_empty_flag5,Output4,rd_en5,wr_en5,clk,reset);\n");

fprintf(fp,"FIFO
f6(diff_ptr6,d_out6,f_full_flag6,f_empty_flag6,Output5,rd_en6,wr_en6,clk,reset);\n");

fprintf(fp,"FIFO
f7(diff_ptr7,d_out7,f_full_flag7,f_empty_flag7,Output6,rd_en7,wr_en7,clk,reset);\n");

fprintf(fp,"FIFO
f8(diff_ptr8,d_out8,f_full_flag8,f_empty_flag8,Output7,rd_en8,wr_en8,clk,reset);\n\n");

//Process Instantiations

fprintf(fp,"ProcessA
A1(clk,reset,pr_en1,d_out1,Output1,Output6,thru_n1,pr_done1);\n");

fprintf(fp,"ProcessB B1(clk,reset,pr_en2,d_out2,Output2,thru_n2,pr_done2);\n");

fprintf(fp,"ProcessC
C1(clk,reset,pr_en3,d_out3,Output3,Output4,thru_n3,pr_done3);\n");

fprintf(fp,"ProcessD D1(clk,reset,pr_en4,d_out4,Output5,thru_n4,pr_done4);\n");

fprintf(fp,"ProcessE E1(clk,reset,pr_en5,d_out5,Output7,thru_n5,pr_done5);\n\n");

//Test Module checking sufficient tokens have acquired in each fifo to start execution

fprintf(fp,"TEST t1(rc_n1,diff_ptr1,4'b0,4'b0,4'b0,4'b0,pr_en1);\n");

fprintf(fp,"TEST t2(rc_n2,4'b0,diff_ptr2,4'b0,4'b0,4'b0,pr_en2);\n");

fprintf(fp,"TEST t3(rc_n3,diff_ptr1,4'b0,4'b0,4'b0,4'b0,pr_en3);\n");

101

fprintf(fp,"TEST t4(rc_n4,4'b0,diff_ptr2,4'b0,4'b0,4'b0,pr_en4);\n");

fprintf(fp,"TEST t5(rc_n5,4'b0,4'b0,diff_ptr3,4'b0,4'b0,pr_en5);\n\n");

//Simple assignments

//assign data_out=d_out4;

fprintf(fp,"assign rd_en1=read1;\n");

fprintf(fp,"assign rd_en2=read2;\n");

fprintf(fp,"assign rd_en3=read3;\n");

fprintf(fp,"assign rd_en4=read4;\n");

fprintf(fp,"assign rd_en5=read5;\n");

fprintf(fp,"assign rd_en6=read6;\n");

fprintf(fp,"assign rd_en7=read7;\n");

fprintf(fp,"assign rd_en4=1;\n\n");

fprintf(fp,"assign wr_en2=write2;\n");

fprintf(fp,"assign wr_en3=write3;\n");

fprintf(fp,"assign wr_en4=write4;\n");

fprintf(fp,"assign wr_en5=write5;\n");

fprintf(fp,"assign wr_en6=write6;\n");

fprintf(fp,"assign wr_en7=write7;\n");

fprintf(fp,"assign wr_en8=write8;\n\n");

//When Pr_en1 is active high or low

102

fprintf(fp,"always @(posedge clk)\n");

fprintf(fp,"if(pr_en1)\n");

fprintf(fp,"\tif(pr_done1)\n\t\tread1=1;\n\telse\n\t\tread1=0;\n\n");

fprintf(fp,"else\n");

fprintf(fp,"\tread1=0;\n\n");

//When pr_en2 is active high or low

fprintf(fp,"always @(posedge clk)\n");

fprintf(fp,"if(pr_en2)\n");

fprintf(fp,"\tif(pr_done2)\n\t\tread2=1;\n\telse\n\t\tread2=0;\n\n\n");

fprintf(fp,"else\n");

fprintf(fp,"\tread2=0;\n\n");

//When pr_en3 is active high or low

fprintf(fp,"always @(posedge clk)\n");

fprintf(fp,"if(pr_en3)\n");

fprintf(fp,"\tif(pr_done3)\n\t\tread3=1;\n\telse\n\t\tread3=0;\n\n");

fprintf(fp,"else\n");

fprintf(fp,"\tread3=0; \n\n");

//When pr_en4 is active high or low

fprintf(fp,"always @(posedge clk)\n");

fprintf(fp,"if(pr_en4)\n");

fprintf(fp,"\tif(pr_done4)\n\t\tread4=1;\n\telse\n\t\tread4=0;\n\n");

103

fprintf(fp,"else\n");

fprintf(fp,"\tread4=0; \n\n");

//When pr_en3 is active high or low

fprintf(fp,"always @(posedge clk)\n");

fprintf(fp,"if(pr_en5)\n");

fprintf(fp,"\tif(pr_done5)\n\t\tread3=1;\n\telse\n\t\tread5=0;\n\n");

fprintf(fp,"else\n");

fprintf(fp,"\tread5=0; \n\n");

//When pr_done1 is active high or low

fprintf(fp,"always @(pr_done1)\n");

fprintf(fp,"if(pr_done1)\n");

fprintf(fp,"\tif(pr_en1)\n\t\twrite2=1;\n\telse\n\t\twrite2=0;\n");

fprintf(fp,"else\n");

fprintf(fp,"\twrite2=0;\n\n");

//When pr_done2 is active high or low

fprintf(fp,"always @(pr_done2) \n");

fprintf(fp,"if(pr_done2)\n");

fprintf(fp,"\tif(pr_en2)\n\t\twrite3=1;\n\telse\n\t\twrite3=0;\n");

104

fprintf(fp,"else\n");

fprintf(fp,"\twrite3=0;\n\n");

//When pr_done3 is active high or low

fprintf(fp,"always @(pr_done3)\n");

fprintf(fp,"if(pr_done3)\n");

fprintf(fp,"\tif(pr_en3)\n\t\twrite4=1;\n\telse\n\t\twrite4=0;\n");

fprintf(fp,"else\n");

fprintf(fp,"\twrite4=0; \n\n");

//When pr_done4 is active high or low

fprintf(fp,"always @(pr_done4)\n");

fprintf(fp,"if(pr_done4)\n");

fprintf(fp,"\tif(pr_en4)\n\t\twrite5=1;\n\telse\n\t\twrite5=0;\n");

fprintf(fp,"else\n");

fprintf(fp,"\twrite5=0; \n\n");

//When pr_done3 is active high or low

fprintf(fp,"always @(pr_done5)\n");

fprintf(fp,"if(pr_done5)\n");

fprintf(fp,"\tif(pr_en5)\n\t\twrite6=1;\n\telse\n\t\twrite6=0;\n");

fprintf(fp,"else\n");

fprintf(fp,"\twrite6=0; \n\n");

105

fprintf(fp,"always @(posedge clk)\n");

fprintf(fp,"begin\n");

fprintf(fp,"\tif(reset)\n");

fprintf(fp,"\tbegin\n");

fprintf(fp,"\t\tdata_out<=0;\n");

fprintf(fp,"\tend\n");

fprintf(fp,"\telse\n");

fprintf(fp,"\tbegin\n");

fprintf(fp,"\t\tdata_out<=d_out4;\n");

fprintf(fp,"\tend\n\n");

fprintf(fp,"end\n\n");

fprintf(fp,"endmodule\n");

puts("Data Main_File.V Copied");

fclose(fp);

}

4. FIFO.C

#include<conio.h>

#include<process.h>

#include<stdio.h>

void FIFO()

106

{

 FILE *fp;

 fp=fopen("FIFO.V","w");

 if(fp==NULL)

 {

 puts("Cannot Open Target File");

 exit(0);

 }

/*--|

|----------------------WRITING TO FILE FIFO.V---------------------------|

|---*/

int f_width=8;//Token size=8 bits

int f_depth=16;//Fifo Depth=16 locations of 8 bits wide

int f_ptr_width=4;//ptr size to address 16 locations

int flag;

int ptr_diff=0;

int rd_ptr,wr_ptr;

 fprintf(fp,"module
FIFO(ptr_diff,output_data,f_full_flag,f_empty_flag,input_data,rd_enable,wr_enable,cloc
k,reset);\n");

 fprintf(fp,"parameter f_depth=16; //FIFO depth\n\n");

 fprintf(fp,"input rd_enable,wr_enable,clock,reset;\n");

 fprintf(fp,"input [%d:0]input_data;\n",(f_width-1));

107

 //fprintf(fp,"input [7:0]Data_In;\n\n");

 fprintf(fp,"output [%d:0]ptr_diff;\n",(f_ptr_width-1));

 fprintf(fp,"output [%d:0]output_data;\n",(f_width-1));

 fprintf(fp,"output f_full_flag,f_empty_flag;\n\n");

//Outputs need to be declared as reg for behavioral modeling

 fprintf(fp,"//Outputs need to be declared as reg for behavioral modeling\n");

 fprintf(fp,"reg [%d:0]output_data;\n\n",(f_width-1));

//Internal wires, registers and register file declarations

 fprintf(fp,"//Internal wires, registers and register file declarations\n");

 fprintf(fp,"reg [%d:0]diff;\n",(f_ptr_width-1));

 fprintf(fp,"wire [%d:0]rd_ptr,wr_ptr;\n",(f_ptr_width-1));

 fprintf(fp,"reg rd_next_en,wr_next_en;\n");

 fprintf(fp,"reg [%d:0]f_memory[0:%d];\n\n",(f_width-1),(f_depth-1));

//Simple assignments

 fprintf(fp,"assign ptr_diff=diff;\n");

 if(ptr_diff==(f_depth-1)) //IF_ELSE for checking FIFO is FULL

 flag=1;

 else

 flag=0;

 fprintf(fp,"assign f_full_flag=(ptr_diff==(f_depth-1));\n");

108

 if(ptr_diff==0)//IF_ELSE checking the empty status of FIFO Buffer

 flag=1;

 else

 flag=0;

 fprintf(fp,"assign f_empty_flag=(ptr_diff==0);\n\n");

//instantiate address counters for increments and decrements

 fprintf(fp,"b_counter
rd_b_counter(.c_out(rd_ptr),.c_reset(reset),.c_clk(clock),.en(rd_next_en));\n");

 fprintf(fp,"b_counter
wr_b_counter(.c_out(wr_ptr),.c_reset(reset),.c_clk(clock),.en(wr_next_en));\n\n\n");

/*----------Always block starts at here -----------

|--*/

 fprintf(fp,"always @(posedge clock)\n");

 fprintf(fp,"begin\n\n");

 fprintf(fp,"if(reset)\n");

 fprintf(fp,"\toutput_data=%d;\n\n",0); //Output must be reset to zero when reset
signal is asserted

 //if write signal is asserted then first you need to check whether fifo is full or not

 //if not, then input data is written into fifo buffer

 fprintf(fp,"if(wr_enable) begin\n");

 fprintf(fp,"\tif(!f_full_flag)\n");

 fprintf(fp,"\t\tf_memory[wr_ptr]<=input_data;\n");

109

 fprintf(fp,"\tend\n\n");

 //if read signal is asserted then first you need to check whether fifo is empty or
not

 //if not, then fifo buffer is being read

 fprintf(fp,"if(rd_enable) begin\n");

 fprintf(fp,"\tif(!f_empty_flag)\n");

 fprintf(fp,"\t\toutput_data<=f_memory[rd_ptr];\n");

 fprintf(fp,"\tend\n\n");

 fprintf(fp,"end\n\n");

//---

 fprintf(fp,"always @(*)\n\n"); //ptr_diff changes as clock changes

 fprintf(fp,"begin \n\n");

 fprintf(fp,"if(wr_ptr>rd_ptr)\n");

 fprintf(fp,"\tdiff<=wr_ptr-rd_ptr;\n\n");

 fprintf(fp,"else if(wr_ptr<rd_ptr)\n");

 fprintf(fp,"\tdiff<=%d;\n\n",((f_depth-rd_ptr)+wr_ptr));

 fprintf(fp,"else diff<=0;\n\n");

 fprintf(fp,"end\n\n\n");

//---

110

 fprintf(fp,"always @(*)\n\n"); //after empty flag activated fifo read counter should
not increment;

 fprintf(fp,"begin \n\n");

 fprintf(fp,"if(rd_enable && (!f_empty_flag))\n");

 fprintf(fp,"\trd_next_en=1;\n\n");

 fprintf(fp,"else \n");

 fprintf(fp,"\trd_next_en=0;\n\n");

 fprintf(fp,"end\n\n\n");

//--

 fprintf(fp,"always @(*)\n\n"); //after full flag activated fifo write counter should
not increment;

 fprintf(fp,"begin \n\n");

 fprintf(fp,"if(wr_enable && (!f_full_flag))\n");

 fprintf(fp,"\twr_next_en=1;\n\n");

 fprintf(fp,"else \n");

 fprintf(fp,"\twr_next_en=0;\n\n");

 fprintf(fp,"end\n\n");

//---

 fprintf(fp,"endmodule");

puts("Data FIFO.V Copied");

fclose(fp);

}

111

5. B_COUNTER.C

#include<conio.h>

#include<process.h>

#include<stdio.h>

void B_COUNTER()

{

int c_width=4;

 FILE *fp;

 fp=fopen("b_counter.V","w");

 if(fp==NULL)

 {

 puts("Cannot Open Source File");

 exit(0);

 }

 /*--|

 |----------------------WRITING TO FILE b_counter.V----------------------|

 |---*/

 fprintf(fp,"module b_counter(c_out,c_reset,c_clk,en);\n\n");

 fprintf(fp,"parameter c_width=%d;\n\n",c_width);

112

 //Input Specifications

 fprintf(fp,"input c_reset,c_clk,en;\n\n");

 //Output specifications and also it needs to be declared as reg for behavioral
modeling

 fprintf(fp,"output [%d:0]c_out;\n",(c_width-1));

 fprintf(fp,"reg [%d:0]c_out;\n\n",(c_width-1));

 /*----------Always block starts at here -----------

 |--*/

 fprintf(fp,"always @(posedge c_clk or posedge c_reset)\n");

 fprintf(fp,"if(c_reset)\n");

 fprintf(fp,"\tc_out<=0;\n");

 fprintf(fp,"else if(en)\n");

 fprintf(fp,"\tc_out<=c_out+1;\n");

 fprintf(fp,"else\n");

 fprintf(fp,"\tc_out<=c_out;\n\n");

 fprintf(fp,"endmodule");

puts("Data B_Counter.V Copied");

fclose(fp);

}

113

6. PROCESS_A.C

#include<conio.h>

#include<process.h>

#include<stdio.h>

void Process_A(){

 FILE *fp;

 fp=fopen("ProcessA.V","w");

 if(fp==NULL)

 {

 puts("Cannot Open Source File");

 exit(0);

 }

 /*--

 |----In Actual sense, this block contains the actual processing element

 that needs to be executed. But we are just sketshing the hardware, so at

 here, we will just waste throughput number of clock cycles-------------*/

 /*--|

 |----------------------WRITING TO FILE Process_A.V------------------------|

114

 |---*/

//Input Specifications

fprintf(fp,"module
ProcessA(clk,reset,pr_en,Input1,Output1,Output2,Throughput,pr_done);\n");

fprintf(fp,"parameter width=8; //FIFO width\n\n");

fprintf(fp,"input [width-1:0]Input1;\n");

fprintf(fp,"input [3:0]Throughput;\n");

fprintf(fp,"input pr_en,clk,reset;\n\n");

//Output Specifications

fprintf(fp,"output [width-1:0]Output1;\n");

fprintf(fp,"output pr_done;\n");

fprintf(fp,"reg pr_done;\n\n");

//Temporary Registers and wires

fprintf(fp,"reg [3:0]Th_Counter;\n");

fprintf(fp,"wire [3:0]Count_Inc;\n");

fprintf(fp,"assign Count_Inc=Th_Counter+1;\n\n");

fprintf(fp,"assign Output1=Input1;\n\n");

fprintf(fp,"assign Output2=Input1;\n\n");

//Simply Waste Clock Cycles for process internal algorithm execution

115

/*-------Always block starts at here ---------

|---*/

fprintf(fp,"always @(posedge clk)\n");

fprintf(fp,"begin\n");

fprintf(fp,"if(reset)\n");

fprintf(fp,"\tbegin\n");

fprintf(fp,"\t\tpr_done<=0;\n");

fprintf(fp,"\t\tTh_Counter<=0;\n");

fprintf(fp,"\tend\n\n");

fprintf(fp,"else\n");

fprintf(fp,"\tbegin\n");

fprintf(fp,"\t\tif(pr_en)\n");

fprintf(fp,"\t\tTh_Counter=Count_Inc;\n\n");

fprintf(fp,"\t\telse\n");

fprintf(fp,"\t\tTh_Counter=Th_Counter;//Do Nothing\n\n");

fprintf(fp,"\tend\n\n");

fprintf(fp,"end\n\n");

 /*-------Always block For Counting starts at here ---------

116

 |--*/

fprintf(fp,"always @(Th_Counter)\n");

fprintf(fp,"if(Th_Counter == Throughput)\n");

fprintf(fp,"begin\n");

fprintf(fp,"\tpr_done=1;\n");

fprintf(fp,"\t#5 Th_Counter=0;\n");

fprintf(fp,"end\n\n");

fprintf(fp,"else\n");

fprintf(fp,"\tif(pr_en)\n\t\tpr_done=0;\n\telse\n\t\tpr_done=1;\n\n");

fprintf(fp,"endmodule");

puts("Data Process_A.V Copied");

fclose(fp);

}

7. PROCESS_B.C

#include<conio.h>

#include<process.h>

#include<stdio.h>

117

void Process_B(){

 FILE *fp;

 fp=fopen("ProcessB.V","w");

 if(fp==NULL)

 {

 puts("Cannot Open Source File");

 exit(0);

 }

 /*--

 |----In Actual sense, this block contains the actual processing element

 that needs to be executed. But we are just sketshing the hardware, so at

 here, we will just waste throughput number of clock cycles-------------*/

 /*--|

 |----------------------WRITING TO FILE Process_B.V------------------------|

 |---*/

//Input Specifications

fprintf(fp,"module ProcessB(clk,reset,pr_en,Input1,Output1,Throughput,pr_done);\n");

fprintf(fp,"parameter width=8; //FIFO width\n\n");

118

fprintf(fp,"input [width-1:0]Input1;\n");

fprintf(fp,"input [3:0]Throughput;\n");

fprintf(fp,"input pr_en,clk,reset;\n\n");

//Output Specifications

fprintf(fp,"output [width-1:0]Output1;\n");

fprintf(fp,"output pr_done;\n");

fprintf(fp,"reg pr_done;\n\n");

//Temporary Registers and wires

fprintf(fp,"reg [3:0]Th_Counter;\n");

fprintf(fp,"wire [3:0]Count_Inc;\n");

fprintf(fp,"assign Count_Inc=Th_Counter+1;\n\n");

fprintf(fp,"assign Output1=Input1;\n\n");

//Simply Waste Clock Cycles for process internal algorithm execution

/*-------Always block starts at here ---------

|---*/

fprintf(fp,"always @(posedge clk)\n");

fprintf(fp,"begin\n");

119

fprintf(fp,"if(reset)\n");

fprintf(fp,"\tbegin\n");

fprintf(fp,"\t\tpr_done<=0;\n");

fprintf(fp,"\t\tTh_Counter<=0;\n");

fprintf(fp,"\tend\n\n");

fprintf(fp,"else\n");

fprintf(fp,"\tbegin\n");

fprintf(fp,"\t\tif(pr_en)\n");

fprintf(fp,"\t\tTh_Counter=Count_Inc;\n\n");

fprintf(fp,"\t\telse\n");

fprintf(fp,"\t\tTh_Counter=Th_Counter;//Do Nothing\n\n");

fprintf(fp,"\tend\n\n");

fprintf(fp,"end\n\n");

 /*-------Always block For Counting starts at here ---------

 |--*/

fprintf(fp,"always @(Th_Counter)\n");

fprintf(fp,"if(Th_Counter == Throughput)\n");

fprintf(fp,"begin\n");

fprintf(fp,"\tpr_done=1;\n");

120

fprintf(fp,"\t#5 Th_Counter=0;\n");

fprintf(fp,"end\n\n");

fprintf(fp,"else\n");

fprintf(fp,"\tif(pr_en)\n\t\tpr_done=0;\n\telse\n\t\tpr_done=1;\n\n");

fprintf(fp,"endmodule");

puts("Data Process_B.V Copied");

fclose(fp);

}

8. PROCESS_C.C

#include<conio.h>

#include<process.h>

#include<stdio.h>

void Process_C(){

 FILE *fp;

 fp=fopen("ProcessC.V","w");

 if(fp==NULL)

121

 {

 puts("Cannot Open Source File");

 exit(0);

 }

 /*--

 |----In Actual sense, this block contains the actual processing element

 that needs to be executed. But we are just sketshing the hardware, so at

 here, we will just waste throughput number of clock cycles-------------*/

 /*--|

 |----------------------WRITING TO FILE Process_C.V------------------------|

 |---*/

//Input Specifications

fprintf(fp,"module
ProcessC(clk,reset,pr_en,Input1,Output1,Output2,Throughput,pr_done);\n");

fprintf(fp,"parameter width=8; //FIFO width\n\n");

fprintf(fp,"input [width-1:0]Input1;\n");

fprintf(fp,"input [3:0]Throughput;\n");

fprintf(fp,"input pr_en,clk,reset;\n\n");

//Output Specifications

fprintf(fp,"output [width-1:0]Output1;\n");

122

fprintf(fp,"output pr_done;\n");

fprintf(fp,"reg pr_done;\n\n");

//Temporary Registers and wires

fprintf(fp,"reg [3:0]Th_Counter;\n");

fprintf(fp,"wire [3:0]Count_Inc;\n");

fprintf(fp,"assign Count_Inc=Th_Counter+1;\n\n");

fprintf(fp,"assign Output1=Input1;\n\n");

fprintf(fp,"assign Output2=Input1;\n\n");

//Simply Waste Clock Cycles for process internal algorithm execution

/*-------Always block starts at here ---------

|---*/

fprintf(fp,"always @(posedge clk)\n");

fprintf(fp,"begin\n");

fprintf(fp,"if(reset)\n");

fprintf(fp,"\tbegin\n");

fprintf(fp,"\t\tpr_done<=0;\n");

fprintf(fp,"\t\tTh_Counter<=0;\n");

fprintf(fp,"\tend\n\n");

123

fprintf(fp,"else\n");

fprintf(fp,"\tbegin\n");

fprintf(fp,"\t\tif(pr_en)\n");

fprintf(fp,"\t\tTh_Counter=Count_Inc;\n\n");

fprintf(fp,"\t\telse\n");

fprintf(fp,"\t\tTh_Counter=Th_Counter;//Do Nothing\n\n");

fprintf(fp,"\tend\n\n");

fprintf(fp,"end\n\n");

 /*-------Always block For Counting starts at here ---------

 |--*/

fprintf(fp,"always @(Th_Counter)\n");

fprintf(fp,"if(Th_Counter == Throughput)\n");

fprintf(fp,"begin\n");

fprintf(fp,"\tpr_done=1;\n");

fprintf(fp,"\t#5 Th_Counter=0;\n");

fprintf(fp,"end\n\n");

fprintf(fp,"else\n");

fprintf(fp,"\tif(pr_en)\n\t\tpr_done=0;\n\telse\n\t\tpr_done=1;\n\n");

124

fprintf(fp,"endmodule");

puts("Data Process_C.V Copied");

fclose(fp);

}

9. PROCESS_D.C

#include<conio.h>

#include<process.h>

#include<stdio.h>

void Process_D(){

 FILE *fp;

 fp=fopen("ProcessD.V","w");

 if(fp==NULL)

 {

 puts("Cannot Open Source File");

 exit(0);

 }

 /*--

 |----In Actual sense, this block contains the actual processing element

125

 that needs to be executed. But we are just sketshing the hardware, so at

 here, we will just waste throughput number of clock cycles-------------*/

 /*--|

 |----------------------WRITING TO FILE Process_D.V------------------------|

 |---*/

//Input Specifications

fprintf(fp,"module ProcessD(clk,reset,pr_en,Input1,Output1,Throughput,pr_done);\n");

fprintf(fp,"parameter width=8; //FIFO width\n\n");

fprintf(fp,"input [width-1:0]Input1;\n");

fprintf(fp,"input [3:0]Throughput;\n");

fprintf(fp,"input pr_en,clk,reset;\n\n");

//Output Specifications

fprintf(fp,"output [width-1:0]Output1;\n");

fprintf(fp,"output pr_done;\n");

fprintf(fp,"reg pr_done;\n\n");

//Temporary Registers and wires

fprintf(fp,"reg [3:0]Th_Counter;\n");

fprintf(fp,"wire [3:0]Count_Inc;\n");

fprintf(fp,"assign Count_Inc=Th_Counter+1;\n\n");

126

fprintf(fp,"assign Output1=Input1;\n\n");

//Simply Waste Clock Cycles for process internal algorithm execution

/*-------Always block starts at here ---------

|---*/

fprintf(fp,"always @(posedge clk)\n");

fprintf(fp,"begin\n");

fprintf(fp,"if(reset)\n");

fprintf(fp,"\tbegin\n");

fprintf(fp,"\t\tpr_done<=0;\n");

fprintf(fp,"\t\tTh_Counter<=0;\n");

fprintf(fp,"\tend\n\n");

fprintf(fp,"else\n");

fprintf(fp,"\tbegin\n");

fprintf(fp,"\t\tif(pr_en)\n");

fprintf(fp,"\t\tTh_Counter=Count_Inc;\n\n");

fprintf(fp,"\t\telse\n");

fprintf(fp,"\t\tTh_Counter=Th_Counter;//Do Nothing\n\n");

fprintf(fp,"\tend\n\n");

127

fprintf(fp,"end\n\n");

 /*-------Always block For Counting starts at here ---------

 |--*/

fprintf(fp,"always @(Th_Counter)\n");

fprintf(fp,"if(Th_Counter == Throughput)\n");

fprintf(fp,"begin\n");

fprintf(fp,"\tpr_done=1;\n");

fprintf(fp,"\t#5 Th_Counter=0;\n");

fprintf(fp,"end\n\n");

fprintf(fp,"else\n");

fprintf(fp,"\tif(pr_en)\n\t\tpr_done=0;\n\telse\n\t\tpr_done=1;\n\n");

fprintf(fp,"endmodule");

puts("Data Process_D.V Copied");

fclose(fp);

}

10. PROCESS_E.C

#include<conio.h>

#include<process.h>

128

#include<stdio.h>

void Process_E(){

 FILE *fp;

 fp=fopen("ProcessE.V","w");

 if(fp==NULL)

 {

 puts("Cannot Open Source File");

 exit(0);

 }

 /*--

 |----In Actual sense, this block contains the actual processing element

 that needs to be executed. But we are just sketshing the hardware, so at

 here, we will just waste throughput number of clock cycles-------------*/

 /*--|

 |----------------------WRITING TO FILE Process_E.V------------------------|

 |---*/

//Input Specifications

fprintf(fp,"module ProcessE(clk,reset,pr_en,Input1,Output1,Throughput,pr_done);\n");

129

fprintf(fp,"parameter width=8; //FIFO width\n\n");

fprintf(fp,"input [width-1:0]Input1;\n");

fprintf(fp,"input [3:0]Throughput;\n");

fprintf(fp,"input pr_en,clk,reset;\n\n");

//Output Specifications

fprintf(fp,"output [width-1:0]Output1;\n");

fprintf(fp,"output pr_done;\n");

fprintf(fp,"reg pr_done;\n\n");

//Temporary Registers and wires

fprintf(fp,"reg [3:0]Th_Counter;\n");

fprintf(fp,"wire [3:0]Count_Inc;\n");

fprintf(fp,"assign Count_Inc=Th_Counter+1;\n\n");

fprintf(fp,"assign Output1=Input1;\n\n");

//Simply Waste Clock Cycles for process internal algorithm execution

/*-------Always block starts at here ---------

|---*/

fprintf(fp,"always @(posedge clk)\n");

fprintf(fp,"begin\n");

130

fprintf(fp,"if(reset)\n");

fprintf(fp,"\tbegin\n");

fprintf(fp,"\t\tpr_done<=0;\n");

fprintf(fp,"\t\tTh_Counter<=0;\n");

fprintf(fp,"\tend\n\n");

fprintf(fp,"else\n");

fprintf(fp,"\tbegin\n");

fprintf(fp,"\t\tif(pr_en)\n");

fprintf(fp,"\t\tTh_Counter=Count_Inc;\n\n");

fprintf(fp,"\t\telse\n");

fprintf(fp,"\t\tTh_Counter=Th_Counter;//Do Nothing\n\n");

fprintf(fp,"\tend\n\n");

fprintf(fp,"end\n\n");

 /*-------Always block For Counting starts at here ---------

 |--*/

fprintf(fp,"always @(Th_Counter)\n");

fprintf(fp,"if(Th_Counter == Throughput)\n");

fprintf(fp,"begin\n");

fprintf(fp,"\tpr_done=1;\n");

131

fprintf(fp,"\t#5 Th_Counter=0;\n");

fprintf(fp,"end\n\n");

fprintf(fp,"else\n");

fprintf(fp,"\tif(pr_en)\n\t\tpr_done=0;\n\telse\n\t\tpr_done=1;\n\n");

fprintf(fp,"endmodule");

puts("Data Process_E.V Copied");

fclose(fp);

}

11. TEST_RC_RP.C

#include<stdio.h>

#include<process.h>

#include<conio.h>

void TEST()

{

 FILE *fp;

 fp=fopen("TEST.V","w");

 if(fp==NULL)

132

 {

 puts("Cannot Open Target File");

 exit(0);

 }

/*--|

|----------------------WRITING TO FILE TEST.V---------------------------|

|---*/

int f_width=8;//Token size=8 bits

int f_depth=16;//Fifo Depth=16 locations of 8 bits wide

int f_ptr_width=4;//ptr size to address 16 locations

int flag;

int ptr_diff=0;

int rd_ptr,wr_ptr;

 fprintf(fp,"module TEST(RC,diff1,diff2,diff3,diff4,diff5,pr_en);\n");

 fprintf(fp,"input [19:0]RC;\n");

 fprintf(fp,"input [3:0]diff1,diff2,diff3,diff4,diff5;\n\n");

 fprintf(fp,"output pr_en;\n");

 fprintf(fp,"reg pr_en;\n\n");

 fprintf(fp,"always @(diff1 or diff2 or diff3 or diff5 or diff5 or RC)\n\n");

 fprintf(fp,"if(diff1>=RC[19:16] && diff2>=RC[15:12] &&
diff3>=RC[11:8]\n");

133

 fprintf(fp,"&& diff4>=RC[7:4] && diff5>=RC[3:0])\n");

 fprintf(fp,"\tbegin\n");

 fprintf(fp,"\tpr_en=1;\n");

 fprintf(fp,"\tend\n");

 fprintf(fp,"else\n");

 fprintf(fp,"\tbegin\n");

 fprintf(fp,"\tpr_en=0;\n");

 fprintf(fp,"\tend\n\n");

 fprintf(fp,"endmodule\n");

puts("Data Test.V Copied");

fclose(fp);

}

12. STIMULUS.C
#include<conio.h>

#include<process.h>

#include<stdio.h>

void STIM()

{

 FILE *fp;

 fp=fopen("stim.V","w");

134

 if(fp==NULL)

 {

 puts("Cannot Open Target File");

 exit(0);

 }

/*--|

|----------------------WRITING TO FILE STIMULUS.V---------------------------|

|---*/

fprintf(fp,"module stim;\n\n");

fprintf(fp,"reg clock,reset;\n");

fprintf(fp,"reg Wr_Enable_F1;\n");

fprintf(fp,"reg
[3:0]Thru_Node1,Thru_Node2,Thru_Node3,Thru_Node4,Thru_Node5;\n");

fprintf(fp,"reg [7:0]Input_Data;\n");

fprintf(fp,"reg [19:0]Rc_Node1,Rc_Node2,Rc_Node3,Rc_Node4,Rc_Node5;\n\n");

fprintf(fp,"wire [7:0]Output_Data;\n\n");

fprintf(fp,"Main_File
mm(Wr_Enable_F1,Rc_Node1,Rc_Node2,Rc_Node3,Rc_node4,Rc_node5,Input_Data,O
utput_Data,\n\t");

fprintf(fp," Thru_Node1,Thru_Node2,Thru_Node3,Thru_n3,Thru_n5,clock,reset);\n\n");

fprintf(fp,"initial\n");

fprintf(fp,"begin\n");

fprintf(fp,"clock=0;\n");

fprintf(fp,"forever\n");

fprintf(fp,"#5 clock=~clock;\n");

135

fprintf(fp,"end\n\n");

fprintf(fp,"initial\n");

fprintf(fp,"begin\n");

fprintf(fp,"reset=1;\n");

fprintf(fp,"\nThru_Node1=3;Thru_Node2=2;Thru_Node3=1;Thru_Node4=2;Thru_Node
5=1;\n");

fprintf(fp,"#15 reset=0;\n");

fprintf(fp,"\nRc_Node1=20'b0001_0000_0000_0000_0000;\n");

fprintf(fp,"Rc_Node2=20'b0000_0001_0000_0000_0000;\n");

fprintf(fp,"Rc_Node3=20'b0000_0000_0001_0000_0000;\n");

fprintf(fp,"Rc_Node4=20'b0000_0001_0000_0000_0000;\n");

fprintf(fp,"Rc_Node5=20'b0000_0000_0001_0000_0000;\n");

fprintf(fp,"Input_Data=1;\n\n");

fprintf(fp,"#10\n");

fprintf(fp,"repeat(15) #30 Input_Data=Input_Data+1;\n");

fprintf(fp,"end\n");

fprintf(fp,"initial\n");

fprintf(fp,"#200 $stop;\n\n");

fprintf(fp,"initial\n");

fprintf(fp,"begin\n");

fprintf(fp,"Wr_Enable_F1=1;\n");

fprintf(fp,"end\n\n");

136

fprintf(fp,"endmodule\n");

puts("Data STIM.V Copied");

fclose(fp);

}

137

REFERENCES

[1] Gilles Kahn, “The semantics of a simple language for parallel programming”. In Jack L.

Rosenfeld, editor, Information Processing 74: Proceedings of the IFIP Congress 74, pages

471-475. IFIP, North-Holland, August 1974.

[2] Edward A. Lee and Thomas M. Parks, “Dataflow process networks,” Proceedings of the

IEEE, vol. 83, no. 5, pp. 773–799, May 1995.

[3] Eric Cheung, Harry Hsieh, and Feris Baralin, “Automatic Buffer Sizing for Rate-

Constrained KPNApplications on Multiprocessor System-on- Chip,” Proceedings of IEEE,

pages 37-44, 2007.

[4] Marc Geilen and Twan Basten, “Requirements on the execution of kahn process networks,”

In Programming Languages and Systems, 12th European Symposium on Programming,

ESOP 2003, pages 319-334, Warsaw, Poland, April 2003. Lecture Notes in Computer

Science vol. 2618.

[5] Twan Basten and Jan Hoogerbrugge, “Efficient execution of process networks”. In A.

Chalmers, M. Mirmehdi, and H. Muller, editors, Proc. Communicating Process

Architectures, pages 1-14, Bristol, UK, September 2001. IOS Press

[6] Thomas M. Parks, “Bounded Scheduling of Process Networks,” PhD Thesis, EECS

Department, University of California, Berkeley, CA, December 1995.

[7] Bharath N., S.K. Nandy, and Nagaraju Bussa, “Artificial Deadlock Detection in Process

Networks for Eclipse”, Proceedings of 16th International Conference on Application-

Specific Systems, Architectures and Processors, IEEE Computer Society, 1063-6862/05,

2005

[8] Ceponis J., Kazanavicius E., Mikuckas A., “Design and Analysis of DSP systems using

Kahn process Networks,” DSP Lab, Kaunas University of technology, ISSN 1392-

2114Ultragarsas, Nr .4(45), 2002.

138

[9] Zvironas A., Kazanavicius E. Partitioning of DSP tasks to Kahn network. KTU. Kaunas.

Ultragarsas. ISSN1392-2114, 2002. Nr. 2(43).

[10] Javed DULLOO, Philippe MARQUET, “Design of a Real-Time Scheduler for Kahn

Process Networks on Multiprocessor systems,” Rapport LIFL # 2003-06, september 2003.

[11] Todor Stefanov, Claudiu Zissulescu, Alexandru Turjan, Bart Kienhuis, and Ed Deprettere,

“System Design using Kahn Process Netwroks: The Compaan/Laura Approach,” Presented

at DATE’04, Paris 16-20 Feb 2004.

[12] E. A. de Kock, W. J. M. Smits, P. van der Wolf, J.-Y. Brunel, W. M. Kruijtzer, P. Lieverse,

K. A. Vissers, and G. Essink, “Yapi: application modeling for signal processing systems,”

in DAC ’00: Proceedings of the 37th conference on Design automation. New York, NY,

USA: ACM Press, 2000, pp. 402–405.

[13] P. Lieverse, T. Stefanov, P. van der Wolf, and E. Deprettere, “System level design with

spade: an m-jpeg case study,” in ICCAD ’01: Proceedings of the 2001 IEEE/ACM

international conference on Computer-aided design. Piscataway, NJ, USA: IEEE Press,

2001, pp. 31–38.

[14] Dr. Shoab A. Khan, Book: “Digital Design for Signal Processing Systems” to be published.

	Thesis Title Page.pdf
	Thesis Draft.pdf

