
Towards Semantic Web: An Effective Approach for
Association Identification in Real Scenarios

By

Asif Sohail Abid

Submitted to the Department of Computer Engineering

in partial fulfillment of the requirements for the Degree of

Masters of Science

In

Computer Software Engineering

Thesis Supervisor

Brig Dr. Muhammad Younus Javed

College of Electrical and Mechanical Engineering

National University of Sciences & Technology

2010

 2

 i

ACKNOWLEDGEMENTS

All praise to the Almighty Allah, the most Merciful and the most gracious one. Without

whose help and blessings, I would not have been able to complete this research. Many

thanks to my project supervisor, Dr. Mohammad Younus Javed, whose constant

motivation, unflagging efforts and uninvolved words of wisdom ever proved a

lighthouse for me; it was earnestly felt whenever we swayed. Despite his never ending

assignments of university management, student counseling, project supervision and

teaching, he did never mind whenever we went for an advice, within or without the time

slot allocated for us.

Acknowledgement is also due to my teachers for dedicatedly instilling and imparting

enlightenment to me during the course of studies and afterwards for our project. I am

also very thankful to my parents for their tacit and avowed support, patience and

understanding.

I would like to thank my friends who gave me confidence to face the difficulties of life.

They all gave me good company and everlasting memories. Especial thanks to my

friend Mr. Sheraz Khurram.

 ii

In the Name of Almighty Allah
The Most Beneficent and Most Merciful

Dedicated to my;
caring mother, considerate teachers

&
all those who contributed towards my future

 iii

Abstract

The semantic web is an extension of current web. The concept introduced by

this web is dramatically changing the world of web. This is one of the reasons that it is

often named as future web. The semantic web’s objective is to make web meaningful

and understandable. In the last few years, this area has gained interest from many

researchers, bringing the results in the form of different standards for the semantic web.

The aim of this web is to make web meaningful, understandable and machine

processable. Making use of information on current web for the productiveness of future

web is becoming vital. Heterogeneity of relational data coupled with present web

complicates utilization of information for future web. To use the data associated with

current web it was required to transform it into ontology. The already presented and

provided algorithms merely give the result in user required form. The thesis focuses on

the problem where some of the meta data is available with relational schema and

identification of associations. Protégé is an open source tool that can be used for

ontology development. The DataMaster was developed in BioSTORM [10] project

which supports both OWL and frame-based ontologies. It works as a plug-in for protégé

[11]. Many of these approaches merely give the results in the user required form.

Moreover, the weak entities of the database are also mapped into classes (for example

in datamaster, DataGenie etc). It will be a tough job to find the relationship in the

extracted classes (i.e. ontologies), with a little domain knowledge. Moreover it will

become very tough when the relational schema is of large size. Need of an automated or

semi automated approach for discovering the relationships in the relational schemas was

vital. This presents a scheme for the identification of association in real scenarios,

where there can be very little metadata availability.

 iv

Table of Contents

LIST OF TABLES…….…………………………………………………………… VI

LIST OF FIGURES.………………………………………………………………… VIII

CHAPTER 1: INTRODUCTION………….………………………………………. 1

 1.1. Motivation …………………….………………………………………….. 1

 1.2. Problem Definition …………………….…………………………………. 2

 1.3. Objectives and Goals…………………….……………………………….... 3

 1.4. Outline of Thesis ………………………………………………………….. 3

 1.5. Summary …………………………………………………………………... 4

CHAPTER 2: BACKGROUND……….…………………………………………… 5

 2.1. Semantic Web ……………………………………………………………... 5

 2.2. Semantic Web Architecture ……………………………………………….. 6

 2.3. Ontologies………………………………………………………………….. 10

 2.4. Relational Model …………………………………………………………... 14

 2.5. SuperClass and SubClass ………………………………………………….. 15

 2.6. Transforming Relational Model into Ontology …………………………… 15

 2.7. Schema Translation ………………………………………………………. 16

 2.8. Summary ………………………………………………………………….. 17

CHAPTER 3: LITERATURE SURVEY………………………………………….. 18

 3.1. Related Work ……………………………………………………………. 18

 3.2. Summary ..……………………………………………………………….. 25

CHAPTER 4: PROPOSED METHODOLOGY…………………………………….. 26

 4.1. Proposed Scheme Architecture..………………………………………….. 26

 4.2. The Flowchart for Proposed Scheme……………………………………… 27

 4.3. Working of Proposed Scheme ..………………………………………….. 28

 4.4. DataMaster Architecture ..……………………………………………….. 29

 4.5. Identification of Foreign Key ..………………………………………….. 30

 4.6. Example Scenario ..………………………………………………………. 31

 4.7. Entities and Attributes …………………………………………………… 34

 4.8. Summary …………………………………………………………………. 35

Chapter 5: IMPLEMENTATION …………………………………………………… 36

 v

 5.1. Database ………………………………………………………………….. 36

 5.2. Example Database Implementation ………………………………………. 38

 5.3. User Interfaces …………………………………………………………… 42

 5.4. Summary ………………………………………………………………… 43

CHAPTER 6: EVALUATION AND RESULTS …………………………………… 44

 6.1. Criteria for Evaluations …………………………………………………. 44

 6.2. Results and Evaluations ………………………………………………… 44

 6.3. Comparison with other Schemes ………………………………………… 47

 6.4. Comparison Result Chart ………………………………………………… 48

 6.5. Precision of the Algorithm ………………………………………………. 54

 6.6. Summary ………………………………………………………………… 55

CHAPTER 7: CONCLUSIONS AND FUTURE WORK …..……………………. 58

 7.1. Discussion ……………………………………………………………….. 58

 7.2. Contribution of Project …………………………………………………. 59

 7.3. Future Directions ……………………………………………………….. 59

REFERENCES…………………………………………………………………….. 60

APPENDIX – A……………………………………………………………………. 62

 (a). Association Identifications (Proposed Technique) ……………………... 62

 (b). Foreign Key Identification in DataMaster ……………………………… 62

 (c). Database Importer Class in Datamaster ………………………………… 63

 vi

List of Figures

 Figure 2.1. Semantic Web Architecture ……………………………….……… 6

 Figure 2.2. RDF Example ……………………………………………..……… 8

 Figure 2.3. Owl Example……………………………………………………… 12

 Figure 2.4. Owl Classes………………………………………………..……… 12

 Figure 2.5. OWL Objects …………………………………….……………….. 13

 Figure 2.6. OWL Object Property …………………………………….……… 14

 Figure 2.7. Relational Database to Ontology Mapping ………………………. 16

 Figure 2.8. Transformation of Relational Database to Ontology …………….. 16

 Figure 3.1. RDB2Onto Architecture …………………………………………. 19

 Figure 3.2. DataGenie ………………………………………………………… 22

 Figure 3.3. DataMaster ..…………………………………………………….. 23

 Figure 4.1. Proposed Architecture …………………………………………… 26

 Figure 4.2. Flowchart of Proposed Scheme ………………………………….. 27

Figure 4.3. Meta Collectors …………………………………………………… 28

Figure 4.4. DataMaster ……………………………………………………...... 31

Figure 4.5. ERD of Schema…………………………………………………… 32

 Figure 5.1. Example Schema …………………………………………………. 38

 Figure 5.2. Customer Table……………………………………………………. 39

 Figure 5.3. Offices Table ……………………………………………………… 39

 Figure 5.4. Orders Details Table ……………………………………………… 40

 Figure 5.5. Orders Table ……………………………………………………… 40

 Figure 5.6. Payments Table …………………………………………………… 41

 Figure 5.7. Product Line Table ……………………………………………….. 41

 Figure 5.8. Product Table ……………………………………………………… 42

 Figure 5.9. Main User Interface ………………………………………………. 43

 Figure 6.1. Comparison Detailed Chart for Schema-1…..…..…..…..…..…. 46

 Figure 6.2. Comparison Detailed Chart for Schema -2 ………………………. 47

 Figure 6.3. W1 values Selection Graph ……………………………………… 50

 Figure 6.4. W2 values Selection Graph ……………………………………… 51

Figure 6.5. W3 values Selection Graph ……………………………………… 52

Figure 6.6. Weight W1,W2 & W3 Selection Graph ………………………….. 53

 vii

 Figure 6.7. Precision Graph ………………………………………………….. 54

 Figure 6.8. Recall Graph ……………………………………………………… 55

Figure 6.9. Time Comparison ………………………………………………… 55

 viii

List of Tables

Table 4.1. Entities in the Selected Schema ……………………………… 33

Table 4.2. Associations Details in the Relational Schema ……………… 34

Table 6.1. System Specifications …..…..…..…..…..…..…..…..…..……... 44

Table 6.2. Details of the Relational Schema …..…..…..…..…..…..…….. 45

Table 6.3. Type – I and Type-II Errors…..…..…..…..…..…..…..…..…… 48

Table 6.4. Example Type – I and Type-II Errors …..…..…..…..…..……. 48

Table 6.5. W1 Values Selection Table …..…..…..…..…..…..…..…..….. 49

Table 6.6. W2 Values Selection Table …..…..…..…..…..…..…..…..….. 50

Table 6.7. W3 Values Selection Table …..…..…..…..…..…..…..…..….. 53

Table 6.8. Precision and Recall …..…..…..…..…..…..…..…..…..…….. 54

Table 6.9. Precision and Recall …..…..…..…..…..…..…..…..…..…..… 56

 ix

List of Abbreviations

OWL Web Ontology Language

RDF Resource Description Frame Work

3NF Third Normal Form

ERD Entity Relationship Diagram

EERD Extended Entity Relationship Diagram

RID Relational Intermediate Directed

R2O Relational to Ontology

DL Description Logic

 URL Uniform Resource Locator

 URI Uniform Resource Identifier

 WWW World Wide Web

 1

Chapter 1

Introduction

In this chapter, the overview of the thesis is presented. This chapter holds its

importance by providing the basis for research. It includes motivation, problem

definition, objectives and goals of research.

1.1. Motivation

The semantic web can be considered as a mesh of information that makes

information processable by the machines on global scale. The aim of semantic web is not

only to make information processable but, understandable by the machines.

The concept of semantic web was introduced by Tim Berners-Lee, the inventor of

WWW, URIs, HTTP and HTML [7]. The concept introduced by this web is dramatically

changing the world of web. This is one of the reasons that it is often named as future web.

The semantic web’s objective is to make web meaningful and understandable. In the last

few years, this area has gained interest from many researchers, bringing the results in the

form of different standards for the semantic web. Some of these standards include: global

naming scheme (i.e. URIs), Resource Description Framework (RDF), the data

interchanges formats, and notations such as RDF Schema (RDFS) for describing the

properties of the data and the Web Ontology Language (OWL) for describing the

relationships of the data.

The ontology is defining the explicit concepts of the domain of discourse where

each of its characteristics is called as attribute. In the process of creation of ontologies for

the database, three techniques are used: analysis of database schema, tuples or analysis of

user queries [2]. From different schemes of transformation of relational schemas to

ontology, the following points are observed: the database tables are mapped into the

classes (i.e. ontologies, attribute of the tables are mapped as the attributes of the

ontologies) and identifications of foreign keys in a database schema. However, the types

of the relationship can be identified by the entries in the database.

 2

The ontology is one of the pillars of the semantic web. Different tools for ontology

creations and management are developed to implement the concept of ontology like

protégé, OntoGen etc. Protégé is an ontology editor and knowledge based frame work [3]

whereas OntoGen is said to be a semi automated and data driven tool that combines text

mining approaches[8][9].

The semantic web promises for advantages to the current web would compel user

to think for extending their current web to the semantic web. There would be a lot of

transition steps that will be required for this conversion. As there is heterogeneous type of

database associated to the current web and this data is required to be converted in the

ontology to become useful for the semantic web. Moreover, this relational database is not

in the same normalize form. There would be relational schema to ontology conversion

required in transformation. This thesis discusses the same domain (i.e. relational schema

to ontology conversion). A better conversion algorithm is presented that will help to

recognize relationship in relational schema by gathering already available metadata.

1.2. Problem Definition

As already discussed, after knowing the advantages of the semantic web over

current web, one would definitely think for moving from current to future web. This

transition will require relational schema to ontology conversion step at some stage.

Moreover, the relational schemas on the internet are in heterogeneous formats and it is

difficult to propose and implement a single methodology for all of them. This is the major

reason that there is no standard transition algorithm, and huge efforts are required for

smooth transition from the existing web to semantic web.

Researchers have worked for creating tools for transformation from relational

schema to ontologies (e.g. DataGenie, DataMaster etc). DataGenie [3] is a tab plug-in for

Protégé that enables Protégé to connect to database and move portions (or all) of your

database into Protégé. But, it does not support OWL ontologies or schemas. For the

drawbacks in the DataGenie, the DataMaster was developed in BioSTORM [10] project

which supports both OWL and frame-based ontologies. It works as a plug-in for protégé

[11]. Many of these approaches merely give the results in the user required form.

Moreover, the weak entities of the database are also mapped into classes (for example in

 3

datamaster, DataGenie etc). It will be tough job to find the relationship in the extracted

classes (i.e. ontologies), with a little domain knowledge. Moreover it will become very

tough when the relational schema is of large size. Requirement of an automated or semi

automated approach for discovering the relationships in the relational schemas was vital.

When it comes to execution cost of the algorithm, the algorithm that uses

metadata extraction step for conversion will cost low as it will not require derivation and

comparisons steps. Whereas the algorithm that works in absence of metadata will

definitely cost higher. But will be the case where some metadata is not available with

relational schema. The technique presented here performs extraction of the relationships

in the relational schemas when there is no enriched Metadata available.

1.3. Objectives and Goals

This research focuses on providing a flexible approach for association

identification in real scenarios, and to propose a technique that extracts metadata

available. This research provides an algorithm that will identify ontologies and

associations. This approach will be a semi-automated approach. The transformation rules

will be used for the analyzing the relationship and types of relationships identified.

The evaluation criteria of the proposed methodology are; (a) performance of

algorithm (b) preservation of information and (c) correct identification and

transformation of relationships.

Therefore, the evaluation of the proposed scheme will be done by; (i)

experimental results, (ii) mathematical proof.

As relational database is well established and widely used data model, so this

research will only concentrate on relational database. Extension of proposed

methodology to other data models such as semi-structured and un-structured data models

will be done in future.

1.4. Outline of thesis

The outline of thesis is as follows. In Chapter 2, background study is provided.

Chapter 3 focuses on the literature survey followed by the summarization of the

techniques. In Chapter 4, the proposed system architecture and methodology is given. In

 4

Chapter 5 discusses the implementation details of the prototype system are provided. The

results and the evaluation of the proposed methodology are given in Chapter 6.

Mathematical proof of schema equivalence and information capacity preservation is also

provided in this chapter. Finally in Chapter 7 conclusion of the work and direction for

future work are presented.

1.5. Summary

In this chapter, the overview of the thesis was given. Motivation, problem

definition, objectives and goals of research was discussed.

 5

Chapter 2

BACKGROUND

In this chapter the background study is discussed that will be helpful in

understanding this research thesis. In this chapter explanation of semantic web, its

approaches and the main components of semantic web are discussed. The relational

model, ontology and its language is also presented in this chapter. Latter in this chapter

detail of model transformation is provided.

2.1. Semantic Web

The semantic web is often named as future web. It is an extension of the World

Wide Web, its aim is to make web meaningful. The semantic web defines semantics of

information and services on the web, making it possible for the web to understand people

and machines to use the web content [12][13]. It derives from World Wide Web

Consortium director Sir Tim Berners-Lee's vision of the Web as a universal medium for

data, information, and knowledge exchange [13].

The Semantic Web is a web of data that is globally shared. There is a lot of useful

information every day from the internet. Most of this information are not a part of

WWW. But can I see my photos in a calendar to see what I was doing when I took them?

Can I see bank statement lines in a calendar?

Why not? Because current web is no a web of data. Because data is controlled by

applications, and each application keeps it to itself.

The Semantic Web is about two things. It is about common formats for integration

and combination of data drawn from diverse sources, where as the original Web mainly

concentrates on the interchange of documents. It is also about language for recording how

the data relates to real world objects. That allows a person, or a machine, to start off in

one database, and then move through an unending set of databases which are connected

not by wires but by being about the same thing. [15].

 6

2.1.1. Semantic web approach

The approach of semantic web is to represent web contents in a form that is more

easily machine-processable. It uses intelligent techniques to take advantage of these

representations. The Semantic web will gradually evolve out of the current web.

2.2. Semantic Web Architecture

A set of standards and technologies has been given by semantic web that acts as an

infrastructure to support its vision. These series of standards are interlinked and

organized. These standards are shown in the Figure 2.1.

Figure 2.1 Semantic Web Architecture

2.2.1. Universal Resource Identifier (URI)

A universal resource identifier (URI) identifies an abstract or physical resource. A

URI can be further classified as a locator, a name, or both. Uniform resource locator

(URL) is a subset of URI. A uniform resource name (URN) refers to the subset of URI,

which is required to remain globally for example:

 7

a. The URL http://ppclub.org/index.php, identifies the location from where a Web

page can be retrieved

b. The URN urn:isbn:3-540-24328-3 identifies a book using its ISBN.

2.2.2. Unicode

Unicode provides a unique number for every character, independently of the

underlying platform, program, or language. Before the creation of Unicode, there were

various different encoding systems.

2.2.3. XML

 XML stands for External Markup Language. It was designed for the storing and

transportation of the data. Is keeps its importance and being easy it is user friendly. XML

is verbose by design and it is a family of technologies. It has lead HTML to XHTML.

XML is in the form of open and close tags.

2.2.4. Resource Description Frame work (RDF)

The RDF was built for web. It is a framework for describing and interchanging metadata.

It is built on the following rules: A Resource can be anything having a URI (e.g. world's

Web pages, as well as individual elements of an XML document). An example of a

resource http://www.ppclub.org/index.php

1. A PropertyType is a Resource that has a name and can be used as a property, for

example Author or Title.

2. A Property is the combination of a Resource, a PropertyType, and a value. An

example would be: "The Author of http://www.ppclub.org/index.php is Asif

Sohail. The RDF example is shown in Figure 2.2.

 8

Figure 2.2 RDF Example

2.2.5. RDF schema

The RDF schema provides a type system for RDF. It can be said as enriched form

of RDF. It provides a way of building an object model from which the actual data is

referenced and which tells us what things really mean [6].

Some important things to know about RDF Schema are as follows:

a. rdfs:Literal is the class of literal values such as strings and integers.

b. rdfs:subClassOf is a transitive property that specifies a subset-superset relation

between classes.

c. rdfs:subPropertyOf is an instance of rdf: Property used to specify that one

property is a specialization of another.

d. rdfs:comment is a human-readable description of a resource.

e. rdfs:label is a human-readable version of a resource name and it can only be a

string literal.

 9

f. rdfs:seeAlso specifies a resource that might provide additional information about

the subject resource.

g. rdfs:isDefinedBy is a subproperty of rdfs: seeAlso and indicates the resource

defining the subject resource.

h. rdfs:member is a super-property of all the container membership properties

i. rdfs:range indicates the classes that the values of a property must be members of.

2.2.6. Owl

OWL stands for web ontology language that provides extended impressibility to

RDF. This language is divided into three parts [17], which are described as follows

2.2.6.1. OWL lite

OWL Lite is a kind of the OWL ontology language. It is a sublanguage of OWL

DL and was originally designed to provide a simpler formalism. This simpler formalism

was in terms of computational complexity. This, however, has largely failed, and OWL

Lite is almost as complex as OWL DL. The practically relevant species of OWL

therefore today are OWL DL and OWL Full.

2.2.6.2. OWL DL

The name OWL DL is due to its correspondence with description logics. OWL

DL has been designed to support the existing description logic business segments. OWL

DL provides maximum expressiveness without losing computational completeness and

decidability of reasoning system. Computational completeness means that all entailments

are guaranteed to be computed, whereas decidability means that all computations finish

in a finite time. OWL DL has all OWL language constructs along with the restrictions.

For example, type separation restriction which means that a class cannot also be an

individual or a property simultaneously. Similarly a property cannot also be an individual

or class at the same time.

 10

2.2.6.3. OWL Full

OWL Full provides maximum expressiveness with the syntactic freedom of

Resource Description Framework (i.e., RDF) but it does not provide computational

guarantee.

Unlike OWL DL, in OWL Full a class can be treated as a collection of individuals

and as an individual. Another major difference from OWL DL is that

owl:DatatypeProperty can also be declared as an owl:InverseFunctionalProperty.

owl:DatatypeProperty and owl:InverseFunctioanlProperty are discussed later in detail.

OWL Full allows an ontology to increase the meaning of the pre-defined (RDF or OWL)

vocabulary.

2.3. Ontologies

The word "ontology" seems to generate a lot of controversy in discussions about

AI. It has a long history in philosophy, in which it refers to the subject of existence. It is

also often confused with epistemology, which is about knowledge and knowing.

In the context of knowledge sharing, I use the term ontology to mean a specification of a

conceptualization. That is, ontology is a description (like a formal specification of a

program) of the concepts and relationships that can exist for an agent or a community of

agents. This definition is consistent with the usage of ontology as set-of-concept-

definitions, but more general. And it is certainly a different sense of the word than its use

in philosophy.

What is important is that what ontology is for. My colleagues and I have been

designing ontologies for the purpose of enabling knowledge sharing and reuse. In that

context, ontology is a specification used for making ontological commitments. The

formal definition of ontological commitment is given below. For pragmatic reasons, it

was preferred to write ontology as a set of definitions of formal vocabulary. Although

this isn't the only way to specify a conceptualization, it has some nice properties for

knowledge sharing among AI software (e.g., semantics independent of reader and

context). Practically, an ontological commitment is an agreement to use a vocabulary

 11

(i.e., ask queries and make assertions) in a way that is consistent (but not complete) with

respect to the theory specified by an ontology.

2.3.1. Components of Ontologies

The main components of ontology are called as classes. They are the concepts of

the domain of discourse. For example the class “Person” represents all kinds of person.

Classes can have sub-classes that are more specific concepts than the super-class. For

example the “animal” class can have sub-class “tiger”, “elephant”, “cat”. Multiple

inheritances are allowed in ontology. The various features and attributes of a class are

described by properties (also called slots or roles). For example cat may belong to special

area, can have different color, height etc.

Restrictions (also called facets or role restrictions) can be applied on properties. Ontology

together with its instances is called a knowledge base. Noy and McGuinness [16]

provided information about how to develop ontology for declarative frame-based

systems.

 The manual ontology development includes the following steps:

a. Identifying and defining the classes in ontology.

b. Taxonomically (i.e., subclass, superclass) arranging classes to form hierarchy.

c. Defining slots and describing allowed values for these slots.

d. Creating instances by filling in the values for slots.

The fundamental rules for ontology design are: (1) there is no single correct way to

develop ontology; there exist alternatives to model a domain. The best solution depends

on the application and the intended use of ontology. (2) Ontology development is an

iterative process. (3) The quality of ontology can only be accessed by the response of the

application for which it is designed. (4) Classes and properties of ontology should be

close to objects (physical or logical) and relationships of domain of interest.

2.3.2. Classes and Individuals

Ontology is mostly used to reason about individuals; therefore the classes,

individuals and properties must be defined. The most powerful feature of ontology is due

to its class-based reasoning. A class definition has a name introduction or reference and a

 12

list of restrictions. The list of expressions / restrictions in a class definition restricts

instances of the class. The instances of a class belong to the intersection of all the

restrictions.

In OWL every individual is a member of class owl:Thing. Hence, every user

defined class is implicitly a member of class owl:Thing. The class owl:Nothing is an

empty class. The classes are defined by declaring the named class. For example, in a

hospital domain the three classes can be “Employee”, “Patient” and “Ward”. The OWL

code for these named classes is shown in Figure 2.3:

Class definitions can be extended later. Within this ontology the above declared

classes can be referenced with the “#” preceding the name of the class. For example the

“Employee” class can be referenced by #Employee. Derived ontologies can be created by

importing and augmenting the ontologies. The class definition can be incremental and

distributed. A class can have subtypes. For example, in hospital domain, “Employee” can

be a “Physician” or a “Nurse”. The example is shown below in Figure 2.4.OWL classes.

The “rdfs:subClassOf” relates to a more specific class to a general class. This example

relates more specific class “Physician” to the more general class “Employee”. Every

instance of the “Physician” class is also an instance of the “Employee” class i.e., if X is a

subclass of Y, then every instance of X is also an instance of Y [19]. The rdfs:subclass of

<owl:Class rdf:ID="Employee"/>

<owl:Class rdf:ID="Patient"/>

<owl:Class rdf:ID="Ward"/>

<owl:Class rdf:ID="Physician">

<rdfs:subClassOf rdf:resource="#Employee"/>

.

.

.

</owl:Class>

Figure 2.3 OWL Example

Figure 2.4 OWL Classes

 13

relation is transitive. If X is a subclass of Y and Y a subclass of Z then X is a subclass of

Z [16]. Transitive property is discussed in detail later in this chapter. rdf:type is an RDF

property that ties an individual to a its class. For example “Dr Kamran” is an individual

of the “Physician” class. An individual is a member of a class.

2.3.3. Property
A property is a binary relation. Two types of important properties are (1)

objectproperty and (2) datatypeproperty. Datatypeproperty is a relation between instance

of class and RDF literal or XML schema data type. Objectproperty is the a relation

between instances of two classes [19]. Figure 2.5 shows the object and the data property.

The domain and range of these properties can be defined to restrict the relations.

For example a Physician works in a Ward, the code to define the domain and range of the

“works” objectproperty is shown below.

Multiple domains of a property mean domain of property is intersection of the

identified classes. The same is true for multiple ranges. Properties, like the classes can

also be arranged in a hierarchy. Figure 2.6 shows the properties hierarchy [16].

<owl:ObjectProperty rdf:ID="works">

<rdfs:domain rdf:resource="#Physician"/>

<rdfs:range rdf:resource="#Ward"/>

.

.

.

</owl:ObjectProperty>

Figure 2.5 OWL Objects

 14

<owl:Class rdf:ID="WineDescriptor" />

<owl:Class rdf:ID="WineColor">

<rdfs:subClassOf rdf:resource="#WineDescriptor" />

</owl:Class>

<owl:ObjectProperty rdf:ID="hasWineDescriptor">

<rdfs:domain rdf:resource="#Wine" />

<rdfs:range rdf:resource="#WineDescriptor" />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasColor">

<rdfs:subPropertyOf rdf:resource="#hasWineDescriptor" />

<rdfs:range rdf:resource="#WineColor" />

.

.

.

</owl:ObjectProperty>

Figure 2.6 OWL Object Property

2.4. Relational model

The first database systems were based on the network and hierarchical models.

These models faced many problems when used for scalable databases. To faults gives

birth to relational model. The relational model was first proposed by E.F. Codd in 1970

and the first such systems (notably INGRES and System/R) were developed in 1970s.

The relational model is now the dominant model for commercial data processing

applications. The relational database consists of a collection of tables, each having a

unique name. A row in a table represents a relationship among a set of values. Thus a

table represents a collection of relationships. There is a direct correspondence between

the concept of a table and the mathematical concept of a relation. A substantial theory has

been developed for relational databases.

 15

2.4.1. Keys

A relation can have different types of keys. The keys Ri selected from the

attribute of the relation Ri can be described as [20]:

)()(RiARiK ⊆ (1)

There can be three types of keys

(a) Candidate key

 A candidate key is that attribute that qualifies for all the required properties of a

primary key (i.e. cannot be null and cannot be repeated)

(b) Primary key

 A primary key is an attribute of relation, which cannot be null or cannot be

repeated. It identifies a record uniquely.

(c) Foreign key

This key identifies parent and child entities of a relationship. Parent entity posts a

copy of its primary key to the child entity, where it acts as a foreign key. The name of the

foreign key can be different from the name of the primary key. Foreign key can have the

same value of primary key for a set of tuples (i.e., record) [20]. NULLs are also allowed

in foreign keys.

2.5. SuperClass and SubClass

Superclass and subclass help to form hierarchy (i.e., EERD) and identifies

attribute inheritance. Entity with its subclass and their subclass is called type hierarchy,

specialization hierarchy, generalization hierarchy and IS_A hierarchy [20]. These terms

can be used alternatively. For example, the “Person” entity is the superclass of the

“Student” entity and “Professor” entity whereas “Professor” and “Student” entity are the

subclass of “Person” entity.

2.6. Transforming Relational Model into Ontology

Astrova1 and colleagues [18] explain the difference between transformation and

mapping. Mapping assumes the existence of both ontologies and relational databases and

produces set of correspondence between these two. Transformation on the other hand

 16

assumes that only relational database exists and builds ontology from it. Both mapping

and transformation is shown in the Figure 2.7 and Figure 2.8.

Figure 2.7 Relational Database to Ontology Mapping

Figure 2.8 Transformation of Relational Database to Ontology

2.7. Schema Translation

P.Martin, J.R.Cordy, R.A.Hamdeh [20] define that schema translation is the

process of transforming a schema in one data model into a corresponding schema in a

different data model. Structural transformation recognizes structures in a source object

(schema, program, etc.) and transforms them into other structures in a target language to

produce a translation of the original object. Structural transformation can be applied to

 17

the problem of schema translation by searching for the structures in source schema and

then transforming the structures in the translated schema.

2.8. Summary

In this chapter, the background knowledge of the research was presented.

Describing the basis of semantic web, ontologies and relational schema the ground for the

understanding of research was created. The next chapter will provide the literature survey

that was carried out for the research.

 18

Chapter 3

LITERATURE SURVEY

This chapter will provide the literature survey for the thesis. The relational

schema to ontology transformation techniques will be discussed in detail. Moreover, the

critical analysis of the techniques will also be made in the end of the chapter.

3.1. Related Work

As future web promises for many advantages including meaningful and

understandable web [7], to use the information associated with current web with future

web transition will be required. This transition will require relational schema to ontology

conversion step at some stage. Moreover, the relational schemas on the internet are in

heterogeneous formats and it is difficult to propose and implement a single methodology

for all of them. This is the major reason that there is no standard transition algorithm, and

huge efforts are required for smooth transition from the existing web to semantic web.

Researchers have worked for creating tools for transformation from relational

schema to ontologies (e.g. DataGenie, DataMaster etc). DataGenie [3] is a tab plug-in for

Protégé that enables Protégé to connect to database and move portions (or all) of your

database into Protégé. But, it does not support OWL ontologies or schemas. For the

drawbacks in the DataGenie, the DataMaster was developed in BioSTORM [10] project

which supports both OWL and frame-based ontologies. It works as a plug-in for protégé

[11]. Many of these approaches merely give the results in the user required form.

Moreover, the weak entities of the database are also mapped into classes (for example in

datamaster, DataGenie etc). The technique presented here, performs extraction of the

relationships in the relational schemas when there is no enriched Meta data available.

 There is an approach for creating semantic metadata from relational database data

[1]. When ontology-based information systems are created it is often required to convert

or replicate data from existing information systems (such as databases) to the ontology

based information systems, if it is desire for ontology-based systems to work with real

data. RDB2Onto tool converts selected data from a relational database to a RDF/OWL

 19

ontology document based on a defined template. Such filled in templates can be then

stored to the ontology-based knowledge memory. In the paper they also evaluate the tool

against existing solutions, such as RDQUERY or D2RQ. The architecture they present

for RDB2Onto is shown in Figure 3.1- RDB2Onto Architecture.

Figure 3.1 RDB2Onto Architecture

The goal of the tool is to provide Relational Database Data to Ontology

Individuals Mapping. The tool works on a domain ontology model and a relational

database. The overall idea is to map SQL query to RDF/OWL XML template. Such OWL

data are then sent to an ontology model. The tool is being implemented in Java using Jena

[21] or Sesame [22] library for ontology manipulation and MySQL database for testing

but it is possible to use any other relational database using JDBC connector.

An Ontology matching tool utilizes a composite approach to combine different

match algorithms [23]. COMA++ implements significant improvements and offer a

comprehensive infrastructure to solve large real-world match problems. It comes with a

graphical interface enabling a variety of user interactions. Using a generic data

representation, COMA++ uniformly supports schemas and ontologies, e.g. the powerful

standard languages W3C XML Schema and OWL. COMA++ includes new approaches

for ontology matching, in particular the utilization of shared taxonomies. Furthermore,

different match strategies can be applied including various forms of reusing previously

 20

determined match results and a so-called fragment based match approach which

decomposes a large match problem into smaller problems. Finally, COMA++ cannot only

be used to solve match problems but also to comparatively evaluate the effectiveness of

different match algorithms and strategies.

An Approach Based on an Analysis of HTML Forms was being proposed [2].

According to this approach, semantics of a relational database can be inferred, without an

explicit analysis of relational schema, tuples and user queries. Rather, these semantics

can be extracted by analyzing HTML forms, which are the most popular interface to

communicate with relational databases for data entry and display on the Web. The

semantics are supplemented with the relational schema and user “head knowledge” to

build ontology. Our approach can be applied to migrating data-intensive Web pages,

which are usually based on relational databases, to the ontology based Semantic Web.

There is a technique that builds OWL based initial source ontology to integrate data

sources [24]. The technique analyzes the SQL/DDL code, used to build database and

divides the tables into two categories. (1) Tables without foreign keys: OWL class for

each table and DataType properties (created as functional properties) for respective

attributes are created. The specific range of the properties is assigned with

owl:allValuesFrom restriction. Cardinality restriction is applied to all NOT NULL

attributes. (2) Tables with foreign keys: Tables in this category are further divided into

two groups based on the number of foreign keys; (2a) tables with one foreign key (table

correspond to 1:M relationship): OWL class, DataType properties and functional Object

property are created for tables. (2b) tables with more than one foreign key (table

correspond to M:M relationship): In this group the tables are of two types; (i) table

without additional attributes: Object property and inverse of this property is created and

domains and ranges are specified for both properties. The cardinalities cannot be inferred

from the DDL code. (ii) Table with additional attributes: OWL class is created in addition

to the properties specified above.

When a table has more than two foreign keys, OWL class is necessarily created

because OWL does not allow properties with degree greater than 2. The positive

contribution of the paper are (1) it converts strong entities, weak entities, binary M:M

relationship with and without attributes and ternary relationships to OWL language. (2) It

 21

provides the advantages and disadvantages of building ontology from ERD, table and

DDL code. The deficiencies of the technique are (1) it may identify multi-valued

attributes and cardinalities. (2) It may not consider the hierarchies, which are built in

OWL to identify specialized concepts and generalized concepts. The technique is

dependent on the availability of DDL script. It makes it inappropriate be used in

distributed environment. (4) The results of the technique are not provided. There is an

approach consists of methods and techniques for generating data transformation rules

needed for the data structure normalization. One important problem with modern

organizations is the existence of non-integrated information systems, inconsistency and

lack of suitable correlations between legacy and modern systems. One main solution is to

transfer the local databases into a global one. In this regards there is a need to extract the

data structures from the legacy systems and integrate them with the new technology

systems. In legacy systems, huge amounts of a data are stored in legacy databases. They

require particular attention since they need more efforts to be normalized, reformatted

and moved to the modern database environments. Designing the new integrated (global)

database architecture and applying the reverse engineering requires data normalization.

Their paper proposes the use of database reverse engineering in order to integrate legacy

and modern databases in organizations. There is some work on the scalable data

integration [20]. It is significant in distributed environment and requires the generation

and formal representation of conceptual model of source description. Ontology is a

formal, shared and common understanding of a domain. It can solve the heterogeneity

among the sources. The R2O transformation system provided in this paper transforms

database relations to OWL based ontology for a source. Compared with existing

techniques, the distinguished feature of this technique is to build ontology in the absence

of necessary metadata from relations. It minimizes the effort and errors involved in

manual ontology building. Results of the proposed methodology are provided to show the

transformation is correct (i.e., total, injective). DataGenie is a tab plug-in that allows

Protégé to read from arbitrary database. DataGenie uses either JDBC or ODBC/JDBC to

connect to a specified database, and then allows the user to move portions (or all) of the

database into Protégé classes. Generally, each table becomes a class, and each attribute

becomes a slot. In addition, if the relational database table has foreign key references to

 22

other tables, these can be replaced by Protégé instance pointers when the database is

converted into a knowledge base.

This plug-in is NOT a database back-end. We expect this plug-in to be used when

there exists legacy data that one wants to dump into Protégé, before doing additional

knowledge acquisition or knowledge modeling. This plug-in (as written) does not include

any capability for moving data in the opposite direction (from Protégé classes and

instances into a relational database). Another use for this plug-in might be as a database

viewer. For efficiency, a database might be stored as a set of custom-designed database

tables, but then the DataGenie could be used to view portions of this schema in the

Protégé frame-based UI. Figure 3.2 shows the snapshot of the DataGenie

Figure 3.2 DataGenie

Importing data from relational databases into ontologies is frequently required,

especially when ontology is used to describe semantically the data used by a software

application. Another growing category of applications needs database-ontology

integration and/or interoperation, where a mapping between the database schema

 23

structure and ontology concepts is the main focus. In the latter cases the import of the

data residing in relational databases may not be necessary or desired. To meet these

requirements, a Protégé plug-in that allows the user to import in a configurable way a

relational database structure into a Protégé-OWL or Protégé-Frames ontology. The plug-

in also supports the optional importing of table contents.

The development of DataMaster was necessary, because existing plug-ins

developed for importing data from relational databases into Protégé, such as DataGenie

[1], do not support Protégé-OWL, schema-only import, and other import configurations

available in DataMaster. The DataMaster plug-in has been developed in the BioSTORM

[2] project, which aims to develop a computational test bed that can draw on real-world

data sources and that will allow users to configure, run, and evaluate alternative

surveillance methods. The plug-in represents an important part of the semantic data-

access layer, which annotates and integrates disparate data sources into a semantically

uniform data stream. Figure 3.3 shows the DataMaster.

Figure 3.3 DataMaster

 24

A work was carried out that provides a technique that builds OWL based initial

source ontology to integrate data sources [24]. The technique analyzes the SQL/DDL

code, used to build database and divides the tables into two categories. (1) Tables without

foreign keys: OWL class for each table and DataType properties (created as functional

properties) for respective attributes are created. The specific range of the properties is

assigned with owl:allValuesFrom restriction. Cardinality restriction is applied to all NOT

NULL attributes. (2) Tables with foreign keys: Tables in this category are further divided

into two groups based on the number of foreign keys; (2a) tables with one foreign key

(table correspond to 1:M relationship): OWL class, DataType properties and functional

Object property are created for tables. (2b) tables with more than one foreign key (table

correspond to M:M relationship): In this group the tables are of two types; (i) table

without additional attributes: Object property and inverse of this property is created and

domains and ranges are specified for both properties. The cardinalities cannot be inferred

from the DDL code. (ii) Table with additional attributes: OWL class is created in addition

to the properties specified above. When a table has more than two foreign keys, OWL

class is necessarily created because OWL does not allow properties with degree greater

than 2.

The positive contribution of the paper are (1) it converts strong entities, weak

entities, binary M:M relationship with and without attributes and ternary relationships to

OWL language. (2) It provides the advantages and disadvantages of building ontology

from ERD, table and DDL code. The deficiencies of the technique are (1) it may not

identify multi-valued attributes and cardinalities. (2) It may not consider the hierarchies,

which are built in OWL to identify specialized concepts and generalized concepts. (3)

The technique is dependent on the availability of DDL script. It makes it inappropriate to

be used in distributed environment. (4) The results of the technique are not provided.

There is also a work which provides an ontology learning framework [25] and

group of learning rules for (1) classes, (2) properties, (3) hierarchy, (4) cardinalities, and

(5) instances to learn ontology from relational database. The technique has an assumption

that all tables should be in third normal form (3 NF). The rules for learning classes build

OWL class in two cases; (1a) the information about an entity is spread across various

tables, (1b) the table represents a real world entity instead of a relationship. The rules for

 25

learning properties are; (2a) two object properties is_part_of and has_part are created for

each weak entity. (2b) If a table is a M: M binary relationship between two entities, then

two object properties are created. (2c) Complex (n-ary) relationships between entities are

broken into groups of binary tables and object properties are created. (2d) Datatype

properties are created for allattributes except foreign keys. The domain and range of all

properties are specified. The rule for learning hierarchy learns OWL hierarchies from

IS_A relationships. Rules for learning cardinalities are; (4a) for each primary key,

minCardinality and maxCardinality of the property are set to one (01). (4b) If an attribute

has NOT NULL constraint, then minCardinality of the property is set to one (01). (4c) If

an attribute has UNIQUE constraint, then max Cardinality is set to one (01). The rule for

learning instances converts the relational records to OWL instances. The positive aspect

of the technique is it provides an ontology learning framework followed by a set of rules

that covers OWL classes, properties, restrictions and instances. The deficiencies suffered

by the technique are; (1) the proposed rules do not cover relationships with attributes and

multi-valued attributes. (2) OWL class is not created for n-array relationship in the

proposed technique; however OWL class is built for n-array relationships.

3.2. Summary

In this chapter the discussion on some techniques that are used for the relational

schema to ontology transformation and ontology matching are discussed. Some

techniques architecture presented in this chapter, these technique either go for meta data

extraction or completely ignore the meta data.

 26

Chapter 4

PROPOSED METHODOLOGY

Proposed methodology is discussed in this chapter. The architecture of the

proposed scheme and its working is presented. The rules that were considered in

identification of relationships in real scenarios are also in the focus.

4.1. Proposed Scheme Architecture

To extract the information from a relational schema, either metadata is considered

or in case it is not available then desire information through algorithms should be driven.

But, what will be the case if some metadata is available? A relational schema was given

to DataMaster, being a metadata extractor it fails to gather the foreign key information

from the MySQL as the Metadata of MySQL was not enriched. In this case, if algorithm

that will start deriving information from zero is selected then this approach will increase

the execution cost of the algorithm. Figure 4.1 shows the proposed architecture of the

system.

Foreign_key_identifier

Weight Weight Weight

E
xt

ra
ct

ed
 M

et
a-

D
at

a
In

fo
rm

at
io

n

Results

Filtering on
thershold

Figure 4.1 Proposed Architecture

 27

4.2. The Flowchart for Proposed Scheme

At this point, one would definitely think to go for an efficient approach. The

proposed scheme works with the gathered information from metadata and resolves

foreign keys identification problem based on some weights assigned as parameters by the

user or the default adjusted weights can be used. As shown in Figure 4.2.

Figure 4.2 Flowchart of Proposed Scheme

 28

4.3. Working of Proposed Scheme
Firstly the metadata available with the database is considered. The information

that is available is extracted and algorithm for gathering remaining unavailable

information is evoked.

In absence of metadata the identified primary keys are passed as a parameter to

algorithm i.e. Algorithm_FK1. This algorithm compares the attributes of a relation with

all other attributes in the relational schema. If name of the attribute is equal to any other

attribute the weight (w1) is added, and if it is not matched then remaining condition are

not compared, and comparison to other attributes are made in the same way. If the names

of the attributes match with the other then its datatype and constraints are considered and

weights are added so that the results should be more precise.

The identification of foreign keys from the relational schema in absence of the

metadata will be perform on the basis of three weights w1, w2 and w3. These weights can

be increased to have more accuracy in the results. The resultant dataset is taken and

threshold is applied to it. Identification of the foreign keys are made with the highest

match values in the dataset. The thing to remember here is that higher the threshold

value, higher is the accuracy of the algorithm.

Figure 4.3 Meta Collectors

 29

Figure 4.3 shows the Meta collector, which have three tables are used to gather

the already available metadata information of the relational schema. Tablename table is

used to collect the information about the tables in the schema. Fields table is used to

collect the information of the fields/attributes of the relations. The result table holds the

match values which are filtered by the threshold.

4.4. DataMaster Architecture
 Let us consider the architecture of the datamaster. DataMaster may be used to

import a relational database structure and the table data into a Protégé-Frames ontology.

The ontology for describing the database structure (Figure 1) is the same as the one used

by the DataGenie plug-in.

All imported database tables are defined as Protégé classes that are instances of

the Table Metaclass meta-class. Each column of the database table is represented by a

template slot added to the newly created table classes. The column slots will have data

types corresponding to the SQL types associated to the database columns. If there are

foreign keys defined between the database tables, for each foreign key an instance of the

Foreign Key class will be created that will be used to link the corresponding ontology

classes.

It is also possible to import the data from the tables in the database: for each row

in the table an instance of the table class will be created, and the values of the own slots

at these instances will be set with values contained in the table row corresponding to the

table columns. An extra slot of type instance will be created for each foreign key defined

in the table that will point to the instances corresponding to the referred rows.

The basic algorithms from the datamaster shown in Figure 4.4 are considered. The

proposed algorithm described in appendix- A.

 30

Standard Class

Table MetaClass

Is Bridge Table Boolean

Foreign kEYS Instances * Foreign kEYS

Primary Key Fields String*

Foreign kEYS

String

String

String

String

FK Name

Reference Field

Local Field

Reference Table

Is a

 Foreign Keys*

Figure 4.4 DataMaster

4.5. Identification of Foreign Key

This section provides the details of the second part of the proposed methodology.

The identified relations in the extracted metadata can be classified into five categories

based on the type and presence of keys.

The techniques presented in [20] are used and extensions of these categories are made.

Following rules are necessary to understands the background[8, 9, 17, 20]. A relation

scheme represents the relation names and the distinct attribute names denoted as

R = {A1, A2 …….An} or R(X) --------------- (4.1)

A Relation instance of relation scheme R is a finite set of tuples denoted as

R = {t1, t2……tm} ----------------------- (4.2)

 31

 A database schema D for relational model is pair <R, C> where R = Relation schemes

with distinct names, C = a set of integrity constraints. Database instance of database

schema D with

R = {R1(X1), R2(X2),….Rn(Xn)} ---------------------------- (4.3)

R is set of relational instances R={r1, r2…..rn}where each instance ri is defined on

corresponding schema Ri and satisfies integrity constraint C. The foreign keys of a

relation scheme R(X) is defined as a set of all foreign key attributes and denoted as

FK= fk1 U fk2 U fk3 U ……U fkn -------------------------------- (4.4)

where n is the number of distinct foreign keys. The primary key (i.e., simple or

composite) is denoted as PK. Let X denotes the entire attributes of relation scheme R(X).

4.6. Example Scenario

An inventory system has been selected for implementation. The customers and

employees are identified by the numbers called as “customerNumber” and

“employeeNumber” respectively. All offices of the company are identified by the

“officeCode”. The customer can place one or many orders “Payements” of the respective

orders are stored in payments table. “Productlines” tables contain the different orders

from a customer, “orders” contain the details of the orders placed. The detail of each

order is stored in the “order details” table. One or more employees may be associated

with a particular customer’s order. The product table contains the product information

available for sale. Each product is assigned a “productCode”. One or more products can

be in one product line.

To create an environment for the algorithm, foreign key information or any

linking in the database (i.e. the tables were stored in the MySQL without foreign key

information) were not considered. The Entity relationship diagram of selected relational

schema is shown in Figure 4.6.

 32

4.7. Entities and Attributes

First of all description of the different cases of metadata availability for data

sources in a distributed environment are presented. Then the steps of methodology are

described to extract metadata from data source relations in order to develop an EERD. In

a distributed environment the metadata (i.e., data dictionaries, documentation) can be

available, incomplete or unavailable. Table 4.1 shows the attributes of the entities in the

relational schema.

Offices

PK officeCodes

 City
 Phone
 AddressLine1
 AddressLine2
 State
 Country
 PostalCode
 Territory

Employees

PK,FK1 EmployeeNumber

 LastName
 FirstName
 Extension
 email
 officecode
 repostto
 Jobtitle

Orders

PK OrderNumber

 OrderDate
 RequiredDate
 ShippedDate
 Status
 Comments
FK2 CustomerNumber
FK1 EmployeeNumber

Customer

PK CustomerNumber

 CustomerName
 ContactLastName
 ContactFirstName
 Phone
 AddressLine1
 AddressLine2
 City

OrderDetails

PK,FK1 OrderNumber

 QuantityOrdered
 PriceEach
 OrderLineNumber

Products

PK productCode

 productName
 ProductSale
 ProductVendor
 productDescription
 quantityInstock
 buyprice
FK1 OrderNumber

ProductLines

PK ProductLine

 textdescription
 htmlDescription
 image
FK1 productCode

payments

PK,FK1 customerNumber
PK CheckNumber

 PaymentDate
 Amount

Figure 4.5 ERD of Schema

 33

Entity Name Attribute

Office Code
Officecode, City, phone, addressLine1, AddressLine2, State,

Country, PostalCode, Territory

Employee
EmployeeNumber, Lastname, firstname, Extension, email,

officecode, repostto, Jobtitle

Orders
Orderenumber, orderDate, RequiredDate, Shippeddate, Status,

Comments, CustomerNumber, EmployeeNumber

CustomerNumber
CustomerNumber, CustomerLastName, CustomerFirstName,

Phone, addressLine1, AddressLine2,City

ProductLine
ProductLine, TextDescription,HtmlDescription, Image,

ProductCode

Product
ProductCode, Productsale, ProductVendor, ProductDescription,

Quantityinstock, buyprice, ordernumber

Orderdetails Ordernumber, quantityordered, priceeach, orderedLineNumber

Payments CustomerNumber, checknumber, parmentdate, amount

Table 4.1 Entities in the Selected Schema

An important thing is the association in relational schema. Foreign keys in the relational

schema are shown in Table 4.2. “orderNumber” from the “order” table, “OrderNumber”

from the “order” table, “CustomerNumber” from the “customer” table, “Productcode”

from the “product” table , “Officecode” from “office” table, “CustomerNumber” from the

“customer” table and “employee Number” from “Employee table”.

 34

Relations Foreign Keys Number of

Relationships

Office (Officecode, City, phone, addressLine1,

AddressLine2, State, Country, PostalCode,

Territory)

Nil 0

Employee (EmployeeNumber, Lastname, firstname,

Extension, email, officecode, repostto, Jobtitle)

Officecode from

office table

1

Orders (Orderenumber, orderDate, RequiredDate,

Shippeddate, Status, Comments, CustomerNumber,

EmployeeNumber)

The

CustomerNumber

from the customer

table and employee

Number from

Employee table

2

Customer (CustomerNumber, CustomerLastName,

CustomerFirstName, Phone, addressLine1,

AddressLine2,City)

Nil 0

ProductLine(ProductLine,

TextDescription,HtmlDescription, Image,

ProductCode)

Productcode from the

product table

1

Product(ProductCode, Productsale, ProductVendor,

ProductDescription, Quantityinstock, buyprice,

ordernumber)

orderNumber from

the order table

1

Orderdetails(Ordernumber, quantityordered,

priceeach, orderedLineNumber)

OrderNumber from

the order table.

1

Payments(CustomerNumber, checknumber,

parmentdate, amount)

The customerNumber

from the customer

table

1

Table 4.2 Associations Details in the Relational Schema

 35

4.8. Summary

An algorithm is being proposed for converting relational schema to ontology.

There some techniques that are already presented, but they work either in absence of

meta data or in presence of meta data. This technique is applicable in real scenarios

where some meta data may be unavailable currently focus of this work was associations

in a relational schema and MySQL DBMS is used. As MySQL is largely used with the

website since it was developed. In this chapter the architecture of proposed scheme and

proposed algorithm to discover the association is presented.

 36

Chapter 5

IMPLEMENTATION

5.1. Database

The database was created in MySQL, which is light weight Database

Management System. It was especially developed for web. It was written in C and C++.

It was tested with a broad range of different compilers. It can work on many different

platforms. It uses GNU Automake, Autoconf, and Libtool for portability. It was Tested

with Purify (a commercial memory leakage detector) as well as with Valgrind, a GPL

tool. It uses multi-layered server design with independent modules, designed to be fully

multi-threaded using kernel threads, to easily use multiple CPUs if they are available. It

provides transactional and nontransactional storage engines. It uses very fast B-tree disk

tables (MyISAM) with index compression. It was designed to make it relatively easier to

add other storage engines. This is useful if you want to provide an SQL interface for an

in-house database. it implements in-memory hash tables, which are used as temporary

tables, and SQL functions using a highly optimized class library that should be as fast as

possible. Usually there is no memory allocation at all after query initialization. It

provides the server as a separate program for use in a client/server networked

environment, and as a library that can be embedded (linked) into standalone applications.

Such applications can be used in isolation or in environments where no network is

available.

5.1.1. Data Types
Many data types: signed/unsigned integers 1, 2, 3, 4, and 8 bytes long, FLOAT,

DOUBLE, CHAR, VARCHAR, BINARY, VARBINARY, TEXT, BLOB, DATE,

TIME, DATETIME, TIMESTAMP, YEAR, SET, ENUM, and OpenGIS spatial types.

Fixed-length and variable-length string types.

 37

5.1.2. Security
A privilege and password system that is very flexible and secure, and that allows

host-based verification. It provides password security by encryption of all password

traffic when you connect to a server.

5.1.3. Scalability and Limits
Support for large databases. MySQL Server was used with databases that contain

50 million records. It support for up to 64 indexes per table (32 before MySQL 4.1.2).

Each index may consist of 1 to 16 columns or parts of columns. The maximum index

width is 1000 bytes (767 for InnoDB); before MySQL 4.1.2, the limit is 500 bytes. An

index may use a prefix of a column for CHAR, VARCHAR, BLOB, or TEXT column

types.

5.1.4. Connectivity
Clients can connect to MySQL Server using several protocols, Clients can

connect using TCP/IP sockets on any platform. On Windows systems in the NT family

(NT, 2000, XP, 2003, or Vista), clients can connect using named pipes if the server is

started with the --enable-named-pipe option. In MySQL 4.1 and higher, Windows servers

also support shared-memory connections if started with the --shared-memory option. On

Unix systems, clients can connect using Unix domain socket files. MySQL client

programs can be written in many languages. A client library written in C is available for

clients written in C or C++, or for any language that provides C bindings. APIs for C,

C++, Eiffel, Java, Perl, PHP, Python, Ruby, and Tcl are available, allowing MySQL

clients to be written in many languages. The Connector/ODBC (MyODBC) interface

provides MySQL support for client programs that use ODBC (Open Database

Connectivity) connections. For example, you can use MS Access to connect to your

MySQL server. Clients can be run on Windows or Unix. MyODBC source is available.

All ODBC 2.5 functions are supported, as are many others. The Connector/J interface

provides MySQL support for Java client programs that use JDBC connections.

 38

5.2. Example Database Implementation

The localhost server snapshot in Figure 5.1 shows the relational schema, which

has been used for the prototype testing of the proposed scheme. There are eight tables

shown i.e. customers, employees, offices, orderdetails, orders, payments, productlines

and product.

Figure 5.1 Example Schema

5.2.1. Customers Table
The structure of customer’s table is described in the Figure 5.2. The customer

table has “customernumber” as primary key. The other attributes are customername,

contactfirstname, contactlastname, phone, addressline1, addressline2, city, state,

postalcode, country, salesrepemployeenumber and creditlimit.

 39

Figure 5.2 Customer Table

5.2.1. Offices Table
The structures of “offices” table with all the data types is presented in Figure 5.3.

Here “officecode” is the primary key, other attributes are city, phone, addressline1,

addressline22, state, country, postalcode and territory.

Figure 5.3 Offices Table

 40

5.2.1. Orders Details Table
The structure of “Orders Details Table” with all the data types is shown in

Figure 5.4. here “OrderNumber” and “ProductCode” are the primary key.

Figure 5.4 Orders Details Table

5.2.1. Orders Table
The structure of orders table with all the data types are presented in the

Figure 5.5. Here “OrderNumber” is primary key, whereas “orderdate”, “requireddate”,

“shippeddate”, “status”, “comments”, “customernumber” are other attributes.

Figure 5.5 Orders Table

 41

5.2.1. Payments Table
The structure of payments table with all the data types is shown in Figure 5.6.

Here “CustomerNumber” and “checknumber” are the composite primary keys.

Figure 5.6 Payments Table

5.2.1. Product line Table
The structure of product Line table with all the data types are presented in the

Figure 5.7.

Figure 5.7 Product Line Table

 42

5.2.1. Product Table
The structure of product table with all the data types is shown in Figure 5.8.

“productcode” is the primary key.

Figure 5.8 Product Table

5.3. User Interfaces

Figure 5.10 shows the application’s user interface. To create an environment, the

user will first select the show tables and save table buttons. Then fields can be saved.

Afterwards the comparison can be made.

 43

Figure 5.10 Main User Interface

5.4. Summary
In this chapter, discussion on the implementation has been made. The

implementation of the algorithm and database has been illustrated with the help of the

Figures.

 44

Chapter 6

Evaluation and Results

In this chapter the results and evaluations of the proposed scheme is discussed in detail.

6.1. Criteria for evaluations

In the proposed system the correctness of identification of association is of main

concern. The evaluation criteria of the proposed scheme are

(a) System performance: This criterion determines the efficiency (in terms of time) of the

proposed scheme. It is required to find whether the system takes greater or lesser time

than the existing systems.

(b) Preservation of information capacity: This is to finds out whether the association in

relational schema were completely identified or not. It is important to find information

loss (if any) as a result of transformation.

(c) Correct identification: This criterion evaluates the correctness of the transformation.

The evaluation of the research is done through the experimental results. The Table 6.1

shows system specification and software requirements

 System Requirement
RAM 1GB
Hard Disk 80
Processor 1.37 Dual Core

Software Requirement
Operating System Windows XP
Database MySQL
Programming Language Java, C#

Table 6.1 System Specifications

6.2. Results and Evaluations

As discussed in the chapter 4, selection of an inventory database of an

organization was chosen. Table 6.2 describes the relational schema. There are seven

associations in the existing database.

 45

Table 6.2 Details of the Relational Schema

Relation Attribute Foreign Keys Association

Office Officecode, City, phone,

addressLine1, AddressLine2,

State, Country, PostalCode,

Territory

Nil 0

Employee EmployeeNumber, Lastname,

firstname, Extension, email,

officecode, repostto, Jobtitle

Officecode from office Table 1

Orders Orderenumber, orderDate,

RequiredDate, Shippeddate,

Status, Comments,

CustomerNumber,

EmployeeNumber

The CustomerNumber from the

customer Table and employee Number

from Employee Table

2

Customer CustomerNumber,

CustomerLastName,

CustomerFirstName, Phone,

addressLine1, AddressLine2,City

Nil 0

ProductLine ProductLine, TextDescription,

HtmlDescription, Image,

ProductCode

Productcode from the product Table 1

Product ProductCode, Productsale,

ProductVendor,

ProductDescription,

Quantityinstock, buyprice,

ordernumber

orderNumber from the order Table 1

Orderdetails Ordernumber, quantityordered,

priceeach, orderedLineNumber

OrderNumber from the order Table. 1

Payments CustomerNumber, checknumber,

parmentdate, amount

The customerNumber from the

customer Table

1

 46

The proposed algorithm-1 given in the appendix-A is used to make the

comparisons. To extract the foreign key, above described relational schema was taken.

The gathered information was passed to proposed algorithm and results were taken out by

a threshold value working as a filter, remembering the fact that higher the threshold

value, higher is the accuracy of the algorithm.

The Figure 6.1 shows the comparison values of the primary key with other

attribute.

Applying thershold

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55

customerNumber
employeeNumber
officeCode
productCode
orderNumber
CheckNumber
ProductLine
productName

Figure 6.1 Comparison Detailed Chart for Schema-1

The schema-2 in annexure-1 is selected. It contains 28469 attributes. When the proposed

algorithm is applied on the schema-2 one following is the results are shown in Figure 6.2.

P
re

ci
si

o
n

 v
a
lu

e

Attributes

 47

Figure 6.2 Comparison Detailed Chart for Schema-2

6.3. Type-I and type-II errors

Type I error, also known as an "error of the first kind", and α error, or a "false positive":

the error of rejecting a null hypothesis when it is actually true. Plainly speaking, it occurs

while observing a difference when in truth there is none, thus indicating a test of poor

specificity. An example of this would be if a test shows that a woman is pregnant when in

reality she is not. Type I error can be viewed as the error of excessive credulity.

Type II error also known as an "error of the second kind", a β error, or a "false negative":

the error of failing to reject a null hypothesis when it is in fact not true. In other words,

this is the error of failing to observe a difference when in truth there is one, thus

indicating a test of poor sensitivity. An example of this would be if a test shows that a

woman is not pregnant, when in reality, she is. Type II error can be viewed as the error of

excessive skepticism.

 48

These examples illustrate the ambiguity, which is one of the dangers of this wider use:

They assume the speaker is testing for guilt; they could also be used in reverse, as testing

for innocence; or two tests could be involved, one for guilt, and the other for innocence.

The Tables 6.3 and Table 6.4 show the conditions.

Table 6.1 Type-I & Type-II Errors

Example, testing for guilty/not-guilty:

Table 6.4 Example Type-I & Type-II Errors

• Rejecting a null-hypothesis when it should not have been rejected creates a type I

error.

• Failing to reject a null-hypothesis when it should have been rejected creates a type

II error.

• (In either case, a wrong decision or error in judgment has occurred.)

• Decision rules (or tests of hypotheses), in order to be good, must be designed to

minimize errors of decision.

True Negative False Negative (i.e. guilt not
detected)

Verdict of "not
guilty"

False Positive (i.e. guilt reported
unfairly)

True Positive Verdict of "guilty" Test
result

Not guilty Guilty
Actual condition

 49

• Minimizing errors of decision is not a simple issue for any given sample size the

effort to reduce one type of error generally results in increasing the other type of

error.

• Based on the real-life application of the error, one type may be more serious than

the other.

• (In such cases, a compromise should be reached in favor of limiting the more

serious type of error.)

• The only way to minimize both types of error is to increase the sample size, and

this may or may not be feasible

6.4. Weight W1, W2 and W3

There are three weight used in algorithm w1, w2 and w3. The selection of weight can

affect the net result for example weight-1 is applied by selecting it different values

here is the Table that will show the change in result.

Identified W1 W2 W3 FP FN

28400 0 0.5 0.5 YES 0

24678 0.2 0.4 0.4 YES 0

16034 0.3 0.4 0.3 YES 0

5261 0.4 0.3 0.3 YES 0

5255 0.5 0.3 0.2 YES 0

29 0.6 0.3 0.2 0 0

29 0.7 0.2 0.1 0 0

29 0.8 0.1 0.1 0 0

27 0.9 0.1 0 0 YES

27 1 0 0 0 YES
Table 6.5 W1 Values Selection Table

 50

The Figure 6.3 shows the graphical representation of the Table 6.5. in graph it is evident

that values of w1 below 0.6 will add false positive to the results and values of w1 greater

then 0.8 will increase false negative results. Whereas, if the values of w1 are kept in

between 0.6 to 0.8 then there is no false positive and no false negative in the result.

Figure 6.3 W1 Values Selection Graph

The Table 6.6 shows different values selected for w2. The left column shows the

identified values and on the right most columns false positive and false negative are

shown that were present in the result for the W2 values selected.

 51

Identified W1 W2 W3 FP FN

30 0.5 0 0.5 YES 0

29 0.4 0.1 0.4 0 0

30 0.4 0.2 0.3 YES 0

30 0.3 0.3 0.3 YES 0

30 0.3 0.4 0.2 YES 0

5254 0.3 0.5 0.2 YES 0

5254 0.2 0.6 0.1 YES 0

5254 0.1 0.7 0.1 YES 0

5254 0.1 0.8 0 YES 0

5254 0 0.9 0.1 YES 0

5254 0 1 0 YES 0

Table 6.6 W2 Values Selection Table

The Figure 6.4 shows the graphical representation of the Table 6.6. In graph it is evident

that values of w1 below 0.2 will add false positive to the results and values of w1 greater

then 0.3 will increase false negative results. Whereas, if the values of w1 are kept in

between 0.2 to 0.3 then there is no false positive and no false negative in the result.

Figure 6.4 W2 Values Selection Graph

 52

The Table 6.7 shows different values selected for w2 shown in graph in Figure 6.4. The

left column shows the identified values and on the right most columns false positive and

false negative are shown that were present in the result for the W2 values selected.

The graphical representation of the Table 6.7 is shown in the Figure 6.5. In graph it is

evident that values of w1 below 0.6 will add false positive to the results and values of w1

greater then 0.9 will increase false negative results. Whereas, if the values of w1 are kept

in between 0.6 to 0.9 then there is no false positive and no false negative in the result.

1

10

100

1000

10000

100000

0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Id
en

ti
fie

d

Weight(w3)

Identified

FP = TRUE
FN = 0

FP = 0
FN = True

FP = 0
FN = 0

 Figure 6.5 W3 Values Selection Graph

 53

Identified W3 W2 W1 FP FN

28400 0 0.5 0.5 YES 0

24678 0.2 0.4 0.4 YES 0

16034 0.3 0.4 0.3 YES 0

5261 0.4 0.3 0.3 YES 0

5255 0.5 0.3 0.2 YES 0

29 0.6 0.3 0.2 0 0

29 0.7 0.2 0.1 0 0

29 0.8 0.1 0.1 0 0

27 0.9 0.1 0 0 0

27 1 0 0 0 YES

Table 6.7 W3 Values Selection Table

The three weights can be adjusted better after considering the graph 6.6.

weight(w1)
1

10
100

1000
10000

100000

0 0.3 0.5 0.7 0.9

va
lu
es

weights

weight(w1)

weight(w2)

weight(w3)

Figure 6.6 Weight (W1,W2 and W3) Selection Graph

 54

6.4. Comparison with other schemes
The proposed scheme is compared with abbasifard et al and Guohua Shen et al schemes.

Both techniques that are considered for the comparison are selected because of their

addressing to same problem to which proposed solution refers.

The precision and recall on the selected schema is shown in the following Table 6.8.

Relations Proposed Technique Abbasifard et.al Guohua Shen et. al

Precision Recall Precision Recall Precision Recall
29 1 1 1 1 0.96 0.96

Table 6.8 Precision and Recall

The graph shown in Figure 6.7 will help to understand the precision and recall

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

Proposed Scheme Abbasifard et.al Guohua Shen et. al

Pr
ec
is
io
n
 V
al
u
e

Techniques

Precision

Figure 6.7 Precision Graph

 55

Similarly the recall of the proposed system with other system are shown in Figure 6.8

0.94
0.95
0.96
0.97
0.98
0.99

1
1.01

Proposed Scheme Abbasifard et.al Guohua Shen et. al

R
ec
al
l V

al
u
es

Techniques

Recall

The time comparison results graph is clearly presenting the efficiency of the proposed
technique with the other techniques

0

5

10

15

20

25

30

S1 S2 S3

T
im

e
 (
M
n
iu
e
ts
)

Schema

Guohua Shen et. al

Abbasifard et.al

Proposed Scheme

Figure 6.8 Recall Graph

Figure 6.9 Time Comparison Chart

 56

6.5. Precision of the algorithm

The precision of the scheme is highly dependent on the selection of threshold

value. If the value is taken wrong it will result in wrong results, and vice versa. Different

Graphs have been plotted in this chapter to describe it importance. The precision and

recall is calculated by the following formula [26].

FpTp
TpPRECISION
+

= ---------------(6.1)

FnTp
TpRECALL
+

= ------------------(6.2)

Where Tp are true positive, Fp is false positive and Fn are false negative

relationships. True positive are those relationships which the technique identifies

correctly. Fp is those relationships which are identified incorrectly and false negative are

relationships which exists in the schema but are not identified by the technique. The

recall of the proposed technique and [26] are same i.e., 0 and 1. Table 4.9 describes the

precision and recall of the system.

Methods Total

Relationships

Proposed Scheme DataMaster

Precision Recall Precision Recall

Without

MetaData

7 1 1 0 0

With

Metadata

7 1 1 1 1

Without

Metadata

54 0.9 0.9 0 0

With

Metadata

54 0.9 0.9 0.83 0.83

Total 61 0.95 0.95 0.91 0.91

Table 6.9 Precision and Recall

 57

Summary

In this chapter evaluation criterion to evaluate the proposed methodology was

discussed. The evaluation shows that the proposed system has optimal system

performance and identification of association is accurate. Consequently, the

transformation is information capacity preservation. The provision of information

capacity preservation and operational goal implied that the transformation is correct. In

the next chapter, conclusion the research work will be presented and it will also provide a

future direction to extend research in this direction.

 58

Chapter 7

CONCLUSIONS AND FUTURE WORK

7.1. Discussion

The semantic web is an extension of the current web. It is gaining the interests of

researcher from few years. The aim of this web is to make web meaningful,

understandable and machine processable. Making use of information on current web for

the productiveness of future web is becoming vital. Heterogeneity of relational data

coupled with present web complicates utilization of information for future web. To use

the data associated with current web we need to transform it into ontology.

In the process of creation of ontologies for the database, three techniques are used:

analysis of database schema, tuples or analysis of user queries [2]. From different

schemes of transformation of relational schemas to ontology, the following points are

observed: the database tables are mapped into the classes (i.e. ontologies, attribute of

the tables are mapped as the attributes of the ontologies) and identifications of foreign

keys in a database schema. However, the types of the relationship can be identified by

the entries in the database.

The ontology is one of the pillars of the semantic web. Different tools for ontology

creations and management are developed to implement the concept of ontology like

protégé, OntoGen etc. Protégé is an ontology editor and knowledge based frame work

[3] whereas OntoGen is said to be a semi automated and data driven tool that combines

text mining approaches[8][9].

As future web promises for many advantages including meaningful and

understandable web[7], to use the information associated with current web with future

web we will need transition. This transition will require relational schema to ontology

conversion step at some stage. Moreover, the relational schemas on the internet are in

heterogeneous formats and it is difficult to propose and implement a single

methodology for all of them. This is the major reason that there is no standard transition

algorithm, and huge efforts are required for smooth transition from the existing web to

semantic web.

Researchers have worked for creating tools for transformation from relational schema

to ontologies (e.g. DataGenie, DataMaster etc). DataGenie [3] is a tab plug-in for

 59

Protégé that enables Protégé to connect to database and moves portions (or all) of your

database into Protégé. But, it does not support OWL ontologies or schemas. For the

drawbacks in the DataGenie, the DataMaster was developed in BioSTORM [10] project

which supports both OWL and frame-based ontologies. It works as a plug-in for protégé

[11]. Many of these approaches merely give the results in the user required form.

Moreover, the weak entities of the database are also mapped into classes (for example

in datamaster, DataGenie etc). The technique presented here performs extraction of the

relationships in the relational schemas when we have no enriched Meta data available.

7.2. Contribution of Project

To extract the information from a relational schema, either metadata is considered or

in case it is not available we will have to derive the desired information through

algorithms. But, what will be the case if some metadata is available? We have given a

relational schema to DataMaster, being a metadata extractor it fails to gather the foreign

key information from the MySQL as the Metadata of MySQL was not enriched. In this

case if we go for the algorithm that will start deriving information from zero, this

approach will increase the execution cost of the algorithm. At this point, one would

definitely think to go for an efficient approach. To overcome this problem, the

Algorithm-1 works with the gathered information from metadata and resolves foreign

keys based on some weights assigned as parameters by the user or the default adjusted

weights can be used.

7.3. Future Work

The relational schema to ontology conversion step requires the domain knowledge.

The algorithm that works intelligently in a given scenario will reduce the execution cost

required for conversion from relational schema to ontology. This can be done by using

available metadata in a relational schema.

The algorithm’s weights and threshold required some domain knowledge. These can

be auto-adjusted according to the given scenarios which will definitely add to the

effectiveness of the proposed technique. Also, the types or relationships can be

identified using the proposed algorithm in combination with some other scheme (i.e.

making it a Hybrid system).

 60

References

[1] Michal Laclav´ık, “RDB2Onto: Relational Database Data to Ontology Individuals

Mapping”, Proceeding of Ninth international Conference of Informatics, 2007.

[2] Irina Astrova1, Bela Stantic: “Reverse Engineering of Relational Databases to Ontologies:

An Approach Based on an Analysis of HTML Forms”. Proceedings of the 23rd IASTED

International Conference on Databases and Applications (DBA), Innsbruck, Austria. 2005, 246

- 251.

[3] “Protégé Wiki”, Retrieved on 1 June, 2009. Website: http://protege.cim3.net/cgi-

bin/wiki.pl?datagenie

[4] “Protégé Wiki”, Retrieved on 12 January,

2009.Website:http://protegewiki.stanford.edu/index.php/datamaster

[5] Csongor Nyulas, Martin O’Connor, Samson Tu: “DataMaster – a Plug-in for Importing

Schemas and Data from Relational Databases into Protégé”, Stanford Medical Informatics, 10th

International Protege Conference, 2007.

[6] Jorge Cardoso, Premier Reference Source, “Semantic Web Services: theory tools and

applications”, Information Science Reference, United Kingdom, 2006

[7] T.joa et.al: “Semantic Web challenges and new requirements”, Sixteenth International

Workshop, Aug. 2005 , 1160 – 1163

[8]”Ontogen Semi automatic ontology editor”, retrieved on 1 June, 2009.

Website:http://ontogen.ijs.si/

[9] B. Fortuna, M. Grobelnik, D. Mladenic: “OntoGen: Semi-automatic Ontology Editor”. HCI

International 2007, Beijing,July 2007.

[10] M. Crubézy et.al: “Ontology-Centered Syndromic Surveillance for Bioterrorism”. IEEE

Intelligent Systems, 20(5):26-35. 2005

[11] “Protégé Wiki”, Retrieved on 12 January, 2009. Website: http://protege.stanford.edu/

[13]Berners-Lee, Tim; James Hendler and Ora Lassila (May 17, 2001). "The Semantic Web".

Scientific American Magazine.

 [14]"W3C Semantic Web Frequently Asked Questions". W3C.

[15] http://www.w3.org/2001/sw/

 61

[16] N.F.Noy, D.L McGuinness “Ontology Development 101: A Guide to Creating Your First

Ontology”, Available at

http://protege.stanford.edu/publications/ontology_development/ontology101.pdf

[17] “Semantic web”, retrieved on 8 july,2009: http://semanticweb.org/wiki/OWL

[18] I.Astrova, N.Korda, A.Kalja “Rule-Based Transformation of SQL Relational Databases to

OWL Ontologies” 2nd International Conference on Metadata and Semantics Research, pages---

place---October 2007.

[19] OWL Web Ontology Language Guide, available at http://www.w3.org/TR/2004/REC-

owl-guide-20040210/

[20] Kiran Sonia, Sharifullah Khan, “R2O Transformation System: Relation to Ontology

transformation for Scalable Data Integration”,

[21] Bizer C. D2R MAP – A DB to RDF Mapping Language. 12th International World

Wide Web Conference, Budapest. May 2003

[22] Barrasa J, Corcho O, Gómez-Pérez A. FundFinder – A case study of Database-toontology

mapping. Semantic Integration Workshop, ISWC 2003. Sanibel Island,

Florida. Sept 2003

[23] Do, H.H., E. Rahm: COMA – A System for Flexible Combination of Match Algorithms.

VLDB 2002

[24] A.Bucella, M.R.Penabad, F.J.Rodriguez, A.Farina, A.Cechich “From relational

databases to OWL ontologies”, Digital Libraries: Advanced Methods and Technologies. Digital

Collection, pages---Puschchino, Rusia, 2004.

[25] M.li, X.Du, S.Wang “Learning ontology from relational databases” Machine learning

and Cybernetics, volume 6, pages 3410-3415, place--- 2005.

[26] R.Alhajj “Extracting the extended entity relationship model from a legacy relational
database”, Information systems, volume 28, number 6, pages 597-618, September 2003.

 62

APPENDIX – A

1. Association identifications (Proposed Technique)

Foreignkey_indentification(Pk, R’[1,2,3…..,n])

i=n; (n is numbers of remaining fields)

do

if(Pk_NAME == R’_NAME){

weight=weight + w1;

 }

if (R’_NAME conatins Pk_NAME){

weight=weight + w2;

}

if (R’_DT conatins Pk_DT){

weight=weight + w3;

 }

i=i-1;

while (i != 0)

return weight

2. Foreign Key Identification in DataMaster

class ForeignKey {

 public String name;
 public String localField;
 public String referenceField;
 public String referenceTable;

 public ForeignKey(String n, String l, String f, String t)
 {
// taking the name, localfield, referenceField and reference table as parameter
 name = n;
 localField = l;
 referenceField = f;
 referenceTable = t;
 }

 63

 public String toString()
 {
// add all the information to the string buffer
 StringBuffer buf = new StringBuffer();
 buf.append("Name: " + name);
 buf.append("\nLocal Field: " + localField);
 buf.append("\nRef Field: " + referenceField);
 buf.append("\nRef Table: " + referenceTable);
 return buf.toString();
 }
}

2. Database Importer class in datamaster

connOptions, DataMasterImportOptions impOptions) {
 this.kb = kb;
 if (kb instanceof OWLModel) {
 this.owlModel = (OWLModel) kb;
 }
 else {
 this.owlModel = null;
 }

 dsURL = Global.convertJdbcUrlToOwlNamespaceUrl(
connOptions.getDataSourceURL(), Global.URL_Conversion.EliminateAllColons);
 schemaName = connOptions.getSchemaName();
 superClses = (Collection<Cls>) impOptions.getSuperClasses();

 importInCurrOntology = impOptions.importInCurrOntology();
 importInSepOntology = impOptions.importInSepOntology();
 useDiffNamespaces = impOptions.useDiffNamespaces();
 inclTableNameInColName = impOptions.inclTableNameInColName();

 columnType = impOptions.getColumnType();

 tableClassNamePrefix = impOptions.getTableClassNamePrefix();
 tableClassNameSuffix = impOptions.getTableClassNameSuffix();
 columnPropertyNamePrefix =
impOptions.getColumnPropertyNamePrefix();
 columnPropertyNameSuffix =
impOptions.getColumnPropertyNameSuffix();

 if (owlModel == null) {
 nsPrefixRelOwl = "";
 }
 else {
 nsPrefixRelOwl = getPrefixForNamespace_RelationalOWL();
 }
 }

 64

 public String getResourceNameForTable(String tableName){
 if (owlModel == null) {
 return getFramesNameForTable(tableName);
 }
 else {
 return getOWLNameForTable(tableName);
 }
 }

 protected String getFramesNameForTable(String tableName) {
 return tableClassNamePrefix + tableName;
 }

 protected String getOWLNameForTable(String tableName) {
 return nsPrefix + Global.replaceInvalidProtegeCharacters(tableName);
 }

 protected String getPrefixForNamespace_TableClasses() {
 if (importInCurrOntology) {
 if (useDiffNamespaces) {
 return
getPrefixForNamespace(Global.NAMESPACE_TABLE_CLASSES +
Global.NAMESPACE_BIND_DSN + dsURL + "#") + ":";
 }
 else {
 return "";
 }
 }
 else {
 //TODO see how do we deal with this case!!!!
 return "";
 }
 }

 protected String getPrefixForNamespace_TableInstances() {
 if (importInCurrOntology) {
 if (useDiffNamespaces) {
 return
getPrefixForNamespace(Global.NAMESPACE_TABLE_INSTANCES +
Global.NAMESPACE_BIND_DSN + dsURL + "#") + ":";
 }
 else {
 return "";
 }
 }
 else {
 //TODO see how do we deal with this case!!!!
 return "";
 }

 65

 }

 protected String getPrefixForNamespace_TableClassesAndInstances() {
 if (importInCurrOntology) {
 if (useDiffNamespaces) {
 return
getPrefixForNamespace(Global.NAMESPACE_TABLE_CLASSES_AND_INSTANC
ES + Global.NAMESPACE_BIND_DSN + dsURL + "#") + ":";
 }
 else {
 return "";
 }
 }
 else {
 //TODO see how do we deal with this case!!!!
 return "";
 }
 }

 protected String getPrefixForNamespace_RelationalOWL() {
 return
getPrefixForNamespace(Global.NAMESPACE_RELATIONAL_OWL, "dbs") + ":";
 }

 protected String getPrefixForNamespace(String namespace) {
 return getPrefixForNamespace(namespace, "db");
 }

 protected String getPrefixForNamespace(String namespace, final String
preferred_prefix_base) {
 final String prefix_base = preferred_prefix_base;
 NamespaceManager nsmgr = owlModel.getNamespaceManager();

 String prefix = nsmgr.getPrefix(namespace);
 if (prefix != null)
 return prefix;

 prefix = prefix_base;
 int prefix_ind = 1;
 while (nsmgr.getNamespaceForPrefix(prefix) != null) {
 prefix = prefix_base + prefix_ind++;
 }
 nsmgr.setPrefix(namespace, prefix);

 return prefix;
 }

 protected String getColumnNamePrefix(String strTableName) {
 if (inclTableNameInColName)
 return strTableName + ".";

 66

 else
 return "";
 }

 protected OWLDatatypeProperty createDatatypePropertySafe(String
propertyName, RDFSDatatype datatype, boolean isAnnotationProperty, boolean
isFunctional) {
 OWLDatatypeProperty property =
owlModel.getOWLDatatypeProperty(propertyName);

 if (property == null) {
 if (isAnnotationProperty)
 property =
owlModel.createAnnotationOWLDatatypeProperty(propertyName);
 else
 property =
owlModel.createOWLDatatypeProperty(propertyName, datatype);
 property.setRange(datatype);
 property.setFunctional(isFunctional);
 } else if (! datatype.equals(property.getRangeDatatype())) {
 Global.debug("WARNING! " + propertyName + " property is
already defined with the wrong type.");
 }

 return property;
 }

 protected OWLObjectProperty createObjectPropertySafe(String propertyName,
Collection allowedClasses, boolean isAnnotationProperty, boolean isFunctional) {
 OWLObjectProperty property =
owlModel.getOWLObjectProperty(propertyName);

 if (property == null) {
 if (isAnnotationProperty)
 property =
owlModel.createAnnotationOWLObjectProperty(propertyName);
 else
 property =
owlModel.createOWLObjectProperty(propertyName, allowedClasses);
 property.setRanges(allowedClasses);
 property.setFunctional(isFunctional);
 } else if (! property.getRanges(false).containsAll(allowedClasses)) {
 Global.debug("WARNING! " + propertyName + " property is
already defined with different range specification.");
 }

 return property;
 }

 67

 protected OWLObjectProperty createObjectPropertySafe(String propertyName,
OWLObjectProperty superProperty,
 Collection allowedClasses, boolean isAnnotationProperty,
boolean isFunctional) {

 OWLObjectProperty property =
createObjectPropertySafe(propertyName, allowedClasses, isAnnotationProperty,
isFunctional);
 if (! property.isSubpropertyOf(superProperty, false)) {
 property.addSuperproperty(superProperty);
 }
 return property;
 }

 protected OWLNamedClass createOWLClassSafe(String className) {
 OWLNamedClass owlClass =
owlModel.getOWLNamedClass(className);

 if (owlClass == null) {
 return owlModel.createOWLNamedClass(className);
 }// else if (owlClass.getRDFType() != datatype) {
 // Global.debug("WARNING! " + className + " property is
already defined with the wrong type.");
 //}

 return owlClass;
 }

 protected RDFResource createOWLIndividualSafe(OWLClass typeClass, String
individualName) {
 RDFResource owlIndividual =
owlModel.getRDFResource(individualName);

 if (owlIndividual == null) {
 try {
 return typeClass.createInstance(individualName);
 } catch (Exception e) {
 Global.debug("WARNING! Exception by creating
individual '" + individualName + "': Protege instance name is already in use! This may
cause further NULL POINTER EXCEPTION.");
 e.printStackTrace();
 return null;
 }
 } else {
 if (! owlIndividual.getRDFTypes().contains(typeClass)) {
 Global.debug("WARNING! " + individualName + "
individual is already defined with the wrong type!");
 owlIndividual.addRDFType(typeClass);
 }

 68

 }

 return owlIndividual;
 }

 protected Instance createInstanceSafe(Cls typeClass, String instanceName) {
 Instance inst = kb.getInstance(instanceName);

 if (inst == null) {
 try {
 return kb.createInstance(instanceName, typeClass);
 } catch (Exception e) {
 Global.debug("WARNING! Exception by creating
instance '" + instanceName + "': Protege instance name is already in use! This may
cause further NULL POINTER EXCEPTION.");
 e.printStackTrace();
 return null;
 }
 } else {
 if (! inst.hasType(typeClass)) {
 Global.debug("WARNING! " + instanceName + "
instance is already defined with the wrong type!");
 inst.addDirectType(typeClass);
 }
 }

 return inst;
 }

 // Returns true if String s is in collection c.
 protected boolean contains(Collection<String> c, String s)
 {
 Iterator iter = c.iterator();
 while(iter.hasNext())
 {
 if(iter.next().equals(s))
 return true;
 }

 return false;
 }

 /**
 * This method creates a new slot in "thisCls" named "name", whose value is of
type "allowedCls"
 *
 * @param thisCls
 * @param name
 * @param allowedCls

 69

 * @param allowMult
 * @return
 */
 protected Slot generateSlot(Cls thisCls, String name, Cls allowedCls, boolean
allowMult)
 {
 Slot newSlot = this.kb.getSlot(name);
 if(newSlot == null)
 newSlot= this.kb.createSlot(name);
 newSlot.setValueType(ValueType.INSTANCE);
 Collection<Cls> classHolder = Collections.singletonList(allowedCls);
 newSlot.setAllowedClses(classHolder);
 newSlot.setAllowsMultipleValues(allowMult);
 thisCls.addDirectTemplateSlot(newSlot);

 return newSlot;
 }

 /**
 * This method scans a list of instances for one where the value of slotName
matches id.
 * changed because the keys may have types other than Integer (e.g. String)

 * private Instance getMatchingInstance(Collection instances, String slotName,
int id)
 *
 * @param instances
 * @param slotName
 * @param id
 * @return
 */
 protected Instance getMatchingInstance(Collection<Instance> instances, String
slotName, Object id)
 {
 Slot s = this.kb.getSlot(slotName);
 Iterator iter = instances.iterator();
 while(iter.hasNext())
 {
 Instance inst = (Instance)iter.next();
 Object val = inst.getOwnSlotValue(s);
 if (val != null && val.equals(id))
 return inst;
 }

 return null;
 }

 /**

	TITLE
	Starting
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7

