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ABSTRACT 
 

Aim of the project is to make a VLIW (very large instruction word) processor in an 

EXPRESSION ADL. Such processors include one or more functional units, each capable 

of performing a certain class of functions in parallel. Such processors utilize these 

multiple functional units simultaneously, to execute programs faster.  

The first step in a top-down validation methodology is to capture the programmable 

architectures using a specification language. The language should be powerful 

enough to specify the wide spectrum of contemporary processor, coprocessor, and 

memory features.  

I have designed and implemented the Machine Description of a VLIW processor in 

EXPRESSION Architecture Description Language. Advances in semiconductor 

technology permit increasingly complex applications to be realized using programmable 

systems-on-chips (SOCs). Architecture Description Language (ADL) is a computer 

language used to describe software and/or system architectures. EXPRESSION supports 

architectural design space exploration for embedded Systems-on-Chip (SOC) and 

automatic generation of a retargetable compiler/simulator toolkit. A VLIW 

implementation has capabilities to those of a superscalar processor issuing and 

completing more then one operation at a time. For the VLIW implementation, the long 

instruction word already encodes the concurrent operations. The processor implemented 

in ADL presents us with the opportunity to improve on the short comings in design.  

Detailed EXPRESSION language manual is also attached with the Thesis for future 

references. My design includes both processing and control unit. 
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Chapter #1 

 

1. INTRODUCTION 

1.1. ADL overview: 
 
The first step in a top-down validation methodology is to capture the programmable 
architectures using a specification language. The language should be powerful enough to 
specify the wide spectrum of contemporary processor, coprocessor, and memory features. 
On the other hand, the language should be simple enough to allow correlation of the 
information between the specification and the architecture manual. Specifications widely 
in use today are still written informally in natural language like English. Since natural 
language specifications are not amenable to automated analysis, there are possibilities of 
ambiguity, incompleteness, and contradiction: all problems that can lead to different 
interpretations of the specification. 
Many formal and semi-formal specification languages for describing software and 
hardware designs have been proposed over the years. The languages range in 
expressiveness and their different levels of granularity determine their appropriateness 
for different applications. 
Advances in semiconductor technology permit increasingly complex applications to be 
realized using programmable systems-on-chips (SOCs). Furthermore, shrinking time-to-
market demands, coupled with the need for product versioning through software 
modification of SOC platforms, have led to a significant increase in the software content 
of these SOCs. However, designer productivity is greatly hampered by the lack of 
automated software generation tools for the exploration and evaluation of different 
architectural configurations. Traditional hardware-software co design flows do not 
support effective exploration and customization of the embedded processors used in 
programmable SOCs. The inherently application-specific nature of embedded processors 
and the stringent area, power, and performance constraints in embedded systems design 
critically require a fast and automated architecture exploration methodology. Architecture 
description language (ADL)-Driven design space exploration and software toolkit 
generation strategies present a viable solution to this problem, providing a systematic 
mechanism for a top-down design and validation of complex systems. The heart of this 
approach lies in the ability to automatically generate a software toolkit that includes an 
architecture-sensitive compiler, a cycle-accurate simulator, assembler, debugger, and 
verification/validation tools. 
Architecture Description Language (ADL) is a computer language used to describe 
software and/or system architectures. This means in case of technical architecture, the 
architecture must be communicated to software developers. With functional architecture, 
the software architecture is communicated with stakeholders and enterprise engineers. 
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ADLs result from a linguistic approach to the formal representation of architectures, and 
as such they address its shortcomings. Also important, sophisticated ADLs allow for 
early analysis and feasibility testing of architectural design decisions. 

1.1.2. Architecture in the past  

Architectures in the past were largely represented by box-and-line drawing. The Nature 
of the components, component properties, Semantics of connections and behavior of the 
system is usually defined in such a drawing: 

1.1.3. The ADL Must: 

ADL should be suitable for communicating architecture to all interested parties and 
also support the tasks of architecture creation, refinement and validation. 

It should also provide a basis for further implementation, so it must be able to add 
information to the ADL specification to enable the final system specification to be 
derived from the ADL. 

ADL should provide the ability to represent most of the common architectural styles 
and support analytical capabilities or provide quick generating prototype 
implementations  

1.1.4. ADLs have in common: 

Architecture description languages have common graphical syntax with often a 
textual form and a formally defined syntax and semantics, features for modeling 
distributed systems, little support for capturing design information, except through 
general purpose annotation mechanisms and ability to represent hierarchical levels of 
detail including the creation of substructures by instantiating templates  

1.1.5 ADLs differ in their ability to: 

Architecture description languages can have ability to handle real-time constructs, 
such as deadlines and task priorities, at the architectural level, support the 
specification of different architectural styles. Few languages handle object oriented 
class inheritance or dynamic architectures and also support analysis.  

1.1.6. Positive elements of ADL 

ADLs represent a formal way of representing architecture, ADLs are intended to be 
both human and machine readable, ADLs support describing a system at a higher 
level than previously possible, ADLs permit analysis of architectures – completeness, 
consistency, ambiguity and ADLs can support automatic generation of software 
systems  
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1.1.7. Negative elements of ADL 

There is no universal agreement on what ADLs should represent, particularly as 
regards the behavior of the architecture. 

Representations currently in use by ADLs are relatively difficult to parse and are not 
supported by commercial tools 

Most ADLs tend to be very vertically optimized toward a particular kind of analysis  

The ADL community generally agrees that Software Architecture is a set of components 
and the connections among them.  

1.1.8. Object Connection Architecture 

Configuration consists of the interfaces and connections of an object-oriented system, 
interfaces specify the features that must be provided by modules conforming to an 
interface, connections represented by interfaces together with call graph, 
conformance usually enforced by the programming language.  

1.1.9. Interface Connection Architecture 

Expands the role of interfaces and connections, interfaces specify both “required” and 
“provided” features, connections are defined between “required” features and 
“provided” features.  

Consists of interfaces, connections and constraints, constraints restrict behavior of 
interfaces and connections in an architecture, constraints in an architecture map to 
requirements for a system. 

Most ADLs implement interface connection architecture. 

1.2. ADL supports:  
 
An ADL is a language that provides features for modeling a software system’s 
conceptual architecture, distinguished from the system’s implementation. 
An ADL must support the building blocks of an architectural description Components, 
Interfaces, Connectors, and Configurations. 
 

1.2.1. Desirable features of an ADL are  
 

We should be able to defined specific aspects of components, connectors, 
configurations and should also have tool support. 
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1.2.2. Approaches to modeling configurations 
 

There are three types of modeling configurations, Implicit configuration, In-line 
configuration and Explicit configuration. 
 

1.2.3. Approaches to associating architecture with 
implementation 
 
There are two types of associating architecture, Implementation constraining and 
Implementation independent. 

1.3. Types of ADL: 
 
There are two types of ADLs: software ADLs and hardware ADLs. 

1.3.1. Software ADLs  
 
For software ADLs, the description is of the software architecture. Therefore, the 
components are software processes or modules. According to Kogut and Clements, 
ADLs seek to increase the understandability and re-usability of architectural designs, and 
enable greater degrees of analysis. ADLs are used to define and model system 
architecture prior to system implementation. Among the issues ADLs address are the 
following 

1.3.1.1. Component behavioral specification.  
 
ADLs typically provide support for specifying both functional and non-functional 
characteristics of components. (Non-functional requirements include those associated 
with safety, security, reliability, and performance.) Depending on the ADL, timing 
constraints, properties of component inputs and outputs, and data accuracy may all be 
specified.  

1.3.1.2. Component protocol specification.  

1.3.1.3. Connector specification.  
 
ADLs contain structures for specifying properties of connectors, where connectors are 
used to define interactions between components.  

1.3.2. Hardware ADLs  
 
Hardware ADLs are principally concerned with describing the hardware components. 
This is often the case when dealing with application specific instruction-set processor 
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(ASIPs) within a -design process. Therefore, the languages describe the processors in 
terms of their instruction sets. Hence, they are sometimes called machine description 
languages.  

1.4. ASIPs: 
 
Embedded systems present a tremendous opportunity to customize designs by exploiting 
the application behavior. Shrinking time-to-market, coupled with short product lifetimes 
create a critical need for rapid exploration and evaluation of candidate System-on-Chip 
(SOC) architectures. System architects critically need tools, techniques, and 
methodologies to perform rapid architectural exploration for a given set of applications to 
meet the diverse requirements, such as better performance, low power, smaller silicon 
area, higher clock frequency etc. 
The existing approaches are either semi-automatic (expects designers to write data path 
components manually) or covers a restricted set of architectures. However, none of these 
approaches are able to capture a wide spectrum of processor features present in DSP, 
VLIW, EPIC and Superscalar processors, and generate synthesizable RTL from the ADL 
specification. The main bottleneck has been the lack of an abstraction (covering a diverse 
set of architectural features) that permits the reuse of the primitives to compose the 
heterogeneous architectures. 
Modern Application Specific Instruction-set Processors (ASIPs) face the demanding task 
of delivering high performance for a wide range of applications. For enhancing the 
performance, architectural features e.g. pipelining, VLIW etc are often employed in 
ASIPs, leading to high design complexity. Integrated ASIP design environments like 
template-based approaches and language driven approaches provide an answer to this 
growing design complexity. At the same time, increasing hardware design costs have 
motivated the processor designers to introduce high flexibility in the processor. 
Flexibility, in its most effective form, can be introduced to the ASIP by coupling a re-
configurable unit to the base processor. Due to its obvious benefits, several re-
configurable ASIPs (rASIPs) have been designed in the recent years. These rASIP 
designs lacked a generic flow from high-level specification, resulting into intuitive design 
decisions and hard-to-retarget processor design tools. Field-programmable logic (FPL) is 
rapidly becoming established in markets requiring high-performance, low lead time and 
the ability to perform soft-upgrades on site. However, few current FPL systems utilize 
run-time reconfiguration (RTR) and those that do rely on infrequent and coarse grained 
reconfiguration. 
Due to its obvious benefits, several re-configurable ASIPs (rASIPs) have been designed 
in the recent years. These rASIP designs lacked a generic flow from high-level 
specification, resulting into intuitive design decisions and hard-to-retarget processor 
design tools. Although a template-based approach for rASIP design is existent, a clear 
design methodology especially for the pre-fabrication architecture exploration is not 
present. In order to address this issue, a high-level specification and design methodology 
for partially re-configurable VLIW processors is proposed. 
Improvements in the processor performance come from two main sources: FASTER 
SEMICONDUCTOR TECHNOLOGY and PARALLEL PROCESSING. Parallel 
processing on multiprocessors, multicomputers & processor clusters has traditionally 
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involved a high degree of effort in mapping an algorithm to a form that can better exploit 
multiple processors & threads of execution .Such reorganization has often been 
productively applied especially for scientific programs. The general purpose 
microprocessor industry on the other hand has pursued methods of automatically 
speeding up existing programs without major restructuring effort. This leads to the 
development of Instruction Level Parallel processor that tries to speed up program 
execution by overlapping the execution of multiple instructions from an otherwise 
sequential program. 
ILP processors achieve their high performance by causing multiple operations. Some 
methods which exploit ILP are: 
 

• PIPELINING 
• MULTIPLE PROCESSORS 
• SUPERSCALAR IMPLEMENTATION 
• SPECIFYING MULTIPLE INDEPENDENT INSTRUCTIONS PER CYCLE. 

 

 

1.4.1. PIPELINING 
 
Pipelining is now universally implemented in high-performance processors. It is a means 
of introducing parallelism into the essentially sequential nature of a machine instruction. 
Examples are instruction pipelining and vector processing.  

1.4.2. MULTIPLE PROCESSORS 
 
 Multi processors improve performance for only a restricted set of applications.  

1.4.3. SUPERSCALER IMPLEMENTATION  
 
Superscalar implementation can improve for all types of applications. Superscalar (super 
beyond; scalar one dimensional) means the ability to fetch, issue to execution units, and 
complete more than one instruction at a time. Superscalar implementations are required 
compatibility must be preserved, and they will be used for entrenched architecture with 
legacy software, such as the X86 architecture that dominates the desktop computers. 
Specifying multiple operations per instruction creates a very long instruction word 
architecture or VLIW. A VLIW implementation has capabilities to those of a 
superscalar processor issuing and completing more then one operation at a time with one 
important exception: the VLIW hardware is not responsible for discovering opportunities 
to execute multiple operations concurrently. For the VLIW implementation, the long 
instruction word already encodes the concurrent operations. 
Very long instruction word architecture is suitable alternative for exploiting instruction 
level parallelism (ILP) in programs that is for executing more then one instruction at a 
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time. The VLIW processor executes the set of operations within a MultiOp, which  is a 
long instruction word consist of multiple arithmetic, logic & control operations each of 
which would probably be an individual operation on a simple RISC processor, thereby 
achieving instruction level parallelism 
 
 

1.5. VERY LONG INSTRUCTION WORD (VLIW) 
PROCESSOR: 
 
“Very long instruction word (VLIW) describes a computer processing architecture in 
which a language compiler or pre-processor breaks program instructions down into basic 
operations that can be performed by the processor in parallel (i.e. at the same time). 
These operations are put into a very long instruction word which the processor can then 
take apart without further analysis, handling each operation to an appropriate functional 
unit. Such architectures have more then one functional units, for parallel processing. The 
processor fetches different instructions as one long instruction, and then it breaks them 
and dispatches them accordingly to the different functional units.” 
By Joseph Fisher, VLIW is an architecture which issues one instruction per cycle, where 
each long instruction called MultiOp consists of many tightly coupled independent 
operations each of which execute in a small and statically predictable number of cycles. 
In such a system the task of grouping independent operations into a MultiOp is done by a 
compiler or binary translator. The processor freed from the cumbersome task of 
dependence analysis has to merely execute in parallel the operations contained within a 
MultiOp. 
The VLIW is a processor with more then one functional unit and the processor with the 
multiple functional units has the potential to execute several operations in parallel.  If the 
decision about which operations to execute in an overlapped manner is made at the 
runtime by the hardware, it is called a superscalar processor. To simplify the superscalar 
a binary program represents a plan of execution. The processor acts as an interpreter that 
executes the instructions in the program one at a time. From the point of view of a 
modern superscalar processor, an input program is more like a representation of an 
algorithm for which several different plans of execution are possible. Each plan of 
execution specifies when & on which functional unit each instruction from instruction 
stream is to be executed. ILP processors differ in the manner in which the plan of 
execution is derived, but it typically involves both the compiler & the hardware. In the 
current breed of high performance processors like the Intel Pentium and the Ultra Sparc, 
the compiler tries to expose parallelism to the processor by means of several 
optimizations the net result of which is to place as many independent operations as close 
to each other in the instruction at a time analyses the Dependences between instructions 
and keeps track of the availability of data & hardware resources for each instruction. It 
tries to schedule each decisions are often further complicated by the fact that operations 
like memory accesses often have variable latencies that depend on whether a memory 
access hits in the cache or not. Since such processors decide which functional unit should 
be allocated to which instruction as execution progresses, they are said to be dynamically 
scheduled. 
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VLIW processor and superscalar implementations of traditional instruction sets share 
some characteristics, like multiple execution units and the ability to execute multiple 
operations simultaneously. The techniques used to achieve high performance, however 
are different because the parallelism is explicit in VLIW instruction but must be 
discovered by hardware at run time by superscalar processors. It is simpler then CISC 
and RISC as it has most simplified hardware, but it requires more compiler’s support i.e. 
more powerful complier. 
 
As VLIW basically is built on the CISC and RISC architecture or we can say superscalar 
processors though it is cheaper and simpler then both of them but for the basic 
understanding we should have some idea of CISC and RICS architectures. From the 
larger perspective RISC, CISC and VLIW architectures have more similarities than 
differences. The differences that exists, have however profound effects on the 
implementation of these architectures. 

1.6. COMPARISION OF CISC SUPERSCALAR, RISC 
SUPER SCALAR AND VLIW: 
 
These architectures use the traditional state machine model of computation. Each 
instruction effects an incremental change in the state (memory, registers) of the computer, 
and the hardware fetches and executes instructions sequentially until a branch instruction 
causes the flow of control to change. 

1.6.1. CISC: 
     
CISC instructions vary in size, often specify a sequence of operations and can require 
serial ( slow)  decoding algorithms.CISCs  tend to have few register may be special-
purpose , which restricts the ways in which they can be used. Memory references are 
typically combined with the other operations (such as add memory to register). 

1.6.2. RISC: 
 
RISC instructions specify simple operations, are fixed in size, and are easy (quick) to 
decode. RISC architectures have a relatively large number of general-purpose registers. 
Instructions can reference main memory through simple load-register –from-memory and 
store –register-to-memory operations. RISC instructions sets do not need microcode and 
are designed to simplify pipelining. 

1.6.3. VLIW: 
 
VLIW instructions are like RISC instruction can be longer to allow them to specify 
multiple independent simple operations. A VLIW instruction can be thought of as several 
RISC instructions joined together. VLIW architectures tend to be RISC-like in most 
attribute. 
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1.6.4. Example: 
 
C-language code: 
          
   function (j) 
{ 
 
long j; 
 
long I; 
 
 j=j+i; 
} 
 
1.6.4.1. CISC’s instruction: 
 
Add 4[r1] <-r2 
 
addMR 4 r1 r5 

 
1.6.4.2. RISC’s instruction: 
  
Load r5<-4[r1] 
Add r5<-r5+r2 
Store 4[r1] <-r5 
 
Load  r5 r1 4 
 
Add r5 r5 r2 

 
 
 

 
 
 
 
 
 
 

Store  r5 4 r1 
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1.6.4.3. VLIW instruction: 
 
Load r5<-4[r1] 
Add r5<-r5+r2 
Store 4[r1] <-r5 
 
 
- - - - - - - -  Load  r5 r1 4 
 

 

 

1.7. Implementation COMPARISON: 

1.7.1. superscalar CISC, superscalar RISC and VLIW: 
 
The difference between CISC, RISC and VLIW architectures manifest themselves in 
their respective implementations. High performance RISC, CISC designs are called 
superscalar implementations. Superscalar in this context simply means “beyond scalar” 
where scalar means one operation at a time. Thus, superscalar means more than one 
operation at a time. 

1.7.2. CISC AND RISC: 
 
Most CISC instruction sets were designed with the idea that an implementation will fetch 
one instruction executes its operation fully, and then move on to the next instruction. The 
assumed execution model was thus serial in nature. 
RISC architects were aware of the advantages & peculiarities of pipelined processor 
implementations, and so designed RISC instruction sets with a pipelined execution model 
in mind. In contrast to the assumed CISC execution model, the idea for RISC execution 
model is that an implementation will fetch one instruction, issue it into the pipelined and 
then move on to the next instruction before the previous one has completed its trip 
through the pipeline. 
 
The assumed RISC execution model-a pipeline-overlaps phases of execution for several 
instructions simultaneously, but like the CISC execution model, it is scalar, that is at most 
one instruction is issued at a time. 

- - - - add r5 r5 r2  - - - - 

- - - - - - - -  Store   r5 r1 4 
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For either CISC or RISC to reach higher-level of performance than provided by a 
single pipeline, a superscalar implementation must be constructed. The nature of a 
superscalar implementation is that it fetches issues & completes more than one 
CISC or RISC instruction per cycle. 
 
Some more recent RISC architectures have been designed with superscalar 
implementations in mind. The most notable examples are the DEC Alpha and 
IBMPOWER (from which PowerPC is derived). Nonetheless, superscalar RISC and 
Superscalar CISC implementations share fundamental complexities, the need for the 
hardware to discover and exploit instruction-level parallelism. 
 
 

 

Figure 1.1: high-level block diagram of a superscalar RISC/CISC 
processor 
 
The implementation consists of a collection of execution units. 
 

• INTEGER ALUs  
• FLOATING POINT ALUs 
• LOAD/STORE UNITS 
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• BRANCH UNITS (These are fed from an instruction dispatcher and operands 
from a register file). 

 
The execution units have reservation stations to buffer waiting operations that have been 
issued but are not yet executed. The operations may be waiting on operands that are not 
yet available. 
  
The instruction dispatcher examines a window of instructions contained in a buffer. The 
dispatcher looks at the instructions in the window and decides which ones can be 
dispatched to execution units. It tries to dispatch as many instructions at once as possible, 
i.e. more execution units, require wider windows and a more sophisticated dispatcher.  
It is conceptually simple-though expensive to build an implementation with lots of 
execution units and an aggressive dispatcher, but it is not currently profitable to do so. 
 
The complier for RISC and CISC processor produce code with the certain goals in mind. 
These goals were typically to minimize code size and runtime. For scalar and very simple 
superscalar processor implementation, these goals are mostly compatible. 
 
For high performance superscalar implementations on the other hand, the goal of 
minimizing code size limits the performance that the superscalar implementation can 
achieve. Performance is limited because minimizing code size results in frequent 
conditional branches, about every six instructions. Conceptually the processor must wait 
until the branch is resolved before it can begin to look for parallelism at the target of the 
branch. 

1.8. VLIW architecture detail: 
 
         A VLIW implementation achieves the same effect as a superscalar RISC, CISC 
implementation, but the VLIW design does so without the two most complex parts of a 
high performance superscalar design. 
 
          Because VLIW instruction explicitly specifies several independent operations-i.e. 
they explicitly specify parallelism-it is not necessary to have decoding and dispatching 
hardware tries to reconstruct parallelism from a serial instruction stream. Instead of 
having hardware attempt to discover parallelism, VLIW processors rely on the 
complier that generates the VLIW code to explicitly specify parallelism. Relying on 
the complier has advantage. 

1.8.1. ADVANTAGES: 
 
First the complier has the ability to look at much larger window of instructions than the 
hardware. For a superscalar processor, a larger hardware window implies larger amount 
of logic and therefore chip area. At some point, there simply is not enough of either, and 
window size is constrained. Worse, even before a simple limit on the amount of hardware 
is reached, complexity may adversely affect the speed of the logic, thus the window size 
is constrained to avoid reducing the clock speed of the chip. Software windows can be 
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arbitrarily large. Thus, looking for parallelism in a software window is likely to yield 
better results. 
 
Second, the complier has the knowledge of the source code of the program. Source code 
typically contains important information about the program behavior that can be used to 
help express maximum parallelism at the instruction-set level. A powerful technique 
called trace-driven compilation can be employed to dramatically improve the quality of 
code output by the compiler. Trace driven compilation first produces a suboptimal, but 
correct behavior- which branches are taken, how often, etc.-is then used by the complier 
during a second compilation to produce code that takes advantage of accurate knowledge 
of program behavior. Thus, with trace-Driven compilation, the complier has access to 
some of the dynamic information that would be apparent to the hardware dispatch logic. 
  
Third, with sufficient register, it is possible to mimic the functions of the superscalar 
implementation’s reorder buffer. The purpose of the reorder buffer is to allow a 
superscalar processor to speculatively execute instructions and then be able to quickly 
discard the speculatively executed instructions in temporary registers. The complier 
knows how many instructions will be speculatively executed, so it simply uses the 
temporary registers along the speculated (predicted) path and ignores the values in those 
registers along the path that will be taken if the branch turns out to have been miss 
predicted. 
 
This figure shows a generic VLIW implementation, without the complex reorder buffer 
and decoding and dispatching logic.  
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Figure 1.2: A generic VLIW implementation 

 

1.8.2. Target VLIW Processor: 
 
Our target architecture is a VLIW processor augmented with one (or possibly more) 
RFUs. A VLIW machine is capable of issuing and executing multiple operations per 
cycle, bundled in a "MultiOp" long-word instruction, and it relies on compile-time 
scheduling to determine independent operations which can be issued concurrently at 
execution time. The machine is equipped with multiple functional units so as to exploit 
the parallelism that has been exposed by the compiler. Many techniques for exploiting 
instruction-level parallelism have been studied and implemented in optimizing compilers 
in order to find groups of independent operations in each cycle.  
Because of the existence of a high number of FUs, advanced VLIW processors are 
organized in clusters. Every cluster consists of a number of functional units and a register 
file that these FUs share. Since the cost of register files grows exponentially with the 
number of read/write ports, the organization in clusters solves the cost problem by 
keeping the number of ports per register file low. The IS architecture provides special 
instructions that copy values between register files of different clusters. 
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Chapter # 2 

 

2. EXPRESSION ADL 
 

2.1. Choosing EXPRESSION ADL: 
 
EXPRESSION is a language supporting architectural design space exploration for 
embedded Systems-on-Chip (SOC) and automatic generation of a retarget able 
compiler/simulator toolkit. Key features of this language-driven design methodology 
include: a mixed behavioral/structural representation supporting a natural specification of 
the architecture; explicit specification of the memory subsystem allowing novel memory 
organizations and hierarchies; clean syntax and ease of modification supporting 
architectural exploration; a single specification supporting consistency and completeness 
checking of the architecture; and efficient specification of architectural resource 
constraints allowing extraction of detailed reservation tables for compiler scheduling. 
The advent of System-on-Chip (SOC) technology has resulted in a paradigm shift for the 
design process of embedded systems employing programmable processors with custom 
hardware. Modern system-level design libraries frequently consist of Intellectual Property 
(IP) blocks such as processor cores that span a spectrum of architectural styles, ranging 
from traditional DSPs and superscalar RISC, to VLIWs and hybrid ASIPs. Furthermore, 
SOC technologies permit the incorporation of novel on-chip memory organizations 
(including the use of on-chip DRAM, frame buffers, streaming buffers, and partitioned 
register files), allowing a wide range of memory organizations and hierarchies to be 
explored and customized for the specific embedded application. The embedded SOC 
designer is thus faced with the dual tasks of 1) rapidly exploring and evaluating 
different architectural and memory configurations, and 2) using a cycle-accurate 
simulator and retarget able optimizing compiler to adapt the application 
architecture with the goal of meeting system-level performance, power and cost 
objectives.  
Furthermore, shrinking time-to-market cycles create an urgent need to perform the 
traditionally sequential tasks of hardware and software design in parallel. An effective 
embedded SOC co design flow must therefore support automatic software toolkit 
generation, without loss of optimizing efficiency. This has resulted in a paradigm 
shift towards a language-based design methodology for embedded SOC optimization and 
exploration. Consequently there is tremendous interest in using Architectural Description 
Languages (ADLs) to drive design space exploration and automatic compiler/simulator 
toolkit generation. 
As with an HDL-based ASIC design flow, several benefits accrue from a language-based 
design methodology for embedded SOC exploration, including the ability to perform 
(formal) verification and consistency checking, to modify easily the target architecture 
and memory organization for design space exploration, and to drive automatically the 
backend toolkit generation from a single specification. 
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EXPRESSION, an ADL that effectively supports these dual goals of SOC exploration, 
as well as automatic generation of a high-quality software toolkit for embedded SOC. 

2.2. Goals and Approach  
 
SOC designers spend a lot of time and effort exploring candidate processor architectures. 
The availability of a variety of processor core IP libraries (including DSP, VLIW, 
SS/RISC and ASIP) presents the system designer with a large exploration space for the 
choice of base processor architecture. Thus, tool-kits which allow the designer to perform 
rapid exploration of various processor alternatives are necessary. These tool-kits must 
provide the designer with quantitative performance measurements in order for him to 
perform intelligent tradeoffs. Furthermore, the stringent performance, power, code 
density, and cost constraints mandated by modern embedded systems necessitate the 
development of a high-quality software tool-kit, including, at a minimum, a cycle-
accurate simulator, and an optimizing Instruction-Level Parallelism (ILP) compiler that 
can exploit novel memory organizations. 
 

 

Figure 2.1: EXPRESSION Design Flow 
 
The system designer also requires the ability to customize the base processor by changing 
parameters of the processor core (e.g. number of functional units, operation latencies). 
The memory-intensive nature of many embedded applications (e.g. multimedia and 
network) further exacerbates the traditionally critical memory bottleneck. This requires 
the ability to explore (and optimize for) novel on-chip and off-chip memory organizations 
and hierarchies to improve memory bandwidth (examples include the use of on-chip 
DRAM, frame-buffers, queues, novel cache hierarchies, etc.). An important aspect of 
such an exploration (not taken into account by most other approaches) is the ability to 
also customize the compiler concurrently with the processor such that a “best-fit” is 
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obtained. Figure 1 shows language-based design methodology using EXPRESSION. An 
EXPRESSION description of an embedded SOC architecture can be used in two modes. 
In the Exploration Phase, the system designer explores and evaluates different base 
processor candidates (selected from the Processor Libraries), and different memory 
organizations and hierarchies (with components selected from the Memory Libraries). In 
the exploration phase, the toolkit generator is used to produce an Exploration Simulator 
and a Exploration Compiler. The goal here is to support rapid Design Space Exploration 
(DSE) with fast (possibly functional) simulation, and using the compiler in an estimation 
mode for comparative evaluation of candidate base processors and memory 
organizations. In the Refinement Phase, the EXPRESSION description is used to 
generate a cycle-accurate simulator and an optimizing ILP compiler that allows the 
system designer to tune the base processor characteristics, as well as to tune the memory 
subsystem hierarchy. EXPRESSION was designed to provide a natural and easy to 
specify mechanism for capturing the information needed to support this ADL-based 
design space exploration and software toolkit generation methodology. As shown in 
Figure 1, EXPRESSION facilitates the automatic generation of an optimizing, compiler 
and simulator. The retarget able compiler exploits the parallelism and pipelining 
available, while the simulator provides accurate timing and utilization information. 
Furthermore, since the description of complex processors is cumbersome and error-prone, 
EXPRESSION provides the ability to perform consistency checking and verification of 
the input specification. 
 

2.3. Keys features of EXPRESSION ADL are  
 

• Ease of specification and modification of architecture from the GUI. 
• Mixed behavioral/structural representation supporting a natural, concise 

specification of the architecture. 
• Explicit specification of the memory subsystem allowing novel memory 

organizations and hierarchies. 
• Efficient specification of architectural resource constraints allowing extraction of 

detailed Reservation Tables (RTs) for compiler scheduling. 
 
 

2.3.1. Release 1.0 of the EXPRESSION toolkit supports 
the following exploration features: 
 

2.3.1.1. ISA Exploration 
 

 Adding new complex instructions. 
 Changing register accessibility. 
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2.3.1.2. Pipeline Exploration 
 

 Adding a single/multi cycle functional unit. 
 Adding a new pipelined functional unit. 
 Deleting a pipeline path. 

 

2.3.1.3. Memory Subsystem Exploration 
 

 Modifying access times of caches/ memories. 
 Modifying associatively of caches. 
 Changing sizes of caches/memories. 
 Adding new memory components in the memory subsystem. 

 

2.4. Explanation: 
 
There are two main components in EXPRESSION: the EXPRESS compiler and the 
SIMPRESS simulator. This tool-kit is implemented with Microsoft Visual C++ 6.0 on an 
i686 machine running Microsoft Windows XP. It has also been tested on Microsoft 
Windows NT and Windows 2000. 
A Sparc / Solaris 2.7 machine is also required for preprocessing an input application 
in C using a GCC-based front-end. 
An application in C is preprocessed by the GCC based front-end to generate front-end 
files, <filename>.procs and <filename>.defs using the generic machine Instruction Set 
Architecture (ISA). EXPRESS then reads the front-end files, builds an Intermediate 
Representation (IR) amenable to different optimizations and targets the architecture 
described in an EXPRESSION ADL (Architecture Description Language) description. 
The output of EXPRESS is a special assembly file named 
<filename>_DUMP_IR_AFTER_REGALLOC.txt. 
SIMPRESS reads the special assembly file, simulates the running of assembly on an 
architecture template generated from the ADL description and finally generates area, 
power, and performance numbers including cycle count and memory usage statistics. The 
purpose of the simulator is to assess the efficacy of the code generated by the EXPRESS 
compiler for the given architecture. 
The EXPRESSION tool-kit also comes with a GUI front-end to schematically enter the 
architecture connectivity and instruction set description. The GUI back-end converts the 
schematic description and instruction set description into EXPRESSION ADL format. 
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Figure 2.2: EXPRESSION GUI Screen Shot 
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2.4.1. Expression Design Flow: 
 
The EXPRESSION aims to achieve exploration of Systems-On-Chip (SOCs) with 
programmable processor cores and novel memory hierarchies. Effective exploration of 
such, the compiler and the target application SOCs is possible by considering the 
interaction between the processor architecture. In this project I use EXPRESSION, an 
Architecture Description Language (ADL), to specify the processor-memory architecture. 
EXPRESS, a highly optimizing, Instruction-Level-Parallelizing (ILP) compiler, and 
SIMPRESS, a cycle-accurate, structural simulator from EXPRESSION. EXPRESSION, 
EXPRESS and SIMPRESS are integrated under a visual environment, V-SAT (Visual 
Specification and Analysis Tool), to aid rapid Design Space Exploration (DSE). 
 
 

 
 

Figure 2.3: EXPRESSION System Design Flow 
 
EXPRESSION was designed with the dual goal of allowing processor description for 
fast DSE and for automatic generation of detailed/accurate simulation/compilation tools. 
The novel features of EXPRESSION include: 

• Integration of the Instruction-Set and Structure to avoid redundancy in 
specification, 

• Automatic generation of resource constraints (as reservation tables), 
• Constructs for explicitly specifying novel and traditional memories 
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EXPRESS was developed with the goal of providing a retarget able compiler platform 
for Embedded-System/System-on-Chip development. The EXPRESS retarget able 
compiler takes in C programs and produces a highly optimized (and parallel) target 
specific code using state-of-art Instruction-Level Parallelism (ILP) techniques. The 
compiler features an extensive set of integrated transformations to perform the traditional 
compiler tasks of code selection, instruction scheduling and register allocation and 
memory aware optimizations. 
 
SIMPRESS is a retarget able, cycle-accurate, structural simulator that can be used to 
evaluate the architecture, the application and the effectiveness of the compiler 
transformations. It features an extensive set of statistic collector agents that are used to 
gather information such as resource usage, hazard count, inner-loop execution time, etc. 
 
V-SAT provides a visual environment to graphically specify the architecture and perform 
Architectural DSE in an intuitive manner. The EXPRESSION description of the 
processor can be automatically generated from the V-SAT specification. 

2.4.2. System Requirements for Expression ADL: 

The EXPRESSION toolkit is available as downloadable source code which needs to be 
compiled on a host machine before it can be executed. To run EXPRESSION, you will 
require a machine running Windows and Visual C++ installed on it. The EXPRESSION 
toolkit has been tested on the following systems: 

 
OS: Microsoft Windows XP Professional, Windows 2000 Server 
System Type: X86-based PC 
Processor: x86 Family 15 Model 1 Stepping 2 Genuine Intel ~1 Ghz 
Total Physical Memory: 512.00 MB 
Total Virtual Memory: 1.72 GB 
Page File Space: 1.22 GB 
Development Platform: Visual C++ 6.0 Enterprise Edition 

Additionally, you will also require access to a SUN Sparc workstation if you plan to 
compile your own C applications.  

EXPRESSION can capture a processor memory architecture description and generate a 
compiler and simulator automatically from this description. Previously many case studies 
have been undertaken with the goal of architecture exploration using a framework that 
involves manual specification of architecture in EXPRESSION and subsequent manual 
intervention at various steps in the ADL to the back-end compiler and simulator flow. In 
this technical report I present a framework for capturing the EXPRESSION description 
for processors using a GUI front end tool and transforming the generated description into 
intermediate code to be used by the compiler and simulator engines. 
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This automated flow requires no manual intervention at any point and allows rapid 
Design Space Exploration by modifying the graphical specification of the processor using 
the GUI. 

2.4.3. EXPRESSION ADL to compiler and simulator 
back-end flow: 
 
The next step after creating the EXPRESSION description file is to process it to generate 
information for the retarget able compiler and simulator. The EXPRESSION parser 
builds an IR representation from the description file. This internal representation is 
processed to generate C++ intermediate files. 

2.4.4. EXPRESS retarget able complier 
 
The important phases of EXPRESS compiler are:  

• Instruction Selection 
• Scheduling  
• Register Allocation 
 

2.4.4.1. Instruction Selection 
 
The TREE_MAPPING section in the ADL is used by the Instruction Selection phase to 
convert a set of generic instructions to a set of target instructions. The order in which the 
mapping rules are specified determines the priorities of the mappings. The scheduling / 
pipelined trailblazing is based on the connectivity of the units specified.  

2.4.4.2. Scheduler 
 
The scheduler automatically generates the reservation tables from the specified 
connectivity and maps the target operations effectively. In this way, the scheduler is able 
to exploit the parallelism present in the architecture.  

2.4.4.3. Register Allocation 
 
The register allocation is derived from Chaitin’s algorithm, but is based on register 
classes specified in VAR_GROUPS section. The OPERANDS_MAPPING section maps 
a register class to the desired set of registers in the register file and thus enables the user 
to specify a partitioned register file. This is very useful in exploration, as the user will be 
able to play around with the number of registers available for different operations. 
EXPRESS has the capability to dump the Intermediate Representation (IR) at any stage 
for debugging. The backend of EXPRESS is capable of generating the assembly code 
based on the syntax specified in the ASMFORMAT section. It also generates the dump of 
IR in a special format recognized by the retarget able simulator called SIMPRESS. 
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2.4.5. SIMPRESS retarget able simulator: 
 
The intermediate files give information to the simulator about the structural components, 
pipeline structure, memory hierarchy and how they are linked together in the system. The 
simulator engine maps appropriate functionality to the components. For example, a 
functional unit specified to be of type Decode Unit in the GUI has the generic Decode 
functionality mapped to it. The rest of the attributes of the Decode unit are used to tune 
this mapping to fit the architecture being modeled – for example changing the Decode 
unit’s reservation buffer size, changing the maximum number of instructions it can issue 
etc. Once the structural net-list is created and interconnections established, the simulator 
is ready to accept instructions generated by the EXPRESS compiler for execution and 
profiling. The SIMPRESS simulator reads an IR dump file that has been generated by the 
EXPRESS compiler and which contains instructions for execution. 

2.5. GUI driven specification capture in EXPRESSION: 
 
While Architecture Description Languages are certainly a powerful mechanism for 
describing complex processor based systems, there are a few drawbacks in the current 
textual ADL approaches. Textual descriptions can be tedious and often non intuitive for 
specifying architectures. The length and repetitive nature of these descriptions also 
increases the possibility of errors in the specification. To circumvent these limitations I 
have incorporated a graphical front end tool (V-SAT) that can capture the architecture 
and data paths of the processor and the memory subsystem, as well as the instruction set 
description and transform it into a textual EXPRESSION ADL description that is 
subsequently used in the automatic compiler and simulator tool kit generator phase.  
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Figure 2.4: Simplified processor architecture 
 
The primary motivation behind graphical specification tool is that it will allow the 
designer to quickly and accurately specify a particular design configuration and perform 
Design Space Exploration. For example it is fairly easy to experiment with adding or 
deleting pipeline stages in the design with the visual specification, generate the 
EXPRESSION ADL description and then generate a compiler and simulator to test the 
implications of the design decision with application programs or test bench suites. 
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2.6. The Processor Architecture 
 
In this report I will demonstrate framework of a VLIW like processor architecture (shown 
in Fig. 2.4). The architecture contains five pipeline stages – fetch, decode, operand read, 
execute and write back. There are multiple issue paths corresponding to 4 ALU units, a 
branch unit and a load/store unit. The memory hierarchy consists of two L1 data caches 
for instructions and data, a unified L2 cache and a DRAM main memory. There is a 128-
bit wide general purpose register file containing 32 registers. 
 
FETCH 
DECODE 
ALU1_READ ALU2_READ ALU3_READ ALU4_READ FALU_READ BR_READ 
LDST_READ 
ALU1_EXEC ALU2_EXEC ALU3_EXEC ALU4_EXEC FALU_EXEC BR_EXEC 
LDST_EXEC 
WRITEBACK 
 

 

 

Figure 2.5: VSAT-GUI layout for the proposed architecture 
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2.6.1. Sections in EXPRESSION: 
 
The EXPRESSION description is composed of two main sections - Behavior and 
Structure. The Behavior (or Instruction Set) section is divided into three subsections: 
Operations, Instruction and Operation Mappings.  
The Structure section is also divided into three subsections: Components, Pipeline and 
Data-Transfer Paths and the Memory Subsystem. Each of these subsections is captured 
using the new version of the VSAT-GUI, stored internally in appropriate data structures 
and then used to create the textual ADL description file of the processor-memory 
architecture which will be used by subsequent stages in the framework. The alternative to 
using the graphical user interface is to specify the entire description using a text editor 
which would be cumbersome and time consuming. The GUI hides EXPRESSION ADL 
syntax details allowing the architect to specify the system details quickly and precisely 
without knowing a whole lot about the EXPRESSION language. Described below are the 
various EXPRESSION sections and how they are captured using the VSAT-GUI and 
then used to generate code in the ADL description file. 

2.7. Operations Specification: 
 
An instruction in the architecture refers to a VLIW instruction which is composed of 
more than one operation. All the operations supported in the instruction set are described 
in this subsection. Each operation is described in terms of its op code, operands, behavior, 
assembly format and IR dump format. Each operand is classified as either source or 
destination and is associated with a list of register files which it can access. These 
operations are grouped together into operation groups, so as to minimize duplication in 
writing when associating valid operations to functional units. 
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Figure 2.6: Operand Types for an Operation "and" 
 
In the GUI, selecting the set OP_GROUPS option in the Instruction Set menu brings up 
the Operation Groups dialog box which allows the specification of the operations and 
their groupings. Fig. 2.6 shows this dialog box when the ‘and’ instruction is selected. 
This instruction is part of the ALU_Unit_Ops group, which contains other ALU 
operations as well. The behavior field indicates that the destination will contain the 
bitwise AND of the values in the source 1 and source 2 registers. The figure also shows 
the type of the source and destination registers as ‘int_any’ which indicates that they are 
of integer type. The ASM FORMAT textbox is used to specify the standard assembly 
dump format for the operation while the IR DUMP FORMAT specifies the assembly 
dump format in a form that is expected by the simulator. The groups and their children 
operations are stored in a tree structure internally, with all the attributes of the operations 
stored at the nodes corresponding to the operations. This code generated in 
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EXPRESSION for the ‘and’ instruction shown in Fig. 2.6 consists of two parts – the 
OPCODE description and the OP_GROUP grouping. This is illustrated below: 
 
(OPERATIONS_SECTION 
… 
(OPCODE and 
(OP_TYPE DATA_OP) 
(OPERANDS (_SOURCE_1_ int_any) (_SOURCE_2_ int_any) (_DEST_ int_any)) 
(BEHAVIOR "_DEST_ = _SOURCE_1_ AND _SOURCE_2_") 
(ASMFORMAT ( ( COND "dst1=reg,src1=reg,src2=reg" ) ( PRINT 
"\t<opcode>\t$<dst1>,$<src1>,$<src2>\n" ) ) 
) 
(IRDUMPFORMAT ( ( COND "dst1=reg,src1=reg,src2=imm" ) ( PRINT 
"\t4\t<opcode>\t($<dst1>)\t($<src1>,<src2>)\n" ) 
) 
) 
… 
(OP_GROUP ALU_Unit_ops 
  (OPCODE dmfc1 dmtc1 cvt_s_w xor and cvt_s_d cvt_d_s cvt_d_w trunc_w_s 
trunc_w_d mfhi  mflo  mfc1  mtc1  sgtu  sleu  sltu  li div  mult  and  or  xori  andi  ori  
li_s  li_d sgeu sne  seq  sgt  sle  slt  sge  sla  sll  sra  srl  move subu nop addu) 
 ) 
) 
… 
) 
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Figure 2.7: Setting VAR_GROUPS 
 
The set VAR_GROUPS option in the Instruction Set menu brings up the 
VAR_GROUPs dialog box (Fig. 2.7) which allows specification of the accessible 
register file lists for operands in the operations. The target registers are classified into 
var_groups based on their data types and mappings with the var_groups in generic 
register files. For instance, the entry ‘int_hilo’ is a grouping of registers that are used to 
hold the output of a multiplication operation. The var_group ‘int_fp’ refers to the register 
used as a frame pointer. This section is stored internally in the form of a list with the 
various register file groups forming the elements of the list. The code generated in 
EXPRESSION is given below: 
 
(OPERATIONS_SECTION 
 (VAR_GROUPS 
  (any_pc (DATATYPE  INT) (REGS PC)) 
  (double1_retval (DATATYPE  DOUBLE) (REGS FPRFile[0])) 
  (int_fp (DATATYPE  INT) (REGS GPRFile[30])) 
  (any_retaddr (DATATYPE  INT) (REGS GPRFile[31])) 
  (double_any (DATATYPE  DOUBLE) (REGS FPRFile[0 2 4 6 8 10 12 14 16 18 20 
22 24 26 28 30])) 
  (float_normal(DATATYPE  FLOAT) (REGS FPRFile)) 
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  (int_normal (DATATYPE  INT) (REGS GPRFile[1-28])) 
  (double1_normal (DATATYPE  DOUBLE) (REGS FPRFile[0 2 4 6 8 10 12 14 
16 18 20 22 24 26 28 30])) 
  (float_all (DATATYPE  FLOAT) (REGS FPRFile IMM)) 
  (int_call_param (DATATYPE  INT) (REGS GPRFile[4-12])) 
  (double_all (DATATYPE  DOUBLE) (REGS FPRFile IMM)) 
  (double_immediate (DATATYPE  DOUBLE) (REGS IMM)) 
  (double2_normal (DATATYPE  DOUBLE) (REGS FPRFile[1 3 5 7 9 11 13 15 
17 19 21 23 25 27 29 31])) 
  (float_any (DATATYPE  FLOAT) (REGS FPRFile)) 
  (float_retval (DATATYPE  FLOAT) (REGS FPRFile[0])) 
  (int_retval (DATATYPE  INT) (REGS GPRFile[4])) 
  (int_sp (DATATYPE  INT) (REGS GPRFile[29])) 
  (any_fp (DATATYPE  INT) (REGS FP)) 
  (any_hilo (DATATYPE  INT) (REGS HILO)) 
  (int_hilo (DATATYPE  INT) (REGS GPRFile[1-28])) 
  (any_cc (DATATYPE  INT) (REGS CC)) 
  (int_all (DATATYPE  INT) (REGS GPRFile IMM)) 
  (int_pc (DATATYPE  INT) (REGS PC)) 
  (float_immediate (DATATYPE  FLOAT) (REGS IMM)) 
  (int_immediate (DATATYPE  INT) (REGS IMM)) 
  (any_sp (DATATYPE  INT) (REGS SP)) 
  (int_retaddr (DATATYPE  INT) (REGS GPRFile[31])) 
  (int_cc (DATATYPE  INT) (REGS GPRFile[1-28])) 
  (int_mem (DATATYPE  INT) (REGS L1)) 
  (any_call_param (DATATYPE  INT) (REGS GPRFile[4-12])) 
  (double2_retval (DATATYPE  DOUBLE) (REGS FPRFile[1])) 
  (int_any (DATATYPE  INT) (REGS GPRFile[1-28])) 
  (int_zero (DATATYPE  INT) (REGS GPRFile[0])) 
 ) 
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2.7.1. Instruction Description 
 

 

Figure 2.8: VLIW Instruction Template 
 
 
This subsection captures the parallelism in the architecture by capturing the description of 
slots in a VLIW instruction. An Instruction contains operations which can be executed in 
parallel. Each instruction has slots which correspond to a Functional Unit that it will 
execute on. In the architecture there are 4 slots for data operations (1 addition, 1 
subtraction, 1 Multiplication and 1 Shift operation) and 4 slot for Control operations 
(loop, interrupt, jump and sub routine). A valid VLIW instruction of word length is 76. 
The set Instruction Description option in the Instruction Set menu brings up the 
Instruction Description dialog (Fig. 2.8) which is used to specify these subsections. The 
information is stored internally in a list with each element referring to an instruction slot. 
The code generated in EXPRESSION is illustrated below: 
 
(INSTRUCTION_SECTION 
  (WORDLEN 64) 
  (SLOTS 
   ((TYPE DATA) (BITWIDTH 8) (UNIT ALU1_EX)) 
   ((TYPE DATA) (BITWIDTH 8) (UNIT ALU2_EX)) 
   ((TYPE DATA) (BITWIDTH 8) (UNIT LDST_EX)) 
   ((TYPE CONTROL) (BITWIDTH 8) (UNIT BR_EX)) 
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   ((TYPE DATA) (BITWIDTH 8) (UNIT ALU3_EX)) 
   ((TYPE DATA) (BITWIDTH 8) (UNIT ALU4_EX)) 
 
  ) 
) 
 

2.7.2. Operation Mappings: 
 
This subsection contains information required by the compiler for Instruction Selection 
and Register Allocation. There are two parts to the Operation Mappings section: Tree 
Mapping and Operand Mapping. 
 

 

Figure 2.9: Tree Mapping 
 
Tree Mapping is so called because it maps a tree of generic operations to a tree of target 
operations. The edges of the tree correspond to variable dependencies. This tree mapping 
could be from a generic compiler operation to a target processor operation, in which case 
it would be used by the instruction selection algorithm. It is possible to map many 
operations to one operation, for example in the case of a complex operation like mac 
which is a combination of the generic multiply and add operations. 
The set TREE_MAPPING option in the Instruction Set menu brings up the 
TREE_MAPPING dialog box (Figure 2.9) which is used to capture this information. The 
entries are stored in an internal storage structure and reproduced verbatim in the ADL 
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description file after wrapping the information with the appropriate formatting. The code 
generated in EXPRESSION is illustrated below: 
 
 
(OPMAPPING_SECTION 
… 
(TREE_MAPPING 
 
;;;;;;;;;;;;;;;;;;;;;;; 
;;;;     IADD 
;;;;;;;;;;;;;;;;;;;;;;; 
 
;; 0 
  ( 
     (  GENERIC  
     ( 
              (IADD DST[1] = REG(1) SRC[1] = REG(2) SRC[2] = IMM(3)) 
        ) 
     ) 
     (  TARGET   
     ( 
              (addu DST[1] = REG(1) SRC[1] = REG(2) SRC[2] = IMM(3)) 
     ) 
     ) 
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Figure 2.10: Register Class mappings for Operands 
 
In Operand Mapping, the generic register classes are mapped to the target register 
classes. Each target register class maps to a set of target registers. The set Operand 
Mapping section in the Instruction Set menu brings up the Operand Mapping dialog 
box which is used to specify this information. Just like with the Tree Mapping subsection, 
the entries are dumped in an internal storage structure and reproduced verbatim in the 
ADL description file after wrapping the information with the appropriate formatting. The 
code generated in EXPRESSION is illustrated below: 
 
(OPMAPPING_SECTION 
    (OPERAND_MAPPING 
  (OP_MAPPING (GENERIC (DATATYPE ANY)   (CLASSTYPE NORMAL))  
(TARGET    int_normal)) 
 
  (OP_MAPPING (GENERIC   (DATATYPE INT)    (CLASSTYPE IMM)) 
  (TARGET    int_immediate)) 
  (OP_MAPPING (GENERIC   (DATATYPE INT)    (CLASSTYPE NORMAL))    
(TARGET    int_normal)) 
  (OP_MAPPING (GENERIC   (DATATYPE INT)    (CLASSTYPE ANY)) 
  (TARGET    int_any)) 
  (OP_MAPPING (GENERIC  (DATATYPE INT)    (CLASSTYPE 
CALL_PARM)) (TARGET  int_call_param)) 
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  (OP_MAPPING (GENERIC  (DATATYPE INT)    (CLASSTYPE 
ZERO))      (TARGET  int_zero)) 
  (OP_MAPPING (GENERIC  (DATATYPE INT)    (CLASSTYPE CC))        
(TARGET  int_cc)) 
  (OP_MAPPING (GENERIC  (DATATYPE INT)    (CLASSTYPE SP))        
(TARGET  int_sp)) 
  (OP_MAPPING (GENERIC  (DATATYPE INT)    (CLASSTYPE FP))        
(TARGET  int_fp)) 
  (OP_MAPPING (GENERIC  (DATATYPE INT)    (CLASSTYPE PC))        
(TARGET  int_pc)) 
  (OP_MAPPING (GENERIC  (DATATYPE INT)    (CLASSTYPE 
RET_VAL))   (TARGET  int_retval)) 
  (OP_MAPPING (GENERIC  (DATATYPE INT)    (CLASSTYPE 
RET_ADDR))  (TARGET  int_retaddr)) 
  (OP_MAPPING (GENERIC  (DATATYPE INT)    (CLASSTYPE 
HILO))      (TARGET  int_hilo)) 
  (OP_MAPPING (GENERIC   (DATATYPE INT)    (CLASSTYPE ANY)) 
  (TARGET    int_any))   
  (OP_MAPPING (GENERIC  (DATATYPE INT)    (CLASSTYPE 
MEM))   (TARGET  int_mem)) 
 
  (OP_MAPPING (GENERIC   (DATATYPE DOUBLE) (CLASSTYPE IMM)) 
  (TARGET    double_immediate)) 
  (OP_MAPPING (GENERIC  (DATATYPE DOUBLE) (CLASSTYPE 
DOUBLE1))   (TARGET double1_normal)) 
  (OP_MAPPING (GENERIC  (DATATYPE DOUBLE) (CLASSTYPE 
DOUBLE2))   (TARGET double2_normal)) 
;  (OP_MAPPING (GENERIC  (DATATYPE DOUBLE) (CLASSTYPE 
DOUBLE))    (TARGET double_normal)) 
  (OP_MAPPING (GENERIC   (DATATYPE DOUBLE) (CLASSTYPE ANY)) 
  (TARGET    double_any)) 
  (OP_MAPPING (GENERIC  (DATATYPE DOUBLE) (CLASSTYPE 
RET_VAL))   (TARGET  double1_retval)) 
  (OP_MAPPING (GENERIC  (DATATYPE DOUBLE) (CLASSTYPE 
RET_VAL))   (TARGET  double2_retval)) 
 
  (OP_MAPPING (GENERIC   (DATATYPE FLOAT)  (CLASSTYPE IMM)) 
  (TARGET    float_immediate)) 
  (OP_MAPPING (GENERIC  (DATATYPE FLOAT)  (CLASSTYPE 
NORMAL))    (TARGET  float_normal)) 
  (OP_MAPPING (GENERIC  (DATATYPE FLOAT)  (CLASSTYPE 
ANY))   (TARGET  float_any)) 
  (OP_MAPPING (GENERIC  (DATATYPE FLOAT)  (CLASSTYPE 
RET_VAL))   (TARGET  float_retval)) 
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  (OP_MAPPING (GENERIC  (DATATYPE ANY)    (CLASSTYPE 
CALL_PARM)) (TARGET  any_call_param)) 
  (OP_MAPPING (GENERIC  (DATATYPE ANY)    (CLASSTYPE CC))        
(TARGET  any_cc)) 
  (OP_MAPPING (GENERIC  (DATATYPE ANY)    (CLASSTYPE SP))        
(TARGET  any_sp)) 
  (OP_MAPPING (GENERIC  (DATATYPE ANY)    (CLASSTYPE FP))        
(TARGET  any_fp)) 
  (OP_MAPPING (GENERIC  (DATATYPE ANY)    (CLASSTYPE PC))        
(TARGET  any_pc)) 
  (OP_MAPPING (GENERIC  (DATATYPE ANY)    (CLASSTYPE 
RET_ADDR))  (TARGET  any_retaddr)) 
  (OP_MAPPING (GENERIC  (DATATYPE ANY)    (CLASSTYPE 
HILO))      (TARGET  any_hilo)) 
   
 ) 
 
 
 
 

2.7.3. Components Specification: 
 
This subsection describes the RT-level components in the architecture. The components 
can be Pipeline units, Functional units, Storage components, Latches, Ports or 
Connections. Some of these components have an optional list of attributes, and these are 
described below. The ADL description file code generated for these structural 
components is much more involved and requires much more manipulation than in the 
case of the behavioral specification. 

2.7.3.1. Unit (Functional Unit) 
 

 
 

Figure 2.11: Fetch unit 
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A Functional unit has the following attributes 
CAPACITY – size of reservation station 
TIMING – time taken for operations to pass through 
OPCODES – opcode groups allowed passing through 
INSTR_IN – maximum number of simultaneous instructions entering 
INSTR_OUT – maximum number of simultaneous instructions leaving 
In the GUI, units are graphically represented by purple colored rectangular boxes which 
can be created from the Components menu. Clicking on these boxes brings up the 
attributes of the unit in the Properties window. Fig. 2.11 shows the Fetch unit from the 
processor architecture. These functional units are stored internally as elements in a global 
unit list. Each element of this list has the corresponding set of attributes stored with it. 
Aside from the attributes specified above, each unit also has latches and ports associated 
with it. The code generated in EXPRESSION is illustrated below: 
 
(ARCHITECTURE_SECTION 
(SUBTYPE UNIT FetchUnit DecodeUnit OpReadUnit ExecuteUnit BranchUnit 
LoadStoreUnit WriteBackUnit ArchUnit ControlUnit ) 
(FetchUnit FETCH 
  (CAPACITY 1) 
  (INSTR_IN 6) 
  (INSTR_OUT 6) 
  (TIMING (all 1)) 
  (OPCODES all) 
  
  (LATCHES (OUT FetDecLatch) (OTHER pcLatch)) 
 ) 
 
  (InstStrLatch FetDecLatch 
  ) 
 
  (PCLatch pcLatch 
  ) 
 
 
 (DecodeUnit DECODE 
  (CAPACITY 12) 
  (INSTR_IN 4) 
  (INSTR_OUT 4) 
  (TIMING (all 1)) 
  (OPCODES all) 
  (LATCHES (OUT DecAlu1ReadLatch) (OUT DecAlu2ReadLatch) (OUT 
DecLdStReadLatch) (OUT DecBrReadLatch) (OUT DecAlu3ReadLatch)) 
  (LATCHES (IN FetDecLatch)) 
 ) 
 
  (InstructionLatch DecAlu1ReadLatch 
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  ) 
 
  (InstructionLatch DecAlu2ReadLatch 
  ) 
 
  (InstructionLatch DecLdStReadLatch 
  ) 
 
  (InstructionLatch DecBrReadLatch 
  ) 
 
  (InstructionLatch DecAlu3ReadLatch 
  ) 
 
 
 (OpReadUnit ALU1_READ 
  (CAPACITY 1) 
  (INSTR_IN 1) 
  (INSTR_OUT 1) 
  (TIMING (all 1)) 
  (OPCODES ALU_Unit_ops FALU_Unit_ops) 
  
  (LATCHES (OUT Alu1ReadExLatch)) 
  (LATCHES (IN DecAlu1ReadLatch)) 
  (PORTS Alu1ReadPort1 Alu1ReadPort2) 
 ) 
 
 
 
Here a Fetch unit is declared which can fetch four instructions simultaneously and which 
has two latches associated with it corresponding to interfaces with other components –
FetDecLatch is used to communicate data to the Decode unit while pcLatch is used to 
interface with the program counter (see Fig. 2.1). InstStrLatch and PCLatch are the types 
of these latches respectively. 
 

2.7.3.2. Storage (Cache/Memory/Register File) 
 
Storage components are used to represent caches, main memory, buffers and register files 
in the design. The attributes and connectivity among these storage components is 
specified in the memory subsystem. However, ports associated with a storage component 
and used to connect to functional units are specified in this subsection. The GUI however 
allows specification of storage component information in a unified intuitive manner and 
then partitions it at the time of writing the ADL description file. Refer to the memory 
subsystem section. 
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2.7.3.3. Ports 
 
Functional units and storage components can have ports associated with them. In the 
GUI, small orange colored square boxes represent these ports. They can be created from 
the Components menu. Clicking on these boxes brings up the attributes of the port in the 
Properties window. These ports are used to connect functional units to storage 
components. Ports associated with a unit are placed inside the rectangular region of the 
unit while those associated with storage components are placed within storage boxes in 
the layout. 
 
 

 
 

Figure 2.12: Two ports of the ALU1_READ unit 
 
Internally, a global list of ports is maintained. At the time of generation of the ADL 
description, the coordinates of the ports are checked with those of the units and storage 
components. If the coordinate range of a port lies within the rectangular region 
corresponding to a unit or storage component, it is bound to that component. For 
example, Fig.2.12 shows two ports Alu1ReadPort1 and Alu1ReadPort2 bound to the 
component named ALU1_READ. The code generated in EXPRESSION for this example 
is given below: 
 
(OpReadUnit ALU2_READ 
  (CAPACITY 1) 
  (INSTR_IN 1) 
  (INSTR_OUT 1) 
  (TIMING (all 1)) 
  (OPCODES ALU_Unit_ops FALU_Unit_ops) 
  (LATCHES (OUT Alu2ReadExLatch)) 
  (LATCHES (IN DecAlu2ReadLatch)) 
  (PORTS Alu2ReadPort1 Alu2ReadPort2) 
 ) 
 
  (OperationLatch Alu2ReadExLatch 
  ) 
 
  (UnitPort Alu2ReadPort1("_READ_") 
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    (ARGUMENT _SOURCE_1_) 
  (CAPACITY 1)  ) 
 
  (UnitPort Alu2ReadPort2("_READ_") 
    (ARGUMENT _SOURCE_2_) 
  (CAPACITY 1)  ) 
 
 

2.7.3.4. Latches 
 
Pipeline latches are associated with units and lie at the interface between two units. One 
way that a pipeline latch can be associated with a unit is to place it inside the rectangular 
region of that unit. This would then refer to the latch to which the unit will output its 
operation data. Another way is to have a connection component starting from the latch in 
one unit and ending in another unit. In this case, the latch is also bound to the second unit 
and this unit reads the data put into the latch by the first unit. In the GUI, small pink 
colored rectangular boxes represent these latches. They can be created from the 
Components menu. Clicking on these boxes brings up the attributes of the latch in the 
Properties window. 
 
 

                                  
 

Figure 2.13: Alu1ReadExLatch 
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All latches in a design are stored in a global latch list. At the time of generation of the 
ADL description, the coordinates of the latches are checked with those of the units. If the 
coordinate range of a latch lies within the rectangular region corresponding to a unit, it is 
bound to that unit. If a connection component from that latch ends in another unit, the 
latch is bound to the second unit as well. For example, Fig 2.13 shows a latch 
Alu1ReadExLatch drawn inside the ALU1_READ unit and with a connection component 
from the latch ending in the ALU1_EX unit. The latch is thus associated with both the 
units. The code generated in EXPRESSION for this example is given below: 
 
(OperationLatch Alu2ReadExLatch 
  ) 
 
  (UnitPort Alu2ReadPort1("_READ_") 
    (ARGUMENT _SOURCE_1_) 
  (CAPACITY 1)  ) 
 
  (UnitPort Alu2ReadPort2("_READ_") 
    (ARGUMENT _SOURCE_2_) 
  (CAPACITY 1)  ) 
 
Here Operation Latch is the type of the latch. 
 

2.7.3.5. Connections 
 
A Connection is a component used to connect two ports, a latch in a unit and another unit 
or two storage components. In the GUI, a connection component is represented by a line 
segment (Fig.2.14). These can be created from the Components menu. Clicking on the 
line segment brings up the attributes of the connection in the Properties window. 
 

 
 

Figure 2.14: A Connection component 
 
All the connections in a system are stored in a global connection list. At the time of 
generation of the ADL description, the coordinates of the end points of the connection 
line segment are checked to see where they lie. If one end lies within a port region, then it 
represents a connection from a port to another port, and the other end must lie within a 
port too. If an end lies within a latch region, then it represents a latch connection between 
two units and the other end must lie inside another unit. Finally, if an end lies within a 
storage component but not inside a port of the component, then it represents a storage 
connection and the other end must also lie within a storage component. 
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2.7.3.6. Pipeline and Data-Transfer Paths Description 
 
Recall that architectural pipelining information in EXPRESSION is specified using the 
notion of pipeline and data transfer paths. This subsection describes the structural net-list 
of the processor. The pipeline description is used to specify the functional units which 
make up the pipeline stages. This section is not explicitly specified in the GUI. The only 
construct needed for generating this section from the GUI is a pipeline stage component, 
which can be created from the Components menu. A pipeline stage component is 
represented graphically in the GUI as a horizontal line segment which groups the 
functional units in the layout into different stages. At the time of generation of the ADL 
description, a functional unit net-list is built on the fly. This is done by creating a graph 
with the functional units as nodes, connected with other nodes only if there is a shared 
latch between two nodes. This graph is further divided by the pipeline stage components 
in the following way: all the functional units that lie between two line segments 
corresponding to the pipeline stage components, become part of the pipeline stage whose 
name is given by the lower of the two pipeline stage components that enclose the unit. 
This inclusion of units within two pipeline stage components is verified by checking the 
coordinates of the unit rectangular box and ensuring that the coordinate range lies 
between the ranges of the two pipeline stage components. For the proposed architecture, 
the pipeline description generated is given below: 
 
 
(PIPELINE_SECTION 
 (PIPELINE FETCH DECODE READ_EXECUTE WB) 
 (READ_EXECUTE (ALTERNATE read_execute0 read_execute1 read_execute2 
read_execute3 read_execute4)) 
   (read_execute0( PIPELINE ALU1_READ ALU1_EX )) 
   (read_execute1( PIPELINE ALU2_READ ALU2_EX )) 
   (read_execute2( PIPELINE BR_READ BR_EX )) 
   (read_execute3( PIPELINE LDST_READ LDST_EX )) 
   (read_execute4( PIPELINE ALU3_READ ALU3_EX )) 
   (read_execute4( PIPELINE ALU4_READ ALU4_EX )) 
 
 
 
… 
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Figure 2.15 (a): Selecting ‘Add Datapath’ option 
 

 

Figure 2.15 (b): Selecting FPRFile      Figure 2.15 (c):           Selecting 
ALU1_READ 
 
 

 
 

Figure 2.15 (d): Selecting port   Figure 2.15 (e): Selecting connection  
element 
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Figure 2.15 (f): Selecting port ALU1Read Figure 2.15 (g): Finish by 
right clicking 
 
Data-transfer path descriptions specify the valid data transfers in the architecture. There 
are two kinds of data transfer paths – paths between functional units and storage 
components, and paths between two storage components. In the GUI, data paths are 
specified by traversing the path which can be done by selecting the Add Data path 
option from the Components menu and clicking on the units, storage components, ports 
and connections in the order specified by the ADL language. Just like macro recording, 
the order of clicking the components is recorded and a data path generated, which is 
stored with other data paths internally in the form of a list. It is important to note that 
specifying data paths is generally a very error prone and tedious activity. The GUI 
overcomes this limitation by allowing data paths to be specified conveniently and easily 
with just a couple of mouse clicks. Figure 2.15 shows the sequence of actions to be 
performed to 
add a data path between the ALU1_READ component and the FPRFile register file. The 
code generated in EXPRESSION for this data path is given below: 
 
(DTPATHS 
(TYPE UNI 
( FPRFile ALU1_READ FprReadPort6 FprReadPort6ALU1ReadPort1 Alu1ReadPort1) 
) 
) 
) 
The code generated for all the data paths between functional units and storage 
components in the 
acesMIPS architecture is given below: 
… 
(DTPATHS 
 
  (TYPE UNI 
   ( FPRFile ALU1_READ FprReadPort6 FprReadPort6ALU1ReadPort1 Alu1ReadPort1) 
   ( FPRFile ALU1_READ FprReadPort6 FprReadPort6ALU1ReadPort1 Alu1ReadPort1) 
   ( FPRFile ALU1_READ FprReadPort6 FprReadPort6ALU1ReadPort1 Alu1ReadPort1) 
   ( FPRFile ALU1_READ FprReadPort6 FprReadPort6ALU1ReadPort1 Alu1ReadPort1) 
   ( FPRFile ALU1_READ FprReadPort6 FprReadPort6ALU1ReadPort1 Alu1ReadPort1) 
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   ( FPRFile ALU1_READ FprReadPort6 FprReadPort6ALU1ReadPort1 Alu1ReadPort1) 
(FPRFile LDST_READ FprReadPort5 FprReadPort5LdStReadPort3Cxn LdStReadPort3) 
(GPRFileALU3_READGprReadPort10GprReadPort10Alu3ReadPort1CxnAlu3ReadPor1
) ( WB GPRFile WbWritePort WbWritePortGprWritePortCxn GprWritePort) 
   ( WB GPRFile WbWritePort WbWritePortGprWritePortCxn GprWritePort) 
 
  ) 
 
 ) 
) 
 
 
 
    
… 
Both pipeline and data-transfer path descriptions are essential for generating the retarget 
able simulator and generating reservation tables needed by the scheduler. 
  
 
 

2.7.3.6. Memory Subsystem 
 
This section is used to specify the attributes of the various storage components in the 
memory subsystem. A storage component comprises of the following attributes 
 
WIDTH – Width of register file in bits 
SIZE – Number of registers in register file 
WORD SIZE – Word size of cache in bytes 
LINE SIZE – Number of words in a cache line 
ASSOCIATIVITY – Associativity level of cache 
CACHE LINES – Number of lines in cache 
ACCESS TIME – Time to access storage (in cycles) 
ADDRESS RANGE – Range of addresses associated with storage 
MNEMONIC – Prefix to be used for the registers in assembly formats 
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Figure 2.16: L1 cache with port 
 
In the GUI, Storage components are represented graphically by green colored rectangular 
boxes (distinct from units) which can be created from the Components menu. Clicking 
on these boxes brings up the attributes of the unit in the Properties window (Fig. 
2.16).Clicking on these boxes brings up the attributes of the unit in the Properties 
window. Storage components also have ports associated with them. Any port which lies 
within the rectangular region of a storage component binds to that component. For 
example, for the L1 data cache in the VLIW architecture (Fig 2.16), the architecture 
section contains the ports associated with the storage as shown below: 
 
(Storage L1 
(PORTS L1ReadWritePort) 
(CAPACITY 1) 
) 
 
Properties window for L1 cache 
Code is also generated for the storage section after specifying the storage attributes (Fig. 
2.16) in the Properties window. This generated code is shown below. 
 
(STORAGE_SECTION 
 
(L1 
  (TYPE DCACHE) 
  (WORDSIZE 4) 
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  (LINESIZE 2) 
  (ASSOCIATIVITY 4) 
  (NUM_LINES 8) 
  (ACCESS_TIMES 1) 
  (ADDRESS_RANGE (0 9995904)) 
 
(MainMem 
  (TYPE DRAM) 
  (ACCESS_TIMES 50) 
  (ADDRESS_RANGE (0 9995904)) 
 ) 
(GPRFile 
  (TYPE VirtualRegFile) 
  (WIDTH 128) 
  (SIZE 32) 
  (MNEMONIC "R") 
 ) 
 
 (FPRFile 
  (TYPE VirtualRegFile) 
  (WIDTH 128) 
  (SIZE 32) 
  (MNEMONIC "f") 
 ) 
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Chapter # 3 

                                  

3. VLIW ARCHITECTURE DETAIL 
 

3.1. VLIW PROCESSOR 
 
Almost all existing computing platforms act as some form of co processing elements i.e., 
they implement custom functions in hardware but operate under the control of host 
platforms.  
 

3.1.2. IMPLEMENTATION: 
  
This chapter includes the design what I have implemented. It is a VLIW processor but 
with certain limitations. This processor can perform number of different operations. I 
have designed this processor keeping certain things in mind, and then I have implemented 
that designed in EXPRESSION ADL using the VSAT GUI front end interface. It is a 
reconfigurable processor which enables it to adjust its functionalities accordingly. 
Reconfiguration actually makes it very powerful, increasing its computational power as 
many times as many is the number of functional units. 
 

 3.1.3. RECONFIGUARTION: 
 
Reconfigurable computing is a new and emerging field that makes use of programmable 
devices to construct “custom computing machinery”. Reconfigurable computing can 
simply be thought of as an ability to repeatedly configure a machine to perform different 
and varying functions. The term reconfigurable is broad and can be applied to many 
scenarios.   A reconfigurable custom computing machine makes use of some form of 
reconfigurable logic that can be changed and configured as demanded by an application.  
 

3.2. CLASSIFICATION OF RECONFIGURABLE 
ARCHITECTURES: 
 
Although it is believed that reconfigurable computing machines offer the same flexibility 
as of instruction set architectures type of machines (general purpose microprocessor 
based platforms) , and can yield performance that is comparable to the custom hardware , 
it is not a simple task to predict the tradeoffs between performance and the flexibility for 
reconfigurable computing machines. This is because the performance of the 
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reconfigurable computing machine can be compared against the performance of the 
software model of the application but cannot be compared to the custom hardware (ASIC 
type) implementations very easily. Thus it is not easy to find out the complete 
performance to flexibility relationships. Reconfigurable computing machines lie 
somewhere in the performance spectrum that spans between instruction set architectures 
and the custom hardware. This figure explains this relationship. 
 
     
 
 
 
 
    Instruction set         Reconfigurable  
        Architecture          Architecture 
            
        
                        Flexibility 
    
 
 
              Custom Hardware  
      
                                    Performance 

 

Figure 3.1: Classification of Reconfigurable Architecture 
   
As can be seen from the graph Re configurable architecture has got equal flexibility as 
of instruction set architecture but still it’s performance is almost as good as custom 
hardware. 
 

3.2.1. Implementing the reconfigurable hardware: 
 
There are two different ways the reconfiguration can be implemented in: 
 

• STATICALLY 
• DYNAMICALLY 

 

3.2.1.1. STATICALLY RECONFIGURABLE HARDWARE: 
                                                
Statically reconfigurable hardware is where the configuration of a custom application is 
loaded once and is not changed for the runtime life of the application. The only advantage 
of using reconfigurable hardware is that, that same platform can be used and re-used for 
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implementing many different applications. Sometimes, this is also called as compile time 
reconfiguration based hardware. It should be noted that the reconfiguration overhead for 
such hardware is a one time penalty that is incurred while loading the configuration data 
on the hardware. 

3.3. A DYNAMICALLY RECONFIGURABLE HARDWARE: 
 
Dynamically reconfigurable hardware is where the configuration of a custom application 
is loaded once, partially or wholly, and, is allowed to change during the runtime life of 
the application. This form of computing hardware offers almost infinite resources to 
speed up the application. This is true because, under partial reconfiguration, the hardware 
acts more like a paged memory system, and desirable functions can be loaded, swapped, 
or purged on demand. Also this type of hardware provides means for runtime 
optimization for speeding up the application. Managing the runtime dynamic 
reconfiguration is not a trivial task. It requires application profiling, data management, 
and clever techniques for reducing the overheads associated with the reconfigurable 
architectures. 

3.3.1. RECONFIGURABLE DEVICES: 
 
Reconfigurable devices can be configured after fabrication to solve any computational 
task. These are best exemplified today by FPGA. In these reconfigurable devices, tasks 
are implemented by spatially composing primitive operations and operators with the 
possibility of temporarily changing the hardware of the operators rather then temporarily 
composing of instructions sequence in Princeton style processors. The reconfigurable 
processor on FPGA can perform different operations on each bit, sore-configurable can 
be optimized to the data width of streaming data flows. The central theme of this work is 
to mix the advantages of Non-von-Neumann architectures with the advantages of re-
configurable processing elements.  
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3.4. Explanation of the target Processor: 
 

 

 

Figure 3.2: Processors Control Unit 
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Figure 3.2.1: Processors Control Unit in EXPRESSION VSAT GUI 

 

3.4.1. PROGRAM MEMORY: 
                 
It is actually a storage place where the program which has to be performed by the 
processor will be stored. The instructions will be read from this memory. 
In our processor it is a 2-D memory. It has 16 rows, which means it can have, store 16 
different instructions. And it has 76 columns which mean that every instruction is of 76 
bits. 
A user can write 16 different instructions in the program memory through files, then 
those instructions are coded by an assembler. 
 

3.4.2. INSTRUCTION FORMAT: 
 
There are two basic portions of the instructions which are: 
 

• For the control unit. 
• For the architecture, i.e. for the functional units. 

 
Loop Count Condition  Label c4 b4 a4 Op4 c3 b3 a3 Op3 c2 b2 a2 Op2 
                                                                                                                                 
 c1 b1 a1 Op1 
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3.4.3. THE INSTRUCTION DECODING PROCESS: 
  
The instruction decoder identifies the portions of the instruction for the control unit& 
architecture. 
 
For the control unit: 
 
Loop Count Condition Label  
  
The separately identified control unit portion of the instruction is then further divided into 
sub-portions which are to categorize loop, sub routine, jump, conditional jump etc. 
Now these portions go to the control unit, where they act as the activating signals for the 
operations like: 

• Loop 
• Subroutine 
• Jump 
• Conditional jump 
• Internal interrupt 

 
 
The control unit as obvious from its name controls the processor. It can also be 
called a controller of the processor, who looks after & monitors all the activities that 
the processor is doing. 
 
 
 
 
 
 
 
 

3.4.4. Activities of the control unit: 

3.4.4.1. LOOP MACHINE: 
 

It requires the following things from the instruction for its execution: 
 

• LOOP ENABLE: 
 
It will be mentioned in the “loop” part of the instruction. It will be used to tell 
whether there is a loop or not. It is 1-bit long. 
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• LOOP END ADDRESS: 
                   
It will be mention in the “label” part of the instruction. It is that address till where 
I want the instructions to be repeated. It is of 4-bit long. 
 
 
• LOOP START ADDRESS: 

                         
It will come from the “program counter”, and it is the starting address i.e from     
where I want to start the loop.      

           
 
• COUNT: 

 
It will be mentioned in the “count” part of the instruction. It is amount or number 
for how many times I want our instructions to be repeated. It is also 4-bit long. 

3.4.4.2. SUBROUTINE: 
     

It is used when one wants to perform number or series of actions at one position. 
Or I can say when one requires some other routine while processing. That routine 
will be called a subroutine. It has two parts. 
 
• CALL 
• RETURN 

 
 
      
 
  CALL: 
           
      It is used to call a subroutine. 
 
      SYNTAX: 
 
      Call label; 
 
      RETURN: 
 

After calling a subroutine the program counter moves to the label & starts                
performing no. of action till it will get a return. And when it gets the return it will 
return    to the position next to, where the sub-routine was called. That will be the 
end of the subroutine. This is done by a maintaining “return register” that will 
contain the next address.  
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      So the subroutine requires two parts of the instruction. 
 
      CONDITION: 
 
       This part of an instruction is 3-bit long. It actually determines the call, or return.  
 
       LABEL: 
 

This is the same label as that of loop, but now this label will act as an address of 
the branch address .i.e. where it has to move when there will be a call for the 
subroutine. 

3.4.4.3. JUMP: 
    

It is when program want to jump to a certain position or an instruction. Whenever 
there will be a jump the program counter will move to that instruction whose 
address would have been mentioned in the label. But one important thing to 
remember, that is that jump does not have a return. After jumping to a certain 
instruction the program counter does not return to the address where there jump 
was called. 
  

 
 
 
 
 
 
 
 
 
 
 

It also requires two parts of the instruction. 
 
 CONDITION: 
 
The condition actually tells that there is jump here.  
 
 
LABEL: 
   
 This will have the branch address where I want the program counter to move. 
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3.4.4.4. CONDITIONAL JUMP: 
 

It is same as that of the simple jump, but the only difference is that, that now the 
jump will depend on some condition. 
It also requires those two parts of an instruction. 
 
CONDITION: 
 
This determines the conditional jump. 
 
LABEL: 
 
Where program want to move, or jump. 

3.4.4.5. INTERUPTS: 
 

It is an internal or external event that suspends the normal program flow within a 
computer and causes entry into a special interrupt program (also called interrupt 
service routine) interrupts are provided primarily as a way to improve processing 
efficiency. 
When an interrupts comes the processor suspends execution of the current 
instruction, saves its context. This means saving the address of the next 
instruction to be executed (current contents of the program counter) and any other 
data relevant to the processor’s current activity. It sets the program counter to the 
starting address of an interrupt handler routine. 
 
 There are two types of the interrupts. 
 

• EXTERNAL INTERUPTS 
• INTERNAL INTERUPTS 

 
 
  
 
EXTERNAL INTERUPTS: 
 
In my processor I have four different types of external interrupts generated from 
the stimulus. Whenever those interrupts comes, the program counter jumps to the 
respective location, mentioned in the interrupt vector table corresponding to that 
specific type of the interrupt. These have nothing to do with the instruction. As 
these can be generated any time. & after executing that location where it was 
jumped the program counter will return back to the next address of where it 
encountered the interrupt. 
This processor also maintains an interrupt vector table. It is a reserved memory 
location where a program counter jumps when an interrupt is detected. 
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INTERUPT SERVICE ROUTINE: 
  
It is a program that is entered when an external or internal interrupt occurs. 
Interrupt service routines as usually high priority routines. 
 
INTERNAL INTERUPT: 
   
These are generated from inside the processor. It can be based on some condition; 
it can be generated when a timer reaches a certain value, etc. 
In this VLIW processor I have catered an internal interrupt, which will be 
generated when the result from the subtractor will be less than 0,.i.e when it will 
be –ve. So when the interrupt will be generated its interrupt service routine will 
make that result +ve. 
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3.5. EXPLANATION OF PROCESSING UNIT 
 
 

 

 

Figure 3.3: Processing Unit 
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Figure 3.3.1: Processing Unit in EXPRESSION VSAT GUI 
 

3.5.1. ARCHITECTURE BITS: 
 
c4 b4 a4 Op4 c3 b3 a3 Op3 c2 b2 a2 Op2 c1 b1 a1 Op1
 

3.6. DETAIL OF PROCESSING UNIT 
 
The separately identified portion for the architecture has four main sections, which are 
also recognized by the instruction decoder. 
The four sections are for four functional units, each section has four parts. Which are: 
 

• Opcode 
• Operand1 
• Operand 2 
• Destination 
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3.6.1.OPCODE: 
 
Operational code is known as opcode. It decides which operation is to be performed. In 
our processor I have the following four functions: 

 
• Addition 
• Subtraction 
• Multiplication 
• Barrel shifter 

 
Each of these has a separate opcode, by which these are identified; the opcodes will be 
mentioned in the manual of our processor.Op1, Op2, Op3, Op4 are the opcodes for four 
different functions in each instruction. 

3.6.2. OPERANDS: 
 
These are the values on which the certain operations are to be performed.  I am 
maintaining a register file which has values stored in it, So the operands will be coming 
from those registers. b4, a4, b3, a3, b2, a2, b1, a1 shows the addresses of the operands 
(registers carrying the values) for the four functional units. 

3.6.3. DESTINATION: 
            

It is the place, register where the results from the functional units are to be stored or 
written back. For example c4, c3, c2, c1 shows the four destination address where the 
results from the functional units will be written back.            

3.6.4. FUNCTIONAL UNITS: 
 
This part of the processor comprises of four functional units each having four operating 
units mentioned underneath. 

3.6.4.1.ADDER: 
 
It takes two operands which are identified by the instruction decoder, and gives the sum 
at next clock cycle. The adders in this processor is a FULL ADDER. I have one module 
of this full adder in every functional unit. 
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3.6.4.2. SUBTRACTOR: 
 

It also takes two operands identified by the instruction decoder and inverts the one that is 
to be subtracted and adds with the other one as a result generating the result in next cycle. 

3.6.4.3. MULTIPLIER: 
 
I have two numbers in binary form that are to be multiplied .Result generated is of 16 bits 
but I only take most significant 8 bits just to standardize the results as when in case of 
reconfiguration these multiplier, adder, subtractor, shifter may be swapped , doesn’t 
cause any problem. 
 

3.6.4.4. SHIFTER: 
 
Shifter shifts one operand by the amount other operand is. Results are generated in the 
next cycle. 
Our every functional unit has all the above mentioned capabilities and I select only one 
result from each functional unit at the end using Reconfiguration mux. This allows my 
processor to be strongly flexible making computations more easy and appropriate as 
all the operations are carried out on all the operands selected and providing the 
required result in the end. 
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CHAPTER #4 
 

4. Results 
 
Once the architecture is designed in EXPRESSION front end GUI it converts the 
schematic description and instruction set description into EXPRESSION ADL format.  
EXPRESS is a retargetable compiler centered on a generic machine. EXPRESS reads 
the front-end files, builds an Intermediate Representation (IR) amenable to different 
optimizations and targets the architecture described in an EXPRESSION ADL 
(Architecture Description Language) description. SIMPRESS reads the special assembly 
file, simulates the running of assembly on an architecture template generated from the 
ADL description and finally generates area, power, and performance numbers including 
cycle count and memory usage statistics. The purpose of the simulator is to assess the 
efficacy of the code generated by the EXPRESS compiler for the given architecture. The 
EXPRESSION ADL description of VLIW Architecture is available in 
<work>\acesMIPSDll\bin\ acesMIPS.xmd. The schematic description of VLIW 
Architecture is stored in acesMIPS.gmd and the instruction set description in 
acesMIPS.isd. 
 

4.1. EXPRESSION COMPILATION 
 
I compiled EXPRESSION CONSOLE and it takes the EXPRESSION description in 
<run>\acesMIPS.xmd and generates different intermediate files required to retarget the 
compiler and the simulator. It also generates <run>\mem.config containing memory 
configuration. The detail of memory configuration is mentioned below 
 

4.1.1. Memory Configuration as Compiled by 
EXPRESSION: 
 
BEGIN_MEM_MODULES 
0 DCACHE 8:2:4:4:1 
1 ICACHE 8:2:4:4:1 
2 DCACHE 64:2:8:4:5 
3 SRAM 9999999:1 
4 DRAM 9995904:50 
END_MEM_MODULES 
 
BEGIN_CONNECTIVITY 
1 2 
0 2 
2 4 
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END_CONNECTIVITY 
 
BEGIN_MEMORY_MAP 
0 0 9995904 
3 9995905 9999999 
END_MEMORY_MAP 

4.1.2. Output of EXPRESS Console compilation 
 
regFileName = L1 
regFileMnemonic = (null) 
regs : 
 
 
varName = int_normal 
<targetClassType = NORMAL       targetDataType = INT> 
regFileName = GPRFile 
regFileMnemonic = R 
regs :  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 
28 
 
 
varName = int_pc 
<targetClassType = PC   targetDataType = INT> 
regFileName = PC 
regFileMnemonic = (null) 
regs : 
 
 
varName = int_retaddr 
<targetClassType = RET_ADDR     targetDataType = INT> 
regFileName = GPRFile 
regFileMnemonic = R 
regs :  31 
 
 
varName = int_retval 
<targetClassType = RET_VAL      targetDataType = INT> 
regFileName = GPRFile 
regFileMnemonic = R 
regs :  4 
 
 
varName = int_sp 
<targetClassType = SP   targetDataType = INT> 
regFileName = GPRFile 
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regFileMnemonic = R 
regs :  29 
 
 
varName = int_zero 
<targetClassType = ZERO targetDataType = INT> 
regFileName = GPRFile 
regFileMnemonic = R 
regs :  0 
 
 
################################################################ 
 
################################################################ 
varName = any_call_param 
<targetClassType = CALL_PARM    targetDataType = INT> 
regFileName = GPRFile 
regFileMnemonic = R 
regs :  4 5 6 7 8 9 10 11 12 
 
 
varName = any_cc 
<targetClassType = CC   targetDataType = INT> 
regFileName = CC 
regFileMnemonic = (null) 
regs : 
 
 
varName = any_fp 
<targetClassType = FP   targetDataType = INT> 
regFileName = FP 
regFileMnemonic = (null) 
regs : 
 
 
varName = any_hilo 
<targetClassType = HILO targetDataType = INT> 
regFileName = HILO 
regFileMnemonic = (null) 
regs : 
 
 
varName = any_pc 
<targetClassType = PC   targetDataType = INT> 
regFileName = PC 
regFileMnemonic = (null) 
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regs : 
 
 
varName = any_retaddr 
<targetClassType = RET_ADDR     targetDataType = INT> 
regFileName = GPRFile 
regFileMnemonic = R 
regs :  31 
 
 
varName = any_sp 
<targetClassType = SP   targetDataType = INT> 
regFileName = SP 
regFileMnemonic = (null) 
regs : 
 
 
varName = double1_normal 
<targetClassType = DOUBLE1      targetDataType = DOUBLE> 
regFileName = FPRFile 
regFileMnemonic = f 
regs :  0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 
 
 
varName = double1_retval 
<targetClassType = RET_VAL      targetDataType = DOUBLE> 
regFileName = FPRFile 
regFileMnemonic = f 
regs :  0 
 
 
varName = double2_normal 
<targetClassType = DOUBLE2      targetDataType = DOUBLE> 
regFileName = FPRFile 
regFileMnemonic = f 
regs :  1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 
 
 
varName = double2_retval 
<targetClassType = RET_VAL      targetDataType = DOUBLE> 
regFileName = FPRFile 
regFileMnemonic = f 
regs :  1 
 
 
varName = double_all 
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regFileName = FPRFile 
regFileMnemonic = f 
regs :  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 2 
7 28 29 30 31 
regFileName = IMM 
regFileMnemonic = (null) 
regs : 
 
 
varName = double_any 
<targetClassType = ANY  targetDataType = DOUBLE> 
regFileName = FPRFile 
regFileMnemonic = f 
regs :  0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 
 
 
varName = double_immediate 
<targetClassType = IMM  targetDataType = DOUBLE> 
regFileName = IMM 
regFileMnemonic = (null) 
regs : 
 
 
varName = float_all 
regFileName = FPRFile 
regFileMnemonic = f 
regs :  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 2 
7 28 29 30 31 
regFileName = IMM 
regFileMnemonic = (null) 
regs : 
 
 
varName = float_any 
<targetClassType = ANY  targetDataType = FLOAT> 
regFileName = FPRFile 
regFileMnemonic = f 
regs :  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 2 
7 28 29 30 31 
 
 
varName = float_immediate 
<targetClassType = IMM  targetDataType = FLOAT> 
regFileName = IMM 
regFileMnemonic = (null) 
regs : 
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varName = float_normal 
<targetClassType = NORMAL       targetDataType = FLOAT> 
regFileName = FPRFile 
regFileMnemonic = f 
regs :  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 2 
7 28 29 30 31 
 
 
varName = float_retval 
<targetClassType = RET_VAL      targetDataType = FLOAT> 
regFileName = FPRFile 
regFileMnemonic = f 
regs :  0 
 
 
varName = int_all 
regFileName = GPRFile 
regFileMnemonic = R 
regs :  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 2 
7 28 29 30 31 
regFileName = IMM 
regFileMnemonic = (null) 
regs : 
 
 
varName = int_any 
<targetClassType = ANY  targetDataType = INT> 
regFileName = GPRFile 
regFileMnemonic = R 
regs :  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 
28 
 
 
varName = int_call_param 
<targetClassType = CALL_PARM    targetDataType = INT> 
regFileName = GPRFile 
regFileMnemonic = R 
regs :  4 5 6 7 8 9 10 11 12 
 
 
varName = int_cc 
<targetClassType = CC   targetDataType = INT> 
regFileName = GPRFile 
regFileMnemonic = R 
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regs :  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 
28 
 
 
varName = int_fp 
<targetClassType = FP   targetDataType = INT> 
regFileName = GPRFile 
regFileMnemonic = R 
regs :  30 
 
 
varName = int_hilo 
<targetClassType = HILO targetDataType = INT> 
regFileName = GPRFile 
regFileMnemonic = R 
regs :  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 
28 
 
 
varName = int_immediate 
<targetClassType = IMM  targetDataType = INT> 
regFileName = IMM 
regFileMnemonic = (null) 
regs : 
 
 
varName = int_mem 
<targetClassType = MEM  targetDataType = INT> 
regFileName = L1 
regFileMnemonic = (null) 
regs : 
 
 
varName = int_normal 
<targetClassType = NORMAL       targetDataType = INT> 
regFileName = GPRFile 
regFileMnemonic = R 
regs :  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 
28 
 
 
varName = int_pc 
<targetClassType = PC   targetDataType = INT> 
regFileName = PC 
regFileMnemonic = (null) 
regs : 
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varName = int_retaddr 
<targetClassType = RET_ADDR     targetDataType = INT> 
regFileName = GPRFile 
regFileMnemonic = R 
regs :  31 
 
 
varName = int_retval 
<targetClassType = RET_VAL      targetDataType = INT> 
regFileName = GPRFile 
regFileMnemonic = R 
regs :  4 
 
 
varName = int_sp 
<targetClassType = SP   targetDataType = INT> 
regFileName = GPRFile 
regFileMnemonic = R 
regs :  29 
 
 
varName = int_zero 
<targetClassType = ZERO targetDataType = INT> 
regFileName = GPRFile 
regFileMnemonic = R 
regs :  0 
 
 
################################################################ 

4.2. SIMPRESS SIMULATION 
 
After successful generation of intermediate files from EXPRESSION compilation I set 
ACESMIPS CONSOLE as the active project. It contains both EXPRESS compiler and 
SIMPRESS simulator. The acesMIPS console application generates the number of 
cycles, memory usage and other statistics in <run>/<filename>.pwrStats. 
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4.2.1. Power stats detail as compiled by EXPRESS AND 
SIMPRESS 
 
Total Cycles: 675 
 
ASSOCIATIVE DCACHE: Cache Accesses: 80 (0.45)  
   read hits: 7, read misses: 7 (0.50)  
  write hits: 29, write misses: 37 (0.44)  
  Energy Dissipation: 0.096 uJ 
 
ASSOCIATIVE DCACHE: Cache Accesses: 147 (0.78)  
   read hits: 115, read misses: 32 (0.78)  
  write hits: 0, write misses: 0 (0.00)  
  Energy Dissipation: 0.176 uJ 
 
ASSOCIATIVE DCACHE: Cache Accesses: 125 (0.49)  
   read hits: 12, read misses: 64 (0.16)  
  write hits: 49, write misses: 0 (1.00)  
  Energy Dissipation: 1.022 uJ 
 
SRAM:  loads: 0, stores: 0 
 Energy Dissipation: 0.000 uJ 
 
DRAM:  loads: 64,  stores: 3 
   Energy Dissipation:  0.005 uJ 
 

4.2.2 Output of ACESMIPS Console simulation 
 
Starting EXPRESS... 
 
-- EXPRESS: Started --------------------------------------------------- 
 
 
Procs file name: LL1.procs 
 
#++++++++++++++++++++++++++++++++# 
 
Reading Compiler Opcodes 
 
Done Reading Compiler Opcodes 
 
#++++++++++++++++++++++++++++++++# 
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#++++++++++++++++++++++++++++++++# 
 
Intializing Symbol Table 
 
Done Initializing Symbol Table 
 
#++++++++++++++++++++++++++++++++# 
 
#++++++++++++++++++++++++++++++++# 
 
Reading Compiler Opcodes 
 
Done Reading Compiler Opcodes 
 
#++++++++++++++++++++++++++++++++# 
-------------------------------------------------------- 
 
-- EXPRESS: Reading LL1.procs ------------ 
 
-------------------------------------------------------- 
Name of procedure: _main 
 
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# 
Routine: _main 
 
#++++++++++++++++++++++++++++++++# 
 
Building Control Flow Graph (CFG). 
 
Performing DFS ordering on CFG. 
 
Done Building CFG. 
 
#++++++++++++++++++++++++++++++++# 
 
-------------------------------------------------------- 
 Code Size Before All Transformations: 
         Num. Instructions = 51 
         Num. Operations = 51 
-------------------------------------------------------- 
 
Warning: RoutParmProperty copy does not work if it is not an empty property 
Parsing LL1.defs... 
 
Global Memory Allocation: 
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Local Memory Allocation: 
 
***TIME*** : 0.0 secs 
 
#++++++++++++++++++++++++++++++++# 
 
Building Static Single Assignment (SSA) Form. 
 
Done Building SSA. 
 
#++++++++++++++++++++++++++++++++# 
 
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# 
Routine: _main 
 
-------------------------------------------------------- 
 Code Size After SSA Before All Other Transformations: 
         Num. Instructions = 59 
         Num. Operations = 59 
-------------------------------------------------------- 
 
 
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# 
Routine: _main 
 
Performing Def-Use (DU) Analysis. 
 
Performing Use-Def (UD) Analysis. 
 
#++++++++++++++++++++++++++++++++# 
 
Performing Live-Dead (LD) Analysis. 
 
Done Performing LD Analysis. 
 
#++++++++++++++++++++++++++++++++# 
 
#++++++++++++++++++++++++++++++++# 
 
Building Hierarchical Task Graph (HTG). 
 
Done Building HTG. 
 
#++++++++++++++++++++++++++++++++# 
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Setting instrs ID... 
Done setting instrs ID. 
 
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# 
Routine: _main 
Warning: A pass that is executed only once per routine was called once too many 
for routine: _main 
Warning: A pass that is executed only once per routine was called once too many 
for routine: _main 
Warning: A pass that is executed only once per routine was called once too many 
for routine: _main 
 
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# 
Routine: _main 
 
Setting instrs ID... 
Done setting instrs ID. 
 
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# 
Routine: _main 
 
Setting instrs ID... 
Done setting instrs ID. 
        Finished Parsing the ISel input file... 
 
***TIME*** : 0.0 secs 
 
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# 
Routine: _main 
 
#++++++++++++++++++++++++++++++++# 
 
Performing Register Allocation. 
Recomputing properties... 
Coloring interference graph... 
IG Statistics: 
    133 nodes: 96 registers, 37 multichains, 
    edges: 2892 
--------------------------------------- 
-- Num. Data Ops Eliminated: 0 ------ 
-- Num. Control Ops Eliminated: 0 --- 
-- Num. Instructions Eliminated: 0 -- 
--------------------------------------- 
 
Done Performing Register Allocation. 
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#++++++++++++++++++++++++++++++++# 
Printing Routine: 
End Printing Routine 
********************************************** 
 Start simulation : _DUMP_IR_AFTER_REGALLOC.txt 
#-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-# 
DEBUG_PRINT: (I)16784 
#-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-# 
The number of cycles is: 675 
 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
         Power Stats: 
 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 
ASSOCIATIVE DCACHE: Cache Accesses: 80 (0.45) 
         read hits: 7, read misses: 7 (0.5) 
         write hits: 29, write misses: 37 (0.439394) 
         Energy Dissipation: 0.0960413 uJ 
 
ASSOCIATIVE DCACHE: Cache Accesses: 147 (0.782313) 
         read hits: 115, read misses: 32 (0.782313) 
         write hits: 0, write misses: 0 (0) 
         Energy Dissipation: 0.176476 uJ 
 
ASSOCIATIVE DCACHE: Cache Accesses: 125 (0.488) 
         read hits: 12, read misses: 64 (0.157895) 
         write hits: 49, write misses: 0 (1) 
         Energy Dissipation: 1.02249 uJ 
 
SRAM:   loads: 0, stores: 0 
        Energy Dissipation: 0 uJ 
 
DRAM:   loads: 64,      stores: 3 
        Energy Dissipation:  0.00458459 uJ 
 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 
***TIME*** : 0.5 secs 
 End simulation : _DUMP_IR_AFTER_REGALLOC.txt 
********************************************** 
 
#-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-# 
Number of Cycles (After RA): 675 
#-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-# 
 



 
_____________________________________________________________________ 

 
                                      Implementation of a VLIW Architecture in EXPRESSION ADL 

81

#-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-# 
Number of Cycles (After RA, LockStep): 0 
#-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-# 
 
-------------------------------------------------------- 
 Code Size After All Transformations: 
         Num. Instructions = 53 
         Num. Operations = 51 
-------------------------------------------------------- 
 
 
-- EXPRESS: Finished  ---------------------------------------------------- 
 
 
Leaving EXPRESS... 

4.2.3. Other Relevant Stat files 
 
There are many other relevant stats generated in the files mentioned below 
 

 DumpIRFormat.txt 
 IselMapping.txt 
 VLIW.pwrStats 
 DUMP_IR_AFTER_REGALLOC.txt 
 MIPS_OpCodeTiming.txt 
 operandsMappingFile.txt 
 SpillReloadTarget.txt 
 targetRegClasses.txt 
 targetRegClassToRegsMapping.txt 
 targetRegFileList.txt 
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4.3. Design Space Exploration 
 
Detailed design space exploration was carried to optimize and analyze the VLIW 
architecture designed. Several directions were taken to optimize the processor 
functionality details of the same are mentioned below. 

4.3.1 Changing Instruction Memory Access time 
 
The access time of the instruction memory was reduced from 40 cycles to 50 cycles. 
Ideally the number of cycles required to complete the Livermore loops simulation on 
VLIW processor was suppose to take more number of cycles. Same was depicted 
originally in the simulation results. Graph has been plotted and shown below for the same 
to display results in the same perspective. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

4.3.2 Issuing More Instructions in Parallel from 
Decode Unit 
 
Initially 4 instructions were issued from processor decode unit in parallel. To explore 
further I increased the number of parallel instructions to 6. 
Ideally the number of cycles required to complete the Livermore loops simulation on 
VLIW processor was suppose to take lesser number of cycles. Same was depicted 
originally in the simulation results. Graph has been plotted and shown below for the same 
to display results in the same perspective. 
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4.3.3 Decreasing number of ALUs from the Processor 
 
Initially 4 ALUs were part of the processor. To explore further I decreased the number of 
ALUs to 3. 
Ideally the number of cycles required to complete the Livermore loops simulation on 
VLIW processor was suppose to take more number of cycles since the computing 
capability of the processor was reduced. However on the contrary interestingly the 
number of cycles to complete the simulation was reduced. Reason for the same could be 
that 3 ALU Architecture might be more suited for running the application based upon 
liver more loops. Graph has been plotted and shown below for the same to display results 
in the same perspective. 
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4.3.4 Power Analysis 
 
Initially 2 instructions were issued from processor decode unit in parallel and the memory 
access time was set to 50 cycles. To explore and optimize the hardware the number of 
instructions issued in parallel was increased to 4 and the memory access time was 
reduced to 40 cycles. 
Ideally the number of cycles required to complete the Livermore loops simulation on 
VLIW processor was suppose to take lesser number of cycles and also reduced energy 
dissipation from Instruction memory. However no impact on the energy dissipated from 
the cache memories. Same was depicted originally in the simulation results. Graphs for 
both types of memories have been plotted and shown below to display results in the same 
perspective. 
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CHAPTER #5 
 

5. CONCLUSION: 
 
I intended to design a processor in an ADL. EXPRESSION was the ADL which I used to 
design my processor and complete understanding was developed initially for using the 
ADL’s VSAT GUI.  
The design of the processor is elaborate and complete memory hierarchy is also 
explained. The VLIW processor designed is quite powerful due to availability of four 
ALUs. Same architecture can be made reconfigurable by using specific functions of ALU 
units at a time. In turn the processor has wide variety of applications and power 
requirements accordingly. Designing the processor in ADL helped me to explore more 
options for optimizing the hardware design. ADL has many more application likes 
simulating the results for the designer as well. Lots of relevant stats information is 
generated after compiling the architecture in EXPRESSION which helps in optimizing 
the architecture. 
Complete installation procedure and ADL code is also shared with the thesis which can 
be used for further learning and knowledge sharing.  
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CHAPTER #6 

 

6. FUTURE ENHANCMENTS AND SCOPE: 
 

6.1. FUTURE PERSPECTIVE 
 
I have implemented the VLIW architecture in the ADL.  
 

• Next logical step should be to make the same processor more efficient by 
exploring different design options. 

• EXPRESSION simulates the bench mark of Livermore Loops and also allows 
different software applications to be simulated on the designed Architecture. 

• Using EXPRESSION we can make embedded architecture design most suited and 
sorted out simulating the target application on the same. 

• More improvements can be made in the same architecture by optimizing it’s 
power requirements and making a design which is more power efficient. 

• Introducing reconfiguration can also server to improve the power requirements of 
the same hardware. 

 
RECONFIGURATION IN THE STAND ALONE MODE: 
 

6.2. PROCEDURE: 
 
Getting the specific bit stream can be done using a CPLD (complex programmable logic 
device) which picks it up from the EPROM also designed in ADL and make it available 
whenever reconfiguration is required. Reconfiguration logic can be simulated by creating 
the CPLD aware application and running in on the intended architecture. Keeping in view 
that the application is smart enough to load new configuration from EPROM and using 
the architecture accordingly. 
Reconfiguration logic being implemented can be optimized with minimum hardware and 
maximum utility of the resources creating a cutting edge processor both in terms of 
Speed. Space, Power Consumption and Heat Dissipation. 
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6.3. COMMENT: 
 
Designing the CPLD is in fact an additional hardware which can interface with existing 
VLIW processor or it can have use with other hardware design where reconfiguration can 
be done to improve the efficiency of the design. Interfacing the CPLD with the VLIW 
architecture proposed or can also be made a generic CPLD which can be used with other 
reconfigurable architectures as well. 
Since using lesser power and optimizing the use of existing resources is the aim of the 
designer so Architecture Description language provide designers with vast opportunity to 
find the best possible solution.  
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LIST OF ACRONYMS 
 
 
ALU  Arithmetic Logic Unit  

ASIC  Application Specific Integrated 
Circuits 

CISC  Complex Instruction Set Computers  

FPGA  Field Programmable Gate Array  

FU  Functional Unit  

FPL  Field Programmable Logic  

ILP  Instruction level Parallelism  

OPCODE  Operational Code  

RISC  Reduced Instruction Set computers  

RCS  Reconfigurable Computing System  

RFU  Reconfigurable Functional Unit  

RTR  Runtime Reconfiguration  

RC  Reconfigurable Computers  

VLIW  Very Large Instruction Word  

ADL Architecture Description Language 

EXPRESSION Name of the ADL used 

 
 
 


