
 Implementation of a VLIW Architecture in EXPRESSION ADL

1

ABSTRACT

Aim of the project is to make a VLIW (very large instruction word) processor in an

EXPRESSION ADL. Such processors include one or more functional units, each capable

of performing a certain class of functions in parallel. Such processors utilize these

multiple functional units simultaneously, to execute programs faster.

The first step in a top-down validation methodology is to capture the programmable

architectures using a specification language. The language should be powerful

enough to specify the wide spectrum of contemporary processor, coprocessor, and

memory features.

I have designed and implemented the Machine Description of a VLIW processor in

EXPRESSION Architecture Description Language. Advances in semiconductor

technology permit increasingly complex applications to be realized using programmable

systems-on-chips (SOCs). Architecture Description Language (ADL) is a computer

language used to describe software and/or system architectures. EXPRESSION supports

architectural design space exploration for embedded Systems-on-Chip (SOC) and

automatic generation of a retargetable compiler/simulator toolkit. A VLIW

implementation has capabilities to those of a superscalar processor issuing and

completing more then one operation at a time. For the VLIW implementation, the long

instruction word already encodes the concurrent operations. The processor implemented

in ADL presents us with the opportunity to improve on the short comings in design.

Detailed EXPRESSION language manual is also attached with the Thesis for future

references. My design includes both processing and control unit.

 Implementation of a VLIW Architecture in EXPRESSION ADL

2

ACKNOLEDGEMENTS

"All Praise belongs to ALLAH alone, Lord of all Worlds. Who created the heaven
and the earth and all that is between the two and indeed in them there are many signs for
those who seek."
(AI-Qur'an)
First of all, I bow my head in deep gratitude to ALMIGHTY who endowed me with
the potential and ability to carry out this task with success and to the Holy Prophet (Peace
be upon him) for being a beacon of knowledge and learning for the mankind.
I would like to thank my respected teacher Dr Shoaib who assigned me this project to
build my Knowledge and for his constant encouragement, invaluable advice and help.
Special thanks to Dr. Khalid, Head of Computer Engineering Department, who
has been extremely helpful through out my project. I also appreciate the help of
laboratory staff.
I must acknowledge the prayers and well wishes of my parents and family who are
behind every success and perhaps is the major stimulating force that facilitates in
achieving what I aspire. I am also thankful to my class fellows for motivating comments.

 Implementation of a VLIW Architecture in EXPRESSION ADL

3

TABLE OF CONTENTS

ABSTRACT .. 1
ACKNOLEDGEMENTS ... 2
TABLE OF CONTENTS .. 3
LIST OF FIGURES: .. 6
Chapter #1 ... 7
1. INTRODUCTION .. 7

1.1. ADL overview: .. 7
1.1.2. Architecture in the past ... 8
1.1.3. The ADL Must: ... 8
1.1.4. ADLs have in common: .. 8
1.1.5 ADLs differ in their ability to: ... 8
1.1.6. Positive elements of ADL ... 8
1.1.7. Negative elements of ADL ... 9
1.1.8. Object Connection Architecture ... 9
1.1.9. Interface Connection Architecture .. 9

1.2. ADL supports: .. 9
1.2.1. Desirable features of an ADL are ... 9
1.2.2. Approaches to modeling configurations ... 10
1.2.3. Approaches to associating architecture with implementation 10

1.3. Types of ADL: ... 10
1.3.1. Software ADLs ... 10
1.3.2. Hardware ADLs .. 10

1.4. ASIPs: .. 11
1.4.1. PIPELINING... 12
1.4.2. MULTIPLE PROCESSORS ... 12
1.4.3. SUPERSCALER IMPLEMENTATION .. 12

1.5. VERY LONG INSTRUCTION WORD (VLIW) PROCESSOR:......................... 13
1.6. COMPARISION OF CISC SUPERSCALAR, RISC SUPER SCALAR AND
VLIW: ... 14

1.6.1. CISC:... 14
1.6.2. RISC:... 14
1.6.3. VLIW: ... 14
1.6.4. Example: ... 15

1.7. Implementation COMPARISON: .. 16
1.7.1. superscalar CISC, superscalar RISC and VLIW: ... 16
1.7.2. CISC AND RISC: ... 16

1.8. VLIW architecture detail: .. 18
1.8.1. ADVANTAGES: .. 18
1.8.2. Target VLIW Processor: ... 20

 Implementation of a VLIW Architecture in EXPRESSION ADL

4

Chapter # 2 .. 21
2. EXPRESSION ADL ... 21

2.1. Choosing EXPRESSION ADL: ... 21
2.2. Goals and Approach ... 22
2.3. Keys features of EXPRESSION ADL are ... 23

2.3.1. Release 1.0 of the EXPRESSION toolkit supports the following exploration
features: ... 23

2.4. Explanation: ... 24
2.4.1. Expression Design Flow: .. 26
2.4.2. System Requirements for Expression ADL: ... 27
2.4.3. EXPRESSION ADL to compiler and simulator back-end flow: 28
2.4.4. EXPRESS retarget able complier ... 28
2.4.5. SIMPRESS retarget able simulator: .. 29

2.5. GUI driven specification capture in EXPRESSION:... 29
2.6. The Processor Architecture .. 31

2.6.1. Sections in EXPRESSION: .. 32
2.7. Operations Specification: ... 32

2.7.1. Instruction Description.. 37
2.7.2. Operation Mappings: .. 38
2.7.3. Components Specification: ... 42

Chapter # 3 .. 54
3. VLIW ARCHITECTURE DETAIL ... 54

3.1. VLIW PROCESSOR ... 54
3.1.2. IMPLEMENTATION: .. 54
3.1.3. RECONFIGUARTION: ... 54

3.2. CLASSIFICATION OF RECONFIGURABLE ARCHITECTURES: 54
3.2.1. Implementing the reconfigurable hardware: ... 55

3.3. A DYNAMICALLY RECONFIGURABLE HARDWARE: 56
3.3.1. RECONFIGURABLE DEVICES:.. 56

3.4. Explanation of the target Processor: .. 57
3.4.1. PROGRAM MEMORY: ... 58
3.4.2. INSTRUCTION FORMAT: ... 58
3.4.3. THE INSTRUCTION DECODING PROCESS: .. 59
3.4.4. Activities of the control unit: .. 59

3.5. EXPLANATION OF PROCESSING UNIT ... 64
3.5.1. ARCHITECTURE BITS: ... 65

3.6. DETAIL OF PROCESSING UNIT ... 65
3.6.1.OPCODE: .. 66
3.6.2. OPERANDS: .. 66
3.6.3. DESTINATION: ... 66
3.6.4. FUNCTIONAL UNITS: ... 66

CHAPTER #4 ... 68
4. Results ... 68

4.1. EXPRESSION COMPILATION ... 68
4.1.1. Memory Configuration as Compiled by EXPRESSION: 68
4.1.2. Output of EXPRESS Console compilation ... 69

 Implementation of a VLIW Architecture in EXPRESSION ADL

5

4.2. SIMPRESS SIMULATION ... 75
4.2.1. Power stats detail as compiled by EXPRESS AND SIMPRESS 76
4.2.2 Output of ACESMIPS Console simulation.. 76
4.2.3. Other Relevant Stat files ... 81

4.3. Design Space Exploration .. 82
4.3.1 Changing Instruction Memory Access time .. 82
4.3.2 Issuing More Instructions in Parallel from Decode Unit 82
4.3.3 Decreasing number of ALUs from the Processor .. 83
4.3.4 Power Analysis .. 84

CHAPTER #5 ... 85
5. CONCLUSION: ... 85
CHAPTER #6 ... 86
6. FUTURE ENHANCMENTS AND SCOPE: 86

6.1. FUTURE PERSPECTIVE ... 86
6.2. PROCEDURE: ... 86
6.3. COMMENT: .. 87

Bibliography ... 88
LIST OF ACRONYMS .. 90

 Implementation of a VLIW Architecture in EXPRESSION ADL

6

LIST OF FIGURES:

Figure 1.1: High-level block diagram of a superscalar RISC/CISC processor 17
Figure 1.2: A generic VLIW implementation ... 20
Figure 2.1: EXPRESSION Design Flow .. 22
Figure 2.2: EXPRESSION GUI Screen Shot ... 25
Figure 2.3: EXPRESSION System Design Flow ... 26
Figure 2.4: Simplified processor architecture ... 30
Figure 2.5: VSAT-GUI layout for the proposed architecture ... 31
Figure 2.6: Operand Types for an Operation "and" .. 33
Figure 2.7: Setting VAR_GROUPS ... 35
Figure 2.8: VLIW Instruction Template ... 37
Figure 2.9: Tree Mapping ... 38
Figure 2.10: Register Class mappings for Operands .. 40
Figure 2.11: Fetch unit .. 42
Figure 2.12: Two ports of the ALU1_READ unit .. 45
Figure 2.13: Alu1ReadExLatch .. 46
Figure 2.14: A Connection component ... 47
Figure 2.15 (a): Selecting ‘Add Datapath’ option .. 49
Figure 2.15 (b): Selecting FPRFile .. 49
Figure 2.15 (d): Selecting port ... 49
Figure 2.15 (f): Selecting port ALU1Read Figure .. 50
Figure 2.16: L1 cache with port .. 52
Figure 3.1: Classification of Reconfigurable Architecture ... 55
Figure 3.2: Processors Control Unit.. 57
Figure 3.3: Processing Unit .. 64

 Implementation of a VLIW Architecture in EXPRESSION ADL

7

Chapter #1

1. INTRODUCTION

1.1. ADL overview:

The first step in a top-down validation methodology is to capture the programmable
architectures using a specification language. The language should be powerful enough to
specify the wide spectrum of contemporary processor, coprocessor, and memory features.
On the other hand, the language should be simple enough to allow correlation of the
information between the specification and the architecture manual. Specifications widely
in use today are still written informally in natural language like English. Since natural
language specifications are not amenable to automated analysis, there are possibilities of
ambiguity, incompleteness, and contradiction: all problems that can lead to different
interpretations of the specification.
Many formal and semi-formal specification languages for describing software and
hardware designs have been proposed over the years. The languages range in
expressiveness and their different levels of granularity determine their appropriateness
for different applications.
Advances in semiconductor technology permit increasingly complex applications to be
realized using programmable systems-on-chips (SOCs). Furthermore, shrinking time-to-
market demands, coupled with the need for product versioning through software
modification of SOC platforms, have led to a significant increase in the software content
of these SOCs. However, designer productivity is greatly hampered by the lack of
automated software generation tools for the exploration and evaluation of different
architectural configurations. Traditional hardware-software co design flows do not
support effective exploration and customization of the embedded processors used in
programmable SOCs. The inherently application-specific nature of embedded processors
and the stringent area, power, and performance constraints in embedded systems design
critically require a fast and automated architecture exploration methodology. Architecture
description language (ADL)-Driven design space exploration and software toolkit
generation strategies present a viable solution to this problem, providing a systematic
mechanism for a top-down design and validation of complex systems. The heart of this
approach lies in the ability to automatically generate a software toolkit that includes an
architecture-sensitive compiler, a cycle-accurate simulator, assembler, debugger, and
verification/validation tools.
Architecture Description Language (ADL) is a computer language used to describe
software and/or system architectures. This means in case of technical architecture, the
architecture must be communicated to software developers. With functional architecture,
the software architecture is communicated with stakeholders and enterprise engineers.

 Implementation of a VLIW Architecture in EXPRESSION ADL

8

ADLs result from a linguistic approach to the formal representation of architectures, and
as such they address its shortcomings. Also important, sophisticated ADLs allow for
early analysis and feasibility testing of architectural design decisions.

1.1.2. Architecture in the past

Architectures in the past were largely represented by box-and-line drawing. The Nature
of the components, component properties, Semantics of connections and behavior of the
system is usually defined in such a drawing:

1.1.3. The ADL Must:

ADL should be suitable for communicating architecture to all interested parties and
also support the tasks of architecture creation, refinement and validation.

It should also provide a basis for further implementation, so it must be able to add
information to the ADL specification to enable the final system specification to be
derived from the ADL.

ADL should provide the ability to represent most of the common architectural styles
and support analytical capabilities or provide quick generating prototype
implementations

1.1.4. ADLs have in common:

Architecture description languages have common graphical syntax with often a
textual form and a formally defined syntax and semantics, features for modeling
distributed systems, little support for capturing design information, except through
general purpose annotation mechanisms and ability to represent hierarchical levels of
detail including the creation of substructures by instantiating templates

1.1.5 ADLs differ in their ability to:

Architecture description languages can have ability to handle real-time constructs,
such as deadlines and task priorities, at the architectural level, support the
specification of different architectural styles. Few languages handle object oriented
class inheritance or dynamic architectures and also support analysis.

1.1.6. Positive elements of ADL

ADLs represent a formal way of representing architecture, ADLs are intended to be
both human and machine readable, ADLs support describing a system at a higher
level than previously possible, ADLs permit analysis of architectures – completeness,
consistency, ambiguity and ADLs can support automatic generation of software
systems

 Implementation of a VLIW Architecture in EXPRESSION ADL

9

1.1.7. Negative elements of ADL

There is no universal agreement on what ADLs should represent, particularly as
regards the behavior of the architecture.

Representations currently in use by ADLs are relatively difficult to parse and are not
supported by commercial tools

Most ADLs tend to be very vertically optimized toward a particular kind of analysis

The ADL community generally agrees that Software Architecture is a set of components
and the connections among them.

1.1.8. Object Connection Architecture

Configuration consists of the interfaces and connections of an object-oriented system,
interfaces specify the features that must be provided by modules conforming to an
interface, connections represented by interfaces together with call graph,
conformance usually enforced by the programming language.

1.1.9. Interface Connection Architecture

Expands the role of interfaces and connections, interfaces specify both “required” and
“provided” features, connections are defined between “required” features and
“provided” features.

Consists of interfaces, connections and constraints, constraints restrict behavior of
interfaces and connections in an architecture, constraints in an architecture map to
requirements for a system.

Most ADLs implement interface connection architecture.

1.2. ADL supports:

An ADL is a language that provides features for modeling a software system’s
conceptual architecture, distinguished from the system’s implementation.
An ADL must support the building blocks of an architectural description Components,
Interfaces, Connectors, and Configurations.

1.2.1. Desirable features of an ADL are

We should be able to defined specific aspects of components, connectors,
configurations and should also have tool support.

 Implementation of a VLIW Architecture in EXPRESSION ADL

10

1.2.2. Approaches to modeling configurations

There are three types of modeling configurations, Implicit configuration, In-line
configuration and Explicit configuration.

1.2.3. Approaches to associating architecture with
implementation

There are two types of associating architecture, Implementation constraining and
Implementation independent.

1.3. Types of ADL:

There are two types of ADLs: software ADLs and hardware ADLs.

1.3.1. Software ADLs

For software ADLs, the description is of the software architecture. Therefore, the
components are software processes or modules. According to Kogut and Clements,
ADLs seek to increase the understandability and re-usability of architectural designs, and
enable greater degrees of analysis. ADLs are used to define and model system
architecture prior to system implementation. Among the issues ADLs address are the
following

1.3.1.1. Component behavioral specification.

ADLs typically provide support for specifying both functional and non-functional
characteristics of components. (Non-functional requirements include those associated
with safety, security, reliability, and performance.) Depending on the ADL, timing
constraints, properties of component inputs and outputs, and data accuracy may all be
specified.

1.3.1.2. Component protocol specification.

1.3.1.3. Connector specification.

ADLs contain structures for specifying properties of connectors, where connectors are
used to define interactions between components.

1.3.2. Hardware ADLs

Hardware ADLs are principally concerned with describing the hardware components.
This is often the case when dealing with application specific instruction-set processor

 Implementation of a VLIW Architecture in EXPRESSION ADL

11

(ASIPs) within a -design process. Therefore, the languages describe the processors in
terms of their instruction sets. Hence, they are sometimes called machine description
languages.

1.4. ASIPs:

Embedded systems present a tremendous opportunity to customize designs by exploiting
the application behavior. Shrinking time-to-market, coupled with short product lifetimes
create a critical need for rapid exploration and evaluation of candidate System-on-Chip
(SOC) architectures. System architects critically need tools, techniques, and
methodologies to perform rapid architectural exploration for a given set of applications to
meet the diverse requirements, such as better performance, low power, smaller silicon
area, higher clock frequency etc.
The existing approaches are either semi-automatic (expects designers to write data path
components manually) or covers a restricted set of architectures. However, none of these
approaches are able to capture a wide spectrum of processor features present in DSP,
VLIW, EPIC and Superscalar processors, and generate synthesizable RTL from the ADL
specification. The main bottleneck has been the lack of an abstraction (covering a diverse
set of architectural features) that permits the reuse of the primitives to compose the
heterogeneous architectures.
Modern Application Specific Instruction-set Processors (ASIPs) face the demanding task
of delivering high performance for a wide range of applications. For enhancing the
performance, architectural features e.g. pipelining, VLIW etc are often employed in
ASIPs, leading to high design complexity. Integrated ASIP design environments like
template-based approaches and language driven approaches provide an answer to this
growing design complexity. At the same time, increasing hardware design costs have
motivated the processor designers to introduce high flexibility in the processor.
Flexibility, in its most effective form, can be introduced to the ASIP by coupling a re-
configurable unit to the base processor. Due to its obvious benefits, several re-
configurable ASIPs (rASIPs) have been designed in the recent years. These rASIP
designs lacked a generic flow from high-level specification, resulting into intuitive design
decisions and hard-to-retarget processor design tools. Field-programmable logic (FPL) is
rapidly becoming established in markets requiring high-performance, low lead time and
the ability to perform soft-upgrades on site. However, few current FPL systems utilize
run-time reconfiguration (RTR) and those that do rely on infrequent and coarse grained
reconfiguration.
Due to its obvious benefits, several re-configurable ASIPs (rASIPs) have been designed
in the recent years. These rASIP designs lacked a generic flow from high-level
specification, resulting into intuitive design decisions and hard-to-retarget processor
design tools. Although a template-based approach for rASIP design is existent, a clear
design methodology especially for the pre-fabrication architecture exploration is not
present. In order to address this issue, a high-level specification and design methodology
for partially re-configurable VLIW processors is proposed.
Improvements in the processor performance come from two main sources: FASTER
SEMICONDUCTOR TECHNOLOGY and PARALLEL PROCESSING. Parallel
processing on multiprocessors, multicomputers & processor clusters has traditionally

 Implementation of a VLIW Architecture in EXPRESSION ADL

12

involved a high degree of effort in mapping an algorithm to a form that can better exploit
multiple processors & threads of execution .Such reorganization has often been
productively applied especially for scientific programs. The general purpose
microprocessor industry on the other hand has pursued methods of automatically
speeding up existing programs without major restructuring effort. This leads to the
development of Instruction Level Parallel processor that tries to speed up program
execution by overlapping the execution of multiple instructions from an otherwise
sequential program.
ILP processors achieve their high performance by causing multiple operations. Some
methods which exploit ILP are:

• PIPELINING
• MULTIPLE PROCESSORS
• SUPERSCALAR IMPLEMENTATION
• SPECIFYING MULTIPLE INDEPENDENT INSTRUCTIONS PER CYCLE.

1.4.1. PIPELINING

Pipelining is now universally implemented in high-performance processors. It is a means
of introducing parallelism into the essentially sequential nature of a machine instruction.
Examples are instruction pipelining and vector processing.

1.4.2. MULTIPLE PROCESSORS

 Multi processors improve performance for only a restricted set of applications.

1.4.3. SUPERSCALER IMPLEMENTATION

Superscalar implementation can improve for all types of applications. Superscalar (super
beyond; scalar one dimensional) means the ability to fetch, issue to execution units, and
complete more than one instruction at a time. Superscalar implementations are required
compatibility must be preserved, and they will be used for entrenched architecture with
legacy software, such as the X86 architecture that dominates the desktop computers.
Specifying multiple operations per instruction creates a very long instruction word
architecture or VLIW. A VLIW implementation has capabilities to those of a
superscalar processor issuing and completing more then one operation at a time with one
important exception: the VLIW hardware is not responsible for discovering opportunities
to execute multiple operations concurrently. For the VLIW implementation, the long
instruction word already encodes the concurrent operations.
Very long instruction word architecture is suitable alternative for exploiting instruction
level parallelism (ILP) in programs that is for executing more then one instruction at a

 Implementation of a VLIW Architecture in EXPRESSION ADL

13

time. The VLIW processor executes the set of operations within a MultiOp, which is a
long instruction word consist of multiple arithmetic, logic & control operations each of
which would probably be an individual operation on a simple RISC processor, thereby
achieving instruction level parallelism

1.5. VERY LONG INSTRUCTION WORD (VLIW)
PROCESSOR:

“Very long instruction word (VLIW) describes a computer processing architecture in
which a language compiler or pre-processor breaks program instructions down into basic
operations that can be performed by the processor in parallel (i.e. at the same time).
These operations are put into a very long instruction word which the processor can then
take apart without further analysis, handling each operation to an appropriate functional
unit. Such architectures have more then one functional units, for parallel processing. The
processor fetches different instructions as one long instruction, and then it breaks them
and dispatches them accordingly to the different functional units.”
By Joseph Fisher, VLIW is an architecture which issues one instruction per cycle, where
each long instruction called MultiOp consists of many tightly coupled independent
operations each of which execute in a small and statically predictable number of cycles.
In such a system the task of grouping independent operations into a MultiOp is done by a
compiler or binary translator. The processor freed from the cumbersome task of
dependence analysis has to merely execute in parallel the operations contained within a
MultiOp.
The VLIW is a processor with more then one functional unit and the processor with the
multiple functional units has the potential to execute several operations in parallel. If the
decision about which operations to execute in an overlapped manner is made at the
runtime by the hardware, it is called a superscalar processor. To simplify the superscalar
a binary program represents a plan of execution. The processor acts as an interpreter that
executes the instructions in the program one at a time. From the point of view of a
modern superscalar processor, an input program is more like a representation of an
algorithm for which several different plans of execution are possible. Each plan of
execution specifies when & on which functional unit each instruction from instruction
stream is to be executed. ILP processors differ in the manner in which the plan of
execution is derived, but it typically involves both the compiler & the hardware. In the
current breed of high performance processors like the Intel Pentium and the Ultra Sparc,
the compiler tries to expose parallelism to the processor by means of several
optimizations the net result of which is to place as many independent operations as close
to each other in the instruction at a time analyses the Dependences between instructions
and keeps track of the availability of data & hardware resources for each instruction. It
tries to schedule each decisions are often further complicated by the fact that operations
like memory accesses often have variable latencies that depend on whether a memory
access hits in the cache or not. Since such processors decide which functional unit should
be allocated to which instruction as execution progresses, they are said to be dynamically
scheduled.

 Implementation of a VLIW Architecture in EXPRESSION ADL

14

VLIW processor and superscalar implementations of traditional instruction sets share
some characteristics, like multiple execution units and the ability to execute multiple
operations simultaneously. The techniques used to achieve high performance, however
are different because the parallelism is explicit in VLIW instruction but must be
discovered by hardware at run time by superscalar processors. It is simpler then CISC
and RISC as it has most simplified hardware, but it requires more compiler’s support i.e.
more powerful complier.

As VLIW basically is built on the CISC and RISC architecture or we can say superscalar
processors though it is cheaper and simpler then both of them but for the basic
understanding we should have some idea of CISC and RICS architectures. From the
larger perspective RISC, CISC and VLIW architectures have more similarities than
differences. The differences that exists, have however profound effects on the
implementation of these architectures.

1.6. COMPARISION OF CISC SUPERSCALAR, RISC
SUPER SCALAR AND VLIW:

These architectures use the traditional state machine model of computation. Each
instruction effects an incremental change in the state (memory, registers) of the computer,
and the hardware fetches and executes instructions sequentially until a branch instruction
causes the flow of control to change.

1.6.1. CISC:

CISC instructions vary in size, often specify a sequence of operations and can require
serial (slow) decoding algorithms.CISCs tend to have few register may be special-
purpose , which restricts the ways in which they can be used. Memory references are
typically combined with the other operations (such as add memory to register).

1.6.2. RISC:

RISC instructions specify simple operations, are fixed in size, and are easy (quick) to
decode. RISC architectures have a relatively large number of general-purpose registers.
Instructions can reference main memory through simple load-register –from-memory and
store –register-to-memory operations. RISC instructions sets do not need microcode and
are designed to simplify pipelining.

1.6.3. VLIW:

VLIW instructions are like RISC instruction can be longer to allow them to specify
multiple independent simple operations. A VLIW instruction can be thought of as several
RISC instructions joined together. VLIW architectures tend to be RISC-like in most
attribute.

 Implementation of a VLIW Architecture in EXPRESSION ADL

15

1.6.4. Example:

C-language code:

 function (j)
{

long j;

long I;

 j=j+i;
}

1.6.4.1. CISC’s instruction:

Add 4[r1] <-r2

addMR 4 r1 r5

1.6.4.2. RISC’s instruction:

Load r5<-4[r1]
Add r5<-r5+r2
Store 4[r1] <-r5

Load r5 r1 4

Add r5 r5 r2

Store r5 4 r1

 Implementation of a VLIW Architecture in EXPRESSION ADL

16

1.6.4.3. VLIW instruction:

Load r5<-4[r1]
Add r5<-r5+r2
Store 4[r1] <-r5

- - - - - - - - Load r5 r1 4

1.7. Implementation COMPARISON:

1.7.1. superscalar CISC, superscalar RISC and VLIW:

The difference between CISC, RISC and VLIW architectures manifest themselves in
their respective implementations. High performance RISC, CISC designs are called
superscalar implementations. Superscalar in this context simply means “beyond scalar”
where scalar means one operation at a time. Thus, superscalar means more than one
operation at a time.

1.7.2. CISC AND RISC:

Most CISC instruction sets were designed with the idea that an implementation will fetch
one instruction executes its operation fully, and then move on to the next instruction. The
assumed execution model was thus serial in nature.
RISC architects were aware of the advantages & peculiarities of pipelined processor
implementations, and so designed RISC instruction sets with a pipelined execution model
in mind. In contrast to the assumed CISC execution model, the idea for RISC execution
model is that an implementation will fetch one instruction, issue it into the pipelined and
then move on to the next instruction before the previous one has completed its trip
through the pipeline.

The assumed RISC execution model-a pipeline-overlaps phases of execution for several
instructions simultaneously, but like the CISC execution model, it is scalar, that is at most
one instruction is issued at a time.

- - - - add r5 r5 r2 - - - -

- - - - - - - - Store r5 r1 4

 Implementation of a VLIW Architecture in EXPRESSION ADL

17

For either CISC or RISC to reach higher-level of performance than provided by a
single pipeline, a superscalar implementation must be constructed. The nature of a
superscalar implementation is that it fetches issues & completes more than one
CISC or RISC instruction per cycle.

Some more recent RISC architectures have been designed with superscalar
implementations in mind. The most notable examples are the DEC Alpha and
IBMPOWER (from which PowerPC is derived). Nonetheless, superscalar RISC and
Superscalar CISC implementations share fundamental complexities, the need for the
hardware to discover and exploit instruction-level parallelism.

Figure 1.1: high-level block diagram of a superscalar RISC/CISC
processor

The implementation consists of a collection of execution units.

• INTEGER ALUs
• FLOATING POINT ALUs
• LOAD/STORE UNITS

 Implementation of a VLIW Architecture in EXPRESSION ADL

18

• BRANCH UNITS (These are fed from an instruction dispatcher and operands
from a register file).

The execution units have reservation stations to buffer waiting operations that have been
issued but are not yet executed. The operations may be waiting on operands that are not
yet available.

The instruction dispatcher examines a window of instructions contained in a buffer. The
dispatcher looks at the instructions in the window and decides which ones can be
dispatched to execution units. It tries to dispatch as many instructions at once as possible,
i.e. more execution units, require wider windows and a more sophisticated dispatcher.
It is conceptually simple-though expensive to build an implementation with lots of
execution units and an aggressive dispatcher, but it is not currently profitable to do so.

The complier for RISC and CISC processor produce code with the certain goals in mind.
These goals were typically to minimize code size and runtime. For scalar and very simple
superscalar processor implementation, these goals are mostly compatible.

For high performance superscalar implementations on the other hand, the goal of
minimizing code size limits the performance that the superscalar implementation can
achieve. Performance is limited because minimizing code size results in frequent
conditional branches, about every six instructions. Conceptually the processor must wait
until the branch is resolved before it can begin to look for parallelism at the target of the
branch.

1.8. VLIW architecture detail:

 A VLIW implementation achieves the same effect as a superscalar RISC, CISC
implementation, but the VLIW design does so without the two most complex parts of a
high performance superscalar design.

 Because VLIW instruction explicitly specifies several independent operations-i.e.
they explicitly specify parallelism-it is not necessary to have decoding and dispatching
hardware tries to reconstruct parallelism from a serial instruction stream. Instead of
having hardware attempt to discover parallelism, VLIW processors rely on the
complier that generates the VLIW code to explicitly specify parallelism. Relying on
the complier has advantage.

1.8.1. ADVANTAGES:

First the complier has the ability to look at much larger window of instructions than the
hardware. For a superscalar processor, a larger hardware window implies larger amount
of logic and therefore chip area. At some point, there simply is not enough of either, and
window size is constrained. Worse, even before a simple limit on the amount of hardware
is reached, complexity may adversely affect the speed of the logic, thus the window size
is constrained to avoid reducing the clock speed of the chip. Software windows can be

 Implementation of a VLIW Architecture in EXPRESSION ADL

19

arbitrarily large. Thus, looking for parallelism in a software window is likely to yield
better results.

Second, the complier has the knowledge of the source code of the program. Source code
typically contains important information about the program behavior that can be used to
help express maximum parallelism at the instruction-set level. A powerful technique
called trace-driven compilation can be employed to dramatically improve the quality of
code output by the compiler. Trace driven compilation first produces a suboptimal, but
correct behavior- which branches are taken, how often, etc.-is then used by the complier
during a second compilation to produce code that takes advantage of accurate knowledge
of program behavior. Thus, with trace-Driven compilation, the complier has access to
some of the dynamic information that would be apparent to the hardware dispatch logic.

Third, with sufficient register, it is possible to mimic the functions of the superscalar
implementation’s reorder buffer. The purpose of the reorder buffer is to allow a
superscalar processor to speculatively execute instructions and then be able to quickly
discard the speculatively executed instructions in temporary registers. The complier
knows how many instructions will be speculatively executed, so it simply uses the
temporary registers along the speculated (predicted) path and ignores the values in those
registers along the path that will be taken if the branch turns out to have been miss
predicted.

This figure shows a generic VLIW implementation, without the complex reorder buffer
and decoding and dispatching logic.

 Implementation of a VLIW Architecture in EXPRESSION ADL

20

Figure 1.2: A generic VLIW implementation

1.8.2. Target VLIW Processor:

Our target architecture is a VLIW processor augmented with one (or possibly more)
RFUs. A VLIW machine is capable of issuing and executing multiple operations per
cycle, bundled in a "MultiOp" long-word instruction, and it relies on compile-time
scheduling to determine independent operations which can be issued concurrently at
execution time. The machine is equipped with multiple functional units so as to exploit
the parallelism that has been exposed by the compiler. Many techniques for exploiting
instruction-level parallelism have been studied and implemented in optimizing compilers
in order to find groups of independent operations in each cycle.
Because of the existence of a high number of FUs, advanced VLIW processors are
organized in clusters. Every cluster consists of a number of functional units and a register
file that these FUs share. Since the cost of register files grows exponentially with the
number of read/write ports, the organization in clusters solves the cost problem by
keeping the number of ports per register file low. The IS architecture provides special
instructions that copy values between register files of different clusters.

 Implementation of a VLIW Architecture in EXPRESSION ADL

21

Chapter # 2

2. EXPRESSION ADL

2.1. Choosing EXPRESSION ADL:

EXPRESSION is a language supporting architectural design space exploration for
embedded Systems-on-Chip (SOC) and automatic generation of a retarget able
compiler/simulator toolkit. Key features of this language-driven design methodology
include: a mixed behavioral/structural representation supporting a natural specification of
the architecture; explicit specification of the memory subsystem allowing novel memory
organizations and hierarchies; clean syntax and ease of modification supporting
architectural exploration; a single specification supporting consistency and completeness
checking of the architecture; and efficient specification of architectural resource
constraints allowing extraction of detailed reservation tables for compiler scheduling.
The advent of System-on-Chip (SOC) technology has resulted in a paradigm shift for the
design process of embedded systems employing programmable processors with custom
hardware. Modern system-level design libraries frequently consist of Intellectual Property
(IP) blocks such as processor cores that span a spectrum of architectural styles, ranging
from traditional DSPs and superscalar RISC, to VLIWs and hybrid ASIPs. Furthermore,
SOC technologies permit the incorporation of novel on-chip memory organizations
(including the use of on-chip DRAM, frame buffers, streaming buffers, and partitioned
register files), allowing a wide range of memory organizations and hierarchies to be
explored and customized for the specific embedded application. The embedded SOC
designer is thus faced with the dual tasks of 1) rapidly exploring and evaluating
different architectural and memory configurations, and 2) using a cycle-accurate
simulator and retarget able optimizing compiler to adapt the application
architecture with the goal of meeting system-level performance, power and cost
objectives.
Furthermore, shrinking time-to-market cycles create an urgent need to perform the
traditionally sequential tasks of hardware and software design in parallel. An effective
embedded SOC co design flow must therefore support automatic software toolkit
generation, without loss of optimizing efficiency. This has resulted in a paradigm
shift towards a language-based design methodology for embedded SOC optimization and
exploration. Consequently there is tremendous interest in using Architectural Description
Languages (ADLs) to drive design space exploration and automatic compiler/simulator
toolkit generation.
As with an HDL-based ASIC design flow, several benefits accrue from a language-based
design methodology for embedded SOC exploration, including the ability to perform
(formal) verification and consistency checking, to modify easily the target architecture
and memory organization for design space exploration, and to drive automatically the
backend toolkit generation from a single specification.

 Implementation of a VLIW Architecture in EXPRESSION ADL

22

EXPRESSION, an ADL that effectively supports these dual goals of SOC exploration,
as well as automatic generation of a high-quality software toolkit for embedded SOC.

2.2. Goals and Approach

SOC designers spend a lot of time and effort exploring candidate processor architectures.
The availability of a variety of processor core IP libraries (including DSP, VLIW,
SS/RISC and ASIP) presents the system designer with a large exploration space for the
choice of base processor architecture. Thus, tool-kits which allow the designer to perform
rapid exploration of various processor alternatives are necessary. These tool-kits must
provide the designer with quantitative performance measurements in order for him to
perform intelligent tradeoffs. Furthermore, the stringent performance, power, code
density, and cost constraints mandated by modern embedded systems necessitate the
development of a high-quality software tool-kit, including, at a minimum, a cycle-
accurate simulator, and an optimizing Instruction-Level Parallelism (ILP) compiler that
can exploit novel memory organizations.

Figure 2.1: EXPRESSION Design Flow

The system designer also requires the ability to customize the base processor by changing
parameters of the processor core (e.g. number of functional units, operation latencies).
The memory-intensive nature of many embedded applications (e.g. multimedia and
network) further exacerbates the traditionally critical memory bottleneck. This requires
the ability to explore (and optimize for) novel on-chip and off-chip memory organizations
and hierarchies to improve memory bandwidth (examples include the use of on-chip
DRAM, frame-buffers, queues, novel cache hierarchies, etc.). An important aspect of
such an exploration (not taken into account by most other approaches) is the ability to
also customize the compiler concurrently with the processor such that a “best-fit” is

 Implementation of a VLIW Architecture in EXPRESSION ADL

23

obtained. Figure 1 shows language-based design methodology using EXPRESSION. An
EXPRESSION description of an embedded SOC architecture can be used in two modes.
In the Exploration Phase, the system designer explores and evaluates different base
processor candidates (selected from the Processor Libraries), and different memory
organizations and hierarchies (with components selected from the Memory Libraries). In
the exploration phase, the toolkit generator is used to produce an Exploration Simulator
and a Exploration Compiler. The goal here is to support rapid Design Space Exploration
(DSE) with fast (possibly functional) simulation, and using the compiler in an estimation
mode for comparative evaluation of candidate base processors and memory
organizations. In the Refinement Phase, the EXPRESSION description is used to
generate a cycle-accurate simulator and an optimizing ILP compiler that allows the
system designer to tune the base processor characteristics, as well as to tune the memory
subsystem hierarchy. EXPRESSION was designed to provide a natural and easy to
specify mechanism for capturing the information needed to support this ADL-based
design space exploration and software toolkit generation methodology. As shown in
Figure 1, EXPRESSION facilitates the automatic generation of an optimizing, compiler
and simulator. The retarget able compiler exploits the parallelism and pipelining
available, while the simulator provides accurate timing and utilization information.
Furthermore, since the description of complex processors is cumbersome and error-prone,
EXPRESSION provides the ability to perform consistency checking and verification of
the input specification.

2.3. Keys features of EXPRESSION ADL are

• Ease of specification and modification of architecture from the GUI.
• Mixed behavioral/structural representation supporting a natural, concise

specification of the architecture.
• Explicit specification of the memory subsystem allowing novel memory

organizations and hierarchies.
• Efficient specification of architectural resource constraints allowing extraction of

detailed Reservation Tables (RTs) for compiler scheduling.

2.3.1. Release 1.0 of the EXPRESSION toolkit supports
the following exploration features:

2.3.1.1. ISA Exploration

 Adding new complex instructions.
 Changing register accessibility.

 Implementation of a VLIW Architecture in EXPRESSION ADL

24

2.3.1.2. Pipeline Exploration

 Adding a single/multi cycle functional unit.
 Adding a new pipelined functional unit.
 Deleting a pipeline path.

2.3.1.3. Memory Subsystem Exploration

 Modifying access times of caches/ memories.
 Modifying associatively of caches.
 Changing sizes of caches/memories.
 Adding new memory components in the memory subsystem.

2.4. Explanation:

There are two main components in EXPRESSION: the EXPRESS compiler and the
SIMPRESS simulator. This tool-kit is implemented with Microsoft Visual C++ 6.0 on an
i686 machine running Microsoft Windows XP. It has also been tested on Microsoft
Windows NT and Windows 2000.
A Sparc / Solaris 2.7 machine is also required for preprocessing an input application
in C using a GCC-based front-end.
An application in C is preprocessed by the GCC based front-end to generate front-end
files, <filename>.procs and <filename>.defs using the generic machine Instruction Set
Architecture (ISA). EXPRESS then reads the front-end files, builds an Intermediate
Representation (IR) amenable to different optimizations and targets the architecture
described in an EXPRESSION ADL (Architecture Description Language) description.
The output of EXPRESS is a special assembly file named
<filename>_DUMP_IR_AFTER_REGALLOC.txt.
SIMPRESS reads the special assembly file, simulates the running of assembly on an
architecture template generated from the ADL description and finally generates area,
power, and performance numbers including cycle count and memory usage statistics. The
purpose of the simulator is to assess the efficacy of the code generated by the EXPRESS
compiler for the given architecture.
The EXPRESSION tool-kit also comes with a GUI front-end to schematically enter the
architecture connectivity and instruction set description. The GUI back-end converts the
schematic description and instruction set description into EXPRESSION ADL format.

 Implementation of a VLIW Architecture in EXPRESSION ADL

25

Figure 2.2: EXPRESSION GUI Screen Shot

 Implementation of a VLIW Architecture in EXPRESSION ADL

26

2.4.1. Expression Design Flow:

The EXPRESSION aims to achieve exploration of Systems-On-Chip (SOCs) with
programmable processor cores and novel memory hierarchies. Effective exploration of
such, the compiler and the target application SOCs is possible by considering the
interaction between the processor architecture. In this project I use EXPRESSION, an
Architecture Description Language (ADL), to specify the processor-memory architecture.
EXPRESS, a highly optimizing, Instruction-Level-Parallelizing (ILP) compiler, and
SIMPRESS, a cycle-accurate, structural simulator from EXPRESSION. EXPRESSION,
EXPRESS and SIMPRESS are integrated under a visual environment, V-SAT (Visual
Specification and Analysis Tool), to aid rapid Design Space Exploration (DSE).

Figure 2.3: EXPRESSION System Design Flow

EXPRESSION was designed with the dual goal of allowing processor description for
fast DSE and for automatic generation of detailed/accurate simulation/compilation tools.
The novel features of EXPRESSION include:

• Integration of the Instruction-Set and Structure to avoid redundancy in
specification,

• Automatic generation of resource constraints (as reservation tables),
• Constructs for explicitly specifying novel and traditional memories

 Implementation of a VLIW Architecture in EXPRESSION ADL

27

EXPRESS was developed with the goal of providing a retarget able compiler platform
for Embedded-System/System-on-Chip development. The EXPRESS retarget able
compiler takes in C programs and produces a highly optimized (and parallel) target
specific code using state-of-art Instruction-Level Parallelism (ILP) techniques. The
compiler features an extensive set of integrated transformations to perform the traditional
compiler tasks of code selection, instruction scheduling and register allocation and
memory aware optimizations.

SIMPRESS is a retarget able, cycle-accurate, structural simulator that can be used to
evaluate the architecture, the application and the effectiveness of the compiler
transformations. It features an extensive set of statistic collector agents that are used to
gather information such as resource usage, hazard count, inner-loop execution time, etc.

V-SAT provides a visual environment to graphically specify the architecture and perform
Architectural DSE in an intuitive manner. The EXPRESSION description of the
processor can be automatically generated from the V-SAT specification.

2.4.2. System Requirements for Expression ADL:

The EXPRESSION toolkit is available as downloadable source code which needs to be
compiled on a host machine before it can be executed. To run EXPRESSION, you will
require a machine running Windows and Visual C++ installed on it. The EXPRESSION
toolkit has been tested on the following systems:

OS: Microsoft Windows XP Professional, Windows 2000 Server
System Type: X86-based PC
Processor: x86 Family 15 Model 1 Stepping 2 Genuine Intel ~1 Ghz
Total Physical Memory: 512.00 MB
Total Virtual Memory: 1.72 GB
Page File Space: 1.22 GB
Development Platform: Visual C++ 6.0 Enterprise Edition

Additionally, you will also require access to a SUN Sparc workstation if you plan to
compile your own C applications.

EXPRESSION can capture a processor memory architecture description and generate a
compiler and simulator automatically from this description. Previously many case studies
have been undertaken with the goal of architecture exploration using a framework that
involves manual specification of architecture in EXPRESSION and subsequent manual
intervention at various steps in the ADL to the back-end compiler and simulator flow. In
this technical report I present a framework for capturing the EXPRESSION description
for processors using a GUI front end tool and transforming the generated description into
intermediate code to be used by the compiler and simulator engines.

 Implementation of a VLIW Architecture in EXPRESSION ADL

28

This automated flow requires no manual intervention at any point and allows rapid
Design Space Exploration by modifying the graphical specification of the processor using
the GUI.

2.4.3. EXPRESSION ADL to compiler and simulator
back-end flow:

The next step after creating the EXPRESSION description file is to process it to generate
information for the retarget able compiler and simulator. The EXPRESSION parser
builds an IR representation from the description file. This internal representation is
processed to generate C++ intermediate files.

2.4.4. EXPRESS retarget able complier

The important phases of EXPRESS compiler are:

• Instruction Selection
• Scheduling
• Register Allocation

2.4.4.1. Instruction Selection

The TREE_MAPPING section in the ADL is used by the Instruction Selection phase to
convert a set of generic instructions to a set of target instructions. The order in which the
mapping rules are specified determines the priorities of the mappings. The scheduling /
pipelined trailblazing is based on the connectivity of the units specified.

2.4.4.2. Scheduler

The scheduler automatically generates the reservation tables from the specified
connectivity and maps the target operations effectively. In this way, the scheduler is able
to exploit the parallelism present in the architecture.

2.4.4.3. Register Allocation

The register allocation is derived from Chaitin’s algorithm, but is based on register
classes specified in VAR_GROUPS section. The OPERANDS_MAPPING section maps
a register class to the desired set of registers in the register file and thus enables the user
to specify a partitioned register file. This is very useful in exploration, as the user will be
able to play around with the number of registers available for different operations.
EXPRESS has the capability to dump the Intermediate Representation (IR) at any stage
for debugging. The backend of EXPRESS is capable of generating the assembly code
based on the syntax specified in the ASMFORMAT section. It also generates the dump of
IR in a special format recognized by the retarget able simulator called SIMPRESS.

 Implementation of a VLIW Architecture in EXPRESSION ADL

29

2.4.5. SIMPRESS retarget able simulator:

The intermediate files give information to the simulator about the structural components,
pipeline structure, memory hierarchy and how they are linked together in the system. The
simulator engine maps appropriate functionality to the components. For example, a
functional unit specified to be of type Decode Unit in the GUI has the generic Decode
functionality mapped to it. The rest of the attributes of the Decode unit are used to tune
this mapping to fit the architecture being modeled – for example changing the Decode
unit’s reservation buffer size, changing the maximum number of instructions it can issue
etc. Once the structural net-list is created and interconnections established, the simulator
is ready to accept instructions generated by the EXPRESS compiler for execution and
profiling. The SIMPRESS simulator reads an IR dump file that has been generated by the
EXPRESS compiler and which contains instructions for execution.

2.5. GUI driven specification capture in EXPRESSION:

While Architecture Description Languages are certainly a powerful mechanism for
describing complex processor based systems, there are a few drawbacks in the current
textual ADL approaches. Textual descriptions can be tedious and often non intuitive for
specifying architectures. The length and repetitive nature of these descriptions also
increases the possibility of errors in the specification. To circumvent these limitations I
have incorporated a graphical front end tool (V-SAT) that can capture the architecture
and data paths of the processor and the memory subsystem, as well as the instruction set
description and transform it into a textual EXPRESSION ADL description that is
subsequently used in the automatic compiler and simulator tool kit generator phase.

 Implementation of a VLIW Architecture in EXPRESSION ADL

30

Figure 2.4: Simplified processor architecture

The primary motivation behind graphical specification tool is that it will allow the
designer to quickly and accurately specify a particular design configuration and perform
Design Space Exploration. For example it is fairly easy to experiment with adding or
deleting pipeline stages in the design with the visual specification, generate the
EXPRESSION ADL description and then generate a compiler and simulator to test the
implications of the design decision with application programs or test bench suites.

 Implementation of a VLIW Architecture in EXPRESSION ADL

31

2.6. The Processor Architecture

In this report I will demonstrate framework of a VLIW like processor architecture (shown
in Fig. 2.4). The architecture contains five pipeline stages – fetch, decode, operand read,
execute and write back. There are multiple issue paths corresponding to 4 ALU units, a
branch unit and a load/store unit. The memory hierarchy consists of two L1 data caches
for instructions and data, a unified L2 cache and a DRAM main memory. There is a 128-
bit wide general purpose register file containing 32 registers.

FETCH
DECODE
ALU1_READ ALU2_READ ALU3_READ ALU4_READ FALU_READ BR_READ
LDST_READ
ALU1_EXEC ALU2_EXEC ALU3_EXEC ALU4_EXEC FALU_EXEC BR_EXEC
LDST_EXEC
WRITEBACK

Figure 2.5: VSAT-GUI layout for the proposed architecture

 Implementation of a VLIW Architecture in EXPRESSION ADL

32

2.6.1. Sections in EXPRESSION:

The EXPRESSION description is composed of two main sections - Behavior and
Structure. The Behavior (or Instruction Set) section is divided into three subsections:
Operations, Instruction and Operation Mappings.
The Structure section is also divided into three subsections: Components, Pipeline and
Data-Transfer Paths and the Memory Subsystem. Each of these subsections is captured
using the new version of the VSAT-GUI, stored internally in appropriate data structures
and then used to create the textual ADL description file of the processor-memory
architecture which will be used by subsequent stages in the framework. The alternative to
using the graphical user interface is to specify the entire description using a text editor
which would be cumbersome and time consuming. The GUI hides EXPRESSION ADL
syntax details allowing the architect to specify the system details quickly and precisely
without knowing a whole lot about the EXPRESSION language. Described below are the
various EXPRESSION sections and how they are captured using the VSAT-GUI and
then used to generate code in the ADL description file.

2.7. Operations Specification:

An instruction in the architecture refers to a VLIW instruction which is composed of
more than one operation. All the operations supported in the instruction set are described
in this subsection. Each operation is described in terms of its op code, operands, behavior,
assembly format and IR dump format. Each operand is classified as either source or
destination and is associated with a list of register files which it can access. These
operations are grouped together into operation groups, so as to minimize duplication in
writing when associating valid operations to functional units.

 Implementation of a VLIW Architecture in EXPRESSION ADL

33

Figure 2.6: Operand Types for an Operation "and"

In the GUI, selecting the set OP_GROUPS option in the Instruction Set menu brings up
the Operation Groups dialog box which allows the specification of the operations and
their groupings. Fig. 2.6 shows this dialog box when the ‘and’ instruction is selected.
This instruction is part of the ALU_Unit_Ops group, which contains other ALU
operations as well. The behavior field indicates that the destination will contain the
bitwise AND of the values in the source 1 and source 2 registers. The figure also shows
the type of the source and destination registers as ‘int_any’ which indicates that they are
of integer type. The ASM FORMAT textbox is used to specify the standard assembly
dump format for the operation while the IR DUMP FORMAT specifies the assembly
dump format in a form that is expected by the simulator. The groups and their children
operations are stored in a tree structure internally, with all the attributes of the operations
stored at the nodes corresponding to the operations. This code generated in

 Implementation of a VLIW Architecture in EXPRESSION ADL

34

EXPRESSION for the ‘and’ instruction shown in Fig. 2.6 consists of two parts – the
OPCODE description and the OP_GROUP grouping. This is illustrated below:

(OPERATIONS_SECTION
…
(OPCODE and
(OP_TYPE DATA_OP)
(OPERANDS (_SOURCE_1_ int_any) (_SOURCE_2_ int_any) (_DEST_ int_any))
(BEHAVIOR "_DEST_ = _SOURCE_1_ AND _SOURCE_2_")
(ASMFORMAT ((COND "dst1=reg,src1=reg,src2=reg") (PRINT
"\t<opcode>\t$<dst1>,$<src1>,$<src2>\n"))
)
(IRDUMPFORMAT ((COND "dst1=reg,src1=reg,src2=imm") (PRINT
"\t4\t<opcode>\t($<dst1>)\t($<src1>,<src2>)\n")
)
)
…
(OP_GROUP ALU_Unit_ops
 (OPCODE dmfc1 dmtc1 cvt_s_w xor and cvt_s_d cvt_d_s cvt_d_w trunc_w_s
trunc_w_d mfhi mflo mfc1 mtc1 sgtu sleu sltu li div mult and or xori andi ori
li_s li_d sgeu sne seq sgt sle slt sge sla sll sra srl move subu nop addu)
)
)
…
)

 Implementation of a VLIW Architecture in EXPRESSION ADL

35

Figure 2.7: Setting VAR_GROUPS

The set VAR_GROUPS option in the Instruction Set menu brings up the
VAR_GROUPs dialog box (Fig. 2.7) which allows specification of the accessible
register file lists for operands in the operations. The target registers are classified into
var_groups based on their data types and mappings with the var_groups in generic
register files. For instance, the entry ‘int_hilo’ is a grouping of registers that are used to
hold the output of a multiplication operation. The var_group ‘int_fp’ refers to the register
used as a frame pointer. This section is stored internally in the form of a list with the
various register file groups forming the elements of the list. The code generated in
EXPRESSION is given below:

(OPERATIONS_SECTION
 (VAR_GROUPS
 (any_pc (DATATYPE INT) (REGS PC))
 (double1_retval (DATATYPE DOUBLE) (REGS FPRFile[0]))
 (int_fp (DATATYPE INT) (REGS GPRFile[30]))
 (any_retaddr (DATATYPE INT) (REGS GPRFile[31]))
 (double_any (DATATYPE DOUBLE) (REGS FPRFile[0 2 4 6 8 10 12 14 16 18 20
22 24 26 28 30]))
 (float_normal(DATATYPE FLOAT) (REGS FPRFile))

 Implementation of a VLIW Architecture in EXPRESSION ADL

36

 (int_normal (DATATYPE INT) (REGS GPRFile[1-28]))
 (double1_normal (DATATYPE DOUBLE) (REGS FPRFile[0 2 4 6 8 10 12 14
16 18 20 22 24 26 28 30]))
 (float_all (DATATYPE FLOAT) (REGS FPRFile IMM))
 (int_call_param (DATATYPE INT) (REGS GPRFile[4-12]))
 (double_all (DATATYPE DOUBLE) (REGS FPRFile IMM))
 (double_immediate (DATATYPE DOUBLE) (REGS IMM))
 (double2_normal (DATATYPE DOUBLE) (REGS FPRFile[1 3 5 7 9 11 13 15
17 19 21 23 25 27 29 31]))
 (float_any (DATATYPE FLOAT) (REGS FPRFile))
 (float_retval (DATATYPE FLOAT) (REGS FPRFile[0]))
 (int_retval (DATATYPE INT) (REGS GPRFile[4]))
 (int_sp (DATATYPE INT) (REGS GPRFile[29]))
 (any_fp (DATATYPE INT) (REGS FP))
 (any_hilo (DATATYPE INT) (REGS HILO))
 (int_hilo (DATATYPE INT) (REGS GPRFile[1-28]))
 (any_cc (DATATYPE INT) (REGS CC))
 (int_all (DATATYPE INT) (REGS GPRFile IMM))
 (int_pc (DATATYPE INT) (REGS PC))
 (float_immediate (DATATYPE FLOAT) (REGS IMM))
 (int_immediate (DATATYPE INT) (REGS IMM))
 (any_sp (DATATYPE INT) (REGS SP))
 (int_retaddr (DATATYPE INT) (REGS GPRFile[31]))
 (int_cc (DATATYPE INT) (REGS GPRFile[1-28]))
 (int_mem (DATATYPE INT) (REGS L1))
 (any_call_param (DATATYPE INT) (REGS GPRFile[4-12]))
 (double2_retval (DATATYPE DOUBLE) (REGS FPRFile[1]))
 (int_any (DATATYPE INT) (REGS GPRFile[1-28]))
 (int_zero (DATATYPE INT) (REGS GPRFile[0]))
)

 Implementation of a VLIW Architecture in EXPRESSION ADL

37

2.7.1. Instruction Description

Figure 2.8: VLIW Instruction Template

This subsection captures the parallelism in the architecture by capturing the description of
slots in a VLIW instruction. An Instruction contains operations which can be executed in
parallel. Each instruction has slots which correspond to a Functional Unit that it will
execute on. In the architecture there are 4 slots for data operations (1 addition, 1
subtraction, 1 Multiplication and 1 Shift operation) and 4 slot for Control operations
(loop, interrupt, jump and sub routine). A valid VLIW instruction of word length is 76.
The set Instruction Description option in the Instruction Set menu brings up the
Instruction Description dialog (Fig. 2.8) which is used to specify these subsections. The
information is stored internally in a list with each element referring to an instruction slot.
The code generated in EXPRESSION is illustrated below:

(INSTRUCTION_SECTION
 (WORDLEN 64)
 (SLOTS
 ((TYPE DATA) (BITWIDTH 8) (UNIT ALU1_EX))
 ((TYPE DATA) (BITWIDTH 8) (UNIT ALU2_EX))
 ((TYPE DATA) (BITWIDTH 8) (UNIT LDST_EX))
 ((TYPE CONTROL) (BITWIDTH 8) (UNIT BR_EX))

 Implementation of a VLIW Architecture in EXPRESSION ADL

38

 ((TYPE DATA) (BITWIDTH 8) (UNIT ALU3_EX))
 ((TYPE DATA) (BITWIDTH 8) (UNIT ALU4_EX))

)
)

2.7.2. Operation Mappings:

This subsection contains information required by the compiler for Instruction Selection
and Register Allocation. There are two parts to the Operation Mappings section: Tree
Mapping and Operand Mapping.

Figure 2.9: Tree Mapping

Tree Mapping is so called because it maps a tree of generic operations to a tree of target
operations. The edges of the tree correspond to variable dependencies. This tree mapping
could be from a generic compiler operation to a target processor operation, in which case
it would be used by the instruction selection algorithm. It is possible to map many
operations to one operation, for example in the case of a complex operation like mac
which is a combination of the generic multiply and add operations.
The set TREE_MAPPING option in the Instruction Set menu brings up the
TREE_MAPPING dialog box (Figure 2.9) which is used to capture this information. The
entries are stored in an internal storage structure and reproduced verbatim in the ADL

 Implementation of a VLIW Architecture in EXPRESSION ADL

39

description file after wrapping the information with the appropriate formatting. The code
generated in EXPRESSION is illustrated below:

(OPMAPPING_SECTION
…
(TREE_MAPPING

;;;;;;;;;;;;;;;;;;;;;;;
;;;; IADD
;;;;;;;;;;;;;;;;;;;;;;;

;; 0
 (
 (GENERIC
 (
 (IADD DST[1] = REG(1) SRC[1] = REG(2) SRC[2] = IMM(3))
)
)
 (TARGET
 (
 (addu DST[1] = REG(1) SRC[1] = REG(2) SRC[2] = IMM(3))
)
)

 Implementation of a VLIW Architecture in EXPRESSION ADL

40

Figure 2.10: Register Class mappings for Operands

In Operand Mapping, the generic register classes are mapped to the target register
classes. Each target register class maps to a set of target registers. The set Operand
Mapping section in the Instruction Set menu brings up the Operand Mapping dialog
box which is used to specify this information. Just like with the Tree Mapping subsection,
the entries are dumped in an internal storage structure and reproduced verbatim in the
ADL description file after wrapping the information with the appropriate formatting. The
code generated in EXPRESSION is illustrated below:

(OPMAPPING_SECTION
 (OPERAND_MAPPING
 (OP_MAPPING (GENERIC (DATATYPE ANY) (CLASSTYPE NORMAL))
(TARGET int_normal))

 (OP_MAPPING (GENERIC (DATATYPE INT) (CLASSTYPE IMM))
 (TARGET int_immediate))
 (OP_MAPPING (GENERIC (DATATYPE INT) (CLASSTYPE NORMAL))
(TARGET int_normal))
 (OP_MAPPING (GENERIC (DATATYPE INT) (CLASSTYPE ANY))
 (TARGET int_any))
 (OP_MAPPING (GENERIC (DATATYPE INT) (CLASSTYPE
CALL_PARM)) (TARGET int_call_param))

 Implementation of a VLIW Architecture in EXPRESSION ADL

41

 (OP_MAPPING (GENERIC (DATATYPE INT) (CLASSTYPE
ZERO)) (TARGET int_zero))
 (OP_MAPPING (GENERIC (DATATYPE INT) (CLASSTYPE CC))
(TARGET int_cc))
 (OP_MAPPING (GENERIC (DATATYPE INT) (CLASSTYPE SP))
(TARGET int_sp))
 (OP_MAPPING (GENERIC (DATATYPE INT) (CLASSTYPE FP))
(TARGET int_fp))
 (OP_MAPPING (GENERIC (DATATYPE INT) (CLASSTYPE PC))
(TARGET int_pc))
 (OP_MAPPING (GENERIC (DATATYPE INT) (CLASSTYPE
RET_VAL)) (TARGET int_retval))
 (OP_MAPPING (GENERIC (DATATYPE INT) (CLASSTYPE
RET_ADDR)) (TARGET int_retaddr))
 (OP_MAPPING (GENERIC (DATATYPE INT) (CLASSTYPE
HILO)) (TARGET int_hilo))
 (OP_MAPPING (GENERIC (DATATYPE INT) (CLASSTYPE ANY))
 (TARGET int_any))
 (OP_MAPPING (GENERIC (DATATYPE INT) (CLASSTYPE
MEM)) (TARGET int_mem))

 (OP_MAPPING (GENERIC (DATATYPE DOUBLE) (CLASSTYPE IMM))
 (TARGET double_immediate))
 (OP_MAPPING (GENERIC (DATATYPE DOUBLE) (CLASSTYPE
DOUBLE1)) (TARGET double1_normal))
 (OP_MAPPING (GENERIC (DATATYPE DOUBLE) (CLASSTYPE
DOUBLE2)) (TARGET double2_normal))
; (OP_MAPPING (GENERIC (DATATYPE DOUBLE) (CLASSTYPE
DOUBLE)) (TARGET double_normal))
 (OP_MAPPING (GENERIC (DATATYPE DOUBLE) (CLASSTYPE ANY))
 (TARGET double_any))
 (OP_MAPPING (GENERIC (DATATYPE DOUBLE) (CLASSTYPE
RET_VAL)) (TARGET double1_retval))
 (OP_MAPPING (GENERIC (DATATYPE DOUBLE) (CLASSTYPE
RET_VAL)) (TARGET double2_retval))

 (OP_MAPPING (GENERIC (DATATYPE FLOAT) (CLASSTYPE IMM))
 (TARGET float_immediate))
 (OP_MAPPING (GENERIC (DATATYPE FLOAT) (CLASSTYPE
NORMAL)) (TARGET float_normal))
 (OP_MAPPING (GENERIC (DATATYPE FLOAT) (CLASSTYPE
ANY)) (TARGET float_any))
 (OP_MAPPING (GENERIC (DATATYPE FLOAT) (CLASSTYPE
RET_VAL)) (TARGET float_retval))

 Implementation of a VLIW Architecture in EXPRESSION ADL

42

 (OP_MAPPING (GENERIC (DATATYPE ANY) (CLASSTYPE
CALL_PARM)) (TARGET any_call_param))
 (OP_MAPPING (GENERIC (DATATYPE ANY) (CLASSTYPE CC))
(TARGET any_cc))
 (OP_MAPPING (GENERIC (DATATYPE ANY) (CLASSTYPE SP))
(TARGET any_sp))
 (OP_MAPPING (GENERIC (DATATYPE ANY) (CLASSTYPE FP))
(TARGET any_fp))
 (OP_MAPPING (GENERIC (DATATYPE ANY) (CLASSTYPE PC))
(TARGET any_pc))
 (OP_MAPPING (GENERIC (DATATYPE ANY) (CLASSTYPE
RET_ADDR)) (TARGET any_retaddr))
 (OP_MAPPING (GENERIC (DATATYPE ANY) (CLASSTYPE
HILO)) (TARGET any_hilo))

)

2.7.3. Components Specification:

This subsection describes the RT-level components in the architecture. The components
can be Pipeline units, Functional units, Storage components, Latches, Ports or
Connections. Some of these components have an optional list of attributes, and these are
described below. The ADL description file code generated for these structural
components is much more involved and requires much more manipulation than in the
case of the behavioral specification.

2.7.3.1. Unit (Functional Unit)

Figure 2.11: Fetch unit

 Implementation of a VLIW Architecture in EXPRESSION ADL

43

A Functional unit has the following attributes
CAPACITY – size of reservation station
TIMING – time taken for operations to pass through
OPCODES – opcode groups allowed passing through
INSTR_IN – maximum number of simultaneous instructions entering
INSTR_OUT – maximum number of simultaneous instructions leaving
In the GUI, units are graphically represented by purple colored rectangular boxes which
can be created from the Components menu. Clicking on these boxes brings up the
attributes of the unit in the Properties window. Fig. 2.11 shows the Fetch unit from the
processor architecture. These functional units are stored internally as elements in a global
unit list. Each element of this list has the corresponding set of attributes stored with it.
Aside from the attributes specified above, each unit also has latches and ports associated
with it. The code generated in EXPRESSION is illustrated below:

(ARCHITECTURE_SECTION
(SUBTYPE UNIT FetchUnit DecodeUnit OpReadUnit ExecuteUnit BranchUnit
LoadStoreUnit WriteBackUnit ArchUnit ControlUnit)
(FetchUnit FETCH
 (CAPACITY 1)
 (INSTR_IN 6)
 (INSTR_OUT 6)
 (TIMING (all 1))
 (OPCODES all)

 (LATCHES (OUT FetDecLatch) (OTHER pcLatch))
)

 (InstStrLatch FetDecLatch
)

 (PCLatch pcLatch
)

 (DecodeUnit DECODE
 (CAPACITY 12)
 (INSTR_IN 4)
 (INSTR_OUT 4)
 (TIMING (all 1))
 (OPCODES all)
 (LATCHES (OUT DecAlu1ReadLatch) (OUT DecAlu2ReadLatch) (OUT
DecLdStReadLatch) (OUT DecBrReadLatch) (OUT DecAlu3ReadLatch))
 (LATCHES (IN FetDecLatch))
)

 (InstructionLatch DecAlu1ReadLatch

 Implementation of a VLIW Architecture in EXPRESSION ADL

44

)

 (InstructionLatch DecAlu2ReadLatch
)

 (InstructionLatch DecLdStReadLatch
)

 (InstructionLatch DecBrReadLatch
)

 (InstructionLatch DecAlu3ReadLatch
)

 (OpReadUnit ALU1_READ
 (CAPACITY 1)
 (INSTR_IN 1)
 (INSTR_OUT 1)
 (TIMING (all 1))
 (OPCODES ALU_Unit_ops FALU_Unit_ops)

 (LATCHES (OUT Alu1ReadExLatch))
 (LATCHES (IN DecAlu1ReadLatch))
 (PORTS Alu1ReadPort1 Alu1ReadPort2)
)

Here a Fetch unit is declared which can fetch four instructions simultaneously and which
has two latches associated with it corresponding to interfaces with other components –
FetDecLatch is used to communicate data to the Decode unit while pcLatch is used to
interface with the program counter (see Fig. 2.1). InstStrLatch and PCLatch are the types
of these latches respectively.

2.7.3.2. Storage (Cache/Memory/Register File)

Storage components are used to represent caches, main memory, buffers and register files
in the design. The attributes and connectivity among these storage components is
specified in the memory subsystem. However, ports associated with a storage component
and used to connect to functional units are specified in this subsection. The GUI however
allows specification of storage component information in a unified intuitive manner and
then partitions it at the time of writing the ADL description file. Refer to the memory
subsystem section.

 Implementation of a VLIW Architecture in EXPRESSION ADL

45

2.7.3.3. Ports

Functional units and storage components can have ports associated with them. In the
GUI, small orange colored square boxes represent these ports. They can be created from
the Components menu. Clicking on these boxes brings up the attributes of the port in the
Properties window. These ports are used to connect functional units to storage
components. Ports associated with a unit are placed inside the rectangular region of the
unit while those associated with storage components are placed within storage boxes in
the layout.

Figure 2.12: Two ports of the ALU1_READ unit

Internally, a global list of ports is maintained. At the time of generation of the ADL
description, the coordinates of the ports are checked with those of the units and storage
components. If the coordinate range of a port lies within the rectangular region
corresponding to a unit or storage component, it is bound to that component. For
example, Fig.2.12 shows two ports Alu1ReadPort1 and Alu1ReadPort2 bound to the
component named ALU1_READ. The code generated in EXPRESSION for this example
is given below:

(OpReadUnit ALU2_READ
 (CAPACITY 1)
 (INSTR_IN 1)
 (INSTR_OUT 1)
 (TIMING (all 1))
 (OPCODES ALU_Unit_ops FALU_Unit_ops)
 (LATCHES (OUT Alu2ReadExLatch))
 (LATCHES (IN DecAlu2ReadLatch))
 (PORTS Alu2ReadPort1 Alu2ReadPort2)
)

 (OperationLatch Alu2ReadExLatch
)

 (UnitPort Alu2ReadPort1("_READ_")

 Implementation of a VLIW Architecture in EXPRESSION ADL

46

 (ARGUMENT _SOURCE_1_)
 (CAPACITY 1))

 (UnitPort Alu2ReadPort2("_READ_")
 (ARGUMENT _SOURCE_2_)
 (CAPACITY 1))

2.7.3.4. Latches

Pipeline latches are associated with units and lie at the interface between two units. One
way that a pipeline latch can be associated with a unit is to place it inside the rectangular
region of that unit. This would then refer to the latch to which the unit will output its
operation data. Another way is to have a connection component starting from the latch in
one unit and ending in another unit. In this case, the latch is also bound to the second unit
and this unit reads the data put into the latch by the first unit. In the GUI, small pink
colored rectangular boxes represent these latches. They can be created from the
Components menu. Clicking on these boxes brings up the attributes of the latch in the
Properties window.

Figure 2.13: Alu1ReadExLatch

 Implementation of a VLIW Architecture in EXPRESSION ADL

47

All latches in a design are stored in a global latch list. At the time of generation of the
ADL description, the coordinates of the latches are checked with those of the units. If the
coordinate range of a latch lies within the rectangular region corresponding to a unit, it is
bound to that unit. If a connection component from that latch ends in another unit, the
latch is bound to the second unit as well. For example, Fig 2.13 shows a latch
Alu1ReadExLatch drawn inside the ALU1_READ unit and with a connection component
from the latch ending in the ALU1_EX unit. The latch is thus associated with both the
units. The code generated in EXPRESSION for this example is given below:

(OperationLatch Alu2ReadExLatch
)

 (UnitPort Alu2ReadPort1("_READ_")
 (ARGUMENT _SOURCE_1_)
 (CAPACITY 1))

 (UnitPort Alu2ReadPort2("_READ_")
 (ARGUMENT _SOURCE_2_)
 (CAPACITY 1))

Here Operation Latch is the type of the latch.

2.7.3.5. Connections

A Connection is a component used to connect two ports, a latch in a unit and another unit
or two storage components. In the GUI, a connection component is represented by a line
segment (Fig.2.14). These can be created from the Components menu. Clicking on the
line segment brings up the attributes of the connection in the Properties window.

Figure 2.14: A Connection component

All the connections in a system are stored in a global connection list. At the time of
generation of the ADL description, the coordinates of the end points of the connection
line segment are checked to see where they lie. If one end lies within a port region, then it
represents a connection from a port to another port, and the other end must lie within a
port too. If an end lies within a latch region, then it represents a latch connection between
two units and the other end must lie inside another unit. Finally, if an end lies within a
storage component but not inside a port of the component, then it represents a storage
connection and the other end must also lie within a storage component.

 Implementation of a VLIW Architecture in EXPRESSION ADL

48

2.7.3.6. Pipeline and Data-Transfer Paths Description

Recall that architectural pipelining information in EXPRESSION is specified using the
notion of pipeline and data transfer paths. This subsection describes the structural net-list
of the processor. The pipeline description is used to specify the functional units which
make up the pipeline stages. This section is not explicitly specified in the GUI. The only
construct needed for generating this section from the GUI is a pipeline stage component,
which can be created from the Components menu. A pipeline stage component is
represented graphically in the GUI as a horizontal line segment which groups the
functional units in the layout into different stages. At the time of generation of the ADL
description, a functional unit net-list is built on the fly. This is done by creating a graph
with the functional units as nodes, connected with other nodes only if there is a shared
latch between two nodes. This graph is further divided by the pipeline stage components
in the following way: all the functional units that lie between two line segments
corresponding to the pipeline stage components, become part of the pipeline stage whose
name is given by the lower of the two pipeline stage components that enclose the unit.
This inclusion of units within two pipeline stage components is verified by checking the
coordinates of the unit rectangular box and ensuring that the coordinate range lies
between the ranges of the two pipeline stage components. For the proposed architecture,
the pipeline description generated is given below:

(PIPELINE_SECTION
 (PIPELINE FETCH DECODE READ_EXECUTE WB)
 (READ_EXECUTE (ALTERNATE read_execute0 read_execute1 read_execute2
read_execute3 read_execute4))
 (read_execute0(PIPELINE ALU1_READ ALU1_EX))
 (read_execute1(PIPELINE ALU2_READ ALU2_EX))
 (read_execute2(PIPELINE BR_READ BR_EX))
 (read_execute3(PIPELINE LDST_READ LDST_EX))
 (read_execute4(PIPELINE ALU3_READ ALU3_EX))
 (read_execute4(PIPELINE ALU4_READ ALU4_EX))

…

 Implementation of a VLIW Architecture in EXPRESSION ADL

49

Figure 2.15 (a): Selecting ‘Add Datapath’ option

Figure 2.15 (b): Selecting FPRFile Figure 2.15 (c): Selecting
ALU1_READ

Figure 2.15 (d): Selecting port Figure 2.15 (e): Selecting connection
element

 Implementation of a VLIW Architecture in EXPRESSION ADL

50

Figure 2.15 (f): Selecting port ALU1Read Figure 2.15 (g): Finish by
right clicking

Data-transfer path descriptions specify the valid data transfers in the architecture. There
are two kinds of data transfer paths – paths between functional units and storage
components, and paths between two storage components. In the GUI, data paths are
specified by traversing the path which can be done by selecting the Add Data path
option from the Components menu and clicking on the units, storage components, ports
and connections in the order specified by the ADL language. Just like macro recording,
the order of clicking the components is recorded and a data path generated, which is
stored with other data paths internally in the form of a list. It is important to note that
specifying data paths is generally a very error prone and tedious activity. The GUI
overcomes this limitation by allowing data paths to be specified conveniently and easily
with just a couple of mouse clicks. Figure 2.15 shows the sequence of actions to be
performed to
add a data path between the ALU1_READ component and the FPRFile register file. The
code generated in EXPRESSION for this data path is given below:

(DTPATHS
(TYPE UNI
(FPRFile ALU1_READ FprReadPort6 FprReadPort6ALU1ReadPort1 Alu1ReadPort1)
)
)
)
The code generated for all the data paths between functional units and storage
components in the
acesMIPS architecture is given below:
…
(DTPATHS

 (TYPE UNI
 (FPRFile ALU1_READ FprReadPort6 FprReadPort6ALU1ReadPort1 Alu1ReadPort1)
 (FPRFile ALU1_READ FprReadPort6 FprReadPort6ALU1ReadPort1 Alu1ReadPort1)
 (FPRFile ALU1_READ FprReadPort6 FprReadPort6ALU1ReadPort1 Alu1ReadPort1)
 (FPRFile ALU1_READ FprReadPort6 FprReadPort6ALU1ReadPort1 Alu1ReadPort1)
 (FPRFile ALU1_READ FprReadPort6 FprReadPort6ALU1ReadPort1 Alu1ReadPort1)

 Implementation of a VLIW Architecture in EXPRESSION ADL

51

 (FPRFile ALU1_READ FprReadPort6 FprReadPort6ALU1ReadPort1 Alu1ReadPort1)
(FPRFile LDST_READ FprReadPort5 FprReadPort5LdStReadPort3Cxn LdStReadPort3)
(GPRFileALU3_READGprReadPort10GprReadPort10Alu3ReadPort1CxnAlu3ReadPor1
) (WB GPRFile WbWritePort WbWritePortGprWritePortCxn GprWritePort)
 (WB GPRFile WbWritePort WbWritePortGprWritePortCxn GprWritePort)

)

)
)

…
Both pipeline and data-transfer path descriptions are essential for generating the retarget
able simulator and generating reservation tables needed by the scheduler.

2.7.3.6. Memory Subsystem

This section is used to specify the attributes of the various storage components in the
memory subsystem. A storage component comprises of the following attributes

WIDTH – Width of register file in bits
SIZE – Number of registers in register file
WORD SIZE – Word size of cache in bytes
LINE SIZE – Number of words in a cache line
ASSOCIATIVITY – Associativity level of cache
CACHE LINES – Number of lines in cache
ACCESS TIME – Time to access storage (in cycles)
ADDRESS RANGE – Range of addresses associated with storage
MNEMONIC – Prefix to be used for the registers in assembly formats

 Implementation of a VLIW Architecture in EXPRESSION ADL

52

Figure 2.16: L1 cache with port

In the GUI, Storage components are represented graphically by green colored rectangular
boxes (distinct from units) which can be created from the Components menu. Clicking
on these boxes brings up the attributes of the unit in the Properties window (Fig.
2.16).Clicking on these boxes brings up the attributes of the unit in the Properties
window. Storage components also have ports associated with them. Any port which lies
within the rectangular region of a storage component binds to that component. For
example, for the L1 data cache in the VLIW architecture (Fig 2.16), the architecture
section contains the ports associated with the storage as shown below:

(Storage L1
(PORTS L1ReadWritePort)
(CAPACITY 1)
)

Properties window for L1 cache
Code is also generated for the storage section after specifying the storage attributes (Fig.
2.16) in the Properties window. This generated code is shown below.

(STORAGE_SECTION

(L1
 (TYPE DCACHE)
 (WORDSIZE 4)

 Implementation of a VLIW Architecture in EXPRESSION ADL

53

 (LINESIZE 2)
 (ASSOCIATIVITY 4)
 (NUM_LINES 8)
 (ACCESS_TIMES 1)
 (ADDRESS_RANGE (0 9995904))

(MainMem
 (TYPE DRAM)
 (ACCESS_TIMES 50)
 (ADDRESS_RANGE (0 9995904))
)
(GPRFile
 (TYPE VirtualRegFile)
 (WIDTH 128)
 (SIZE 32)
 (MNEMONIC "R")
)

 (FPRFile
 (TYPE VirtualRegFile)
 (WIDTH 128)
 (SIZE 32)
 (MNEMONIC "f")
)

 Implementation of a VLIW Architecture in EXPRESSION ADL

54

Chapter # 3

3. VLIW ARCHITECTURE DETAIL

3.1. VLIW PROCESSOR

Almost all existing computing platforms act as some form of co processing elements i.e.,
they implement custom functions in hardware but operate under the control of host
platforms.

3.1.2. IMPLEMENTATION:

This chapter includes the design what I have implemented. It is a VLIW processor but
with certain limitations. This processor can perform number of different operations. I
have designed this processor keeping certain things in mind, and then I have implemented
that designed in EXPRESSION ADL using the VSAT GUI front end interface. It is a
reconfigurable processor which enables it to adjust its functionalities accordingly.
Reconfiguration actually makes it very powerful, increasing its computational power as
many times as many is the number of functional units.

 3.1.3. RECONFIGUARTION:

Reconfigurable computing is a new and emerging field that makes use of programmable
devices to construct “custom computing machinery”. Reconfigurable computing can
simply be thought of as an ability to repeatedly configure a machine to perform different
and varying functions. The term reconfigurable is broad and can be applied to many
scenarios. A reconfigurable custom computing machine makes use of some form of
reconfigurable logic that can be changed and configured as demanded by an application.

3.2. CLASSIFICATION OF RECONFIGURABLE
ARCHITECTURES:

Although it is believed that reconfigurable computing machines offer the same flexibility
as of instruction set architectures type of machines (general purpose microprocessor
based platforms) , and can yield performance that is comparable to the custom hardware ,
it is not a simple task to predict the tradeoffs between performance and the flexibility for
reconfigurable computing machines. This is because the performance of the

 Implementation of a VLIW Architecture in EXPRESSION ADL

55

reconfigurable computing machine can be compared against the performance of the
software model of the application but cannot be compared to the custom hardware (ASIC
type) implementations very easily. Thus it is not easy to find out the complete
performance to flexibility relationships. Reconfigurable computing machines lie
somewhere in the performance spectrum that spans between instruction set architectures
and the custom hardware. This figure explains this relationship.

 Instruction set Reconfigurable
 Architecture Architecture

 Flexibility

 Custom Hardware

 Performance

Figure 3.1: Classification of Reconfigurable Architecture

As can be seen from the graph Re configurable architecture has got equal flexibility as
of instruction set architecture but still it’s performance is almost as good as custom
hardware.

3.2.1. Implementing the reconfigurable hardware:

There are two different ways the reconfiguration can be implemented in:

• STATICALLY
• DYNAMICALLY

3.2.1.1. STATICALLY RECONFIGURABLE HARDWARE:

Statically reconfigurable hardware is where the configuration of a custom application is
loaded once and is not changed for the runtime life of the application. The only advantage
of using reconfigurable hardware is that, that same platform can be used and re-used for

 Implementation of a VLIW Architecture in EXPRESSION ADL

56

implementing many different applications. Sometimes, this is also called as compile time
reconfiguration based hardware. It should be noted that the reconfiguration overhead for
such hardware is a one time penalty that is incurred while loading the configuration data
on the hardware.

3.3. A DYNAMICALLY RECONFIGURABLE HARDWARE:

Dynamically reconfigurable hardware is where the configuration of a custom application
is loaded once, partially or wholly, and, is allowed to change during the runtime life of
the application. This form of computing hardware offers almost infinite resources to
speed up the application. This is true because, under partial reconfiguration, the hardware
acts more like a paged memory system, and desirable functions can be loaded, swapped,
or purged on demand. Also this type of hardware provides means for runtime
optimization for speeding up the application. Managing the runtime dynamic
reconfiguration is not a trivial task. It requires application profiling, data management,
and clever techniques for reducing the overheads associated with the reconfigurable
architectures.

3.3.1. RECONFIGURABLE DEVICES:

Reconfigurable devices can be configured after fabrication to solve any computational
task. These are best exemplified today by FPGA. In these reconfigurable devices, tasks
are implemented by spatially composing primitive operations and operators with the
possibility of temporarily changing the hardware of the operators rather then temporarily
composing of instructions sequence in Princeton style processors. The reconfigurable
processor on FPGA can perform different operations on each bit, sore-configurable can
be optimized to the data width of streaming data flows. The central theme of this work is
to mix the advantages of Non-von-Neumann architectures with the advantages of re-
configurable processing elements.

 Implementation of a VLIW Architecture in EXPRESSION ADL

57

3.4. Explanation of the target Processor:

Figure 3.2: Processors Control Unit

 Implementation of a VLIW Architecture in EXPRESSION ADL

58

Figure 3.2.1: Processors Control Unit in EXPRESSION VSAT GUI

3.4.1. PROGRAM MEMORY:

It is actually a storage place where the program which has to be performed by the
processor will be stored. The instructions will be read from this memory.
In our processor it is a 2-D memory. It has 16 rows, which means it can have, store 16
different instructions. And it has 76 columns which mean that every instruction is of 76
bits.
A user can write 16 different instructions in the program memory through files, then
those instructions are coded by an assembler.

3.4.2. INSTRUCTION FORMAT:

There are two basic portions of the instructions which are:

• For the control unit.
• For the architecture, i.e. for the functional units.

Loop Count Condition Label c4 b4 a4 Op4 c3 b3 a3 Op3 c2 b2 a2 Op2

 c1 b1 a1 Op1

 Implementation of a VLIW Architecture in EXPRESSION ADL

59

3.4.3. THE INSTRUCTION DECODING PROCESS:

The instruction decoder identifies the portions of the instruction for the control unit&
architecture.

For the control unit:

Loop Count Condition Label

The separately identified control unit portion of the instruction is then further divided into
sub-portions which are to categorize loop, sub routine, jump, conditional jump etc.
Now these portions go to the control unit, where they act as the activating signals for the
operations like:

• Loop
• Subroutine
• Jump
• Conditional jump
• Internal interrupt

The control unit as obvious from its name controls the processor. It can also be
called a controller of the processor, who looks after & monitors all the activities that
the processor is doing.

3.4.4. Activities of the control unit:

3.4.4.1. LOOP MACHINE:

It requires the following things from the instruction for its execution:

• LOOP ENABLE:

It will be mentioned in the “loop” part of the instruction. It will be used to tell
whether there is a loop or not. It is 1-bit long.

 Implementation of a VLIW Architecture in EXPRESSION ADL

60

• LOOP END ADDRESS:

It will be mention in the “label” part of the instruction. It is that address till where
I want the instructions to be repeated. It is of 4-bit long.

• LOOP START ADDRESS:

It will come from the “program counter”, and it is the starting address i.e from
where I want to start the loop.

• COUNT:

It will be mentioned in the “count” part of the instruction. It is amount or number
for how many times I want our instructions to be repeated. It is also 4-bit long.

3.4.4.2. SUBROUTINE:

It is used when one wants to perform number or series of actions at one position.
Or I can say when one requires some other routine while processing. That routine
will be called a subroutine. It has two parts.

• CALL
• RETURN

 CALL:

 It is used to call a subroutine.

 SYNTAX:

 Call label;

 RETURN:

After calling a subroutine the program counter moves to the label & starts
performing no. of action till it will get a return. And when it gets the return it will
return to the position next to, where the sub-routine was called. That will be the
end of the subroutine. This is done by a maintaining “return register” that will
contain the next address.

 Implementation of a VLIW Architecture in EXPRESSION ADL

61

 So the subroutine requires two parts of the instruction.

 CONDITION:

 This part of an instruction is 3-bit long. It actually determines the call, or return.

 LABEL:

This is the same label as that of loop, but now this label will act as an address of
the branch address .i.e. where it has to move when there will be a call for the
subroutine.

3.4.4.3. JUMP:

It is when program want to jump to a certain position or an instruction. Whenever
there will be a jump the program counter will move to that instruction whose
address would have been mentioned in the label. But one important thing to
remember, that is that jump does not have a return. After jumping to a certain
instruction the program counter does not return to the address where there jump
was called.

It also requires two parts of the instruction.

 CONDITION:

The condition actually tells that there is jump here.

LABEL:

 This will have the branch address where I want the program counter to move.

 Implementation of a VLIW Architecture in EXPRESSION ADL

62

3.4.4.4. CONDITIONAL JUMP:

It is same as that of the simple jump, but the only difference is that, that now the
jump will depend on some condition.
It also requires those two parts of an instruction.

CONDITION:

This determines the conditional jump.

LABEL:

Where program want to move, or jump.

3.4.4.5. INTERUPTS:

It is an internal or external event that suspends the normal program flow within a
computer and causes entry into a special interrupt program (also called interrupt
service routine) interrupts are provided primarily as a way to improve processing
efficiency.
When an interrupts comes the processor suspends execution of the current
instruction, saves its context. This means saving the address of the next
instruction to be executed (current contents of the program counter) and any other
data relevant to the processor’s current activity. It sets the program counter to the
starting address of an interrupt handler routine.

 There are two types of the interrupts.

• EXTERNAL INTERUPTS
• INTERNAL INTERUPTS

EXTERNAL INTERUPTS:

In my processor I have four different types of external interrupts generated from
the stimulus. Whenever those interrupts comes, the program counter jumps to the
respective location, mentioned in the interrupt vector table corresponding to that
specific type of the interrupt. These have nothing to do with the instruction. As
these can be generated any time. & after executing that location where it was
jumped the program counter will return back to the next address of where it
encountered the interrupt.
This processor also maintains an interrupt vector table. It is a reserved memory
location where a program counter jumps when an interrupt is detected.

 Implementation of a VLIW Architecture in EXPRESSION ADL

63

INTERUPT SERVICE ROUTINE:

It is a program that is entered when an external or internal interrupt occurs.
Interrupt service routines as usually high priority routines.

INTERNAL INTERUPT:

These are generated from inside the processor. It can be based on some condition;
it can be generated when a timer reaches a certain value, etc.
In this VLIW processor I have catered an internal interrupt, which will be
generated when the result from the subtractor will be less than 0,.i.e when it will
be –ve. So when the interrupt will be generated its interrupt service routine will
make that result +ve.

 Implementation of a VLIW Architecture in EXPRESSION ADL

64

3.5. EXPLANATION OF PROCESSING UNIT

Figure 3.3: Processing Unit

 Implementation of a VLIW Architecture in EXPRESSION ADL

65

Figure 3.3.1: Processing Unit in EXPRESSION VSAT GUI

3.5.1. ARCHITECTURE BITS:

c4 b4 a4 Op4 c3 b3 a3 Op3 c2 b2 a2 Op2 c1 b1 a1 Op1

3.6. DETAIL OF PROCESSING UNIT

The separately identified portion for the architecture has four main sections, which are
also recognized by the instruction decoder.
The four sections are for four functional units, each section has four parts. Which are:

• Opcode
• Operand1
• Operand 2
• Destination

 Implementation of a VLIW Architecture in EXPRESSION ADL

66

3.6.1.OPCODE:

Operational code is known as opcode. It decides which operation is to be performed. In
our processor I have the following four functions:

• Addition
• Subtraction
• Multiplication
• Barrel shifter

Each of these has a separate opcode, by which these are identified; the opcodes will be
mentioned in the manual of our processor.Op1, Op2, Op3, Op4 are the opcodes for four
different functions in each instruction.

3.6.2. OPERANDS:

These are the values on which the certain operations are to be performed. I am
maintaining a register file which has values stored in it, So the operands will be coming
from those registers. b4, a4, b3, a3, b2, a2, b1, a1 shows the addresses of the operands
(registers carrying the values) for the four functional units.

3.6.3. DESTINATION:

It is the place, register where the results from the functional units are to be stored or
written back. For example c4, c3, c2, c1 shows the four destination address where the
results from the functional units will be written back.

3.6.4. FUNCTIONAL UNITS:

This part of the processor comprises of four functional units each having four operating
units mentioned underneath.

3.6.4.1.ADDER:

It takes two operands which are identified by the instruction decoder, and gives the sum
at next clock cycle. The adders in this processor is a FULL ADDER. I have one module
of this full adder in every functional unit.

 Implementation of a VLIW Architecture in EXPRESSION ADL

67

3.6.4.2. SUBTRACTOR:

It also takes two operands identified by the instruction decoder and inverts the one that is
to be subtracted and adds with the other one as a result generating the result in next cycle.

3.6.4.3. MULTIPLIER:

I have two numbers in binary form that are to be multiplied .Result generated is of 16 bits
but I only take most significant 8 bits just to standardize the results as when in case of
reconfiguration these multiplier, adder, subtractor, shifter may be swapped , doesn’t
cause any problem.

3.6.4.4. SHIFTER:

Shifter shifts one operand by the amount other operand is. Results are generated in the
next cycle.
Our every functional unit has all the above mentioned capabilities and I select only one
result from each functional unit at the end using Reconfiguration mux. This allows my
processor to be strongly flexible making computations more easy and appropriate as
all the operations are carried out on all the operands selected and providing the
required result in the end.

 Implementation of a VLIW Architecture in EXPRESSION ADL

68

CHAPTER #4

4. Results

Once the architecture is designed in EXPRESSION front end GUI it converts the
schematic description and instruction set description into EXPRESSION ADL format.
EXPRESS is a retargetable compiler centered on a generic machine. EXPRESS reads
the front-end files, builds an Intermediate Representation (IR) amenable to different
optimizations and targets the architecture described in an EXPRESSION ADL
(Architecture Description Language) description. SIMPRESS reads the special assembly
file, simulates the running of assembly on an architecture template generated from the
ADL description and finally generates area, power, and performance numbers including
cycle count and memory usage statistics. The purpose of the simulator is to assess the
efficacy of the code generated by the EXPRESS compiler for the given architecture. The
EXPRESSION ADL description of VLIW Architecture is available in
<work>\acesMIPSDll\bin\ acesMIPS.xmd. The schematic description of VLIW
Architecture is stored in acesMIPS.gmd and the instruction set description in
acesMIPS.isd.

4.1. EXPRESSION COMPILATION

I compiled EXPRESSION CONSOLE and it takes the EXPRESSION description in
<run>\acesMIPS.xmd and generates different intermediate files required to retarget the
compiler and the simulator. It also generates <run>\mem.config containing memory
configuration. The detail of memory configuration is mentioned below

4.1.1. Memory Configuration as Compiled by
EXPRESSION:

BEGIN_MEM_MODULES
0 DCACHE 8:2:4:4:1
1 ICACHE 8:2:4:4:1
2 DCACHE 64:2:8:4:5
3 SRAM 9999999:1
4 DRAM 9995904:50
END_MEM_MODULES

BEGIN_CONNECTIVITY
1 2
0 2
2 4

 Implementation of a VLIW Architecture in EXPRESSION ADL

69

END_CONNECTIVITY

BEGIN_MEMORY_MAP
0 0 9995904
3 9995905 9999999
END_MEMORY_MAP

4.1.2. Output of EXPRESS Console compilation

regFileName = L1
regFileMnemonic = (null)
regs :

varName = int_normal
<targetClassType = NORMAL targetDataType = INT>
regFileName = GPRFile
regFileMnemonic = R
regs : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
28

varName = int_pc
<targetClassType = PC targetDataType = INT>
regFileName = PC
regFileMnemonic = (null)
regs :

varName = int_retaddr
<targetClassType = RET_ADDR targetDataType = INT>
regFileName = GPRFile
regFileMnemonic = R
regs : 31

varName = int_retval
<targetClassType = RET_VAL targetDataType = INT>
regFileName = GPRFile
regFileMnemonic = R
regs : 4

varName = int_sp
<targetClassType = SP targetDataType = INT>
regFileName = GPRFile

 Implementation of a VLIW Architecture in EXPRESSION ADL

70

regFileMnemonic = R
regs : 29

varName = int_zero
<targetClassType = ZERO targetDataType = INT>
regFileName = GPRFile
regFileMnemonic = R
regs : 0

varName = any_call_param
<targetClassType = CALL_PARM targetDataType = INT>
regFileName = GPRFile
regFileMnemonic = R
regs : 4 5 6 7 8 9 10 11 12

varName = any_cc
<targetClassType = CC targetDataType = INT>
regFileName = CC
regFileMnemonic = (null)
regs :

varName = any_fp
<targetClassType = FP targetDataType = INT>
regFileName = FP
regFileMnemonic = (null)
regs :

varName = any_hilo
<targetClassType = HILO targetDataType = INT>
regFileName = HILO
regFileMnemonic = (null)
regs :

varName = any_pc
<targetClassType = PC targetDataType = INT>
regFileName = PC
regFileMnemonic = (null)

 Implementation of a VLIW Architecture in EXPRESSION ADL

71

regs :

varName = any_retaddr
<targetClassType = RET_ADDR targetDataType = INT>
regFileName = GPRFile
regFileMnemonic = R
regs : 31

varName = any_sp
<targetClassType = SP targetDataType = INT>
regFileName = SP
regFileMnemonic = (null)
regs :

varName = double1_normal
<targetClassType = DOUBLE1 targetDataType = DOUBLE>
regFileName = FPRFile
regFileMnemonic = f
regs : 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

varName = double1_retval
<targetClassType = RET_VAL targetDataType = DOUBLE>
regFileName = FPRFile
regFileMnemonic = f
regs : 0

varName = double2_normal
<targetClassType = DOUBLE2 targetDataType = DOUBLE>
regFileName = FPRFile
regFileMnemonic = f
regs : 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

varName = double2_retval
<targetClassType = RET_VAL targetDataType = DOUBLE>
regFileName = FPRFile
regFileMnemonic = f
regs : 1

varName = double_all

 Implementation of a VLIW Architecture in EXPRESSION ADL

72

regFileName = FPRFile
regFileMnemonic = f
regs : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 2
7 28 29 30 31
regFileName = IMM
regFileMnemonic = (null)
regs :

varName = double_any
<targetClassType = ANY targetDataType = DOUBLE>
regFileName = FPRFile
regFileMnemonic = f
regs : 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

varName = double_immediate
<targetClassType = IMM targetDataType = DOUBLE>
regFileName = IMM
regFileMnemonic = (null)
regs :

varName = float_all
regFileName = FPRFile
regFileMnemonic = f
regs : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 2
7 28 29 30 31
regFileName = IMM
regFileMnemonic = (null)
regs :

varName = float_any
<targetClassType = ANY targetDataType = FLOAT>
regFileName = FPRFile
regFileMnemonic = f
regs : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 2
7 28 29 30 31

varName = float_immediate
<targetClassType = IMM targetDataType = FLOAT>
regFileName = IMM
regFileMnemonic = (null)
regs :

 Implementation of a VLIW Architecture in EXPRESSION ADL

73

varName = float_normal
<targetClassType = NORMAL targetDataType = FLOAT>
regFileName = FPRFile
regFileMnemonic = f
regs : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 2
7 28 29 30 31

varName = float_retval
<targetClassType = RET_VAL targetDataType = FLOAT>
regFileName = FPRFile
regFileMnemonic = f
regs : 0

varName = int_all
regFileName = GPRFile
regFileMnemonic = R
regs : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 2
7 28 29 30 31
regFileName = IMM
regFileMnemonic = (null)
regs :

varName = int_any
<targetClassType = ANY targetDataType = INT>
regFileName = GPRFile
regFileMnemonic = R
regs : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
28

varName = int_call_param
<targetClassType = CALL_PARM targetDataType = INT>
regFileName = GPRFile
regFileMnemonic = R
regs : 4 5 6 7 8 9 10 11 12

varName = int_cc
<targetClassType = CC targetDataType = INT>
regFileName = GPRFile
regFileMnemonic = R

 Implementation of a VLIW Architecture in EXPRESSION ADL

74

regs : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
28

varName = int_fp
<targetClassType = FP targetDataType = INT>
regFileName = GPRFile
regFileMnemonic = R
regs : 30

varName = int_hilo
<targetClassType = HILO targetDataType = INT>
regFileName = GPRFile
regFileMnemonic = R
regs : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
28

varName = int_immediate
<targetClassType = IMM targetDataType = INT>
regFileName = IMM
regFileMnemonic = (null)
regs :

varName = int_mem
<targetClassType = MEM targetDataType = INT>
regFileName = L1
regFileMnemonic = (null)
regs :

varName = int_normal
<targetClassType = NORMAL targetDataType = INT>
regFileName = GPRFile
regFileMnemonic = R
regs : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
28

varName = int_pc
<targetClassType = PC targetDataType = INT>
regFileName = PC
regFileMnemonic = (null)
regs :

 Implementation of a VLIW Architecture in EXPRESSION ADL

75

varName = int_retaddr
<targetClassType = RET_ADDR targetDataType = INT>
regFileName = GPRFile
regFileMnemonic = R
regs : 31

varName = int_retval
<targetClassType = RET_VAL targetDataType = INT>
regFileName = GPRFile
regFileMnemonic = R
regs : 4

varName = int_sp
<targetClassType = SP targetDataType = INT>
regFileName = GPRFile
regFileMnemonic = R
regs : 29

varName = int_zero
<targetClassType = ZERO targetDataType = INT>
regFileName = GPRFile
regFileMnemonic = R
regs : 0

4.2. SIMPRESS SIMULATION

After successful generation of intermediate files from EXPRESSION compilation I set
ACESMIPS CONSOLE as the active project. It contains both EXPRESS compiler and
SIMPRESS simulator. The acesMIPS console application generates the number of
cycles, memory usage and other statistics in <run>/<filename>.pwrStats.

 Implementation of a VLIW Architecture in EXPRESSION ADL

76

4.2.1. Power stats detail as compiled by EXPRESS AND
SIMPRESS

Total Cycles: 675

ASSOCIATIVE DCACHE: Cache Accesses: 80 (0.45)
 read hits: 7, read misses: 7 (0.50)
 write hits: 29, write misses: 37 (0.44)
 Energy Dissipation: 0.096 uJ

ASSOCIATIVE DCACHE: Cache Accesses: 147 (0.78)
 read hits: 115, read misses: 32 (0.78)
 write hits: 0, write misses: 0 (0.00)
 Energy Dissipation: 0.176 uJ

ASSOCIATIVE DCACHE: Cache Accesses: 125 (0.49)
 read hits: 12, read misses: 64 (0.16)
 write hits: 49, write misses: 0 (1.00)
 Energy Dissipation: 1.022 uJ

SRAM: loads: 0, stores: 0
 Energy Dissipation: 0.000 uJ

DRAM: loads: 64, stores: 3
 Energy Dissipation: 0.005 uJ

4.2.2 Output of ACESMIPS Console simulation

Starting EXPRESS...

-- EXPRESS: Started ---

Procs file name: LL1.procs

#++++++++++++++++++++++++++++++++#

Reading Compiler Opcodes

Done Reading Compiler Opcodes

#++++++++++++++++++++++++++++++++#

 Implementation of a VLIW Architecture in EXPRESSION ADL

77

#++++++++++++++++++++++++++++++++#

Intializing Symbol Table

Done Initializing Symbol Table

#++++++++++++++++++++++++++++++++#

#++++++++++++++++++++++++++++++++#

Reading Compiler Opcodes

Done Reading Compiler Opcodes

#++++++++++++++++++++++++++++++++#
--

-- EXPRESS: Reading LL1.procs ------------

--
Name of procedure: _main

#*#
Routine: _main

#++++++++++++++++++++++++++++++++#

Building Control Flow Graph (CFG).

Performing DFS ordering on CFG.

Done Building CFG.

#++++++++++++++++++++++++++++++++#

--
 Code Size Before All Transformations:
 Num. Instructions = 51
 Num. Operations = 51
--

Warning: RoutParmProperty copy does not work if it is not an empty property
Parsing LL1.defs...

Global Memory Allocation:

 Implementation of a VLIW Architecture in EXPRESSION ADL

78

Local Memory Allocation:

TIME : 0.0 secs

#++++++++++++++++++++++++++++++++#

Building Static Single Assignment (SSA) Form.

Done Building SSA.

#++++++++++++++++++++++++++++++++#

#*#
Routine: _main

--
 Code Size After SSA Before All Other Transformations:
 Num. Instructions = 59
 Num. Operations = 59
--

#*#
Routine: _main

Performing Def-Use (DU) Analysis.

Performing Use-Def (UD) Analysis.

#++++++++++++++++++++++++++++++++#

Performing Live-Dead (LD) Analysis.

Done Performing LD Analysis.

#++++++++++++++++++++++++++++++++#

#++++++++++++++++++++++++++++++++#

Building Hierarchical Task Graph (HTG).

Done Building HTG.

#++++++++++++++++++++++++++++++++#

 Implementation of a VLIW Architecture in EXPRESSION ADL

79

Setting instrs ID...
Done setting instrs ID.

#*#
Routine: _main
Warning: A pass that is executed only once per routine was called once too many
for routine: _main
Warning: A pass that is executed only once per routine was called once too many
for routine: _main
Warning: A pass that is executed only once per routine was called once too many
for routine: _main

#*#
Routine: _main

Setting instrs ID...
Done setting instrs ID.

#*#
Routine: _main

Setting instrs ID...
Done setting instrs ID.
 Finished Parsing the ISel input file...

TIME : 0.0 secs

#*#
Routine: _main

#++++++++++++++++++++++++++++++++#

Performing Register Allocation.
Recomputing properties...
Coloring interference graph...
IG Statistics:
 133 nodes: 96 registers, 37 multichains,
 edges: 2892

-- Num. Data Ops Eliminated: 0 ------
-- Num. Control Ops Eliminated: 0 ---
-- Num. Instructions Eliminated: 0 --

Done Performing Register Allocation.

 Implementation of a VLIW Architecture in EXPRESSION ADL

80

#++++++++++++++++++++++++++++++++#
Printing Routine:
End Printing Routine
**
 Start simulation : _DUMP_IR_AFTER_REGALLOC.txt
#-+-#
DEBUG_PRINT: (I)16784
#-+-#
The number of cycles is: 675

+-+
 Power Stats:

+-+

ASSOCIATIVE DCACHE: Cache Accesses: 80 (0.45)
 read hits: 7, read misses: 7 (0.5)
 write hits: 29, write misses: 37 (0.439394)
 Energy Dissipation: 0.0960413 uJ

ASSOCIATIVE DCACHE: Cache Accesses: 147 (0.782313)
 read hits: 115, read misses: 32 (0.782313)
 write hits: 0, write misses: 0 (0)
 Energy Dissipation: 0.176476 uJ

ASSOCIATIVE DCACHE: Cache Accesses: 125 (0.488)
 read hits: 12, read misses: 64 (0.157895)
 write hits: 49, write misses: 0 (1)
 Energy Dissipation: 1.02249 uJ

SRAM: loads: 0, stores: 0
 Energy Dissipation: 0 uJ

DRAM: loads: 64, stores: 3
 Energy Dissipation: 0.00458459 uJ

+-+

TIME : 0.5 secs
 End simulation : _DUMP_IR_AFTER_REGALLOC.txt
**

#-+-#
Number of Cycles (After RA): 675
#-+-#

 Implementation of a VLIW Architecture in EXPRESSION ADL

81

#-+-#
Number of Cycles (After RA, LockStep): 0
#-+-#

--
 Code Size After All Transformations:
 Num. Instructions = 53
 Num. Operations = 51
--

-- EXPRESS: Finished --

Leaving EXPRESS...

4.2.3. Other Relevant Stat files

There are many other relevant stats generated in the files mentioned below

 DumpIRFormat.txt
 IselMapping.txt
 VLIW.pwrStats
 DUMP_IR_AFTER_REGALLOC.txt
 MIPS_OpCodeTiming.txt
 operandsMappingFile.txt
 SpillReloadTarget.txt
 targetRegClasses.txt
 targetRegClassToRegsMapping.txt
 targetRegFileList.txt

 Implementation of a VLIW Architecture in EXPRESSION ADL

82

4.3. Design Space Exploration

Detailed design space exploration was carried to optimize and analyze the VLIW
architecture designed. Several directions were taken to optimize the processor
functionality details of the same are mentioned below.

4.3.1 Changing Instruction Memory Access time

The access time of the instruction memory was reduced from 40 cycles to 50 cycles.
Ideally the number of cycles required to complete the Livermore loops simulation on
VLIW processor was suppose to take more number of cycles. Same was depicted
originally in the simulation results. Graph has been plotted and shown below for the same
to display results in the same perspective.

4.3.2 Issuing More Instructions in Parallel from
Decode Unit

Initially 4 instructions were issued from processor decode unit in parallel. To explore
further I increased the number of parallel instructions to 6.
Ideally the number of cycles required to complete the Livermore loops simulation on
VLIW processor was suppose to take lesser number of cycles. Same was depicted
originally in the simulation results. Graph has been plotted and shown below for the same
to display results in the same perspective.

Result for DSE

0
100
200
300
400
500
600
700
800
900

1000
1100
1200

1 2

Increasing Memory Access Time

Number of Cycles

Number of Cache
Accesses

Read Hits

Energy
Dissipation in nJ

 Implementation of a VLIW Architecture in EXPRESSION ADL

83

4.3.3 Decreasing number of ALUs from the Processor

Initially 4 ALUs were part of the processor. To explore further I decreased the number of
ALUs to 3.
Ideally the number of cycles required to complete the Livermore loops simulation on
VLIW processor was suppose to take more number of cycles since the computing
capability of the processor was reduced. However on the contrary interestingly the
number of cycles to complete the simulation was reduced. Reason for the same could be
that 3 ALU Architecture might be more suited for running the application based upon
liver more loops. Graph has been plotted and shown below for the same to display results
in the same perspective.

Result of DSE

0
100
200
300
400
500
600
700
800
900

1000
1100

1 2

Issuing more instructions from Decode Unit

Number of Cycles

Number of Cache
Accesses

Read Hits

Energy Dissipation
in nJ

Result of DSE

0

200

400

600

800

1000

1200

1 2

Decreasing Number of ALUs

Number of Cycles

Number of Cache
Accesses

Read Hits

Energy Dissipation
in nJ

 Implementation of a VLIW Architecture in EXPRESSION ADL

84

4.3.4 Power Analysis

Initially 2 instructions were issued from processor decode unit in parallel and the memory
access time was set to 50 cycles. To explore and optimize the hardware the number of
instructions issued in parallel was increased to 4 and the memory access time was
reduced to 40 cycles.
Ideally the number of cycles required to complete the Livermore loops simulation on
VLIW processor was suppose to take lesser number of cycles and also reduced energy
dissipation from Instruction memory. However no impact on the energy dissipated from
the cache memories. Same was depicted originally in the simulation results. Graphs for
both types of memories have been plotted and shown below to display results in the same
perspective.

DSE For Power Analysis

4.5

4.51

4.52

4.53

4.54

4.55

4.56

4.57

4.58

4.59

2 Instructions, 3 ALUs, DRAM Access time 50 4 Instructions, 3 ALUs, DRAM Access time 40

E
ne

rg
y

D
is

si
pa

tio
n

in
 n

J

DRAM
Cache

DSE For Power Analysis

0

20

40

60

80

100

120

140

160

180

200

2 Instructions, 3 ALUs, DRAM Access time 50 4 Instructions, 3 ALUs, DRAM Access time 40

En
er

gy
 D

is
si

pa
te

d
in

 n
J

L1 Cache

IL1 Cache

 Implementation of a VLIW Architecture in EXPRESSION ADL

85

CHAPTER #5

5. CONCLUSION:

I intended to design a processor in an ADL. EXPRESSION was the ADL which I used to
design my processor and complete understanding was developed initially for using the
ADL’s VSAT GUI.
The design of the processor is elaborate and complete memory hierarchy is also
explained. The VLIW processor designed is quite powerful due to availability of four
ALUs. Same architecture can be made reconfigurable by using specific functions of ALU
units at a time. In turn the processor has wide variety of applications and power
requirements accordingly. Designing the processor in ADL helped me to explore more
options for optimizing the hardware design. ADL has many more application likes
simulating the results for the designer as well. Lots of relevant stats information is
generated after compiling the architecture in EXPRESSION which helps in optimizing
the architecture.
Complete installation procedure and ADL code is also shared with the thesis which can
be used for further learning and knowledge sharing.

 Implementation of a VLIW Architecture in EXPRESSION ADL

86

CHAPTER #6

6. FUTURE ENHANCMENTS AND SCOPE:

6.1. FUTURE PERSPECTIVE

I have implemented the VLIW architecture in the ADL.

• Next logical step should be to make the same processor more efficient by
exploring different design options.

• EXPRESSION simulates the bench mark of Livermore Loops and also allows
different software applications to be simulated on the designed Architecture.

• Using EXPRESSION we can make embedded architecture design most suited and
sorted out simulating the target application on the same.

• More improvements can be made in the same architecture by optimizing it’s
power requirements and making a design which is more power efficient.

• Introducing reconfiguration can also server to improve the power requirements of
the same hardware.

RECONFIGURATION IN THE STAND ALONE MODE:

6.2. PROCEDURE:

Getting the specific bit stream can be done using a CPLD (complex programmable logic
device) which picks it up from the EPROM also designed in ADL and make it available
whenever reconfiguration is required. Reconfiguration logic can be simulated by creating
the CPLD aware application and running in on the intended architecture. Keeping in view
that the application is smart enough to load new configuration from EPROM and using
the architecture accordingly.
Reconfiguration logic being implemented can be optimized with minimum hardware and
maximum utility of the resources creating a cutting edge processor both in terms of
Speed. Space, Power Consumption and Heat Dissipation.

 Implementation of a VLIW Architecture in EXPRESSION ADL

87

6.3. COMMENT:

Designing the CPLD is in fact an additional hardware which can interface with existing
VLIW processor or it can have use with other hardware design where reconfiguration can
be done to improve the efficiency of the design. Interfacing the CPLD with the VLIW
architecture proposed or can also be made a generic CPLD which can be used with other
reconfigurable architectures as well.
Since using lesser power and optimizing the use of existing resources is the aim of the
designer so Architecture Description language provide designers with vast opportunity to
find the best possible solution.

 Implementation of a VLIW Architecture in EXPRESSION ADL

88

Bibliography

A. Khare, N. Savoiu, A. Halambi, P. Grun, N. Dutt and A. Nicolau. “V-SAT: A
visual

1. specification and analysis tool for system-on-chip exploration”. In Proc.
EUROMICRO, 1999.

2. P. Grun, A. Halambi, A. Khare, V. Ganesh, N. Dutt and A. Nicolau.
“EXPRESSION: An ADL

3. for System Level Design Exploration”, Technical Report.
4. P. Grun, A. Halambi, N. Dutt and A. Nicolau. RTGEN: An algorithm for

automatic generation of
5. reservation tables from architectural descriptions. In ISSS, San Jose, CA, 1999

A. Nicolau and S. Novack. Trailblazing: A hierarchical approach to
percolation scheduling. In

6. ICPP, St. Charles, IL, 1993
7. Ashok Halambi, Peter Grun, Vijay Ganesh, Asheesh Khare, Nikil Dutt and Alex

Nicolau.
8. "EXPRESSION: A Language for Architecture Exploration through

Compiler/Simulator
9. Retargetability ", DATE 99
10. Ashok Halambi, Nikil Dutt and Alex Nicolau "Customizing Software Toolkits for

Embedded
11. Systems-On-Chip", DIPES 2000
12. Prabhat Mishra, Peter Grun, Nikil Dutt, and Alex Nicolau "Memory Subsystem

Description in
13. EXPRESSION ", UCI-ICS Technical Report #00-31
14. H. Tomiyama, A. Halambi, P. Grun, N. Dutt, and A. Nicolau "Modeling and

Verification of
15. Processor Pipelines in SOC Design Exploration'' In Proc. of 4rd International

High Level Design
16. Validation and Test Workshop (HLDVT'99), pp. 10--16, Nov. 1999
17. Ashok Halambi, Aviral Shrivastava, Nikil Dutt and Alex Nicolau. "A

Customizable Compiler
18. Framework for Embedded Systems", SCOPES 2001
19. A Khare “SIMPRESS: A Simulator Generation Environment for System-on-Chip

Exploration”
20. Masters Thesis, UCI-ICS 1999
21. V. Zivojnovic et al. “LISA - machine description language and generic machine

model for
22. HW/SW co-design. In VLSI Signal Processing”, 1996.
23. M. Freericks. “The nML machine description formalism.” TR SM-IMP/DIST/08,

TU Berlin,
24. 1993.

 Implementation of a VLIW Architecture in EXPRESSION ADL

89

25. George Hadjiyiannis , Silvina Hanono , Srinivas Devadas, “ISDL: an instruction
set

26. description language for retargetability”, Proceedings of the 34th annual
conference on Design

27. automation conference, p.299-302, June 1997
28. P. Biswas, S. Pasricha, P. Mishra, A. Shrivastava, N. Dutt, A. Nicolau,

“EXPRESSION User
29. Manual version 1.0”, Feb 2003
30. DeHon, Andre, Re-configurable Architectures for General-Purpose
31. Computing.
32. A.I. Technical Report No. 1586, M.I.T. Artifical Intelligence Lab., Oct. 1996
33. VLIW at IBM Research.
34. N.J. Drew and M.M. Dillinger, “Evolution to reconfigurable user equipment,”

IEEE Communication Magazine, vol. 39, no. 2, Feb. 2001.
35. Augmenting a Microprocessor with Re configurable Hardware by John Reid

Hauser B.S. (North Carolina State University) 1987 M.S. (University of
California, Berkeley) 1994 A dissertation submitted in partial satisfaction of the
requirements for the degree of Doctor of Philosophy in Computer Science in the
GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, BERKELEY.

36. Palnitkar, S., Verilog HDL, Sun Microsystems, California, 1996.
37. Gregory, K., Special Edition using Visual C++ 6, Prentice Hall, India, 1998.
38. mbinu@cs.utah.edu
39. express@cecs.uci.edu
40. http://www.cecs.uci.edu/~express

 Implementation of a VLIW Architecture in EXPRESSION ADL

90

LIST OF ACRONYMS

ALU Arithmetic Logic Unit

ASIC Application Specific Integrated
Circuits

CISC Complex Instruction Set Computers

FPGA Field Programmable Gate Array

FU Functional Unit

FPL Field Programmable Logic

ILP Instruction level Parallelism

OPCODE Operational Code

RISC Reduced Instruction Set computers

RCS Reconfigurable Computing System

RFU Reconfigurable Functional Unit

RTR Runtime Reconfiguration

RC Reconfigurable Computers

VLIW Very Large Instruction Word

ADL Architecture Description Language

EXPRESSION Name of the ADL used

