
 1

PERFORMANCE EVALUATION OF AD-HOC

ROUTING PROTOCOLS IN UNDERWATER

ACOUSTIC SENSOR NETWORKS

By

Naveed Bakhsh Qadri

2006-NUST-MS PhD-ComE-12

Thesis Advisor

Dr. Ghalib A. Shah

A thesis submitted to the faculty of Computer Engineering Department College of Electrical &
Mechanical Engineering, National University of Sciences and Technology, Pakistan in partial

fulfillment of the requirements for the degree of MSc in Computer Engineering
2010

 2

 3

Abstract

Underwater acoustic sensor networks(UWASNs) is an emerging technology, comprising of

sensor nodes and unattended automated vehicles (AUVs), all working in a collaboration to

sense various phenomenon, process digital information, store processed data and

communicate among each other and base stations. UWASNs have the capability and potential

of supporting large set of applications ranging from oceanic geographical surveys to tactical

surveillance. Underwater Acoustic propagation is characterized by high and variable delays,

fading effect, Doppler spread and multi path which in turn lead to a limited bandwidth and

high error rates. At the same time, battery life of the sensor nodes and their data storage

capacity is limited. So there is a need to find a suitable routing protocol that takes all these

limitations into consideration and makes communication in underwater networks viable. In

this paper we focus on existing mobile ad-hoc routing protocols which are widely accepted

and have been tested across the globe. This is the first attempt to analyze the performance of

these protocols in underwater acoustic networks environment. The first challenge is to come

up with a reliable simulation environment for underwater networks in ns-2. Currently, ns-2

does not support simulation for underwater networks. We extended ns-2 for underwater

networks by adding underwater propagation, network interface (data link layer) and

underwater physical models. After having a working underwater networks simulation model,

we then proceeded with our study. We used performance metrics like packet delivery ratio,

average end-to-end delay, throughput, routing overhead and energy consumption of the

sensor nodes. AODV, DSDV, DSR and OLSR are compared for their performance at

different traffic conditions, number of nodes and depths. By analyzing our simulation results,

 4

we found that AODV is recommended for denser underwater networks but with less traffic.

DSDV is suitable for higher traffic conditions with optimal number of nodes.

 5

Acknowledgements

All praise to Allah-The Almighty for His blessings and help. Without His guidance and

willingness it was not possible to complete the thesis.

I am greatly in debt to all my teachers at College of Electrical & Mechanical Engineering,

NUST for their dedication towards teaching and making me not only a better computer

professional but also a good human being.

I express my profound gratitude to my respectable supervisor Dr. Ghalib A. Shah for his

encouragement, co-operation, invaluable guidance and expert opinions during the project. I

would also like to thank the members of guidance and examination committee Dr. Farooque

Azam, Dr. Rashid Ahmad and Dr. Asia Khanum for their support, encouragement and

valuable input.

 6

ABSTRACT .. 3

ACKNOWLEDGEMENTS .. 5

LIST OF FIGURES ... 8

LIST OF TABLES ... 8

LIST OF EQUATIONS ... 8

INTRODUCTION .. 9

1.1 OVERVIEW .. 9
1.1.1 Wireless Sensor Networks .. 9
1.1.2 Underwater Acoustic Communication ... 11

1.1.2.1 Underwater Acoustic Sensor Networks .. 12
1.1.2.2 Electromagnetic and Optical waves in water .. 12
1.1.2.3 Underwater Channel Characteristics ... 13

1.1.3 Ad-hoc Routing Protocols .. 13
1.2 SCOPE OF THE RESEARCH ... 14
1.3 RESEARCH OBJECTIVES ... 15
1.4 THESIS ORGANIZATION .. 15

LITERATURE REVIEW ... 17

2.1 MOBILE AD-HOC ROUTING PROTOCOLS STUDIED ... 17
2.1.1 Dynamic Source Routing Protocol (DSR) [4] ... 18

2.1.1.1 Route Discovery Mechanism .. 18
2.1.1.2 Route Maintenance .. 20

2.1.2 Ad-hoc On Demand Distance Vector Routing Protocol [5] ... 21
2.1.2.1 Route Discovery Process ... 21
2.1.2.2 Route Maintenance .. 23
2.1.2.3 Route Table Management .. 23

2.1.3 Destination Sequenced Distance Vector Protocol [7] .. 24
2.1.3.1 Routing Table Management .. 24
2.1.3.2 Route Maintenance .. 25

2.1.4 Optimized Link State Routing Protocol [6] ... 26
2.1.4.1 Neighbor Sensing Mechanism ... 26
2.1.4.2 Flooding using Multipoint Relays ... 27
2.1.4.3 Route Calculations ... 28

2.2 UNDERWATER ACOUSTIC SENSOR NETWORKS ... 28
2.2.1 UWASNs vs. Terrestrial Sensor Networks ... 28
2.2.2 UWASN Architecture ... 30

2.2.2.1 Static two-dimensional underwater sensor networks .. 30
2.2.2.2 Static three-dimensional underwater sensor networks .. 30
2.2.2.3 Mobile three-dimensional underwater sensor networks ... 31

2.2.3 Acoustic propagation: The Basics ... 31
2.2.3.1 Speed of Sound .. 31
2.2.3.2 Bandwidth and Range Limitation .. 32
2.2.3.3 Factors influencing acoustic propagation .. 32

2.2.4 Related Work .. 34
2.2.5 Applications of underwater networks [1] .. 35
2.2.6 Underwater Network Design Challenges .. 36
2.3 NETWORK SIMULATOR 2 (NS-2) .. 36
2.3.1 Structure of ns-2 ... 37
2.3.2 Features of ns-2 .. 38
2.3.3 Tracing Capabilities of ns-2 .. 39

 7

2.3.3.1 Old Wireless Trace File Format .. 39
2.3.3.2 New Wireless Trace File Format ... 39

METHODOLOGY ... 41

3.1 UNDERWATER SIMULATION MODEL FOR NS-2 .. 41
3.2 PERFORMANCE EVALUATION METRICS ... 44
3.2.1 Packet Delivery Ratio .. 44
3.2.2 Average End-to-End delay ... 45
3.2.3 Throughput ... 45
3.2.4 Routing Overhead .. 45
3.2.5 Energy consumption ... 46
3.3 SIMULATION SCENARIOS ... 46
3.3.1 General Simulation Settings .. 47
3.3.2 Simulation Settings For Scenarios With Different Traffic Conditions ... 48
3.3.3 Simulation Settings For Scenarios With Different Node Depths .. 48
3.3.4 Simulation Settings For Scenarios With Different Number of Nodes ... 49
3.4 TRACE ANALYSIS ... 49

ANALYSIS OF RESULTS ... 51

4.1 PACKET DELIVERY RATIO (PDF) .. 51
4.1.1 PDF for different traffic conditions ... 51
4.1.2 PDF for different node depths ... 53
4.1.3 PDF for different number of nodes .. 53
4.2 AVERAGE END-TO-END DELAY ... 55
4.2.1 Average end-to-end delay for different traffic conditions ... 55
4.2.2 Average end-to-end delay for different node depths ... 56
4.2.3 Average end-to-end delay for different number of nodes .. 56
4.3 THROUGHPUT ... 57
4.3.1 Throughput for different traffic conditions .. 57
4.3.2 Throughput for different node depths .. 58
4.3.3 Throughput for different number of nodes .. 59
4.4 ROUTING OVERHEAD ... 60
4.4.1 Routing Overhead for different traffic conditions ... 60
4.4.2 Routing Overhead for different node depths ... 62
4.4.3 Routing Overhead for different number of nodes .. 64
4.5 ENERGY CONSUMPTION ... 65
4.5.1 Energy consumption for different traffic conditions ... 65
4.5.2 Energy Consumption for different node depths ... 67
4.5.3 Energy Consumption for different number of nodes ... 68

CONCLUSION & FUTURE WORK .. 71

5.1 CONCLUSION .. 71

REFERENCES ... 73

APPENDIX A: SAMPLE TCL SIMULATION SCRIPT ... 75

APPENDIX B: AWK ANALYSIS SCRIPTS ... 82

 8

List of Figures

Figure 1: A typical wireless sensor network. ... 10
Figure 2: DSR - Node A sends ROUTE REQUEST for route to Node B 19
Figure 3: DSR - Propagation of ROUTE REPLY message from Node B to Node A 19
Figure 4: AODV - Propagation of Route Request (RREQ) message 22
Figure 5: AODV - Path followed by Route Reply (RREP) packet .. 22
Figure 6: Routing table at Node A using DSDV ... 25
Figure 7: Flooding in OLSR (a) Normal Flooding (b) Flooding through MPRs (Blue nodes
are forwarding)... 28
Figure 8: Simulation flow in ns-2 .. 37
Figure 9: Packet delivery ratio for different number of CBR connections 52
Figure 10: Packet delivery ratio for different node depths .. 53
Figure 11: Packet delivery ratio for different number of nodes ... 54
Figure 12: Average end-to-end delay for different traffic conditions 55
Figure 13: Average end-to-end delay for different node depths .. 56
Figure 14: Average end-to-end delay for different number of nodes 57
Figure 15: Throughput for different traffic conditions .. 58
Figure 16: Throughput for different node depths .. 59
Figure 17: Throughput for different number of nodes ... 59
Figure 18: Routing overhead for different traffic conditions ... 61
Figure 19: NRL for different traffic conditions ... 62
Figure 20: Routing overhead for different node depths ... 63
Figure 21: NRL for different node depths ... 63
Figure 22: Routing overhead for different number of nodes ... 64
Figure 23: NRL for different number of nodes .. 65
Figure 24: Energy consumed by nodes for different traffic conditions 66
Figure 25: Percentage of node failures for different traffic scenarios 66
Figure 26: Energy consumption of nodes for different node depths 67
Figure 27: Percentage of node failures for different depths .. 68
Figure 28: Energy consumption of nodes for different number of nodes 69
Figure 29: Percentage of node failures for different number of nodes 69

List of Tables

Table 1: Available Bandwidth for different range of underwater acoustic links. 32
Table 2: Important Parameters for Underwater Physical Layer .. 47
Table 3: Important parameters for MAC 802.11 adjusted for underwater networks 47

List of Equations

Equation 1: Nine-term equation for speed of sound in oceans by K.V. Mackenzie. 31
Equation 2: Calculating packet delivery ratio (PDF) ... 44
Equation 3: Calculation for average end-to-end delay for the received packets 45
Equation 4: Overall throughput of the network ... 45
Equation 5: Calculating routing overhead ... 46
Equation 6: Calculating normalized routing load .. 46

 9

C h a p t e r 1

Introduction

This chapter gives a highlight of the research conducted. Overview of the background, scope

and objectives of the research and organization of the thesis is presented in this chapter.

1.1 Overview

Underwater acoustic sensor networks (UWASN) is an emerging technology and a lot of work

all across the globe is going on in this field. In order to clearly understand the dynamics and

nuts & bolts of UWASNs, it is very important to grasp a knowledge of terrestrial wireless

sensor networks, acoustic propagation in water, channel characteristics and challenges

associated in designing an UWASN. The routing in wireless networks is a challenging

problem because wireless networks experience larger and variable delays, plus the mobility

of nodes magnifies the challenge. But as we take a wireless sensor network underwater, the

routing becomes an even greater challenge.

1.1.1 Wireless Sensor Networks

A wireless sensor network comprises of autonomous sensors spatially distributed over a

certain area. These sensors work in a cooperative manner to monitor physical or

environmental conditions like temperature, pressure, vibrations, humidity, motion or

chemicals etc. A sensor network usually constitutes a wireless ad-hoc network, meaning that

the network architecture is infrastructure less and each sensor supports multi-hop routing

protocols because several nodes may forward data to the base station. Each sensor in the

network is equipped with a transceiver for wireless communication, a micro-controller and a

battery. Sensor nodes vary in sizes and can be as small as a grain. Prices of sensors also vary

 10

according to the size and functionality incorporated in them. By constraining the size and cost

of a sensor node, constraints are put on resources like energy, processing power, memory and

bandwidth. A typical wireless sensor network is show in Figure 1 where sensor nodes are

sensing the environmental phenomenon and relaying the collected data wirelessly to a

gateway sensor over a multi hop path. The gateway sensor is connected to a base station

where the collected data is gathered and converted into information.

Figure 1: A typical wireless sensor network.

Wireless sensor networks find their way to a variety of applications in our lives. They are

used for environmental monitoring, area monitoring and industrial monitoring. Monitoring

climatic changes like change in temperature at glaciers, temperature change patterns around

active volcanoes, seismic activities along the shores are few examples from a very long list.

In area monitoring, sensor networks are widely used in early warning systems where a

specific area is monitored for movement. Sensor networks can be deployed in battle fields to

detect intrusions and thus give a tactical advantage over the enemy. In industrial and

agricultural fields, wireless sensor networks are deployed to detect various phenomenons

which help in fine tuning the processes.

Some of the key characteristics of wireless sensor networks are as follow [14] :

• Sensor nodes have limited power.

 11

• Sensor nodes are rugged in nature and can with stand harsh environmental conditions.

• Sensor networks are prone to failures but they have the capability to cope with

frequent node failures.

• Nodes with in a wireless sensor network can be stationary/fixed or can be mobile.

• The network topology of wireless sensor networks is always changing and very

dynamic in nature.

• Usually WSNs are deployed over a large area with high spatial density.

• Wireless sensor networks are intended for ‘un-manned’ operations.

• Wireless sensor networks are highly scalable in terms of node capacity; however

bandwidth of gateway nodes may be a limiting factor.

1.1.2 Underwater Acoustic Communication

Underwater acoustic communication is the technique of sending and receiving messages

underwater using acoustical signal (sound waves). Underwater communication technology

using sound waves was experimented upon by the American Navy during World War 2. This

was later successfully employed for communications between ships and submarines. Sound

waves exhibit maximum efficiency in traversing water i.e. sound waves can travel through

water with minimum losses in amplitude of the wave front as compared to optical and

electro-magnetic (EM) waves [2]

Sound waves travel as mechanical vibrations through water. Speed of propagation of sound

waves and their attenuation with distance traversed depend on the density of the medium.

Since water is denser than air, speed of sound is faster and its attenuation rate is lower in

water as compared to air, so the acoustic signal can traverse faster and farther in water than

air.

 12

1.1.2.1 Underwater Acoustic Sensor Networks

Underwater acoustic sensor networks consist of small, intelligent; battery powered digital

devices called sensor nodes. These devices carry different types of sensors and can

communicate with each other wirelessly [1] . Efficiency of communication is increased by

cluster formation algorithms. Nodes with-in good signal receiving distances of one another

form a cluster with one node as the cluster head or underwater-sink. All nodes communicate

with their respective cluster heads only, using TDMA techniques due to its good short range

communication properties while cluster heads communicate with each other using CDMA

[15] because of the good long distance communication properties of the CDMA MAC

protocol.

1.1.2.2 Electromagnetic and Optical waves in water

Electromagnetic wave (EM), which is the most suited means of wave propagation in

terrestrial networks show poor results in water. Although its speed of propagation in water is

almost the same as the speed of light, but the sea water is saline and therefore conductive.

This conductive nature makes the medium act like a capacitor. An electromagnetic wave

passing through a capacitive medium can be modeled as passing through a low pass filter.

Higher frequencies will get attenuated more than lower ones. This means EM signals with

low frequencies exhibit deeper penetrations through water than higher frequencies. E.g.

experimentation with MICA Motes shows that using a carrier frequency of 433 MHz, a

MICA Mote can communicate up to 120 cm in water. Conversely an EM wave of 30 Hz will

penetrate very long distances but would require high power and very big antennas. [15]

Laser can be modulated and used in line-of-sight communication systems above surface.

Water due to its transparent nature can be used for laser communications but in underwater

environments, due to movement of underwater currents, sudden changes in temperatures can

be expected. This forms layers of dense and rare mediums between communicating devices.

 13

Laser signals entering to/ from rare and denser mediums will experience refraction and may

not reach the intended receiver at all. This is one of the main reasons for using acoustic

signals at MAC layer in underwater channels.

1.1.2.3 Underwater Channel Characteristics

Sea water behaves different from fresh water. In seas and oceans, unequal warming by sun

causes temperature changes and produces “layers” of water at different temperatures. This

also cause huge water movements called ocean currents. The biggest and continuous current

flows in the Atlantic Ocean called the Gulf Stream which starts from the continent of Africa

and ends on the coast of Europe. Similarly sea beds may contain salt rocks which get

dissolved in water and increase salt concentrations in that area. This will cause salinity levels

of water in that area more than the surrounding water and thereby causing a layer of water

with different conductance. Sea water therefore cannot be treated as a homogenous medium;

it has “pockets” or “layers” of regions with varying physical and chemical properties. Ocean

currents move these different pockets or layers causing continuous changes in the

homogeneity of the medium. A long distance signal traveling through this medium will

experience changes in propagation speed, diffraction, spreading, fading, attenuation,

distortion etc. Design of communication systems therefore have to include all these

“peculiarities” of the medium in order for it to be functional.

1.1.3 Ad-hoc Routing Protocols

The protocols performing routing activities in mobile ad-hoc networks are referred as ad-hoc

routing protocols. In the start, nodes in an ad-hoc network are not familiar with their network

topologies. Ad-hoc routing protocols enable them to discover it. On joining an ad-hoc

network, a new node may announce its presence by broadcasting and should listen to

announcements made by neighboring nodes. Once a node learns about neighboring nodes and

 14

cost involved in reaching them, this information can be exchanged and thus routes to all the

nodes in the network can be built. This may sound a very easy task but it is a very

complicated task as topology of an ad-hoc network is changing all the time. So there is a need

of routing protocol that can cope with such conditions and ad-hoc routing protocols does the

job. Four ad-hoc routing protocols are studied in this research are discussed in detail in the

coming sections. These routing protocols are Ad-hoc On Demand Distance Vector routing

protocol (AODV), Destination Sequenced Distance Vector routing protocol (DSDV),

Dynamic Source Routing protocol (DSR) and Optimized Link State Routing protocols

(OLSR). These protocols are widely used in wireless sensor networks and are globally

accepted.

1.2 Scope of the research

Network layer is responsible for determining a path between a source and destination. Some

of the characteristics like extremely high and variable delays are better addressed at network

layer. During the past recent years, huge advancements have been made in the routing

protocols for ad-hoc wireless networks and sensor networks. Due to the different nature of

underwater networks environment and specific requirements of the related applications, it is

very much likely that these existing mobile ad-hoc protocols may not be suitable for

underwater networks. In this research we tend to explore this. None of these protocols have

yet been tested in underwater networks. This is one of the first attempts of its kind. Four

widely accepted and globally tested ad-hoc routing protocols, Dynamic Source Routing

Protocol (DSR), Destination Sequenced Distance Vector Protocol (DSDV), Ad-hoc On

Demand Distance Vector Routing Protocol (AODV) and Optimized Link State Routing

Protocol (OLSR) are selected for this study. These protocols will be studied in context with

the underwater sensor networks. Their performance and behavior will be studied and

compared among themselves.

 15

1.3 Research Objectives

The major objective of this research study is to analyze the performance of mobile ad-hoc

routing protocols in underwater acoustic sensor networks. The intention here is to find how

these protocols react when introduced to underwater networks environment. We are also

interested to find what network conditions affect the performance of routing protocols and

how their performance is affected. Based on various metrics, routing protocols will be

compared with each other for their performance. This comparison will be made with respect

to every network condition and on overall basis. At the end of the study we’ll be able to see a

summarized comparison of performance of routing protocols. It is part of our objective to

find the reason for depicted behavior by each routing protocol and possibly suggest

improvements that can help to improve the overall performance of routing protocols in

underwater acoustic sensor networks.

1.4 Thesis Organization

In Chapter 1 an overall introduction of the research work is presented. An overview of

underwater acoustic sensor networks is given along with a brief discussion about wireless

sensor networks and ad-hoc routing protocols. The problem statement is also made in this

chapter followed by defining the overall objectives of this research work. Chapter 2 discusses

the four mobile ad-hoc routing protocols selected for this study. Their working and operating

details is discussed briefly in this chapter. A detail about underwater acoustic sensor network

is provided. The basics of acoustic communications are discussed here. The architecture of

the underwater sensor networks along with the challenges involved in designing and

implementing underwater networks is presented in this chapter. Chapter 2 also discusses the

applications of UWASNs in our daily life. Network Simulator is introduced. The major

components and features of ns-2 are discussed here. In chapter 3, the underwater simulation

 16

model for ns-2 is discussed along with the metrics used to evaluate the performance of

routing protocols. The simulation scenarios designed to evaluate the effect of different traffic

conditions, different node depths and different number of nodes is discussed in detail in this

chapter. In chapter 4 captured results are presented in graphical and analytical form.

Discussion is made on the obtained results. Results are discussed with respect to the metrics

discussed in chapter 4. Based on the gathered results comparisons are made among the

routing protocols. In chapter 5, results are concluded and future work is proposed.

 17

C h a p t e r 2

Literature Review

This chapter includes the summary of mobile ad-hoc routing protocols, underwater acoustic

sensor networks and network simulator 2. The chapter encompasses the background work

related to our area of research.

2.1 Mobile Ad-hoc Routing Protocols Studied

Mobile ad-hoc networks constitute a number of nodes, which have the capability of

communicating over wireless medium and thus forming an arbitrary and dynamic network

with wireless links. The topology of mobile ad-hoc networks is always changing, as nodes are

allowed to leave or join at any time. Due to the mobility of the nodes, routing in ad-hoc

networks is a challenging problem. Nodes in ad-hoc networks do not start out familiar of their

network’s topology, instead they have to discover it. It is expected from a routing protocol to

satisfy the specific requirements of mobile ad-hoc networks. The two conceptual approaches

used in ad-hoc routing are proactive and reactive approach. In proactive approach, nodes

periodically exchange messages that contain network information. These exchanges are made

irrespective of the fact whether a route is required or not. The other approach is reactive

where nodes exchange messages containing network information only when it’s needed. Such

an approach may cause the packet latency to increase because some time will be required to

discover the routes. However, reactive routing protocols significantly overcome the wasted

effort required in maintaining unused routes. In this work, four widely accepted and tested

routing protocols are selected for studying their behavior in underwater networks. Dynamic

source routing protocol, ad-hoc on-demand distance vector routing protocol, destination

 18

sequenced distance vector routing and optimized link state routing protocol are studied and

briefly discussed in the coming section.

2.1.1 Dynamic Source Routing Protocol (DSR) [4]

Dynamic Source Routing Protocol (DSR) is specifically designed for multi-hop wireless ad-

hoc networks. DSR is a reactive routing protocol and allows the network to self-organize and

self-configure without any dependence on the existing network infrastructure or

administration. The DSR protocol allows a node to dynamically discover a source route

across multiple hops. Every data packet sent contains a complete ordered list of nodes

through which a packet must pass in order to reach the desired destination. This mechanism

avoids the need for having up-to-date routing information in all the intermediate nodes

through which a node is passed. The other nodes can cache the source route present in the

packet header making route discovery faster. Principally there are two major mechanisms

involved in this routing protocol, Route Discovery and Route Maintenance. These two

mechanisms work together in collaboration and allow the nodes to discover and maintain

source routes to any destination in the network. All the working of DSR is purely on-demand

and thus scales the routing overhead to only currently needed or in-use paths.

2.1.1.1 Route Discovery Mechanism

If two nodes need to communicate with each other, let A be the sender node and B be the

destination node, then A needs a source route to B. A looks for a valid route to B in its cache.

If A finds an entry in its cache then A places this route into the header of the sending packet

and sends the packet. The packet follows the sequence of hops to the destination B. No route

discovery is initiated in this scenario. If the cache did not return a valid route then route

discovery is initiated.

 19

Figure 2: DSR - Node A sends ROUTE REQUEST for route to Node B

Figure 3: DSR - Propagation of ROUTE REPLY message from Node B to Node A

The major steps involved in a route discovery process are as follows and are shown in Figure

2 and Figure 3:

• A broadcasts a ROUTE REQUEST message to all the nodes in its transmission range.

• Non-target nodes will forward this message when they receive it for the first time.

• Before forwarding, non-target nodes will add their address to the route record in the

packet.

• Forwarding nodes check the request id and source node id to avoid retransmissions.

 20

• Forwarding nodes also check if their address is already present in the route record.

This is done to avoid loops.

• The destination node B sends a ROUTE REPLY message when it receives the

ROUTE REQUEST message.

• In case of bi-directional links, the ROUTE REPLY uses a reverse path of the ROUTE

REQUEST.

• In case of uni-directional links, the destination node B repeats a similar process for

finding a route to initiator node A. Route cache will be checked for existing routes, if

no route is present then a discovery process is initiated.

• In order to avoid infinite route discoveries, the destination node B will store the

original ROUTE REQUEST message.

• The source node when receives the ROUTE REPLY message adds the source route to

its route cache for future quick access.

• Once the source node A has a route to destination node B, it starts the transmission

through the sequenced hops mentioned in the header of packets.

2.1.1.2 Route Maintenance

The maintenance mechanism is based on a very simple approach that every node that

originates or forwards a packet using the source route is responsible for confirming the

receipt of the packet by the next hop. If a source node A sends a packet to destination node B

through nodes C and D, then A is responsible for receipt of C, C for D and D for B. Packet is

retransmitted until a receipt is received or maximum number of retransmissions is achieved.

If no receipt is received, the node transmits a ROUTE ERROR message to the original

sender. This ROUTE ERROR message is used to indicate a broken link. The sender node will

react to this broken link by removing the route from cache and looking for another route in

 21

the cache. If no other route is present in cache then again a route discovery process is

initiated.

2.1.2 Ad-hoc On Demand Distance Vector Routing Protocol [5]

Ad-hoc On Demand Distance Vector Routing protocol (AODV) is reactive routing protocol

for mobile ad-hoc networks capable of both unicast and multicast routing. Due to its on-

demand nature, AODV builds routes only when needed and keep them as long as they are

needed by the sources. AODV joins the mechanism of DSR and Destination Sequenced

Distance Vector routing protocol (DSDV). The specific characteristics of DSDV like periodic

beaconing, hop-by-hop routing and sequencing and on-demand mechanism of DSR is

combined to form the core working of AODV. AODV uses an algorithm with three simple

basic objectives:

1. Discovery packets should be broadcasted only when necessary.

2. Local and general topology maintenance should be distinguished.

3. Changes in local connectivity should be passed to only those neighboring nodes that

might need the information.

2.1.2.1 Route Discovery Process

AODV builds routes using a route request / route reply query cycle. Route discovery process

is only initiated when a source node does not have a route to the desired destination node.

The process is initiated by broadcasting a ROUTE REQUEST packet across the network. If

receiving nodes are not the destination or does not have a valid route to the destination node,

this ROUTE REQUEST is forwarded further. The forwarding nodes store a reverse path to

the source node for themselves in their routing tables. Along with the source node’s IP

address, current sequence number and broadcast ID, the ROUTE REQUEST also contains the

most recent sequence number for the destination node. If ROUTE REQUEST reaches the

 22

destination node or a node that has a valid route to the destination, the node sends back a

ROUTE REPLY message back towards the source containing the hops to the destination

node and the recent sequence number.

Figure 4: AODV - Propagation of Route Request (RREQ) message

All intermediate nodes that forward this reply message back to the source of the ROUTE

REQUEST message, build a forward route to the destination node. When the source node

receives this reply message, it can send packets to the destination over the already build

forward route.

Figure 5: AODV - Path followed by Route Reply (RREP) packet

Due to AODV’s hop-by-hop nature, intermediate nodes only store next hop routing

information rather than complete routing table for the complete network topology.

 23

2.1.2.2 Route Maintenance

A route is maintained as long as that route is active. A route is considered active when data

packets periodically passes through the path from source to destination nodes. When source

node stops sending the data, the links will be maintained only until the time out occurs. Once

the time out occurs, links will be deleted from the routing tables. In case a node detects a link

break in an active route, it sends a ROUTE ERROR message to its upstream neighbors. This

messages is passed on and eventually reaches the source node. Nodes in AODV detect

broken links by sending periodic HELLO messages and if receipts of three consecutive

HELLO messages are not received, it is considered as a broken link. The HELLO messages

enable the nodes to detect broken links before sending the packets. But this has a

disadvantage of using bandwidth for periodic HELLO messages. A source nodes when

receives the ROUTE ERROR can start a fresh route discovery process for establishing a link

to destination.

2.1.2.3 Route Table Management

AODV maintains a soft-state associated with every entry in the route table. A soft-state is the

additional useful information other than the source and destination sequence numbers. A

timer is associated with the reverse path and is called request expiration timer. The expiry

time depends on the topology, greater the size of the ad-hoc network greater will be the

expiry time. This timer serves to delete reverse path entries from those nodes that do not lie in

the path form source to destination. Route caching timeout is another parameter associated

with every entry. This is time after which a route entry is considered invalid. In each routing

table entry, the address of active neighbor node is also recorded. A neighbor node is

considered active if it originates or forwards at least one packet for that particular destination

during the most recent active timeout duration. This information is required for updating the

nodes whenever there is a link break along the path. In AODV, a node only maintains the

 24

route table entries for destinations for which it is interested unlike traditional table driven

routing protocols. Each routing table entry contains following information:

1. Destination address

2. Next hop address

3. Metric (Number of hops)

4. Sequence number for the destination

5. Active neighbors involved in this route

6. Expiry time for route table entry

Whenever a route is used, the time out time is reset to current time plus the active route

timeout. If a new a route is available to a mobile node, destination sequence numbers are

compared. The route having the greater destination sequence number is opted. If sequence

numbers turn out to be exactly same then route is selected on the basis of metric. Route with

the smaller metric will be chosen in such a case.

2.1.3 Destination Sequenced Distance Vector Protocol [7]

The Destination Sequenced Distance Vector routing protocol (DSDV) is a proactive routing

protocol using Bellmann-Ford Algorithm. Two nodes communicate with each using routing

tables. Routing tables are stored at each node and contains all available destinations and

number of hops to each destination.

2.1.3.1 Routing Table Management

In DSDV every node has a routing table. Every routing table carries the available destinations

and cost involved in accessing that destination. Entries in routing table are marked with a

sequence number which is generated by the destination node. Ad-hoc networks have an every

changing topology and routing protocol needs to fully aware of this. In order to cope up with

this challenge, nodes periodically transmit updates or whenever there is a change in the

 25

network topology. These update packets advertise which nodes are accessible from each node

in the network and the number of hops required to reach these nodes. The update packet has a

metric of one for one-hop neighbors and it is increased by one by each forwarding node.

Additionally a sequence number is also tagged by original node to the update packet. The

data broadcast by each node contains

1. The destination address.

2. Number of hops required to reach the destination.

3. Sequence number as originally tagged by the destination.

DSDV protocol requires all the nodes to broadcast its routing table to all its current

neighbors.

Figure 6: Routing table at Node A using DSDV

The receiving nodes update their routing tables on the basis of sequence numbers. If the

sequence number is greater or equal than the current one, routing tables are updated. DSDV

uses two different types of update packets. One is full dump which is exchanged periodically

and contains the complete snapshot of the network. The other update type is incremental

which contains the information changed since last full dump.

2.1.3.2 Route Maintenance

Broken links are detected by link or physical layer components or if a node does not receive

any broadcast message from neighbor for a longer period of time. When this happens, the

 26

detecting node immediately informs the rest of the network by broadcasting an update

message. DSDV invalidates all broken links by immediately assigning an infinite metric and

increments sequence number. The incremented sequence number forces all the nodes to

update their routing tables and this link is invalidated by all the nodes. Once the link is

established again, the detecting node again transmits an update message and the network

immediately reacts to it and route is updated by all the nodes.

2.1.4 Optimized Link State Routing Protocol [6]

The Optimized Link State Routing Protocol (OLSR) is a table driven proactive routing

protocol designed for mobile ad-hoc networks. It periodically updates the network topology

information by sending HELLO messages. Every node selects a set of neighbor nodes and

designate them as Multipoint Relays (MPRs). In OLSR, only nodes chosen as MPRs forward

control traffic and provide an efficient mechanism for flooding by reducing the number of

transmissions. OLSR can be broadly divided into following three mechanism

1. Neighbor sensing mechanism

2. Flooding using Multipoint Relays

3. Route calculations

2.1.4.1 Neighbor Sensing Mechanism

Changes in the neighborhood of a node are detected through this mechanism. Two nodes are

considered neighbors when they are directly connected to each other and transmission can

occur in both directions. If nodes A and B are neighbors, then node X is considered to be a

two-hop neighbor of node A, if X is not the neighbor of node A and there is a symmetric link

between node A and B and a symmetric link between node B and node X.

Neighbor sensing is done by periodically sending HELLO messages. HELLO messages

contain the sender node’s address along with the list of neighbors of the sending node and

 27

link status. A node which receives the HELLO message can thus generate information for its

two-hop neighbor and link status in the neighborhood. In this way every nodes become aware

of not only neighbors but also two-hop neighbors.

2.1.4.2 Flooding using Multipoint Relays

In normal flooding techniques, also referred as full or pure flooding, a node retransmits

broadcast packet when it receives it for the first time and duplicate copies are dropped and

not forwarded. Such a technique significantly increases the network overhead and networks

where nodes are mobile and have limited power; this significantly affects the overall

performance of the network. In neighbor sensing mechanism, HELLO messages are

exchanged only among neighbors. As mobile ad-hoc can be considerably large and dynamic,

the more efficient way of distributing the topology information is by the use of multipoint

relays. The intention here is to allow spreading of information to each node without making

any duplicate and unnecessary retransmissions. The multi relay concept significantly

decreases the flooding overhead as compared to pure flooding.

Every node selects a set of nodes as multipoint relays (MPRs). The two-hop neighbor

information is exploited to get a minimal MPR set. The MPR is chosen in such a way that a

node can reach all its two-hop neighbors through the selected multipoint relays. Multipoint

relay selector set is maintained by every node which keeps track of nodes that selected

current node as the MPR. The protocol only allows MPR node to retransmit a broadcast

packet if it is received by a node for which that node is in the multipoint selector set. If same

packets are received again, they are simply dropped thus significantly reducing the flooding

overhead.

 28

Figure 7: Flooding in OLSR (a) Normal Flooding (b) Flooding through MPRs
 (Blue nodes are forwarding)

2.1.4.3 Route Calculations

All nodes that are not selected as MPRs by any other node periodically sends a topology

control message. The topology control message is spread in the network using the mechanism

described in the earlier section. A topology control message contains the address of the

originator node and MPR set for that node. The MPR nodes announce this information

periodically in their control messages. So, a node announces to the network, that it has

approach to the nodes which have selected it as an MPR. As a result all nodes receive a

partial topology graph. Shortest path algorithm is applied on the partial topology graph to

compute the optimal path. The nodes maintain the topology information only for specific

period of time. Once that time expires, topology graph is removed.

2.2 Underwater Acoustic Sensor Networks

Underwater acoustic sensor networks (UWASNs) consist of variable number of sensors and

vehicles deployed over a certain area for performing various monitoring tasks. These sensors

are small, intelligent; battery powered digital devices, capable of communicating wirelessly

with each other and to the base station.

2.2.1 UWASNs vs. Terrestrial Sensor Networks

The dynamics of underwater networks is totally different from the traditional terrestrial

sensor networks. The biggest difference is the propagation medium. In terrestrial sensor

 29

networks the propagation medium is air and in UWASNs it is water. These two mediums

have entirely different characteristics. Electromagnetic (EM) waves are used in terrestrial

sensor networks but EM waves cannot be used in UWASNs. Electromagnetic waves do not

propagate over large distances at high frequencies. As reported by Robotic Embedded

Systems Laboratory (RESL), EM waves at 433MHz have a transmission range of only

120cm. Only extra low frequencies can penetrate through water, but transmission via low

frequencies requires very large antennas. Similarly, optical waves cannot be used for

transmission in underwater networks because they suffer badly due to scattering. Moreover,

optical transmission requires precision equipment for pointing the laser beam. Due to these

reasons, acoustic propagation is the most suited option for underwater networks. Some other

differences between UWASNs and terrestrial sensor networks are as follows.

1. Sensors for terrestrial sensor networks are inexpensive as compared to underwater

sensors. Sensors used in underwater networks are expensive because of complex

transceivers and extra protection required against harsh environmental conditions.

2. In terrestrial sensor networks deployment is easy and usually sensor nodes are densely

deployed. However, in underwater networks deployment is a costly and challenging

process and that is why sensors are sparsely deployed in underwater networks.

3. Power requirements of underwater sensors are higher because of complex

transmission techniques and greater transmission distances. In case of terrestrial

sensor networks, recharging sensor nodes is easier. Sensors can be easily collected

and batteries can be replaced or solar energy can be exploited to recharge the sensor

nodes. Solar energy cannot be exploited in underwater networks and reclaiming

deployed nodes is a costly process.

 30

4. Underwater sensors have grater memory requirements than terrestrial sensors because

they might have to cache the transmission data due to impaired or unavailable

channel.

2.2.2 UWASN Architecture

The network topology becomes crucial when we consider the energy consumption of the

nodes, capacity of network and its reliability. Therefore, an optimized topology is required.

The underwater sensor network topology is an open issue and a lot of research is currently

going on. The basic architectures proposed and widely accepted are as follows [3] .

2.2.2.1 Static two-dimensional underwater sensor networks

Such networks have sensors anchored to the bottom of the ocean. All sensors are kept at the

same depth and all nodes are static. No free movement in any direction is allowed. Sensors

are interconnected to each other via wireless acoustic links. Sensors are equipped with two

acoustic transceivers, vertical and horizontal. Horizontal transceiver is used to communicate

with other sensors and sinks at the same depth. Vertical transceiver is for communication

with surface station. Sensor nodes in such networks are also referred as ocean bottom nodes.

2.2.2.2 Static three-dimensional underwater sensor networks

In three dimensional underwater sensor networks, sensor nodes float at different depths.

Usually nodes are deployed with the help of an inflatable buoy and anchors on the bottom of

the sea. The amount of compress air within the buoy determines the depth or height of the

nodes with respect to ocean floor. Such a deployment is very challenging. Extra precautions

are required to make sure complete 3D coverage of the network, because underwater channel

is unpredictable and has ever changing dynamics. So the 3D deployment has to be done in

such a way that network topology is always connected and there always exists a path from a

sensor to sink.

 31

2.2.2.3 Mobile three-dimensional underwater sensor networks

Autonomous underwater vehicles (AUVs) carrying single or multiple sensors makeup the

mobile 3D underwater sensor network. These AUVs are truly mobile in all the directions.

This mobility makes communications extra challenging because the topology is constantly

changing and so as the routes.

2.2.3 Acoustic propagation: The Basics

Sound waves travel in the form alternating compressions and refractions. These compressions

and refractions are detected by the receiver as changes in pressure.

2.2.3.1 Speed of Sound

The speed of sound in water is dependent on pressure (depth), temperature and the salinity of

the water. This is why, propagation speeds differ for fresh water and seawater. The average

approximate speed of sound in fresh water and sea water at atmospheric pressure are 1450

m/s and 1500 m/s respectively. Speed of sound is directly proportional to the change in

temperature, pressure and salinity. A change of 1 °C in the temperature causes a change of ~

4 m/s. A 1% change in salinity causes a change of ~1 m/s [13] . Various empirical equations

have been derived to accurately calculate speed of sound on the basis of temperature, depth

and salinity. The speed of sound c as a function of temperature T in degrees Celsius, Salinity

S in parts per thousand and depth z in meters as given by Mackenzie [13] and is shown in

Equation 1.

Equation 1: Nine-term equation for speed of sound in oceans by K.V. Mackenzie.

Where constants a1, a2…. a8 are as follows:

a1 = 1448.96 a2 = 4.591 a3 = -5.304×10-2 a4 = 2.374×10-4
a5 = 1.340 a6 = 1.630×10-2 a7 = 1.675×10-7 a8 = -1.025×10-2

 32

a9 = -7.139×10-13
This equation has a standard error of 0.070 m/s for salinities between 25 and 400 ppt.

2.2.3.2 Bandwidth and Range Limitation

The typical frequencies associated with acoustic communication are between 10 Hz and 1

MHz, higher frequencies are rarely used because they are quickly absorbed [2] . Bandwidth

of the underwater acoustic channel is limited and dramatically dependant on both frequency

and transmission range. Long range systems may have a bandwidth of only few kHz, while

short range systems will high orders of bandwidth. Usually underwater communication links

are classified as very short, short, medium, long and very long. In Table 1 available

bandwidth for the above mentioned classes of acoustic links is given [1] .

 Range (km) Bandwidth (kHz)
Very Long 1000 <1

Long 10-1000 2-5
Medium 1-10 ≈10

Short 0.1-1 20-50
Very Short <0.1 >100

Table 1: Available Bandwidth for different range of underwater acoustic links.

Acoustic links are also classified as vertical or horizontal, depending upon the direction of the

sound ray with respect to the ocean floor.

2.2.3.3 Factors influencing acoustic propagation

Factors that influence the acoustic communication in underwater networks are mentioned

below [1] .

• Path loss due to Attenuation: It is mainly caused due to absorption due to

conversion of acoustic energy into heat. The attenuation is also caused by scattering,

refraction and dispersion of sound waves in water.

• Path loss due to Geometric spreading: As the sound waves travel in water, wave

fronts expand and sound energy spreads. The most common kinds are spherical and

 33

cylindrical spreading which characterizes deep and shallow water communication

respectively.

• Reverberation: Reverberation causes a large number of echoes to build up and

gradually decays as the sound is absorbed in the environment. The rough boundaries,

fish and other organisms underwater causes the sound to scatter and are a major cause

of reverberation. In underwater communication these reverberations or background

noise can be of much longer duration than the original transient signal. For correctly

detecting an acoustic signal it should have a higher level than reverberation threshold.

• Man made noise: This kind of noise is caused by small boats & ships, machines,

drilling sites and other fishing or exploration activities.

• Ambient Noise: The natural movements of water like tides, currents, winds, rain and

other seismic activities contribute towards ambient noise.

• Multipath effect: Acoustic propagation is degraded by multipath propagation since it

generates inter symbol interference.

• High and variable delay: The propagation speed in underwater acoustic channel is

five orders of magnitude lower than in radio channel. This large propagation delay

results in reduced throughput and prevents from accurately calculating the round trip

time (RTT) which is an important parameter for many protocols.

• Doppler spread: When the paths between to two communicating ends change due to

either one’s movement, a shift in the frequency of transmitted signal is introduced.

This shifting phenomenon is referred as Doppler shift. Signals travelling in different

paths may have different Doppler shifts corresponding to different rates of change in

phase. The difference in Doppler shifts between different signal components

contributing to a single fading channel tap is known as the Doppler spread [ref].

 34

2.2.4 Related Work

In the last couple of years, huge advancements have been made towards underwater

networks. In this section, we discuss the existing protocols/ideas developed specifically for

underwater networks. In [16] , Vector based forwarding approach is proposed which uses

packets to carry position information about the sender, destination and currently forwarding

node. Using these positions, any node will be able to determine the forwarding direction. A

receiving node determines to forward the packet based on its position, position of the

forwarding node and the angle of arrival (AOA) of the signal. If the node finds itself close to

the forwarding path, it records its own position and forwards the packet, otherwise packet is

discarded. The protocol, using this technique, forms a “routing pipe” from source to

destination where all nodes should forward packets and nodes outside the pipe should discard

the packets. Multi Meshed-Tree Protocol (MMT) is presented in [17] which use the concept

of constructing number of meshed trees from different origins also called “roots”. The roots

act as gateways in UWASs. The size and the growth of meshed trees are dependent on the

number of hops from the root and QoS required. As the hops increase, QoS is degraded. In

[18] , authors presents energy-aware spanning tree protocol (E-Span), specifically tailored for

underwater acoustic sensor networks. The objective of E-Span is to span the tree without

having any cycles in such a way that all nodes of the network are covered and are connected

to the root via shortest path while considering the residual energy in the nodes while selecting

the root. The root node is responsible for coordinating the links and the routes connected

through it, hence a root node is selected to be the node with the highest level of energy

among all other nodes. Configuration messages are used to exchange the information about

the residual energy. As the selection of root node is entirely based on the fact that which node

has the highest energy level, so it is very much possible that a selected root may not provide

the minimum number of hops to the destination.

 35

Most of the routing protocols for underwater networks are either limited to just being an

approach or under development. Some protocols have been developed, but at the moment

they cannot be used commercially as they have not been tested thoroughly in live scenarios

and accepted globally. This is why we choose to used DSR, DSDV, AODV and OLSR in our

study. These routing protocols have been widely used in terrestrial sensor networks and

accepted globally. Because of their mature nature, we have a high degree of confidence level

in using these routing protocols for our study.

2.2.5 Applications of underwater networks [1]

UWASNs find their way into a number of practical applications. Some of those applications

are listed below.

1. UWASNs can be used for environmental monitoring ranging from monitoring

pollution levels to monitoring changes in ecology. Monitoring ocean currents can

better help in predicting weather forecast and ensuring safe journeys in the sea.

Marine life, in general, and especially endangered species can also be tracked and

monitored using underwater networks.

2. Undersea explorations are another major application area. UWASNs can aid in

detecting oil & gas fields and minerals.

3. Great disasters like Tsunami can be avoided with the help of UWASNs monitoring

seismic activities of remote areas on the ocean bed.

4. UWASNs can play a vital role in sea navigation. Hazards on seabed like rocks,

icebergs, wrecks and shoals can be detected and warnings can be passed on to the

navigation system for safe routing.

5. UWASNs also find their way into military and naval applications like tactical

surveillance, reconnaissance, and targeting and intrusion detection.

 36

2.2.6 Underwater Network Design Challenges

 As a lot of factors influence the acoustic propagation, the underwater network designing

faces numerous challenges. Some of the major challenges are listed below.

• Bandwidth is very limited.

• Multipath and fading inversely affects the underwater channel.

• Propagation delay in underwater networks is very high as compared to radio waves in

terrestrial channel. Also this delay is highly variable and highly effected by the

physical characteristics of water like temperature, salinity and speed of currents.

• Underwater communication experiences high bit error rates and temporary losses of

connectivity due to shadow zones.

• Sensor nodes have limited battery powers. Replacing these batteries frequently is an

expensive, time consuming and tedious process. Also solar energy cannot be used to

recharge the sensor nodes.

• Fouling and corrosion can cause the underwater sensor nodes to fail.

2.3 Network Simulator 2 (ns-2)

The Network Simulator is an event drive discrete simulator developed by UC Berkeley.

Network Simulator is widely used across the globe for research and academic purposes. It has

the capability of supporting simulations of a variety of protocols and network topologies. It is

suitable for designing new protocols, comparing various protocols and traffic evaluations.

Ns-2 is now developed and maintained by a number of collaborating institutes and

researchers. Network Simulator 2 is open source and is distributed freely. Various versions of

ns-2 for different operating systems like Linux, Solaris, FreeBSD, Mac OS X and Windows

are available.

 37

2.3.1 Structure of ns-2

Object oriented programming approach is used to build ns-2. Methods are written in C++ and

OTcl (an object oriented variant of programming language Tcl). Tcl is pronounced as “tickle”

and a very simple scripting language similar to Python and Perl. Tcl script is the primary

method for invoking ns-2 simulations. A user writes the simulation script using Tcl. The

simulation environment has to be configured to set various components required for

simulation purposes. These components include event scheduler objects, setup module

libraries and network component libraries. Once the environment is set, the simulation script

is written by putting all the required components together. The ns-2 simulator interprets the

script and triggers the various procedures as specified and required by the simulation script.

The event scheduler is one of the major components of ns-2 other than network components.

Events like sending and receiving packets, start and stop tracing are triggered by event

schedules.

Some parts of ns-2 that require greater efficiency and fast processing is written in C++, while

others are written in OTcl. OTcl linkage is used to map C++ methods and variables to their

corresponding methods and variables in OTcl. The flow of the simulation in network

simulator is given in Figure 8.

Figure 8: Simulation flow in ns-2

 38

Because of its open source nature, we can modify existing components or add new network

components in ns-2 and set them in the simulation. C++ objects are controlled by OTcl

objects and every linked class hierarchy in C++ has a corresponding class hierarchy in OTcl.

2.3.2 Features of ns-2

Wired and wireless simulations are supported in ns-2 along with their tracing and

visualization. Some the major features are as follows:

1. Network Topology: ns-2 supports simulations for wired, wireless and wired-cum-

wireless networks. It also supports simulations for satellite networks.

2. Propagation Models: Multiple propagation models are provided by ns-2 including free

space, two-ray ground and shadowing model.

3. Routing Protocols: For wired networks ns-2 supports Distance Vector routing (DV),

Link state routing (LS) and Protocol Independent Multicast-Sparse Mode (PIM-SM)

for routing to multicast groups.

4. Transport Protocols: Transmission Control Protocol (TCP), User Datagram Protocol

(UDP) for unicast and Scalable Reliable Multicast (SRM) for multicast are supported

by ns-2.

5. Traffic source applications: FTP, Web, telnet, CBR, real audio, etc can be used in

simulations.

6. Queues: Different types of queues are supported by ns-2 including drop-tail, Random

Early Detection (RED), Fair Queuing (FQ), Stochastic Fair Queuing (SFQ) and

Deficit Round Robin (DRR).

7. QoS: Integrated Services and Differentiated Services models are present in ns2

8. Energy Model: The energy model in ns-2 represents the energy in a mobile host. The

model has arguments for initial energy, energy usage for transmitting each packet and

receiving every packet.

 39

9. Visualization Tools: ns-2 includes a tool for viewing the simulation, called Network

Animator (NAM). NAM is a Tcl/Tk based animator used for viewing network

simulation traces.

10. Helpful Utilities: ns-2 also includes some very useful utilities like mobile movement

generator used for generating movement patterns and traffic generators used for

creating desired traffic scenarios.

2.3.3 Tracing Capabilities of ns-2

The ns-2 simulator records all events of a simulation in a single file called trace file. This

trace file is a simple text file listing each and every event that has occurred during the

simulation time. There are two different formats available for wireless simulations, namely

old and new wireless trace formats.

2.3.3.1 Old Wireless Trace File Format

The old wireless trace format starts with a $ sign followed by the action type related to the

processing of packet. The four possible action types for the packet can be send, receive, drop

or forward. The action type is then followed by a number of other values for the items

mentioned in Error! Reference source not found.. The exact actual trace format is like this.

$<action type> %.9f %d (%6.2f %6.2f) %3s %4s %d %s %d [%x %x %x %x] $<action type> %.9f %d (%6.2f %6.2f) %3s %4s %d %s %d [%x %x %x %x]

For all wireless simulations the values specified in Error! Reference source not found. are

recorded.

Additional trace information is also recorded according to the specific used protocol. The Additional trace information is also recorded according to the specific used protocol. The

complete list of trace items specific to protocols can be found at [8] .

2.3.3.2 New Wireless Trace File Format

The structure of the new wireless trace is completely changed from the older format. The

lines of the trace begin with the action flags, similar to older format, but are followed by

 40

flag/value pairs. The flags are a combination of a dash and alphabetical letter, specifying the

type of the flag. The general format of new wireless trace is as follows.

<Event Type> <General Tag> <Node Property Tags> <IP Level Packet Information>

<Next Hop Information> <MAC Level Packet Information> <Application Specific

Information>

 41

C h a p t e r 3

Methodology

This section describes how this study was conducted. The first objective was to come up with

a reliable simulation environment for underwater networks in Network Simulator. After the

simulation model was set, a set of metrics were defined in order to evaluate the performance

of various routing protocols. Our metrics include packet delivery ratio, average end-to-end

delay, throughput, routing overhead and energy consumption of nodes. These metrics enable

us to judge the performance of routing protocols on the basis of single criteria. Once the

metrics are established, different simulation scenarios are constructed. These scenarios are

designed in ns-2 using Tcl programming language. The traffic scenarios implement different

traffic conditions, node depth and number of nodes. The trace files generated by running the

all the different simulation scenarios are evaluated for studying the effect of variable traffic

conditions, node depth and number of nodes in the network on the performance of routing

protocol with respect to our performance metrics. Trace files are evaluated via scripts written

in AWK and code written in Matlab. The further detail of each step is in the following

sections.

3.1 Underwater Simulation Model for ns-2

The underwater simulation model is based on the implementation of [9] . The ns-2 simulator

divides the layers below the MAC layer into four components: Propagation, Channel,

Physical, and Modulation. The model provides the implementation of underwater acoustic

channel, underwater physical layer and underwater acoustic propagation model. The

simulation model correctly calculates and adjusts the network conditions. The attenuation is

calculated on the basis of spreading loss and Thorp’s approximation. Underwater channel

 42

 Thorp (frequency)
1. f POW (frequency, 2);
2. if f > 0.4
3. then
4. atten 0.11 * f /(1+f)+
5. 44* (f /(4100 + frequency))+
6. 2.75 * POW (10, -4) * f +
7. 0.003;
8. else
9. atten 0.002 +
10. 0.11 * (f / (1+f)) +
11. 0.011 * f ;
12. return atten;

noise is incorporated into the model. All the factors like turbulence, wind, thermal and

shipping noise are accounted for. The calculations for propagation delay are done by

accounting factors like depth of the nodes, salinity of water and temperature. The physical

layers let us adjust some key parameters like transmission power, carrier sense and receive

thresholds. The model is capable of correctly predicting the transmission power required to

successfully meet the receive threshold of the receiving node and the available bandwidth.

The detail of files provided by this model is as follows:

1. Underwater-phy.h and underwater-phy.cc provides the implementation of underwater

physical layer. These files go into the “mac” directory of ns-2 installation. From the

TCL script it can be used as “set val(netif) Phy/UnderwaterPhy ;”

2. Underwaterchannel.h and underwaterchannel.cc implements the underwater channel

and is placed in directory “mac” of ns-2 installation and can used from Tcl as “set

val(chan) Channel/UnderwaterChannel ;”

3. Underwater.h and underwater.cc is the implementation of underwater acoustic

propagation model. These files are added in the “mobile” directory of ns-2

installation. This propagation model can be assigned form the TCL script as “set

val(prop) Propagation/Underwater ;”

Propagation models are responsible for

calculating the signal-to-noise ratio at the

receiver after attenuation and ambient noise

are taken into account, as well as the

interference range of a signal. Thorp’s

approximation for absorption loss is shown

here in the form of pseudo code.

 43

 Pr (transmitter, receiver)
1. Pt transmitter GetTxPr();
2. Distance CalcDist (transmitter, receiver);
3. for i 0 to Num_Freq
4. do
5. AN[i] -(k * 10 * log10(distance)+
6. distance * Thorp(freq[i])+
7. orientation (transmitter, receiver)+
8. log10(Noise(freq[i])));
9. if AN[i] > AN[max_index]
10. then
11. max_index i;
12. Pr Pt + AN[max_index];
13. return Pr;

Calculation of the SNR at the receiver

is done in a function that overloads

the Pr function in ns2 in combination

with the ambient noise calculation. In

order to find the center frequency, the

distance between nodes is calculated.

Lines 3–8 calculate the AN factor for

each of the possible frequencies for

the transmission. In addition to this attenuation, signal fading in the underwater environment

is affected by the orientation of the link. As each AN value is calculated, the frequency with

the lowest AN factor (largest value of the AN variable) is tracked. Finally, the AN factor that

corresponds to that frequency is combined with the transmitted power to calculate the SNR at

the receiver.

Noise calculation is done considereing all the factors that contribute to the noise. Turbulance,

Wind, Shipping and Thermal factors influence the over all noise of the channel.

Where N(f) is the total noise in the channel for a particular frequency f and Nt(f), Nw(f), Ns(f)

and Nth(f) are turbulence, wind, shipping and thermal noise components for that particular

noise.

Physical Layer calculates the final statistics used in the simulation with respect to

• Packet Reception

• Packet Error

• Transmission Time

• Propagation Delay.

 44

For most of the calculations, calls are made to propagation and channel classes.

Primary C++ function used at this layer is bandwidth calculation given the distance between

the transmitter and receiver. The physical layer lets us adjust following important physical

parameters through bounded variables. Those parameters include: Capture threshold, Carrier

sense threshold, Receive power threshold, Transmitted signal power, Power for transmission,

Power for reception, Idle power consumption, Sleep power consumption and Transition

power consumption.

3.2 Performance Evaluation Metrics

The objective of this thesis is to evaluate the performance of the ad-hoc routing protocols in

underwater acoustic sensor networks environment. In order for protocols to be compared with

each, there is a need to define some metrics so that we can judge them and make our

comparisons in a fair manner. Following metrics are used to compare the performance of

routing protocols.

3.2.1 Packet Delivery Ratio

The fraction of the packets received by receivers out of the packets that were sent by the

application is called packet delivery ratio (PDF) [10] . This ratio is important to find the

packet drop and loss ratios. In our case all the traffic sources are constant bit rate sources

(CBR) so we can express PDF in the following manner.

Equation 2: Calculating packet delivery ratio (PDF)

 45

3.2.2 Average End-to-End delay

The time required by a packet to traverse from source to destination is called the end-to-end

delay [11] . Average end-to-end delay is the sum of end-to-end delays for all the packets

received divided by the total number of packets received by the receiver.

Equation 3: Calculation for average end-to-end delay for the received packets

In the calculation of end-to-end delays all delays are included like transmission delay,

propagation delay, processing delay and queuing delay.

3.2.3 Throughput

The throughput is defined as the total data received by the receivers divided by the time from

the start of the transmission to the time last packet was received [12] .

Equation 4: Overall throughput of the network

Throughput is the rate of successful delivery messages over a communication link and

usually expressed in the terms of bits per seconds (bps).

3.2.4 Routing Overhead

The number of packets sent across the network for establishing routes, exchanging routing

information and performing route maintenance are considered routing overhead, as these

packets do not contribute towards the actual through put of the networks. The routing control

packets are also considered an overhead because they come with a cost of management

processing, delays and bandwidth utilization.

 46

Equation 5: Calculating routing overhead

Another important terminology used regarding the routing overhead is Normalized Routing

Load (NRL). NRL is the number of routing packets sent across the network divided by the

total number of packets received.

Equation 6: Calculating normalized routing load

The NRL tells us how many routing control packets are generated for successfully sending

one data packet.

3.2.5 Energy consumption

In underwater networks, battery life of the sensor has always been a major issue. The

replacement or recharging solutions are not very viable. So it is always expected from the

underwater network components to consume lesser and lesser energy of the nodes and yet not

compromising the overall functionality and stability of the network. All nodes are monitored

for their energy levels. Node failures due to energy depletion are recorded. Routing protocols

are compared on the basis of their impact on the energy consumption rate of the sensor nodes.

3.3 Simulation Scenarios

The simulation scenarios were created to evaluate the performance of ad-hoc routing

protocols with respect to varying traffic conditions, varying number of nodes and varying

depth of the nodes. For all the scenarios, trace files are evaluated on the basis of the metrics

discussed in the earlier section.

 47

3.3.1 General Simulation Settings

Some parameters of simulation environment are kept constant for the all the simulation runs.

Those parameters are discussed below.

• Node Deployment: Nodes are deployed randomly using a C++ code. For all

scenarios, nodes are deployed over an area of 500m x 500m.

• Physical Layer Parameters: Phy/Underwater-Phy is set as the network interface type

for all the mobile nodes deployed. The additional physical layer parameters are given

in Table 2.

 Parameter Variable Value
1 Capture Threshold (db) Phy/UnderwaterPhy set CPThresh_ 10.0
2 Carrier Sense Threshold (W) Phy/UnderwaterPhy set CSThresh_ 0.284
3 Receive Threshold (W) Phy/UnderwaterPhy set RXThresh_ 4.0
4 Transmission Power (W) Phy/UnderwaterPhy set Pt_ 65
5 Frequency (Hz) Phy/UnderwaterPhy set freq_ 300

Table 2: Important Parameters for Underwater Physical Layer

• MAC Layer Settings: MAC 802.11 is chosen as the MAC layer protocol. As we are

aware of the fact that MAC 802.11 is not specifically designed for use in underwater

acoustic networks, so some parameters are adjusted accordingly. The changed

parameters are given in Table 3Error! Reference source not found..

 Parameter Variable Value
1 Minimum Contention Window Mac/802_11 set CWMin_ 4
2 Maximum Contention Window Mac/802_11 set CWMax_ 32
3 Slot Time (sec) Mac/802_11 set SlotTime_ 0.020
4 Short Inter Frame Space (sec) Mac/802_11 set SIFS_ 0.010

Table 3: Important parameters for MAC 802.11 adjusted for underwater networks

• Channel: Channel/UnderwaterChannel is set as the channel type for all simulations.

• Propagation Model: Propagation/Underwater is assigned as the propagation model

for all simulations.

• Transport Protocol: User Datagram Protocol (UDP) is chosen as the transport

protocol. UDP is preferred over TCP because of the noisy & lossy and unpredictable

nature of underwater acoustic channel.

 48

• Application Layer Traffic Generators: Constant Bit Rate (CBR) is used to generate

traffic over UDP in all simulations.

• Energy Model: In simulation patterns, all nodes are assigned a same energy level of

1000 joules. The power required for receiving is set to 350mW and the energy

consumption for transmitting is set to 2.5W. These settings remain constant for all

simulation runs.

3.3.2 Simulation Settings For Scenarios With Different Traffic Conditions

In order to study the effect of varying traffic conditions on the performance of the routing

protocols. 25 nodes are deployed randomly at the depth of 50 meters. Simulations are run for

different number of constant bit rate (CBR) connections for AODV, DSDV, DSR and OLSR.

Routing protocols are compared for their performance with 1 CBR connection and

incrementing the number of connections to 5 CBR connections. Sources and sinks are also

selected randomly.

3.3.3 Simulation Settings For Scenarios With Different Node Depths

For studying the effect of depth on the performance of routing protocols, 25 sensor nodes are

deployed with 3 CBR connections. The deployment of the nodes and the selection of source

and sinks are purely random. The depth of the node is varied in these simulations, starting

from the depth of 10 meters and going up to the depth of 100 meters. Routing protocols are

compared on the basis of the metric already discussed in the earlier section with respect to the

change in the depth of the sensor nodes.

 49

3.3.4 Simulation Settings For Scenarios With Different Number of Nodes

In this case number of CBR connections is set to 3 and depth of the nodes is taken as 50

meters. However, the number of nodes is kept variable. Simulation runs are made starting

with just 5 sensor nodes and then increasing it to 25 nodes.

3.4 Trace Analysis

Simulations run by ns-2 result in large text based trace files. These trace files contain the

record of all the events that are triggered while the simulation was running. AWK

programming language is used to write the scripts for analyzing the trace files. AWK is a

special programming language designed for processing text-based, either in files or in data

streams. AWK treats a file as a collection of records where each line is one complete record.

Each line is broken into a sequence of fields. Each field in trace file corresponds to a flag or a

value as per the tracing format of ns-2. The trace formats are discussed in chapter 2. Using

AWK scripts, trace files are read line by line and required values are read field by field and

stored and manipulated for calculating packet delivery ratio, throughput, average end-to-end

delay, routing overhead and energy consumption of the nodes. The raw calculations produced

by AWK scripts are used by Matlab code for performing complex calculations and generating

graphs. The AWK scripts and Matlab code are provided in Annexure B.

 50

 51

C h a p t e r 4

Analysis of Results

In this chapter, the results of the simulation scenarios, given in Chapter 3, have been

presented. A comparison among the studied routing protocols is performed using the

performance metrics presented in earlier section. In the end the results are concluded and

propositions are made.

4.1 Packet Delivery Ratio (PDF)

The fraction of packets received by a receiver out of the total packets sent by the send is

called packet delivery ratio (PDF). The following sections exhibit the comparison of PDF

among different routing protocols for different simulation scenarios.

4.1.1 PDF for different traffic conditions

Packet delivery ratio as a function of number of CBR connections is shown in Figure 9. It is

observed that delivery ratio decreases as the number of connections increase. OLSR has the

least delivery ratio than other protocols in every traffic condition. The maximum delivery

ratio for OLSR is just above 6 percent for 1 connection scenario and less than 2 percent for

heavy traffic conditions. DSR shows a sharp decline in delivery ratio as the number

connections increase. With 1 CBR connection the PDF for DSR is higher than 95 percent.

 52

Figure 9: Packet delivery ratio for different number of CBR connections

By increasing the number of CBR connections from 1 to just 2 causes the delivery ratio to

decrease by half and subsequently it falls to less than 1 percent for maximum traffic

conditions. DSDV has the best overall delivery ratio. Even at high traffic conditions DSDV

shows 8 times more delivery ratio than AODV and OLSR and 17 times more ratio than DSR.

Also, DSDV does not exhibit any sudden sharp decline in the delivery ratio. Performance of

AODV with respect to PDF turns out to be inversely proportional with the number of

connections. This is expected from a reactive protocol. As more packets are created by the

application layer, more route requests are created, thus causing more routing control packets

to float in the network which in turn reduces the actual throughput. AODV performs better

than DSDV in case of lesser number of connections with a packet delivery ratio of up to 90

percent but shows a degraded performance in case of higher number of connections with

delivery ratio of less than 2 percent for the scenario with highest CBR traffic.

 53

4.1.2 PDF for different node depths

Packet delivery ratio vs. node depth is shown in Figure 10. It is clearly evident that AODV

performs better than DSDV, OLSR and DSR at all depth as it has the highest data delivery

ratio of more than 50 percent.

Figure 10: Packet delivery ratio for different node depths

Delivery ratio for AODV remains almost unaffected by the change in depth. The slight

variations observed are because of channel characteristics. DSDV has significantly high data

delivery ratios then OLSR and DSR but lesser than AODV for all depths. The maximum PDF

observed is 49 percent and minimum recorded PDF is 38 percent. DSR and OLSR both very

low PDFs. DSR has almost a PDF of zero at the depths of 25 meters and 100 meters.

However the results are slightly higher than OLSR at other depths. Although, OLSR has very

low PDFs for all depths, but the PDF remains unaffected by the variations in depth.

4.1.3 PDF for different number of nodes

Packet delivery ratio vs. different number of nodes is shown in Figure 11. AODV has the

most stable packet delivery ratio and does not fluctuate much with the increase in number of

 54

nodes. AODV has a standard deviation of 2.27 for packet delivery ratio and DSR, DSDV and

OLSR have standard deviations of 5.95, 6.43 and 13.08 respectively.

Figure 11: Packet delivery ratio for different number of nodes

DSDV also has a rather good PDF when compared to AODV. With 5, 10 and 15 number of

nodes, DSDV has slightly higher delivery ratio than AODV and with 20 and 25 nodes,

AODV performs better than DSDV. This is expected from both protocols. DSDV is proactive

in nature and is table driven. Adding more nodes, require routing tables to be exchanged

among more nodes thus creating a relatively greater overhead. The increased overhead causes

the PDF to decline. This effect is obvious when network has lesser number of nodes and it

norms out as network size grows. A similar graph trend is observed by OLSR because it is

also a proactive routing protocol. The PDF values for OLSR are lesser than DSDV and

ranges between 40 percent to slightly above 5 percent but the shape of the graph is almost

identical to DSDV. Average delivery ratio is lowest for DSR for all different number of

nodes and tends to fluctuate with the change in number of nodes.

 55

4.2 Average End-to-End Delay

The sum of time taken by all the packets to move from source to destination divided by the

total number of successful packets is called average end-to-end delay.

4.2.1 Average end-to-end delay for different traffic conditions

End-to-end delay vs. different number of CBR connections is shown in Figure 12. DSR

clearly has the highest delay for all different traffic conditions.

Figure 12: Average end-to-end delay for different traffic conditions

On average DSR has end-to-end delay 7 times higher than OLSR, 6 times higher than DSDV

and 5 times higher than AODV. It is observed for DSR that increasing the traffic causes the

end-to-end delay, however, when number of CBR connections is increased to 5, a sudden

drop by a factor of 3 in end-to-end delay is observed. This because DSR is a source based

routing protocol and routes are kept in cache for only a certain period of time. When data

traffic is low, route validity timeout occurs more frequently causing the protocol to initiate

discovery process. This discovery process causes the end-to-end delay to increase. But for

higher traffic conditions, more routes are available through the node’s route cache. Lesser

discovery processes are initiated, thus reducing end-to-end delay significantly than the

 56

previous value. In case of AODV, DSDV and OLSR have comparable end-to-end delays and

increase in traffic causes the delay to increase.

4.2.2 Average end-to-end delay for different node depths

The effect of depth on end-to-end delay is shown in Figure 13. DSR has the highest average

end-to-end delay and is most affected by the change in depth. On average DSR has delay 6

times higher than AODV, 5 times higher than DSDV and 7 times higher than OLSR. AODV

tends to maintain a steady end-to-end delay and does not fluctuate much with the increase or

decrease in depth.

Figure 13: Average end-to-end delay for different node depths

DSDV has slightly higher delays for all depths than AODV. OLSR’s graph for end-to-end

delays is very much same to AODV and it actually has lower delays than AODV at the

depths of 25 and 100 meters.

4.2.3 Average end-to-end delay for different number of nodes

DSR again has the highest delay when analyzed with respect to different number of nodes as

shown in Figure 14. AODV, DSDV and OLSR have comparable end-to-end delays.

 57

Figure 14: Average end-to-end delay for different number of nodes

Overall OLSR has lowest average end-to-end delay. AODV has the second lowest and DSDV

has slightly higher average end-to-end delay than the other two protocols.

4.3 Throughput

Throughput is the rate of successful delivery messages over a communication link and

usually expressed in the terms of bits per seconds. It is defined in Chapter 3. The following

sections present the comparative findings of routing protocols with respect to throughput for

different simulation scenarios.

4.3.1 Throughput for different traffic conditions

Throughput as a function of number of CBR connections is shown in Figure 15. Up to a

certain point, throughput increases for AODV and DSDV as the traffic is increased. But with

maximum traffic, throughput for AODV and DSDV drops to half of its previous value.

Although, OLSR has the lowest data rate but at the same time it has the most steady data rate

and remains unaffected by the change in traffic conditions. Throughput in case of DSR is

highly affected by the traffic conditions and drops to very low data rate for maximum traffic

conditions. DSDV performs exceptionally well at higher traffic conditions by having a data

 58

rate almost 6 times higher than AODV, which had highest data rate for lower traffic

conditions.

Figure 15: Throughput for different traffic conditions

At higher traffic conditions, routing overhead plays a key role in determining the overall

throughput of the network. For reactive protocols like AODV and DSR, the routing overhead

overwhelms the throughput and this why the graph takes a nose dive. However, with

proactive protocols increasing the traffic does increase the route lookups but this does not

adversely affect the throughput. As long as the topology is kept constant, amount of routing

information exchanged will remain the same only the frequency of exchange of information

will change due to broken or unavailable links caused by channel or energy depletion.

4.3.2 Throughput for different node depths

With the increase in node depth, throughput tends to improve slightly for OLSR and AODV

as shown in Figure 16. AODV has the highest throughput for all depths and DSR has the

least. Throughput for DSDV and DSR slightly fluctuates with the change in depth, showing a

relative decrease in throughput at the depths of 25m and 100m.

 59

Figure 16: Throughput for different node depths

4.3.3 Throughput for different number of nodes

As shown in Figure 17, throughput for DSDV and OLSR decreases with the increase in

number of nodes, but after a certain number of nodes throughput improves slightly.

Figure 17: Throughput for different number of nodes

Throughput for OLSR decreases by a factor of 6 when number of nodes is increased from 10

to 20 and is improves by a factor of 1.3 when node count is further increased to 25. This is

expected by proactive protocols, as nodes are increased more and more routing packets are

 60

generated thus affecting the actual throughput. Initially with lesser nodes this impact is higher

and very visible, but afterward this effect gradually norms out and throughput takes a steady

shape. The other reason behind this behavior, which is also true for reactive protocols, is

more nodes mean more routes are available to the destination and thus contributing towards

the increase in throughput. We can observe this for AODV and DSR in Figure 17, throughput

for 25 nodes is actually slightly better than the throughput for 20 for each protocol.

Throughput for AODV and DSR is not steady and is rather fluctuating in nature. This is due

to their reactive nature, as number of nodes is changed the routes are changed which in turn

affects the packet delivery ratio. A change in packet delivery ratio directly affects the average

throughput of the nodes.

4.4 Routing Overhead

All routing protocols send packets for activities related to route discovery and route

maintenance. These routing packets are not the actual pay load of the network and hence

treated as an overhead. This routing overhead may not be a serious concern in case of wired

network where we have an abundance of bandwidth with high propagation speeds. Routing

overhead is major concern in case of wireless networks and especially in the case of

underwater acoustic networks. Due to the nature of the acoustic propagation in underwater,

we have limited bandwidth and high signal to noise ratios, the routing over head is a major

concern. We would like to have a routing protocol with as low routing overhead as possible

but at the same time not compromising the routing efficiencies.

4.4.1 Routing Overhead for different traffic conditions

Overhead of routing protocols as a function of number of data connections is shown in Figure

18. OLSR and DSDV have almost a constant overhead for all traffic conditions and do not

change abruptly with the increase in data traffic.

 61

Figure 18: Routing overhead for different traffic conditions

This is expected from proactive routing protocols. Because the routing protocol produces

almost the same amount of routing packets irrespective of the traffic conditions as long as the

number of nodes and topology is kept constant. OLSR has significantly higher routing

overhead when compared against DSDV. Roughly 1.5 times more routing is traffic is

generated by OLSR than DSDV. The normalized routing load for each routing protocol for

different traffic conditions is show in Figure 19. From the graph it is evident that reactive

protocols are highly affected by the increase in number of connections. NRL for 5 CBR

connections increases many folds for AODV and DSR. The NRL for DSDV decreases with

the increase in traffic but increases slightly again for 5 CBR connections.

 62

Figure 19: NRL for different traffic conditions

Routing overhead for AODV and DSR increases as the traffic is increased. This is because

both protocols are reactive in nature and more routing packets are transmitted over the

network as the data traffic increases because more route requests are initiated by sending and

forwarding nodes. Overall routing overhead is highest for OLSR. AODV and DSR have

lower overheads for lesser number of connection but overhead increases exponentially as the

number of nodes increase.

4.4.2 Routing Overhead for different node depths

In Figure 20, it is observed that routing overhead for OLSR, DSR and DSDV remains almost

constant irrespective of change in depth. OLSR again has the highest overhead among all

protocols and then DSDV and then AODV.

 63

Figure 20: Routing overhead for different node depths

Again DSR shows a fluctuating behavior by having variable routing overhead at variable

depths. The normalized routing load for different depths is given in Figure 21.

Figure 21: NRL for different node depths

The two higher peaks observed for DSR in Figure 21 is due to the fact that DSR had almost

zero PDF at the depths of 25 and 100 meters. The depth of 25 meters seems not suitable for

DSDV, DSR and OLSR when analyzed with respect to routing overhead. Such depths are

referred as “shallow waters”. Communication in shallow water is highly effected by the

manmade and ambient noise.

 64

4.4.3 Routing Overhead for different number of nodes

Figure 22 shows that the routing overhead increases with increase in number of nodes for

OLSR, AODV and DSDV. This because as more nodes added to the network, more routing

control information needs to exchanged among more number of nodes. The reason DSR

shows a fluctuating behavior is because it is a source based routing protocol. And a small

relative change in number of nodes actually helps the protocol in discovering and maintaining

routes as more nodes have the probability of having a valid route

Figure 22: Routing overhead for different number of nodes

. OLSR has the highest routing overhead, roughly 5 times higher than AODV, more than 3

times higher than DSDV and 2.5 times higher than DSR. DSR performs better than AODV

with 10 and 25 nodes and worse than AODV and DSDV with other number of nodes. The

normalized routing load for all the protocols with different number of nodes is shown in

Figure 23. We can see the general trend of NRL is that it increases with the increase in

number of nodes, except for the case of DSR.

 65

Figure 23: NRL for different number of nodes

4.5 Energy Consumption

Energy consumption of the nodes is a major concern in underwater networks in general.

Usually it’s not feasible to change or charge the batteries of the underwater sensors very

often. So it is highly expected by a routing protocol to be light on the energy consumption

needs.

4.5.1 Energy consumption for different traffic conditions

Average energy of nodes for different traffic conditions is shown in Figure 24. It is evident

that OLSR has the highest rate of energy consumption irrespective of the number of

connections. This explains the low PDF and throughput exhibited by OLSR in earlier results

because nodes are getting depleted sooner than other in case of other protocols. OLSR is

proactive in nature and has the highest routing overhead among the discussed protocols; this

is a major reason for this high energy consumption. More number of routing packets means

more send and receive operations by the nodes which cause them to lose their energy sooner.

It is also observed for all protocols that more energy is consumed as the traffic increases. At

the end of the simulation for AODV with 1 CBR connection, the average energy of the nodes

is more than the 50 percent of their average initial energy. However as the number of CBR

 66

connection is increased to 5, average energy of the nodes at the end of the simulation drops to

less than 10 percent of their initial value.

Figure 24: Energy consumed by nodes for different traffic conditions

A similar trend is observed for DSR where average energy of the nodes drops from 30

percent to less than 10 percent by changing the traffic condition from 1 CBR to 5 CBR

connections.

Figure 25: Percentage of node failures for different traffic scenarios

 67

This is because both AODV and DSR are reactive in nature and as the traffic increases more

route discovery requests are initiated which causes nodes to lose more energy as compared to

lesser traffic scenarios. As DSDV is a proactive protocol and routing overhead does not

change drastically with the increase in traffic, the average energy consumption at the nodes

also remains unaffected, thus making it suitable for high traffic conditions. Figure 25 shows

the percentage of node failures due to energy depletion for different traffic scenarios. For

highest traffic conditions, DSDV has least percentage node failures and DSR has the highest

percentage of node failures.

4.5.2 Energy Consumption for different node depths

The average energy of the nodes remains almost unaffected and unchanged for AODV,

DSDV and OLSR with respect to change in node depth. This is shown in Figure 26. Again

OLSR has the highest rate of energy consumption. AODV has the lightest effect on the

energy level of the sensor nodes.

Figure 26: Energy consumption of nodes for different node depths

However DSR consumes approximately 10 times more energy at 100m depth than at 10m

depth. The percentage of node failures due to energy depletion at different depths is presented

 68

in Figure 27 The variations in the percentage node failures for different depths is not much in

AODV, DSDV and OLSR. However, DSR experiences relatively greater node failures at the

depths of 25 and 100 meters.

Figure 27: Percentage of node failures for different depths

4.5.3 Energy Consumption for different number of nodes

Average node energy decreases with the increase in number of nodes for all routing

protocols. This is observed in Figure 28. With 5 nodes, the average energy of the nodes for all

protocols is higher than 80 percent of the initial energy level at the end of the simulation. This

figure drops to 50, 30, 10 and 10 percent for AODV, DSR, DSDV and OLSR respectively

when nodes are increased to 25. This is expected from all protocols, as number of nodes

increase, more packets are generated by each routing protocol and more packets are

exchanged among them. This increased transmission drains the energy of the nodes. Again

OLSR causes the nodes to deplete sooner as compared to other routing protocols. Figure 29

shows the percentage of node failures due to energy depletion for different number of nodes.

 69

Figure 28: Energy consumption of nodes for different number of nodes

For 25 nodes, the percentage of node failures is actually lesser than the percentage of node

failures for 20 nodes. This is because the optimal number of nodes in the network ensures the

availability of alternate routes to the destination. These alternate routes distribute the load of

forwarding packets to different nodes, thus not letting any specific node starve for energy.

This effect is highly visible and prominent in case of reactive dynamic protocols like DSR.

Figure 29: Percentage of node failures for different number of nodes

 70

 71

C h a p t e r 5

Conclusion & Future Work

5.1 Conclusion

In this paper we made an effort to examine four popular ad-hoc routing protocols in

underwater acoustic networks environment. After analyzing the gathered results, we

concluded that OLSR is not suitable for underwater networks due to its high rate of energy

consumption. Energy consumption of sensor nodes is always a major concern in underwater

networks. OLSR is also not suitable because of its high routing overhead as compared to

other routing protocols. DSR will also not be suitable for underwater environment because it

shows very low packet delivery ratios, although DSR consumes lesser energy as compared to

OLSR. DSR is also not recommended because throughput, end-to-end delay and routing

overhead sharply changes as number of connections, depth or number of nodes is changed.

AODV and DSDV on the other hand tend to perform better but both have some tradeoffs.

AODV has higher delivery ratio for lesser number of connections than DSDV and DSDV has

higher delivery ratios for more number of connections. This directly reflects on throughput.

AODV has higher throughput for lesser connections than DSDV but throughput decreases

sharply as traffic increases. Both AODV and DSDV have steady delivery ratios and end-to-

end delays and do not fluctuate much with the change in number of nodes and depth. Overall

delay is observed lesser in case of AODV as compared to DSDV. AODV has very little

routing overhead for less traffic but increases multiplicatively with the increase in traffic.

This also effects the energy consumption of the nodes. Nodes run out of energy sooner in

high traffic conditions for AODV. DSDV, more or less, has the same routing overhead for all

traffic conditions. This may be a higher figure for lesser traffic conditions but as the traffic

 72

increases this is evened out. Energy consumption for DSDV is actually better than AODV in

higher traffic conditions. To conclude this paper, AODV is recommended for denser

underwater networks but with less traffic. DSDV is suitable for higher traffic conditions with

optimal number of nodes. In continuation of this research work, it will be interesting to

evaluate MAC layer protocols and suggest modifications required for their optimal working

in underwater acoustic sensor networks.

 73

References

[1] David B. Johnson, David A. Maltz, and Josh Broch, "Underwater acoustic sensor

networks: research challenges," Ad-Hoc Networks, Volume 3, Issue 3, Pages 257-

279, May 2005.

[2] James Preisig, “Acoustic propagation considerations for underwater acoustic

communications network development”. In WUWNet ’06: Proceedings of the 1st

ACM international workshop on Underwater networks, pages 1–5, New York, NY,

USA, 2006. ACM Press.

[3] D. Pompili, T. Melodia, and I. F. Akyildiz, "Deployment Analysis in Underwater

Acoustic Wireless Sensor Networks," in Proc. of ACM International Workshop on

UnderWater Networks (WUWNet), Los Angeles, CA, September 2006.

[4] David B. Johnson, David A. Maltz, and Josh Broch, "DSR:The dynamic Source

Routing Protocols for Multi-Hop Wireless Ad Hoc Networks," in Ad Hoc Networking,

edited by Charles E. Perkins, Chapter 5, pp.139-172, Addison-Wesley, 2001.

[5] C. E. Perkins, and E. M. royer, "Ad-Hoc On-Demand Distance Vector Routing," in

proceedings of the 2nd IEEE Workshop on Mobile Computing systems and

Applications, New Orleans, LA, pp. 90-100, February 1999.

[6] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and L. Viennot,

"Optimized Link State Routing Protocol for Ad-Hoc Networks," in Proceedings of the

5th IEEE Multi Topic Conference (INMIC 2001),2001.

[7] Perkins, Charles E. and Bhagwat, Pravin,"Highly Dynamic Destination-Sequenced

Distance-Vector Routing (DSDV) for Mobile Computers," ACM, 1994.

[8] The Network Simulator, NS-2, Available from www.isi.edu/nsnam/ns

[9] F. Harris and M. Zorzi. “Modeling the underwater acoustic channel in ns2,” In ACM

International Workshop on Network Simulation Tools. (NSTools), 2007

 74

[10] Jorjeta G. Jetcheva and David B. Johson,"A Performance Comparison of On-Demand

Multicast Routing Protocols for Ad Hoc Networks", School of computer science, CS

Dept, Pittsburgh, December 15, 2004.

[11] David Oliver Jorg, "Performance Comparison of MANET Routing Protocols in

Different Network Sizes", Computer Science Project, Institute of Computer Science

and Applied Mathematics, University of Berne, Switzerland, 2003.

[12] Uyen Trang Nguyen and Xing Xiong," Rate-adaptive Multicast in Mobile Ad-hoc

Networks,", IEEE International Conference on Adhoc and Mobile Computing,

Networking and Communications 2005 (WiMob 2005),Montreal, Canada, August

2005.

[13] Technical Guides - Speed of Sound in Sea-Water, Available from

http://resource.npl.co.uk/acoustics/techguides/soundseawater/

[14] Römer, Kay; Friedemann Mattern (December 2004). "The Design Space of Wireless

Sensor Networks". IEEE Wireless Communications 11 (6): 54–61.

doi:10.1109/MWC.2004.1368897

[15] D. Pompili and T. Melodia, "An Architecture for Ocean Bottom Underwater Acoustic

Sensor Networks," Poster Presentation, Proc. of Mediterranean Ad Hoc Networking

Workshop (Med-Hoc-Net), Bodrum, Turkey, June 2004

[16] P. Xie, J. Cui and L. Li, "VBF: Vector-Based Forwarding Protocol for Underwater

Sensor Networks," 2005.

[17] N. Shenoy, Y. Pan and V. G. Reddy, "Quality of service in internet MANETs," in

2005, pp. 1823-1829 Vol. 3.

[18] M. Lee and V. W. S. Wong, "An energy-aware spanning tree algorithm for data

aggregation in wireless sensor networks," in 2005, pp. 300-303.

 75

Appendix A: Sample TCL Simulation Script

Author: Naveed Qadri
Date: 11/27/2009
Email: nbqadri@nbqadri.com
Web: http://www.nbqadri.com

==
Define options
==

set val(chan) Channel/UnderwaterChannel;# channel type#
set val(prop) Propagation/Underwater ;# radio-propagation model
set val(netif) Phy/UnderwaterPhy ;# network interface type
set val(mac) Mac/802_11 ;# MAC type
set val(ifq) CMUPriQueue ;# interface queue type
set val(ll) LL ;# link layer type
set val(ant) Antenna/OmniAntenna ;# antenna model
set val(ifqlen) 10 ;# max packet in ifq
set val(nn) 25 ;# number of mobilenodes
set val(rp) DSR ;# routing protocol
set opt(energymodel) EnergyModel ;# using ns-energy model
set opt(initialenergy) 1000.0 ;# Initial energy in Joules
set rx 350 ;# receive energy in mW avg 500 mW
set tx 2500 ;# transmit energy in mW avg upto
2.5W for greater distances

==
Overriding NS-Defaults
==

Phy/UnderwaterPhy set CPThresh_ 10.0;
Phy/UnderwaterPhy set CSThresh_ 0.284
Phy/UnderwaterPhy set RXThresh_ 4.0;
Phy/UnderwaterPhy set bandwidth_ 2e5 ;
Phy/UnderwaterPhy set Pt_ 65 ;
Phy/UnderwaterPhy set freq_ 300;
Phy/UnderwaterPhy set L_ 1.0
Mac/802_11 set CWMin_ 4;
Mac/802_11 set CWMax_ 32;
Mac/802_11 set SlotTime_ 0.020;
Mac/802_11 set SIFS_ 0.010 ;
Mac/802_11 set PreambleLength_ 144 ;# 144 bit
Mac/802_11 set PLCPHeaderLength_ 48 ;# 48 bits

==
Main Program
==
Initialize Global Variables

set ns_ [new Simulator]
set tracefd [open uwtrace-5con_DSR.tr w]
set nf [open nam-uw-5con_DSR.nam w]
set f1 [open uw-5con-flow1_DSR.tr w]
set f2 [open uw-5con-flow2_DSR.tr w]
set f3 [open uw-5con-flow3_DSR.tr w]
set f4 [open uw-5con-flow4_DSR.tr w]
set f5 [open uw-5con-flow5_DSR.tr w]

 76

$ns_ use-newtrace ;# new trace format for Wireless

#$ns_ flush-trace
must remove later.. shud clear memory
$ns_ trace-all $tracefd
$ns_ namtrace-all-wireless $nf 15 15

=========== set up topography of object =========================

set topo [new Topography]
$topo load_flatgrid 15 15

Create God

create-god $val(nn)

================= Configure node ===============================

 $ns_ node-config -adhocRouting $val(rp) \
 -llType $val(ll) \
 -macType $val(mac) \
 -ifqType $val(ifq) \
 -ifqLen $val(ifqlen) \
 -antType $val(ant) \
 -propType $val(prop) \
 -phyType $val(netif) \
 -channelType $val(chan) \
 -energyModel $opt(energymodel) \
 -rxPower $rx \
 -txPower $tx \
 -initialEnergy $opt(initialenergy) \
 -topoInstance $topo \
 -agentTrace ON \
 -routerTrace ON \
 -macTrace ON \
 -movementTrace OFF

 for {set i 0} {$i < $val(nn) } {incr i} {
 set node_($i) [$ns_ node]
 $node_($i) random-motion 0 ;# disable random motion
 }

== Provide initial (X,Y, for now Z=15) co-ordinates for mobilenodes =====

$node_(0) set X_ 0.250
$node_(0) set Y_ 0.250
$node_(0) set Z_ 0.05

$node_(1) set X_ 0.054
$node_(1) set Y_ 0.350
$node_(1) set Z_ 0.05

$node_(2) set X_ 0.305
$node_(2) set Y_ 0.440
$node_(2) set Z_ 0.05

$node_(3) set X_ 0.455

 77

$node_(3) set Y_ 0.420
$node_(3) set Z_ 0.05

$node_(4) set X_ 0.126
$node_(4) set Y_ 0.400
$node_(4) set Z_ 0.05

$node_(5) set X_ 0.038
$node_(5) set Y_ 0.173
$node_(5) set Z_ 0.05

$node_(6) set X_ 0.175
$node_(6) set Y_ 0.475
$node_(6) set Z_ 0.05

$node_(7) set X_ 0.371
$node_(7) set Y_ 0.126
$node_(7) set Z_ 0.05

$node_(8) set X_ 0.250
$node_(8) set Y_ 0.350
$node_(8) set Z_ 0.05

$node_(9) set X_ 0.161
$node_(9) set Y_ 0.045
$node_(9) set Z_ 0.05

$node_(10) set X_ 0.325
$node_(10) set Y_ 0.080
$node_(10) set Z_ 0.05

$node_(11) set X_ 0.500
$node_(11) set Y_ 0.310
$node_(11) set Z_ 0.05

$node_(12) set X_ 0.010
$node_(12) set Y_ 0.495
$node_(12) set Z_ 0.05

$node_(13) set X_ 0.150
$node_(13) set Y_ 0.250
$node_(13) set Z_ 0.05

$node_(14) set X_ 0.350
$node_(14) set Y_ 0.250
$node_(14) set Z_ 0.05

$node_(15) set X_ 0.170
$node_(15) set Y_ 0.360
$node_(15) set Z_ 0.05

$node_(16) set X_ 0.250
$node_(16) set Y_ 0.150
$node_(16) set Z_ 0.05

$node_(17) set X_ 0.360
$node_(17) set Y_ 0.370
$node_(17) set Z_ 0.05

$node_(18) set X_ 0.427

 78

$node_(18) set Y_ 0.200
$node_(18) set Z_ 0.05

$node_(19) set X_ 0.497
$node_(19) set Y_ 0.015
$node_(19) set Z_ 0.05

$node_(20) set X_ 0.260
$node_(20) set Y_ 0.010
$node_(20) set Z_ 0.05

$node_(21) set X_ 0.125
$node_(21) set Y_ 0.125
$node_(21) set Z_ 0.05

$node_(22) set X_ 0.092
$node_(22) set Y_ 0.265
$node_(22) set Z_ 0.05

$node_(23) set X_ 0.001
$node_(23) set Y_ 0.005
$node_(23) set Z_ 0.05

$node_(24) set X_ 0.501
$node_(24) set Y_ 0.495
$node_(24) set Z_ 0.05
========== Keeping nodes at X meters apart. ============================
$ns_ at 0.10 "$node_(0) setdest 0.250 0.250 0.50"
$ns_ at 0.10 "$node_(1) setdest 0.054 0.350 0.50"
$ns_ at 0.10 "$node_(2) setdest 0.305 0.440 0.50"
$ns_ at 0.10 "$node_(3) setdest 0.455 0.420 0.50"
$ns_ at 0.10 "$node_(4) setdest 0.126 0.400 0.50"

$ns_ at 0.10 "$node_(5) setdest 0.038 0.173 0.50"
$ns_ at 0.10 "$node_(6) setdest 0.175 0.475 0.50"
$ns_ at 0.10 "$node_(7) setdest 0.371 0.126 0.50"
$ns_ at 0.10 "$node_(8) setdest 0.250 0.350 0.50"
$ns_ at 0.10 "$node_(9) setdest 0.161 0.045 0.50"

$ns_ at 0.10 "$node_(10) setdest 0.325 0.080 0.50"
$ns_ at 0.10 "$node_(11) setdest 0.500 0.310 0.50"
$ns_ at 0.10 "$node_(12) setdest 0.010 0.495 0.50"
$ns_ at 0.10 "$node_(13) setdest 0.150 0.250 0.50"
$ns_ at 0.10 "$node_(14) setdest 0.350 0.250 0.50"

$ns_ at 0.10 "$node_(15) setdest 0.170 0.360 0.50"
$ns_ at 0.10 "$node_(16) setdest 0.250 0.150 0.50"
$ns_ at 0.10 "$node_(17) setdest 0.360 0.370 0.50"
$ns_ at 0.10 "$node_(18) setdest 0.427 0.200 0.50"
$ns_ at 0.10 "$node_(19) setdest 0.497 0.015 0.50"

$ns_ at 0.10 "$node_(20) setdest 0.260 0.010 0.50"
$ns_ at 0.10 "$node_(21) setdest 0.125 0.125 0.50"
$ns_ at 0.10 "$node_(22) setdest 0.092 0.265 0.50"
$ns_ at 0.10 "$node_(23) setdest 0.001 0.005 0.50"
$ns_ at 0.10 "$node_(24) setdest 0.501 0.495 0.50"

============= Setup traffic flow between nodes ========================

set udp [new Agent/UDP]
$udp set fid_ 1

 79

set sink [new Agent/LossMonitor]

set udp2 [new Agent/UDP]
$udp2 set fid_ 2
set sink2 [new Agent/LossMonitor]

set udp3 [new Agent/UDP]
$udp3 set fid_ 3
set sink3 [new Agent/LossMonitor]

set udp4 [new Agent/UDP]
$udp4 set fid_ 4
set sink4 [new Agent/LossMonitor]

set udp5 [new Agent/UDP]
$udp5 set fid_ 5
set sink5 [new Agent/LossMonitor]
============ Attach sources and sinks in required nodes ============
$ns_ attach-agent $node_(24) $udp
$ns_ attach-agent $node_(0) $sink

$ns_ attach-agent $node_(6) $udp2
$ns_ attach-agent $node_(0) $sink2

$ns_ attach-agent $node_(11) $udp3
$ns_ attach-agent $node_(0) $sink3

$ns_ attach-agent $node_(4) $udp4
$ns_ attach-agent $node_(0) $sink4

$ns_ attach-agent $node_(23) $udp5
$ns_ attach-agent $node_(0) $sink5
#8/24 16/3 13/20 12/11 19/17

============== Connect source and sink together =====================
$ns_ connect $udp $sink
$ns_ connect $udp2 $sink2
$ns_ connect $udp3 $sink3
$ns_ connect $udp4 $sink4
$ns_ connect $udp5 $sink5

====== Define, Assign and start transmission protocols ==============

Creating CBR Traffic
set cbr [new Application/Traffic/CBR]
$cbr set packetSize_ 20
$cbr set interval_ 2.0
$cbr attach-agent $udp
$ns_ at 0.0 "$cbr start"

set cbr2 [new Application/Traffic/CBR]
$cbr2 set packetSize_ 20
$cbr2 set interval_ 2.0
$cbr2 attach-agent $udp2
$ns_ at 0.0 "$cbr2 start"

set cbr3 [new Application/Traffic/CBR]
$cbr3 set packetSize_ 20
$cbr3 set interval_ 2.0
$cbr3 attach-agent $udp3
$ns_ at 0.0 "$cbr3 start"

 80

set cbr4 [new Application/Traffic/CBR]
$cbr4 set packetSize_ 20
$cbr4 set interval_ 2.0
$cbr4 attach-agent $udp4
$ns_ at 0.0 "$cbr4 start"

set cbr5 [new Application/Traffic/CBR]
$cbr5 set packetSize_ 20
$cbr5 set interval_ 2.0
$cbr5 attach-agent $udp5
$ns_ at 0.0 "$cbr5 start"

$ns_ at 0.0 "record"
========== Tell nodes when the simulation ends =====================

for {set i 0} {$i < $val(nn) } {incr i} {
 $ns_ at 500.0 "$node_($i) reset";
}
$ns_ at 500.0 "stop"
$ns_ at 500.50 "puts \"NS EXITING...\" ; $ns_ halt"

proc stop {} {
 global ns_ tracefd nf f1 f2 f3 f4 f5
#nf
 $ns_ flush-trace
 close $tracefd
 close $nf
 close $f1
 close $f2
 close $f3
 close $f4
 close $f5
 exec nam nam-uw-5con_DSR.nam &
exec xgraph uw-5con-flow1_DSR.tr uw-5con-flow2_DSR.tr uw-5con-flow3_DSR.tr
uw-5con-flow4_DSR.tr uw-5con-flow5_DSR.tr &
 exit 0
}

============= Recording Additions ====================================

proc record {} {
 global udp sink f1 udp2 sink2 f2 udp3 sink3 f3 udp4 sink4 f4 udp5
sink5 f5; # Getting sinks from above and file handlers

 #Get an instance of the simulator
 set ns_ [Simulator instance]

 #Set the time after which the procedure should be called again
 set time 0.1

 #How many bytes have been received by the traffic sinks?
 set bw1 [$sink set bytes_]
 set bw2 [$sink2 set bytes_]
 set bw3 [$sink3 set bytes_]
 set bw4 [$sink4 set bytes_]
 set bw5 [$sink5 set bytes_]

 #Get the current time
 set now [$ns_ now]

 81

 #Calculate the bandwidth (in MBit/s) and write it to the files
 #puts $f1 "$now [expr $bw1/$time*8/1000000]"
 puts $f1 "$now [expr $bw1]"
 puts $f2 "$now [expr $bw2]"
 puts $f3 "$now [expr $bw3]"
 puts $f4 "$now [expr $bw4]"
 puts $f5 "$now [expr $bw5]"
 #Reset the bytes_ values on the traffic sinks
 $sink set bytes_ 0
 $sink2 set bytes_ 0
 $sink3 set bytes_ 0
 $sink4 set bytes_ 0
 $sink5 set bytes_ 0

 #Re-schedule the procedure
 $ns_ at [expr $now+$time] "record"
}
#===

puts "Starting Simulation..."
$ns_ run

 82

Appendix B: AWK Analysis Scripts

AWK Script for calculating basic paramters like drop, end2end delay etc

BEGIN {
 printf("\n...................Starting Basic
Analysis..............................\n");
 nlines=0; # number of trace lines
 nsends=0;
 nrecvs=0;
 ndrops=0;
 nfrwds=0;
 nmvmnt=0;
 nrpkts=0; # number of routing packets
 nsndpkts=0; # number of send packets
 nrcvpkts=0; # number of rcv packets
 ndrppkts=0; # number of dropped packets
 ndrpbytes=0;# number of dropped bytes
 hpktID=0; # highest packet ID occuring in trace
 e2edelay=0; # End-2-End delay
 tdelay=0; # sum of all delays
 e2ercvd=0; # recvd at end; for e2e calculation
 }

{ #-------------Getting Tokens---
 action = $1;
 simtime= $3; # simulation time
 trlevel=$19; # trace level RTR, AGT, MAC
 pkttype=$35; # -It packet AODV, DSR, Message
 pktsize=$37; # -Il packet size
 pktID=$41; # -Ii packet's unique ID

 node_id = $9;
 node_e=$17;# -Ne

 #-------------Processing--
 nlines++;

 if (action == "s")
 nsends++;
 if (action == "r")
 nrecvs++;
 if (action == "d")
 ndrops++;
 if (action == "f")
 nfrwds++;
 if (action == "M")
 nmvmnt++;
 if (action != "s" && action != "r" && action != "d" && action != "f" &&
action != "M" && action != "N")
 printf("Some other action is ... %s at line %f\n",action,nlines);

 # ---- Calculating Routing Overhead ----

 83

 if ((action == "s" || action == "f") && trlevel == "RTR" && (pkttype
=="message"||pkttype =="DSR"||pkttype =="AODV"||pkttype == "UM-OLSR"))
 nrpkts++;

 # ---- Calculation for PDF ----
 if (action == "s" && trlevel=="AGT" && pkttype=="cbr")
 nsndpkts++;
 if (action == "r" && trlevel=="AGT" && pkttype=="cbr")
 nrcvpkts++;

 # ---- Packets/Bytes Dropped ----
 if (action == "d" && pkttype=="cbr" && simtime > 0)
 {
 ndrppkts++;
 ndrpbytes=ndrpbytes+pktsize;
 }

 # ---- Calculations for Packet Delay ----
 if (action == "s" && trlevel=="AGT" && pkttype=="cbr"){

 if (pktstarttime[pktID] == 0)
 pktstarttime[pktID] = simtime;
}

 if (action == "r" && trlevel=="AGT" && pkttype=="cbr")
 {
 pktendtime[pktID] = simtime;
 #printf("%s\n",$9);
 }
 else
 {
 if(pktendtime[pktID]==0)
 pktendtime[pktID] = -1;
 }

 if (pktID > hpktID)
 hpktID = pktID;

}
END {

for (i in pktendtime)
{
 #printf("%s\n",i);
 packet_duration =pktendtime[i]- pktstarttime[i];
 if (packet_duration > 0)
 {
 tdelay+= packet_duration ;
 e2ercvd++;
 }

}# for ends here

e2edelay=tdelay/e2ercvd;

NRL=nrpkts/nrcvpkts; # Normalized Routing Load.
PDF=(nrcvpkts/nsndpkts)*100; # Pkt delivery fraction

printf("\n...................Results..............................\n");
printf("\nTotal Lines are %d\n",nlines);

 84

printf("\nTotal Send Lines are %d\n",nsends);
printf("\nTotal Recv Lines are %d\n",nrecvs);
printf("\nTotal Drop Lines are %d\n",ndrops);
printf("\nTotal Frwd Lines are %d\n",nfrwds);
printf("\nTotal Mvnt Lines are %d\n",nmvmnt);
printf("\.............................\n\n");
printf("\nTotal Routing packets are %d\n",nrpkts);
printf("\nNormalized Routing Load %.2f\n",NRL);

printf("\nTotal CBR packets sent are %d\n",nsndpkts);
printf("\nTotal CBR packets rcvd are %d\n",nrcvpkts);
printf("\nPacket Delivery Fraction is %.2f\n",PDF);

printf("\nTotal packets dropped (CBR) %d\n",ndrppkts);
printf("\nTotal Bytes (CBR) %d\n",ndrpbytes);

printf("\nTotal Delay %.2f\n",tdelay);
printf("\nTotal Rcvd for delay are %d\n",e2ercvd);
printf("\nAverage E2E Delay is %.2f\n",e2edelay);

}

AWK Script for calculating hops and tracking routing paths

BEGIN {
 printf("\n...................Starting Analysis for Next Hop
Details...................\n");
 nlines=0; # number of trace lines
 nfwdnodes=0; # number of forwarding nodes
 max_nodes=25; # maximum number of nodes in simulation
 nfwdevnts=0; # number of forwarding events
 }

{ #-------------Getting Tokens---
 action = $1;
 simtime= $3; # simulation time
 thishop=$5; # -Hs current hop
 nexthop=$7; # -Hd next hop towards dest.
 nodeID=$9; # -Ni Node ID
 trlevel=$19; # trace level RTR, AGT, MAC
 srcIP=$31; # -Is source adddress
 dstIP=$33; # -Id destination address
 pkttype=$35; # -It packet AODV, DSR, Message
 pktsize=$37; # -Il packet size
 flowID=$39; # -If Flow ID
 pktID=$41; # -Ii packet's unique ID

 #--------------Processing--
 nlines++;
 if (action=="f" && trlevel=="RTR")
 {
 #printf("%s %s NodeID %s Src %s Dest %s FID %s NextHop
%s\n",action,simtime,nodeID,srcIP,dstIP,flowID,nexthop);
 fwdnodes[nodeID]=1;
 datafwd[nodeID,nexthop]++;
 nfwdevnts++;
 }
}

 85

END {
printf("\n.................Results..............................\n");
printf("\nMax nodes set to %d",max_nodes);
printf("\nTotal forwarding events are %d",nfwdevnts);
printf("\nForwarding Nodes are ");
for(i in fwdnodes)
 {
 printf("%s ",i);
 nfwdnodes++;
 }
printf("\nTotal forwarding nodes are %d\n",nfwdnodes);

printf("\nNodes with their next Hops\n");

for(j=0;j<max_nodes;j++)
{
 for(k=0;k<max_nodes;k++)
 {
 if(datafwd[j,k]!=0)
 printf("%s --> %s \n",j,k);
 }
}

}

printf("\nPoints for MATLAB PLOT Src Vs Dest Vs # of forwards in MATRIX
FORM\n");
for(j=0;j<max_nodes;j++)
{
 for(k=0;k<max_nodes;k++)
 {
 printf("%.2f ",datafwd[j,k]);
 }
printf("\n");
}

}

AWK Script for calculating throughput

BEGIN {
 printf("\n...................Starting Throughput
Calculations..............................\n");
 nlines=0; # number of trace lines
 recvdSize = 0
 startTime = 1e6 # some very high value
 stopTime = 0
 count=0;
 }

{ #----------Getting Tokens---
 action = $1;
 simtime= $3; # simulation time
 node_id= $9; # -Ni Node ID
 trlevel=$19; # trace level RTR, AGT, MAC
 pktsize=$37; # -Il packet size
 flowID=$39; # -If flow ID
 pktID=$41; # -Ii packet's unique ID
 #-----------Processing--
 nlines++;

 86

 if (action == "s" && trlevel == "AGT" && pktsize >= 1) {
 if (simtime < startTime) {
 startTime = simtime;
 }
 }

 if (action=="r" && trlevel == "AGT" && pktsize >= 1) {
 if (simtime > stopTime) {
 stopTime = simtime;
 }

 # Rip off the header
 hdr_size = pktsize % 1;
 pktsize -= hdr_size;

 # Store received packet's size
 recvdSize += pktsize
 count++;
 }

}
END {

printf("\n...................Results..............................\n");
printf("Number of recieved pkts %s and rcvd size is %s\n",count,recvdSize);
printf("Average Throughput[kbps] = %.4f e-3\t
StartTime=%.2f\tStopTime=%.2f\n",(recvdSize/(stopTime-
startTime)*8),startTime,stopTime)

}

AWK Script for tracking energy for source and sink nodes

BEGIN {
 printf("\n.............Tracking Energy for source/sink
nodes....................\n");
 nlines=0; # number of trace lines
 temp=0;
 interval=1; # stepping interval
 energyth=2; # threshold
 maxnodes=25;
 }
{ #-----------Getting Tokens---
 action = $1;
 simtime= $3; # simulation time
 trlevel=$19; # trace level RTR, AGT, MAC
 pkttype=$35; # -Id packet AODV, DSR, Message
 pktsize=$37; # -Il packet size
 pktID=$41; # -Ii packet's unique ID

 node_id = $9;
 node_e=$17;# -Ne

 87

 #---------------Processing--
 nlines++;

 if (action != "s" && action != "r" && action != "d" && action != "f" &&
action != "M" && action != "N")
 printf("Some other action is ... %s at line %f\n",action,nlines);

if(action=="N" && $7>0)
 {
 if($5==0) {print(simtime,$7)>> "energy-node0.tr"; if($7<energyth
&&time[$5]==0) {time[$5]=simtime;}}
 if($5==1) {print(simtime,$7)>> "energy-node1.tr"; if($7<energyth
&&time[$5]==0) {time[$5]=simtime;}}
 if($5==2) {print(simtime,$7)>> "energy-node2.tr"; if($7<energyth
&&time[$5]==0) {time[$5]=simtime;}}
 if($5==3) {print(simtime,$7)>> "energy-node3.tr"; if($7<energyth
&&time[$5]==0) {time[$5]=simtime;}}
 if($5==4) {print(simtime,$7)>> "energy-node4.tr"; if($7<energyth
&&time[$5]==0) {time[$5]=simtime;}}
 if($5==5) {print(simtime,$7)>> "energy-node5.tr"; if($7<energyth
&&time[$5]==0) {time[$5]=simtime;}}
 if($5==6) {print(simtime,$7)>> "energy-node6.tr"; if($7<energyth
&&time[$5]==0) {time[$5]=simtime;}}
 if($5==7) {print(simtime,$7)>> "energy-node7.tr"; if($7<energyth
&&time[$5]==0) {time[$5]=simtime;}}
 if($5==8) {print(simtime,$7)>> "energy-node8.tr"; if($7<energyth
&&time[$5]==0) {time[$5]=simtime;}}
 if($5==9) {print(simtime,$7)>> "energy-node9.tr"; if($7<energyth
&&time[$5]==0) {time[$5]=simtime;}}
 if($5==10) {print(simtime,$7)>> "energy-node10.tr"; if($7<energyth
&&time[$5]==0) {time[$5]=simtime;}}
 if($5==11) {print(simtime,$7)>> "energy-node11.tr"; if($7<energyth
&&time[$5]==0) {time[$5]=simtime;}}
 if($5==12) {print(simtime,$7)>> "energy-node12.tr"; if($7<energyth
&&time[$5]==0) {time[$5]=simtime;}}
 if($5==13) {print(simtime,$7)>> "energy-node13.tr"; if($7<energyth
&&time[$5]==0) {time[$5]=simtime;}}
 if($5==14) {print(simtime,$7)>> "energy-node14.tr"; if($7<energyth
&&time[$5]==0) {time[$5]=simtime;}}
 if($5==15) {print(simtime,$7)>> "energy-node15.tr"; if($7<energyth
&&time[$5]==0) {time[$5]=simtime;}}
 if($5==16) {print(simtime,$7)>> "energy-node16.tr"; if($7<energyth
&&time[$5]==0) {time[$5]=simtime;}}
 if($5==17) {print(simtime,$7)>> "energy-node17.tr"; if($7<energyth
&&time[$5]==0) {time[$5]=simtime;}}
 if($5==18) {print(simtime,$7)>> "energy-node18.tr"; if($7<energyth
&&time[$5]==0) {time[$5]=simtime;}}
 if($5==19) {print(simtime,$7)>> "energy-node19.tr"; if($7<energyth
&&time[$5]==0) {time[$5]=simtime;}}
 if($5==20) {print(simtime,$7)>> "energy-node20.tr"; if($7<energyth
&&time[$5]==0) {time[$5]=simtime;}}
 if($5==21) {print(simtime,$7)>> "energy-node21.tr"; if($7<energyth
&&time[$5]==0) {time[$5]=simtime;}}
 if($5==22) {print(simtime,$7)>> "energy-node22.tr"; if($7<energyth
&&time[$5]==0) {time[$5]=simtime;}}
 if($5==23) {print(simtime,$7)>> "energy-node23.tr"; if($7<energyth
&&time[$5]==0) {time[$5]=simtime;}}
 if($5==24) {print(simtime,$7)>> "energy-node24.tr"; if($7<energyth
&&time[$5]==0) {time[$5]=simtime;}}

 88

 }
} END {

for(i=0; i<maxnodes;i++){
print(i,time[i])>>"node-ran-out-of-power-at.tr";

}}

AWK Script for tracking energy for source and sink nodes

BEGIN {
 printf("\n.............Tracking Energy for source/sink
nodes....................\n");
 nlines=0; # number of trace lines
 temp=0;
 interval=0.01; # stepping interval
 energyth=2; # threshold
 maxnodes=25;
 lastrecordtime=0;

lastenergy[0]=1000;lastenergy[1]=1000;lastenergy[2]=1000;lastenergy[3]=1000
;lastenergy[4]=1000;lastenergy[5]=1000;lastenergy[6]=1000;lastenergy[7]=100
0;lastenergy[8]=1000;lastenergy[9]=1000;lastenergy[10]=1000;lastenergy[11]=
1000;lastenergy[12]=1000;lastenergy[13]=1000;lastenergy[14]=1000;lastenergy
[15]=1000;lastenergy[16]=1000;lastenergy[17]=1000;lastenergy[18]=1000;laste
nergy[19]=1000;lastenergy[20]=1000;lastenergy[21]=1000;lastenergy[22]=1000;
lastenergy[23]=1000;lastenergy[24]=1000;
 }
{ #-----------Getting Tokens-------------------------------------
 action = $1;
 simtime= $3; # simulation time
 trlevel=$19; # trace level RTR, AGT, MAC
 pkttype=$35; # -Id packet AODV, DSR, Message
 pktsize=$37; # -Il packet size
 pktID=$41; # -Ii packet's unique ID

 node_id = $9;
 node_e=$17;# -Ne

 #------------------------Processing------------------------------
 nlines++;

 if (action != "s" && action != "r" && action != "d" && action != "f" &&
action != "M" && action != "N")
 printf("Some other action is ... %s at line %f\n",action,nlines);

if(action=="N" && $7>0)
 {

if($5==0) { print(simtime,$7)>> "energy-node0.tr"; lastenergy[0]=$7; } else
{ print(simtime,lastenergy[0])>> "energy-node0.tr";}
if($5==1) { print(simtime,$7)>> "energy-node1.tr"; lastenergy[1]=$7; } else
{ print(simtime,lastenergy[1])>> "energy-node1.tr";}
if($5==2) { print(simtime,$7)>> "energy-node2.tr"; lastenergy[2]=$7; } else
{ print(simtime,lastenergy[2])>> "energy-node2.tr";}

 89

if($5==3) { print(simtime,$7)>> "energy-node3.tr"; lastenergy[3]=$7; } else
{ print(simtime,lastenergy[3])>> "energy-node3.tr";}
if($5==4) { print(simtime,$7)>> "energy-node4.tr"; lastenergy[4]=$7; } else
{ print(simtime,lastenergy[4])>> "energy-node4.tr";}
if($5==5) { print(simtime,$7)>> "energy-node5.tr"; lastenergy[5]=$7; } else
{ print(simtime,lastenergy[5])>> "energy-node5.tr";}
if($5==6) { print(simtime,$7)>> "energy-node6.tr"; lastenergy[6]=$7; } else
{ print(simtime,lastenergy[6])>> "energy-node6.tr";}
if($5==7) { print(simtime,$7)>> "energy-node7.tr"; lastenergy[7]=$7; } else
{ print(simtime,lastenergy[7])>> "energy-node7.tr";}
if($5==8) { print(simtime,$7)>> "energy-node8.tr"; lastenergy[8]=$7; } else
{ print(simtime,lastenergy[8])>> "energy-node8.tr";}
if($5==9) { print(simtime,$7)>> "energy-node9.tr"; lastenergy[9]=$7; } else
{ print(simtime,lastenergy[9])>> "energy-node9.tr";}
if($5==10) { print(simtime,$7)>> "energy-node10.tr"; lastenergy[10]=$7; }
else { print(simtime,lastenergy[10])>> "energy-node10.tr";}
if($5==11) { print(simtime,$7)>> "energy-node11.tr"; lastenergy[11]=$7; }
else { print(simtime,lastenergy[11])>> "energy-node11.tr";}
if($5==12) { print(simtime,$7)>> "energy-node12.tr"; lastenergy[12]=$7; }
else { print(simtime,lastenergy[12])>> "energy-node12.tr";}
if($5==13) { print(simtime,$7)>> "energy-node13.tr"; lastenergy[13]=$7; }
else { print(simtime,lastenergy[13])>> "energy-node13.tr";}
if($5==14) { print(simtime,$7)>> "energy-node14.tr"; lastenergy[14]=$7; }
else { print(simtime,lastenergy[14])>> "energy-node14.tr";}
if($5==15) { print(simtime,$7)>> "energy-node15.tr"; lastenergy[15]=$7; }
else { print(simtime,lastenergy[15])>> "energy-node15.tr";}
if($5==16) { print(simtime,$7)>> "energy-node16.tr"; lastenergy[16]=$7; }
else { print(simtime,lastenergy[16])>> "energy-node16.tr";}
if($5==17) { print(simtime,$7)>> "energy-node17.tr"; lastenergy[17]=$7; }
else { print(simtime,lastenergy[17])>> "energy-node17.tr";}
if($5==18) { print(simtime,$7)>> "energy-node18.tr"; lastenergy[18]=$7; }
else { print(simtime,lastenergy[18])>> "energy-node18.tr";}
if($5==19) { print(simtime,$7)>> "energy-node19.tr"; lastenergy[19]=$7; }
else { print(simtime,lastenergy[19])>> "energy-node19.tr";}
if($5==20) { print(simtime,$7)>> "energy-node20.tr"; lastenergy[20]=$7; }
else { print(simtime,lastenergy[20])>> "energy-node20.tr";}
if($5==21) { print(simtime,$7)>> "energy-node21.tr"; lastenergy[21]=$7; }
else { print(simtime,lastenergy[21])>> "energy-node21.tr";}
if($5==22) { print(simtime,$7)>> "energy-node22.tr"; lastenergy[22]=$7; }
else { print(simtime,lastenergy[22])>> "energy-node22.tr";}
if($5==23) { print(simtime,$7)>> "energy-node23.tr"; lastenergy[23]=$7; }
else { print(simtime,lastenergy[23])>> "energy-node23.tr";}
if($5==24) { print(simtime,$7)>> "energy-node24.tr"; lastenergy[24]=$7; }
else { print(simtime,lastenergy[24])>> "energy-node24.tr";}

 }}
END {# No need to display. Write everything to file.}

